Abstract

This specification defines the 5th major version, first minor revision of the core language of the World Wide Web: the Hypertext Markup Language (HTML). In this version, new features continue to be introduced to help Web application authors, new elements continue to be introduced based on research into prevailing authoring practices, and special attention continues to be given to defining clear conformance criteria for user agents in an effort to improve interoperability.

Status of This document

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

If you wish to make comments regarding this document in a manner that is tracked by the W3C, please submit them via using our public bug database. If you cannot do this then you can also e-mail feedback to public-html-comments@w3.org (subscribe, archives), and arrangements will be made to transpose the comments to our public bug database. All feedback is welcome.

Work on extending this specification typically proceeds through extension specifications which should be consulted to see what new features are being reviewed.

The bulk of the text of this specification is also available in the WHATWG HTML Living Standard, under a license that permits reuse of the specification text.

The working groups maintains a list of all bug reports that the editors have not yet tried to address and a list of issues for which the chairs have not yet declared a decision. You are very welcome to file a new bug for any problem you may encounter. These bugs and issues apply to multiple HTML-related specifications, not just this one.

Implementors should be aware that this specification is not stable. Implementors who are not taking part in the discussions are likely to find the specification changing out from under them in incompatible ways. Vendors interested in implementing this specification before it eventually reaches the Candidate Recommendation stage should join the aforementioned mailing lists and take part in the discussions.

This is a work in progress! For the latest updates from the HTML WG, possibly including important bug fixes, please look at the editor's draft instead.

Publication as a Working Draft does not imply endorsement by the W3C Membership. This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in progress.

The latest stable version of the editor's draft of this specification is always available on the W3C HTML git repository.

The W3C HTML Working Group is the W3C working group responsible for this specification's progress. This specification is the 17 June 2014 Working Draft. This specification is intended to become a W3C Recommendation.

Work on this specification is also done at the WHATWG. The W3C HTML working group actively pursues convergence of the HTML specification with the WHATWG living standard, within the bounds of the W3C HTML working group charter. There are various ways to follow this work at the WHATWG:

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

Table of Contents


1 Introduction

1.1 Background

This section is non-normative.

The World Wide Web's markup language has always been HTML. HTML was primarily designed as a language for semantically describing scientific documents, although its general design and adaptations over the years have enabled it to be used to describe a number of other types of documents.

The main area that has not been adequately addressed by HTML is a vague subject referred to as Web Applications. This standard attempts to rectify this, while at the same time updating the HTML language to address issues raised in the past few years.

1.2 Audience

This section is non-normative.

This specification is intended for authors of documents and scripts that use the features defined in this specification, implementors of tools that operate on pages that use the features defined in this specification, and individuals wishing to establish the correctness of documents or implementations with respect to the requirements of this specification.

This document is probably not suited to readers who do not already have at least a passing familiarity with Web technologies, as in places it sacrifices clarity for precision, and brevity for completeness. More approachable tutorials and authoring guides can provide a gentler introduction to the topic.

In particular, familiarity with the basics of DOM is necessary for a complete understanding of some of the more technical parts of this specification. An understanding of Web IDL, HTTP, XML, Unicode, character encodings, JavaScript, and CSS will also be helpful in places but is not essential.

1.3 Scope

This section is non-normative.

This specification is limited to providing a semantic-level markup language and associated semantic-level scripting APIs for authoring accessible pages on the Web ranging from static documents to dynamic applications.

The scope of this specification does not include providing mechanisms for media-specific customization of presentation (although default rendering rules for Web browsers are included at the end of this specification, and several mechanisms for hooking into CSS are provided as part of the language).

The scope of this specification is not to describe an entire operating system. In particular, hardware configuration software, image manipulation tools, and applications that users would be expected to use with high-end workstations on a daily basis are out of scope. In terms of applications, this specification is targeted specifically at applications that would be expected to be used by users on an occasional basis, or regularly but from disparate locations, with low CPU requirements. Examples of such applications include online purchasing systems, searching systems, games (especially multiplayer online games), public telephone books or address books, communications software (e-mail clients, instant messaging clients, discussion software), document editing software, etc.

1.4 History

This section is non-normative.

For its first five years (1990-1995), HTML went through a number of revisions and experienced a number of extensions, primarily hosted first at CERN, and then at the IETF.

With the creation of the W3C, HTML's development changed venue again. A first abortive attempt at extending HTML in 1995 known as HTML 3.0 then made way to a more pragmatic approach known as HTML 3.2, which was completed in 1997. HTML4 quickly followed later that same year.

The following year, the W3C membership decided to stop evolving HTML and instead begin work on an XML-based equivalent, called XHTML. This effort started with a reformulation of HTML4 in XML, known as XHTML 1.0, which added no new features except the new serialization, and which was completed in 2000. After XHTML 1.0, the W3C's focus turned to making it easier for other working groups to extend XHTML, under the banner of XHTML Modularization. In parallel with this, the W3C also worked on a new language that was not compatible with the earlier HTML and XHTML languages, calling it XHTML2.

Around the time that HTML's evolution was stopped in 1998, parts of the API for HTML developed by browser vendors were specified and published under the name DOM Level 1 (in 1998) and DOM Level 2 Core and DOM Level 2 HTML (starting in 2000 and culminating in 2003). These efforts then petered out, with some DOM Level 3 specifications published in 2004 but the working group being closed before all the Level 3 drafts were completed.

In 2003, the publication of XForms, a technology which was positioned as the next generation of Web forms, sparked a renewed interest in evolving HTML itself, rather than finding replacements for it. This interest was borne from the realization that XML's deployment as a Web technology was limited to entirely new technologies (like RSS and later Atom), rather than as a replacement for existing deployed technologies (like HTML).

A proof of concept to show that it was possible to extend HTML4's forms to provide many of the features that XForms 1.0 introduced, without requiring browsers to implement rendering engines that were incompatible with existing HTML Web pages, was the first result of this renewed interest. At this early stage, while the draft was already publicly available, and input was already being solicited from all sources, the specification was only under Opera Software's copyright.

The idea that HTML's evolution should be reopened was tested at a W3C workshop in 2004, where some of the principles that underlie the HTML5 work (described below), as well as the aforementioned early draft proposal covering just forms-related features, were presented to the W3C jointly by Mozilla and Opera. The proposal was rejected on the grounds that the proposal conflicted with the previously chosen direction for the Web's evolution; the W3C staff and membership voted to continue developing XML-based replacements instead.

Shortly thereafter, Apple, Mozilla, and Opera jointly announced their intent to continue working on the effort under the umbrella of a new venue called the WHATWG. A public mailing list was created, and the draft was moved to the WHATWG site. The copyright was subsequently amended to be jointly owned by all three vendors, and to allow reuse of the specification.

The WHATWG was based on several core principles, in particular that technologies need to be backwards compatible, that specifications and implementations need to match even if this means changing the specification rather than the implementations, and that specifications need to be detailed enough that implementations can achieve complete interoperability without reverse-engineering each other.

The latter requirement in particular required that the scope of the HTML5 specification include what had previously been specified in three separate documents: HTML4, XHTML1, and DOM2 HTML. It also meant including significantly more detail than had previously been considered the norm.

In 2006, the W3C indicated an interest to participate in the development of HTML5 after all, and in 2007 formed a working group chartered to work with the WHATWG on the development of the HTML5 specification. Apple, Mozilla, and Opera allowed the W3C to publish the specification under the W3C copyright, while keeping a version with the less restrictive license on the WHATWG site.

For a number of years, both groups then worked together under the same editor: Ian Hickson. In 2011, the groups came to the conclusion that they had different goals: the W3C wanted to draw a line in the sand for features for a HTML5 Recommendation, while the WHATWG wanted to continue working on a Living Standard for HTML, continuously maintaining the specification and adding new features. In mid 2012, a new editing team was introduced at the W3C to take care of creating a HTML5 Recommendation and prepare a Working Draft for the next HTML version.

Since then, the W3C HTML WG has been cherry picking patches from the WHATWG that resolved bugs registered on the W3C HTML specification or more accurately represented implemented reality in UAs. At time of publication of this document, patches from the WHATWG HTML specification have been merged until revision 8424 inclusive. The W3C HTML editors have also added patches that resulted from discussions and decisions made by the W3C HTML WG as well a bug fixes from bugs not shared by the WHATWG.

A separate document is published to document the differences between the HTML specified in this document and the language described in the HTML4 specification. [HTMLDIFF]

1.5 Design notes

This section is non-normative.

It must be admitted that many aspects of HTML appear at first glance to be nonsensical and inconsistent.

HTML, its supporting DOM APIs, as well as many of its supporting technologies, have been developed over a period of several decades by a wide array of people with different priorities who, in many cases, did not know of each other's existence.

Features have thus arisen from many sources, and have not always been designed in especially consistent ways. Furthermore, because of the unique characteristics of the Web, implementation bugs have often become de-facto, and now de-jure, standards, as content is often unintentionally written in ways that rely on them before they can be fixed.

Despite all this, efforts have been made to adhere to certain design goals. These are described in the next few subsections.

1.5.1 Serializability of script execution

This section is non-normative.

To avoid exposing Web authors to the complexities of multithreading, the HTML and DOM APIs are designed such that no script can ever detect the simultaneous execution of other scripts. Even with workers, the intent is that the behavior of implementations can be thought of as completely serializing the execution of all scripts in all browsing contexts.

The navigator.yieldForStorageUpdates() method, in this model, is equivalent to allowing other scripts to run while the calling script is blocked.

1.5.2 Compliance with other specifications

This section is non-normative.

This specification interacts with and relies on a wide variety of other specifications. In certain circumstances, unfortunately, conflicting needs have led to this specification violating the requirements of these other specifications. Whenever this has occurred, the transgressions have each been noted as a "willful violation", and the reason for the violation has been noted.

1.5.3 Extensibility

This section is non-normative.

HTML has a wide array of extensibility mechanisms that can be used for adding semantics in a safe manner:

1.6 HTML vs XHTML

This section is non-normative.

This specification defines an abstract language for describing documents and applications, and some APIs for interacting with in-memory representations of resources that use this language.

The in-memory representation is known as "DOM HTML", or "the DOM" for short.

There are various concrete syntaxes that can be used to transmit resources that use this abstract language, two of which are defined in this specification.

The first such concrete syntax is the HTML syntax. This is the format suggested for most authors. It is compatible with most legacy Web browsers. If a document is transmitted with the text/html MIME type, then it will be processed as an HTML document by Web browsers. This specification defines version 5.1 of the HTML syntax, known as "HTML5.1".

The second concrete syntax is the XHTML syntax, which is an application of XML. When a document is transmitted with an XML MIME type, such as application/xhtml+xml, then it is treated as an XML document by Web browsers, to be parsed by an XML processor. Authors are reminded that the processing for XML and HTML differs; in particular, even minor syntax errors will prevent a document labeled as XML from being rendered fully, whereas they would be ignored in the HTML syntax. This specification defines version 5.1 of the XHTML syntax, known as "XHTML5.1".

The DOM, the HTML syntax, and the XHTML syntax cannot all represent the same content. For example, namespaces cannot be represented using the HTML syntax, but they are supported in the DOM and in the XHTML syntax. Similarly, documents that use the noscript feature can be represented using the HTML syntax, but cannot be represented with the DOM or in the XHTML syntax. Comments that contain the string "-->" can only be represented in the DOM, not in the HTML and XHTML syntaxes.

1.7 Structure of this specification

This section is non-normative.

This specification is divided into the following major sections:

Introduction
Non-normative materials providing a context for the HTML standard.
Common infrastructure
The conformance classes, algorithms, definitions, and the common underpinnings of the rest of the specification.
Semantics, structure, and APIs of HTML documents
Documents are built from elements. These elements form a tree using the DOM. This section defines the features of this DOM, as well as introducing the features common to all elements, and the concepts used in defining elements.
The elements of HTML
Each element has a predefined meaning, which is explained in this section. Rules for authors on how to use the element, along with user agent requirements for how to handle each element, are also given. This includes large signature features of HTML such as video playback and subtitles, form controls and form submission, and a 2D graphics API known as the HTML canvas.
User interaction
HTML documents can provide a number of mechanisms for users to interact with and modify content, which are described in this section, such as how focus works, and drag-and-drop.
Loading Web pages
HTML documents do not exist in a vacuum — this section defines many of the features that affect environments that deal with multiple pages, such as Web browsers and offline caching of Web applications.
Web application APIs
This section introduces basic features for scripting of applications in HTML.
The HTML syntax
The XHTML syntax
All of these features would be for naught if they couldn't be represented in a serialized form and sent to other people, and so these sections define the syntaxes of HTML and XHTML, along with rules for how to parse content using those syntaxes.
Rendering
This section defines the default rendering rules for Web browsers.

There are also some appendices, listing obsolete features and IANA considerations, and several indices.

1.7.1 How to read this specification

This specification should be read like all other specifications. First, it should be read cover-to-cover, multiple times. Then, it should be read backwards at least once. Then it should be read by picking random sections from the contents list and following all the cross-references.

As described in the conformance requirements section below, this specification describes conformance criteria for a variety of conformance classes. In particular, there are conformance requirements that apply to producers, for example authors and the documents they create, and there are conformance requirements that apply to consumers, for example Web browsers. They can be distinguished by what they are requiring: a requirement on a producer states what is allowed, while a requirement on a consumer states how software is to act.

For example, "the foo attribute's value must be a valid integer" is a requirement on producers, as it lays out the allowed values; in contrast, the requirement "the foo attribute's value must be parsed using the rules for parsing integers" is a requirement on consumers, as it describes how to process the content.

Requirements on producers have no bearing whatsoever on consumers.

Continuing the above example, a requirement stating that a particular attribute's value is constrained to being a valid integer emphatically does not imply anything about the requirements on consumers. It might be that the consumers are in fact required to treat the attribute as an opaque string, completely unaffected by whether the value conforms to the requirements or not. It might be (as in the previous example) that the consumers are required to parse the value using specific rules that define how invalid (non-numeric in this case) values are to be processed.

1.7.2 Typographic conventions

This is a definition, requirement, or explanation.

This is a note.

This is an example.

This is an open issue.

This is a warning.

interface Example {
  // this is an IDL definition
};
variable = object . method( [ optionalArgument ] )

This is a note to authors describing the usage of an interface.

/* this is a CSS fragment */

The defining instance of a term is marked up like this. Uses of that term are marked up like this or like this.

The defining instance of an element, attribute, or API is marked up like this. References to that element, attribute, or API are marked up like this.

Other code fragments are marked up like this.

Variables are marked up like this.

In an algorithm, steps in synchronous sections are marked with ⌛.

In some cases, requirements are given in the form of lists with conditions and corresponding requirements. In such cases, the requirements that apply to a condition are always the first set of requirements that follow the condition, even in the case of there being multiple sets of conditions for those requirements. Such cases are presented as follows:

This is a condition
This is another condition
This is the requirement that applies to the conditions above.
This is a third condition
This is the requirement that applies to the third condition.

1.8 Privacy concerns

This section is non-normative.

Some features of HTML trade user convenience for a measure of user privacy.

In general, due to the Internet's architecture, a user can be distinguished from another by the user's IP address. IP addresses do not perfectly match to a user; as a user moves from device to device, or from network to network, their IP address will change; similarly, NAT routing, proxy servers, and shared computers enable packets that appear to all come from a single IP address to actually map to multiple users. Technologies such as onion routing can be used to further anonymise requests so that requests from a single user at one node on the Internet appear to come from many disparate parts of the network.

However, the IP address used for a user's requests is not the only mechanism by which a user's requests could be related to each other. Cookies, for example, are designed specifically to enable this, and are the basis of most of the Web's session features that enable you to log into a site with which you have an account.

There are other mechanisms that are more subtle. Certain characteristics of a user's system can be used to distinguish groups of users from each other; by collecting enough such information, an individual user's browser's "digital fingerprint" can be computed, which can be as good, if not better, as an IP address in ascertaining which requests are from the same user.

Grouping requests in this manner, especially across multiple sites, can be used for both benign (and even arguably positive) purposes, as well as for malevolent purposes. An example of a reasonably benign purpose would be determining whether a particular person seems to prefer sites with dog illustrations as opposed to sites with cat illustrations (based on how often they visit the sites in question) and then automatically using the preferred illustrations on subsequent visits to participating sites. Malevolent purposes, however, could include governments combining information such as the person's home address (determined from the addresses they use when getting driving directions on one site) with their apparent political affiliations (determined by examining the forum sites that they participate in) to determine whether the person should be prevented from voting in an election.

Since the malevolent purposes can be remarkably evil, user agent implementors are encouraged to consider how to provide their users with tools to minimise leaking information that could be used to fingerprint a user.

Unfortunately, as the first paragraph in this section implies, sometimes there is great benefit to be derived from exposing the very information that can also be used for fingerprinting purposes, so it's not as easy as simply blocking all possible leaks. For instance, the ability to log into a site to post under a specific identity requires that the user's requests be identifiable as all being from the same user, more or less by definition. More subtly, though, information such as how wide text is, which is necessary for many effects that involve drawing text onto a canvas (e.g. any effect that involves drawing a border around the text) also leaks information that can be used to group a user's requests. (In this case, by potentially exposing, via a brute force search, which fonts a user has installed, information which can vary considerably from user to user.)

Features in this specification which can be used to fingerprint the user are marked as this paragraph is. (This is a fingerprinting vector.)

Other features in the platform can be used for the same purpose, though, including, though not limited to:

1.9 A quick introduction to HTML

This section is non-normative.

A basic HTML document looks like this:

<!DOCTYPE html>
<html>
 <head>
  <title>Sample page</title>
 </head>
 <body>
  <h1>Sample page</h1>
  <p>This is a <a href="demo.html">simple</a> sample.</p>
  <!-- this is a comment -->
 </body>
</html>

HTML documents consist of a tree of elements and text. Each element is denoted in the source by a start tag, such as "<body>", and an end tag, such as "</body>". (Certain start tags and end tags can in certain cases be omitted and are implied by other tags.)

Tags have to be nested such that elements are all completely within each other, without overlapping:

<p>This is <em>very <strong>wrong</em>!</strong></p>
<p>This <em>is <strong>correct</strong>.</em></p>

This specification defines a set of elements that can be used in HTML, along with rules about the ways in which the elements can be nested.

Elements can have attributes, which control how the elements work. In the example below, there is a hyperlink, formed using the a element and its href attribute:

<a href="demo.html">simple</a>

Attributes are placed inside the start tag, and consist of a name and a value, separated by an "=" character. The attribute value can remain unquoted if it doesn't contain space characters or any of " ' ` = < or >. Otherwise, it has to be quoted using either single or double quotes. The value, along with the "=" character, can be omitted altogether if the value is the empty string.

<!-- empty attributes -->
<input name=address disabled>
<input name=address disabled="">

<!-- attributes with a value -->
<input name=address maxlength=200>
<input name=address maxlength='200'>
<input name=address maxlength="200">

HTML user agents (e.g. Web browsers) then parse this markup, turning it into a DOM (Document Object Model) tree. A DOM tree is an in-memory representation of a document.

DOM trees contain several kinds of nodes, in particular a DocumentType node, Element nodes, Text nodes, Comment nodes, and in some cases ProcessingInstruction nodes.

The markup snippet at the top of this section would be turned into the following DOM tree:

The root element of this tree is the html element, which is the element always found at the root of HTML documents. It contains two elements, head and body, as well as a Text node between them.

There are many more Text nodes in the DOM tree than one would initially expect, because the source contains a number of spaces (represented here by "␣") and line breaks ("⏎") that all end up as Text nodes in the DOM. However, for historical reasons not all of the spaces and line breaks in the original markup appear in the DOM. In particular, all the whitespace before head start tag ends up being dropped silently, and all the whitespace after the body end tag ends up placed at the end of the body.

The head element contains a title element, which itself contains a Text node with the text "Sample page". Similarly, the body element contains an h1 element, a p element, and a comment.


This DOM tree can be manipulated from scripts in the page. Scripts (typically in JavaScript) are small programs that can be embedded using the script element or using event handler content attributes. For example, here is a form with a script that sets the value of the form's output element to say "Hello World":

<form name="main">
 Result: <output name="result"></output>
 <script>
  document.forms.main.elements.result.value = 'Hello World';
 </script>
</form>

Each element in the DOM tree is represented by an object, and these objects have APIs so that they can be manipulated. For instance, a link (e.g. the a element in the tree above) can have its "href" attribute changed in several ways:

var a = document.links[0]; // obtain the first link in the document
a.href = 'sample.html'; // change the destination URL of the link
a.protocol = 'https'; // change just the scheme part of the URL
a.setAttribute('href', 'http://example.com/'); // change the content attribute directly

Since DOM trees are used as the way to represent HTML documents when they are processed and presented by implementations (especially interactive implementations like Web browsers), this specification is mostly phrased in terms of DOM trees, instead of the markup described above.


HTML documents represent a media-independent description of interactive content. HTML documents might be rendered to a screen, or through a speech synthesiser, or on a braille display. To influence exactly how such rendering takes place, authors can use a styling language such as CSS.

In the following example, the page has been made yellow-on-blue using CSS.

<!DOCTYPE html>
<html>
 <head>
  <title>Sample styled page</title>
  <style>
   body { background: navy; color: yellow; }
  </style>
 </head>
 <body>
  <h1>Sample styled page</h1>
  <p>This page is just a demo.</p>
 </body>
</html>

For more details on how to use HTML, authors are encouraged to consult tutorials and guides. Some of the examples included in this specification might also be of use, but the novice author is cautioned that this specification, by necessity, defines the language with a level of detail that might be difficult to understand at first.

1.9.1 Writing secure applications with HTML

This section is non-normative.

When HTML is used to create interactive sites, care needs to be taken to avoid introducing vulnerabilities through which attackers can compromise the integrity of the site itself or of the site's users.

A comprehensive study of this matter is beyond the scope of this document, and authors are strongly encouraged to study the matter in more detail. However, this section attempts to provide a quick introduction to some common pitfalls in HTML application development.

The security model of the Web is based on the concept of "origins", and correspondingly many of the potential attacks on the Web involve cross-origin actions. [ORIGIN]

Not validating user input
Cross-site scripting (XSS)
SQL injection

When accepting untrusted input, e.g. user-generated content such as text comments, values in URL parameters, messages from third-party sites, etc, it is imperative that the data be validated before use, and properly escaped when displayed. Failing to do this can allow a hostile user to perform a variety of attacks, ranging from the potentially benign, such as providing bogus user information like a negative age, to the serious, such as running scripts every time a user looks at a page that includes the information, potentially propagating the attack in the process, to the catastrophic, such as deleting all data in the server.

When writing filters to validate user input, it is imperative that filters always be whitelist-based, allowing known-safe constructs and disallowing all other input. Blacklist-based filters that disallow known-bad inputs and allow everything else are not secure, as not everything that is bad is yet known (for example, because it might be invented in the future).

For example, suppose a page looked at its URL's query string to determine what to display, and the site then redirected the user to that page to display a message, as in:

<ul>
 <li><a href="message.cgi?say=Hello">Say Hello</a>
 <li><a href="message.cgi?say=Welcome">Say Welcome</a>
 <li><a href="message.cgi?say=Kittens">Say Kittens</a>
</ul>

If the message was just displayed to the user without escaping, a hostile attacker could then craft a URL that contained a script element:

http://example.com/message.cgi?say=%3Cscript%3Ealert%28%27Oh%20no%21%27%29%3C/script%3E

If the attacker then convinced a victim user to visit this page, a script of the attacker's choosing would run on the page. Such a script could do any number of hostile actions, limited only by what the site offers: if the site is an e-commerce shop, for instance, such a script could cause the user to unknowingly make arbitrarily many unwanted purchases.

This is called a cross-site scripting attack.

There are many constructs that can be used to try to trick a site into executing code. Here are some that authors are encouraged to consider when writing whitelist filters:

Cross-site request forgery (CSRF)

If a site allows a user to make form submissions with user-specific side-effects, for example posting messages on a forum under the user's name, making purchases, or applying for a passport, it is important to verify that the request was made by the user intentionally, rather than by another site tricking the user into making the request unknowingly.

This problem exists because HTML forms can be submitted to other origins.

Sites can prevent such attacks by populating forms with user-specific hidden tokens, or by checking Origin headers on all requests.

Clickjacking

A page that provides users with an interface to perform actions that the user might not wish to perform needs to be designed so as to avoid the possibility that users can be tricked into activating the interface.

One way that a user could be so tricked is if a hostile site places the victim site in a small iframe and then convinces the user to click, for instance by having the user play a reaction game. Once the user is playing the game, the hostile site can quickly position the iframe under the mouse cursor just as the user is about to click, thus tricking the user into clicking the victim site's interface.

To avoid this, sites that do not expect to be used in frames are encouraged to only enable their interface if they detect that they are not in a frame (e.g. by comparing the window object to the value of the top attribute).

1.9.2 Common pitfalls to avoid when using the scripting APIs

This section is non-normative.

Scripts in HTML have "run-to-completion" semantics, meaning that the browser will generally run the script uninterrupted before doing anything else, such as firing further events or continuing to parse the document.

On the other hand, parsing of HTML files happens asynchronously and incrementally, meaning that the parser can pause at any point to let scripts run. This is generally a good thing, but it does mean that authors need to be careful to avoid hooking event handlers after the events could have possibly fired.

There are two techniques for doing this reliably: use event handler content attributes, or create the element and add the event handlers in the same script. The latter is safe because, as mentioned earlier, scripts are run to completion before further events can fire.

One way this could manifest itself is with img elements and the load event. The event could fire as soon as the element has been parsed, especially if the image has already been cached (which is common).

Here, the author uses the onload handler on an img element to catch the load event:

<img src="games.png" alt="Games" onload="gamesLogoHasLoaded(event)">

If the element is being added by script, then so long as the event handlers are added in the same script, the event will still not be missed:

<script>
 var img = new Image();
 img.src = 'games.png';
 img.alt = 'Games';
 img.onload = gamesLogoHasLoaded;
 // img.addEventListener('load', gamesLogoHasLoaded, false); // would work also
</script>

However, if the author first created the img element and then in a separate script added the event listeners, there's a chance that the load event would be fired in between, leading it to be missed:

<!-- Do not use this style, it has a race condition! -->
 <img id="games" src="games.png" alt="Games">
 <!-- the 'load' event might fire here while the parser is taking a
      break, in which case you will not see it! -->
 <script>
  var img = document.getElementById('games');
  img.onload = gamesLogoHasLoaded; // might never fire!
 </script>

1.9.3 How to catch mistakes when writing HTML: validators and conformance checkers

This section is non-normative.

Authors are encouraged to make use of conformance checkers (also known as validators) to catch common mistakes. The W3C provides a number of online validation services, including the Nu Markup Validation Service.

1.10 Conformance requirements for authors

This section is non-normative.

Unlike previous versions of the HTML specification, this specification defines in some detail the required processing for invalid documents as well as valid documents.

However, even though the processing of invalid content is in most cases well-defined, conformance requirements for documents are still important: in practice, interoperability (the situation in which all implementations process particular content in a reliable and identical or equivalent way) is not the only goal of document conformance requirements. This section details some of the more common reasons for still distinguishing between a conforming document and one with errors.

1.10.1 Presentational markup

This section is non-normative.

The majority of presentational features from previous versions of HTML are no longer allowed. Presentational markup in general has been found to have a number of problems:

The use of presentational elements leads to poorer accessibility

While it is possible to use presentational markup in a way that provides users of assistive technologies (ATs) with an acceptable experience (e.g. using ARIA), doing so is significantly more difficult than doing so when using semantically-appropriate markup. Furthermore, even using such techniques doesn't help make pages accessible for non-AT non-graphical users, such as users of text-mode browsers.

Using media-independent markup, on the other hand, provides an easy way for documents to be authored in such a way that they work for more users (e.g. text browsers).

Higher cost of maintenance

It is significantly easier to maintain a site written in such a way that the markup is style-independent. For example, changing the color of a site that uses <font color=""> throughout requires changes across the entire site, whereas a similar change to a site based on CSS can be done by changing a single file.

Larger document sizes

Presentational markup tends to be much more redundant, and thus results in larger document sizes.

For those reasons, presentational markup has been removed from HTML in this version. This change should not come as a surprise; HTML4 deprecated presentational markup many years ago and provided a mode (HTML4 Transitional) to help authors move away from presentational markup; later, XHTML 1.1 went further and obsoleted those features altogether.

The only remaining presentational markup features in HTML are the style attribute and the style element. Use of the style attribute is somewhat discouraged in production environments, but it can be useful for rapid prototyping (where its rules can be directly moved into a separate style sheet later) and for providing specific styles in unusual cases where a separate style sheet would be inconvenient. Similarly, the style element can be useful in syndication or for page-specific styles, but in general an external style sheet is likely to be more convenient when the styles apply to multiple pages.

It is also worth noting that some elements that were previously presentational have been redefined in this specification to be media-independent: b, i, hr, s, small, and u.

1.10.2 Syntax errors

This section is non-normative.

The syntax of HTML is constrained to avoid a wide variety of problems.

Unintuitive error-handling behavior

Certain invalid syntax constructs, when parsed, result in DOM trees that are highly unintuitive.

For example, the following markup fragment results in a DOM with an hr element that is an earlier sibling of the corresponding table element:

<table><hr>...
Errors with optional error recovery

To allow user agents to be used in controlled environments without having to implement the more bizarre and convoluted error handling rules, user agents are permitted to fail whenever encountering a parse error.

Errors where the error-handling behavior is not compatible with streaming user agents

Some error-handling behavior, such as the behavior for the <table><hr>... example mentioned above, are incompatible with streaming user agents (user agents that process HTML files in one pass, without storing state). To avoid interoperability problems with such user agents, any syntax resulting in such behavior is considered invalid.

Errors that can result in infoset coercion

When a user agent based on XML is connected to an HTML parser, it is possible that certain invariants that XML enforces, such as comments never containing two consecutive hyphens, will be violated by an HTML file. Handling this can require that the parser coerce the HTML DOM into an XML-compatible infoset. Most syntax constructs that require such handling are considered invalid.

Errors that result in disproportionally poor performance

Certain syntax constructs can result in disproportionally poor performance. To discourage the use of such constructs, they are typically made non-conforming.

For example, the following markup results in poor performance, since all the unclosed i elements have to be reconstructed in each paragraph, resulting in progressively more elements in each paragraph:

<p><i>He dreamt.
<p><i>He dreamt that he ate breakfast.
<p><i>Then lunch.
<p><i>And finally dinner.

The resulting DOM for this fragment would be:

Errors involving fragile syntax constructs

There are syntax constructs that, for historical reasons, are relatively fragile. To help reduce the number of users who accidentally run into such problems, they are made non-conforming.

For example, the parsing of certain named character references in attributes happens even with the closing semicolon being omitted. It is safe to include an ampersand followed by letters that do not form a named character reference, but if the letters are changed to a string that does form a named character reference, they will be interpreted as that character instead.

In this fragment, the attribute's value is "?bill&ted":

<a href="?bill&ted">Bill and Ted</a>

In the following fragment, however, the attribute's value is actually "?art©", not the intended "?art&copy", because even without the final semicolon, "&copy" is handled the same as "&copy;" and thus gets interpreted as "©":

<a href="?art&copy">Art and Copy</a>

To avoid this problem, all named character references are required to end with a semicolon, and uses of named character references without a semicolon are flagged as errors.

Thus, the correct way to express the above cases is as follows:

<a href="?bill&ted">Bill and Ted</a> <!-- &ted is ok, since it's not a named character reference -->
<a href="?art&amp;copy">Art and Copy</a> <!-- the & has to be escaped, since &copy is a named character reference -->
Errors involving known interoperability problems in legacy user agents

Certain syntax constructs are known to cause especially subtle or serious problems in legacy user agents, and are therefore marked as non-conforming to help authors avoid them.

For example, this is why the "`" (U+0060) character is not allowed in unquoted attributes. In certain legacy user agents, it is sometimes treated as a quote character.

Another example of this is the DOCTYPE, which is required to trigger no-quirks mode, because the behavior of legacy user agents in quirks mode is often largely undocumented.

Errors that risk exposing authors to security attacks

Certain restrictions exist purely to avoid known security problems.

For example, the restriction on using UTF-7 exists purely to avoid authors falling prey to a known cross-site-scripting attack using UTF-7. [UTF7]

Cases where the author's intent is unclear

Markup where the author's intent is very unclear is often made non-conforming. Correcting these errors early makes later maintenance easier.

For example, it is unclear whether the author intended the following to be an h1 heading or an h2 heading:

<h1>Contact details</h2>
Cases that are likely to be typos

When a user makes a simple typo, it is helpful if the error can be caught early, as this can save the author a lot of debugging time. This specification therefore usually considers it an error to use element names, attribute names, and so forth, that do not match the names defined in this specification.

For example, if the author typed <capton> instead of <caption>, this would be flagged as an error and the author could correct the typo immediately.

Errors that could interfere with new syntax in the future

In order to allow the language syntax to be extended in the future, certain otherwise harmless features are disallowed.

For example, "attributes" in end tags are ignored currently, but they are invalid, in case a future change to the language makes use of that syntax feature without conflicting with already-deployed (and valid!) content.

Some authors find it helpful to be in the practice of always quoting all attributes and always including all optional tags, preferring the consistency derived from such custom over the minor benefits of terseness afforded by making use of the flexibility of the HTML syntax. To aid such authors, conformance checkers can provide modes of operation wherein such conventions are enforced.

1.10.3 Restrictions on content models and on attribute values

This section is non-normative.

Beyond the syntax of the language, this specification also places restrictions on how elements and attributes can be specified. These restrictions are present for similar reasons:

Errors involving content with dubious semantics

To avoid misuse of elements with defined meanings, content models are defined that restrict how elements can be nested when such nestings would be of dubious value.

For example, this specification disallows nesting a section element inside a kbd element, since it is highly unlikely for an author to indicate that an entire section should be keyed in.

Errors that involve a conflict in expressed semantics

Similarly, to draw the author's attention to mistakes in the use of elements, clear contradictions in the semantics expressed are also considered conformance errors.

In the fragments below, for example, the semantics are nonsensical: a separator cannot simultaneously be a cell, nor can a radio button be a progress bar.

<hr role="cell">
<input type=radio role=progressbar>

Another example is the restrictions on the content models of the ul element, which only allows li element children. Lists by definition consist just of zero or more list items, so if a ul element contains something other than an li element, it's not clear what was meant.

Cases where the default styles are likely to lead to confusion

Certain elements have default styles or behaviors that make certain combinations likely to lead to confusion. Where these have equivalent alternatives without this problem, the confusing combinations are disallowed.

For example, div elements are rendered as block boxes, and span elements as inline boxes. Putting a block box in an inline box is unnecessarily confusing; since either nesting just div elements, or nesting just span elements, or nesting span elements inside div elements all serve the same purpose as nesting a div element in a span element, but only the latter involves a block box in an inline box, the latter combination is disallowed.

Another example would be the way interactive content cannot be nested. For example, a button element cannot contain a textarea element. This is because the default behavior of such nesting interactive elements would be highly confusing to users. Instead of nesting these elements, they can be placed side by side.

Errors that indicate a likely misunderstanding of the specification

Sometimes, something is disallowed because allowing it would likely cause author confusion.

For example, setting the disabled attribute to the value "false" is disallowed, because despite the appearance of meaning that the element is enabled, it in fact means that the element is disabled (what matters for implementations is the presence of the attribute, not its value).

Errors involving limits that have been imposed merely to simplify the language

Some conformance errors simplify the language that authors need to learn.

For example, the area element's shape attribute, despite accepting both circ and circle values in practice as synonyms, disallows the use of the circ value, so as to simplify tutorials and other learning aids. There would be no benefit to allowing both, but it would cause extra confusion when teaching the language.

Errors that involve peculiarities of the parser

Certain elements are parsed in somewhat eccentric ways (typically for historical reasons), and their content model restrictions are intended to avoid exposing the author to these issues.

For example, a form element isn't allowed inside phrasing content, because when parsed as HTML, a form element's start tag will imply a p element's end tag. Thus, the following markup results in two paragraphs, not one:

<p>Welcome. <form><label>Name:</label> <input></form>

It is parsed exactly like the following:

<p>Welcome. </p><form><label>Name:</label> <input></form>
Errors that would likely result in scripts failing in hard-to-debug ways

Some errors are intended to help prevent script problems that would be hard to debug.

This is why, for instance, it is non-conforming to have two id attributes with the same value. Duplicate IDs lead to the wrong element being selected, with sometimes disastrous effects whose cause is hard to determine.

Errors that waste authoring time

Some constructs are disallowed because historically they have been the cause of a lot of wasted authoring time, and by encouraging authors to avoid making them, authors can save time in future efforts.

For example, a script element's src attribute causes the element's contents to be ignored. However, this isn't obvious, especially if the element's contents appear to be executable script — which can lead to authors spending a lot of time trying to debug the inline script without realizing that it is not executing. To reduce this problem, this specification makes it non-conforming to have executable script in a script element when the src attribute is present. This means that authors who are validating their documents are less likely to waste time with this kind of mistake.

Errors that involve areas that affect authors migrating to and from XHTML

Some authors like to write files that can be interpreted as both XML and HTML with similar results. Though this practice is discouraged in general due to the myriad of subtle complications involved (especially when involving scripting, styling, or any kind of automated serialization), this specification has a few restrictions intended to at least somewhat mitigate the difficulties. This makes it easier for authors to use this as a transitionary step when migrating between HTML and XHTML.

For example, there are somewhat complicated rules surrounding the lang and xml:lang attributes intended to keep the two synchronized.

Another example would be the restrictions on the values of xmlns attributes in the HTML serialization, which are intended to ensure that elements in conforming documents end up in the same namespaces whether processed as HTML or XML.

Errors that involve areas reserved for future expansion

As with the restrictions on the syntax intended to allow for new syntax in future revisions of the language, some restrictions on the content models of elements and values of attributes are intended to allow for future expansion of the HTML vocabulary.

For example, limiting the values of the target attribute that start with an "_" (U+005F) character to only specific predefined values allows new predefined values to be introduced at a future time without conflicting with author-defined values.

Errors that indicate a mis-use of other specifications

Certain restrictions are intended to support the restrictions made by other specifications.

For example, requiring that attributes that take media queries use only valid media queries reinforces the importance of following the conformance rules of that specification.

1.11 Suggested reading

This section is non-normative.

The following documents might be of interest to readers of this specification.

Character Model for the World Wide Web 1.0: Fundamentals [CHARMOD]

This Architectural Specification provides authors of specifications, software developers, and content developers with a common reference for interoperable text manipulation on the World Wide Web, building on the Universal Character Set, defined jointly by the Unicode Standard and ISO/IEC 10646. Topics addressed include use of the terms 'character', 'encoding' and 'string', a reference processing model, choice and identification of character encodings, character escaping, and string indexing.

Unicode Security Considerations [UTR36]

Because Unicode contains such a large number of characters and incorporates the varied writing systems of the world, incorrect usage can expose programs or systems to possible security attacks. This is especially important as more and more products are internationalized. This document describes some of the security considerations that programmers, system analysts, standards developers, and users should take into account, and provides specific recommendations to reduce the risk of problems.

Web Content Accessibility Guidelines (WCAG) 2.0 [WCAG]

Web Content Accessibility Guidelines (WCAG) 2.0 covers a wide range of recommendations for making Web content more accessible. Following these guidelines will make content accessible to a wider range of people with disabilities, including blindness and low vision, deafness and hearing loss, learning disabilities, cognitive limitations, limited movement, speech disabilities, photosensitivity and combinations of these. Following these guidelines will also often make your Web content more usable to users in general.

Authoring Tool Accessibility Guidelines (ATAG) 2.0 [ATAG]

This specification provides guidelines for designing Web content authoring tools that are more accessible for people with disabilities. An authoring tool that conforms to these guidelines will promote accessibility by providing an accessible user interface to authors with disabilities as well as by enabling, supporting, and promoting the production of accessible Web content by all authors.

User Agent Accessibility Guidelines (UAAG) 2.0 [UAAG]

This document provides guidelines for designing user agents that lower barriers to Web accessibility for people with disabilities. User agents include browsers and other types of software that retrieve and render Web content. A user agent that conforms to these guidelines will promote accessibility through its own user interface and through other internal facilities, including its ability to communicate with other technologies (especially assistive technologies). Furthermore, all users, not just users with disabilities, should find conforming user agents to be more usable.

Polyglot Markup: HTML-Compatible XHTML Documents [POLYGLOT]

A document that uses polyglot markup is a document that is a stream of bytes that parses into identical document trees (with the exception of the xmlns attribute on the root element) when processed as HTML and when processed as XML. Polyglot markup that meets a well defined set of constraints is interpreted as compatible, regardless of whether they are processed as HTML or as XHTML, per the HTML5 specification. Polyglot markup uses a specific DOCTYPE, namespace declarations, and a specific case — normally lower case but occasionally camel case — for element and attribute names. Polyglot markup uses lower case for certain attribute values. Further constraints include those on empty elements, named entity references, and the use of scripts and style.

HTML to Platform Accessibility APIs Implementation Guide [HPAAIG]

This is draft documentation mapping HTML elements and attributes to accessibility API Roles, States and Properties on a variety of platforms. It provides recommendations on deriving the accessible names and descriptions for HTML elements. It also provides accessible feature implementation examples.

2 Common infrastructure

2.1 Terminology

This specification refers to both HTML and XML attributes and IDL attributes, often in the same context. When it is not clear which is being referred to, they are referred to as content attributes for HTML and XML attributes, and IDL attributes for those defined on IDL interfaces. Similarly, the term "properties" is used for both JavaScript object properties and CSS properties. When these are ambiguous they are qualified as object properties and CSS properties respectively.

Generally, when the specification states that a feature applies to the HTML syntax or the XHTML syntax, it also includes the other. When a feature specifically only applies to one of the two languages, it is called out by explicitly stating that it does not apply to the other format, as in "for HTML, ... (this does not apply to XHTML)".

This specification uses the term document to refer to any use of HTML, ranging from short static documents to long essays or reports with rich multimedia, as well as to fully-fledged interactive applications. The term is used to refer both to Document objects and their descendant DOM trees, and to serialised byte streams using the HTML syntax or XHTML syntax, depending on context.

In the context of the DOM structures, the terms HTML document and XML document are used as defined in the DOM specification, and refer specifically to two different modes that Document objects can find themselves in. [DOM] (Such uses are always hyperlinked to their definition.)

In the context of byte streams, the term HTML document refers to resources labeled as text/html, and the term XML document refers to resources labeled with an XML MIME type.

The term XHTML document is used to refer to both Documents in the XML document mode that contains element nodes in the HTML namespace, and byte streams labeled with an XML MIME type that contain elements from the HTML namespace, depending on context.


For simplicity, terms such as shown, displayed, and visible might sometimes be used when referring to the way a document is rendered to the user. These terms are not meant to imply a visual medium; they must be considered to apply to other media in equivalent ways.

When an algorithm B says to return to another algorithm A, it implies that A called B. Upon returning to A, the implementation must continue from where it left off in calling B.

The term "transparent black" refers to the color with red, green, blue, and alpha channels all set to zero.

2.1.1 Resources

The specification uses the term supported when referring to whether a user agent has an implementation capable of decoding the semantics of an external resource. A format or type is said to be supported if the implementation can process an external resource of that format or type without critical aspects of the resource being ignored. Whether a specific resource is supported can depend on what features of the resource's format are in use.

For example, a PNG image would be considered to be in a supported format if its pixel data could be decoded and rendered, even if, unbeknownst to the implementation, the image also contained animation data.

An MPEG-4 video file would not be considered to be in a supported format if the compression format used was not supported, even if the implementation could determine the dimensions of the movie from the file's metadata.

What some specifications, in particular the HTTP specification, refer to as a representation is referred to in this specification as a resource. [HTTP]

The term MIME type is used to refer to what is sometimes called an Internet media type in protocol literature. The term media type in this specification is used to refer to the type of media intended for presentation, as used by the CSS specifications. [RFC2046] [MQ]

A string is a valid MIME type if it matches the media-type rule defined in section 3.7 "Media Types" of RFC 2616. In particular, a valid MIME type may include MIME type parameters. [HTTP]

A string is a valid MIME type with no parameters if it matches the media-type rule defined in section 3.7 "Media Types" of RFC 2616, but does not contain any ";" (U+003B) characters. In other words, if it consists only of a type and subtype, with no MIME Type parameters. [HTTP]

The term HTML MIME type is used to refer to the MIME type text/html.

A resource's critical subresources are those that the resource needs to have available to be correctly processed. Which resources are considered critical or not is defined by the specification that defines the resource's format.

The term data: URL refers to URLs that use the data: scheme. [RFC2397]

2.1.2 XML

To ease migration from HTML to XHTML, UAs conforming to this specification will place elements in HTML in the http://www.w3.org/1999/xhtml namespace, at least for the purposes of the DOM and CSS. The term "HTML elements", when used in this specification, refers to any element in that namespace, and thus refers to both HTML and XHTML elements.

Except where otherwise stated, all elements defined or mentioned in this specification are in the HTML namespace ("http://www.w3.org/1999/xhtml"), and all attributes defined or mentioned in this specification have no namespace.

The term element type is used to refer to the set of elements that have a given local name and namespace. For example, button elements are elements with the element type button, meaning they have the local name "button" and (implicitly as defined above) the HTML namespace.

Attribute names are said to be XML-compatible if they match the Name production defined in XML and they contain no ":" (U+003A) characters. [XML]

The term XML MIME type is used to refer to the MIME types text/xml, application/xml, and any MIME type whose subtype ends with the four characters "+xml". [RFC3023]

2.1.3 DOM trees

The root element of a Document object is that Document's first element child, if any. If it does not have one then the Document has no root element.

The term root element, when not referring to a Document object's root element, means the furthest ancestor element node of whatever node is being discussed, or the node itself if it has no ancestors. When the node is a part of the document, then the node's root element is indeed the document's root element; however, if the node is not currently part of the document tree, the root element will be an orphaned node.

When an element's root element is the root element of a Document object, it is said to be in a Document. An element is said to have been inserted into a document when its root element changes and is now the document's root element. Analogously, an element is said to have been removed from a document when its root element changes from being the document's root element to being another element.

A node's home subtree is the subtree rooted at that node's root element. When a node is in a Document, its home subtree is that Document's tree.

The Document of a Node (such as an element) is the Document that the Node's ownerDocument IDL attribute returns. When a Node is in a Document then that Document is always the Node's Document, and the Node's ownerDocument IDL attribute thus always returns that Document.

The Document of a content attribute is the Document of the attribute's element.

The term tree order means a pre-order, depth-first traversal of DOM nodes involved (through the parentNode/childNodes relationship).

When it is stated that some element or attribute is ignored, or treated as some other value, or handled as if it was something else, this refers only to the processing of the node after it is in the DOM. A user agent must not mutate the DOM in such situations.

A content attribute is said to change value only if its new value is different than its previous value; setting an attribute to a value it already has does not change it.

The term empty, when used of an attribute value, Text node, or string, means that the length of the text is zero (i.e. not even containing spaces or control characters).

2.1.4 Scripting

The construction "a Foo object", where Foo is actually an interface, is sometimes used instead of the more accurate "an object implementing the interface Foo".

An IDL attribute is said to be getting when its value is being retrieved (e.g. by author script), and is said to be setting when a new value is assigned to it.

If a DOM object is said to be live, then the attributes and methods on that object must operate on the actual underlying data, not a snapshot of the data.

In the contexts of events, the terms fire and dispatch are used as defined in the DOM specification: firing an event means to create and dispatch it, and dispatching an event means to follow the steps that propagate the event through the tree. The term trusted event is used to refer to events whose isTrusted attribute is initialised to true. [DOM]

2.1.5 Plugins

The term plugin refers to a user-agent defined set of content handlers used by the user agent that can take part in the user agent's rendering of a Document object, but that neither act as child browsing contexts of the Document nor introduce any Node objects to the Document's DOM.

Typically such content handlers are provided by third parties, though a user agent can also designate built-in content handlers as plugins.

A user agent must not consider the types text/plain and application/octet-stream as having a registered plugin.

One example of a plugin would be a PDF viewer that is instantiated in a browsing context when the user navigates to a PDF file. This would count as a plugin regardless of whether the party that implemented the PDF viewer component was the same as that which implemented the user agent itself. However, a PDF viewer application that launches separate from the user agent (as opposed to using the same interface) is not a plugin by this definition.

This specification does not define a mechanism for interacting with plugins, as it is expected to be user-agent- and platform-specific. Some UAs might opt to support a plugin mechanism such as the Netscape Plugin API; others might use remote content converters or have built-in support for certain types. Indeed, this specification doesn't require user agents to support plugins at all. [NPAPI]

A plugin can be secured if it honors the semantics of the sandbox attribute.

For example, a secured plugin would prevent its contents from creating pop-up windows when the plugin is instantiated inside a sandboxed iframe.

Browsers should take extreme care when interacting with external content intended for plugins. When third-party software is run with the same privileges as the user agent itself, vulnerabilities in the third-party software become as dangerous as those in the user agent.

Since different users having differents sets of plugins provides a fingerprinting vector that increases the chances of users being uniquely identified, user agents are encouraged to support the exact same set of plugins for each user. (This is a fingerprinting vector.)

2.1.6 Character encodings

A character encoding, or just encoding where that is not ambiguous, is a defined way to convert between byte streams and Unicode strings, as defined in the Encoding standard. An encoding has an encoding name and one or more encoding labels, referred to as the encoding's name and labels in the Encoding standard. [ENCODING]

An ASCII-compatible character encoding is a single-byte or variable-length encoding in which the bytes 0x09, 0x0A, 0x0C, 0x0D, 0x20 - 0x22, 0x26, 0x27, 0x2C - 0x3F, 0x41 - 0x5A, and 0x61 - 0x7A, ignoring bytes that are the second and later bytes of multibyte sequences, all correspond to single-byte sequences that map to the same Unicode characters as those bytes in Windows-1252. [ENCODING]

This includes such encodings as Shift_JIS, HZ-GB-2312, and variants of ISO-2022, even though it is possible in these encodings for bytes like 0x70 to be part of longer sequences that are unrelated to their interpretation as ASCII. It excludes UTF-16 variants, as well as obsolete legacy encodings such as UTF-7, GSM03.38, and EBCDIC variants.

The term a UTF-16 encoding refers to any variant of UTF-16: UTF-16LE or UTF-16BE, regardless of the presence or absence of a BOM. [ENCODING]

The term code unit is used as defined in the Web IDL specification: a 16 bit unsigned integer, the smallest atomic component of a DOMString. (This is a narrower definition than the one used in Unicode, and is not the same as a code point.) [WEBIDL]

The term Unicode code point means a Unicode scalar value where possible, and an isolated surrogate code point when not. When a conformance requirement is defined in terms of characters or Unicode code points, a pair of code units consisting of a high surrogate followed by a low surrogate must be treated as the single code point represented by the surrogate pair, but isolated surrogates must each be treated as the single code point with the value of the surrogate. [UNICODE]

In this specification, the term character, when not qualified as Unicode character, is synonymous with the term Unicode code point.

The term Unicode character is used to mean a Unicode scalar value (i.e. any Unicode code point that is not a surrogate code point). [UNICODE]

The code-unit length of a string is the number of code units in that string.

This complexity results from the historical decision to define the DOM API in terms of 16 bit (UTF-16) code units, rather than in terms of Unicode characters.

2.2 Conformance requirements

All diagrams, examples, and notes in this specification are non-normative, as are all sections explicitly marked non-normative. Everything else in this specification is normative.

The key words "MUST", "MUST NOT", "SHOULD", "SHOULD NOT", "MAY", and "OPTIONAL" in the normative parts of this document are to be interpreted as described in RFC2119. The key word "OPTIONALLY" in the normative parts of this document is to be interpreted with the same normative meaning as "MAY" and "OPTIONAL". For readability, these words do not appear in all uppercase letters in this specification. [RFC2119]

Requirements phrased in the imperative as part of algorithms (such as "strip any leading space characters" or "return false and abort these steps") are to be interpreted with the meaning of the key word ("must", "should", "may", etc) used in introducing the algorithm.

For example, were the spec to say:

To eat an orange, the user must:
1. Peel the orange.
2. Separate each slice of the orange.
3. Eat the orange slices.

...it would be equivalent to the following:

To eat an orange:
1. The user must peel the orange.
2. The user must separate each slice of the orange.
3. The user must eat the orange slices.

Here the key word is "must".

The former (imperative) style is generally preferred in this specification for stylistic reasons.

Conformance requirements phrased as algorithms or specific steps may be implemented in any manner, so long as the end result is equivalent. (In particular, the algorithms defined in this specification are intended to be easy to follow, and not intended to be performant.)

2.2.1 Conformance classes

This specification describes the conformance criteria for user agents (relevant to implementors) and documents (relevant to authors and authoring tool implementors).

Conforming documents are those that comply with all the conformance criteria for documents. For readability, some of these conformance requirements are phrased as conformance requirements on authors; such requirements are implicitly requirements on documents: by definition, all documents are assumed to have had an author. (In some cases, that author may itself be a user agent — such user agents are subject to additional rules, as explained below.)

For example, if a requirement states that "authors must not use the foobar element", it would imply that documents are not allowed to contain elements named foobar.

There is no implied relationship between document conformance requirements and implementation conformance requirements. User agents are not free to handle non-conformant documents as they please; the processing model described in this specification applies to implementations regardless of the conformity of the input documents.

User agents fall into several (overlapping) categories with different conformance requirements.

Web browsers and other interactive user agents

Web browsers that support the XHTML syntax must process elements and attributes from the HTML namespace found in XML documents as described in this specification, so that users can interact with them, unless the semantics of those elements have been overridden by other specifications.

A conforming XHTML processor would, upon finding an XHTML script element in an XML document, execute the script contained in that element. However, if the element is found within a transformation expressed in XSLT (assuming the user agent also supports XSLT), then the processor would instead treat the script element as an opaque element that forms part of the transform.

Web browsers that support the HTML syntax must process documents labeled with an HTML MIME type as described in this specification, so that users can interact with them.

User agents that support scripting must also be conforming implementations of the IDL fragments in this specification, as described in the Web IDL specification. [WEBIDL]

Unless explicitly stated, specifications that override the semantics of HTML elements do not override the requirements on DOM objects representing those elements. For example, the script element in the example above would still implement the HTMLScriptElement interface.

Non-interactive presentation user agents

User agents that process HTML and XHTML documents purely to render non-interactive versions of them must comply to the same conformance criteria as Web browsers, except that they are exempt from requirements regarding user interaction.

Typical examples of non-interactive presentation user agents are printers (static UAs) and overhead displays (dynamic UAs). It is expected that most static non-interactive presentation user agents will also opt to lack scripting support.

A non-interactive but dynamic presentation UA would still execute scripts, allowing forms to be dynamically submitted, and so forth. However, since the concept of "focus" is irrelevant when the user cannot interact with the document, the UA would not need to support any of the focus-related DOM APIs.

Visual user agents that support the suggested default rendering

User agents, whether interactive or not, may be designated (possibly as a user option) as supporting the suggested default rendering defined by this specification.

This is not required. In particular, even user agents that do implement the suggested default rendering are encouraged to offer settings that override this default to improve the experience for the user, e.g. changing the color contrast, using different focus styles, or otherwise making the experience more accessible and usable to the user.

User agents that are designated as supporting the suggested default rendering must, while so designated, implement the rules in the rendering section that that section defines as the behavior that user agents are expected to implement.

User agents with no scripting support

Implementations that do not support scripting (or which have their scripting features disabled entirely) are exempt from supporting the events and DOM interfaces mentioned in this specification. For the parts of this specification that are defined in terms of an events model or in terms of the DOM, such user agents must still act as if events and the DOM were supported.

Scripting can form an integral part of an application. Web browsers that do not support scripting, or that have scripting disabled, might be unable to fully convey the author's intent.

Conformance checkers

Conformance checkers must verify that a document conforms to the applicable conformance criteria described in this specification. Automated conformance checkers are exempt from detecting errors that require interpretation of the author's intent (for example, while a document is non-conforming if the content of a blockquote element is not a quote, conformance checkers running without the input of human judgement do not have to check that blockquote elements only contain quoted material).

Conformance checkers must check that the input document conforms when parsed without a browsing context (meaning that no scripts are run, and that the parser's scripting flag is disabled), and should also check that the input document conforms when parsed with a browsing context in which scripts execute, and that the scripts never cause non-conforming states to occur other than transiently during script execution itself. (This is only a "SHOULD" and not a "MUST" requirement because it has been proven to be impossible. [COMPUTABLE])

The term "HTML validator" can be used to refer to a conformance checker that itself conforms to the applicable requirements of this specification.

XML DTDs cannot express all the conformance requirements of this specification. Therefore, a validating XML processor and a DTD cannot constitute a conformance checker. Also, since neither of the two authoring formats defined in this specification are applications of SGML, a validating SGML system cannot constitute a conformance checker either.

To put it another way, there are three types of conformance criteria:

  1. Criteria that can be expressed in a DTD.
  2. Criteria that cannot be expressed by a DTD, but can still be checked by a machine.
  3. Criteria that can only be checked by a human.

A conformance checker must check for the first two. A simple DTD-based validator only checks for the first class of errors and is therefore not a conforming conformance checker according to this specification.

Data mining tools

Applications and tools that process HTML and XHTML documents for reasons other than to either render the documents or check them for conformance should act in accordance with the semantics of the documents that they process.

A tool that generates document outlines but increases the nesting level for each paragraph and does not increase the nesting level for each section would not be conforming.

Authoring tools and markup generators

Authoring tools and markup generators must generate conforming documents. Conformance criteria that apply to authors also apply to authoring tools, where appropriate.

Authoring tools are exempt from the strict requirements of using elements only for their specified purpose, but only to the extent that authoring tools are not yet able to determine author intent. However, authoring tools must not automatically misuse elements or encourage their users to do so.

For example, it is not conforming to use an address element for arbitrary contact information; that element can only be used for marking up contact information for the author of the document or section. However, since an authoring tool is likely unable to determine the difference, an authoring tool is exempt from that requirement. This does not mean, though, that authoring tools can use address elements for any block of italics text (for instance); it just means that the authoring tool doesn't have to verify that when the user uses a tool for inserting contact information for a section, that the user really is doing that and not inserting something else instead.

In terms of conformance checking, an editor has to output documents that conform to the same extent that a conformance checker will verify.

When an authoring tool is used to edit a non-conforming document, it may preserve the conformance errors in sections of the document that were not edited during the editing session (i.e. an editing tool is allowed to round-trip erroneous content). However, an authoring tool must not claim that the output is conformant if errors have been so preserved.

Authoring tools are expected to come in two broad varieties: tools that work from structure or semantic data, and tools that work on a What-You-See-Is-What-You-Get media-specific editing basis (WYSIWYG).

The former is the preferred mechanism for tools that author HTML, since the structure in the source information can be used to make informed choices regarding which HTML elements and attributes are most appropriate.

However, WYSIWYG tools are legitimate. WYSIWYG tools should use elements they know are appropriate, and should not use elements that they do not know to be appropriate. This might in certain extreme cases mean limiting the use of flow elements to just a few elements, like div, b, i, and span and making liberal use of the style attribute.

All authoring tools, whether WYSIWYG or not, should make a best effort attempt at enabling users to create well-structured, semantically rich, media-independent content.

User agents may impose implementation-specific limits on otherwise unconstrained inputs, e.g. to prevent denial of service attacks, to guard against running out of memory, or to work around platform-specific limitations. (This is a fingerprinting vector.)

For compatibility with existing content and prior specifications, this specification describes two authoring formats: one based on XML (referred to as the XHTML syntax), and one using a custom format inspired by SGML (referred to as the HTML syntax). Implementations must support at least one of these two formats, although supporting both is encouraged.

Some conformance requirements are phrased as requirements on elements, attributes, methods or objects. Such requirements fall into two categories: those describing content model restrictions, and those describing implementation behavior. Those in the former category are requirements on documents and authoring tools. Those in the second category are requirements on user agents. Similarly, some conformance requirements are phrased as requirements on authors; such requirements are to be interpreted as conformance requirements on the documents that authors produce. (In other words, this specification does not distinguish between conformance criteria on authors and conformance criteria on documents.)

2.2.2 Dependencies

This specification relies on several other underlying specifications.

Unicode and Encoding

The Unicode character set is used to represent textual data, and the Encoding standard defines requirements around character encodings. [UNICODE]

This specification introduces terminology based on the terms defined in those specifications, as described earlier.

The following terms are used as defined in the Encoding standard: [ENCODING]

  • Getting an encoding
  • The encoder and decoder algorithms for various encodings, including the UTF-8 encoder and UTF-8 decoder
  • The generic decode algorithm which takes a byte stream and an encoding and returns a character stream
  • The UTF-8 decode algorithm which takes a byte stream and returns a character stream, additionally stripping one leading UTF-8 Byte Order Mark (BOM), if any

The UTF-8 decoder is distinct from the UTF-8 decode algorithm. The latter first strips a Byte Order Mark (BOM), if any, and then invokes the former.

For readability, character encodings are sometimes referenced in this specification with a case that differs from the canonical case given in the Encoding standard. (For example, "UTF-16LE" instead of "utf-16le".)

XML

Implementations that support the XHTML syntax must support some version of XML, as well as its corresponding namespaces specification, because that syntax uses an XML serialization with namespaces. [XML] [XMLNS]

URLs

The following terms are defined in the WHATWG URL standard: [URL]

  • URL
  • Absolute URL
  • Relative URL
  • Relative schemes
  • The URL parser
  • Parsed URL
  • The scheme component of a parsed URL
  • The scheme data component of a parsed URL
  • The username component of a parsed URL
  • The password component of a parsed URL
  • The host component of a parsed URL
  • The port component of a parsed URL
  • The path component of a parsed URL
  • The query component of a parsed URL
  • The fragment component of a parsed URL
  • Parse errors from the URL parser
  • The URL serializer
  • Default encode set
  • Percent encode
  • UTF-8 percent encode
  • Percent decode
  • Decoder error
  • The domain label to ASCII algorithm
  • The domain label to Unicode algorithm
  • URLUtils interface
  • URLUtilsReadOnly interface
  • href attribute
  • protocol attribute
  • The get the base hook for URLUtils
  • The update steps hook for URLUtils
  • The set the input algorithm for URLUtils
  • The query encoding of an URLUtils object
  • The input of an URLUtils object
  • The url of an URLUtils object
Cookies

The following terms are defined in the Cookie specification: [COOKIES]

  • cookie-string
  • receives a set-cookie-string
Fetch

The following terms are defined in the WHATWG Fetch specification: [FETCH]

  • cross-origin request
  • cross-origin request status
  • custom request headers
  • simple cross-origin request
  • redirect steps
  • omit credentials flag
  • resource sharing check

This specification does not yet use the "fetch" algorithm from the WHATWG Fetch specification. It will be updated to do so in due course.

Web IDL

The IDL fragments in this specification must be interpreted as required for conforming IDL fragments, as described in the Web IDL specification. [WEBIDL]

The terms supported property indices, determine the value of an indexed property, support named properties, supported property names, unenumerable, determine the value of a named property, platform array objects, and read only (when applied to arrays) are used as defined in the Web IDL specification. The algorithm to convert a DOMString to a sequence of Unicode characters is similarly that defined in the Web IDL specification.

When this specification requires a user agent to create a Date object representing a particular time (which could be the special value Not-a-Number), the milliseconds component of that time, if any, must be truncated to an integer, and the time value of the newly created Date object must represent the resulting truncated time.

For instance, given the time 23045 millionths of a second after 01:00 UTC on January 1st 2000, i.e. the time 2000-01-01T00:00:00.023045Z, then the Date object created representing that time would represent the same time as that created representing the time 2000-01-01T00:00:00.023Z, 45 millionths earlier. If the given time is NaN, then the result is a Date object that represents a time value NaN (indicating that the object does not represent a specific instant of time).

JavaScript

Some parts of the language described by this specification only support JavaScript as the underlying scripting language. [ECMA262]

The term "JavaScript" is used to refer to ECMA262, rather than the official term ECMAScript, since the term JavaScript is more widely known. Similarly, the MIME type used to refer to JavaScript in this specification is text/javascript, since that is the most commonly used type, despite it being an officially obsoleted type according to RFC 4329. [RFC4329]

The term JavaScript global environment refers to the global environment concept defined in the ECMAScript specification.

The ECMAScript SyntaxError exception is also defined in the ECMAScript specification. [ECMA262]

The ArrayBuffer and related object types and underlying concepts from the ECMAScript Specification are used for several features in this specification. [ECMA262]

The following helper IDL is used for referring to ArrayBuffer-related types:

typedef (Int8Array or Uint8Array or Uint8ClampedArray or
         Int16Array or Uint16Array or
         Int32Array or Uint32Array or
         Float32Array or Float64Array or
         DataView) ArrayBufferView;

In particular, the Uint8ClampedArray type is used by some 2D canvas APIs, and the WebSocket API uses ArrayBuffer objects for handling binary frames.

DOM

The Document Object Model (DOM) is a representation — a model — of a document and its content. The DOM is not just an API; the conformance criteria of HTML implementations are defined, in this specification, in terms of operations on the DOM. [DOM]

Implementations must support DOM and the events defined in DOM Events, because this specification is defined in terms of the DOM, and some of the features are defined as extensions to the DOM interfaces. [DOM] [DOMEVENTS]

In particular, the following features are defined in the DOM specification: [DOM]

  • Attr interface
  • Comment interface
  • DOMImplementation interface
  • Document interface
  • XMLDocument interface
  • DocumentFragment interface
  • DocumentType interface
  • DOMException interface
  • ChildNode interface
  • Element interface
  • Node interface
  • NodeList interface
  • ProcessingInstruction interface
  • Text interface
  • HTMLCollection interface
  • item() method
  • The terms collections and represented by the collection
  • DOMTokenList interface
  • DOMSettableTokenList interface
  • createDocument() method
  • createHTMLDocument() method
  • createElement() method
  • createElementNS() method
  • getElementById() method
  • insertBefore() method
  • ownerDocument attribute
  • childNodes attribute
  • localName attribute
  • parentNode attribute
  • namespaceURI attribute
  • tagName attribute
  • id attribute
  • textContent attribute
  • The insert, append, remove, replace, and adopt algorithms for nodes
  • The nodes are inserted and nodes are removed concepts
  • An element's adopting steps
  • The attribute list concept.
  • The data of a text node.
  • Event interface
  • EventTarget interface
  • EventInit dictionary type
  • target attribute
  • isTrusted attribute
  • The type of an event
  • The concept of an event listener and the event listeners associated with an EventTarget
  • The concept of a target override
  • The concept of a regular event parent and a cross-boundary event parent
  • The encoding (herein the character encoding) and content type of a Document
  • The distinction between XML documents and HTML documents
  • The terms quirks mode, limited-quirks mode, and no-quirks mode
  • The algorithm to clone a Node, and the concept of cloning steps used by that algorithm
  • The concept of base URL change steps and the definition of what happens when an element is affected by a base URL change
  • The concept of an element's unique identifier (ID)
  • The concept of a DOM range, and the terms start, end, and boundary point as applied to ranges.
  • MutationObserver interface
  • The invoke MutationObserver objects algorithm
  • Promise interface
  • The resolver concept
  • The fulfill and reject algorithms

The term throw in this specification is used as defined in the DOM specification. The following DOMException types are defined in the DOM specification: [DOM]

  1. IndexSizeError
  2. HierarchyRequestError
  3. WrongDocumentError
  4. InvalidCharacterError
  5. NoModificationAllowedError
  6. NotFoundError
  7. NotSupportedError
  8. InvalidStateError
  9. SyntaxError
  10. InvalidModificationError
  11. NamespaceError
  12. InvalidAccessError
  13. SecurityError
  14. NetworkError
  15. AbortError
  16. URLMismatchError
  17. QuotaExceededError
  18. TimeoutError
  19. InvalidNodeTypeError
  20. DataCloneError

For example, to throw a TimeoutError exception, a user agent would construct a DOMException object whose type was the string "TimeoutError" (and whose code was the number 23, for legacy reasons) and actually throw that object as an exception.

The following features are defined in the DOM Events specification: [DOMEVENTS]

  • MouseEvent interface
  • MouseEventInit dictionary type
  • The FocusEvent interface and its relatedTarget attribute
  • The UIEvent interface's detail attribute
  • click event
  • dblclick event
  • mousedown event
  • mouseenter event
  • mouseleave event
  • mousemove event
  • mouseout event
  • mouseover event
  • mouseup event
  • mousewheel event
  • keydown event
  • keyup event
  • keypress event

The following features are defined in the Touch Events specification: [TOUCH]

  • Touch interface
  • Touch point concept

This specification sometimes uses the term name to refer to the event's type; as in, "an event named click" or "if the event name is keypress". The terms "name" and "type" for events are synonymous.

The following features are defined in the DOM Parsing and Serialization specification: [DOMPARSING]

  • innerHTML
  • outerHTML

User agents are also encouraged to implement the features described in the HTML Editing APIs and UndoManager and DOM Transaction specifications. [EDITING] [UNDO]

The following parts of the Fullscreen specification are referenced from this specification, in part to define the rendering of dialog elements, and also to define how the Fullscreen API interacts with the sandboxing features in HTML: [FULLSCREEN]

  • The top layer concept
  • requestFullscreen()
  • The fullscreen enabled flag
  • The fully exit fullscreen algorithm
File API

This specification uses the following features defined in the File API specification: [FILEAPI]

  • Blob
  • File
  • FileList
  • Blob.close()
  • Blob.type
  • The concept of read errors
XMLHttpRequest

This specification references the XMLHttpRequest specification to describe how the two specifications interact and to use its ProgressEvent features. The following features and terms are defined in the XMLHttpRequest specification: [XHR]

  • XMLHttpRequest
  • ProgressEvent
  • Fire a progress event named e
Server-Sent Events

This specification references EventSource which is specified in the Server-Sent Events specification [EVENTSOURCE]

Media Queries

Implementations must support the Media Queries language. [MQ]

CSS modules

While support for CSS as a whole is not required of implementations of this specification (though it is encouraged, at least for Web browsers), some features are defined in terms of specific CSS requirements.

In particular, some features require that a string be parsed as a CSS <color> value. When parsing a CSS value, user agents are required by the CSS specifications to apply some error handling rules. These apply to this specification also. [CSSCOLOR] [CSS]

For example, user agents are required to close all open constructs upon finding the end of a style sheet unexpectedly. Thus, when parsing the string "rgb(0,0,0" (with a missing close-parenthesis) for a color value, the close parenthesis is implied by this error handling rule, and a value is obtained (the color 'black'). However, the similar construct "rgb(0,0," (with both a missing parenthesis and a missing "blue" value) cannot be parsed, as closing the open construct does not result in a viable value.

The term CSS element reference identifier is used as defined in the CSS Image Values and Replaced Content specification to define the API that declares identifiers for use with the CSS 'element()' function. [CSSIMAGES]

Similarly, the term provides a paint source is used as defined in the CSS Image Values and Replaced Content specification to define the interaction of certain HTML elements with the CSS 'element()' function. [CSSIMAGES]

The term default object size is also defined in the CSS Image Values and Replaced Content specification. [CSSIMAGES]

Implementations that support scripting must support the CSS Object Model. The following features and terms are defined in the CSSOM specifications: [CSSOM] [CSSOMVIEW]

  • Screen
  • LinkStyle
  • CSSStyleDeclaration
  • cssText attribute of CSSStyleDeclaration
  • StyleSheet
  • The terms create a CSS style sheet, remove a CSS style sheet, and associated CSS style sheet
  • CSS style sheets and their properties: type, location, parent CSS style sheet, owner node, owner CSS rule, media, title, alternate flag, disabled flag, CSS rules, origin-clean flag
  • Alternative style sheet sets and the preferred style sheet set
  • Serializing a CSS value
  • Scroll an element into view
  • Scroll to the beginning of the document
  • The resize event
  • The scroll event

The term environment encoding is defined in the CSS Syntax specifications. [CSSSYNTAX]

The term CSS styling attribute is defined in the CSS Style Attributes specification. [CSSATTR]

The CanvasRenderingContext2D object's use of fonts depends on the features described in the CSS Fonts and Font Load Events specifications, including in particular FontLoader. [CSSFONTS] [CSSFONTLOAD]

SVG

The following interface is defined in the SVG specification: [SVG]

  • SVGMatrix
WebGL

The following interface is defined in the WebGL specification: [WEBGL]

  • WebGLRenderingContext
WebVTT

Implementations may support WebVTT as a text track format for subtitles, captions, chapter titles, metadata, etc, for media resources. [WEBVTT]

The following terms, used in this specification, are defined in the WebVTT specification:

  • WebVTT file
  • WebVTT file using cue text
  • WebVTT file using chapter title text
  • WebVTT file using only nested cues
  • WebVTT parser
  • The rules for updating the display of WebVTT text tracks
  • The rules for interpreting WebVTT cue text
  • The WebVTT text track cue writing direction
The WebSocket protocol

The following terms are defined in the WebSocket protocol specification: [WSP]

  • establish a WebSocket connection
  • the WebSocket connection is established
  • validate the server's response
  • extensions in use
  • subprotocol in use
  • headers to send appropriate cookies
  • cookies set during the server's opening handshake
  • a WebSocket message has been received
  • send a WebSocket Message
  • fail the WebSocket connection
  • close the WebSocket connection
  • start the WebSocket closing handshake
  • the WebSocket closing handshake is started
  • the WebSocket connection is closed (possibly cleanly)
  • the WebSocket connection close code
  • the WebSocket connection close reason
ARIA

The terms strong native semantics is used as defined in the ARIA specification. The term default implicit ARIA semantics has the same meaning as the term implicit WAI-ARIA semantics as used in the ARIA specification. [ARIA]

The role and aria-* attributes are defined in the ARIA specification. [ARIA]

This specification does not require support of any particular network protocol, style sheet language, scripting language, or any of the DOM specifications beyond those required in the list above. However, the language described by this specification is biased towards CSS as the styling language, JavaScript as the scripting language, and HTTP as the network protocol, and several features assume that those languages and protocols are in use.

A user agent that implements the HTTP protocol must implement the Web Origin Concept specification and the HTTP State Management Mechanism specification (Cookies) as well. [HTTP] [ORIGIN] [COOKIES]

This specification might have certain additional requirements on character encodings, image formats, audio formats, and video formats in the respective sections.

2.2.3 Extensibility

Vendor-specific proprietary user agent extensions to this specification are strongly discouraged. Documents must not use such extensions, as doing so reduces interoperability and fragments the user base, allowing only users of specific user agents to access the content in question.

If such extensions are nonetheless needed, e.g. for experimental purposes, then vendors are strongly urged to use one of the following extension mechanisms:

Attribute names beginning with the two characters "x-" are reserved for user agent use and are guaranteed to never be formally added to the HTML language. For flexibility, attributes names containing underscores (the U+005F LOW LINE character) are also reserved for experimental purposes and are guaranteed to never be formally added to the HTML language.

Pages that use such attributes are by definition non-conforming.

For DOM extensions, e.g. new methods and IDL attributes, the new members should be prefixed by vendor-specific strings to prevent clashes with future versions of this specification.

For events, experimental event types should be prefixed with vendor-specific strings.

For example, if a user agent called "Pleasold" were to add an event to indicate when the user is going up in an elevator, it could use the prefix "pleasold" and thus name the event "pleasoldgoingup", possibly with an event handler attribute named "onpleasoldgoingup".

All extensions must be defined so that the use of extensions neither contradicts nor causes the non-conformance of functionality defined in the specification.

For example, while strongly discouraged from doing so, an implementation "Foo Browser" could add a new IDL attribute "fooTypeTime" to a control's DOM interface that returned the time it took the user to select the current value of a control (say). On the other hand, defining a new control that appears in a form's elements array would be in violation of the above requirement, as it would violate the definition of elements given in this specification.

When adding new reflecting IDL attributes corresponding to content attributes of the form "x-vendor-feature", the IDL attribute should be named "vendorFeature" (i.e. the "x" is dropped from the IDL attribute's name).


When vendor-neutral extensions to this specification are needed, either this specification can be updated accordingly, or an extension specification can be written that overrides the requirements in this specification. When someone applying this specification to their activities decides that they will recognise the requirements of such an extension specification, it becomes applicable specification.

The conformance terminology for documents depends on the nature of the changes introduced by such applicable specifications, and on the content and intended interpretation of the document. Applicable specifications MAY define new document content (e.g. a foobar element), MAY prohibit certain otherwise conforming content (e.g. prohibit use of <table>s), or MAY change the semantics, DOM mappings, or other processing rules for content defined in this specification. Whether a document is or is not a conforming HTML5 document does not depend on the use of applicable specifications: if the syntax and semantics of a given conforming HTML5 document is unchanged by the use of applicable specification(s), then that document remains a conforming HTML5 document. If the semantics or processing of a given (otherwise conforming) document is changed by use of applicable specification(s), then it is not a conforming HTML5 document. For such cases, the applicable specifications SHOULD define conformance terminology.

As a suggested but not required convention, such specifications might define conformance terminology such as: "Conforming HTML5+XXX document", where XXX is a short name for the applicable specification. (Example: "Conforming HTML5+AutomotiveExtensions document").

a consequence of the rule given above is that certain syntactically correct HTML5 documents may not be conforming HTML5 documents in the presence of applicable specifications. (Example: the applicable specification defines <table> to be a piece of furniture — a document written to that specification and containing a <table> element is NOT a conforming HTML5 document, even if the element happens to be syntactically correct HTML5.)


User agents must treat elements and attributes that they do not understand as semantically neutral; leaving them in the DOM (for DOM processors), and styling them according to CSS (for CSS processors), but not inferring any meaning from them.

When support for a feature is disabled (e.g. as an emergency measure to mitigate a security problem, or to aid in development, or for performance reasons), user agents must act as if they had no support for the feature whatsoever, and as if the feature was not mentioned in this specification. For example, if a particular feature is accessed via an attribute in a Web IDL interface, the attribute itself would be omitted from the objects that implement that interface — leaving the attribute on the object but making it return null or throw an exception is insufficient.

2.2.4 Interactions with XPath and XSLT

Implementations of XPath 1.0 that operate on HTML documents parsed or created in the manners described in this specification (e.g. as part of the document.evaluate() API) must act as if the following edit was applied to the XPath 1.0 specification.

First, remove this paragraph:

A QName in the node test is expanded into an expanded-name using the namespace declarations from the expression context. This is the same way expansion is done for element type names in start and end-tags except that the default namespace declared with xmlns is not used: if the QName does not have a prefix, then the namespace URI is null (this is the same way attribute names are expanded). It is an error if the QName has a prefix for which there is no namespace declaration in the expression context.

Then, insert in its place the following:

A QName in the node test is expanded into an expanded-name using the namespace declarations from the expression context. If the QName has a prefix, then there must be a namespace declaration for this prefix in the expression context, and the corresponding namespace URI is the one that is associated with this prefix. It is an error if the QName has a prefix for which there is no namespace declaration in the expression context.

If the QName has no prefix and the principal node type of the axis is element, then the default element namespace is used. Otherwise if the QName has no prefix, the namespace URI is null. The default element namespace is a member of the context for the XPath expression. The value of the default element namespace when executing an XPath expression through the DOM3 XPath API is determined in the following way:

  1. If the context node is from an HTML DOM, the default element namespace is "http://www.w3.org/1999/xhtml".
  2. Otherwise, the default element namespace URI is null.

This is equivalent to adding the default element namespace feature of XPath 2.0 to XPath 1.0, and using the HTML namespace as the default element namespace for HTML documents. It is motivated by the desire to have implementations be compatible with legacy HTML content while still supporting the changes that this specification introduces to HTML regarding the namespace used for HTML elements, and by the desire to use XPath 1.0 rather than XPath 2.0.

This change is a willful violation of the XPath 1.0 specification, motivated by desire to have implementations be compatible with legacy content while still supporting the changes that this specification introduces to HTML regarding which namespace is used for HTML elements. [XPATH10]


XSLT 1.0 processors outputting to a DOM when the output method is "html" (either explicitly or via the defaulting rule in XSLT 1.0) are affected as follows:

If the transformation program outputs an element in no namespace, the processor must, prior to constructing the corresponding DOM element node, change the namespace of the element to the HTML namespace, ASCII-lowercase the element's local name, and ASCII-lowercase the names of any non-namespaced attributes on the element.

This requirement is a willful violation of the XSLT 1.0 specification, required because this specification changes the namespaces and case-sensitivity rules of HTML in a manner that would otherwise be incompatible with DOM-based XSLT transformations. (Processors that serialise the output are unaffected.) [XSLT10]


This specification does not specify precisely how XSLT processing interacts with the HTML parser infrastructure (for example, whether an XSLT processor acts as if it puts any elements into a stack of open elements). However, XSLT processors must stop parsing if they successfully complete, and must set the current document readiness first to "interactive" and then to "complete" if they are aborted.


This specification does not specify how XSLT interacts with the navigation algorithm, how it fits in with the event loop, nor how error pages are to be handled (e.g. whether XSLT errors are to replace an incremental XSLT output, or are rendered inline, etc).

There are also additional non-normative comments regarding the interaction of XSLT and HTML in the script element section, and of XSLT, XPath, and HTML in the template element section.

2.3 Case-sensitivity and string comparison

Comparing two strings in a case-sensitive manner means comparing them exactly, code point for code point.

Comparing two strings in an ASCII case-insensitive manner means comparing them exactly, code point for code point, except that the characters in the range U+0041 to U+005A (i.e. LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z) and the corresponding characters in the range U+0061 to U+007A (i.e. LATIN SMALL LETTER A to LATIN SMALL LETTER Z) are considered to also match.

Comparing two strings in a compatibility caseless manner means using the Unicode compatibility caseless match operation to compare the two strings, with no language-specific tailoirings. [UNICODE]

Except where otherwise stated, string comparisons must be performed in a case-sensitive manner.

Converting a string to ASCII uppercase means replacing all characters in the range U+0061 to U+007A (i.e. LATIN SMALL LETTER A to LATIN SMALL LETTER Z) with the corresponding characters in the range U+0041 to U+005A (i.e. LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z).

Converting a string to ASCII lowercase means replacing all characters in the range U+0041 to U+005A (i.e. LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z) with the corresponding characters in the range U+0061 to U+007A (i.e. LATIN SMALL LETTER A to LATIN SMALL LETTER Z).

A string pattern is a prefix match for a string s when pattern is not longer than s and truncating s to pattern's length leaves the two strings as matches of each other.

2.4 Common microsyntaxes

There are various places in HTML that accept particular data types, such as dates or numbers. This section describes what the conformance criteria for content in those formats is, and how to parse them.

Implementors are strongly urged to carefully examine any third-party libraries they might consider using to implement the parsing of syntaxes described below. For example, date libraries are likely to implement error handling behavior that differs from what is required in this specification, since error-handling behavior is often not defined in specifications that describe date syntaxes similar to those used in this specification, and thus implementations tend to vary greatly in how they handle errors.

2.4.1 Common parser idioms

The space characters, for the purposes of this specification, are U+0020 SPACE, "tab" (U+0009), "LF" (U+000A), "FF" (U+000C), and "CR" (U+000D).

The White_Space characters are those that have the Unicode property "White_Space" in the Unicode PropList.txt data file. [UNICODE]

This should not be confused with the "White_Space" value (abbreviated "WS") of the "Bidi_Class" property in the Unicode.txt data file.

The control characters are those whose Unicode "General_Category" property has the value "Cc" in the Unicode UnicodeData.txt data file. [UNICODE]

The uppercase ASCII letters are the characters in the range uppercase ASCII letters.

The lowercase ASCII letters are the characters in the range lowercase ASCII letters.

The ASCII digits are the characters in the range ASCII digits.

The alphanumeric ASCII characters are those that are either uppercase ASCII letters, lowercase ASCII letters, or ASCII digits.

The ASCII hex digits are the characters in the ranges ASCII digits, U+0041 LATIN CAPITAL LETTER A to U+0046 LATIN CAPITAL LETTER F, and U+0061 LATIN SMALL LETTER A to U+0066 LATIN SMALL LETTER F.

The uppercase ASCII hex digits are the characters in the ranges ASCII digits and U+0041 LATIN CAPITAL LETTER A to U+0046 LATIN CAPITAL LETTER F only.

The lowercase ASCII hex digits are the characters in the ranges ASCII digits and U+0061 LATIN SMALL LETTER A to U+0066 LATIN SMALL LETTER F only.

Some of the micro-parsers described below follow the pattern of having an input variable that holds the string being parsed, and having a position variable pointing at the next character to parse in input.

For parsers based on this pattern, a step that requires the user agent to collect a sequence of characters means that the following algorithm must be run, with characters being the set of characters that can be collected:

  1. Let input and position be the same variables as those of the same name in the algorithm that invoked these steps.

  2. Let result be the empty string.

  3. While position doesn't point past the end of input and the character at position is one of the characters, append that character to the end of result and advance position to the next character in input.

  4. Return result.

The step skip whitespace means that the user agent must collect a sequence of characters that are space characters. The step skip White_Space characters means that the user agent must collect a sequence of characters that are White_Space characters. In both cases, the collected characters are not used. [UNICODE]

When a user agent is to strip line breaks from a string, the user agent must remove any "LF" (U+000A) and "CR" (U+000D) characters from that string.

When a user agent is to strip leading and trailing whitespace from a string, the user agent must remove all space characters that are at the start or end of the string.

When a user agent is to strip and collapse whitespace in a string, it must replace any sequence of one or more consecutive space characters in that string with a single U+0020 SPACE character, and then strip leading and trailing whitespace from that string.

When a user agent has to strictly split a string on a particular delimiter character delimiter, it must use the following algorithm:

  1. Let input be the string being parsed.

  2. Let position be a pointer into input, initially pointing at the start of the string.

  3. Let tokens be an ordered list of tokens, initially empty.

  4. While position is not past the end of input:

    1. Collect a sequence of characters that are not the delimiter character.

    2. Append the string collected in the previous step to tokens.

    3. Advance position to the next character in input.

  5. Return tokens.

For the special cases of splitting a string on spaces and on commas, this algorithm does not apply (those algorithms also perform whitespace trimming).

2.4.2 Boolean attributes

A number of attributes are boolean attributes. The presence of a boolean attribute on an element represents the true value, and the absence of the attribute represents the false value.

If the attribute is present, its value must either be the empty string or a value that is an ASCII case-insensitive match for the attribute's canonical name, with no leading or trailing whitespace.

The values "true" and "false" are not allowed on boolean attributes. To represent a false value, the attribute has to be omitted altogether.

Here is an example of a checkbox that is checked and disabled. The checked and disabled attributes are the boolean attributes.

<label><input type=checkbox checked name=cheese disabled> Cheese</label>

This could be equivalently written as this:

<label><input type=checkbox checked=checked name=cheese disabled=disabled> Cheese</label>

You can also mix styles; the following is still equivalent:

<label><input type='checkbox' checked name=cheese disabled=""> Cheese</label>

2.4.3 Keywords and enumerated attributes

Some attributes are defined as taking one of a finite set of keywords. Such attributes are called enumerated attributes. The keywords are each defined to map to a particular state (several keywords might map to the same state, in which case some of the keywords are synonyms of each other; additionally, some of the keywords can be said to be non-conforming, and are only in the specification for historical reasons). In addition, two default states can be given. The first is the invalid value default, the second is the missing value default.

If an enumerated attribute is specified, the attribute's value must be an ASCII case-insensitive match for one of the given keywords that are not said to be non-conforming, with no leading or trailing whitespace.

When the attribute is specified, if its value is an ASCII case-insensitive match for one of the given keywords then that keyword's state is the state that the attribute represents. If the attribute value matches none of the given keywords, but the attribute has an invalid value default, then the attribute represents that state. Otherwise, if the attribute value matches none of the keywords but there is a missing value default state defined, then that is the state represented by the attribute. Otherwise, there is no default, and invalid values mean that there is no state represented.

When the attribute is not specified, if there is a missing value default state defined, then that is the state represented by the (missing) attribute. Otherwise, the absence of the attribute means that there is no state represented.

The empty string can be a valid keyword.

2.4.4 Numbers

2.4.4.1 Signed integers

A string is a valid integer if it consists of one or more ASCII digits, optionally prefixed with a "-" (U+002D) character.

A valid integer without a "-" (U+002D) prefix represents the number that is represented in base ten by that string of digits. A valid integer with a "-" (U+002D) prefix represents the number represented in base ten by the string of digits that follows the U+002D HYPHEN-MINUS, subtracted from zero.

The rules for parsing integers are as given in the following algorithm. When invoked, the steps must be followed in the order given, aborting at the first step that returns a value. This algorithm will return either an integer or an error.

  1. Let input be the string being parsed.

  2. Let position be a pointer into input, initially pointing at the start of the string.

  3. Let sign have the value "positive".

  4. Skip whitespace.

  5. If position is past the end of input, return an error.

  6. If the character indicated by position (the first character) is a "-" (U+002D) character:

    1. Let sign be "negative".
    2. Advance position to the next character.
    3. If position is past the end of input, return an error.

    Otherwise, if the character indicated by position (the first character) is a "+" (U+002B) character:

    1. Advance position to the next character. (The "+" is ignored, but it is not conforming.)
    2. If position is past the end of input, return an error.
  7. If the character indicated by position is not an ASCII digit, then return an error.

  8. Collect a sequence of characters that are ASCII digits, and interpret the resulting sequence as a base-ten integer. Let value be that integer.

  9. If sign is "positive", return value, otherwise return the result of subtracting value from zero.

2.4.4.2 Non-negative integers

A string is a valid non-negative integer if it consists of one or more ASCII digits.

A valid non-negative integer represents the number that is represented in base ten by that string of digits.

The rules for parsing non-negative integers are as given in the following algorithm. When invoked, the steps must be followed in the order given, aborting at the first step that returns a value. This algorithm will return either zero, a positive integer, or an error.

  1. Let input be the string being parsed.

  2. Let value be the result of parsing input using the rules for parsing integers.

  3. If value is an error, return an error.

  4. If value is less than zero, return an error.

  5. Return value.

2.4.4.3 Floating-point numbers

A string is a valid floating-point number if it consists of:

  1. Optionally, a "-" (U+002D) character.
  2. One or both of the following, in the given order:
    1. A series of one or more ASCII digits.
      1. A single "." (U+002E) character.
      2. A series of one or more ASCII digits.
  3. Optionally:
    1. Either a "e" (U+0065) character or a "E" (U+0045) character.
    2. Optionally, a "-" (U+002D) character or "+" (U+002B) character.
    3. A series of one or more ASCII digits.

A valid floating-point number represents the number obtained by multiplying the significand by ten raised to the power of the exponent, where the significand is the first number, interpreted as base ten (including the decimal point and the number after the decimal point, if any, and interpreting the significand as a negative number if the whole string starts with a "-" (U+002D) character and the number is not zero), and where the exponent is the number after the E, if any (interpreted as a negative number if there is a "-" (U+002D) character between the E and the number and the number is not zero, or else ignoring a "+" (U+002B) character between the E and the number if there is one). If there is no E, then the exponent is treated as zero.

The Infinity and Not-a-Number (NaN) values are not valid floating-point numbers.

The best representation of the number n as a floating-point number is the string obtained from applying the JavaScript operator ToString to n. The JavaScript operator ToString is not uniquely determined. When there are multiple possible strings that could be obtained from the JavaScript operator ToString for a particular value, the user agent must always return the same string for that value (though it may differ from the value used by other user agents).

The rules for parsing floating-point number values are as given in the following algorithm. This algorithm must be aborted at the first step that returns something. This algorithm will return either a number or an error.

  1. Let input be the string being parsed.

  2. Let position be a pointer into input, initially pointing at the start of the string.

  3. Let value have the value 1.

  4. Let divisor have the value 1.

  5. Let exponent have the value 1.

  6. Skip whitespace.

  7. If position is past the end of input, return an error.

  8. If the character indicated by position is a U+002D HYPHEN-MINUS character (-):

    1. Change value and divisor to −1.
    2. Advance position to the next character.
    3. If position is past the end of input, return an error.

    Otherwise, if the character indicated by position (the first character) is a "+" (U+002B) character:

    1. Advance position to the next character. (The "+" is ignored, but it is not conforming.)
    2. If position is past the end of input, return an error.
  9. If the character indicated by position is a "." (U+002E), and that is not the last character in input, and the character after the character indicated by position is an ASCII digit, then set value to zero and jump to the step labeled fraction.

  10. If the character indicated by position is not an ASCII digit, then return an error.

  11. Collect a sequence of characters that are ASCII digits, and interpret the resulting sequence as a base-ten integer. Multiply value by that integer.

  12. If position is past the end of input, jump to the step labeled conversion.
  13. Fraction: If the character indicated by position is a "." (U+002E), run these substeps:

    1. Advance position to the next character.

    2. If position is past the end of input, or if the character indicated by position is not an ASCII digit, "e" (U+0065), or "E" (U+0045), then jump to the step labeled conversion.

    3. If the character indicated by position is a "e" (U+0065) character or a "E" (U+0045) character, skip the remainder of these substeps.

    4. Fraction loop: Multiply divisor by ten.

    5. Add the value of the character indicated by position, interpreted as a base-ten digit (0..9) and divided by divisor, to value.
    6. Advance position to the next character.

    7. If position is past the end of input, then jump to the step labeled conversion.

    8. If the character indicated by position is an ASCII digit, jump back to the step labeled fraction loop in these substeps.

  14. If the character indicated by position is a "e" (U+0065) character or a "E" (U+0045) character, run these substeps:

    1. Advance position to the next character.

    2. If position is past the end of input, then jump to the step labeled conversion.

    3. If the character indicated by position is a "-" (U+002D) character:

      1. Change exponent to −1.
      2. Advance position to the next character.
      3. If position is past the end of input, then jump to the step labeled conversion.

      Otherwise, if the character indicated by position is a "+" (U+002B) character:

      1. Advance position to the next character.
      2. If position is past the end of input, then jump to the step labeled conversion.

    4. If the character indicated by position is not an ASCII digit, then jump to the step labeled conversion.

    5. Collect a sequence of characters that are ASCII digits, and interpret the resulting sequence as a base-ten integer. Multiply exponent by that integer.

    6. Multiply value by ten raised to the exponentth power.

  15. Conversion: Let S be the set of finite IEEE 754 double-precision floating-point values except −0, but with two special values added: 21024 and −21024.

  16. Let rounded-value be the number in S that is closest to value, selecting the number with an even significand if there are two equally close values. (The two special values 21024 and −21024 are considered to have even significands for this purpose.)

  17. If rounded-value is 21024 or −21024, return an error.

  18. Return rounded-value.

2.4.4.4 Percentages and lengths

The rules for parsing dimension values are as given in the following algorithm. When invoked, the steps must be followed in the order given, aborting at the first step that returns a value. This algorithm will return either a number greater than or equal to 1.0, or an error; if a number is returned, then it is further categorised as either a percentage or a length.

  1. Let input be the string being parsed.

  2. Let position be a pointer into input, initially pointing at the start of the string.

  3. Skip whitespace.

  4. If position is past the end of input, return an error.

  5. If the character indicated by position is a U+002B PLUS SIGN character (+), advance position to the next character.

  6. Collect a sequence of characters that are "0" (U+0030) characters, and discard them.

  7. If position is past the end of input, return an error.

  8. If the character indicated by position is not one of "1" (U+0031) to "9" (U+0039), then return an error.

  9. Collect a sequence of characters that are ASCII digits, and interpret the resulting sequence as a base-ten integer. Let value be that number.

  10. If position is past the end of input, return value as a length.

  11. If the character indicated by position is a U+002E FULL STOP character (.):

    1. Advance position to the next character.

    2. If position is past the end of input, or if the character indicated by position is not an ASCII digit, then return value as a length.

    3. Let divisor have the value 1.

    4. Fraction loop: Multiply divisor by ten.

    5. Add the value of the character indicated by position, interpreted as a base-ten digit (0..9) and divided by divisor, to value.
    6. Advance position to the next character.

    7. If position is past the end of input, then return value as a length.

    8. If the character indicated by position is an ASCII digit, return to the step labeled fraction loop in these substeps.

  12. If position is past the end of input, return value as a length.

  13. If the character indicated by position is a "%" (U+0025) character, return value as a percentage.

  14. Return value as a length.

2.4.4.5 Lists of integers

A valid list of integers is a number of valid integers separated by U+002C COMMA characters, with no other characters (e.g. no space characters). In addition, there might be restrictions on the number of integers that can be given, or on the range of values allowed.

The rules for parsing a list of integers are as follows:

  1. Let input be the string being parsed.

  2. Let position be a pointer into input, initially pointing at the start of the string.

  3. Let numbers be an initially empty list of integers. This list will be the result of this algorithm.

  4. If there is a character in the string input at position position, and it is either a U+0020 SPACE, U+002C COMMA, or U+003B SEMICOLON character, then advance position to the next character in input, or to beyond the end of the string if there are no more characters.

  5. If position points to beyond the end of input, return numbers and abort.

  6. If the character in the string input at position position is a U+0020 SPACE, U+002C COMMA, or U+003B SEMICOLON character, then return to step 4.

  7. Let negated be false.

  8. Let value be 0.

  9. Let started be false. This variable is set to true when the parser sees a number or a "-" (U+002D) character.

  10. Let got number be false. This variable is set to true when the parser sees a number.

  11. Let finished be false. This variable is set to true to switch parser into a mode where it ignores characters until the next separator.

  12. Let bogus be false.

  13. Parser: If the character in the string input at position position is:

    A U+002D HYPHEN-MINUS character

    Follow these substeps:

    1. If got number is true, let finished be true.
    2. If finished is true, skip to the next step in the overall set of steps.
    3. If started is true, let negated be false.
    4. Otherwise, if started is false and if bogus is false, let negated be true.
    5. Let started be true.
    An ASCII digit

    Follow these substeps:

    1. If finished is true, skip to the next step in the overall set of steps.
    2. Multiply value by ten.
    3. Add the value of the digit, interpreted in base ten, to value.
    4. Let started be true.
    5. Let got number be true.
    A U+0020 SPACE character
    A U+002C COMMA character
    A U+003B SEMICOLON character

    Follow these substeps:

    1. If got number is false, return the numbers list and abort. This happens if an entry in the list has no digits, as in "1,2,x,4".
    2. If negated is true, then negate value.
    3. Append value to the numbers list.
    4. Jump to step 4 in the overall set of steps.
    A character in the range U+0001 to U+001F, U+0021 to U+002B, U+002D to U+002F, U+003A, U+003C to U+0040, U+005B to U+0060, U+007b to U+007F (i.e. any other non-alphabetic ASCII character)

    Follow these substeps:

    1. If got number is true, let finished be true.
    2. If finished is true, skip to the next step in the overall set of steps.
    3. Let negated be false.
    Any other character

    Follow these substeps:

    1. If finished is true, skip to the next step in the overall set of steps.
    2. Let negated be false.
    3. Let bogus be true.
    4. If started is true, then return the numbers list, and abort. (The value in value is not appended to the list first; it is dropped.)
  14. Advance position to the next character in input, or to beyond the end of the string if there are no more characters.

  15. If position points to a character (and not to beyond the end of input), jump to the big Parser step above.

  16. If negated is true, then negate value.

  17. If got number is true, then append value to the numbers list.

  18. Return the numbers list and abort.

2.4.4.6 Lists of dimensions

The rules for parsing a list of dimensions are as follows. These rules return a list of zero or more pairs consisting of a number and a unit, the unit being one of percentage, relative, and absolute.

  1. Let raw input be the string being parsed.

  2. If the last character in raw input is a "," (U+002C) character, then remove that character from raw input.

  3. Split the string raw input on commas. Let raw tokens be the resulting list of tokens.

  4. Let result be an empty list of number/unit pairs.

  5. For each token in raw tokens, run the following substeps:

    1. Let input be the token.

    2. Let position be a pointer into input, initially pointing at the start of the string.

    3. Let value be the number 0.

    4. Let unit be absolute.

    5. If position is past the end of input, set unit to relative and jump to the last substep.

    6. If the character at position is an ASCII digit, collect a sequence of characters that are ASCII digits, interpret the resulting sequence as an integer in base ten, and increment value by that integer.

    7. If the character at position is a "." (U+002E) character, run these substeps:

      1. Collect a sequence of characters consisting of space characters and ASCII digits. Let s be the resulting sequence.

      2. Remove all space characters in s.

      3. If s is not the empty string, run these subsubsteps:

        1. Let length be the number of characters in s (after the spaces were removed).

        2. Let fraction be the result of interpreting s as a base-ten integer, and then dividing that number by 10length.

        3. Increment value by fraction.

    8. Skip whitespace.

    9. If the character at position is a "%" (U+0025) character, then set unit to percentage.

      Otherwise, if the character at position is a U+002A ASTERISK character (*), then set unit to relative.

    10. Add an entry to result consisting of the number given by value and the unit given by unit.

  6. Return the list result.

2.4.5 Dates and times

In the algorithms below, the number of days in month month of year year is: 31 if month is 1, 3, 5, 7, 8, 10, or 12; 30 if month is 4, 6, 9, or 11; 29 if month is 2 and year is a number divisible by 400, or if year is a number divisible by 4 but not by 100; and 28 otherwise. This takes into account leap years in the Gregorian calendar. [GREGORIAN]

When ASCII digits are used in the date and time syntaxes defined in this section, they express numbers in base ten.

While the formats described here are intended to be subsets of the corresponding ISO8601 formats, this specification defines parsing rules in much more detail than ISO8601. Implementors are therefore encouraged to carefully examine any date parsing libraries before using them to implement the parsing rules described below; ISO8601 libraries might not parse dates and times in exactly the same manner. [ISO8601]

Where this specification refers to the proleptic Gregorian calendar, it means the modern Gregorian calendar, extrapolated backwards to year 1. A date in the proleptic Gregorian calendar, sometimes explicitly referred to as a proleptic-Gregorian date, is one that is described using that calendar even if that calendar was not in use at the time (or place) in question. [GREGORIAN]

The use of the Gregorian calendar as the wire format in this specification is an arbitrary choice resulting from the cultural biases of those involved in the decision. See also the section discussing date, time, and number formats in forms (for authors), implemention notes regarding localization of form controls, and the time element.

2.4.5.1 Months

A month consists of a specific proleptic-Gregorian date with no time-zone information and no date information beyond a year and a month. [GREGORIAN]

A string is a valid month string representing a year year and month month if it consists of the following components in the given order:

  1. Four or more ASCII digits, representing year, where year > 0
  2. A "-" (U+002D) character
  3. Two ASCII digits, representing the month month, in the range 1 ≤ month ≤ 12

The rules to parse a month string are as follows. This will return either a year and month, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

  1. Let input be the string being parsed.

  2. Let position be a pointer into input, initially pointing at the start of the string.

  3. Parse a month component to obtain year and month. If this returns nothing, then fail.

  4. If position is not beyond the end of input, then fail.

  5. Return year and month.

The rules to parse a month component, given an input string and a position, are as follows. This will return either a year and a month, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

  1. Collect a sequence of characters that are ASCII digits. If the collected sequence is not at least four characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the year.

  2. If year is not a number greater than zero, then fail.

  3. If position is beyond the end of input or if the character at position is not a U+002D HYPHEN-MINUS character, then fail. Otherwise, move position forwards one character.

  4. Collect a sequence of characters that are ASCII digits. If the collected sequence is not exactly two characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the month.

  5. If month is not a number in the range 1 ≤ month ≤ 12, then fail.

  6. Return year and month.

2.4.5.2 Dates

A date consists of a specific proleptic-Gregorian date with no time-zone information, consisting of a year, a month, and a day. [GREGORIAN]

A string is a valid date string representing a year year, month month, and day day if it consists of the following components in the given order:

  1. A valid month string, representing year and month
  2. A "-" (U+002D) character
  3. Two ASCII digits, representing day, in the range 1 ≤ day ≤ maxday where maxday is the number of days in the month month and year year

The rules to parse a date string are as follows. This will return either a date, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

  1. Let input be the string being parsed.

  2. Let position be a pointer into input, initially pointing at the start of the string.

  3. Parse a date component to obtain year, month, and day. If this returns nothing, then fail.

  4. If position is not beyond the end of input, then fail.

  5. Let date be the date with year year, month month, and day day.

  6. Return date.

The rules to parse a date component, given an input string and a position, are as follows. This will return either a year, a month, and a day, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

  1. Parse a month component to obtain year and month. If this returns nothing, then fail.

  2. Let maxday be the number of days in month month of year year.

  3. If position is beyond the end of input or if the character at position is not a U+002D HYPHEN-MINUS character, then fail. Otherwise, move position forwards one character.

  4. Collect a sequence of characters that are ASCII digits. If the collected sequence is not exactly two characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the day.

  5. If day is not a number in the range 1 ≤ day ≤ maxday, then fail.

  6. Return year, month, and day.

2.4.5.3 Yearless dates

A yearless date consists of a Gregorian month and a day within that month, but with no associated year. [GREGORIAN]

A string is a valid yearless date string representing a month month and a day day if it consists of the following components in the given order:

  1. Optionally, two "-" (U+002D) characters
  2. Two ASCII digits, representing the month month, in the range 1 ≤ month ≤ 12
  3. A "-" (U+002D) character
  4. Two ASCII digits, representing day, in the range 1 ≤ day ≤ maxday where maxday is the number of days in the month month and any arbitrary leap year (e.g. 4 or 2000)

In other words, if the month is "02", meaning February, then the day can be 29, as if the year was a leap year.

The rules to parse a yearless date string are as follows. This will return either a month and a day, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

  1. Let input be the string being parsed.

  2. Let position be a pointer into input, initially pointing at the start of the string.

  3. Parse a yearless date component to obtain month and day. If this returns nothing, then fail.

  4. If position is not beyond the end of input, then fail.

  5. Return month and day.

The rules to parse a yearless date component, given an input string and a position, are as follows. This will return either a month and a day, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

  1. Collect a sequence of characters that are "-" (U+002D) characters. If the collected sequence is not exactly zero or two characters long, then fail.

  2. Collect a sequence of characters that are ASCII digits. If the collected sequence is not exactly two characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the month.

  3. If month is not a number in the range 1 ≤ month ≤ 12, then fail.

  4. Let maxday be the number of days in month month of any arbitrary leap year (e.g. 4 or 2000).

  5. If position is beyond the end of input or if the character at position is not a U+002D HYPHEN-MINUS character, then fail. Otherwise, move position forwards one character.

  6. Collect a sequence of characters that are ASCII digits. If the collected sequence is not exactly two characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the day.

  7. If day is not a number in the range 1 ≤ day ≤ maxday, then fail.

  8. Return month and day.

2.4.5.4 Times

A time consists of a specific time with no time-zone information, consisting of an hour, a minute, a second, and a fraction of a second.

A string is a valid time string representing an hour hour, a minute minute, and a second second if it consists of the following components in the given order:

  1. Two ASCII digits, representing hour, in the range 0 ≤ hour ≤ 23
  2. A ":" (U+003A) character
  3. Two ASCII digits, representing minute, in the range 0 ≤ minute ≤ 59
  4. If second is non-zero, or optionally if second is zero:
    1. A ":" (U+003A) character
    2. Two ASCII digits, representing the integer part of second, in the range 0 ≤ s ≤ 59
    3. If second is not an integer, or optionally if second is an integer:
      1. A 002E FULL STOP character (.)
      2. One, two, or three ASCII digits, representing the fractional part of second

The second component cannot be 60 or 61; leap seconds cannot be represented.

The rules to parse a time string are as follows. This will return either a time, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

  1. Let input be the string being parsed.

  2. Let position be a pointer into input, initially pointing at the start of the string.

  3. Parse a time component to obtain hour, minute, and second. If this returns nothing, then fail.

  4. If position is not beyond the end of input, then fail.

  5. Let time be the time with hour hour, minute minute, and second second.

  6. Return time.

The rules to parse a time component, given an input string and a position, are as follows. This will return either an hour, a minute, and a second, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

  1. Collect a sequence of characters that are ASCII digits. If the collected sequence is not exactly two characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the hour.

  2. If hour is not a number in the range 0 ≤ hour ≤ 23, then fail.
  3. If position is beyond the end of input or if the character at position is not a U+003A COLON character, then fail. Otherwise, move position forwards one character.

  4. Collect a sequence of characters that are ASCII digits. If the collected sequence is not exactly two characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the minute.

  5. If minute is not a number in the range 0 ≤ minute ≤ 59, then fail.
  6. Let second be a string with the value "0".

  7. If position is not beyond the end of input and the character at position is a U+003A COLON, then run these substeps:

    1. Advance position to the next character in input.

    2. If position is beyond the end of input, or at the last character in input, or if the next two characters in input starting at position are not both ASCII digits, then fail.

    3. Collect a sequence of characters that are either ASCII digits or U+002E FULL STOP characters. If the collected sequence is three characters long, or if it is longer than three characters long and the third character is not a U+002E FULL STOP character, or if it has more than one U+002E FULL STOP character, then fail. Otherwise, let the collected string be second instead of its previous value.

  8. Interpret second as a base-ten number (possibly with a fractional part). Let second be that number instead of the string version.

  9. If second is not a number in the range 0 ≤ second < 60, then fail.

  10. Return hour, minute, and second.

2.4.5.5 Floating dates and times

A floating date and time consists of a specific proleptic-Gregorian date, consisting of a year, a month, and a day, and a time, consisting of an hour, a minute, a second, and a fraction of a second, but expressed without a time zone. [GREGORIAN]

A string is a valid floating date and time string representing a date and time if it consists of the following components in the given order:

  1. A valid date string representing the date
  2. A "T" (U+0054) character or a U+0020 SPACE character
  3. A valid time string representing the time

A string is a valid normalised floating date and time string representing a date and time if it consists of the following components in the given order:

  1. A valid date string representing the date
  2. A "T" (U+0054) character
  3. A valid time string representing the time, expressed as the shortest possible string for the given time (e.g. omitting the seconds component entirely if the given time is zero seconds past the minute)

The rules to parse a floating date and time string are as follows. This will return either a date and time, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

  1. Let input be the string being parsed.

  2. Let position be a pointer into input, initially pointing at the start of the string.

  3. Parse a date component to obtain year, month, and day. If this returns nothing, then fail.

  4. If position is beyond the end of input or if the character at position is neither a U+0054 LATIN CAPITAL LETTER T character (T) nor a U+0020 SPACE character, then fail. Otherwise, move position forwards one character.

  5. Parse a time component to obtain hour, minute, and second. If this returns nothing, then fail.

  6. If position is not beyond the end of input, then fail.

  7. Let date be the date with year year, month month, and day day.

  8. Let time be the time with hour hour, minute minute, and second second.

  9. Return date and time.

2.4.5.6 Time zones

A time-zone offset consists of a signed number of hours and minutes.

A string is a valid time-zone offset string representing a time-zone offset if it consists of either:

This format allows for time-zone offsets from -23:59 to +23:59. In practice, however, right now the range of offsets of actual time zones is -12:00 to +14:00, and the minutes component of offsets of actual time zones is always either 00, 30, or 45. There is no guarantee that this will remain so forever, however; time zones are changed by countries at will and do not follow a standard.

See also the usage notes and examples in the global date and time section below for details on using time-zone offsets with historical times that predate the formation of formal time zones.

The rules to parse a time-zone offset string are as follows. This will return either a time-zone offset, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

  1. Let input be the string being parsed.

  2. Let position be a pointer into input, initially pointing at the start of the string.

  3. Parse a time-zone offset component to obtain timezonehours and timezoneminutes. If this returns nothing, then fail.

  4. If position is not beyond the end of input, then fail.

  5. Return the time-zone offset that is timezonehours hours and timezoneminutes minutes from UTC.

The rules to parse a time-zone offset component, given an input string and a position, are as follows. This will return either time-zone hours and time-zone minutes, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

  1. If the character at position is a U+005A LATIN CAPITAL LETTER Z character (Z), then:

    1. Let timezonehours be 0.

    2. Let timezoneminutes be 0.

    3. Advance position to the next character in input.

    Otherwise, if the character at position is either a "+" (U+002B) or a "-" (U+002D), then:

    1. If the character at position is a "+" (U+002B), let sign be "positive". Otherwise, it's a "-" (U+002D); let sign be "negative".

    2. Advance position to the next character in input.

    3. Collect a sequence of characters that are ASCII digits. Let s be the collected sequence.

    4. If s is exactly two characters long, then run these substeps:

      1. Interpret s as a base-ten integer. Let that number be the timezonehours.

      2. If position is beyond the end of input or if the character at position is not a U+003A COLON character, then fail. Otherwise, move position forwards one character.

      3. Collect a sequence of characters that are ASCII digits. If the collected sequence is not exactly two characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the timezoneminutes.

      If s is exactly four characters long, then run these substeps:

      1. Interpret the first two characters of s as a base-ten integer. Let that number be the timezonehours.

      2. Interpret the last two characters of s as a base-ten integer. Let that number be the timezoneminutes.

      Otherwise, fail.

    5. If timezonehours is not a number in the range 0 ≤ timezonehours ≤ 23, then fail.
    6. If sign is "negative", then negate timezonehours.
    7. If timezoneminutes is not a number in the range 0 ≤ timezoneminutes ≤ 59, then fail.
    8. If sign is "negative", then negate timezoneminutes.

    Otherwise, fail.

  2. Return timezonehours and timezoneminutes.

2.4.5.7 Global dates and times

A global date and time consists of a specific proleptic-Gregorian date, consisting of a year, a month, and a day, and a time, consisting of an hour, a minute, a second, and a fraction of a second, expressed with a time-zone offset, consisting of a signed number of hours and minutes. [GREGORIAN]

A string is a valid global date and time string representing a date, time, and a time-zone offset if it consists of the following components in the given order:

  1. A valid date string representing the date
  2. A "T" (U+0054) character or a U+0020 SPACE character
  3. A valid time string representing the time
  4. A valid time-zone offset string representing the time-zone offset

Times in dates before the formation of UTC in the mid twentieth century must be expressed and interpreted in terms of UT1 (contemporary Earth solar time at the 0° longitude), not UTC (the approximation of UT1 that ticks in SI seconds). Time before the formation of time zones must be expressed and interpeted as UT1 times with explicit time zones that approximate the contemporary difference between the appropriate local time and the time observed at the location of Greenwich, London.

The following are some examples of dates written as valid global date and time strings.

"0037-12-13 00:00Z"
Midnight in areas using London time on the birthday of Nero (the Roman Emperor). See below for further discussion on which date this actually corresponds to.
"1979-10-14T12:00:00.001-04:00"
One millisecond after noon on October 14th 1979, in the time zone in use on the east coast of the USA during daylight saving time.
"8592-01-01T02:09+02:09"
Midnight UTC on the 1st of January, 8592. The time zone associated with that time is two hours and nine minutes ahead of UTC, which is not currently a real time zone, but is nonetheless allowed.

Several things are notable about these dates:

The zone offset is not a complete time zone specification. When working with real date and time values, consider using a separate field for time zone, perhaps using IANA time zone IDs. [TIMEZONES]

A string is a valid normalised forced-UTC global date and time string representing a date, time, and a time-zone offset if it consists of the following components in the given order:

  1. A valid date string representing the date converted to the UTC time zone
  2. A "T" (U+0054) character
  3. A valid time string representing the time converted to the UTC time zone and expressed as the shortest possible string for the given time (e.g. omitting the seconds component entirely if the given time is zero seconds past the minute)
  4. A "Z" (U+005A) character

The rules to parse a global date and time string are as follows. This will return either a time in UTC, with associated time-zone offset information for round-tripping or display purposes, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

  1. Let input be the string being parsed.

  2. Let position be a pointer into input, initially pointing at the start of the string.

  3. Parse a date component to obtain year, month, and day. If this returns nothing, then fail.

  4. If position is beyond the end of input or if the character at position is neither a U+0054 LATIN CAPITAL LETTER T character (T) nor a U+0020 SPACE character, then fail. Otherwise, move position forwards one character.

  5. Parse a time component to obtain hour, minute, and second. If this returns nothing, then fail.

  6. If position is beyond the end of input, then fail.

  7. Parse a time-zone offset component to obtain timezonehours and timezoneminutes. If this returns nothing, then fail.

  8. If position is not beyond the end of input, then fail.

  9. Let time be the moment in time at year year, month month, day day, hours hour, minute minute, second second, subtracting timezonehours hours and timezoneminutes minutes. That moment in time is a moment in the UTC time zone.

  10. Let timezone be timezonehours hours and timezoneminutes minutes from UTC.

  11. Return time and timezone.

2.4.5.8 Weeks

A week consists of a week-year number and a week number representing a seven-day period starting on a Monday. Each week-year in this calendaring system has either 52 or 53 such seven-day periods, as defined below. The seven-day period starting on the Gregorian date Monday December 29th 1969 (1969-12-29) is defined as week number 1 in week-year 1970. Consecutive weeks are numbered sequentially. The week before the number 1 week in a week-year is the last week in the previous week-year, and vice versa. [GREGORIAN]

A week-year with a number year has 53 weeks if it corresponds to either a year year in the proleptic Gregorian calendar that has a Thursday as its first day (January 1st), or a year year in the proleptic Gregorian calendar that has a Wednesday as its first day (January 1st) and where year is a number divisible by 400, or a number divisible by 4 but not by 100. All other week-years have 52 weeks.

The week number of the last day of a week-year with 53 weeks is 53; the week number of the last day of a week-year with 52 weeks is 52.

The week-year number of a particular day can be different than the number of the year that contains that day in the proleptic Gregorian calendar. The first week in a week-year y is the week that contains the first Thursday of the Gregorian year y.

For modern purposes, a week as defined here is equivalent to ISO weeks as defined in ISO 8601. [ISO8601]

A string is a valid week string representing a week-year year and week week if it consists of the following components in the given order:

  1. Four or more ASCII digits, representing year, where year > 0
  2. A "-" (U+002D) character
  3. A "W" (U+0057) character
  4. Two ASCII digits, representing the week week, in the range 1 ≤ week ≤ maxweek, where maxweek is the week number of the last day of week-year year

The rules to parse a week string are as follows. This will return either a week-year number and week number, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

  1. Let input be the string being parsed.

  2. Let position be a pointer into input, initially pointing at the start of the string.

  3. Collect a sequence of characters that are ASCII digits. If the collected sequence is not at least four characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the year.

  4. If year is not a number greater than zero, then fail.

  5. If position is beyond the end of input or if the character at position is not a U+002D HYPHEN-MINUS character, then fail. Otherwise, move position forwards one character.

  6. If position is beyond the end of input or if the character at position is not a "W" (U+0057) character, then fail. Otherwise, move position forwards one character.

  7. Collect a sequence of characters that are ASCII digits. If the collected sequence is not exactly two characters long, then fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that number be the week.

  8. Let maxweek be the week number of the last day of year year.

  9. If week is not a number in the range 1 ≤ week ≤ maxweek, then fail.

  10. If position is not beyond the end of input, then fail.

  11. Return the week-year number year and the week number week.

2.4.5.9 Durations

A duration consists of a number of seconds.

Since months and seconds are not comparable (a month is not a precise number of seconds, but is instead a period whose exact length depends on the precise day from which it is measured) a duration as defined in this specification cannot include months (or years, which are equivalent to twelve months). Only durations that describe a specific number of seconds can be described.

A string is a valid duration string representing a duration t if it consists of either of the following:

The rules to parse a duration string are as follows. This will return either a duration or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

  1. Let input be the string being parsed.

  2. Let position be a pointer into input, initially pointing at the start of the string.

  3. Let months, seconds, and component count all be zero.

  4. Let M-disambiguator be minutes.

    This flag's other value is months. It is used to disambiguate the "M" unit in ISO8601 durations, which use the same unit for months and minutes. Months are not allowed, but are parsed for future compatibility and to avoid misinterpreting ISO8601 durations that would be valid in other contexts.

  5. Skip whitespace.

  6. If position is past the end of input, then fail.

  7. If the character in input pointed to by position is a U+0050 LATIN CAPITAL LETTER P character, then advance position to the next character, set M-disambiguator to months, and skip whitespace.

  8. Run the following substeps in a loop, until a step requiring the loop to be broken or the entire algorithm to fail is reached:

    1. Let units be undefined. It will be assigned one of the following values: years, months, weeks, days, hours, minutes, and seconds.

    2. Let next character be undefined. It is used to process characters from the input.

    3. If position is past the end of input, then break the loop.

    4. If the character in input pointed to by position is a U+0054 LATIN CAPITAL LETTER T character, then advance position to the next character, set M-disambiguator to minutes, skip whitespace, and return to the top of the loop.

    5. Set next character to the character in input pointed to by position.

    6. If next character is a "." (U+002E) character, then let N equal zero. (Do not advance position. That is taken care of below.)

      Otherwise, if next character is an ASCII digit, then collect a sequence of characters that are ASCII digits, interpret the resulting sequence as a base-ten integer, and let N be that number.

      Otherwise next character is not part of a number; fail.

    7. If position is past the end of input, then fail.

    8. Set next character to the character in input pointed to by position, and this time advance position to the next character. (If next character was a U+002E FULL STOP character (.) before, it will still be that character this time.)

    9. If next character is a "." (U+002E) character, then run these substeps:

      1. Collect a sequence of characters that are ASCII digits. Let s be the resulting sequence.

      2. If s is the empty string, then fail.

      3. Let length be the number of characters in s.

      4. Let fraction be the result of interpreting s as a base-ten integer, and then dividing that number by 10length.

      5. Increment N by fraction.

      6. Skip whitespace.

      7. If position is past the end of input, then fail.

      8. Set next character to the character in input pointed to by position, and advance position to the next character.

      9. If next character is neither a U+0053 LATIN CAPITAL LETTER S character nor a U+0073 LATIN SMALL LETTER S character, then fail.

      10. Set units to seconds.

      Otherwise, run these substeps:

      1. If next character is a space character, then skip whitespace, set next character to the character in input pointed to by position, and advance position to the next character.

      2. If next character is a U+0059 LATIN CAPITAL LETTER Y character, or a U+0079 LATIN SMALL LETTER Y character, set units to years and set M-disambiguator to months.

        If next character is a U+004D LATIN CAPITAL LETTER M character or a U+006D LATIN SMALL LETTER M character, and M-disambiguator is months, then set units to months.

        If next character is a U+0057 LATIN CAPITAL LETTER W character or a U+0077 LATIN SMALL LETTER W character, set units to weeks and set M-disambiguator to minutes.

        If next character is a U+0044 LATIN CAPITAL LETTER D character or a U+0064 LATIN SMALL LETTER D character, set units to days and set M-disambiguator to minutes.

        If next character is a U+0048 LATIN CAPITAL LETTER H character or a U+0068 LATIN SMALL LETTER H character, set units to hours and set M-disambiguator to minutes.

        If next character is a U+004D LATIN CAPITAL LETTER M character or a U+006D LATIN SMALL LETTER M character, and M-disambiguator is minutes, then set units to minutes.

        If next character is a U+0053 LATIN CAPITAL LETTER S character or a U+0073 LATIN SMALL LETTER S character, set units to seconds and set M-disambiguator to minutes.

        Otherwise if next character is none of the above characters, then fail.

    10. Increment component count.

    11. Let multiplier be 1.

    12. If units is years, multiply multiplier by 12 and set units to months.

    13. If units is months, add the product of N and multiplier to months.

      Otherwise, run these substeps:

      1. If units is weeks, multiply multiplier by 7 and set units to days.

      2. If units is days, multiply multiplier by 24 and set units to hours.

      3. If units is hours, multiply multiplier by 60 and set units to minutes.

      4. If units is minutes, multiply multiplier by 60 and set units to seconds.

      5. Forcibly, units is now seconds. Add the product of N and multiplier to seconds.

    14. Skip whitespace.

  9. If component count is zero, fail.

  10. If months is not zero, fail.

  11. Return the duration consisting of seconds seconds.

2.4.5.10 Vaguer moments in time

A string is a valid date string with optional time if it is also one of the following:


The rules to parse a date or time string are as follows. The algorithm will return either a date, a time, a global date and time, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

  1. Let input be the string being parsed.

  2. Let position be a pointer into input, initially pointing at the start of the string.

  3. Set start position to the same position as position.

  4. Set the date present and time present flags to true.

  5. Parse a date component to obtain year, month, and day. If this fails, then set the date present flag to false.

  6. If date present is true, and position is not beyond the end of input, and the character at position is either a "T" (U+0054) character or a U+0020 SPACE character, then advance position to the next character in input.

    Otherwise, if date present is true, and either position is beyond the end of input or the character at position is neither a "T" (U+0054) character nor a U+0020 SPACE character, then set time present to false.

    Otherwise, if date present is false, set position back to the same position as start position.

  7. If the time present flag is true, then parse a time component to obtain hour, minute, and second. If this returns nothing, then fail.

  8. If the date present and time present flags are both true, but position is beyond the end of input, then fail.

  9. If the date present and time present flags are both true, parse a time-zone offset component to obtain timezonehours and timezoneminutes. If this returns nothing, then fail.

  10. If position is not beyond the end of input, then fail.

  11. If the date present flag is true and the time present flag is false, then let date be the date with year year, month month, and day day, and return date.

    Otherwise, if the time present flag is true and the date present flag is false, then let time be the time with hour hour, minute minute, and second second, and return time.

    Otherwise, let time be the moment in time at year year, month month, day day, hours hour, minute minute, second second, subtracting timezonehours hours and timezoneminutes minutes, that moment in time being a moment in the UTC time zone; let timezone be timezonehours hours and timezoneminutes minutes from UTC; and return time and timezone.

2.4.6 Colors

A simple color consists of three 8-bit numbers in the range 0..255, representing the red, green, and blue components of the color respectively, in the sRGB color space. [SRGB]

A string is a valid simple color if it is exactly seven characters long, and the first character is a "#" (U+0023) character, and the remaining six characters are all ASCII hex digits, with the first two digits representing the red component, the middle two digits representing the green component, and the last two digits representing the blue component, in hexadecimal.

A string is a valid lowercase simple color if it is a valid simple color and doesn't use any characters in the range U+0041 LATIN CAPITAL LETTER A to U+0046 LATIN CAPITAL LETTER F.

The rules for parsing simple color values are as given in the following algorithm. When invoked, the steps must be followed in the order given, aborting at the first step that returns a value. This algorithm will return either a simple color or an error.

  1. Let input be the string being parsed.

  2. If input is not exactly seven characters long, then return an error.

  3. If the first character in input is not a U+0023 NUMBER SIGN character (#), then return an error.

  4. If the last six characters of input are not all ASCII hex digits, then return an error.

  5. Let result be a simple color.

  6. Interpret the second and third characters as a hexadecimal number and let the result be the red component of result.

  7. Interpret the fourth and fifth characters as a hexadecimal number and let the result be the green component of result.

  8. Interpret the sixth and seventh characters as a hexadecimal number and let the result be the blue component of result.

  9. Return result.

The rules for serializing simple color values given a simple color are as given in the following algorithm:

  1. Let result be a string consisting of a single "#" (U+0023) character.

  2. Convert the red, green, and blue components in turn to two-digit hexadecimal numbers using lowercase ASCII hex digits, zero-padding if necessary, and append these numbers to result, in the order red, green, blue.

  3. Return result, which will be a valid lowercase simple color.


Some obsolete legacy attributes parse colors in a more complicated manner, using the rules for parsing a legacy color value, which are given in the following algorithm. When invoked, the steps must be followed in the order given, aborting at the first step that returns a value. This algorithm will return either a simple color or an error.

  1. Let input be the string being parsed.

  2. If input is the empty string, then return an error.

  3. Strip leading and trailing whitespace from input.

  4. If input is an ASCII case-insensitive match for the string "transparent", then return an error.

  5. If input is an ASCII case-insensitive match for one of the keywords listed in the SVG color keywords section of the CSS3 Color specification, then return the simple color corresponding to that keyword. [CSSCOLOR]

    CSS2 System Colors are not recognised.

  6. If input is four characters long, and the first character in input is a "#" (U+0023) character, and the last three characters of input are all ASCII hex digits, then run these substeps:

    1. Let result be a simple color.

    2. Interpret the second character of input as a hexadecimal digit; let the red component of result be the resulting number multiplied by 17.

    3. Interpret the third character of input as a hexadecimal digit; let the green component of result be the resulting number multiplied by 17.

    4. Interpret the fourth character of input as a hexadecimal digit; let the blue component of result be the resulting number multiplied by 17.

    5. Return result.

  7. Replace any characters in input that have a Unicode code point greater than U+FFFF (i.e. any characters that are not in the basic multilingual plane) with the two-character string "00".

  8. If input is longer than 128 characters, truncate input, leaving only the first 128 characters.

  9. If the first character in input is a "#" (U+0023) character, remove it.

  10. Replace any character in input that is not an ASCII hex digit with the character "0" (U+0030).

  11. While input's length is zero or not a multiple of three, append a "0" (U+0030) character to input.

  12. Split input into three strings of equal length, to obtain three components. Let length be the length of those components (one third the length of input).

  13. If length is greater than 8, then remove the leading length-8 characters in each component, and let length be 8.

  14. While length is greater than two and the first character in each component is a "0" (U+0030) character, remove that character and reduce length by one.

  15. If length is still greater than two, truncate each component, leaving only the first two characters in each.

  16. Let result be a simple color.

  17. Interpret the first component as a hexadecimal number; let the red component of result be the resulting number.

  18. Interpret the second component as a hexadecimal number; let the green component of result be the resulting number.

  19. Interpret the third component as a hexadecimal number; let the blue component of result be the resulting number.

  20. Return result.


2.4.7 Space-separated tokens

A set of space-separated tokens is a string containing zero or more words (known as tokens) separated by one or more space characters, where words consist of any string of one or more characters, none of which are space characters.

A string containing a set of space-separated tokens may have leading or trailing space characters.

An unordered set of unique space-separated tokens is a set of space-separated tokens where none of the tokens are duplicated.

An ordered set of unique space-separated tokens is a set of space-separated tokens where none of the tokens are duplicated but where the order of the tokens is meaningful.

Sets of space-separated tokens sometimes have a defined set of allowed values. When a set of allowed values is defined, the tokens must all be from that list of allowed values; other values are non-conforming. If no such set of allowed values is provided, then all values are conforming.

How tokens in a set of space-separated tokens are to be compared (e.g. case-sensitively or not) is defined on a per-set basis.

When a user agent has to split a string on spaces, it must use the following algorithm:

  1. Let input be the string being parsed.

  2. Let position be a pointer into input, initially pointing at the start of the string.

  3. Let tokens be an ordered list of tokens, initially empty.

  4. Skip whitespace

  5. While position is not past the end of input:

    1. Collect a sequence of characters that are not space characters.

    2. Append the string collected in the previous step to tokens.

    3. Skip whitespace

  6. Return tokens.

2.4.8 Comma-separated tokens

A set of comma-separated tokens is a string containing zero or more tokens each separated from the next by a single "," (U+002C) character, where tokens consist of any string of zero or more characters, neither beginning nor ending with space characters, nor containing any "," (U+002C) characters, and optionally surrounded by space characters.

For instance, the string " a ,b,,d d " consists of four tokens: "a", "b", the empty string, and "d d". Leading and trailing whitespace around each token doesn't count as part of the token, and the empty string can be a token.

Sets of comma-separated tokens sometimes have further restrictions on what consists a valid token. When such restrictions are defined, the tokens must all fit within those restrictions; other values are non-conforming. If no such restrictions are specified, then all values are conforming.

When a user agent has to split a string on commas, it must use the following algorithm:

  1. Let input be the string being parsed.

  2. Let position be a pointer into input, initially pointing at the start of the string.

  3. Let tokens be an ordered list of tokens, initially empty.

  4. Token: If position is past the end of input, jump to the last step.

  5. Collect a sequence of characters that are not "," (U+002C) characters. Let s be the resulting sequence (which might be the empty string).

  6. Strip leading and trailing whitespace from s.

  7. Append s to tokens.

  8. If position is not past the end of input, then the character at position is a "," (U+002C) character; advance position past that character.

  9. Jump back to the step labeled token.

  10. Return tokens.

2.4.9 References

A valid hash-name reference to an element of type type is a string consisting of a "#" (U+0023) character followed by a string which exactly matches the value of the name attribute of an element with type type in the document.

The rules for parsing a hash-name reference to an element of type type are as follows:

  1. If the string being parsed does not contain a U+0023 NUMBER SIGN character, or if the first such character in the string is the last character in the string, then return null and abort these steps.

  2. Let s be the string from the character immediately after the first U+0023 NUMBER SIGN character in the string being parsed up to the end of that string.

  3. Return the first element of type type that has an id attribute whose value is a case-sensitive match for s or a name attribute whose value is a compatibility caseless match for s.

2.4.10 Media queries

A string is a valid media query if it matches the media_query_list production of the Media Queries specification. [MQ]

A string matches the environment of the user if it is the empty string, a string consisting of only space characters, or is a media query that matches the user's environment according to the definitions given in the Media Queries specification. [MQ]

2.5 URLs

2.5.1 Terminology

A URL is a valid URL if it conforms to the authoring conformance requirements in the WHATWG URL standard. [URL]

A string is a valid non-empty URL if it is a valid URL but it is not the empty string.

A string is a valid URL potentially surrounded by spaces if, after stripping leading and trailing whitespace from it, it is a valid URL.

A string is a valid non-empty URL potentially surrounded by spaces if, after stripping leading and trailing whitespace from it, it is a valid non-empty URL.

This specification defines the URL about:legacy-compat as a reserved, though unresolvable, about: URL, for use in DOCTYPEs in HTML documents when needed for compatibility with XML tools. [ABOUT]

This specification defines the URL about:srcdoc as a reserved, though unresolvable, about: URL, that is used as the document's address of iframe srcdoc documents. [ABOUT]

The fallback base URL of a Document object is the absolute URL obtained by running these substeps:

  1. If the Document is an iframe srcdoc document, then return the document base URL of the Document's browsing context's browsing context container's Document and abort these steps.

  2. If the document's address is about:blank, and the Document's browsing context has a creator browsing context, then return the document base URL of the creator Document, and abort these steps.

  3. Return the document's address.

The document base URL of a Document object is the absolute URL obtained by running these substeps:

  1. If there is no base element that has an href attribute in the Document, then the document base URL is the Document's fallback base URL; abort these steps.

  2. Otherwise, the document base URL is the frozen base URL of the first base element in the Document that has an href attribute, in tree order.

2.5.2 Resolving URLs

Resolving a URL is the process of taking a relative URL and obtaining the absolute URL that it implies.

To resolve a URL to an absolute URL relative to either another absolute URL or an element, the user agent must use the following steps. Resolving a URL can result in an error, in which case the URL is not resolvable.

  1. Let url be the URL being resolved.

  2. Let encoding be determined as follows:

    If the URL had a character encoding defined when the URL was created or defined or when this algorithm was invoked
    The URL character encoding is as defined.
    If the URL came from a script (e.g. as an argument to a method)
    The URL character encoding is the API URL character encoding specified by the script's settings object.
    If the URL came from a DOM node (e.g. from an element)
    The node has a Document, and the URL character encoding is the document's character encoding.
  3. If encoding is a UTF-16 encoding, then change the value of encoding to UTF-8.

  4. If the algorithm was invoked with an absolute URL to use as the base URL, let base be that absolute URL.

    Otherwise, let base be the element's base URL.

  5. Apply the URL parser to url, with base as the base URL, with encoding as the encoding.

  6. If this returns failure, then abort these steps with an error.

  7. Let parsed URL be the result of the URL parser.

  8. Let serialised URL be the result of apply the URL serializer to parsed URL.

  9. Return serialised URL as the resulting absolute URL and parsed URL as the resulting parsed URL.

Given an element, the element's base URL is the base URI of the element, as defined by the XML Base specification, with the base URI of the document entity being defined as the document base URL of the Document that owns the element. [XMLBASE]

For the purposes of the XML Base specification, user agents must act as if all Document objects represented XML documents.

It is possible for xml:base attributes to be present even in HTML fragments, as such attributes can be added dynamically using script. (Such scripts would not be conforming, however, as xml:base attributes are not allowed in HTML documents.)

2.5.3 Dynamic changes to base URLs

When an xml:base attribute is set, changed, or removed, the attribute's element, and all descendant elements, are affected by a base URL change.

When a document's document base URL changes, all elements in that document are affected by a base URL change.

The following are base URL change steps, which run when an element is affected by a base URL change (as defined by the DOM specification):

If the element creates a hyperlink

If the absolute URL identified by the hyperlink is being shown to the user, or if any data derived from that URL is affecting the display, then the href attribute should be re-resolved relative to the element and the UI updated appropriately.

For example, the CSS :link/:visited pseudo-classes might have been affected.

If the element is a q, blockquote, ins, or del element with a cite attribute

If the absolute URL identified by the cite attribute is being shown to the user, or if any data derived from that URL is affecting the display, then the URL should be re-resolved relative to the element and the UI updated appropriately.

Otherwise

The element is not directly affected.

For instance, changing the base URL doesn't affect the image displayed by img elements, although subsequent accesses of the src IDL attribute from script will return a new absolute URL that might no longer correspond to the image being shown.

2.6 Fetching resources

2.6.1 Terminology

User agents can implement a variety of transfer protocols, but this specification mostly defines behavior in terms of HTTP. [HTTP]

The HTTP GET method is equivalent to the default retrieval action of the protocol. For example, RETR in FTP. Such actions are idempotent and safe, in HTTP terms.

The HTTP response codes are equivalent to statuses in other protocols that have the same basic meanings. For example, a "file not found" error is equivalent to a 404 code, a server error is equivalent to a 5xx code, and so on.

The HTTP headers are equivalent to fields in other protocols that have the same basic meaning. For example, the HTTP authentication headers are equivalent to the authentication aspects of the FTP protocol.

A referrer source is either a Document or a URL.

2.6.2 Processing model

When a user agent is to fetch a resource or URL, optionally from an origin origin, optionally using a specific referrer source as an override referrer source, and optionally with any of a synchronous flag, a manual redirect flag, a force same-origin flag, and a block cookies flag, the following steps must be run. (When a URL is to be fetched, the URL identifies a resource to be obtained.)

  1. If there is a specific override referrer source, and it is a URL, then let referrer be the override referrer source, and jump to the step labeled clean referrer.

  2. Let document be the appropriate Document as given by the following list:

    If there is a specific override referrer source
    The override referrer source.
    When navigating
    The active document of the source browsing context.
    When fetching resources for an element
    The element's Document.
  3. While document is an iframe srcdoc document, let document be document's browsing context's browsing context container's Document instead.

  4. If the origin of Document is not a scheme/host/port tuple, then set referrer to the empty string and jump to the step labeled clean referrer.

  5. Let referrer be the document's address of document.

  6. Clean referrer: Apply the URL parser to referrer and let parsed referrer be the resulting parsed URL.

  7. Let referrer be the result of applying the URL serializer to parsed referrer, with the exclude fragment flag set.

  8. If referrer is not the empty string, is not a data: URL, and is not the URL "about:blank", then generate the address of the resource from which Request-URIs are obtained as required by HTTP for the Referer (sic) header from referrer. [HTTP]

    Otherwise, the Referer (sic) header must be omitted, regardless of its value.

  9. If the algorithm was not invoked with the synchronous flag, perform the remaining steps asynchronously.

  10. If the Document with which any tasks queued by this algorithm would be associated doesn't have an associated browsing context, then abort these steps.

  11. This is the main step.

    If the resource is to be obtained from an application cache, then use the data from that application cache, as if it had been obtained in the manner appropriate given its URL.

    If the resource is identified by an absolute URL, and the resource is to be obtained using an idempotent action (such as an HTTP GET or equivalent), and it is already being downloaded for other reasons (e.g. another invocation of this algorithm), and this request would be identical to the previous one (e.g. same Accept and Origin headers), and the user agent is configured such that it is to reuse the data from the existing download instead of initiating a new one, then use the results of the existing download instead of starting a new one.

    Otherwise, if the resource is identified by an absolute URL with a scheme that does not define a mechanism to obtain the resource (e.g. it is a mailto: URL) or that the user agent does not support, then act as if the resource was an HTTP 204 No Content response with no other metadata.

    Otherwise, if the resource is identified by the URL about:blank, then the resource is immediately available and consists of the empty string, with no metadata.

    Otherwise, at a time convenient to the user and the user agent, download (or otherwise obtain) the resource, applying the semantics of the relevant specifications (e.g. performing an HTTP GET or POST operation, or reading the file from disk, or expanding data: URLs, etc).

    For the purposes of the Referer (sic) header, use the address of the resource from which Request-URIs are obtained generated in the earlier step.

    For the purposes of the Origin header, if the fetching algorithm was explicitly initiated from an origin, then the origin that initiated the HTTP request is origin. Otherwise, this is a request from a "privacy-sensitive" context. [ORIGIN]

  12. If the algorithm was not invoked with the block cookies flag, and there are cookies to be set, then the user agent must run the following substeps:

    1. Wait until ownership of the storage mutex can be taken by this instance of the fetching algorithm.

    2. Take ownership of the storage mutex.

    3. Update the cookies. [COOKIES] (This is a fingerprinting vector.)

    4. Release the storage mutex so that it is once again free.

  13. If the fetched resource is an HTTP redirect or equivalent, then:

    If the force same-origin flag is set and the URL of the target of the redirect does not have the same origin as the URL for which the fetch algorithm was invoked

    Abort these steps and return failure from this algorithm, as if the remote host could not be contacted.

    If the manual redirect flag is set

    Continue, using the fetched resource (the redirect) as the result of the algorithm. If the calling algorithm subsequently requires the user agent to transparently follow the redirect, then the user agent must resume this algorithm from the main step, but using the target of the redirect as the resource to fetch, rather than the original resource.

    Otherwise

    First, apply any relevant requirements for redirects (such as showing any appropriate prompts). Then, redo main step, but using the target of the redirect as the resource to fetch, rather than the original resource. For HTTP requests, the new request must include the same headers as the original request, except for headers for which other requirements are specified (such as the Host header). [HTTP]

    The HTTP specification requires that 301, 302, and 307 redirects, when applied to methods other than the safe methods, not be followed without user confirmation. That would be an appropriate prompt for the purposes of the requirement in the paragraph above. [HTTP]

  14. If the algorithm was not invoked with the synchronous flag: When the resource is available, or if there is an error of some description, queue a task that uses the resource as appropriate. If the resource can be processed incrementally, as, for instance, with a progressively interlaced JPEG or an HTML file, additional tasks may be queued to process the data as it is downloaded. The task source for these tasks is the networking task source.

    Otherwise, return the resource or error information to the calling algorithm.

If the user agent can determine the actual length of the resource being fetched for an instance of this algorithm, and if that length is finite, then that length is the file's size. Otherwise, the subject of the algorithm (that is, the resource being fetched) has no known size. (For example, the HTTP Content-Length header might provide this information.)

The user agent must also keep track of the number of bytes downloaded for each instance of this algorithm. This number must exclude any out-of-band metadata, such as HTTP headers.

The application cache processing model introduces some changes to the networking model to handle the returning of cached resources.

The navigation processing model handles redirects itself, overriding the redirection handling that would be done by the fetching algorithm.

Whether the type sniffing rules apply to the fetched resource depends on the algorithm that invokes the rules — they are not always applicable.

Anything in this specification that refers to HTTP also applies to HTTP-over-TLS, as represented by URLs representing the https scheme. [HTTPS]

User agents should report certificate errors to the user and must either refuse to download resources sent with erroneous certificates or must act as if such resources were in fact served with no encryption.

User agents should warn the user that there is a potential problem whenever the user visits a page that the user has previously visited, if the page uses less secure encryption on the second visit.

Not doing so can result in users not noticing man-in-the-middle attacks.

If a user connects to a server with a self-signed certificate, the user agent could allow the connection but just act as if there had been no encryption. If the user agent instead allowed the user to override the problem and then displayed the page as if it was fully and safely encrypted, the user could be easily tricked into accepting man-in-the-middle connections.

If a user connects to a server with full encryption, but the page then refers to an external resource that has an expired certificate, then the user agent will act as if the resource was unavailable, possibly also reporting the problem to the user. If the user agent instead allowed the resource to be used, then an attacker could just look for "secure" sites that used resources from a different host and only apply man-in-the-middle attacks to that host, for example taking over scripts in the page.

If a user bookmarks a site that uses a CA-signed certificate, and then later revisits that site directly but the site has started using a self-signed certificate, the user agent could warn the user that a man-in-the-middle attack is likely underway, instead of simply acting as if the page was not encrypted.

2.6.4 Determining the type of a resource

The Content-Type metadata of a resource must be obtained and interpreted in a manner consistent with the requirements of the MIME Sniffing specification. [MIMESNIFF]

The sniffed type of a resource must be found in a manner consistent with the requirements given in the MIME Sniffing specification for finding the sniffed media type of the relevant sequence of octets. [MIMESNIFF]

The rules for sniffing images specifically and the rules for distinguishing if a resource is text or binary are also defined in the MIME Sniffing specification. Both sets of rules return a MIME type as their result. [MIMESNIFF]

It is imperative that the rules in the MIME Sniffing specification be followed exactly. When a user agent uses different heuristics for content type detection than the server expects, security problems can occur. For more details, see the MIME Sniffing specification. [MIMESNIFF]

2.6.5 Extracting character encodings from meta elements

The algorithm for extracting a character encoding from a meta element, given a string s, is as follows. It either returns a character encoding or nothing.

  1. Let position be a pointer into s, initially pointing at the start of the string.

  2. Loop: Find the first seven characters in s after position that are an ASCII case-insensitive match for the word "charset". If no such match is found, return nothing and abort these steps.

  3. Skip any space characters that immediately follow the word "charset" (there might not be any).

  4. If the next character is not a "=" (U+003D), then move position to point just before that next character, and jump back to the step labeled loop.

  5. Skip any space characters that immediately follow the equals sign (there might not be any).

  6. Process the next character as follows:

    If it is a """ (U+0022) character and there is a later """ (U+0022) character in s
    If it is a "'" (U+0027) character and there is a later "'" (U+0027) character in s
    Return the result of getting an encoding from the substring that is between this character and the next earliest occurrence of this character.
    If it is an unmatched """ (U+0022) character
    If it is an unmatched "'" (U+0027) character
    If there is no next character
    Return nothing.
    Otherwise
    Return the result of getting an encoding from the substring that consists of this character up to but not including the first space character or ";" (U+003B) character, or the end of s, whichever comes first.

This algorithm is distinct from those in the HTTP specification (for example, HTTP doesn't allow the use of single quotes and requires supporting a backslash-escape mechanism that is not supported by this algorithm). While the algorithm is used in contexts that, historically, were related to HTTP, the syntax as supported by implementations diverged some time ago. [HTTP]

2.6.6 CORS settings attributes

A CORS settings attribute is an enumerated attribute. The following table lists the keywords and states for the attribute — the keywords in the left column map to the states in the cell in the second column on the same row as the keyword.

Keyword State Brief description
anonymous Anonymous Cross-origin CORS requests for the element will have the omit credentials flag set.
use-credentials Use Credentials Cross-origin CORS requests for the element will not have the omit credentials flag set.

The empty string is also a valid keyword, and maps to the Anonymous state. The attribute's invalid value default is the Anonymous state. For the purposes of reflection, the canonical case for the Anonymous state is the anonymous keyword. The missing value default, used when the attribute is omitted, is the No CORS state.

2.6.7 CORS-enabled fetch

When the user agent is required to perform a potentially CORS-enabled fetch of an absolute URL URL with a mode mode that is either "No CORS", "Anonymous", or "Use Credentials", optionally using a referrer source referrer source, with an origin origin, and with a default origin behaviour default which is either "taint" or "fail", it must run the first applicable set of steps from the following list. The default origin behaviour is only used if mode is "No CORS". This algorithm wraps the fetch algorithm above, and labels the obtained resource as either CORS-same-origin or CORS-cross-origin, or blocks the resource entirely.

If the URL has the same origin as origin
If the URL is a data: URL
If the URL is about:blank

Run these substeps:

  1. Fetch URL, using referrer source if one was specified, with the manual redirect flag set.

  2. Loop: Wait for the fetch algorithm to know if the result is a redirect or not.

  3. Follow the first appropriate steps from the following list:

    If the result of the fetch is a redirect, and the origin of the target URL of the redirect is not the same origin as origin

    Set URL to the target URL of the redirect and return to the top of the potentially CORS-enabled fetch algorithm (this time, one of the other branches below might be taken, based on the value of mode).

    If the result of the fetch is a redirect

    The origin of the target URL of the redirect is the same origin as origin.

    Transparently follow the redirect and jump to the step labeled loop above.

    Otherwise

    The resource is available, it is not a redirect, and its origin is the same origin as origin.

    The tasks from the fetch algorithm are queued normally, and for the purposes of the calling algorithm, the obtained resource is CORS-same-origin.

If mode is "No CORS" and default is taint

The URL does not have the same origin as origin.

Fetch URL, using referrer source if one was specified.

The tasks from the fetch algorithm are queued normally, but for the purposes of the calling algorithm, the obtained resource is CORS-cross-origin. The user agent may report a cross-origin resource access failure to the user (e.g. in a debugging console).

If mode is "No CORS"

The URL does not have the same origin as origin, and default is fail.

Discard any data fetched as part of this algorithm, and prevent any tasks from such invocations of the fetch algorithm from being queued. For the purposes of the calling algorithm, the user agent must act as if there was a fatal network error and no resource was obtained. The user agent may report a cross-origin resource access failure to the user (e.g. in a debugging console).

If mode is "Anonymous" or "Use Credentials"

The URL does not have the same origin as origin.

Run these steps:

  1. Perform a cross-origin request with the request URL set to URL, with the CORS referrer source set to referrer source if one was specified, the source origin set to origin, and with the omit credentials flag set if mode is "Anonymous" and not set otherwise. [FETCH]

  2. Wait for the CORS cross-origin request status to have a value.

  3. Jump to the appropriate step from the following list:

    If the CORS cross-origin request status is not success

    Discard all fetched data and prevent any tasks from the fetch algorithm from being queued. For the purposes of the calling algorithm, the user agent must act as if there was a fatal network error and no resource was obtained. If a CORS resource sharing check failed, the user agent may report a cross-origin resource access failure to the user (e.g. in a debugging console).

    If the CORS cross-origin request status is success

    The tasks from the fetch algorithm are queued normally, and for the purposes of the calling algorithm, the obtained resource is CORS-same-origin.

2.7 Common DOM interfaces

2.7.1 Reflecting content attributes in IDL attributes

Some IDL attributes are defined to reflect a particular content attribute. This means that on getting, the IDL attribute returns the current value of the content attribute, and on setting, the IDL attribute changes the value of the content attribute to the given value.

In general, on getting, if the content attribute is not present, the IDL attribute must act as if the content attribute's value is the empty string; and on setting, if the content attribute is not present, it must first be added.

If a reflecting IDL attribute is a DOMString attribute whose content attribute is defined to contain a URL, then on getting, the IDL attribute must resolve the value of the content attribute relative to the element and return the resulting absolute URL if that was successful, or the empty string otherwise; and on setting, must set the content attribute to the specified literal value. If the content attribute is absent, the IDL attribute must return the default value, if the content attribute has one, or else the empty string.

If a reflecting IDL attribute is a DOMString attribute whose content attribute is defined to contain one or more URLs, then on getting, the IDL attribute must split the content attribute on spaces and return the concatenation of resolving each token URL to an absolute URL relative to the element, with a single U+0020 SPACE character between each URL, ignoring any tokens that did not resolve successfully. If the content attribute is absent, the IDL attribute must return the default value, if the content attribute has one, or else the empty string. On setting, the IDL attribute must set the content attribute to the specified literal value.

If a reflecting IDL attribute is a DOMString attribute whose content attribute is an enumerated attribute, and the IDL attribute is limited to only known values, then, on getting, the IDL attribute must return the conforming value associated with the state the attribute is in (in its canonical case), if any, or the empty string if the attribute is in a state that has no associated keyword value or if the attribute is not in a defined state (e.g. the attribute is missing and there is no missing value default); and on setting, the content attribute must be set to the specified new value.

If a reflecting IDL attribute is a DOMString attribute but doesn't fall into any of the above categories, then the getting and setting must be done in a transparent, case-preserving manner.

If a reflecting IDL attribute is a boolean attribute, then on getting the IDL attribute must return true if the content attribute is set, and false if it is absent. On setting, the content attribute must be removed if the IDL attribute is set to false, and must be set to the empty string if the IDL attribute is set to true. (This corresponds to the rules for boolean content attributes.)

If a reflecting IDL attribute has a signed integer type (long) then, on getting, the content attribute must be parsed according to the rules for parsing signed integers, and if that is successful, and the value is in the range of the IDL attribute's type, the resulting value must be returned. If, on the other hand, it fails or returns an out of range value, or if the attribute is absent, then the default value must be returned instead, or 0 if there is no default value. On setting, the given value must be converted to the shortest possible string representing the number as a valid integer and then that string must be used as the new content attribute value.

If a reflecting IDL attribute has a signed integer type (long) that is limited to only non-negative numbers then, on getting, the content attribute must be parsed according to the rules for parsing non-negative integers, and if that is successful, and the value is in the range of the IDL attribute's type, the resulting value must be returned. If, on the other hand, it fails or returns an out of range value, or if the attribute is absent, the default value must be returned instead, or −1 if there is no default value. On setting, if the value is negative, the user agent must throw an IndexSizeError exception. Otherwise, the given value must be converted to the shortest possible string representing the number as a valid non-negative integer and then that string must be used as the new content attribute value.

If a reflecting IDL attribute has an unsigned integer type (unsigned long) then, on getting, the content attribute must be parsed according to the rules for parsing non-negative integers, and if that is successful, and the value is in the range 0 to 2147483647 inclusive, the resulting value must be returned. If, on the other hand, it fails or returns an out of range value, or if the attribute is absent, the default value must be returned instead, or 0 if there is no default value. On setting, first, if the new value is in the range 0 to 2147483647, then let n be the new value, otherwise let n be the default value, or 0 if there is no default value; then, n must be converted to the shortest possible string representing the number as a valid non-negative integer and that string must be used as the new content attribute value.

If a reflecting IDL attribute has an unsigned integer type (unsigned long) that is limited to only non-negative numbers greater than zero, then the behavior is similar to the previous case, but zero is not allowed. On getting, the content attribute must first be parsed according to the rules for parsing non-negative integers, and if that is successful, and the value is in the range 1 to 2147483647 inclusive, the resulting value must be returned. If, on the other hand, it fails or returns an out of range value, or if the attribute is absent, the default value must be returned instead, or 1 if there is no default value. On setting, if the value is zero, the user agent must throw an IndexSizeError exception. Otherwise, first, if the new value is in the range 1 to 2147483647, then let n be the new value, otherwise let n be the default value, or 1 if there is no default value; then, n must be converted to the shortest possible string representing the number as a valid non-negative integer and that string must be used as the new content attribute value.

If a reflecting IDL attribute has a floating-point number type (double or unrestricted double), then, on getting, the content attribute must be parsed according to the rules for parsing floating-point number values, and if that is successful, the resulting value must be returned. If, on the other hand, it fails, or if the attribute is absent, the default value must be returned instead, or 0.0 if there is no default value. On setting, the given value must be converted to the best representation of the number as a floating-point number and then that string must be used as the new content attribute value.

If a reflecting IDL attribute has a floating-point number type (double or unrestricted double) that is limited to numbers greater than zero, then the behavior is similar to the previous case, but zero and negative values are not allowed. On getting, the content attribute must be parsed according to the rules for parsing floating-point number values, and if that is successful and the value is greater than 0.0, the resulting value must be returned. If, on the other hand, it fails or returns an out of range value, or if the attribute is absent, the default value must be returned instead, or 0.0 if there is no default value. On setting, if the value is less than or equal to zero, then the value must be ignored. Otherwise, the given value must be converted to the best representation of the number as a floating-point number and then that string must be used as the new content attribute value.

The values Infinity and Not-a-Number (NaN) values throw an exception on setting, as defined in the Web IDL specification. [WEBIDL]

If a reflecting IDL attribute has the type DOMTokenList or DOMSettableTokenList, then on getting it must return a DOMTokenList or DOMSettableTokenList object (as appropriate) whose associated element is the element in question and whose associated attribute's local name is the name of the attribute in question. The same DOMTokenList or DOMSettableTokenList object must be returned every time for each attribute.

If a reflecting IDL attribute has the type HTMLElement, or an interface that descends from HTMLElement, then, on getting, it must run the following algorithm (stopping at the first point where a value is returned):

  1. If the corresponding content attribute is absent, then the IDL attribute must return null.
  2. Let candidate be the element that the document.getElementById() method would find when called on the content attribute's document if it were passed as its argument the current value of the corresponding content attribute.
  3. If candidate is null, or if it is not type-compatible with the IDL attribute, then the IDL attribute must return null.
  4. Otherwise, it must return candidate.

On setting, if the given element has an id attribute, and has the same home subtree as the element of the attribute being set, and the given element is the first element in that home subtree whose ID is the value of that id attribute, then the content attribute must be set to the value of that id attribute. Otherwise, the content attribute must be set to the empty string.

2.7.2 Collections

The HTMLAllCollection, HTMLFormControlsCollection, HTMLOptionsCollection, interfaces are collections derived from the HTMLCollection interface.

2.7.2.1 HTMLAllCollection

The HTMLAllCollection interface is used for the legacy document.all attribute. It operates similarly to HTMLCollection; the main differences are that its namedItem() method returns an HTMLCollection object when there are multiple matching elements, and that its item() method can be used as a synonym for its namedItem() method.

All HTMLAllCollection objects are rooted at a Document and have a filter that matches all elements, so the elements represented by the collection of an HTMLAllCollection object consist of all the descendant elements of the root Document.

interface HTMLAllCollection : HTMLCollection {
  // inherits length and 'getter'
  Element? item(unsigned long index);
  (HTMLCollection or Element)? item(DOMString name);
  legacycaller getter (HTMLCollection or Element)? namedItem(DOMString name); // shadows inherited namedItem()
};
collection . length

Returns the number of elements in the collection.

element = collection . item(index)
collection[index]

Returns the item with index index from the collection. The items are sorted in tree order.

element = collection . item(name)
collection = collection . item(name)
element = collection . namedItem(name)
collection = collection . namedItem(name)
element = collection(name)
collection = collection(name)
collection[name]

Returns the item with ID or name name from the collection.

If there are multiple matching items, then an HTMLCollection object containing all those elements is returned.

Only button, form, iframe, input, map, meta, object, select, and textarea elements can have a name for the purpose of this method; their name is given by the value of their name attribute.

The object's supported property indices are as defined for HTMLCollection objects.

The item() method, when invoked with a numeric argument, must act like the item() method inherited from HTMLCollection.

The following elements are "all"-named elements: a, applet, button, embed, form, frame, frameset, iframe, img, input, map, meta, object, select, and textarea

The supported property names consist of the non-empty values of all the id attributes of all the elements represented by the collection, and the non-empty values of all the name attributes of all the "all"-named elements represented by the collection, in tree order, ignoring later duplicates, with the id of an element preceding its name if it contributes both, they differ from each other, and neither is the duplicate of an earlier entry.

The properties exposed in this way must be unenumerable.

The item(name) and namedItem(name) methods must act according to the following algorithm:

  1. If name is the empty string, return null and stop the algorithm.
  2. Let collection be an HTMLCollection object rooted at the same Document as the HTMLAllCollection object on which the method was invoked, whose filter matches only elements that are either:

  3. If, at the time the method is called, there is exactly one node in collection, then return that node and stop the algorithm.
  4. Otherwise, if, at the time the method is called, collection is empty, return null and stop the algorithm.
  5. Otherwise, return collection.
2.7.2.2 HTMLFormControlsCollection

The HTMLFormControlsCollection interface is used for collections of listed elements in form and fieldset elements.

interface HTMLFormControlsCollection : HTMLCollection {
  // inherits length and item()
  legacycaller getter (RadioNodeList or Element)? namedItem(DOMString name); // shadows inherited namedItem()
};

interface RadioNodeList : NodeList {
          attribute DOMString value;
};
collection . length

Returns the number of elements in the collection.

element = collection . item(index)
collection[index]

Returns the item with index index from the collection. The items are sorted in tree order.

element = collection . namedItem(name)
radioNodeList = collection . namedItem(name)
collection[name]
collection(name)

Returns the item with ID or name name from the collection.

If there are multiple matching items, then a RadioNodeList object containing all those elements is returned.

radioNodeList . value [ = value ]

Returns the value of the first checked radio button represented by the object.

Can be set, to check the first radio button with the given value represented by the object.

The object's supported property indices are as defined for HTMLCollection objects.

The supported property names consist of the non-empty values of all the id and name attributes of all the elements represented by the collection, in tree order, ignoring later duplicates, with the id of an element preceding its name if it contributes both, they differ from each other, and neither is the duplicate of an earlier entry.

The properties exposed in this way must be unenumerable.

The namedItem(name) method must act according to the following algorithm:

  1. If name is the empty string, return null and stop the algorithm.
  2. If, at the time the method is called, there is exactly one node in the collection that has either an id attribute or a name attribute equal to name, then return that node and stop the algorithm.
  3. Otherwise, if there are no nodes in the collection that have either an id attribute or a name attribute equal to name, then return null and stop the algorithm.
  4. Otherwise, create a new RadioNodeList object representing a live view of the HTMLFormControlsCollection object, further filtered so that the only nodes in the RadioNodeList object are those that have either an id attribute or a name attribute equal to name. The nodes in the RadioNodeList object must be sorted in tree order.
  5. Return that RadioNodeList object.

Members of the RadioNodeList interface inherited from the NodeList interface must behave as they would on a NodeList object.

The value IDL attribute on the RadioNodeList object, on getting, must return the value returned by running the following steps:

  1. Let element be the first element in tree order represented by the RadioNodeList object that is an input element whose type attribute is in the Radio Button state and whose checkedness is true. Otherwise, let it be null.

  2. If element is null, or if it is an element with no value attribute, return the empty string.

  3. Otherwise, return the value of element's value attribute.

On setting, the value IDL attribute must run the following steps:

  1. Let element be the first element in tree order represented by the RadioNodeList object that is an input element whose type attribute is in the Radio Button state and whose value content attribute is present and equal to the new value, if any. Otherwise, let it be null.

  2. If element is not null, then set its checkedness to true.

2.7.2.3 HTMLOptionsCollection

The HTMLOptionsCollection interface is used for collections of option elements. It is always rooted on a select element and has attributes and methods that manipulate that element's descendants.

interface HTMLOptionsCollection : HTMLCollection {
  // inherits item()
           attribute unsigned long length; // shadows inherited length
  legacycaller HTMLOptionElement? (DOMString name);
  setter creator void (unsigned long index, HTMLOptionElement? option);
  void add((HTMLOptionElement or HTMLOptGroupElement) element, optional (HTMLElement or long)? before = null);
  void remove(long index);
           attribute long selectedIndex;
};
collection . length [ = value ]

Returns the number of elements in the collection.

When set to a smaller number, truncates the number of option elements in the corresponding container.

When set to a greater number, adds new blank option elements to that container.

element = collection . item(index)
collection[index]

Returns the item with index index from the collection. The items are sorted in tree order.

element = collection . namedItem(name)
nodeList = collection . namedItem(name)
collection[name]
collection(name)

Returns the item with ID or name name from the collection.

If there are multiple matching items, then the first is returned.

collection . add(element [, before ] )

Inserts element before the node given by before.

The before argument can be a number, in which case element is inserted before the item with that number, or an element from the collection, in which case element is inserted before that element.

If before is omitted, null, or a number out of range, then element will be added at the end of the list.

This method will throw a HierarchyRequestError exception if element is an ancestor of the element into which it is to be inserted.

collection . selectedIndex [ = value ]

Returns the index of the first selected item, if any, or −1 if there is no selected item.

Can be set, to change the selection.

The object's supported property indices are as defined for HTMLCollection objects.

On getting, the length attribute must return the number of nodes represented by the collection.

On setting, the behavior depends on whether the new value is equal to, greater than, or less than the number of nodes represented by the collection at that time. If the number is the same, then setting the attribute must do nothing. If the new value is greater, then n new option elements with no attributes and no child nodes must be appended to the select element on which the HTMLOptionsCollection is rooted, where n is the difference between the two numbers (new value minus old value). Mutation events must be fired as if a DocumentFragment containing the new option elements had been inserted. If the new value is lower, then the last n nodes in the collection must be removed from their parent nodes, where n is the difference between the two numbers (old value minus new value).

Setting length never removes or adds any optgroup elements, and never adds new children to existing optgroup elements (though it can remove children from them).

The supported property names consist of the non-empty values of all the id and name attributes of all the elements represented by the collection, in tree order, ignoring later duplicates, with the id of an element preceding its name if it contributes both, they differ from each other, and neither is the duplicate of an earlier entry.

The properties exposed in this way must be unenumerable.

The legacy caller of the HTMLOptionsCollection interface must act like the namedItem() method on the ancestor HTMLCollection interface.

When the user agent is to set the value of a new indexed property or set the value of an existing indexed property for a given property index index to a new value value, it must run the following algorithm:

  1. If value is null, invoke the steps for the remove method with index as the argument, and abort these steps.

  2. Let length be the number of nodes represented by the collection.

  3. Let n be index minus length.

  4. If n is greater than zero, then append a DocumentFragment consisting of n-1 new option elements with no attributes and no child nodes to the select element on which the HTMLOptionsCollection is rooted.

  5. If n is greater than or equal to zero, append value to the select element. Otherwise, replace the indexth element in the collection by value.

The add(element, before) method must act according to the following algorithm:

  1. If element is an ancestor of the select element on which the HTMLOptionsCollection is rooted, then throw a HierarchyRequestError exception and abort these steps.

  2. If before is an element, but that element isn't a descendant of the select element on which the HTMLOptionsCollection is rooted, then throw a NotFoundError exception and abort these steps.

  3. If element and before are the same element, then return and abort these steps.

  4. If before is a node, then let reference be that node. Otherwise, if before is an integer, and there is a beforeth node in the collection, let reference be that node. Otherwise, let reference be null.

  5. If reference is not null, let parent be the parent node of reference. Otherwise, let parent be the select element on which the HTMLOptionsCollection is rooted.

  6. Act as if the DOM insertBefore() method was invoked on the parent node, with element as the first argument and reference as the second argument.

The remove(index) method must act according to the following algorithm:

  1. If the number of nodes represented by the collection is zero, abort these steps.

  2. If index is not a number greater than or equal to 0 and less than the number of nodes represented by the collection, abort these steps.

  3. Let element be the indexth element in the collection.

  4. Remove element from its parent node.

The selectedIndex IDL attribute must act like the identically named attribute on the select element on which the HTMLOptionsCollection is rooted

2.7.3 DOMStringMap

The DOMStringMap interface represents a set of name-value pairs. It exposes these using the scripting language's native mechanisms for property access.

When a DOMStringMap object is instantiated, it is associated with three algorithms, one for getting the list of name-value pairs, one for setting names to certain values, and one for deleting names.

[OverrideBuiltins, Exposed=Window,Worker]
interface DOMStringMap {
  getter DOMString (DOMString name);
  setter creator void (DOMString name, DOMString value);
  deleter void (DOMString name);
};

The supported property names on a DOMStringMap object at any instant are the names of each pair returned from the algorithm for getting the list of name-value pairs at that instant, in the order returned.

To determine the value of a named property name in a DOMStringMap, the user agent must return the value component of the name-value pair whose name component is name in the list returned by the algorithm for getting the list of name-value pairs.

To set the value of a new or existing named property name to value value, the algorithm for setting names to certain values must be run, passing name as the name and the result of converting value to a DOMString as the value.

To delete an existing named property name, the algorithm for deleting names must be run, passing name as the name.

The DOMStringMap interface definition here is only intended for JavaScript environments. Other language bindings will need to define how DOMStringMap is to be implemented for those languages.

The dataset attribute on elements exposes the data-* attributes on the element.

Given the following fragment and elements with similar constructions:

<img class="tower" id="tower5" data-x="12" data-y="5"
     data-ai="robotarget" data-hp="46" data-ability="flames"
     src="towers/rocket.png alt="Rocket Tower">

...one could imagine a function splashDamage() that takes some arguments, the first of which is the element to process:

function splashDamage(node, x, y, damage) {
  if (node.classList.contains('tower') && // checking the 'class' attribute
      node.dataset.x == x && // reading the 'data-x' attribute
      node.dataset.y == y) { // reading the 'data-y' attribute
    var hp = parseInt(node.dataset.hp); // reading the 'data-hp' attribute
    hp = hp - damage;
    if (hp < 0) {
      hp = 0;
      node.dataset.ai = 'dead'; // setting the 'data-ai' attribute
      delete node.dataset.ability; // removing the 'data-ability' attribute
    }
    node.dataset.hp = hp; // setting the 'data-hp' attribute
  }
}

2.7.4 DOMElementMap

The DOMElementMap interface represents a set of name-element mappings. It exposes these using the scripting language's native mechanisms for property access.

When a DOMElementMap object is instantiated, it is associated with three algorithms, one for getting the list of name-element mappings, one for mapping a name to a certain element, and one for deleting mappings by name.

interface DOMElementMap {
  getter Element (DOMString name);
  setter creator void (DOMString name, Element value);
  deleter void (DOMString name);
};

The supported property names on a DOMElementMap object at any instant are the names for each mapping returned from the algorithm for getting the list of name-element mappings at that instant, in the order returned.

To determine the value of a named property name in a DOMElementMap, the user agent must return the element component of the name-element mapping whose name component is name in the list returned by the algorithm for getting the list of name-element mappings.

To set the value of a new or existing named property name to value value, the algorithm for mapping a name to a certain element must be run, passing name as the name value as the element.

To delete an existing named property name, the algorithm for deleting mappings must be run, passing name as the name component of the mapping to be deleted.

The DOMElementMap interface definition here is only intended for JavaScript environments. Other language bindings will need to define how DOMElementMap is to be implemented for those languages.

2.7.5 Transferable objects

Some objects support being copied and closed in one operation. This is called transferring the object, and is used in particular to transfer ownership of unsharable or expensive resources across worker boundaries.

The following Transferable types exist:

The following IDL block formalizes this:

typedef (ArrayBuffer or CanvasProxy or MessagePort) Transferable;

To transfer a Transferable object to a new owner, the user agent must run the steps defined for the type of object in question. The steps will return a new object of the same type, and will permanently neuter the original object. (This is an irreversible and non-idempotent operation; once an object has been transferred, it cannot be transferred, or indeed used, again.)

To transfer an ArrayBuffer object old to a new owner owner, a user agent must create a new ArrayBuffer object pointing at the same underlying data as old, thus obtaining new, must neuter the old object, and must finally return new. [ECMA262]

Rules for how to transfer a CanvasProxy object and how to transfer a MessagePort object are given in the relevant sections of this specification.

2.7.6 Safe passing of structured data

When a user agent is required to obtain a structured clone of a value, optionally with a transfer map, it must run the following algorithm, which either returns a separate value, or throws an exception. If a transfer map is provided, it consists of an association list of Transferable objects to placeholder objects.

  1. Let input be the value being cloned.

  2. Let transfer map be the transfer map passed to the algorithm, if any, or the empty list otherwise.

  3. Let memory be an association list of pairs of objects, initially empty. This is used to handle duplicate references. In each pair of objects, one is called the source object and the other the destination object.

  4. For each mapping in transfer map, add a mapping from the Transferable object (the source object) to the placeholder object (the destination object) to memory.

  5. Let output be the value resulting from calling the internal structured cloning algorithm with input as the "input" argument, and memory as the "memory" argument.

  6. Return output.

The internal structured cloning algorithm is always called with two arguments, input and memory, and its behavior is as follows:

  1. If input is the source object of a pair of objects in memory, then return the destination object in that pair of objects and abort these steps.

  2. If input is a primitive value, then return that value and abort these steps.

  3. Let deep clone be none.

  4. The input value is an object. Jump to the appropriate step below:

    If input is a Boolean object

    Let output be a newly constructed Boolean object with the same value as input.

    If input is a Number object

    Let output be a newly constructed Number object with the same value as input.

    If input is a String object

    Let output be a newly constructed String object with the same value as input.

    If input is a Date object

    Let output be a newly constructed Date object with the same value as input.

    If input is a RegExp object

    Let output be a newly constructed RegExp object with the same pattern and flags as input.

    The value of the lastIndex property is not copied.

    If input is a Blob object

    If input has been disabled through the close() method, throw a DataCloneError exception and abort the overall structured clone algorithm. Otherwise, let output be a newly constructed object of the same class as input, corresponding to the same underlying data.

    If input is a FileList object

    Let output be a newly constructed FileList object containing a list of newly constructed File objects corresponding to the same underlying data as those in input, maintaining their relative order.

    If input is an ImageData object

    Let output be a newly constructed ImageData object whose width and height have values equal to the corresponding attributes on input, and whose data attribute has the value obtained from invoking the internal structured cloning algorithm recursively with the value of the data attribute on input as the new "input" argument and memory as the new "memory" argument.

    If input is an ImageBitmap object

    Let output be a newly constructed ImageBitmap object whose bitmap data is a copy of input's bitmap data.

    If input is an ArrayBuffer object

    If input has been neutered, throw a DataCloneError exception and abort the overall structured clone algorithm. Otherwise, let output be a newly constructed ArrayBuffer object whose contents are a copy of input's contents, with the same length.

    If input is an object with a [[DataView]] internal slot

    Let output be a newly constructed object of the same class as input, with its [[DataView]] internal property present, its [[ViewedArrayBuffer]] internal property set to the value obtained from invoking the internal structured cloning algorithm recursively with the value of the internal property on input as the new "input" argument and memory as the new "memory" argument, and with the [[ByteLength]] and [[ByteOffset]] internal properties set to the same value as their counterparts on input.

    If input is an Array object

    Let output be a newly constructed empty Array object whose length is equal to the length of input, and set deep clone to own.

    This means that the length of sparse arrays is preserved.

    If input is an Object object

    Let output be a newly constructed empty Object object, and set deep clone to own.

    If input is a Map object

    Let output be a newly constructed empty Map object, and set deep clone to map.

    If input is a Set object

    Let output be a newly constructed empty Set object, and set deep clone to set.

    If input is an object that another specification defines how to clone

    Let output be a clone of the object as defined by the other specification.

    If input is another native object type (e.g. Error, Function)
    If input is a host object (e.g. a DOM node)

    Throw a DataCloneError exception and abort the overall structured clone algorithm.

    For the purposes of the algorithm above, an object is a particular type of object class if its [[Class]] internal property is equal to class.

    For example, "input is an Object object" if input's [[Class]] internal property is equal to the string "Object".

  5. Add a mapping from input (the source object) to output (the destination object) to memory.

  6. If deep clone is set to map, then run these substeps. These substeps use the terminology and typographic conventions used in the JavaScript specification's definition of Maps. [ECMA262]

    1. Let source be the List that is the value of input's [[MapData]] internal slot, if any. If there is no such slot, then instead throw a DataCloneError exception and abort the overall structured clone algorithm. [ECMA262]

    2. Let target be the List that is the value of output's [[MapData]] internal slot.

    3. For each Record {[[key]], [[value]]} entry that is an element of source, run the following substeps:

      1. Let key have the value obtained from invoking the internal structured cloning algorithm recursively with entry.[[key]] as the new "input" argument and memory as the new "memory" argument.

      2. Let value have the value obtained from invoking the internal structured cloning algorithm recursively with entry.[[value]] as the new "input" argument and memory as the new "memory" argument.

      3. Let new entry be the Record {[[key]]: key, [[value]]: value}.

      4. Append new entry as the last element of target.

    4. Set deep clone to own.

  7. If deep clone is set to set, then run these substeps. These substeps use the terminology and typographic conventions used in the JavaScript specification's definition of Sets. [ECMA262]

    1. Let source be the List that is the value of input's [[SetData]] internal slot, if any. If there is no such slot, then instead throw a DataCloneError exception and abort the overall structured clone algorithm. [ECMA262]

    2. Let target be the List that is the value of output's [[SetData]] internal slot.

    3. For each entry that is an element of source that is not empty, run the following substeps:

      1. Let new entry have the value obtained from invoking the internal structured cloning algorithm recursively with entry as the new "input" argument and memory as the new "memory" argument.

      2. Append new entry as the last element of target.

    4. Set deep clone to own.

  8. If deep clone is set to own, then, for each enumerable own property in input, run the following steps:

    1. Let name be the name of the property.

    2. Let source value be the result of calling the [[Get]] internal method of input with the argument name. If the [[Get]] internal method of a property involved executing script, and that script threw an uncaught exception, then abort the overall structured clone algorithm, with that exception being passed through to the caller.

    3. Let cloned value be the result of invoking the internal structured cloning algorithm recursively with source value as the "input" argument and memory as the "memory" argument. If this results in an exception, then abort the overall structured clone algorithm, with that exception being passed through to the caller.

    4. Add a new property to output having the name name, and having the value cloned value.

    The order of the properties in the input and output objects must be the same, and any properties whose [[Get]] internal method involves running script must be processed in that same order.

    This does not walk the prototype chain.

    Property descriptors, setters, getters, and analogous features are not copied in this process. For example, the property in the input could be marked as read-only, but in the output it would just have the default state (typically read-write, though that could depend on the scripting environment).

    Properties of Array objects are not treated any differently than those of other Objects. In particular, this means that non-index properties of arrays are copied as well.

  9. Return output.

This algorithm preserves cycles and preserves the identity of duplicate objects in graphs.

2.7.7 Callbacks

The following callback function type is used in various APIs that interact with File objects:

callback FileCallback = void (File file);

2.7.8 Garbage collection

There is an implied strong reference from any IDL attribute that returns a pre-existing object to that object.

For example, the document.location attribute means that there is a strong reference from a Document object to its Location object. Similarly, there is always a strong reference from a Document to any descendant nodes, and from any node to its owner Document.

2.8 Namespaces

The HTML namespace is: http://www.w3.org/1999/xhtml

The MathML namespace is: http://www.w3.org/1998/Math/MathML

The SVG namespace is: http://www.w3.org/2000/svg

The XLink namespace is: http://www.w3.org/1999/xlink

The XML namespace is: http://www.w3.org/XML/1998/namespace

The XMLNS namespace is: http://www.w3.org/2000/xmlns/


Data mining tools and other user agents that perform operations on content without running scripts, evaluating CSS or XPath expressions, or otherwise exposing the resulting DOM to arbitrary content, may "support namespaces" by just asserting that their DOM node analogues are in certain namespaces, without actually exposing the above strings.


In the HTML syntax, namespace prefixes and namespace declarations do not have the same effect as in XML. For instance, the colon has no special meaning in HTML element names.

3 Semantics, structure, and APIs of HTML documents

3.1 Documents

Every XML and HTML document in an HTML UA is represented by a Document object. [DOM]

The document's address is the URL associated with a Document (as defined in the DOM standard). It is initially set when the Document is created, but that can change during the lifetime of the Document; for example, it changes when the user navigates to a fragment identifier on the page and when the pushState() method is called with a new URL. [DOM]

Interactive user agents typically expose the document's address in their user interface. This is the primary mechanism by which a user can tell if a site is attempting to impersonate another.

When a Document is created by a script using the createDocument() or createHTMLDocument() APIs, the document's address is the same as the document's address of the responsible document specified by the script's settings object, and the Document is both ready for post-load tasks and completely loaded immediately.

The document's referrer is an absolute URL that can be set when the Document is created. If it is not explicitly set, then its value is the empty string.

Each Document object has a reload override flag that is originally unset. The flag is set by the document.open() and document.write() methods in certain situations. When the flag is set, the Document also has a reload override buffer which is a Unicode string that is used as the source of the document when it is reloaded.

When the user agent is to perform an overridden reload, given a source browsing context, it must act as follows:

  1. Let source be the value of the browsing context's active document's reload override buffer.

  2. Let address be the browsing context's active document's address.

  3. Navigate the browsing context to a resource whose source is source, with replacement enabled and exceptions enabled. The source browsing context is that given to the overridden reload algorithm. When the navigate algorithm creates a Document object for this purpose, set that Document's reload override flag and set its reload override buffer to source.

    When it comes time to set the document's address in the navigation algorithm, use address as the override URL.

3.1.1 The Document object

The DOM specification defines a Document interface, which this specification extends significantly:

enum DocumentReadyState { "loading", "interactive", "complete" };

[OverrideBuiltins]
partial /*sealed*/ interface Document {
  // resource metadata management
  [PutForwards=href, Unforgeable] readonly attribute Location? location;
           attribute DOMString domain;
  readonly attribute DOMString referrer;
           attribute DOMString cookie;
  readonly attribute DOMString lastModified;
  readonly attribute DocumentReadyState readyState;

  // DOM tree accessors
  getter object (DOMString name);
           attribute DOMString title;
           attribute DOMString dir;
           attribute HTMLElement? body;
  readonly attribute HTMLHeadElement? head;
  readonly attribute HTMLCollection images;
  readonly attribute HTMLCollection embeds;
  readonly attribute HTMLCollection plugins;
  readonly attribute HTMLCollection links;
  readonly attribute HTMLCollection forms;
  readonly attribute HTMLCollection scripts;
  NodeList getElementsByName(DOMString elementName);
  NodeList getItems(optional DOMString typeNames = ""); // microdata
  readonly attribute DOMElementMap cssElementMap;
  readonly attribute HTMLScriptElement? currentScript;

  // dynamic markup insertion
  Document open(optional DOMString type = "text/html", optional DOMString replace = "");
  WindowProxy open(DOMString url, DOMString name, DOMString features, optional boolean replace = false);
  void close();
  void write(DOMString... text);
  void writeln(DOMString... text);

  // user interaction
  readonly attribute WindowProxy? defaultView;
  readonly attribute Element? activeElement;
  boolean hasFocus();
           attribute DOMString designMode;
  boolean execCommand(DOMString commandId, optional boolean showUI = false, optional DOMString value = "");
  boolean queryCommandEnabled(DOMString commandId);
  boolean queryCommandIndeterm(DOMString commandId);
  boolean queryCommandState(DOMString commandId);
  boolean queryCommandSupported(DOMString commandId);
  DOMString queryCommandValue(DOMString commandId);
  readonly attribute HTMLCollection commands;

  // special event handler IDL attributes that only apply to Document objects
  [LenientThis] attribute EventHandler onreadystatechange;
};
Document implements GlobalEventHandlers;

3.1.2 Resource metadata management

document . referrer

Returns the address of the Document from which the user navigated to this one, unless it was blocked or there was no such document, in which case it returns the empty string.

The noreferrer link type can be used to block the referrer.

The referrer attribute must return the document's referrer.

In the case of HTTP, the referrer IDL attribute will match the Referer (sic) header that was sent when fetching the current page.

Typically user agents are configured to not report referrers in the case where the referrer uses an encrypted protocol and the current page does not (e.g. when navigating from an https: page to an http: page).


document . cookie [ = value ]

Returns the HTTP cookies that apply to the Document. If there are no cookies or cookies can't be applied to this resource, the empty string will be returned.

Can be set, to add a new cookie to the element's set of HTTP cookies.

If the contents are sandboxed into a unique origin (e.g. in an iframe with the sandbox attribute), a SecurityError exception will be thrown on getting and setting.

The cookie attribute represents the cookies of the resource identified by the document's address.

A Document object that falls into one of the following conditions is a cookie-averse Document object:

On getting, if the document is a cookie-averse Document object, then the user agent must return the empty string. Otherwise, if the Document's origin is not a scheme/host/port tuple, the user agent must throw a SecurityError exception. Otherwise, the user agent must first obtain the storage mutex and then return the cookie-string for the document's address for a "non-HTTP" API, decoded using the UTF-8 decoder. [COOKIES] (This is a fingerprinting vector.)

On setting, if the document is a cookie-averse Document object, then the user agent must do nothing. Otherwise, if the Document's origin is not a scheme/host/port tuple, the user agent must throw a SecurityError exception. Otherwise, the user agent must obtain the storage mutex and then act as it would when receiving a set-cookie-string for the document's address via a "non-HTTP" API, consisting of the new value encoded as UTF-8. [COOKIES] [ENCODING]

Since the cookie attribute is accessible across frames, the path restrictions on cookies are only a tool to help manage which cookies are sent to which parts of the site, and are not in any way a security feature.


document . lastModified

Returns the date of the last modification to the document, as reported by the server, in the form "MM/DD/YYYY hh:mm:ss", in the user's local time zone.

If the last modification date is not known, the current time is returned instead.

The lastModified attribute, on getting, must return the date and time of the Document's source file's last modification, in the user's local time zone, in the following format:

  1. The month component of the date.
  2. A "/" (U+002F) character.
  3. The day component of the date.
  4. A "/" (U+002F) character.
  5. The year component of the date.
  6. A U+0020 SPACE character.
  7. The hours component of the time.
  8. A ":" (U+003A) character.
  9. The minutes component of the time.
  10. A ":" (U+003A) character.
  11. The seconds component of the time.

All the numeric components above, other than the year, must be given as two ASCII digits representing the number in base ten, zero-padded if necessary. The year must be given as the shortest possible string of four or more ASCII digits representing the number in base ten, zero-padded if necessary.

The Document's source file's last modification date and time must be derived from relevant features of the networking protocols used, e.g. from the value of the HTTP Last-Modified header of the document, or from metadata in the file system for local files. If the last modification date and time are not known, the attribute must return the current date and time in the above format.


document . readyState

Returns "loading" while the Document is loading, "interactive" once it is finished parsing but still loading sub-resources, and "complete" once it has loaded.

The readystatechange event fires on the Document object when this value changes.

Each document has a current document readiness. When a Document object is created, it must have its current document readiness set to the string "loading" if the document is associated with an HTML parser, an XML parser, or an XSLT processor, and to the string "complete" otherwise. Various algorithms during page loading affect this value. When the value is set, the user agent must fire a simple event named readystatechange at the Document object.

A Document is said to have an active parser if it is associated with an HTML parser or an XML parser that has not yet been stopped or aborted.

The readyState IDL attribute must, on getting, return the current document readiness.

3.1.3 DOM tree accessors

The html element of a document is the document's root element, if there is one and it's an html element, or null otherwise.


document . head

Returns the head element.

The head element of a document is the first head element that is a child of the html element, if there is one, or null otherwise.

The head attribute, on getting, must return the head element of the document (a head element or null).


document . title [ = value ]

Returns the document's title, as given by the title element for HTML and as given by the SVG title element for SVG.

Can be set, to update the document's title. If there is no appropriate element to update, the new value is ignored.

The title element of a document is the first title element in the document (in tree order), if there is one, or null otherwise.

The title attribute must, on getting, run the following algorithm:

  1. If the root element is an svg element in the SVG namespace, then let value be a concatenation of the data of all the child Text nodes of the first title element in the SVG namespace that is a child of the root element. [SVG]

  2. Otherwise, let value be a concatenation of the data of all the child Text nodes of the title element, in tree order, or the empty string if the title element is null.

  3. Strip and collapse whitespace in value.

  4. Return value.

On setting, the steps corresponding to the first matching condition in the following list must be run:

If the root element is an svg element in the SVG namespace [SVG]
  1. Let element be the first title element in the SVG namespace that is a child of the root element, if any. If there isn't one, create a title element in the SVG namespace, append it to the root element, and let element be that element. [SVG]

  2. Act as if the textContent IDL attribute of element was set to the new value being assigned.

If the root element is in the HTML namespace
  1. If the title element is null and the head element is null, then abort these steps.

  2. If the title element is null, then create a new title element and append it to the head element, and let element be the newly created element; otherwise, let element be the title element.

  3. Act as if the textContent IDL attribute of element was set to the new value being assigned.

Otherwise

Do nothing.


document . body [ = value ]

Returns the body element.

Can be set, to replace the body element.

If the new value is not a body or frameset element, this will throw a HierarchyRequestError exception.

The body element of a document is the first child of the html element that is either a body element or a frameset element. If there is no such element, it is null.

The body attribute, on getting, must return the body element of the document (either a body element, a frameset element, or null). On setting, the following algorithm must be run:

  1. If the new value is not a body or frameset element, then throw a HierarchyRequestError exception and abort these steps.
  2. Otherwise, if the new value is the same as the body element, do nothing. Abort these steps.
  3. Otherwise, if the body element is not null, then replace that element with the new value in the DOM, as if the root element's replaceChild() method had been called with the new value and the incumbent body element as its two arguments respectively, then abort these steps.
  4. Otherwise, if there is no root element, throw a HierarchyRequestError exception and abort these steps.
  5. Otherwise, the body element is null, but there's a root element. Append the new value to the root element.

document . images

Returns an HTMLCollection of the img elements in the Document.

document . embeds
document . plugins

Return an HTMLCollection of the embed elements in the Document.

document . links

Returns an HTMLCollection of the a and area elements in the Document that have href attributes.

document . forms

Return an HTMLCollection of the form elements in the Document.

document . scripts

Return an HTMLCollection of the script elements in the Document.

The images attribute must return an HTMLCollection rooted at the Document node, whose filter matches only img elements.

The embeds attribute must return an HTMLCollection rooted at the Document node, whose filter matches only embed elements.

The plugins attribute must return the same object as that returned by the embeds attribute.

The links attribute must return an HTMLCollection rooted at the Document node, whose filter matches only a elements with href attributes and area elements with href attributes.

The forms attribute must return an HTMLCollection rooted at the Document node, whose filter matches only form elements.

The scripts attribute must return an HTMLCollection rooted at the Document node, whose filter matches only script elements.


collection = document . getElementsByName(name)

Returns a NodeList of elements in the Document that have a name attribute with the value name.

The getElementsByName(name) method takes a string name, and must return a live NodeList containing all the HTML elements in that document that have a name attribute whose value is equal to the name argument (in a case-sensitive manner), in tree order. When the method is invoked on a Document object again with the same argument, the user agent may return the same as the object returned by the earlier call. In other cases, a new NodeList object must be returned.


element . cssElementMap

Returns a DOMElementMap object for the Document representing the current CSS element reference identifiers.

The cssElementMap IDL attribute allows authors to define CSS element reference identifiers, which are used in certain CSS features to override the normal ID-based mapping. [CSSIMAGES]

When a Document is created, it must be associated with an initially-empty CSS ID overrides list, which consists of a list of mappings each of which consists of a string name mapped to an Element node.

Each entry in the CSS ID overrides list, while it is in the list and is either in the Document or is an img, video, or canvas element, defines a CSS element reference identifier mapping the given name to the given Element. [CSSIMAGES]

On getting, the cssElementMap IDL attribute must return a DOMElementMap object, associated with the following algorithms, which expose the current mappings:

The algorithm for getting the list of name-element mappings

Return the Document's CSS ID overrides list, maintaining the order in which the entries were originally added to the list.

The algorithm for mapping a name to a certain element

Let name be the name passed to the algorithm and element be the Element passed to the algorithm.

If element is null, run the algorithm for deleting mappings by name, passing it name.

Otherwise, if there is an entry in the Document's CSS ID overrides list whose name is name, replace its current value with element.

Otherwise, add a mapping to the Document's CSS ID overrides list whose name is name and whose element is element.

The algorithm for deleting mappings by name

If there is an entry in the Document's CSS ID overrides list whose name is the name passed to this algorithm, remove it. This also undefines the CSS element reference identifier for that name. [CSSIMAGES]

The same object must be returned each time.


document . currentScript

Returns the script element that is currently executing. In the case of reentrant script execution, returns the one that most recently started executing amongst those that have not yet finished executing.

Returns null if the Document is not currently executing a script element (e.g. because the running script is an event handler, or a timeout).

The currentScript attribute, on getting, must return the value to which it was most recently initialized. When the Document is created, the currentScript must be initialised to null.


The Document interface supports named properties. The supported property names at any moment consist of the values of the name content attributes of all the applet, exposed embed, form, iframe, img, and exposed object elements in the Document that have non-empty name content attributes, and the values of the id content attributes of all the applet and exposed object elements in the Document that have non-empty id content attributes, and the values of the id content attributes of all the img elements in the Document that have both non-empty name content attributes and non-empty id content attributes. The supported property names must be in tree order, ignoring later duplicates, with values from id attributes coming before values from name attributes when the same element contributes both.

To determine the value of a named property name when the Document object is indexed for property retrieval, the user agent must return the value obtained using the following steps:

  1. Let elements be the list of named elements with the name name in the Document.

    There will be at least one such element, by definition.

  2. If elements has only one element, and that element is an iframe element, then return the WindowProxy object of the nested browsing context represented by that iframe element, and abort these steps.

  3. Otherwise, if elements has only one element, return that element and abort these steps.

  4. Otherwise return an HTMLCollection rooted at the Document node, whose filter matches only named elements with the name name.

Named elements with the name name, for the purposes of the above algorithm, are those that are either:

An embed or object element is said to be exposed if it has no exposed object ancestor, and, for object elements, is additionally either not showing its fallback content or has no object or embed descendants.


The dir attribute on the Document interface is defined along with the dir content attribute.

3.1.4 Loading XML documents

partial interface XMLDocument {
  boolean load(DOMString url);
};

The load(url) method must run the following steps:

  1. Let document be the XMLDocument object on which the method was invoked.

  2. Resolve the method's first argument, relative to the API base URL specified by the entry settings object. If this is not successful, throw a SyntaxError exception and abort these steps. Otherwise, let url be the resulting absolute URL.

  3. If the origin of url is not the same as the origin of document, throw a SecurityError exception and abort these steps.

  4. Remove all child nodes of document, without firing any mutation events.

  5. Set the current document readiness of document to "loading".

  6. Run the remainder of these steps asynchronously, and return true from the method.

  7. Let result be a Document object.

  8. Let success be false.

  9. Fetch url from the origin of document, using the API referrer source specified by the entry settings object, with the synchronous flag set and the force same-origin flag set.

  10. If the fetch attempt was successful, and the resource's Content-Type metadata is an XML MIME type, then run these substeps:

    1. Create a new XML parser associated with the result document.

    2. Pass this parser the fetched document.

    3. If there is an XML well-formedness or XML namespace well-formedness error, then remove all child nodes from result. Otherwise let success be true.

  11. Queue a task to run the following steps.

    1. Set the current document readiness of document to "complete".

    2. Replace all the children of document by the children of result (even if it has no children), firing mutation events as if a DocumentFragment containing the new children had been inserted.

    3. Fire a simple event named load at document.

3.2 Elements

3.2.1 Semantics

Elements, attributes, and attribute values in HTML are defined (by this specification) to have certain meanings (semantics). For example, the ol element represents an ordered list, and the lang attribute represents the language of the content.

These definitions allow HTML processors, such as Web browsers or search engines, to present and use documents and applications in a wide variety of contexts that the author might not have considered.

As a simple example, consider a Web page written by an author who only considered desktop computer Web browsers:

<!DOCTYPE HTML>
<html>
 <head>
  <title>My Page</title>
 </head>
 <body>
  <h1>Welcome to my page</h1>
  <p>I like cars and lorries and have a big Jeep!</p>
  <h2>Where I live</h2>
  <p>I live in a small hut on a mountain!</p>
 </body>
</html>

Because HTML conveys meaning, rather than presentation, the same page can also be used by a small browser on a mobile phone, without any change to the page. Instead of headings being in large letters as on the desktop, for example, the browser on the mobile phone might use the same size text for the whole the page, but with the headings in bold.

But it goes further than just differences in screen size: the same page could equally be used by a blind user using a browser based around speech synthesis, which instead of displaying the page on a screen, reads the page to the user, e.g. using headphones. Instead of large text for the headings, the speech browser might use a different volume or a slower voice.

That's not all, either. Since the browsers know which parts of the page are the headings, they can create a document outline that the user can use to quickly navigate around the document, using keys for "jump to next heading" or "jump to previous heading". Such features are especially common with speech browsers, where users would otherwise find quickly navigating a page quite difficult.

Even beyond browsers, software can make use of this information. Search engines can use the headings to more effectively index a page, or to provide quick links to subsections of the page from their results. Tools can use the headings to create a table of contents (that is in fact how this very specification's table of contents is generated).

This example has focused on headings, but the same principle applies to all of the semantics in HTML.

Authors must not use elements, attributes, or attribute values for purposes other than their appropriate intended semantic purpose, as doing so prevents software from correctly processing the page.

...

The document in this next example is similarly non-conforming, despite being syntactically correct, because the data placed in the cells is clearly not tabular data, and the cite element mis-used:

<!DOCTYPE HTML>
<html lang="en-GB">
 <head> <title> Demonstration </title> </head>
 <body>
  <table>
   <tr> <td> My favourite animal is the cat. </td> </tr>
   <tr>
    <td>
     —<a href="http://example.org/~ernest/"><cite>Ernest</cite></a>,
     in an essay from 1992
    </td>
   </tr>
  </table>
 </body>
</html>

This would make software that relies on these semantics fail: for example, a speech browser that allowed a blind user to navigate tables in the document would report the quote above as a table, confusing the user; similarly, a tool that extracted titles of works from pages would extract "Ernest" as the title of a work, even though it's actually a person's name, not a title.

A corrected version of this document might be:

<!DOCTYPE HTML>
<html lang="en-GB">
 <head> <title> Demonstration </title> </head>
 <body>
  <blockquote>
   <p> My favourite animal is the cat. </p>
  </blockquote>
  <p>
   —<a href="http://example.org/~ernest/">Ernest</a>,
   in an essay from 1992
  </p>
 </body>
</html>

Authors must not use elements, attributes, or attribute values that are not permitted by this specification or other applicable specifications, as doing so makes it significantly harder for the language to be extended in the future.

In the next example, there is a non-conforming attribute value ("carpet") and a non-conforming attribute ("texture"), which is not permitted by this specification:

<label>Carpet: <input type="carpet" name="c" texture="deep pile"></label>

Here would be an alternative and correct way to mark this up:

<label>Carpet: <input type="text" class="carpet" name="c" data-texture="deep pile"></label>

Through scripting and using other mechanisms, the values of attributes, text, and indeed the entire structure of the document may change dynamically while a user agent is processing it. The semantics of a document at an instant in time are those represented by the state of the document at that instant in time, and the semantics of a document can therefore change over time. User agents must update their presentation of the document as this occurs.

HTML has a progress element that describes a progress bar. If its "value" attribute is dynamically updated by a script, the UA would update the rendering to show the progress changing.

3.2.2 Elements in the DOM

The nodes representing HTML elements in the DOM must implement, and expose to scripts, the interfaces listed for them in the relevant sections of this specification. This includes HTML elements in XML documents, even when those documents are in another context (e.g. inside an XSLT transform).

Elements in the DOM represent things; that is, they have intrinsic meaning, also known as semantics.

For example, an ol element represents an ordered list.

The basic interface, from which all the HTML elements' interfaces inherit, and which must be used by elements that have no additional requirements, is the HTMLElement interface.

interface HTMLElement : Element {
  // metadata attributes
           attribute DOMString title;
           attribute DOMString lang;
           attribute boolean translate;
           attribute DOMString dir;
  readonly attribute DOMStringMap dataset;


  // microdata
           attribute boolean itemScope;
  [PutForwards=value] readonly attribute DOMSettableTokenList itemType;
           attribute DOMString itemId;
  [PutForwards=value] readonly attribute DOMSettableTokenList itemRef;
  [PutForwards=value] readonly attribute DOMSettableTokenList itemProp;
  readonly attribute HTMLPropertiesCollection properties;
           attribute any itemValue; // acts as DOMString on setting

  // user interaction
           attribute boolean hidden;
  void click();
           attribute long tabIndex;
  void focus();
  void blur();
           attribute DOMString accessKey;
  readonly attribute DOMString accessKeyLabel;
           attribute boolean draggable;
  [PutForwards=value] readonly attribute DOMSettableTokenList dropzone;
           attribute DOMString contentEditable;
  readonly attribute boolean isContentEditable;
           attribute HTMLMenuElement? contextMenu;
           attribute boolean spellcheck;
  void forceSpellCheck();

  // command API
  readonly attribute DOMString? commandType;
  readonly attribute DOMString? commandLabel;
  readonly attribute DOMString? commandIcon;
  readonly attribute boolean? commandHidden;
  readonly attribute boolean? commandDisabled;
  readonly attribute boolean? commandChecked;
};
HTMLElement implements GlobalEventHandlers;

interface HTMLUnknownElement : HTMLElement { };

The HTMLElement interface holds methods and attributes related to a number of disparate features, and the members of this interface are therefore described in various different sections of this specification.

The HTMLUnknownElement interface must be used for HTML elements that are not defined by this specification (or other applicable specifications).

3.2.3 Element definitions

Each element in this specification has a definition that includes the following information:

Categories

A list of categories to which the element belongs. These are used when defining the content models for each element.

Contexts in which this element can be used

A non-normative description of where the element can be used. This information is redundant with the content models of elements that allow this one as a child, and is provided only as a convenience.

For simplicity, only the most specific expectations are listed. For example, an element that is both flow content and phrasing content can be used anywhere that either flow content or phrasing content is expected, but since anywhere that flow content is expected, phrasing content is also expected (since all phrasing content is flow content), only "where phrasing content is expected" will be listed.

Content model

A normative description of what content must be included as children and descendants of the element.

Tag omission in text/html:

A non-normative description of whether, in the text/html syntax, the start and end tags can be omitted. This information is redundant with the normative requirements given in the optional tags section, and is provided in the element definitions only as a convenience.

Content attributes

A normative list of attributes that may be specified on the element (except where otherwise disallowed), along with non-normative descriptions of those attributes. (The content to the left of the dash is normative, the content to the right of the dash is not.)

Allowed ARIA role attribute values

A normative list of ARIA role attribute values that may be specified on the element (except where otherwise disallowed). Each value is linked to a non normative description.

Allowed ARIA state and property attributes

Links to the Global aria-* attributes list and the allowed roles, states and properties table.

DOM interface

A normative definition of a DOM interface that such elements must implement.

This is then followed by a description of what the element represents, along with any additional normative conformance criteria that may apply to authors and implementations. Examples are sometimes also included.

3.2.3.1 Attributes

Except where otherwise specified, attributes on HTML elements may have any string value, including the empty string. Except where explicitly stated, there is no restriction on what text can be specified in such attributes.

3.2.4 Content models

Each element defined in this specification has a content model: a description of the element's expected contents. An HTML element must have contents that match the requirements described in the element's content model. The contents of an element are its children in the DOM, except for template elements, where the children are those in the template contents (a separate DocumentFragment assigned to the element when the element is created).

The space characters are always allowed between elements. User agents represent these characters between elements in the source markup as Text nodes in the DOM. Empty Text nodes and Text nodes consisting of just sequences of those characters are considered inter-element whitespace.

Inter-element whitespace, comment nodes, and processing instruction nodes must be ignored when establishing whether an element's contents match the element's content model or not, and must be ignored when following algorithms that define document and element semantics.

Thus, an element A is said to be preceded or followed by a second element B if A and B have the same parent node and there are no other element nodes or Text nodes (other than inter-element whitespace) between them. Similarly, a node is the only child of an element if that element contains no other nodes other than inter-element whitespace, comment nodes, and processing instruction nodes.

Authors must not use HTML elements anywhere except where they are explicitly allowed, as defined for each element, or as explicitly required by other specifications. For XML compound documents, these contexts could be inside elements from other namespaces, if those elements are defined as providing the relevant contexts.

For example, the Atom specification defines a content element. When its type attribute has the value xhtml, the Atom specification requires that it contain a single HTML div element. Thus, a div element is allowed in that context, even though this is not explicitly normatively stated by this specification. [ATOM]

In addition, HTML elements may be orphan nodes (i.e. without a parent node).

For example, creating a td element and storing it in a global variable in a script is conforming, even though td elements are otherwise only supposed to be used inside tr elements.

var data = {
  name: "Banana",
  cell: document.createElement('td'),
};
3.2.4.1 Kinds of content

Each element in HTML falls into zero or more categories that group elements with similar characteristics together. The following broad categories are used in this specification:

Some elements also fall into other categories, which are defined in other parts of this specification.

These categories are related as follows:

Sectioning content, heading content, phrasing content, embedded content, and interactive content are all types of flow content. Metadata is sometimes flow content. Metadata and interactive content are sometimes phrasing content. Embedded content is also a type of phrasing content, and sometimes is interactive content.

Other categories are also used for specific purposes, e.g. form controls are specified using a number of categories to define common requirements. Some elements have unique requirements and do not fit into any particular category.

3.2.4.1.1 Metadata content

Metadata content is content that sets up the presentation or behavior of the rest of the content, or that sets up the relationship of the document with other documents, or that conveys other "out of band" information.

Elements from other namespaces whose semantics are primarily metadata-related (e.g. RDF) are also metadata content.

Thus, in the XML serialization, one can use RDF, like this:

<html xmlns="http://www.w3.org/1999/xhtml"
      xmlns:r="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <head>
  <title>Hedral's Home Page</title>
  <r:RDF>
   <Person xmlns="http://www.w3.org/2000/10/swap/pim/contact#"
           r:about="http://hedral.example.com/#">
    <fullName>Cat Hedral</fullName>
    <mailbox r:resource="mailto:hedral@damowmow.com"/>
    <personalTitle>Sir</personalTitle>
   </Person>
  </r:RDF>
 </head>
 <body>
  <h1>My home page</h1>
  <p>I like playing with string, I guess. Sister says squirrels are fun
  too so sometimes I follow her to play with them.</p>
 </body>
</html>

This isn't possible in the HTML serialization, however.

3.2.4.1.2 Flow content

Most elements that are used in the body of documents and applications are categorised as flow content.

3.2.4.1.3 Sectioning content

Sectioning content is content that defines the scope of headings and footers.

Each sectioning content element potentially has a heading and an outline. See the section on headings and sections for further details.

There are also certain elements that are sectioning roots. These are distinct from sectioning content, but they can also have an outline.

3.2.4.1.4 Heading content

Heading content defines the header of a section (whether explicitly marked up using sectioning content elements, or implied by the heading content itself).

3.2.4.1.5 Phrasing content

Phrasing content is the text of the document, as well as elements that mark up that text at the intra-paragraph level. Runs of phrasing content form paragraphs.

Most elements that are categorised as phrasing content can only contain elements that are themselves categorised as phrasing content, not any flow content.

Text, in the context of content models, means either nothing, or Text nodes. Text is sometimes used as a content model on its own, but is also phrasing content, and can be inter-element whitespace (if the Text nodes are empty or contain just space characters).

Text nodes and attribute values must consist of Unicode characters, must not contain U+0000 characters, must not contain permanently undefined Unicode characters (noncharacters), and must not contain control characters other than space characters. This specification includes extra constraints on the exact value of Text nodes and attribute values depending on their precise context.

3.2.4.1.6 Embedded content

Embedded content is content that imports another resource into the document, or content from another vocabulary that is inserted into the document.

Elements that are from namespaces other than the HTML namespace and that convey content but not metadata, are embedded content for the purposes of the content models defined in this specification. (For example, MathML, or SVG.)

Some embedded content elements can have fallback content: content that is to be used when the external resource cannot be used (e.g. because it is of an unsupported format). The element definitions state what the fallback is, if any.

3.2.4.1.7 Interactive content

Interactive content is content that is specifically intended for user interaction.

The tabindex attribute can also make any element into interactive content.

3.2.4.1.8 Palpable content

As a general rule, elements whose content model allows any flow content or phrasing content should have at least one node in its contents that is palpable content and that does not have the hidden attribute specified.

This requirement is not a hard requirement, however, as there are many cases where an element can be empty legitimately, for example when it is used as a placeholder which will later be filled in by a script, or when the element is part of a template and would on most pages be filled in but on some pages is not relevant.

Conformance checkers are encouraged to provide a mechanism for authors to find elements that fail to fulfill this requirement, as an authoring aid.

The following elements are palpable content:

3.2.4.1.9 Script-supporting elements

Script-supporting elements are those that do not represent anything themselves (i.e. they are not rendered), but are used to support scripts, e.g. to provide functionality for the user.

The following elements are script-supporting elements:

3.2.4.2 Transparent content models

Some elements are described as transparent; they have "transparent" in the description of their content model. The content model of a transparent element is derived from the content model of its parent element: the elements required in the part of the content model that is "transparent" are the same elements as required in the part of the content model of the parent of the transparent element in which the transparent element finds itself.

For instance, an ins element inside a ruby element cannot contain an rt element, because the part of the ruby element's content model that allows ins elements is the part that allows phrasing content, and the rt element is not phrasing content.

In some cases, where transparent elements are nested in each other, the process has to be applied iteratively.

Consider the following markup fragment:

<p><object><param><ins><map><a href="/">Apples</a></map></ins></object></p>

To check whether "Apples" is allowed inside the a element, the content models are examined. The a element's content model is transparent, as is the map element's, as is the ins element's, as is the part of the object element's in which the ins element is found. The object element is found in the p element, whose content model is phrasing content. Thus, "Apples" is allowed, as text is phrasing content.

When a transparent element has no parent, then the part of its content model that is "transparent" must instead be treated as accepting any flow content.

3.2.4.3 Paragraphs

The term paragraph as defined in this section is used for more than just the definition of the p element. The paragraph concept defined here is used to describe how to interpret documents. The p element is merely one of several ways of marking up a paragraph.

A paragraph is typically a run of phrasing content that forms a block of text with one or more sentences that discuss a particular topic, as in typography, but can also be used for more general thematic grouping. For instance, an address is also a paragraph, as is a part of a form, a byline, or a stanza in a poem.

In the following example, there are two paragraphs in a section. There is also a heading, which contains phrasing content that is not a paragraph. Note how the comments and inter-element whitespace do not form paragraphs.

<section>
  <h1>Example of paragraphs</h1>
  This is the <em>first</em> paragraph in this example.
  <p>This is the second.</p>
  <!-- This is not a paragraph. -->
</section>

Paragraphs in flow content are defined relative to what the document looks like without the a, ins, del, and map elements complicating matters, since those elements, with their hybrid content models, can straddle paragraph boundaries, as shown in the first two examples below.

Generally, having elements straddle paragraph boundaries is best avoided. Maintaining such markup can be difficult.

The following example takes the markup from the earlier example and puts ins and del elements around some of the markup to show that the text was changed (though in this case, the changes admittedly don't make much sense). Notice how this example has exactly the same paragraphs as the previous one, despite the ins and del elements — the ins element straddles the heading and the first paragraph, and the del element straddles the boundary between the two paragraphs.

<section>
  <ins><h2>Example of paragraphs</h2>
  This is the <em>first</em> paragraph in</ins> this example<del>.
  <p>This is the second.</p></del>
  <!-- This is not a paragraph. -->
</section>

Let view be a view of the DOM that replaces all a, ins, del, and map elements in the document with their contents. Then, in view, for each run of sibling phrasing content nodes uninterrupted by other types of content, in an element that accepts content other than phrasing content as well as phrasing content, let first be the first node of the run, and let last be the last node of the run. For each such run that consists of at least one node that is neither embedded content nor inter-element whitespace, a paragraph exists in the original DOM from immediately before first to immediately after last. (Paragraphs can thus span across a, ins, del, and map elements.)

Conformance checkers may warn authors of cases where they have paragraphs that overlap each other (this can happen with object, video, audio, and canvas elements, and indirectly through elements in other namespaces that allow HTML to be further embedded therein, like svg or math).

A paragraph is also formed explicitly by p elements.

The p element can be used to wrap individual paragraphs when there would otherwise not be any content other than phrasing content to separate the paragraphs from each other.

In the following example, the link spans half of the first paragraph, all of the heading separating the two paragraphs, and half of the second paragraph. It straddles the paragraphs and the heading.

<header>
 Welcome!
 <a href="about.html">
  This is home of...
  <h1>The Falcons!</h1>
  The Lockheed Martin multirole jet fighter aircraft!
 </a>
 This page discusses the F-16 Fighting Falcon's innermost secrets.
</header>

Here is another way of marking this up, this time showing the paragraphs explicitly, and splitting the one link element into three:

<header>
 <p>Welcome! <a href="about.html">This is home of...</a></p>
 <h1><a href="about.html">The Falcons!</a></h1>
 <p><a href="about.html">The Lockheed Martin multirole jet
 fighter aircraft!</a> This page discusses the F-16 Fighting
 Falcon's innermost secrets.</p>
</header>

It is possible for paragraphs to overlap when using certain elements that define fallback content. For example, in the following section:

<section>
 <h2>My Cats</h2>
 You can play with my cat simulator.
 <object data="cats.sim">
  To see the cat simulator, use one of the following links:
  <ul>
   <li><a href="cats.sim">Download simulator file</a>
   <li><a href="http://sims.example.com/watch?v=LYds5xY4INU">Use online simulator</a>
  </ul>
  Alternatively, upgrade to the Mellblom Browser.
 </object>
 I'm quite proud of it.
</section>

There are five paragraphs:

  1. The paragraph that says "You can play with my cat simulator. object I'm quite proud of it.", where object is the object element.
  2. The paragraph that says "To see the cat simulator, use one of the following links:".
  3. The paragraph that says "Download simulator file".
  4. The paragraph that says "Use online simulator".
  5. The paragraph that says "Alternatively, upgrade to the Mellblom Browser.".

The first paragraph is overlapped by the other four. A user agent that supports the "cats.sim" resource will only show the first one, but a user agent that shows the fallback will confusingly show the first sentence of the first paragraph as if it was in the same paragraph as the second one, and will show the last paragraph as if it was at the start of the second sentence of the first paragraph.

To avoid this confusion, explicit p elements can be used. For example:

<section>
 <h2>My Cats</h2>
 <p>You can play with my cat simulator.</p>
 <object data="cats.sim">
  <p>To see the cat simulator, use one of the following links:</p>
  <ul>
   <li><a href="cats.sim">Download simulator file</a>
   <li><a href="http://sims.example.com/watch?v=LYds5xY4INU">Use online simulator</a>
  </ul>
  <p>Alternatively, upgrade to the Mellblom Browser.</p>
 </object>
 <p>I'm quite proud of it.</p>
</section>

3.2.5 Global attributes

The following attributes are common to and may be specified on all HTML elements (even those not defined in this specification):

These attributes are only defined by this specification as attributes for HTML elements. When this specification refers to elements having these attributes, elements from namespaces that are not defined as having these attributes must not be considered as being elements with these attributes.

For example, in the following XML fragment, the "bogus" element does not have a dir attribute as defined in this specification, despite having an attribute with the literal name "dir". Thus, the directionality of the inner-most span element is 'rtl', inherited from the div element indirectly through the "bogus" element.

<div xmlns="http://www.w3.org/1999/xhtml" dir="rtl">
 <bogus xmlns="http://example.net/ns" dir="ltr">
  <span xmlns="http://www.w3.org/1999/xhtml">
  </span>
 </bogus>
</div>

To enable assistive technology products to expose a more fine-grained interface than is otherwise possible with HTML elements and attributes, a set of annotations for assistive technology products can be specified (the ARIA role and aria-* attributes). [ARIA]


The following event handler content attributes may be specified on any HTML element:

The attributes marked with an asterisk have a different meaning when specified on body elements as those elements expose event handlers of the Window object with the same names.

While these attributes apply to all elements, they are not useful on all elements. For example, only media elements will ever receive a volumechange event fired by the user agent.


Custom data attributes (e.g. data-foldername or data-msgid) can be specified on any HTML element, to store custom data specific to the page.


In HTML documents, elements in the HTML namespace may have an xmlns attribute specified, if, and only if, it has the exact value "http://www.w3.org/1999/xhtml". This does not apply to XML documents.

In HTML, the xmlns attribute has absolutely no effect. It is basically a talisman. It is allowed merely to make migration to and from XHTML mildly easier. When parsed by an HTML parser, the attribute ends up in no namespace, not the "http://www.w3.org/2000/xmlns/" namespace like namespace declaration attributes in XML do.

In XML, an xmlns attribute is part of the namespace declaration mechanism, and an element cannot actually have an xmlns attribute in no namespace specified.


The XML specification also allows the use of the xml:space attribute in the XML namespace on any element in an XML document. This attribute has no effect on HTML elements, as the default behavior in HTML is to preserve whitespace. [XML]

There is no way to serialise the xml:space attribute on HTML elements in the text/html syntax.

3.2.5.1 The id attribute

The id attribute specifies its element's unique identifier (ID). [DOM]

The value must be unique amongst all the IDs in the element's home subtree and must contain at least one character. The value must not contain any space characters.

There are no other restrictions on what form an ID can take; in particular, IDs can consist of just digits, start with a digit, start with an underscore, consist of just punctuation, etc.

An element's unique identifier can be used for a variety of purposes, most notably as a way to link to specific parts of a document using fragment identifiers, as a way to target an element when scripting, and as a way to style a specific element from CSS.

Identifiers are opaque strings. Particular meanings should not be derived from the value of the id attribute.

3.2.5.2 The title attribute

The title attribute represents advisory information for the element, such as would be appropriate for a tooltip. On a link, this could be the title or a description of the target resource; on an image, it could be the image credit or a description of the image; on a paragraph, it could be a footnote or commentary on the text; on a citation, it could be further information about the source; on interactive content, it could be a label for, or instructions for, use of the element; and so forth. The value is text.

Relying on the title attribute is currently discouraged as many user agents do not expose the attribute in an accessible manner as required by this specification (e.g. requiring a pointing device such as a mouse to cause a tooltip to appear, which excludes keyboard-only users and touch-only users, such as anyone with a modern phone or tablet).

If this attribute is omitted from an element, then it implies that the title attribute of the nearest ancestor HTML element with a title attribute set is also relevant to this element. Setting the attribute overrides this, explicitly stating that the advisory information of any ancestors is not relevant to this element. Setting the attribute to the empty string indicates that the element has no advisory information.

If the title attribute's value contains "LF" (U+000A) characters, the content is split into multiple lines. Each "LF" (U+000A) character represents a line break.

Caution is advised with respect to the use of newlines in title attributes.

For instance, the following snippet actually defines an abbreviation's expansion with a line break in it:

<p>My logs show that there was some interest in <abbr title="Hypertext
Transport Protocol">HTTP</abbr> today.</p>

Some elements, such as link, abbr, and input, define additional semantics for the title attribute beyond the semantics described above.

The advisory information of an element is the value that the following algorithm returns, with the algorithm being aborted once a value is returned. When the algorithm returns the empty string, then there is no advisory information.

  1. If the element is a link, style, dfn, abbr, or menuitem element, then: if the element has a title attribute, return the value of that attribute, otherwise, return the empty string.

  2. Otherwise, if the element has a title attribute, then return its value.

  3. Otherwise, if the element has a parent element, then return the parent element's advisory information.

  4. Otherwise, return the empty string.

User agents should inform the user when elements have advisory information, otherwise the information would not be discoverable.


The title IDL attribute must reflect the title content attribute.

3.2.5.3 The lang and xml:lang attributes

The lang attribute (in no namespace) specifies the primary language for the element's contents and for any of the element's attributes that contain text. Its value must be a valid BCP 47 language tag, or the empty string. Setting the attribute to the empty string indicates that the primary language is unknown. [BCP47]

The lang attribute in the XML namespace is defined in XML. [XML]

If these attributes are omitted from an element, then the language of this element is the same as the language of its parent element, if any.

The lang attribute in no namespace may be used on any HTML element.

The lang attribute in the XML namespace may be used on HTML elements in XML documents, as well as elements in other namespaces if the relevant specifications allow it (in particular, MathML and SVG allow lang attributes in the XML namespace to be specified on their elements). If both the lang attribute in no namespace and the lang attribute in the XML namespace are specified on the same element, they must have exactly the same value when compared in an ASCII case-insensitive manner.

Authors must not use the lang attribute in the XML namespace on HTML elements in HTML documents. To ease migration to and from XHTML, authors may specify an attribute in no namespace with no prefix and with the literal localname "xml:lang" on HTML elements in HTML documents, but such attributes must only be specified if a lang attribute in no namespace is also specified, and both attributes must have the same value when compared in an ASCII case-insensitive manner.

The attribute in no namespace with no prefix and with the literal localname "xml:lang" has no effect on language processing.


To determine the language of a node, user agents must look at the nearest ancestor element (including the element itself if the node is an element) that has a lang attribute in the XML namespace set or is an HTML element and has a lang in no namespace attribute set. That attribute specifies the language of the node (regardless of its value).

If both the lang attribute in no namespace and the lang attribute in the XML namespace are set on an element, user agents must use the lang attribute in the XML namespace, and the lang attribute in no namespace must be ignored for the purposes of determining the element's language.

If neither the node nor any of the node's ancestors, including the root element, have either attribute set, but there is a pragma-set default language set, then that is the language of the node. If there is no pragma-set default language set, then language information from a higher-level protocol (such as HTTP), if any, must be used as the final fallback language instead. In the absence of any such language information, and in cases where the higher-level protocol reports multiple languages, the language of the node is unknown, and the corresponding language tag is the empty string.

If the resulting value is not a recognised language tag, then it must be treated as an unknown language having the given language tag, distinct from all other languages. For the purposes of round-tripping or communicating with other services that expect language tags, user agents should pass unknown language tags through unmodified, and tagged as being BCP 47 language tags, so that subsequent services do not interpret the data as another type of language description. [BCP47]

Thus, for instance, an element with lang="xyzzy" would be matched by the selector :lang(xyzzy) (e.g. in CSS), but it would not be matched by :lang(abcde), even though both are equally invalid. Similarly, if a Web browser and screen reader working in unison communicated about the language of the element, the browser would tell the screen reader that the language was "xyzzy", even if it knew it was invalid, just in case the screen reader actually supported a language with that tag after all. Even if the screen reader supported both BCP 47 and another syntax for encoding language names, and in that other syntax the string "xyzzy" was a way to denote the Belarusian language, it would be incorrect for the screen reader to then start treating text as Belarusian, because "xyzzy" is not how Belarusian is described in BCP 47 codes (BCP 47 uses the code "be" for Belarusian).

If the resulting value is the empty string, then it must be interpreted as meaning that the language of the node is explicitly unknown.


User agents may use the element's language to determine proper processing or rendering (e.g. in the selection of appropriate fonts or pronunciations, for dictionary selection, or for the user interfaces of form controls such as date pickers).


The lang IDL attribute must reflect the lang content attribute in no namespace.

3.2.5.4 The translate attribute

The translate attribute is an enumerated attribute that is used to specify whether an element's attribute values and the values of its Text node children are to be translated when the page is localized, or whether to leave them unchanged.

The attribute's keywords are the empty string, yes, and no. The empty string and the yes keyword map to the yes state. The no keyword maps to the no state. In addition, there is a third state, the inherit state, which is the missing value default (and the invalid value default).

Each element (even non-HTML elements) has a translation mode, which is in either the translate-enabled state or the no-translate state. If an HTML element's translate attribute is in the yes state, then the element's translation mode is in the translate-enabled state; otherwise, if the element's translate attribute is in the no state, then the element's translation mode is in the no-translate state. Otherwise, either the element's translate attribute is in the inherit state, or the element is not an HTML element and thus does not have a translate attribute; in either case, the element's translation mode is in the same state as its parent element's, if any, or in the translate-enabled state, if the element is a root element.

When an element is in the translate-enabled state, the element's translatable attributes and the values of its Text node children are to be translated when the page is localized. Attributes of the element that are not listed as translatable attributes should not be translated.

When an element is in the no-translate state, the element's attribute values (including the values of translatable attributes) and the values of its Text node children are to be left as-is when the page is localized, e.g. because the element contains a person's name or a the name of a computer program.

The following attributes are translatable attributes:


The translate IDL attribute must, on getting, return true if the element's translation mode is translate-enabled, and false otherwise. On setting, it must set the content attribute's value to "yes" if the new value is true, and set the content attribute's value to "no" otherwise.

In this example, everything in the document is to be translated when the page is localized, except the sample keyboard input and sample program output:

<!DOCTYPE HTML>
<html> <!-- default on the root element is translate=yes -->
 <head>
  <title>The Bee Game</title> <!-- implied translate=yes inherited from ancestors -->
 </head>
 <body>
  <p>The Bee Game is a text adventure game in English.</p>
  <p>When the game launches, the first thing you should do is type
  <kbd translate=no>eat honey</kbd>. The game will respond with:</p>
  <pre><samp translate=no>Yum yum! That was some good honey!</samp></pre>
 </body>
</html>
3.2.5.5 The xml:base attribute (XML only)

The xml:base attribute is defined in XML Base. [XMLBASE]

The xml:base attribute may be used on HTML elements of XML documents. Authors must not use the xml:base attribute on HTML elements in HTML documents.

3.2.5.6 The dir attribute

The dir attribute specifies the element's text directionality. The attribute is an enumerated attribute with the following keywords and states:

The ltr keyword, which maps to the ltr state

Indicates that the contents of the element are explicitly directionally isolated left-to-right text.

The rtl keyword, which maps to the rtl state

Indicates that the contents of the element are explicitly directionally isolated right-to-left text.

The auto keyword, which maps to the auto state

Indicates that the contents of the element are explicitly directionally isolated text, but that the direction is to be determined programmatically using the contents of the element (as described below).

The heuristic used by this state is very crude (it just looks at the first character with a strong directionality, in a manner analogous to the Paragraph Level determination in the bidirectional algorithm). Authors are urged to only use this value as a last resort when the direction of the text is truly unknown and no better server-side heuristic can be applied. [BIDI]

For textarea and pre elements, the heuristic is applied on a per-paragraph level.

The attribute has no invalid value default and no missing value default.


The directionality of an element (any element, not just an HTML element) is either 'ltr' or 'rtl', and is determined as per the first appropriate set of steps from the following list:

If the element's dir attribute is in the ltr state
If the element is a root element and the dir attribute is not in a defined state (i.e. it is not present or has an invalid value)
If the element is an input element whose type attribute is in the Telephone state, and the dir attribute is not in a defined state (i.e. it is not present or has an invalid value)

The directionality of the element is 'ltr'.

If the element's dir attribute is in the rtl state

The directionality of the element is 'rtl'.

If the element is an input element whose type attribute is in the Text, Search, Telephone, URL, or E-mail state, and the dir attribute is in the auto state
If the element is a textarea element and the dir attribute is in the auto state

If the element's value contains a character of bidirectional character type AL or R, and there is no character of bidirectional character type L anywhere before it in the element's value, then the directionality of the element is 'rtl'. [BIDI]

Otherwise, if the element's value is not the empty string, or if the element is a root element, the directionality of the element is 'ltr'.

Otherwise, the directionality of the element is the same as the element's parent element's directionality.

If the element's dir attribute is in the auto state
If the element is a bdi element and the dir attribute is not in a defined state (i.e. it is not present or has an invalid value)

Find the first character in tree order that matches the following criteria:

If such a character is found and it is of bidirectional character type AL or R, the directionality of the element is 'rtl'.

If such a character is found and it is of bidirectional character type L, the directionality of the element is 'ltr'.

Otherwise, if the element is empty and is not a root element, the directionality of the element is the same as the element's parent element's directionality.

Otherwise, the directionality of the element is 'ltr'.

If the element has a parent element and the dir attribute is not in a defined state (i.e. it is not present or has an invalid value)

The directionality of the element is the same as the element's parent element's directionality.

Since the dir attribute is only defined for HTML elements, it cannot be present on elements from other namespaces. Thus, elements from other namespaces always just inherit their directionality from their parent element, or, if they don't have one, default to 'ltr'.

This attribute has rendering requirements involving the bidirectional algorithm.


The directionality of an attribute of an HTML element, which is used when the text of that attribute is to be included in the rendering in some manner, is determined as per the first appropriate set of steps from the following list:

If the attribute is a directionality-capable attribute and the element's dir attribute is in the auto state

Find the first character (in logical order) of the attribute's value that is of bidirectional character type L, AL, or R. [BIDI]

If such a character is found and it is of bidirectional character type AL or R, the directionality of the attribute is 'rtl'.

Otherwise, the directionality of the attribute is 'ltr'.

Otherwise
The directionality of the attribute is the same as the element's directionality.

The following attributes are directionality-capable attributes:


document . dir [ = value ]

Returns the html element's dir attribute's value, if any.

Can be set, to either "ltr", "rtl", or "auto" to replace the html element's dir attribute's value.

If there is no html element, returns the empty string and ignores new values.

The dir IDL attribute on an element must reflect the dir content attribute of that element, limited to only known values.

The dir IDL attribute on Document objects must reflect the dir content attribute of the html element, if any, limited to only known values. If there is no such element, then the attribute must return the empty string and do nothing on setting.

Authors are strongly encouraged to use the dir attribute to indicate text direction rather than using CSS, since that way their documents will continue to render correctly even in the absence of CSS (e.g. as interpreted by search engines).

This markup fragment is of an IM conversation.

<p dir=auto class="u1"><b><bdi>Student</bdi>:</b> How do you write "What's your name?" in Arabic?</p>
<p dir=auto class="u2"><b><bdi>Teacher</bdi>:</b> ما اسمك؟</p>
<p dir=auto class="u1"><b><bdi>Student</bdi>:</b> Thanks.</p>
<p dir=auto class="u2"><b><bdi>Teacher</bdi>:</b> That's written "شكرًا".</p>
<p dir=auto class="u2"><b><bdi>Teacher</bdi>:</b> Do you know how to write "Please"?</p>
<p dir=auto class="u1"><b><bdi>Student</bdi>:</b> "من فضلك", right?</p>

Given a suitable style sheet and the default alignment styles for the p element, namely to align the text to the start edge of the paragraph, the resulting rendering could be as follows:

Each paragraph rendered as a separate block, with the paragraphs left-aligned except the second paragraph and the last one, which would  be right aligned, with the usernames ('Student' and 'Teacher' in this example) flush right, with a colon to their left, and the text first to the left of that.

As noted earlier, the auto value is not a panacea. The final paragraph in this example is misinterpreted as being right-to-left text, since it begins with an Arabic character, which causes the "right?" to be to the left of the Arabic text.

3.2.5.7 The class attribute

Every HTML element may have a class attribute specified.

The attribute, if specified, must have a value that is a set of space-separated tokens representing the various classes that the element belongs to.

The classes that an HTML element has assigned to it consists of all the classes returned when the value of the class attribute is split on spaces. (Duplicates are ignored.)

Assigning classes to an element affects class matching in selectors in CSS, the getElementsByClassName() method in the DOM, and other such features.

There are no additional restrictions on the tokens authors can use in the class attribute, but authors are encouraged to use values that describe the nature of the content, rather than values that describe the desired presentation of the content.


The className and classList IDL attributes, defined in the DOM specification, reflect the class content attribute. [DOM]

3.2.5.8 The style attribute

All HTML elements may have the style content attribute set. This is a CSS styling attribute as defined by the CSS Styling Attribute Syntax specification. [CSSATTR]

In user agents that support CSS, the attribute's value must be parsed when the attribute is added or has its value changed, according to the rules given for CSS styling attributes. [CSSATTR]

Documents that use style attributes on any of their elements must still be comprehensible and usable if those attributes were removed.

In particular, using the style attribute to hide and show content, or to convey meaning that is otherwise not included in the document, is non-conforming. (To hide and show content, use the hidden attribute.)


element . style

Returns a CSSStyleDeclaration object for the element's style attribute.

The style IDL attribute is defined in the CSS Object Model (CSSOM) specification. [CSSOM]

In the following example, the words that refer to colors are marked up using the span element and the style attribute to make those words show up in the relevant colors in visual media.

<p>My sweat suit is <span style="color: green; background:
transparent">green</span> and my eyes are <span style="color: blue;
background: transparent">blue</span>.</p>
3.2.5.9 Embedding custom non-visible data with the data-* attributes

A custom data attribute is an attribute in no namespace whose name starts with the string "data-", has at least one character after the hyphen, is XML-compatible, and contains no uppercase ASCII letters.

All attribute names on HTML elements in HTML documents get ASCII-lowercased automatically, so the restriction on ASCII uppercase letters doesn't affect such documents.

Custom data attributes are intended to store custom data private to the page or application, for which there are no more appropriate attributes or elements.

These attributes are not intended for use by software that is independent of the site that uses the attributes.

For instance, a site about music could annotate list items representing tracks in an album with custom data attributes containing the length of each track. This information could then be used by the site itself to allow the user to sort the list by track length, or to filter the list for tracks of certain lengths.

<ol>
 <li data-length="2m11s">Beyond The Sea</li>
 ...
</ol>

It would be inappropriate, however, for the user to use generic software not associated with that music site to search for tracks of a certain length by looking at this data.

This is because these attributes are intended for use by the site's own scripts, and are not a generic extension mechanism for publicly-usable metadata.

Every HTML element may have any number of custom data attributes specified, with any value.


element . dataset

Returns a DOMStringMap object for the element's data-* attributes.

Hyphenated names become camel-cased. For example, data-foo-bar="" becomes element.dataset.fooBar.

The dataset IDL attribute provides convenient accessors for all the data-* attributes on an element. On getting, the dataset IDL attribute must return a DOMStringMap object, associated with the following algorithms, which expose these attributes on their element:

The algorithm for getting the list of name-value pairs
  1. Let list be an empty list of name-value pairs.
  2. For each content attribute on the element whose first five characters are the string "data-" and whose remaining characters (if any) do not include any uppercase ASCII letters, in the order that those attributes are listed in the element's attribute list, add a name-value pair to list whose name is the attribute's name with the first five characters removed and whose value is the attribute's value.
  3. For each name in list, for each "-" (U+002D) character in the name that is followed by a lowercase ASCII letter, remove the "-" (U+002D) character and replace the character that followed it by the same character converted to ASCII uppercase.
  4. Return list.
The algorithm for setting names to certain values
  1. Let name be the name passed to the algorithm.
  2. Let value be the value passed to the algorithm.
  3. If name contains a "-" (U+002D) character followed by a lowercase ASCII letter, throw a SyntaxError exception and abort these steps.
  4. For each uppercase ASCII letter in name, insert a "-" (U+002D) character before the character and replace the character with the same character converted to ASCII lowercase.
  5. Insert the string data- at the front of name.
  6. Set the value of the attribute with the name name, to the value value, replacing any previous value if the attribute already existed. If setAttribute() would have thrown an exception when setting an attribute with the name name, then this must throw the same exception.
The algorithm for deleting names
  1. Let name be the name passed to the algorithm.
  2. For each uppercase ASCII letter in name, insert a "-" (U+002D) character before the character and replace the character with the same character converted to ASCII lowercase.
  3. Insert the string data- at the front of name.
  4. Remove the attribute with the name name, if such an attribute exists. Do nothing otherwise.

This algorithm will only get invoked by the Web IDL specification for names that are given by the earlier algorithm for getting the list of name-value pairs. [WEBIDL]

The same object must be returned each time.

If a Web page wanted an element to represent a space ship, e.g. as part of a game, it would have to use the class attribute along with data-* attributes:

<div class="spaceship" data-ship-id="92432"
     data-weapons="laser 2" data-shields="50%"

     data-x="30" data-y="10" data-z="90">
 <button class="fire"
         onclick="spaceships[this.parentNode.dataset.shipId].fire()">
  Fire
 </button>
</div>

Notice how the hyphenated attribute name becomes camel-cased in the API.

Authors should carefully design such extensions so that when the attributes are ignored and any associated CSS dropped, the page is still usable.

User agents must not derive any implementation behavior from these attributes or values. Specifications intended for user agents must not define these attributes to have any meaningful values.

JavaScript libraries may use the custom data attributes, as they are considered to be part of the page on which they are used. Authors of libraries that are reused by many authors are encouraged to include their name in the attribute names, to reduce the risk of clashes. Where it makes sense, library authors are also encouraged to make the exact name used in the attribute names customizable, so that libraries whose authors unknowingly picked the same name can be used on the same page, and so that multiple versions of a particular library can be used on the same page even when those versions are not mutually compatible.

For example, a library called "DoQuery" could use attribute names like data-doquery-range, and a library called "jJo" could use attributes names like data-jjo-range. The jJo library could also provide an API to set which prefix to use (e.g. J.setDataPrefix('j2'), making the attributes have names like data-j2-range).

3.2.6 Requirements relating to the bidirectional algorithm

3.2.6.1 Authoring conformance criteria for bidirectional-algorithm formatting characters

Text content in HTML elements with Text nodes in their contents, and text in attributes of HTML elements that allow free-form text, may contain characters in the ranges U+202A to U+202E and U+2066 to U+2069 (the bidirectional-algorithm formatting characters). However, the use of these characters is restricted so that any embedding or overrides generated by these characters do not start and end with different parent elements, and so that all such embeddings and overrides are explicitly terminated by a U+202C POP DIRECTIONAL FORMATTING character. This helps reduce incidences of text being reused in a manner that has unforeseen effects on the bidirectional algorithm. [BIDI]

The aforementioned restrictions are defined by specifying that certain parts of documents form bidirectional-algorithm formatting character ranges, and then imposing a requirement on such ranges.

The strings resulting from applying the following algorithm to an HTML element element are bidirectional-algorithm formatting character ranges:

  1. Let output be an empty list of strings.

  2. Let string be an empty string.

  3. Let node be the first child node of element, if any, or null otherwise.

  4. Loop: If node is null, jump to the step labeled end.

  5. Process node according to the first matching step from the following list:

    If node is a Text node

    Append the text data of node to string.

    If node is a br element
    If node is an HTML element that is flow content but that is not also phrasing content

    If string is not the empty string, push string onto output, and let string be empty string.

    Otherwise
    Do nothing.
  6. Let node be node's next sibling, if any, or null otherwise.

  7. Jump to the step labeled loop.

  8. End: If string is not the empty string, push string onto output.

  9. Return output as the bidirectional-algorithm formatting character ranges.

The value of a namespace-less attribute of an HTML element is a bidirectional-algorithm formatting character range.

Any strings that, as described above, are bidirectional-algorithm formatting character ranges must match the string production in the following ABNF, the character set for which is Unicode. [ABNF]

string        = *( plaintext ( embedding / override / isolation ) ) plaintext
embedding     = ( lre / rle ) string pdf
override      = ( lro / rlo ) string pdf
isolation     = ( lri / rli / fsi ) string pdi
lre           = %x202A ; U+202A LEFT-TO-RIGHT EMBEDDING
rle           = %x202B ; U+202B RIGHT-TO-LEFT EMBEDDING
lro           = %x202D ; U+202D LEFT-TO-RIGHT OVERRIDE
rlo           = %x202E ; U+202E RIGHT-TO-LEFT OVERRIDE
pdf           = %x202C ; U+202C POP DIRECTIONAL FORMATTING
lri           = %x2066 ; U+2066 LEFT-TO-RIGHT ISOLATE
rli           = %x2067 ; U+2067 RIGHT-TO-LEFT ISOLATE
fsi           = %x2068 ; U+2068 FIRST STRONG ISOLATE
pdi           = %x2069 ; U+2069 POP DIRECTIONAL ISOLATE
plaintext     = *( %x0000-2029 / %x202F-2065 / %x206A-10FFFF )
                ; any string with no bidirectional-algorithm formatting characters

While the U+2069 POP DIRECTIONAL ISOLATE character implicitly also ends open embeddings and overrides, text that relies on this implicit scope closure is not conforming to this specification. All strings of embeddings, overrides, and isolations need to be explicitly terminated to conform to this section's requirements.

Authors are encouraged to use the dir attribute, the bdo element, and the bdi element, rather than maintaining the bidirectional-algorithm formatting characters manually. The bidirectional-algorithm formatting characters interact poorly with CSS.

3.2.6.2 User agent conformance criteria

User agents must implement the Unicode bidirectional algorithm to determine the proper ordering of characters when rendering documents and parts of documents. [BIDI]

The mapping of HTML to the Unicode bidirectional algorithm must be done in one of three ways. Either the user agent must implement CSS, including in particular the CSS 'unicode-bidi', 'direction', and 'content' properties, and must have, in its user agent style sheet, the rules using those properties given in this specification's rendering section, or, alternatively, the user agent must act as if it implemented just the aforementioned properties and had a user agent style sheet that included all the aforementioned rules, but without letting style sheets specified in documents override them, or, alternatively, the user agent must implement another styling language with equivalent semantics. [CSSWM] [CSSGC]

The following elements and attributes have requirements defined by the rendering section that, due to the requirements in this section, are requirements on all user agents (not just those that support the suggested default rendering):

3.2.7 WAI-ARIA

Authors are encouraged to make use of the following documents for guidance on using ARIA in HTML beyond that which is provided in this section:

Authors may use the ARIA role and aria-* attributes on HTML elements, in accordance with the requirements described in the ARIA specifications, except where these conflict with the strong native semantics described below. These exceptions are intended to prevent authors from making assistive technology products report nonsensical states that do not represent the actual state of the document. [ARIA]

User agents must implement ARIA semantics on all HTML elements, as defined in the ARIA specifications. The default implicit ARIA semantics defined below must be recognised by implementations for the purposes of ARIA processing. [ARIAIMPL]

The ARIA attributes defined in the ARIA specifications, and the strong native semantics and default implicit ARIA semantics defined below, do not have any effect on CSS pseudo-class matching, user interface modalities that don't use assistive technologies, or the default actions of user interaction events as described in this specification.

3.2.7.1 ARIA Role Attribute

Any HTML element, other than elements having Strong Native Semantics of No role, may have an ARIA role attribute specified. This is an ARIA Role attribute as defined by [ARIA] Section 5.4 Definition of Roles.

The attribute, if specified, must have a value that is a set of space-separated tokens representing the various WAI-ARIA roles that the element belongs to.

The WAI-ARIA role that an HTML element has assigned to it is the first non-abstract role found in the list of values generated when the role attribute is split on spaces.

3.2.7.2 State and Property Attributes

Every HTML element may have ARIA state and property attributes specified. These attributes are defined by [ARIA] in Section 6.6, Definitions of States and Properties (all aria-* attributes).

A subset of the ARIA State and Property attributes are defined as "Global States and Properties" in Section 6.4. Global States and Properties of the [ARIA] Specification.

These attributes, if specified, must have a value that is the ARIA value type in the "Value" field of the definition for the state or property, mapped to the appropriate HTML value type according to [ARIA] Section 10.2 Mapping WAI-ARIA Value types to languages using the HTML 5 mapping.

ARIA State and Property attributes can be used on any element. They are not always meaningful, however, and in such cases user agents might not perform any processing aside from including them in the DOM. State and property attributes are processed according to the requirements of the sections Strong Native Semantics and Implicit ARIA semantics, as well as [ARIA] and [ARIAIMPL].

3.2.7.3 Strong Native Semantics

The following table defines the strong native semantics and corresponding default implicit ARIA semantics that apply to HTML elements. Each language feature (element or attribute) in a cell in the first column implies the ARIA semantics (any role, states, and properties) given in the cell in the second column of the same row. When multiple rows apply to an element, the role from the last row to define a role must be applied, and the states and properties from all the rows must be combined.

Documents must not use any role values with elements in the following table other than the corresponding role value (if any) as listed for that element in the second column, or the role value "presentation", if the second column indicates that element's semantics can be removed by using the "presentation" role value.

In the majority of cases setting an ARIA role and/or aria-* attribute that matches the default implicit ARIA semantics is unnecessary and not recommended as these properties are already set by the browser.

Language feature Strong native semantics and default implicit ARIA semantics
area element that creates a hyperlink link role
base element No role
datalist element listbox role, with the aria-multiselectable property set to "false"
details element aria-expanded state set to "true" if the element's open attribute is present, and set to "false" otherwise
dialog element without an open attribute The aria-hidden state set to "true"
fieldset element group role (semantics may be removed by using the presentation role)
footer element that is not a descendant of an article or section element. contentinfo role (semantics may be removed by using the presentation role)
head element No role
header element that is not a descendant of an article or section element. banner role (semantics may be removed by using the presentation role)
hr element separator role (semantics may be removed by using the presentation role)
html element No role
img element whose alt attribute's value is empty presentation role
img element whose alt attribute's value is empty and whose usemap attribute has a valid hash-name reference to a map element. img role
input element with a type attribute in the Checkbox state aria-checked state set to "mixed" if the element's indeterminate IDL attribute is true, or "true" if the element's checkedness is true, or "false" otherwise
input element with a type attribute in the Color state No role
input element with a type attribute in the Date state No role, with the aria-readonly property set to "true" if the element has a readonly attribute
input element with a type attribute in the Date and Time state No role, with the aria-readonly property set to "true" if the element has a readonly attribute
input element with a type attribute in the E-mail state with no suggestions source element textbox role, with the aria-readonly property set to "true" if the element has a readonly attribute
input element with a type attribute in the File Upload state No role
input element with a type attribute in the Hidden state No role
input element with a type attribute in the Month state No role, with the aria-readonly property set to "true" if the element has a readonly attribute
input element with a type attribute in the Number state spinbutton role, with the aria-readonly property set to "true" if the element has a readonly attribute, the aria-valuemax property set to the element's maximum, the aria-valuemin property set to the element's minimum, and, if the result of applying the rules for parsing floating-point number values to the element's value is a number, with the aria-valuenow property set to that number
input element with a type attribute in the Password state textbox role, with the aria-readonly property set to "true" if the element has a readonly attribute
input element with a type attribute in the Range state and the multiple attribute not specified aria-valuemax property set to the element's maximum, and the aria-valuemin property set to the element's minimum
input element with a type attribute in the Reset Button state button role
input element with a type attribute in the Search state with no suggestions source element textbox role, with the aria-readonly property set to "true" if the element has a readonly attribute
input element with a type attribute in the Submit Button state button role
input element with a type attribute in the Telephone state with no suggestions source element textbox role, with the aria-readonly property set to "true" if the element has a readonly attribute
input element with a type attribute in the Text state with no suggestions source element textbox role, with the aria-readonly property set to "true" if the element has a readonly attribute
input element with a type attribute in the Text, Search, Telephone, URL, or E-mail states with a suggestions source element combobox role, with the aria-owns property set to the same value as the list attribute, and the aria-readonly property set to "true" if the element has a readonly attribute
input element with a type attribute in the Time state No role, with the aria-readonly property set to "true" if the element has a readonly attribute
input element with a type attribute in the URL state with no suggestions source element textbox role, with the aria-readonly property set to "true" if the element has a readonly attribute
input element with a type attribute in the Week state No role, with the aria-readonly property set to "true" if the element has a readonly attribute
keygen element No role
label element No role
link element that creates a hyperlink link role
main element main role (semantics may be removed by using the presentation role)
map element No role
menu element with a type attribute in the popup menu state No role
menuitem element menuitem role
meta element No role
meter element No role
nav element navigation role (semantics may be removed by using the presentation role)
noscript element No role
optgroup element No role
option element that is in a list of options aria-selected and aria-checked states set to "true" if the element's selectedness is true, and "false" otherwise
option element that represents a suggestion in a datalist element or that is in a list of options of a select element with a multiple attribute or a display size greater than 1 option role
param element No role
picture element No role
progress element progressbar role, with, if the progress bar is determinate, the aria-valuemax property set to the maximum value of the progress bar, the aria-valuemin property set to zero, and the aria-valuenow property set to the current value of the progress bar
script element No role
select element with a multiple attribute listbox role, with the aria-multiselectable property set to "true"
select element with no multiple attribute and with a display size equal to 1 aria-multiselectable property set to "false"
select element with no multiple attribute and with a display size greater than 1 listbox role, with the aria-multiselectable property set to "false"
select element with a required attribute The aria-required state set to "true"
source element No role
style element No role
template element No role
textarea element textbox role, with the aria-multiline property set to "true", and the aria-readonly property set to "true" if the element has a readonly attribute
th element that is a sorting-capable th element whose column key ordinality is 1 columnheader role, with the aria-sort state set to "ascending" if the element's column sort direction is normal, and "descending" otherwise.
title element No role
track element No role
Element that is disabled The aria-disabled state set to "true"
Element that is a candidate for constraint validation but that does not satisfy its constraints The aria-invalid state set to "true"
3.2.7.4 Implicit ARIA Semantics

Some HTML elements have native semantics that can be overridden. The following table lists these elements and their default implicit ARIA semantics, along with the restrictions that apply to those elements. Each language feature (element or attribute) in a cell in the first column implies, unless otherwise overridden, the ARIA semantic (role, state, or property) given in the cell in the second column of the same row, but this semantic may be overridden under the conditions listed in the cell in the third column of that row.

Language feature Default implicit ARIA semantic Restrictions
a element that creates a hyperlink link role If specified, role must be one of the following: link, button, checkbox, menuitem, menuitemcheckbox, menuitemradio, tab, or treeitem
address element No role If specified, role must be contentinfo
article element article role If specified, role must be one of the following: article, document, application, or main
aside element complementary role If specified, role must be one of the following: complementary, note, search or presentation
audio element No role If specified, role must be application
body element document role If specified, role must be either document or application
button element button role If specified, role must be one of the following: button, link, menuitem, menuitemcheckbox, menuitemradio or radio
details element group role If specified, role must be a role that supports aria-expanded
dialog element dialog role If specified, role must be one of the following: alert, alertdialog, application, contentinfo, dialog, document, log, main, marquee, region, search, or status
embed element No role If specified, role must be one of the following: application, document, img or presentation
h1 element heading role, with the aria-level property set to the element's outline depth If specified, role must be one of the following: heading, tab or presentation
h2 element heading role, with the aria-level property set to the element's outline depth If specified, role must be one of the following: heading, tab or presentation
h3 element heading role, with the aria-level property set to the element's outline depth If specified, role must be one of the following: heading, tab or presentation
h4 element heading role, with the aria-level property set to the element's outline depth If specified, role must be one of the following: heading, tab or presentation
h5 element heading role, with the aria-level property set to the element's outline depth If specified, role must be one of the following: heading, tab or presentation
h6 element heading role, with the aria-level property set to the element's outline depth If specified, role must be one of the following: heading, tab or presentation
iframe element No role If specified, role must be one of the following: application, document, img, or presentation
img element whose alt attribute's value is absent img role No restrictions
img element whose alt attribute's value is present and not empty img role No restrictions
input element with a type attribute in the Button state button role If specified, role must be one of the following: button, link, menuitem, menuitemcheckbox, menuitemradio or radio
input element with a type attribute in the Checkbox state checkbox role If specified, role must be either checkbox or menuitemcheckbox
input element with a type attribute in the Image Button state button role If specified, role must be one of the following: button, link, menuitem, menuitemcheckbox, menuitemradio or radio
input element with a type attribute in the Radio Button state radio role If specified, role must be either radio or menuitemradio
input, select or textarea element with a required attribute The aria-required state set to "true" If specified, the aria-required state must be set to "true"
input, select or textarea element without a required attribute aria-required set to "false" If specified, the aria-required state set to "true" or "false"
li element whose parent is an ol or ul element listitem role If specified, role must be one of the following: listitem, menuitem, menuitemcheckbox, menuitemradio, option, tab, treeitem, or presentation
menu element with a type attribute in the toolbar state toolbar role If specified, role must be one of the following: directory, list, listbox, menu, menubar, tablist, toolbar, or tree
object element No role If specified, role must be one of the following: application, document, img, or presentation
ol element list role If specified, role must be one of the following: directory, group, list, listbox, menu, menubar, tablist, toolbar, tree, or presentation
option element that is in a list of options of a select element with no multiple attribute and with a display size equal to 1 option role If specified, role must be one of the following: option, menuitem, menuitemradio, or separator
output element status role No restrictions
section element region role

Note:It is strongly recommended that user agents such as screen readers only convey the presence of, and provide navigation for section elements, when the section element has an accessible name.

If specified, role must be one of the following: alert, alertdialog, application, contentinfo, dialog, document, log, main, marquee, region, search, status or presentation
select element with no multiple attribute and with a display size equal to 1 listbox role Role must be either listbox or menu
summary element with no Interactive content descendant No role If specified, role must be button
ul element list role If specified, role must be one of the following: directory, group, list, listbox, menu, menubar, tablist, toolbar, tree, or presentation
video element No role If specified, role must be application
Element with a hidden attribute The aria-hidden state set to "true" If specified, the aria-hidden state set to "true" or "false"
Element without a hidden attribute The aria-hidden state set to "false" If specified, the aria-hidden state set to "true" or "false"

The entry "no role", when used as a strong native semantic, means that no role can be used and that the user agent has no default mapping to ARIA roles. (However, it could have its own mappings to the accessibility layer.) When used as a default implicit ARIA semantic, it means the user agent has no default mapping to ARIA roles. (However, it could have its own mappings to the accessibility layer.)

The WAI-ARIA specification neither requires or forbids user agents from enhancing native presentation and interaction behaviors on the basis of WAI- ARIA markup. Even mainstream user agents might choose to expose metadata or navigational features directly or via user-installed extensions; for example, exposing required form fields or landmark navigation. User agents are encouraged to maximize their usefulness to users, including users without disabilities.

Conformance checkers are encouraged to phrase errors such that authors are encouraged to use more appropriate elements rather than remove accessibility annotations. For example, if an a element is marked as having the button role, a conformance checker could say "Use a more appropriate element to represent a button, for example a button element or an input element" rather than "The button role cannot be used with a elements".

These features can be used to make accessibility tools render content to their users in more useful ways. For example, ASCII art, which is really an image, appears to be text, and in the absence of appropriate annotations would end up being rendered by screen readers as a very painful reading of lots of punctuation. Using the features described in this section, one can instead make the ATs skip the ASCII art and just read the caption:

<figure role="img" aria-labelledby="fish-caption"> 
 <pre>
 o           .'`/
     '      /  (
   O    .-'` ` `'-._      .')
      _/ (o)        '.  .' /
      )       )))     ><  <
      `\  |_\      _.'  '. \
        '-._  _ .-'       '.)
    jgs     `\__\
 </pre>
 <figcaption id="fish-caption">
  Joan G. Stark, "<cite>fish</cite>".
  October 1997. ASCII on electrons. 28×8.
 </figcaption>
</figure>
   
3.2.7.5 Allowed ARIA roles, states and properties

This section is non-normative.

The following table provides an informative reference to the ARIA roles, states and properties permitted for use in HTML. All ARIA roles, states and properties are normatively defined in the [ARIA] specification. Links to ARIA roles, states and properties in the table reference the normative [ARIA] definitions.

ARIA Roles, States and Properties
Role Description Required Properties Supported Properties
any ARIA global states and properties can be used on any HTML element. none
alert A message with important, and usually time-sensitive, information. See related alertdialog and status. none
alertdialog A type of dialog that contains an alert message, where initial focus goes to an element within the dialog. See related alert and dialog. none
application A region declared as a web application, as opposed to a web document. none
article A section of a page that consists of a composition that forms an independent part of a document, page, or site. none
banner A region that contains mostly site-oriented content, rather than page-specific content. none
button An input that allows for user-triggered actions when clicked or pressed. See related link. none
checkbox A checkable input that has three possible values: true, false, or mixed.
columnheader A cell containing header information for a column. none
combobox A presentation of a select; usually similar to a textbox where users can type ahead to select an option, or type to enter arbitrary text as a new item in the list. See related listbox.
complementary A supporting section of the document, designed to be complementary to the main content at a similar level in the DOM hierarchy, but remains meaningful when separated from the main content. none
contentinfo A large perceivable region that contains information about the parent document. none
definition A definition of a term or concept. none
dialog A dialog is an application window that is designed to interrupt the current processing of an application in order to prompt the user to enter information or require a response. See related alertdialog. none
directory A list of references to members of a group, such as a static table of contents. none
document A region containing related information that is declared as document content, as opposed to a web application. none
form A landmark region that contains a collection of items and objects that, as a whole, combine to create a form. See related search. none
grid A grid is an interactive control which contains cells of tabular data arranged in rows and columns, like a table. none
gridcell A cell in a grid or treegrid. none
group A set of user interface objects which are not intended to be included in a page summary or table of contents by assistive technologies. none
heading A heading for a section of the page. none
img A container for a collection of elements that form an image. none
An interactive reference to an internal or external resource that, when activated, causes the user agent to navigate to that resource. See related button. none
list A group of non-interactive list items. See related listbox. none
listbox A widget that allows the user to select one or more items from a list of choices. See related combobox and list. none
listitem A single item in a list or directory. none
log A type of live region where new information is added in meaningful order and old information may disappear. See related marquee. none
main The main content of a document. none
marquee A type of live region where non-essential information changes frequently. See related log. none
math Content that represents a mathematical expression. none
menu A type of widget that offers a list of choices to the user. none
menubar A presentation of menu that usually remains visible and is usually presented horizontally. none
menuitem An option in a group of choices contained by a menu or menubar. none
menuitemcheckbox A checkable menuitem that has three possible values: true, false, or mixed.
menuitemradio A checkable menuitem in a group of menuitemradio roles, only one of which can be checked at a time.
navigation A collection of navigational elements (usually links) for navigating the document or related documents. none
note A section whose content is parenthetic or ancillary to the main content of the resource. none
option A selectable item in a select list. none
presentation An element whose implicit native role semantics will not be mapped to the accessibility API. none
progressbar An element that displays the progress status for tasks that take a long time. none
radio A checkable input in a group of radio roles, only one of which can be checked at a time.
radiogroup A group of radio buttons. none
region A large perceivable section of a web page or document, that the author feels is important enough to be included in a page summary or table of contents, for example, an area of the page containing live sporting event statistics. none
row A row of cells in a grid. none
rowgroup A group containing one or more row elements in a grid. none
rowheader A cell containing header information for a row in a grid. none
scrollbar A graphical object that controls the scrolling of content within a viewing area, regardless of whether the content is fully displayed within the viewing area.
A landmark region that contains a collection of items and objects that, as a whole, combine to create a search facility. See related form. none
separator A divider that separates and distinguishes sections of content or groups of menuitems.
  • none
slider A user input where the user selects a value from within a given range.
spinbutton A form of range that expects the user to select from among discrete choices.
status A container whose content is advisory information for the user but is not important enough to justify an alert, often but not necessarily presented as a status bar. See related alert. none
tab A grouping label providing a mechanism for selecting the tab content that is to be rendered to the user. none
tablist A list of tab elements, which are references to tabpanel elements. none
tabpanel A container for the resources associated with a tab, where each tab is contained in a tablist. none
textbox Input that allows free-form text as its value. none
timer A type of live region containing a numerical counter which indicates an amount of elapsed time from a start point, or the time remaining until an end point. none
toolbar A collection of commonly used function buttons represented in compact visual form. none
tooltip A contextual popup that displays a description for an element. none
tree A type of list that may contain sub-level nested groups that can be collapsed and expanded. none
treegrid A grid whose rows can be expanded and collapsed in the same manner as for a tree. none
treeitem An option item of a tree. This is an element within a tree that may be expanded or collapsed if it contains a sub-level group of treeitems. none

4 The elements of HTML

4.1 The root element

4.1.1 The html element

Categories:
None.
Contexts in which this element can be used:
As the root element of a document.
Wherever a subdocument fragment is allowed in a compound document.
Content model:
A head element followed by a body element.
Content attributes:
Global attributes
manifestApplication cache manifest
Tag omission in text/html:
An html element's start tag can be omitted if the first thing inside the html element is not a comment.
An html element's end tag can be omitted if the html element is not immediately followed by a comment.
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes
DOM interface:
interface HTMLHtmlElement : HTMLElement {};

The html element represents the root of an HTML document.

Authors are encouraged to specify a lang attribute on the root html element, giving the document's language. This aids speech synthesis tools to determine what pronunciations to use, translation tools to determine what rules to use, and so forth.

The manifest attribute gives the address of the document's application cache manifest, if there is one. If the attribute is present, the attribute's value must be a valid non-empty URL potentially surrounded by spaces.

The manifest attribute only has an effect during the early stages of document load. Changing the attribute dynamically thus has no effect (and thus, no DOM API is provided for this attribute).

For the purposes of application cache selection, later base elements cannot affect the resolving of relative URLs in manifest attributes, as the attributes are processed before those elements are seen.

The window.applicationCache IDL attribute provides scripted access to the offline application cache mechanism.

The html element in the following example declares that the document's language is English.

<!DOCTYPE html>
<html lang="en">
<head>
<title>Swapping Songs</title>
</head>
<body>
<h1>Swapping Songs</h1>
<p>Tonight I swapped some of the songs I wrote with some friends, who
gave me some of the songs they wrote. I love sharing my music.</p>
</body>
</html>

4.2 Document metadata

4.2.1 The head element

Categories:
None.
Contexts in which this element can be used:
As the first element in an html element.
Content model:
If the document is an iframe srcdoc document or if title information is available from a higher-level protocol: Zero or more elements of metadata content, of which no more than one is a title element and no more than one is a base element.
Otherwise: One or more elements of metadata content, of which exactly one is a title element and no more than one is a base element.
Content attributes:
Global attributes
Tag omission in text/html:
A head element's start tag may be omitted if the element is empty, or if the first thing inside the head element is an element.
A head element's end tag may be omitted if the head element is not immediately followed by a space character or a comment.
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes
DOM interface:
interface HTMLHeadElement : HTMLElement {};

The head element represents a collection of metadata for the Document.

The collection of metadata in a head element can be large or small. Here is an example of a very short one:

<!doctype html>
<html>
 <head>
  <title>A document with a short head</title>
 </head>
 <body>
 ...

Here is an example of a longer one:

<!DOCTYPE HTML>
<HTML>
 <HEAD>
  <META CHARSET="UTF-8">
  <BASE HREF="http://www.example.com/">
  <TITLE>An application with a long head</TITLE>
  <LINK REL="STYLESHEET" HREF="default.css">
  <LINK REL="STYLESHEET ALTERNATE" HREF="big.css" TITLE="Big Text">
  <SCRIPT SRC="support.js"></SCRIPT>
  <META NAME="APPLICATION-NAME" CONTENT="Long headed application">
 </HEAD>
 <BODY>
 ...

The title element is a required child in most situations, but when a higher-level protocol provides title information, e.g. in the Subject line of an e-mail when HTML is used as an e-mail authoring format, the title element can be omitted.

4.2.2 The title element

Categories:
Metadata content.
Contexts in which this element can be used:
In a head element containing no other title elements.
Content model:
Text that is not inter-element whitespace.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible.
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes
DOM interface:
interface HTMLTitleElement : HTMLElement {
           attribute DOMString text;
};

The title element represents the document's title or name. Authors should use titles that identify their documents even when they are used out of context, for example in a user's history or bookmarks, or in search results. The document's title is often different from its first heading, since the first heading does not have to stand alone when taken out of context.

There must be no more than one title element per document.

If it's reasonable for the Document to have no title, then the title element is probably not required. See the head element's content model for a description of when the element is required.

title . text [ = value ]

Returns the contents of the element, ignoring child nodes that aren't Text nodes.

Can be set, to replace the element's children with the given value.

The IDL attribute text must return a concatenation of the contents of all the Text nodes that are children of the title element (ignoring any other nodes such as comments or elements), in tree order. On setting, it must act the same way as the textContent IDL attribute.

Here are some examples of appropriate titles, contrasted with the top-level headings that might be used on those same pages.

  <title>Introduction to The Mating Rituals of Bees</title>
    ...
  <h1>Introduction</h1>
  <p>This companion guide to the highly successful
  <cite>Introduction to Medieval Bee-Keeping</cite> book is...

The next page might be a part of the same site. Note how the title describes the subject matter unambiguously, while the first heading assumes the reader knows what the context is and therefore won't wonder if the dances are Salsa or Waltz:

  <title>Dances used during bee mating rituals</title>
    ...
  <h2>The Dances</h2>

The string to use as the document's title is given by the document.title IDL attribute.

User agents should use the document's title when referring to the document in their user interface. When the contents of a title element are used in this way, the directionality of that title element should be used to set the directionality of the document's title in the user interface.

4.2.3 The base element

Categories:
Metadata content.
Contexts in which this element can be used:
In a head element containing no other base elements.
Content model:
Empty.
Content attributes:
Global attributes
hrefDocument base URL
target — Default browsing context for hyperlink navigation and form submission
Tag omission in text/html:
No end tag.
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes.
DOM interface:
interface HTMLBaseElement : HTMLElement {
           attribute DOMString href;
           attribute DOMString target;
};

The base element allows authors to specify the document base URL for the purposes of resolving relative URLs, and the name of the default browsing context for the purposes of following hyperlinks. The element does not represent any content beyond this information.

There must be no more than one base element per document.

A base element must have either an href attribute, a target attribute, or both.

The href content attribute, if specified, must contain a valid URL potentially surrounded by spaces.

A base element, if it has an href attribute, must come before any other elements in the tree that have attributes defined as taking URLs, except the html element (its manifest attribute isn't affected by base elements).

If there are multiple base elements with href attributes, all but the first are ignored.

The target attribute, if specified, must contain a valid browsing context name or keyword, which specifies which browsing context is to be used as the default when hyperlinks and forms in the Document cause navigation.

A base element, if it has a target attribute, must come before any elements in the tree that represent hyperlinks.

If there are multiple base elements with target attributes, all but the first are ignored.

A base element that is the first base element with an href content attribute in a particular Document has a frozen base URL. The frozen base URL must be set, synchronously, whenever any of the following situations occur:

To set the frozen base URL, resolve the value of the element's href content attribute relative to the Document's fallback base URL; if this is successful, set the frozen base URL to the resulting absolute URL, otherwise, set the frozen base URL to the fallback base URL.

The href IDL attribute, on getting, must return the result of running the following algorithm:

  1. If the base element has no href content attribute, then return the document base URL and abort these steps.

  2. Let fallback base url be the Document's fallback base URL.

  3. Let url be the value of the href attribute of the base element.

  4. Resolve url relative to fallback base url (thus, the base href attribute isn't affected by xml:base attributes or base elements).

  5. If the previous step was successful, return the resulting absolute URL and abort these steps.

  6. Otherwise, return the empty string.

The href IDL attribute, on setting, must set the href content attribute to the given new value.

The target IDL attribute must reflect the content attribute of the same name.

In this example, a base element is used to set the document base URL:

<!DOCTYPE html>
<html>
    <head>
        <title>This is an example for the &lt;base&gt; element</title>
        <base href="http://www.example.com/news/index.html">
    </head>
    <body>
        <p>Visit the <a href="archives.html">archives</a>.</p>
    </body>
</html>

The link in the above example would be a link to "http://www.example.com/news/archives.html".

Categories:
Metadata content.
If the itemprop attribute is present: flow content.
If the itemprop attribute is present: phrasing content.
Contexts in which this element can be used:
Where metadata content is expected.
In a noscript element that is a child of a head element.
If the itemprop attribute is present: where phrasing content is expected.
Content model:
Empty.
Content attributes:
Global attributes
href — Address of the hyperlink
crossorigin — How the element handles crossorigin requests
rel — Relationship between the document containing the hyperlink and the destination resource
media — Applicable media
hreflang — Language of the linked resource
type — Hint for the type of the referenced resource
sizes — Sizes of the icons (for rel="icon")
Also, the title attribute has special semantics on this element: Title of the link; alternative style sheet set name.
Tag omission in text/html:
No end tag.
Allowed ARIA role attribute values:
link (default - do not set).
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
For role value
DOM interface:
interface HTMLLinkElement : HTMLElement {
           attribute DOMString href;
           attribute DOMString crossOrigin;
           attribute DOMString rel;
           
           attribute DOMString rev;
  readonly attribute DOMTokenList relList;
           attribute DOMString media;
           attribute DOMString hreflang;
           attribute DOMString type;
  [PutForwards=value] readonly attribute DOMSettableTokenList sizes;
};
HTMLLinkElement implements LinkStyle;

The link element allows authors to link their document to other resources.

The destination of the link(s) is given by the href attribute, which must be present and must contain a valid non-empty URL potentially surrounded by spaces. If the href attribute is absent, then the element does not define a link.

A link element must have either a rel attribute or an itemprop attribute, but not both.

If the rel attribute is used, the element is restricted to the head element. When used with the itemprop attribute, the element can be used both in the head element and in the body of the page, subject to the constraints of the microdata model.

The types of link indicated (the relationships) are given by the value of the rel attribute, which, if present, must have a value that is a set of space-separated tokens. The allowed keywords and their meanings are defined in a later section. If the rel attribute is absent, has no keywords, or if none of the keywords used are allowed according to the definitions in this specification, then the element does not create any links.

Two categories of links can be created using the link element: Links to external resources and hyperlinks. The link types section defines whether a particular link type is an external resource or a hyperlink. One link element can create multiple links (of which some might be external resource links and some might be hyperlinks); exactly which and how many links are created depends on the keywords given in the rel attribute. User agents must process the links on a per-link basis, not a per-element basis.

Each link created for a link element is handled separately. For instance, if there are two link elements with rel="stylesheet", they each count as a separate external resource, and each is affected by its own attributes independently. Similarly, if a single link element has a rel attribute with the value next stylesheet, it creates both a hyperlink (for the next keyword) and an external resource link (for the stylesheet keyword), and they are affected by other attributes (such as media or title) differently.

For example, the following link element creates two hyperlinks (to the same page):

<link rel="author license" href="/about">

The two links created by this element are one whose semantic is that the target page has information about the current page's author, and one whose semantic is that the target page has information regarding the license under which the current page is provided.

The crossorigin attribute is a CORS settings attribute. It is intended for use with external resource links.

The exact behavior for links to external resources depends on the exact relationship, as defined for the relevant link type. Some of the attributes control whether or not the external resource is to be applied (as defined below).

For external resources that are represented in the DOM (for example, style sheets), the DOM representation must be made available (modulo cross-origin restrictions) even if the resource is not applied. To obtain the resource, the user agent must run the following steps:

  1. If the href attribute's value is the empty string, then abort these steps.

  2. Resolve the URL given by the href attribute, relative to the element.

  3. If the previous step fails, then abort these steps.

  4. Do a potentially CORS-enabled fetch of the resulting absolute URL, with the mode being the current state of the element's crossorigin content attribute, the origin being the origin of the link element's Document, and the default origin behaviour set to taint.

    The resource obtained in this fashion can be either CORS-same-origin or CORS-cross-origin.

User agents may opt to only try to obtain such resources when they are needed, instead of pro-actively fetching all the external resources that are not applied.

The semantics of the protocol used (e.g. HTTP) must be followed when fetching external resources. (For example, redirects will be followed and 404 responses will cause the external resource to not be applied.)

Once the attempts to obtain the resource and its critical subresources are complete, the user agent must, if the loads were successful, queue a task to fire a simple event named load at the link element, or, if the resource or one of its critical subresources failed to completely load for any reason (e.g. DNS error, HTTP 404 response, a connection being prematurely closed, unsupported Content-Type), queue a task to fire a simple event named error at the link element. Non-network errors in processing the resource or its subresources (e.g. CSS parse errors, PNG decoding errors) are not failures for the purposes of this paragraph.

The task source for these tasks is the DOM manipulation task source.

The element must delay the load event of the element's document until all the attempts to obtain the resource and its critical subresources are complete. (Resources that the user agent has not yet attempted to obtain, e.g. because it is waiting for the resource to be needed, do not delay the load event.)


Interactive user agents may provide users with a means to follow the hyperlinks created using the link element, somewhere within their user interface. The exact interface is not defined by this specification, but it could include the following information (obtained from the element's attributes, again as defined below), in some form or another (possibly simplified), for each hyperlink created with each link element in the document:

User agents could also include other information, such as the type of the resource (as given by the type attribute).

Hyperlinks created with the link element and its rel attribute apply to the whole page. This contrasts with the rel attribute of a and area elements, which indicates the type of a link whose context is given by the link's location within the document.

The media attribute says which media the resource applies to. The value must be a valid media query.

If the link is a hyperlink then the media attribute is purely advisory, and describes for which media the document in question was designed.

However, if the link is an external resource link, then the media attribute is prescriptive. The user agent must apply the external resource when the media attribute's value matches the environment and the other relevant conditions apply, and must not apply it otherwise.

The external resource might have further restrictions defined within that limit its applicability. For example, a CSS style sheet might have some @media blocks. This specification does not override such further restrictions or requirements.

The default, if the media attribute is omitted, is "all", meaning that by default links apply to all media.

The hreflang attribute on the link element has the same semantics as the hreflang attribute on a and area elements.

The type attribute gives the MIME type of the linked resource. It is purely advisory. The value must be a valid MIME type.

For external resource links, the type attribute is used as a hint to user agents so that they can avoid fetching resources they do not support. If the attribute is present, then the user agent must assume that the resource is of the given type (even if that is not a valid MIME type, e.g. the empty string). If the attribute is omitted, but the external resource link type has a default type defined, then the user agent must assume that the resource is of that type. If the UA does not support the given MIME type for the given link relationship, then the UA should not obtain the resource; if the UA does support the given MIME type for the given link relationship, then the UA should obtain the resource at the appropriate time as specified for the external resource link's particular type. If the attribute is omitted, and the external resource link type does not have a default type defined, but the user agent would obtain the resource if the type was known and supported, then the user agent should obtain the resource under the assumption that it will be supported.

User agents must not consider the type attribute authoritative — upon fetching the resource, user agents must not use the type attribute to determine its actual type. Only the actual type (as defined in the next paragraph) is used to determine whether to apply the resource, not the aforementioned assumed type.

The stylesheet link type defines rules for processing the resource's Content-Type metadata.

Once the user agent has established the type of the resource, the user agent must apply the resource if it is of a supported type and the other relevant conditions apply, and must ignore the resource otherwise.

If a document contains style sheet links labeled as follows:

<link rel="stylesheet" href="A" type="text/plain">
<link rel="stylesheet" href="B" type="text/css">
<link rel="stylesheet" href="C">

...then a compliant UA that supported only CSS style sheets would fetch the B and C files, and skip the A file (since text/plain is not the MIME type for CSS style sheets).

For files B and C, it would then check the actual types returned by the server. For those that are sent as text/css, it would apply the styles, but for those labeled as text/plain, or any other type, it would not.

If one of the two files was returned without a Content-Type metadata, or with a syntactically incorrect type like Content-Type: "null", then the default type for stylesheet links would kick in. Since that default type is text/css, the style sheet would nonetheless be applied.

The title attribute gives the title of the link. With one exception, it is purely advisory. The value is text. The exception is for style sheet links, where the title attribute defines alternative style sheet sets.

The title attribute on link elements differs from the global title attribute of most other elements in that a link without a title does not inherit the title of the parent element: it merely has no title.

The sizes attribute is used with the icon link type. The attribute must not be specified on link elements that do not have a rel attribute that specifies the icon keyword.

The activation behavior of link elements that create hyperlinks is to run the following steps:

  1. If the link element's Document is not fully active, then abort these steps.

  2. Follow the hyperlink created by the link element.

HTTP Link: headers, if supported, must be assumed to come before any links in the document, in the order that they were given in the HTTP message. These headers are to be processed according to the rules given in the relevant specifications. [HTTP] [WEBLINK]

Registration of relation types in HTTP Link: headers is distinct from HTML link types, and thus their semantics can be different from same-named HTML types.

The IDL attributes href, rel, rev, media, hreflang, type, and sizes each must reflect the respective content attributes of the same name.

The crossOrigin IDL attribute must reflect the crossorigin content attribute, limited to only known values.

The IDL attribute relList must reflect the rel content attribute.

The LinkStyle interface is also implemented by this element. [CSSOM]

Here, a set of link elements provide some style sheets:

<!-- a persistent style sheet -->
<link rel="stylesheet" href="default.css">

<!-- the preferred alternate style sheet -->
<link rel="stylesheet" href="green.css" title="Green styles">

<!-- some alternate style sheets -->
<link rel="alternate stylesheet" href="contrast.css" title="High contrast">
<link rel="alternate stylesheet" href="big.css" title="Big fonts">
<link rel="alternate stylesheet" href="wide.css" title="Wide screen">

The following example shows how you can specify versions of the page that use alternative formats, are aimed at other languages, and that are intended for other media:

<link rel=alternate href="/en/html" hreflang=en type=text/html title="English HTML">
<link rel=alternate href="/fr/html" hreflang=fr type=text/html title="French HTML">
<link rel=alternate href="/en/html/print" hreflang=en type=text/html media=print title="English HTML (for printing)">
<link rel=alternate href="/fr/html/print" hreflang=fr type=text/html media=print title="French HTML (for printing)">
<link rel=alternate href="/en/pdf" hreflang=en type=application/pdf title="English PDF">
<link rel=alternate href="/fr/pdf" hreflang=fr type=application/pdf title="French PDF">

4.2.5 The meta element

Categories:
Metadata content.
If the itemprop attribute is present: flow content.
If the itemprop attribute is present: phrasing content.
Contexts in which this element can be used:
If the charset attribute is present, or if the element's http-equiv attribute is in the Encoding declaration state: in a head element.
If the http-equiv attribute is present but not in the Encoding declaration state: in a head element.
If the http-equiv attribute is present but not in the Encoding declaration state: in a noscript element that is a child of a head element.
If the name attribute is present: where metadata content is expected.
If the itemprop attribute is present: where metadata content is expected.
If the itemprop attribute is present: where phrasing content is expected.
Content model:
Empty.
Content attributes:
Global attributes
name — Metadata name
http-equiv — Pragma directive
content — Value of the element
charsetCharacter encoding declaration
Tag omission in text/html:
No end tag.
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes
DOM interface:
interface HTMLMetaElement : HTMLElement {
           attribute DOMString name;
           attribute DOMString httpEquiv;
           attribute DOMString content;
};

The meta element represents various kinds of metadata that cannot be expressed using the title, base, link, style, and script elements.

The meta element can represent document-level metadata with the name attribute, pragma directives with the http-equiv attribute, and the file's character encoding declaration when an HTML document is serialised to string form (e.g. for transmission over the network or for disk storage) with the charset attribute.

Exactly one of the name, http-equiv, charset, and itemprop attributes must be specified.

If either name, http-equiv, or itemprop is specified, then the content attribute must also be specified. Otherwise, it must be omitted.

The charset attribute specifies the character encoding used by the document. This is a character encoding declaration. If the attribute is present in an XML document, its value must be an ASCII case-insensitive match for the string "UTF-8" (and the document is therefore forced to use UTF-8 as its encoding).

The charset attribute on the meta element has no effect in XML documents, and is only allowed in order to facilitate migration to and from XHTML.

There must not be more than one meta element with a charset attribute per document.

The content attribute gives the value of the document metadata or pragma directive when the element is used for those purposes. The allowed values depend on the exact context, as described in subsequent sections of this specification.

If a meta element has a name attribute, it sets document metadata. Document metadata is expressed in terms of name-value pairs, the name attribute on the meta element giving the name, and the content attribute on the same element giving the value. The name specifies what aspect of metadata is being set; valid names and the meaning of their values are described in the following sections. If a meta element has no content attribute, then the value part of the metadata name-value pair is the empty string.

The name and content IDL attributes must reflect the respective content attributes of the same name. The IDL attribute httpEquiv must reflect the content attribute http-equiv.

4.2.5.1 Standard metadata names

This specification defines a few names for the name attribute of the meta element.

Names are case-insensitive, and must be compared in an ASCII case-insensitive manner.

application-name

The value must be a short free-form string giving the name of the Web application that the page represents. If the page is not a Web application, the application-name metadata name must not be used. Translations of the Web application's name may be given, using the lang attribute to specify the language of each name.

There must not be more than one meta element with a given language and with its name attribute set to the value application-name per document.

User agents may use the application name in UI in preference to the page's title, since the title might include status messages and the like relevant to the status of the page at a particular moment in time instead of just being the name of the application.

To find the application name to use given an ordered list of languages (e.g. British English, American English, and English), user agents must run the following steps:

  1. Let languages be the list of languages.

  2. Let default language be the language of the Document's root element, if any, and if that language is not unknown.

  3. If there is a default language, and if it is not the same language as any of the languages in languages, append it to languages.

  4. Let winning language be the first language in languages for which there is a meta element in the Document that has its name attribute set to the value application-name and whose language is the language in question.

    If none of the languages have such a meta element, then abort these steps; there's no given application name.

  5. Return the value of the content attribute of the first meta element in the Document in tree order that has its name attribute set to the value application-name and whose language is winning language.

This algorithm would be used by a browser when it needs a name for the page, for instance, to label a bookmark. The languages it would provide to the algorithm would be the user's preferred languages.

author

The value must be a free-form string giving the name of one of the page's authors.

description

The value must be a free-form string that describes the page. The value must be appropriate for use in a directory of pages, e.g. in a search engine. There must not be more than one meta element with its name attribute set to the value description per document.

generator

The value must be a free-form string that identifies one of the software packages used to generate the document. This value must not be used on pages whose markup is not generated by software, e.g. pages whose markup was written by a user in a text editor.

Here is what a tool called "Frontweaver" could include in its output, in the page's head element, to identify itself as the tool used to generate the page:

<meta name=generator content="Frontweaver 8.2">
keywords

The value must be a set of comma-separated tokens, each of which is a keyword relevant to the page.

This page about typefaces on British motorways uses a meta element to specify some keywords that users might use to look for the page:

<!DOCTYPE HTML>
<html>
 <head>
  <title>Typefaces on UK motorways</title>
  <meta name="keywords" content="british,type face,font,fonts,highway,highways">
 </head>
 <body>
  ...

Many search engines do not consider such keywords, because this feature has historically been used unreliably and even misleadingly as a way to spam search engine results in a way that is not helpful for users.

To obtain the list of keywords that the author has specified as applicable to the page, the user agent must run the following steps:

  1. Let keywords be an empty list.

  2. For each meta element with a name attribute and a content attribute and whose name attribute's value is keywords, run the following substeps:

    1. Split the value of the element's content attribute on commas.

    2. Add the resulting tokens, if any, to keywords.

  3. Remove any duplicates from keywords.

  4. Return keywords. This is the list of keywords that the author has specified as applicable to the page.

User agents should not use this information when there is insufficient confidence in the reliability of the value.

For instance, it would be reasonable for a content management system to use the keyword information of pages within the system to populate the index of a site-specific search engine, but a large-scale content aggregator that used this information would likely find that certain users would try to game its ranking mechanism through the use of inappropriate keywords.

4.2.5.2 Other metadata names

Extensions to the predefined set of metadata names may be registered in the WHATWG Wiki MetaExtensions page. [WHATWGWIKI]

Anyone is free to edit the WHATWG Wiki MetaExtensions page at any time to add a type. These new names must be specified with the following information:

Keyword

The actual name being defined. The name should not be confusingly similar to any other defined name (e.g. differing only in case).

Brief description

A short non-normative description of what the metadata name's meaning is, including the format the value is required to be in.

Specification
A link to a more detailed description of the metadata name's semantics and requirements. It could be another page on the Wiki, or a link to an external page.
Synonyms

A list of other names that have exactly the same processing requirements. Authors should not use the names defined to be synonyms, they are only intended to allow user agents to support legacy content. Anyone may remove synonyms that are not used in practice; only names that need to be processed as synonyms for compatibility with legacy content are to be registered in this way.

Status

One of the following:

Proposed
The name has not received wide peer review and approval. Someone has proposed it and is, or soon will be, using it.
Ratified
The name has received wide peer review and approval. It has a specification that unambiguously defines how to handle pages that use the name, including when they use it in incorrect ways.
Discontinued
The metadata name has received wide peer review and it has been found wanting. Existing pages are using this metadata name, but new pages should avoid it. The "brief description" and "specification" entries will give details of what authors should use instead, if anything.

If a metadata name is found to be redundant with existing values, it should be removed and listed as a synonym for the existing value.

If a metadata name is registered in the "proposed" state for a period of a month or more without being used or specified, then it may be removed from the registry.

If a metadata name is added with the "proposed" status and found to be redundant with existing values, it should be removed and listed as a synonym for the existing value. If a metadata name is added with the "proposed" status and found to be harmful, then it should be changed to "discontinued" status.

Anyone can change the status at any time, but should only do so in accordance with the definitions above.

Conformance checkers may use the information given on the WHATWG Wiki MetaExtensions page to establish if a value is allowed or not: values defined in this specification or marked as "proposed" or "ratified" must be accepted, whereas values marked as "discontinued" or not listed in either this specification or on the aforementioned page must be reported as invalid. Conformance checkers may cache this information (e.g. for performance reasons or to avoid the use of unreliable network connectivity).

When an author uses a new metadata name not defined by either this specification or the Wiki page, conformance checkers should offer to add the value to the Wiki, with the details described above, with the "proposed" status.

Metadata names whose values are to be URLs must not be proposed or accepted. Links must be represented using the link element, not the meta element.

4.2.5.3 Pragma directives

When the http-equiv attribute is specified on a meta element, the element is a pragma directive.

The http-equiv attribute is an enumerated attribute. The following table lists the keywords defined for this attribute. The states given in the first cell of the rows with keywords give the states to which those keywords map. Some of the keywords are non-conforming, as noted in the last column.

State Keyword Notes
Content Language content-language Non-conforming
Encoding declaration content-type
Default style default-style
Refresh refresh
Cookie setter set-cookie Non-conforming

When a meta element is inserted into the document, if its http-equiv attribute is present and represents one of the above states, then the user agent must run the algorithm appropriate for that state, as described in the following list:

Content language state (http-equiv="content-language")

This feature is non-conforming. Authors are encouraged to use the lang attribute instead.

This pragma sets the pragma-set default language. Until such a pragma is successfully processed, there is no pragma-set default language.

  1. If the meta element has no content attribute, then abort these steps.

  2. If the element's content attribute contains a "," (U+002C) character then abort these steps.

  3. Let input be the value of the element's content attribute.

  4. Let position point at the first character of input.

  5. Skip whitespace.

  6. Collect a sequence of characters that are not space characters.

  7. Let candidate be the string that resulted from the previous step.

  8. If candidate is the empty string, abort these steps.

  9. Set the pragma-set default language to candidate.

    If the value consists of multiple space-separated tokens, tokens after the first are ignored.

This pragma is almost, but not quite, entirely unlike the HTTP Content-Language header of the same name. [HTTP]

Encoding declaration state (http-equiv="content-type")

The Encoding declaration state is just an alternative form of setting the charset attribute: it is a character encoding declaration. This state's user agent requirements are all handled by the parsing section of the specification.

For meta elements with an http-equiv attribute in the Encoding declaration state, the content attribute must have a value that is an ASCII case-insensitive match for a string that consists of: the literal string "text/html;", optionally followed by any number of space characters, followed by the literal string "charset=", followed by one of the labels of the character encoding of the character encoding declaration.

A document must not contain both a meta element with an http-equiv attribute in the Encoding declaration state and a meta element with the charset attribute present.

The encoding declaration state may be used in HTML documents and in XML Documents. If the encoding declaration state is used in XML Documents, the name of the character encoding must be an ASCII case-insensitive match for the string "UTF-8" (and the document is therefore forced to use UTF-8 as its encoding).

The encoding declaration state has no effect in XML documents, and is only allowed in order to facilitate migration to and from XHTML.

Default style state (http-equiv="default-style")

This pragma sets the name of the default alternative style sheet set.

  1. If the meta element has no content attribute, or if that attribute's value is the empty string, then abort these steps.

  2. Set the preferred style sheet set to the value of the element's content attribute. [CSSOM]

Refresh state (http-equiv="refresh")

This pragma acts as timed redirect.

  1. If another meta element with an http-equiv attribute in the Refresh state has already been successfully processed (i.e. when it was inserted the user agent processed it and reached the last step of this list of steps), then abort these steps.

  2. If the meta element has no content attribute, or if that attribute's value is the empty string, then abort these steps.

  3. Let input be the value of the element's content attribute.

  4. Let position point at the first character of input.

  5. Skip whitespace.

  6. Collect a sequence of characters that are ASCII digits, and parse the resulting string using the rules for parsing non-negative integers. If the sequence of characters collected is the empty string, then no number will have been parsed; abort these steps. Otherwise, let time be the parsed number.

  7. Collect a sequence of characters that are ASCII digits and "." (U+002E) characters. Ignore any collected characters.

  8. Skip whitespace.

  9. Let url be the address of the current page.

  10. If the character in input pointed to by position is a ";" (U+003B) character or a "," (U+002C) character, then advance position to the next character. Otherwise, jump to the last step.

  11. Skip whitespace.

  12. If the character in input pointed to by position is a "U" (U+0055) character or a U+0075 LATIN SMALL LETTER U character (u), then advance position to the next character. Otherwise, jump to the last step.

  13. If the character in input pointed to by position is a "R" (U+0052) character or a U+0072 LATIN SMALL LETTER R character (r), then advance position to the next character. Otherwise, jump to the last step.

  14. If the character in input pointed to by position is s "L" (U+004C) character or a U+006C LATIN SMALL LETTER L character (l), then advance position to the next character. Otherwise, jump to the last step.

  15. Skip whitespace.

  16. If the character in input pointed to by position is a "=" (U+003D), then advance position to the next character. Otherwise, jump to the last step.

  17. Skip whitespace.

  18. If the character in input pointed to by position is either a "'" (U+0027) character or """ (U+0022) character, then let quote be that character, and advance position to the next character. Otherwise, let quote be the empty string.

  19. Let url be equal to the substring of input from the character at position to the end of the string.

  20. If quote is not the empty string, and there is a character in url equal to quote, then truncate url at that character, so that it and all subsequent characters are removed.

  21. Strip any trailing space characters from the end of url.

  22. Strip any "tab" (U+0009), "LF" (U+000A), and "CR" (U+000D) characters from url.

  23. Resolve the url value to an absolute URL, relative to the meta element. If this fails, abort these steps.

  24. Perform one or more of the following steps:

    In addition, the user agent may, as with anything, inform the user of any and all aspects of its operation, including the state of any timers, the destinations of any timed redirects, and so forth.

For meta elements with an http-equiv attribute in the Refresh state, the content attribute must have a value consisting either of:

In the former case, the integer represents a number of seconds before the page is to be reloaded; in the latter case the integer represents a number of seconds before the page is to be replaced by the page at the given URL.

A news organization's front page could include the following markup in the page's head element, to ensure that the page automatically reloads from the server every five minutes:

<meta http-equiv="Refresh" content="300">

A sequence of pages could be used as an automated slide show by making each page refresh to the next page in the sequence, using markup such as the following:

<meta http-equiv="Refresh" content="20; URL=page4.html">
Cookie setter (http-equiv="set-cookie")

This pragma sets an HTTP cookie. [COOKIES]

It is non-conforming. Real HTTP headers should be used instead.

  1. If the meta element has no content attribute, or if that attribute's value is the empty string, then abort these steps.

  2. Obtain the storage mutex.

  3. Act as if receiving a set-cookie-string for the document's address via a "non-HTTP" API, consisting of the value of the element's content attribute encoded as UTF-8. [COOKIES] [ENCODING]

There must not be more than one meta element with any particular state in the document at a time.

4.2.5.4 Other pragma directives

Extensions to the predefined set of pragma directives may, under certain conditions, be registered in the WHATWG Wiki PragmaExtensions page. [WHATWGWIKI]

Such extensions must use a name that is identical to an HTTP header registered in the Permanent Message Header Field Registry, and must have behavior identical to that described for the HTTP header. [IANAPERMHEADERS]

Pragma directives corresponding to headers describing metadata, or not requiring specific user agent processing, must not be registered; instead, use metadata names. Pragma directives corresponding to headers that affect the HTTP processing model (e.g. caching) must not be registered, as they would result in HTTP-level behavior being different for user agents that implement HTML than for user agents that do not.

Anyone is free to edit the WHATWG Wiki PragmaExtensions page at any time to add a pragma directive satisfying these conditions. Such registrations must specify the following information:

Keyword

The actual name being defined. The name must match a previously-registered HTTP name with the same requirements.

Brief description

A short non-normative description of the purpose of the pragma directive.

Specification
A link to the specification defining the corresponding HTTP header.

Conformance checkers must use the information given on the WHATWG Wiki PragmaExtensions page to establish if a value is allowed or not: values defined in this specification or listed on the aforementioned page must be accepted, whereas values not listed in either this specification or on the aforementioned page must be rejected as invalid. Conformance checkers may cache this information (e.g. for performance reasons or to avoid the use of unreliable network connectivity).

4.2.5.5 Specifying the document's character encoding

A character encoding declaration is a mechanism by which the character encoding used to store or transmit a document is specified.

The following restrictions apply to character encoding declarations:

In addition, due to a number of restrictions on meta elements, there can only be one meta-based character encoding declaration per document.

If an HTML document does not start with a BOM, and its encoding is not explicitly given by Content-Type metadata, and the document is not an iframe srcdoc document, then the character encoding used must be an ASCII-compatible character encoding, and the encoding must be specified using a meta element with a charset attribute or a meta element with an http-equiv attribute in the Encoding declaration state.

A character encoding declaration is required (either in the Content-Type metadata or explicitly in the file) even if the encoding is US-ASCII, because a character encoding is needed to process non-ASCII characters entered by the user in forms, in URLs generated by scripts, and so forth.

If the document is an iframe srcdoc document, the document must not have a character encoding declaration. (In this case, the source is already decoded, since it is part of the document that contained the iframe.)

If an HTML document contains a meta element with a charset attribute or a meta element with an http-equiv attribute in the Encoding declaration state, then the character encoding used must be an ASCII-compatible character encoding.

Authors should use UTF-8. Conformance checkers may advise authors against using legacy encodings. [ENCODING]

Authoring tools should default to using UTF-8 for newly-created documents. [ENCODING]

Encodings in which a series of bytes in the range 0x20 to 0x7E can encode characters other than the corresponding characters in the range U+0020 to U+007E represent a potential security vulnerability: a user agent that does not support the encoding (or does not support the label used to declare the encoding, or does not use the same mechanism to detect the encoding of unlabeled content as another user agent) might end up interpreting technically benign plain text content as HTML tags and JavaScript. Authors should therefore not use these encodings. For example, this applies to encodings in which the bytes corresponding to "<script>" in ASCII can encode a different string. Authors should not use such encodings, which are known to include JIS_C6226-1983, JIS_X0212-1990, HZ-GB-2312, JOHAB (Windows code page 1361), encodings based on ISO-2022, and encodings based on EBCDIC. Furthermore, authors must not use the CESU-8, UTF-7, BOCU-1 and SCSU encodings, which also fall into this category; these encodings were never intended for use for Web content. [RFC1345] [RFC1842] [RFC1468] [RFC2237] [RFC1554] [CP50220] [RFC1922] [RFC1557] [CESU8] [UTF7] [BOCU1] [SCSU]

Authors should not use UTF-32, as the encoding detection algorithms described in this specification intentionally do not distinguish it from UTF-16. [UNICODE]

Using non-UTF-8 encodings can have unexpected results on form submission and URL encodings, which use the document's character encoding by default.

In XHTML, the XML declaration should be used for inline character encoding information, if necessary.

In HTML, to declare that the character encoding is UTF-8, the author could include the following markup near the top of the document (in the head element):

<meta charset="utf-8">

In XML, the XML declaration would be used instead, at the very top of the markup:

<?xml version="1.0" encoding="utf-8"?>

4.2.6 The style element

Categories:
Metadata content.
If the scoped attribute is present: flow content.
Contexts in which this element can be used:
If the scoped attribute is absent: where metadata content is expected.
If the scoped attribute is absent: in a noscript element that is a child of a head element.
If the scoped attribute is present: where flow content is expected, but before any other flow content other than inter-element whitespace and style elements, and not as the child of an element whose content model is transparent.
Content model:
Depends on the value of the type attribute, but must match requirements described in prose below.
Content attributes:
Global attributes
media — Applicable media
type — Type of embedded resource
scoped — Whether the styles apply to the entire document or just the parent subtree
Also, the title attribute has special semantics on this element: Alternative style sheet set name.
Tag omission in text/html:
Neither tag is omissible.
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes
DOM interface:
interface HTMLStyleElement : HTMLElement {
           attribute DOMString media;
           attribute DOMString type;
           attribute boolean scoped;
};
HTMLStyleElement implements LinkStyle;

The style element allows authors to embed style information in their documents. The style element is one of several inputs to the styling processing model. The element does not represent content for the user.

The type attribute gives the styling language. If the attribute is present, its value must be a valid MIME type that designates a styling language. The charset parameter must not be specified. The default value for the type attribute, which is used if the attribute is absent, is "text/css". [RFC2318]

When examining types to determine if they support the language, user agents must not ignore unknown MIME parameters — types with unknown parameters must be assumed to be unsupported. The charset parameter must be treated as an unknown parameter for the purpose of comparing MIME types here.

The media attribute says which media the styles apply to. The value must be a valid media query. The user agent must apply the styles when the media attribute's value matches the environment and the other relevant conditions apply, and must not apply them otherwise.

The styles might be further limited in scope, e.g. in CSS with the use of @media blocks. This specification does not override such further restrictions or requirements.

The default, if the media attribute is omitted, is "all", meaning that by default styles apply to all media.

The scoped attribute is a boolean attribute. If present, it indicates that the styles are intended just for the subtree rooted at the style element's parent element, as opposed to the whole Document.

If the scoped attribute is present and the element has a parent element, then the style element must precede any flow content in its parent element other than inter-element whitespace and other style elements, and the parent element's content model must not have a transparent component.

This implies that scoped style elements cannot be children of, e.g., a or ins elements, even when those are used as flow content containers.

A style element without a scoped attribute is restricted to appearing in the head of the document.

A style sheet declared by a style element that has a scoped attribute and has a parent node that is an element is scoped, with the scoping root being the style element's parent element. [CSSSCOPED]

The title attribute on style elements defines alternative style sheet sets. If the style element has no title attribute, then it has no title; the title attribute of ancestors does not apply to the style element. [CSSOM]

The title attribute on style elements, like the title attribute on link elements, differs from the global title attribute in that a style block without a title does not inherit the title of the parent element: it merely has no title.

The textContent of a style element must match the style production in the following ABNF, the character set for which is Unicode. [ABNF]

style         = no-c-start *( c-start no-c-end c-end no-c-start )
no-c-start    = < any string that doesn't contain a substring that matches c-start >
c-start       = "<!--"
no-c-end      = < any string that doesn't contain a substring that matches c-end >
c-end         = "-->"

Whenever one of the following conditions occur:

...the user agent must queue a task to invoke the update a style block algorithm that applies for the style sheet language specified by the element's type attribute, passing it the element's style data.

For styling languages that consist of pure text (as opposed to XML), a style element's style data is the concatenation of the contents of all the Text nodes that are children of the style element (not any other nodes such as comments or elements), in tree order. For XML-based styling languages, the style data consists of all the child nodes of the style element.

The update a style block algorithm for CSS (text/css) is as follows:

  1. Let element be the style element.

  2. If element has an associated CSS style sheet, remove the CSS style sheet in question.

  3. If element is not in a Document, then abort these steps.

  4. Create a CSS style sheet with the following properties:

    type

    text/css

    owner node

    element

    media

    The media attribute of element.

    This is a reference to the (possibly absent at this time) attribute, rather than a copy of the attribute's current value. The CSSOM specification defines what happens when the attribute is dynamically set, changed, or removed.

    title

    The title attribute of element.

    Again, this is a reference to the attribute.

    alternate flag

    Unset.

    origin-clean flag

    Set.

    location
    parent CSS style sheet
    owner CSS rule

    null

    disabled flag

    Left at its default value.

    CSS rules

    Left uninitialized.

This specification does not define any other styling language's update a style block algorithm.

Once the attempts to obtain the style sheet's critical subresources, if any, are complete, or, if the style sheet has no critical subresources, once the style sheet has been parsed and processed, the user agent must, if the loads were successful or there were none, queue a task to fire a simple event named load at the style element, or, if one of the style sheet's critical subresources failed to completely load for any reason (e.g. DNS error, HTTP 404 response, a connection being prematurely closed, unsupported Content-Type), queue a task to fire a simple event named error at the style element. Non-network errors in processing the style sheet or its subresources (e.g. CSS parse errors, PNG decoding errors) are not failures for the purposes of this paragraph.

The task source for these tasks is the DOM manipulation task source.

The element must delay the load event of the element's document until all the attempts to obtain the style sheet's critical subresources, if any, are complete.

This specification does not specify a style system, but CSS is expected to be supported by most Web browsers. [CSS]

The media, type and scoped IDL attributes must reflect the respective content attributes of the same name.

The LinkStyle interface is also implemented by this element. [CSSOM]

The following document has its stress emphasis styled as bright red text rather than italics text, while leaving titles of works and Latin words in their default italics. It shows how using appropriate elements enables easier restyling of documents.

<!DOCTYPE html>
<html lang="en-US">
 <head>
  <title>My favorite book</title>
  <style>
   body { color: black; background: white; }
   em { font-style: normal; color: red; }
  </style>
 </head>
 <body>
  <p>My <em>favorite</em> book of all time has <em>got</em> to be
  <cite>A Cat's Life</cite>. It is a book by P. Rahmel that talks
  about the <i lang="la">Felis Catus</i> in modern human society.</p>
 </body>
</html>

4.2.7 Interactions of styling and scripting

Style sheets, whether added by a link element, a style element, an <?xml-stylesheet> PI, an HTTP Link: header, or some other mechanism, have a style sheet ready flag, which is initially unset.

When a style sheet is ready to be applied, its style sheet ready flag must be set. If the style sheet referenced no other resources (e.g. it was an internal style sheet given by a style element with no @import rules), then the style rules must be synchronously made available to script; otherwise, the style rules must only be made available to script once the event loop reaches its update the rendering step.

A style sheet in the context of the Document of an HTML parser or XML parser is said to be a style sheet that is blocking scripts if the element was created by that Document's parser, and the element is either a style element or a link element that was an external resource link that contributes to the styling processing model when the element was created by the parser, and the element's style sheet was enabled when the element was created by the parser, and the element's style sheet ready flag is not yet set, and, the last time the event loop reached step 1, the element was in that Document, and the user agent hasn't given up on that particular style sheet yet. A user agent may give up on a style sheet at any time.

Giving up on a style sheet before the style sheet loads, if the style sheet eventually does still load, means that the script might end up operating with incorrect information. For example, if a style sheet sets the color of an element to green, but a script that inspects the resulting style is executed before the sheet is loaded, the script will find that the element is black (or whatever the default color is), and might thus make poor choices (e.g. deciding to use black as the color elsewhere on the page, instead of green). Implementors have to balance the likelihood of a script using incorrect information with the performance impact of doing nothing while waiting for a slow network request to finish.

A Document has a style sheet that is blocking scripts if there is either a style sheet that is blocking scripts in the context of that Document, or if that Document is in a browsing context that has a parent browsing context, and the active document of that parent browsing context itself has a style sheet that is blocking scripts.

A Document has no style sheet that is blocking scripts if it does not have a style sheet that is blocking scripts as defined in the previous paragraph.

4.3 Sections

4.3.1 The body element

Categories:
Sectioning root.
Contexts in which this element can be used:
As the second element in an html element.
Content model:
Flow content.
Content attributes:
Global attributes
onafterprint
onbeforeprint
onbeforeunload
onhashchange
onlanguagechange
onmessage
onoffline
ononline
onpagehide
onpageshow
onpopstate
onstorage
onunload
Tag omission in text/html:
A body element's start tag may be omitted if the element is empty, or if the first thing inside the body element is not a space character or a comment, except if the first thing inside the body element is a meta, link, script, style, or template element.
A body element's end tag may be omitted if the body element is not immediately followed by a comment.
Allowed ARIA role attribute values:
document role (default - do not set), application.
Allowed ARIA State and Property Attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLBodyElement : HTMLElement {
};
HTMLBodyElement implements WindowEventHandlers;

The body element represents the content of the document.

In conforming documents, there is only one body element. The document.body IDL attribute provides scripts with easy access to a document's body element.

Some DOM operations (for example, parts of the drag and drop model) are defined in terms of "the body element". This refers to a particular element in the DOM, as per the definition of the term, and not any arbitrary body element.

The body element exposes as event handler content attributes a number of the event handlers of the Window object. It also mirrors their event handler IDL attributes.

The onblur, onerror, onfocus, onload, onresize, and onscroll event handlers of the Window object, exposed on the body element, replace the generic event handlers with the same names normally supported by HTML elements.

Thus, for example, a bubbling error event dispatched on a child of the body element of a Document would first trigger the onerror event handler content attributes of that element, then that of the root html element, and only then would it trigger the onerror event handler content attribute on the body element. This is because the event would bubble from the target, to the body, to the html, to the Document, to the Window, and the event handler on the body is watching the Window not the body. A regular event listener attached to the body using addEventListener(), however, would be run when the event bubbled through the body and not when it reaches the Window object.

This page updates an indicator to show whether or not the user is online:

<!DOCTYPE HTML>
<html>
 <head>
  <title>Online or offline?</title>
  <script>
   function update(online) {
     document.getElementById('status').textContent =
       online ? 'Online' : 'Offline';
   }
  </script>
 </head>
 <body ononline="update(true)"
       onoffline="update(false)"
       onload="update(navigator.onLine)">
  <p>You are: <span id="status">(Unknown)</span></p>
 </body>
</html>

4.3.2 The article element

Categories:
Flow content, but with no main element descendants.
Sectioning content.
Palpable content.
Contexts in which this element can be used:
Where flow content is expected.
Content model:
Flow content.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
article (default - do not set), application, document or main.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The article element represents a complete, or self-contained, composition in a document, page, application, or site and that is, in principle, independently distributable or reusable, e.g. in syndication. This could be a forum post, a magazine or newspaper article, a blog entry, a user-submitted comment, an interactive widget or gadget, or any other independent item of content. Each article should be identified, typically by including a heading (h1-h6 element) as a child of the article element.

A general rule is that the article element is appropriate only if the element's contents would be listed explicitly in the document's outline.

When article elements are nested, the inner article elements represent articles that are in principle related to the contents of the outer article. For instance, a blog entry on a site that accepts user-submitted comments could represent the comments as article elements nested within the article element for the blog entry.

Author information associated with an article element (q.v. the address element) does not apply to nested article elements.

When used specifically with content to be redistributed in syndication, the article element is similar in purpose to the entry element in Atom. [ATOM]

The schema.org microdata vocabulary can be used to provide the publication date for an article element, using one of the CreativeWork subtypes.

When the main content of the page (i.e. excluding footers, headers, navigation blocks, and sidebars) is all one single self-contained composition, the content should be marked up with a main element and the content may also be marked with an article, but it is technically redundant in this case (since it's self-evident that the page is a single composition, as it is a single document).

This example shows a blog post using the article element, with some schema.org annotations:

<article itemscope itemtype="http://schema.org/BlogPosting">
 <header>
  <h2 itemprop="headline">The Very First Rule of Life</h2>
  <p><time itemprop="datePublished" datetime="2009-10-09">3 days ago</time></p>
  <link itemprop="url" href="?comments=0">
 </header>
 <p>If there's a microphone anywhere near you, assume it's hot and
 sending whatever you're saying to the world. Seriously.</p>
 <p>...</p>
 <footer>
  <a itemprop="discussionUrl" href="?comments=1">Show comments...</a>
 </footer>
</article>

Here is that same blog post, but showing some of the comments:

<article itemscope itemtype="http://schema.org/BlogPosting">
 <header>
  <h2 itemprop="headline">The Very First Rule of Life</h2>
  <p><time itemprop="datePublished" datetime="2009-10-09">3 days ago</time></p>
  <link itemprop="url" href="?comments=0">
 </header>
 <p>If there's a microphone anywhere near you, assume it's hot and
 sending whatever you're saying to the world. Seriously.</p>
 <p>...</p>
 <section>
  <h2>Comments</h2>
  <article itemprop="comment" itemscope itemtype="http://schema.org/UserComments" id="c1">
   <link itemprop="url" href="#c1">
   <footer>
    <p>Posted by: <span itemprop="creator" itemscope itemtype="http://schema.org/Person">
     <span itemprop="name">George Washington</span>
    </span></p>
    <p><time itemprop="commentTime" datetime="2009-10-10">15 minutes ago</time></p>
   </footer>
   <p>Yeah! Especially when talking about your lobbyist friends!</p>
  </article>
  <article itemprop="comment" itemscope itemtype="http://schema.org/UserComments" id="c2">
   <link itemprop="url" href="#c2">
   <footer>
    <p>Posted by: <span itemprop="creator" itemscope itemtype="http://schema.org/Person">
     <span itemprop="name">George Hammond</span>
    </span></p>
    <p><time itemprop="commentTime" datetime="2009-10-10">5 minutes ago</time></p>
   </footer>
   <p>Hey, you have the same first name as me.</p>
  </article>
 </section>
</article>

Notice the use of footer to give the information for each comment (such as who wrote it and when): the footer element can appear at the start of its section when appropriate, such as in this case. (Using header in this case wouldn't be wrong either; it's mostly a matter of authoring preference.)

4.3.3 The section element

Categories:
Flow content.
Sectioning content.
Palpable content.
Contexts in which this element can be used:
Where flow content is expected.
Content model:
Flow content.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
region role (default - do not set), alert, alertdialog, application, contentinfo, dialog, document, log, main, marquee, presentation, search or status.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The section element represents a generic section of a document or application. A section, in this context, is a thematic grouping of content. Each section should be identified, typically by including a heading (h1-h6 element) as a child of the section element.

Examples of sections would be chapters, the various tabbed pages in a tabbed dialog box, or the numbered sections of a thesis. A Web site's home page could be split into sections for an introduction, news items, and contact information.

Authors are encouraged to use the article element instead of the section element when it would make sense to syndicate the contents of the element.

The section element is not a generic container element. When an element is needed only for styling purposes or as a convenience for scripting, authors are encouraged to use the div element instead. A general rule is that the section element is appropriate only if the element's contents would be listed explicitly in the document's outline.

In the following example, we see an article (part of a larger Web page) about apples, containing two short sections.

<article>
 <header>
  <h2>Apples</h2>
  <p>Tasty, delicious fruit!</p>
 </header>
 <p>The apple is the pomaceous fruit of the apple tree.</p>
 <section>
  <h3>Red Delicious</h3>
  <p>These bright red apples are the most common found in many
  supermarkets.</p>
 </section>
 <section>
  <h3>Granny Smith</h3>
  <p>These juicy, green apples make a great filling for
  apple pies.</p>
 </section>
</article>

Here is a graduation programme with two sections, one for the list of people graduating, and one for the description of the ceremony. (The markup in this example features an uncommon style sometimes used to minimise the amount of inter-element whitespace.)

<!DOCTYPE Html>
<Html
 ><Head
   ><Title
     >Graduation Ceremony Summer 2022</Title
   ></Head
 ><Body
   ><H1
     >Graduation</H1
   ><Section
     ><H2
       >Ceremony</H2
     ><P
       >Opening Procession</P
     ><P
       >Speech by Validactorian</P
     ><P
       >Speech by Class President</P
     ><P
       >Presentation of Diplomas</P
     ><P
       >Closing Speech by Headmaster</P
   ></Section
   ><Section
     ><H2
       >Graduates</H2
     ><Ul
       ><Li
         >Molly Carpenter</Li
       ><Li
         >Anastasia Luccio</Li
       ><Li
         >Ebenezar McCoy</Li
       ><Li
         >Karrin Murphy</Li
       ><Li
         >Thomas Raith</Li
       ><Li
         >Susan Rodriguez</Li
     ></Ul
   ></Section
 ></Body
></Html>

In this example, a book author has marked up some sections as chapters and some as appendices, and uses CSS to style the headers in these two classes of section differently. The whole book is wrapped in an article element as part of an even larger document containing other books.

<article class="book">
 <style>
  section { border: double medium; margin: 2em; }
  section.chapter h1 { font: 2em Roboto, Helvetica Neue, sans-serif; }
  section.appendix h1 { font: small-caps 2em Roboto, Helvetica Neue, sans-serif; }
 </style>
 <header>
   <h2>My Book</h2>
   <p>A sample with not much content</p>
  <p><small>Published by Dummy Publicorp Ltd.</small></p>
 </header>
  
 <section class="chapter">
  <h3>My First Chapter</h3>
  <p>This is the first of my chapters. It doesn't say much.</p>
  <p>But it has two paragraphs!</p>
 </section>
 <section class="chapter">
  <h3>It Continutes: The Second Chapter</h3>
  <p>Bla dee bla, dee bla dee bla. Boom.</p>
 </section>
 <section class="chapter">
  <h3>Chapter Three: A Further Example</h3>
  <p>It's not like a battle between brightness and earthtones would go
  unnoticed.</p>
  <p>But it might ruin my story.</p>
 </section>
 <section class="appendix">
  <h3>Appendix A: Overview of Examples</h3>
  <p>These are demonstrations.</p>
 </section>
 <section class="appendix">
  <h3>Appendix B: Some Closing Remarks</h3>
  <p>Hopefully this long example shows that you <em>can</em> style
  sections, so long as they are used to indicate actual sections.</p>
 </section>
</article>

4.3.4 The nav element

Categories:
Flow content.
Sectioning content.
Palpable content.
Contexts in which this element can be used:
Where flow content is expected.
Content model:
Flow content, but with no main element descendants.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
navigation role (default - do not set) or presentation.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The nav element represents a section of a page that links to other pages or to parts within the page: a section with navigation links.

In cases where the content of a nav element represents a list of items, use list markup to aid understanding and navigation.

Not all groups of links on a page need to be in a nav element — the element is primarily intended for sections that consist of major navigation blocks. In particular, it is common for footers to have a short list of links to various pages of a site, such as the terms of service, the home page, and a copyright page. The footer element alone is sufficient for such cases; while a nav element can be used in such cases, it is usually unnecessary.

User agents (such as screen readers) that are targeted at users who can benefit from navigation information being omitted in the initial rendering, or who can benefit from navigation information being immediately available, can use this element as a way to determine what content on the page to initially skip or provide on request (or both).

In the following example, there are two nav elements, one for primary navigation around the site, and one for secondary navigation around the page itself.

<body>
 <h1>The Wiki Center Of Exampland</h1>
 <nav>
  <ul>
   <li><a href="/">Home</a></li>
   <li><a href="/events">Current Events</a></li>
   ...more...
  </ul>
 </nav>
 <article>
  <header>
   <h2>Demos in Exampland</h2>
   <p>Written by A. N. Other.</p>
  </header>
  <nav>
   <ul>
    <li><a href="#public">Public demonstrations</a></li>
    <li><a href="#destroy">Demolitions</a></li>
    ...more...
   </ul>
  </nav>
  <div>
   <section id="public">
    <h2>Public demonstrations</h2>
    <p>...more...</p>
   </section>
   <section id="destroy">
    <h2>Demolitions</h2>
    <p>...more...</p>
   </section>
   ...more...
  </div>
  <footer>
   <p><a href="?edit">Edit</a> | <a href="?delete">Delete</a> | <a href="?Rename">Rename</a></p>
  </footer>
 </article>
 <footer>
  <p><small>© copyright 1998 Exampland Emperor</small></p>
 </footer>
</body>

In the following example, the page has several places where links are present, but only one of those places is considered a navigation section.

<body itemscope itemtype="http://schema.org/Blog">
 <header>
  <h1>Wake up sheeple!</h1>
  <p><a href="news.html">News</a> -
     <a href="blog.html">Blog</a> -
     <a href="forums.html">Forums</a></p>
  <p>Last Modified: <span itemprop="dateModified">2009-04-01</span></p>
  <nav>
   <h2>Navigation</h2>
   <ul>
    <li><a href="articles.html">Index of all articles</a></li>
    <li><a href="today.html">Things sheeple need to wake up for today</a></li>
    <li><a href="successes.html">Sheeple we have managed to wake</a></li>
   </ul>
  </nav>
 </header>
 <main>
  <article itemprop="blogPosts" itemscope itemtype="http://schema.org/BlogPosting">
   <header>
    <h2 itemprop="headline">My Day at the Beach</h2>
   </header>
   <div itemprop="articleBody">
    <p>Today I went to the beach and had a lot of fun.</p>
    ...more content...
   </div>
   <footer>
    <p>Posted <time itemprop="datePublished" datetime="2009-10-10">Thursday</time>.</p>
   </footer>
  </article>
  ...more blog posts...
 </main>
 <footer>
  <p>Copyright ©
   <span itemprop="copyrightYear">2010</span>
   <span itemprop="copyrightHolder">The Example Company</span>
  </p>
  <p><a href="about.html">About</a> -
     <a href="policy.html">Privacy Policy</a> -
     <a href="contact.html">Contact Us</a></p>
 </footer>
</body>

Notice the main element being used to wrap the main content of the page. In this case, all content other than the page header and footer.

You can also see microdata annotations in the above example that use the schema.org vocabulary to provide the publication date and other metadata about the blog post.

A nav element doesn't have to contain a list, it can contain other kinds of content as well. In this navigation block, links are provided in prose:

<nav>
 <h2>Navigation</h2>
 <p>You are on my home page. To the north lies <a href="/blog">my
 blog</a>, from whence the sounds of battle can be heard. To the east
 you can see a large mountain, upon which many <a
 href="/school">school papers</a> are littered. Far up thus mountain
 you can spy a little figure who appears to be me, desperately
 scribbling a <a href="/school/thesis">thesis</a>.</p>
 <p>To the west are several exits. One fun-looking exit is labeled <a
 href="http://games.example.com/">"games"</a>. Another more
 boring-looking exit is labeled <a
 href="http://isp.example.net/">ISP™</a>.</p>
 <p>To the south lies a dark and dank <a href="/about">contacts
 page</a>. Cobwebs cover its disused entrance, and at one point you
 see a rat run quickly out of the page.</p>
</nav>

4.3.5 The aside element

Categories:
Flow content.
Sectioning content.
Palpable content.
Contexts in which this element can be used:
Where flow content is expected.
Content model:
Flow content, but with no main element descendants.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
complementary role (default - do not set), note, search or presentation.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The aside element represents a section of a page that consists of content that is tangentially related to the content around the aside element, and which could be considered separate from that content. Such sections are often represented as sidebars in printed typography.

The element can be used for typographical effects like pull quotes or sidebars, for advertising, for groups of nav elements, and for other content that is considered separate from the main content of the page.

It's not appropriate to use the aside element just for parentheticals, since those are part of the main flow of the document.

The following example shows how an aside is used to mark up background material on Switzerland in a much longer news story on Europe.

<aside>
 <h2>Switzerland</h2>
 <p>Switzerland, a land-locked country in the middle of geographic
 Europe, has not joined the geopolitical European Union, though it is
 a signatory to a number of European treaties.</p>
</aside>

The following example shows how an aside is used to mark up a pull quote in a longer article.

...

<p>He later joined a large company, continuing on the same work.
<q>I love my job. People ask me what I do for fun when I'm not at
work. But I'm paid to do my hobby, so I never know what to
answer. Some people wonder what they would do if they didn't have to
work... but I know what I would do, because I was unemployed for a
year, and I filled that time doing exactly what I do now.</q></p>

<aside>
 <q> People ask me what I do for fun when I'm not at work. But I'm
 paid to do my hobby, so I never know what to answer. </q>
</aside>

<p>Of course his work — or should that be hobby? —
isn't his only passion. He also enjoys other pleasures.</p>

...

The following extract shows how aside can be used for blogrolls and other side content on a blog:

<body>
 <header>
  <h1>My wonderful blog</h1>
  <p>My tagline</p>
 </header>
 <aside>
  <!-- this aside contains two sections that are tangentially related
  to the page, namely, links to other blogs, and links to blog posts
  from this blog -->
  <nav>
   <h2>My blogroll</h2>
   <ul>
    <li><a href="http://blog.example.com/">Example Blog</a>
   </ul>
  </nav>
  <nav>
   <h2>Archives</h2>
   <ol reversed>
    <li><a href="/last-post">My last post</a>
    <li><a href="/first-post">My first post</a>
   </ol>
  </nav>
 </aside>
 <aside>
  <!-- this aside is tangentially related to the page also, it
  contains twitter messages from the blog author -->
  <h2>Twitter Feed</h2>
  <blockquote cite="http://twitter.example.net/t31351234">
   I'm on vacation, writing my blog.
  </blockquote>
  <blockquote cite="http://twitter.example.net/t31219752">
   I'm going to go on vacation soon.
  </blockquote>
 </aside>
 <article>
  <!-- this is a blog post -->
  <h2>My last post</h2>
  <p>This is my last post.</p>
  <footer>
   <p><a href="/last-post" rel=bookmark>Permalink</a>
  </footer>
 </article>
 <article>
  <!-- this is also a blog post -->
  <h2>My first post</h2>
  <p>This is my first post.</p>
  <aside>
   <!-- this aside is about the blog post, since it's inside the
   <article> element; it would be wrong, for instance, to put the
   blogroll here, since the blogroll isn't really related to this post
   specifically, only to the page as a whole -->
   <h1>Posting</h1>
   <p>While I'm thinking about it, I wanted to say something about
   posting. Posting is fun!</p>
  </aside>
  <footer>
   <p><a href="/first-post" rel=bookmark>Permalink</a>
  </footer>
 </article>
 <footer>
  <nav>
   <a href="/archives">Archives</a> —
   <a href="/about">About me</a> —
   <a href="/copyright">Copyright</a>
  </nav>
 </footer>
</body>

4.3.6 The h1, h2, h3, h4, h5, and h6 elements

Categories:
Flow content.
Heading content.
Palpable content.
Contexts in which this element can be used:
Where flow content is expected.
Content model:
Phrasing content.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
heading role (default - do not set), tab or presentation.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLHeadingElement : HTMLElement {};

These elements represent headings for their sections.

The semantics and meaning of these elements are defined in the section on headings and sections.

These elements have a rank given by the number in their name. The h1 element is said to have the highest rank, the h6 element has the lowest rank, and two elements with the same name have equal rank.

h1h6 elements must not be used to markup subheadings, subtitles, alternative titles and taglines unless intended to be the heading for a new section or subsection. Instead use the markup patterns in the Common idioms without dedicated elements section of the specification.

As far as their respective document outlines (their heading and section structures) are concerned, these two snippets are semantically equivalent:

<body>
<h1>Let's call it a draw(ing surface)</h1>
<h2>Diving in</h2>
<h2>Simple shapes</h2>
<h2>Canvas coordinates</h2>
<h3>Canvas coordinates diagram</h3>
<h2>Paths</h2>
</body>
<body>
 <h1>Let's call it a draw(ing surface)</h1>
 <section>
  <h2>Diving in</h2>
 </section>
 <section>
  <h2>Simple shapes</h2>
 </section>
 <section>
  <h2>Canvas coordinates</h2>
  <section>
   <h3>Canvas coordinates diagram</h3>
  </section>
 </section>
 <section>
  <h2>Paths</h2>
 </section>
</body>

Authors might prefer the former style for its terseness, or the latter style for its convenience in the face of heavy editing; which is best is purely an issue of preferred authoring style.

The two styles can be combined, for compatibility with legacy tools while still future-proofing for when that compatibility is no longer needed. This third snippet again has the same outline as the previous two:

<body>
 <h1>Let's call it a draw(ing surface)</h1>
 <section>
  <h2>Diving in</h2>
 </section>
 <section>
  <h2>Simple shapes</h2>
 </section>
 <section>
  <h2>Canvas coordinates</h2>
  <section>
   <h3>Canvas coordinates diagram</h3>
  </section>
 </section>
 <section>
  <h2>Paths</h2>
 </section>
</body>

4.3.7 The header element

Categories:
Flow content.
Palpable content.
Contexts in which this element can be used:
Where flow content is expected.
Content model:
Flow content, but with no header, footer, or main element descendants.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
banner role (default - do not set) or presentation.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The header element represents introductory content for its nearest ancestor sectioning content or sectioning root element. A header typically contains a group of introductory or navigational aids.

When the nearest ancestor sectioning content or sectioning root element is the body element, then it applies to the whole page.

A header element is intended to usually contain the section's heading (an h1h6 element), but this is not required. The header element can also be used to wrap a section's table of contents, a search form, or any relevant logos.

Here are some sample headers. This first one is for a game:

<header>
 <p>Welcome to...</p>
 <h1>Voidwars!</h1>
</header>

The following snippet shows how the element can be used to mark up a specification's header:

<header>
  <h1>Scalable Vector Graphics (SVG) 1.2</h1>
  <p>W3C Working Draft 27 October 2004</p>
 <dl>
  <dt>This version:</dt>
  <dd><a href="http://www.w3.org/TR/2004/WD-SVG12-20041027/">http://www.w3.org/TR/2004/WD-SVG12-20041027/</a></dd>
  <dt>Previous version:</dt>
  <dd><a href="http://www.w3.org/TR/2004/WD-SVG12-20040510/">http://www.w3.org/TR/2004/WD-SVG12-20040510/</a></dd>
  <dt>Latest version of SVG 1.2:</dt>
  <dd><a href="http://www.w3.org/TR/SVG12/">http://www.w3.org/TR/SVG12/</a></dd>
  <dt>Latest SVG Recommendation:</dt>
  <dd><a href="http://www.w3.org/TR/SVG/">http://www.w3.org/TR/SVG/</a></dd>
  <dt>Editor:</dt>
  <dd>Dean Jackson, W3C, <a href="mailto:dean@w3.org">dean@w3.org</a></dd>
  <dt>Authors:</dt>
  <dd>See <a href="#authors">Author List</a></dd>
 </dl>
 <p class="copyright"><a href="http://www.w3.org/Consortium/Legal/ipr-notic ...
</header>

The header element is not sectioning content; it doesn't introduce a new section.

In this example, the page has a page heading given by the h1 element, and two subsections whose headings are given by h2 elements. The content after the header element is still part of the last subsection started in the header element, because the header element doesn't take part in the outline algorithm.

<body>
 <header>
  <h1>Little Green Guys With Guns</h1>
  <nav>
   <ul>
    <li><a href="/games">Games</a>
    <li><a href="/forum">Forum</a>
    <li><a href="/download">Download</a>
   </ul>
  </nav>
  <h2>Important News</h2> <!-- this starts a second subsection -->
  <!-- this is part of the subsection entitled "Important News" -->
  <p>To play today's games you will need to update your client.</p>
  <h2>Games</h2> <!-- this starts a third subsection -->
 </header>
 <p>You have three active games:</p>
 <!-- this is still part of the subsection entitled "Games" -->
 ...
Categories:
Flow content.
Palpable content.
Contexts in which this element can be used:
Where flow content is expected.
Content model:
Flow content, but with no header, footer, or main element descendants.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
contentinfo role (default - do not set) or presentation.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The footer element represents a footer for its nearest ancestor sectioning content or sectioning root element. A footer typically contains information about its section such as who wrote it, links to related documents, copyright data, and the like.

When the footer element contains entire sections, they represent appendices, indexes, long colophons, verbose license agreements, and other such content.

Contact information for the author or editor of a section belongs in an address element, possibly itself inside a footer. Bylines and other information that could be suitable for both a header or a footer can be placed in either (or neither). The primary purpose of these elements is merely to help the author write self-explanatory markup that is easy to maintain and style; they are not intended to impose specific structures on authors.

Footers don't necessarily have to appear at the end of a section, though they usually do.

When the nearest ancestor sectioning content or sectioning root element is the body element, then it applies to the whole page.

The footer element is not sectioning content; it doesn't introduce a new section.

Here is a page with two footers, one at the top and one at the bottom, with the same content:

<body>
 <footer><a href="../">Back to index...</a></footer>
 <div>
  <h1>Lorem ipsum</h1>
  <p>The ipsum of all lorems</p>
 </div>
 <p>A dolor sit amet, consectetur adipisicing elit, sed do eiusmod
 tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
 veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex
 ea commodo consequat. Duis aute irure dolor in reprehenderit in
 voluptate velit esse cillum dolore eu fugiat nulla
 pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
 culpa qui officia deserunt mollit anim id est laborum.</p>
 <footer><a href="../">Back to index...</a></footer>
</body>

Here is an example which shows the footer element being used both for a site-wide footer and for a section footer.

<!DOCTYPE HTML>
<HTML><HEAD>
<TITLE>The Ramblings of a Scientist</TITLE>
<BODY>
<H1>The Ramblings of a Scientist</H1>
<MAIN>
 <ARTICLE>
 <H2>Episode 15</H2>
 <VIDEO SRC="/fm/015.ogv" CONTROLS PRELOAD>
  <P><A HREF="/fm/015.ogv">Download video</A>.</P>
 </VIDEO>
 <FOOTER> <!-- footer for article -->
  <P>Published <TIME DATETIME="2009-10-21T18:26-07:00">on 2009/10/21 at 6:26pm</TIME></P>
 </FOOTER>
</ARTICLE>
<ARTICLE>
 <H2>My Favorite Trains</H2>
 <P>I love my trains. My favorite train of all time is a Köf.</P>
 <P>It is fun to see them pull some coal cars because they look so
 dwarfed in comparison.</P>
 <FOOTER> <!-- footer for article -->
  <P>Published <TIME DATETIME="2009-09-15T14:54-07:00">on 2009/09/15 at 2:54pm</TIME></P>
 </FOOTER>
 </ARTICLE>
</MAIN>
<FOOTER> <!-- site wide footer -->
 <NAV>
  <P><A HREF="/credits.html">Credits</A> —
     <A HREF="/tos.html">Terms of Service</A> —
     <A HREF="/index.html">Blog Index</A></P>
 </NAV>
 <P>Copyright © 2009 Gordon Freeman</P>
</FOOTER>
</BODY>
</HTML>

Some site designs have what is sometimes referred to as "fat footers" — footers that contain a lot of material, including images, links to other articles, links to pages for sending feedback, special offers... in some ways, a whole "front page" in the footer.

This fragment shows the bottom of a page on a site with a "fat footer":

...
 <footer>
  <nav>
   <section>
    <h2>Articles</h2>
    <p><img src="images/somersaults.jpeg" alt=""> Go to the gym with
    our somersaults class! Our teacher Jim takes you through the paces
    in this two-part article. <a href="articles/somersaults/1">Part
    1</a> · <a href="articles/somersaults/2">Part 2</a></p>
    <p><img src="images/kindplus.jpeg"> Tired of walking on the edge of
    a clif<!-- sic -->? Our guest writer Lara shows you how to bumble
    your way through the bars. <a href="articles/kindplus/1">Read
    more...</a></p>
    <p><img src="images/crisps.jpeg"> The chips are down, now all
    that's left is a potato. What can you do with it? <a
    href="articles/crisps/1">Read more...</a></p>
   </section>
   <ul>
    <li> <a href="/about">About us...</a>
    <li> <a href="/feedback">Send feedback!</a>
    <li> <a href="/sitemap">Sitemap</a>
   </ul>
  </nav>
  <p><small>Copyright © 2015 The Snacker —
  <a href="/tos">Terms of Service</a></small></p>
 </footer>
</body>

4.3.9 The address element

Categories:
Flow content.
Palpable content.
Contexts in which this element can be used:
Where flow content is expected.
Content model:
Flow content, but with no heading content descendants, no sectioning content descendants, and no header, footer, or address element descendants.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
contentinfo role.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The address element represents the contact information for its nearest article or body element ancestor. If that is the body element, then the contact information applies to the document as a whole.

For example, a page at the W3C Web site related to HTML might include the following contact information:

<ADDRESS>
 <A href="../People/Raggett/">Dave Raggett</A>,
 <A href="../People/Arnaud/">Arnaud Le Hors</A>,
 contact persons for the <A href="Activity">W3C HTML Activity</A>
</ADDRESS>

The address element must not be used to represent arbitrary addresses (e.g. postal addresses), unless those addresses are in fact the relevant contact information. (The p element is the appropriate element for marking up postal addresses in general.)

The address element must not contain information other than contact information.

For example, the following is non-conforming use of the address element:

<ADDRESS>Last Modified: 1999/12/24 23:37:50</ADDRESS>

Typically, the address element would be included along with other information in a footer element.

The contact information for a node node is a collection of address elements defined by the first applicable entry from the following list:

If node is an article element
If node is a body element

The contact information consists of all the address elements that have node as an ancestor and do not have another body or article element ancestor that is a descendant of node.

If node has an ancestor element that is an article element
If node has an ancestor element that is a body element

The contact information of node is the same as the contact information of the nearest article or body element ancestor, whichever is nearest.

If node's Document has a body element

The contact information of node is the same as the contact information of the body element of the Document.

Otherwise

There is no contact information for node.

User agents may expose the contact information of a node to the user, or use it for other purposes, such as indexing sections based on the sections' contact information.

In this example the footer contains contact information and a copyright notice.

<footer>
 <address>
  For more details, contact
  <a href="mailto:js@example.com">John Smith</a>.
 </address>
 <p><small>© copyright 2038 Example Corp.</small></p>
</footer>

4.3.10 Headings and sections

The h1h6 elements are headings.

The first element of heading content in an element of sectioning content represents the heading for that section. Subsequent headings of equal or higher rank start new (implied) sections, headings of lower rank start implied subsections that are part of the previous one. In both cases, the element represents the heading of the implied section.

h1h6 elements must not be used to markup subheadings, subtitles, alternative titles and taglines unless intended to be the heading for a new section or subsection. Instead use the markup patterns in the Common idioms without dedicated elements section of the specification.

Certain elements are said to be sectioning roots, including blockquote and td elements. These elements can have their own outlines, but the sections and headings inside these elements do not contribute to the outlines of their ancestors.

Sectioning content elements are always considered subsections of their nearest ancestor sectioning root or their nearest ancestor element of sectioning content, whichever is nearest, regardless of what implied sections other headings may have created.

For the following fragment:

<body>
 <h1>Foo</h1>
 <h2>Bar</h2>
 <blockquote>
  <h3>Bla</h3>
 </blockquote>
 <p>Baz</p>
 <h2>Quux</h2>
 <section>
  <h3>Thud</h3>
 </section>
 <p>Grunt</p>
</body>

...the structure would be:

  1. Foo (heading of explicit body section, containing the "Grunt" paragraph)
    1. Bar (heading starting implied section, containing a block quote and the "Baz" paragraph)
    2. Quux (heading starting implied section with no content other than the heading itself)
    3. Thud (heading of explicit section section)

Notice how the section ends the earlier implicit section so that a later paragraph ("Grunt") is back at the top level.

Sections may contain headings of any rank, and authors are strongly encouraged to use headings of the appropriate rank for the section's nesting level.

Authors are also encouraged to explicitly wrap sections in elements of sectioning content, instead of relying on the implicit sections generated by having multiple headings in one element of sectioning content.

For example, the following is correct:

<body>
 <h4>Apples</h4>
 <p>Apples are fruit.</p>
 <section>
  <h2>Taste</h2>
  <p>They taste lovely.</p>
  <h6>Sweet</h6>
  <p>Red apples are sweeter than green ones.</p>
  <h1>Color</h1>
  <p>Apples come in various colors.</p>
 </section>
</body>

However, the same document would be more clearly expressed as:

<body>
 <h1>Apples</h1>
 <p>Apples are fruit.</p>
 <section>
  <h2>Taste</h2>
  <p>They taste lovely.</p>
  <section>
   <h3>Sweet</h3>
   <p>Red apples are sweeter than green ones.</p>
  </section>
 </section>
 <section>
  <h2>Color</h2>
  <p>Apples come in various colors.</p>
 </section>
</body>

Both of the documents above are semantically identical and would produce the same outline in compliant user agents.

This third example is also semantically identical, and might be easier to maintain (e.g. if sections are often moved around in editing):

<body>
 <h1>Apples</h1>
 <p>Apples are fruit.</p>
 <section>
  <h1>Taste</h1>
  <p>They taste lovely.</p>
  <section>
   <h1>Sweet</h1>
   <p>Red apples are sweeter than green ones.</p>
  </section>
 </section>
 <section>
  <h1>Color</h1>
  <p>Apples come in various colors.</p>
 </section>
</body>

This final example would need explicit style rules to be rendered well in legacy browsers. Legacy browsers without CSS support would render all the headings as top-level headings.

4.3.10.1 Creating an outline

There are currently no known implementations of the outline algorithm in graphical browsers or assistive technology user agents, although the algorithm is implemented in other software such as conformance checkers. Therefore the outline algorithm cannot be relied upon to convey document structure to users. Authors are advised to use heading rank (h1-h6) to convey document structure.

This section defines an algorithm for creating an outline for a sectioning content element or a sectioning root element. It is defined in terms of a walk over the nodes of a DOM tree, in tree order, with each node being visited when it is entered and when it is exited during the walk.

The outline for a sectioning content element or a sectioning root element consists of a list of one or more potentially nested sections. The element for which an outline is created is said to be the outline's owner.

A section is a container that corresponds to some nodes in the original DOM tree. Each section can have one heading associated with it, and can contain any number of further nested sections. The algorithm for the outline also associates each node in the DOM tree with a particular section and potentially a heading. (The sections in the outline aren't section elements, though some may correspond to such elements — they are merely conceptual sections.)

The following markup fragment:

<body>
 <h1>A</h1>
 <p>B</p>
 <h2>C</h2>
 <p>D</p>
 <h2>E</h2>
 <p>F</p>
</body>

...results in the following outline being created for the body node (and thus the entire document):

  1. Section created for body node.

    Associated with heading "A".

    Also associated with paragraph "B".

    Nested sections:

    1. Section implied for first h2 element.

      Associated with heading "C".

      Also associated with paragraph "D".

      No nested sections.

    2. Section implied for second h2 element.

      Associated with heading "E".

      Also associated with paragraph "F".

      No nested sections.

The algorithm that must be followed during a walk of a DOM subtree rooted at a sectioning content element or a sectioning root element to determine that element's outline is as follows:

  1. Let current outline target be null. (It holds the element whose outline is being created.)

  2. Let current section be null. (It holds a pointer to a section, so that elements in the DOM can all be associated with a section.)

  3. Create a stack to hold elements, which is used to handle nesting. Initialise this stack to empty.

  4. Walk over the DOM in tree order, starting with the sectioning content element or sectioning root element at the root of the subtree for which an outline is to be created, and trigger the first relevant step below for each element as the walk enters and exits it.

    When exiting an element, if that element is the element at the top of the stack

    The element being exited is a heading content element or an element with a hidden attribute.

    Pop that element from the stack.

    If the top of the stack is a heading content element or an element with a hidden attribute

    Do nothing.

    When entering an element with a hidden attribute

    Push the element being entered onto the stack. (This causes the algorithm to skip that element and any descendants of the element.)

    When entering a sectioning content element

    Run these steps:

    1. If current outline target is not null, run these substeps:

      1. If the current section has no heading, create an implied heading and let that be the heading for the current section.

      2. Push current outline target onto the stack.

    2. Let current outline target be the element that is being entered.

    3. Let current section be a newly created section for the current outline target element.

    4. Associate current outline target with current section.

    5. Let there be a new outline for the new current outline target, initialised with just the new current section as the only section in the outline.

    When exiting a sectioning content element, if the stack is not empty

    Run these steps:

    1. If the current section has no heading, create an implied heading and let that be the heading for the current section.

    2. Pop the top element from the stack, and let the current outline target be that element.

    3. Let current section be the last section in the outline of the current outline target element.

    4. Append the outline of the sectioning content element being exited to the current section. (This does not change which section is the last section in the outline.)

    When entering a sectioning root element

    Run these steps:

    1. If current outline target is not null, push current outline target onto the stack.

    2. Let current outline target be the element that is being entered.

    3. Let current outline target's parent section be current section.

    4. Let current section be a newly created section for the current outline target element.

    5. Let there be a new outline for the new current outline target, initialised with just the new current section as the only section in the outline.

    When exiting a sectioning root element, if the stack is not empty

    Run these steps:

    1. If the current section has no heading, create an implied heading and let that be the heading for the current section.

    2. Let current section be current outline target's parent section.

    3. Pop the top element from the stack, and let the current outline target be that element.

    When exiting a sectioning content element or a sectioning root element (when the stack is empty)

    The current outline target is the element being exited, and it is the sectioning content element or a sectioning root element at the root of the subtree for which an outline is being generated.

    If the current section has no heading, create an implied heading and let that be the heading for the current section.

    Skip to the next step in the overall set of steps. (The walk is over.)

    When entering a heading content element

    If the current section has no heading, let the element being entered be the heading for the current section.

    Otherwise, if the element being entered has a rank equal to or higher than the heading of the last section of the outline of the current outline target, or if the heading of the last section of the outline of the current outline target is an implied heading, then create a new section and append it to the outline of the current outline target element, so that this new section is the new last section of that outline. Let current section be that new section. Let the element being entered be the new heading for the current section.

    Otherwise, run these substeps:

    1. Let candidate section be current section.

    2. Heading loop: If the element being entered has a rank lower than the rank of the heading of the candidate section, then create a new section, and append it to candidate section. (This does not change which section is the last section in the outline.) Let current section be this new section. Let the element being entered be the new heading for the current section. Abort these substeps.

    3. Let new candidate section be the section that contains candidate section in the outline of current outline target.

    4. Let candidate section be new candidate section.

    5. Return to the step labeled heading loop.

    Push the element being entered onto the stack. (This causes the algorithm to skip any descendants of the element.)

    Recall that h1 has the highest rank, and h6 has the lowest rank.

    Otherwise

    Do nothing.

    In addition, whenever the walk exits a node, after doing the steps above, if the node is not associated with a section yet, associate the node with the section current section.

  5. Associate all non-element nodes that are in the subtree for which an outline is being created with the section with which their parent element is associated.

  6. Associate all nodes in the subtree with the heading of the section with which they are associated, if any.

The tree of sections created by the algorithm above, or a proper subset thereof, must be used when generating document outlines, for example when generating tables of contents.

The outline created for the body element of a Document is the outline of the entire document.

When creating an interactive table of contents, entries should jump the user to the relevant sectioning content element, if the section was created for a real element in the original document, or to the relevant heading content element, if the section in the tree was generated for a heading in the above process.

Selecting the first section of the document therefore always takes the user to the top of the document, regardless of where the first heading in the body is to be found.

The outline depth of a heading content element associated with a section section is the number of sections that are ancestors of section in the outermost outline that section finds itself in when the outlines of its Document's elements are created, plus 1. The outline depth of a heading content element not associated with a section is 1.

User agents should provide default headings for sections that do not have explicit section headings.

Consider the following snippet:

<body>
 <nav>
  <p><a href="/">Home</a></p>
 </nav>
 <p>Hello world.</p>
 <aside>
  <p>My cat is cute.</p>
 </aside>
</body>

Although it contains no headings, this snippet has three sections: a document (the body) with two subsections (a nav and an aside). A user agent could present the outline as follows:

  1. Untitled document
    1. Navigation
    2. Sidebar

These default headings ("Untitled document", "Navigation", "Sidebar") are not specified by this specification, and might vary with the user's language, the page's language, the user's preferences, the user agent implementor's preferences, etc.

The following JavaScript function shows how the tree walk could be implemented. The root argument is the root of the tree to walk (either a sectioning content element or a sectioning root element), and the enter and exit arguments are callbacks that are called with the nodes as they are entered and exited. [ECMA262]

function (root, enter, exit) {
  var node = root;
  start: while (node) {
    enter(node);
    if (node.firstChild) {
      node = node.firstChild;
      continue start;
    }
    while (node) {
      exit(node);
      if (node == root) {
        node = null;
      } else if (node.nextSibling) {
        node = node.nextSibling;
        continue start;
      } else {
        node = node.parentNode;
      }
    }
  }
}
4.3.10.2 Sample outlines

This section is non-normative.

The following document shows a straight-forward application of the outline algorithm. First, here is the document, which is a book with very short chapters and subsections:

<!DOCTYPE HTML>
<title>The Tax Book (all in one page)</title>
<h1>The Tax Book</h1>
<h2>Earning money</h2>
<p>Earning money is good.</p>
<h3>Getting a job</h3>
<p>To earn money you typically need a job.</p>
<h2>Spending money</h2>
<p>Spending is what money is mainly used for.</p>
<h3>Cheap things</h3>
<p>Buying cheap things often not cost-effective.</p>
<h3>Expensive things</h3>
<p>The most expensive thing is often not the most cost-effective either.</p>
<h2>Investing money</h2>
<p>You can lend your money to other people.</p>
<h2>Losing money</h2>
<p>If you spend money or invest money, sooner or later you will lose money.
<h3>Poor judgement</h3>
<p>Usually if you lose money it's because you made a mistake.</p>

This book would form the following outline:

  1. The Tax Book
    1. Earning money
      1. Getting a job
    2. Spending money
      1. Cheap things
      2. Expensive things
    3. Investing money
    4. Losing money
      1. Poor judgement

Notice that the title element does not participate in the outline.

Here is a similar document, but this time using section elements to get the same effect:

<!DOCTYPE HTML>
<title>The Tax Book (all in one page)</title>
<h1>The Tax Book</h1>
<section>
 <h1>Earning money</h1>
 <p>Earning money is good.</p>
 <section>
  <h1>Getting a job</h1>
  <p>To earn money you typically need a job.</p>
 </section>
</section>
<section>
 <h1>Spending money</h1>
 <p>Spending is what money is mainly used for.</p>
 <section>
  <h1>Cheap things</h1>
  <p>Buying cheap things often not cost-effective.</p>
 </section>
 <section>
  <h1>Expensive things</h1>
  <p>The most expensive thing is often not the most cost-effective either.</p>
 </section>
</section>
<section>
 <h1>Investing money</h1>
 <p>You can lend your money to other people.</p>
</section>
<section>
 <h1>Losing money</h1>
 <p>If you spend money or invest money, sooner or later you will lose money.
 <section>
  <h1>Poor judgement</h1>
  <p>Usually if you lose money it's because you made a mistake.</p>
 </section>
</section>

This book would form the same outline:

  1. The Tax Book
    1. Earning money
      1. Getting a job
    2. Spending money
      1. Cheap things
      2. Expensive things
    3. Investing money
    4. Losing money
      1. Poor judgement

A document can contain multiple top-level headings:

<!DOCTYPE HTML>
<title>Alphabetic Fruit</title>
<h1>Apples</h1>
<p>Pomaceous.</p>
<h1>Bananas</h1>
<p>Edible.</p>
<h1>Carambola</h1>
<p>Star.</p>

This would form the following simple outline consisting of three top-level sections:

  1. Apples
  2. Bananas
  3. Carambola

Effectively, the body element is split into three.

Mixing both the h1h6 model and the section/h1 model can lead to some unintuitive results.

Consider for example the following, which is just the previous example but with the contents of the (implied) body wrapped in a section:

<!DOCTYPE HTML>
<title>Alphabetic Fruit</title>
<section>
 <h1>Apples</h1>
 <p>Pomaceous.</p>
 <h1>Bananas</h1>
 <p>Edible.</p>
 <h1>Carambola</h1>
 <p>Star.</p>
</section>

The resulting outline would be:

  1. (untitled page)
    1. Apples
    2. Bananas
    3. Carambola

This result is described as unintuitive because it results in three subsections even though there's only one section element. Effectively, the section is split into three, just like the implied body element in the previous example.

(In this example, "(untitled page)" is the implied heading for the body element, since it has no explicit heading.)

Headings never rise above other sections. Thus, in the following example, the first h1 does not actually describe the page header; it describes the header for the second half of the page:

<!DOCTYPE HTML>
<title>Feathers on The Site of Encyclopedic Knowledge</title>
<section>
 <h1>A plea from our caretakers</h1>
 <p>Please, we beg of you, send help! We're stuck in the server room!</p>
</section>
<h1>Feathers</h1>
<p>Epidermal growths.</p>

The resulting outline would be:

  1. (untitled page)
    1. A plea from our caretakers
  2. Feathers

Thus, when an article element starts with a nav block and only later has its heading, the result is that the nav block is not part of the same section as the rest of the article in the outline. For instance, take this document:

<!DOCTYPE HTML>
<title>We're adopting a child! — Ray's blog</title>
...

<h1>Ray's blog</h1>

<main>
 <article>
<header>
  <nav>
   <a href="?t=-1d">Yesterday</a>;
   <a href="?t=-7d">Last week</a>;
   <a href="?t=-1m">Last month</a>
  </nav> 
</header>
  <h2>We're adopting a child!</h2>

  <p>As of today, Janine and I have signed the papers to become
  the proud parents of baby Diane! We've been looking forward to
  this day for weeks.</p>
</article> 
</main>
...

The resulting outline would be:

  1. Ray's blog
    1. Untitled article
      1. Untitled navigation section
    2. We're adopting a child!

Also worthy of note in this example is that the header and main elements have no effect whatsoever on the document outline.

4.3.11 Usage summary

This section is non-normative.

Element Purpose
Example
body
<!DOCTYPE HTML>
<html>
 <head> <title>Steve Hill's Home Page</title> </head>
 <body> <p>Hard Trance is My Life.</p> </body>
</html>
article
<article>
 <img src="/tumblr_masqy2s5yn1rzfqbpo1_500.jpg" alt="Yellow smiley face with the caption 'masif'">
 <p>My fave Masif tee so far!</p>
 <footer>Posted 2 days ago</footer>
</article>
<article>
 <img src="/tumblr_m9tf6wSr6W1rzfqbpo1_500.jpg" alt="">
 <p>Happy 2nd birthday Masif Saturdays!!!</p>
 <footer>Posted 3 weeks ago</footer>
</article>
section
<h1>Biography</h1>
<section>
 <h1>The facts</h1>
 <p>1500+ shows, 14+ countries</p>
</section>
<section>
 <h1>2010/2011 figures per year</h1>
 <p>100+ shows, 8+ countries</p>
</section>
nav
<nav>
 <ul>
  <li><a href="/">Home</a>
  <li><a href="/biog.html">Bio</a>
  <li><a href="/discog.html">Discog</a>
 </ul>
</nav>
aside
<h1>Music</h1>
<p>As any burner can tell you, the event has a lot of trance.</p>
<aside>You can buy the music we played at our <a href="buy.html">playlist page</a>.</aside>
<p>This year we played a kind of trance that originated in Belgium, Germany, and the Netherlands in the mid 90s.</p>
h1h6 A section heading
<h1>The Guide To Music On The Playa</h1>
<h2>The Main Stage</h2>
<p>If you want to play on a stage, you should bring one.</p>
<h2>Amplified Music</h2>
<p>Amplifiers up to 300W or 90dB are welcome.</p>
header
<article>
 <header>
  <h1>Hard Trance is My Life</h1>
  <p>By DJ Steve Hill and Technikal</p>
 </header>
 <p>The album with the amusing punctuation has red artwork.</p>
</article>
footer
<article>
 <h1>Hard Trance is My Life</h1>
 <p>The album with the amusing punctuation has red artwork.</p>
 <footer>
  <p>Artists: DJ Steve Hill and Technikal</p>
 </footer>
</article>
4.3.11.1 Article or section?

This section is non-normative.

A section forms part of something else. An article is its own thing. But how does one know which is which? Mostly the real answer is "it depends on author intent".

For example, one could imagine a book with a "Granny Smith" chapter that just said "These juicy, green apples make a great filling for apple pies."; that would be a section because there'd be lots of other chapters on (maybe) other kinds of apples.

On the other hand, one could imagine a tweet or reddit comment or tumblr post or newspaper classified ad that just said "Granny Smith. These juicy, green apples make a great filling for apple pies."; it would then be articles because that was the whole thing.

A comment on an article is not part of the article on which it is commenting, therefore it is its own article.

4.4 Grouping content

4.4.1 The p element

Categories:
Flow content.
Palpable content.
Contexts in which this element can be used:
Where flow content is expected.
Content model:
Phrasing content.
Content attributes:
Global attributes
Tag omission in text/html:

A p element's end tag may be omitted if the p element is immediately followed by an address, article, aside, blockquote, div, dl, fieldset, footer, form, h1, h2, h3, h4, h5, h6, header, hgroup, hr, main, menu, nav, ol, p, pre, section, table, or ul, element, or if there is no more content in the parent element and the parent element is not an a element.

Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLParagraphElement : HTMLElement {};

The p element represents a paragraph.

While paragraphs are usually represented in visual media by blocks of text that are physically separated from adjacent blocks through blank lines, a style sheet or user agent would be equally justified in presenting paragraph breaks in a different manner, for instance using inline pilcrows (¶).

The following examples are conforming HTML fragments:

<p>The little kitten gently seated himself on a piece of
carpet. Later in his life, this would be referred to as the time the
cat sat on the mat.</p>
<fieldset>
 <legend>Personal information</legend>
 <p>
   <label>Name: <input name="n"></label>
   <label><input name="anon" type="checkbox"> Hide from other users</label>
 </p>
 <p><label>Address: <textarea name="a"></textarea></label></p>
</fieldset>
<p>There was once an example from Femley,<br>
Whose markup was of dubious quality.<br>
The validator complained,<br>
So the author was pained,<br>
To move the error from the markup to the rhyming.</p>

The p element should not be used when a more specific element is more appropriate.

The following example is technically correct:

<section>
 <!-- ... -->
 <p>Last modified: 2001-04-23</p>
 <p>Author: fred@example.com</p>
</section>

However, it would be better marked-up as:

<section>
 <!-- ... -->
 <footer>Last modified: 2001-04-23</footer>
 <address>Author: fred@example.com</address>
</section>

Or:

<section>
 <!-- ... -->
 <footer>
  <p>Last modified: 2001-04-23</p>
  <address>Author: fred@example.com</address>
 </footer>
</section>

List elements (in particular, ol and ul elements) cannot be children of p elements. When a sentence contains a bulleted list, therefore, one might wonder how it should be marked up.

For instance, this fantastic sentence has bullets relating to

and is further discussed below.

The solution is to realise that a paragraph, in HTML terms, is not a logical concept, but a structural one. In the fantastic example above, there are actually five paragraphs as defined by this specification: one before the list, one for each bullet, and one after the list.

The markup for the above example could therefore be:

<p>For instance, this fantastic sentence has bullets relating to</p>
<ul>
 <li>wizards,
 <li>faster-than-light travel, and
 <li>telepathy,
</ul>
<p>and is further discussed below.</p>

Authors wishing to conveniently style such "logical" paragraphs consisting of multiple "structural" paragraphs can use the div element instead of the p element.

Thus for instance the above example could become the following:

<div>For instance, this fantastic sentence has bullets relating to
<ul>
 <li>wizards,
 <li>faster-than-light travel, and
 <li>telepathy,
</ul>
and is further discussed below.</div>

This example still has five structural paragraphs, but now the author can style just the div instead of having to consider each part of the example separately.

4.4.2 The hr element

Categories:
Flow content.
Contexts in which this element can be used:
Where flow content is expected.
Content model:
Empty.
Content attributes:
Global attributes
Tag omission in text/html:
No end tag.
Allowed ARIA role attribute values:
separator (default - do not set) or presentation.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLHRElement : HTMLElement {};

The hr element represents a paragraph-level thematic break, e.g. a scene change in a story, or a transition to another topic within a section of a reference book.

The following fictional extract from a project manual shows two sections that use the hr element to separate topics within the section.

<section>
 <h1>Communication</h1>
 <p>There are various methods of communication. This section
 covers a few of the important ones used by the project.</p>
 <hr>
 <p>Communication stones seem to come in pairs and have mysterious
 properties:</p>
 <ul>
  <li>They can transfer thoughts in two directions once activated
  if used alone.</li>
  <li>If used with another device, they can transfer one's
  consciousness to another body.</li>
  <li>If both stones are used with another device, the
  consciousnesses switch bodies.</li>
 </ul>
 <hr>
 <p>Radios use the electromagnetic spectrum in the meter range and
 longer.</p>
 <hr>
 <p>Signal flares use the electromagnetic spectrum in the
 nanometer range.</p>
</section>
<section>
 <h1>Food</h1>
 <p>All food at the project is rationed:</p>
 <dl>
  <dt>Potatoes</dt>
  <dd>Two per day</dd>
  <dt>Soup</dt>
  <dd>One bowl per day</dd>
 </dl>
 <hr>
 <p>Cooking is done by the chefs on a set rotation.</p>
</section>

There is no need for an hr element between the sections themselves, since the section elements and the h1 elements imply thematic changes themselves.

The following extract from Pandora's Star by Peter F. Hamilton shows two paragraphs that precede a scene change and the paragraph that follows it. The scene change, represented in the printed book by a gap containing a solitary centered star between the second and third paragraphs, is here represented using the hr element.

<p>Dudley was ninety-two, in his second life, and fast approaching
time for another rejuvenation. Despite his body having the physical
age of a standard fifty-year-old, the prospect of a long degrading
campaign within academia was one he regarded with dread. For a
supposedly advanced civilization, the Intersolar Commonwealth could be
appallingly backward at times, not to mention cruel.</p>
<p><i>Maybe it won't be that bad</i>, he told himself. The lie was
comforting enough to get him through the rest of the night's
shift.</p>
<hr>
<p>The Carlton AllLander drove Dudley home just after dawn. Like the
astronomer, the vehicle was old and worn, but perfectly capable of
doing its job. It had a cheap diesel engine, common enough on a
semi-frontier world like Gralmond, although its drive array was a
thoroughly modern photoneural processor. With its high suspension and
deep-tread tyres it could plough along the dirt track to the
observatory in all weather and seasons, including the metre-deep snow
of Gralmond's winters.</p>

The hr element does not affect the document's outline.

4.4.3 The pre element

Categories:
Flow content.
Palpable content.
Contexts in which this element can be used:
Where flow content is expected.
Content model:
Phrasing content.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLPreElement : HTMLElement {};

The pre element represents a block of preformatted text, in which structure is represented by typographic conventions rather than by elements.

In the HTML syntax, a leading newline character immediately following the pre element start tag is stripped.

Some examples of cases where the pre element could be used:

Authors are encouraged to consider how preformatted text will be experienced when the formatting is lost, as will be the case for users of speech synthesizers, braille displays, and the like. For cases like ASCII art, it is likely that an alternative presentation, such as a textual description, would be more universally accessible to the readers of the document.

To represent a block of computer code, the pre element can be used with a code element; to represent a block of computer output the pre element can be used with a samp element. Similarly, the kbd element can be used within a pre element to indicate text that the user is to enter.

This element has rendering requirements involving the bidirectional algorithm.

In the following snippet, a sample of computer code is presented.

<p>This is the <code>Panel</code> constructor:</p>
<pre><code>function Panel(element, canClose, closeHandler) {
  this.element = element;
  this.canClose = canClose;
  this.closeHandler = function () { if (closeHandler) closeHandler() };
}</code></pre>

In the following snippet, samp and kbd elements are mixed in the contents of a pre element to show a session of Zork I.

<pre><samp>You are in an open field west of a big white house with a boarded
front door.
There is a small mailbox here.

></samp> <kbd>open mailbox</kbd>

<samp>Opening the mailbox reveals:
A leaflet.

></samp></pre>

The following shows a contemporary poem that uses the pre element to preserve its unusual formatting, which forms an intrinsic part of the poem itself.

<pre>                maxling

it is with a          heart
               heavy

that i admit loss of a feline
        so           loved

a friend lost to the
        unknown
                                (night)

~cdr 11dec07</pre>

4.4.4 The blockquote element

Categories:
Flow content.
Sectioning root.
Palpable content.
Contexts in which this element can be used:
Where flow content is expected.
Content model:
Flow content.
Content attributes:
Global attributes
cite - Link to the source of the quotation.
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLQuoteElement : HTMLElement {
           attribute DOMString cite;
};

The HTMLQuoteElement interface is also used by the q element.

The blockquote element represents content that is quoted from another source, optionally with a citation which must be within a footer or cite element, and optionally with in-line changes such as annotations and abbreviations.

Content inside a blockquote other than citations and in-line changes must be quoted from another source, whose address, if it has one, may be cited in the cite attribute.

In cases where a page contains contributions from multiple people, such as comments on a blog post, 'another source' can include text from the same page, written by another person.

If the cite attribute is present, it must be a valid URL potentially surrounded by spaces. To obtain the corresponding citation link, the value of the attribute must be resolved relative to the element. User agents may allow users to follow such citation links, but they are primarily intended for private use (e.g. by server-side scripts collecting statistics about a site's use of quotations), not for readers.

The cite IDL attribute must reflect the element's cite content attribute.

The content of a blockquote may be abbreviated, may have context added or may have annotations. Any such additions or changes to quoted text must be indicated in the text (at the text level). This may mean the use of notational conventions or explicit remarks, such as "emphasis mine".

For example, in English, abbreviations are traditionally identified using square brackets. Consider a page with the sentence "Fred ate the cracker. He then said he liked apples and fish."; it could be quoted as follows:

<blockquote>
 <p>[Fred] then said he liked [...] fish.</p>
</blockquote>

Quotation marks may be used to delineate between quoted text and annotations within a blockquote.

For example, an in-line note provided by the author:

 <figure>
 <blockquote>
 "That monster custom, who all sense doth eat
 Of habit's devil," <abbr title="et cetera">&c.</abbr> not in Folio
 
 "What a falling off was there !
 From me, whose love was of that dignity
 That it went hand in hand even with the vow
 I made to her in marriage, and to decline
 Upon a wretch."
 </blockquote>
 <footer>
 — <cite class="title">Shakespeare manual</cite> by <cite class="author">Frederick Gard Fleay</cite>, 
 p19 (in Google Books)
 </footer>
 </figure>
 

In the example above, the citation is contained within the footer of a figure element, this groups and associates the information, about the quote, with the quote. The figcaption element was not used, in this case, as a container for the citation as it is not a caption.

Attribution for the quotation, may be be placed inside the blockquote element, but must be within a cite element for in-text attributions or within a footer element.

For example, here the attribution is given in a footer after the quoted text, to clearly relate the quote to its attribution:

<blockquote>
 <p>I contend that we are both atheists. I just believe in one fewer
 god than you do. When you understand why you dismiss all the other
 possible gods, you will understand why I dismiss yours.</p>
 <footer>— <cite>Stephen Roberts</cite></footer>
 </blockquote>

Here the attribution is given in a cite element on the last line of the quoted text. Note that a link to the author is also included.

<blockquote>
 The people recognize themselves in their commodities; they find their 
 soul in their automobile, hi-fi set, split-level home, kitchen equipment. 
 — <cite><a href="http://en.wikipedia.org/wiki/Herbert_Marcuse">Herbert Marcuse</a></cite>
 </blockquote>

Here the attribution is given in a footer after the quoted text, and metadata about the reference has been added using the Microdata syntax (note it could have equally been marked up using RDFA Lite).

<blockquote>
 <p>... she said she would not sign any deposition containing the word "amorous" 
 instead of "advances". For her the difference was of crucial significance, 
 and one of the reasons she had separated from her husband was that he had never been 
 amorous but had consistently made advances.</p>
 
 <footer itemscope itemtype="http://schema.org/Book">
  <span itemprop="author">Heinrich Böll</span>,
  <span itemprop="name">The Lost Honor of Katharina Blum</span>, 
  <span itemprop="datePublished">January 1, 1974</span>
 </footer>
 </blockquote>
 

There is no formal method for indicating the markup in a blockquote is from a quoted source. It is suggested that if the footer or cite elements are included and these elements are also being used within a blockquote to identify citations, the elements from the quoted source could be annotated with metadata to identify their origin, for example by using the class attribute (a defined extensibility mechanism).

In this example the source of a quote includes a cite element, which is annotated using the class attribute:

  <blockquote>
  <p>My favorite book is <cite class="from-source">At Swim-Two-Birds</cite></p>
  <footer>- <cite>Mike[tm]Smith</cite></footer>
  </blockquote>
  

The other examples below show other ways of showing attribution.

Here a blockquote element is used in conjunction with a figure element and its figcaption:

<figure>
 <blockquote>
  <p>The truth may be puzzling. It may take some work to grapple with.
  It may be counterintuitive. It may contradict deeply held
  prejudices. It may not be consonant with what we desperately want to
  be true. But our preferences do not determine what's true. We have a
  method, and that method helps us to reach not absolute truth, only
  asymptotic approaches to the truth — never there, just closer
  and closer, always finding vast new oceans of undiscovered
  possibilities. Cleverly designed experiments are the key.</p>
 </blockquote>
 <figcaption><cite>Carl Sagan</cite>, in "<cite>Wonder and Skepticism</cite>", from
 the <cite>Skeptical Enquirer</cite> Volume 19, Issue 1 (January-February
 1995)</figcaption>
</figure>

This next example shows the use of cite alongside blockquote:

<p>His next piece was the aptly named <cite>Sonnet 130</cite>:</p>
<blockquote cite="http://quotes.example.org/s/sonnet130.html">
  <p>My mistress' eyes are nothing like the sun,<br>
  Coral is far more red, than her lips red,<br>
  ...

This example shows how a forum post could use blockquote to show what post a user is replying to. The article element is used for each post, to mark up the threading.

<article>
 <h1><a href="http://bacon.example.com/?blog=109431">Bacon on a crowbar</a></h1>
 <article>
  <header><strong>t3yw</strong> 12 points 1 hour ago</header>
  <p>I bet a narwhal would love that.</p>
  <footer><a href="?pid=29578">permalink</a></footer>
  <article>
   <header><strong>greg</strong> 8 points 1 hour ago</header>
   <blockquote><p>I bet a narwhal would love that.</p></blockquote>
   <p>Dude narwhals don't eat bacon.</p>
   <footer><a href="?pid=29579">permalink</a></footer>
   <article>
    <header><strong>t3yw</strong> 15 points 1 hour ago</header>
    <blockquote>
     <blockquote><p>I bet a narwhal would love that.</p></blockquote>
     <p>Dude narwhals don't eat bacon.</p>
    </blockquote>
    <p>Next thing you'll be saying they don't get capes and wizard
    hats either!</p>
    <footer><a href="?pid=29580">permalink</a></footer>
    <article>
     <article>
      <header><strong>boing</strong> -5 points 1 hour ago</header>
      <p>narwhals are worse than ceiling cat</p>
      <footer><a href="?pid=29581">permalink</a></footer>
     </article>
    </article>
   </article>
  </article>
  <article>
   <header><strong>fred</strong> 1 points 23 minutes ago</header>
   <blockquote><p>I bet a narwhal would love that.</p></blockquote>
   <p>I bet they'd love to peel a banana too.</p>
   <footer><a href="?pid=29582">permalink</a></footer>
  </article>
 </article>
</article>

This example shows the use of a blockquote for short snippets, demonstrating that one does not have to use p elements inside blockquote elements:

<p>He began his list of "lessons" with the following:</p>
<blockquote>One should never assume that his side of
the issue will be recognized, let alone that it will
be conceded to have merits.</blockquote>
<p>He continued with a number of similar points, ending with:</p>
<blockquote>Finally, one should be prepared for the threat
of breakdown in negotiations at any given moment and not
be cowed by the possibility.</blockquote>
<p>We shall now discuss these points...

Examples of how to represent a conversation are shown in a later section; it is not appropriate to use the cite and blockquote elements for this purpose.

4.4.5 The ol element

Categories:
Flow content.
If the element's children include at least one li element: Palpable content.
Contexts in which this element can be used:
Where flow content is expected.
Content model:
Zero or more li and script-supporting elements.
Content attributes:
Global attributes
reversed - Number the list backwards.
start - Ordinal value of the first item
type - Kind of list marker.
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
list role (default - do not set), directory, group, listbox, menu, menubar, presentation, tablist, toolbar or tree.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLOListElement : HTMLElement {
           attribute boolean reversed;
           attribute long start;
           attribute DOMString type;
};

The ol element represents a list of items, where the items have been intentionally ordered, such that changing the order would change the meaning of the document.

The items of the list are the li element child nodes of the ol element, in tree order.

The reversed attribute is a boolean attribute. If present, it indicates that the list is a descending list (..., 3, 2, 1). If the attribute is omitted, the list is an ascending list (1, 2, 3, ...).

The start attribute, if present, must be a valid integer giving the ordinal value of the first list item.

If the start attribute is present, user agents must parse it as an integer, in order to determine the attribute's value. The default value, used if the attribute is missing or if the value cannot be converted to a number according to the referenced algorithm, is 1 if the element has no reversed attribute, and is the number of child li elements otherwise.

The first item in the list has the ordinal value given by the ol element's start attribute, unless that li element has a value attribute with a value that can be successfully parsed, in which case it has the ordinal value given by that value attribute.

Each subsequent item in the list has the ordinal value given by its value attribute, if it has one, or, if it doesn't, the ordinal value of the previous item, plus one if the reversed is absent, or minus one if it is present.

The type attribute can be used to specify the kind of marker to use in the list, in the cases where that matters (e.g. because items are to be referenced by their number/letter). The attribute, if specified, must have a value that is a case-sensitive match for one of the characters given in the first cell of one of the rows of the following table. The type attribute represents the state given in the cell in the second column of the row whose first cell matches the attribute's value; if none of the cells match, or if the attribute is omitted, then the attribute represents the decimal state.

Keyword State Description Examples for values 1-3 and 3999-4001
1 (U+0031) decimal Decimal numbers 1. 2. 3. ... 3999. 4000. 4001. ...
a (U+0061) lower-alpha Lowercase latin alphabet a. b. c. ... ewu. ewv. eww. ...
A (U+0041) upper-alpha Uppercase latin alphabet A. B. C. ... EWU. EWV. EWW. ...
i (U+0069) lower-roman Lowercase roman numerals i. ii. iii. ... mmmcmxcix. i̅v̅. i̅v̅i. ...
I (U+0049) upper-roman Uppercase roman numerals I. II. III. ... MMMCMXCIX. I̅V̅. I̅V̅I. ...

User agents should render the items of the list in a manner consistent with the state of the type attribute of the ol element. Numbers less than or equal to zero should always use the decimal system regardless of the type attribute.

For CSS user agents, a mapping for this attribute to the 'list-style-type' CSS property is given in the rendering section (the mapping is straightforward: the states above have the same names as their corresponding CSS values).

The reversed, start, and type IDL attributes must reflect the respective content attributes of the same name. The start IDL attribute has the same default as its content attribute.

The following markup shows a list where the order matters, and where the ol element is therefore appropriate. Compare this list to the equivalent list in the ul section to see an example of the same items using the ul element.

<p>I have lived in the following countries (given in the order of when
I first lived there):</p>
<ol>
 <li>Switzerland
 <li>United Kingdom
 <li>United States
 <li>Norway
</ol>

Note how changing the order of the list changes the meaning of the document. In the following example, changing the relative order of the first two items has changed the birthplace of the author:

<p>I have lived in the following countries (given in the order of when
I first lived there):</p>
<ol>
 <li>United Kingdom
 <li>Switzerland
 <li>United States
 <li>Norway
</ol>

4.4.6 The ul element

Categories:
Flow content.
If the element's children include at least one li element: Palpable content.
Contexts in which this element can be used:
Where flow content is expected.
Content model:
Zero or more li and script-supporting elements.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
list role (default - do not set), directory, group, listbox, menu, menubar, presentation, tablist, toolbar or tree.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLUListElement : HTMLElement {};

The ul element represents a list of items, where the order of the items is not important — that is, where changing the order would not materially change the meaning of the document.

The items of the list are the li element child nodes of the ul element.

The following markup shows a list where the order does not matter, and where the ul element is therefore appropriate. Compare this list to the equivalent list in the ol section to see an example of the same items using the ol element.

<p>I have lived in the following countries:</p>
<ul>
 <li>Norway
 <li>Switzerland
 <li>United Kingdom
 <li>United States
</ul>

Note that changing the order of the list does not change the meaning of the document. The items in the snippet above are given in alphabetical order, but in the snippet below they are given in order of the size of their current account balance in 2007, without changing the meaning of the document whatsoever:

<p>I have lived in the following countries:</p>
<ul>
 <li>Switzerland
 <li>Norway
 <li>United Kingdom
 <li>United States
</ul>

4.4.7 The li element

Categories:
None.
Contexts in which this element can be used:
Inside ol elements.
Inside ul elements.
Inside menu elements whose type attribute is in the toolbar state.
Content model:
Flow content.
Content attributes:
Global attributes
If the element is a child of an ol element: value - Ordinal value of the list item
Tag omission in text/html:

An li element's end tag may be omitted if the li element is immediately followed by another li element or if there is no more content in the parent element.

Allowed ARIA role attribute values:
listitem role (default - do not set), menuitem, menuitemcheckbox, menuitemradio, option, tab, treeitem or presentation.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLLIElement : HTMLElement {
           attribute long value;
};

The li element represents a list item. If its parent element is an ol, ul, or menu element, then the element is an item of the parent element's list, as defined for those elements. Otherwise, the list item has no defined list-related relationship to any other li element.

If the parent element is an ol element, then the li element has an ordinal value.

The value attribute, if present, must be a valid integer giving the ordinal value of the list item.

If the value attribute is present, user agents must parse it as an integer, in order to determine the attribute's value. If the attribute's value cannot be converted to a number, the attribute must be treated as if it was absent. The attribute has no default value.

The value attribute is processed relative to the element's parent ol element (q.v.), if there is one. If there is not, the attribute has no effect.

The value IDL attribute must reflect the value of the value content attribute.

The following example, the top ten movies are listed (in reverse order). Note the way the list is given a title by using a figure element and its figcaption element.

<figure>
 <figcaption>The top 10 movies of all time</figcaption>
 <ol>
  <li value="10"><cite>Josie and the Pussycats</cite>, 2001</li>
  <li value="9"><cite lang="sh">Црна мачка, бели мачор</cite>, 1998</li>
  <li value="8"><cite>A Bug's Life</cite>, 1998</li>
  <li value="7"><cite>Toy Story</cite>, 1995</li>
  <li value="6"><cite>Monsters, Inc</cite>, 2001</li>
  <li value="5"><cite>Cars</cite>, 2006</li>
  <li value="4"><cite>Toy Story 2</cite>, 1999</li>
  <li value="3"><cite>Finding Nemo</cite>, 2003</li>
  <li value="2"><cite>The Incredibles</cite>, 2004</li>
  <li value="1"><cite>Ratatouille</cite>, 2007</li>
 </ol>
</figure>

The markup could also be written as follows, using the reversed attribute on the ol element:

<figure>
 <figcaption>The top 10 movies of all time</figcaption>
 <ol reversed>
  <li><cite>Josie and the Pussycats</cite>, 2001</li>
  <li><cite lang="sh">Црна мачка, бели мачор</cite>, 1998</li>
  <li><cite>A Bug's Life</cite>, 1998</li>
  <li><cite>Toy Story</cite>, 1995</li>
  <li><cite>Monsters, Inc</cite>, 2001</li>
  <li><cite>Cars</cite>, 2006</li>
  <li><cite>Toy Story 2</cite>, 1999</li>
  <li><cite>Finding Nemo</cite>, 2003</li>
  <li><cite>The Incredibles</cite>, 2004</li>
  <li><cite>Ratatouille</cite>, 2007</li>
 </ol>
</figure>

While it is conforming to include heading elements (e.g. h1) inside li elements, it likely does not convey the semantics that the author intended. A heading starts a new section, so a heading in a list implicitly splits the list into spanning multiple sections.

4.4.8 The dl element

Categories:
Flow content.
If the element's children include at least one name-value group: Palpable content.
Contexts in which this element can be used:
Where flow content is expected.
Content model:
Zero or more groups each consisting of one or more dt elements followed by one or more dd elements, optionally intermixed with script-supporting elements.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLDListElement : HTMLElement {};

The dl element represents an association list consisting of zero or more name-value groups (a description list). A name-value group consists of one or more names (dt elements) followed by one or more values (dd elements), ignoring any nodes other than dt and dd elements. Within a single dl element, there should not be more than one dt element for each name.

Name-value groups may be terms and definitions, metadata topics and values, questions and answers, or any other groups of name-value data.

The values within a group are alternatives; multiple paragraphs forming part of the same value must all be given within the same dd element.

The order of the list of groups, and of the names and values within each group, may be significant.

If a dl element is empty, it contains no groups.

If a dl element has one or more non-whitespace Text node children, or has child elements that are neither dt nor dd elements, all such Text nodes and elements, as well as their descendants (including any dt or dd elements), do not form part of any groups in that dl.

If a dl element has one or more dt element children but no dd element children, then it consists of one group with names but no values.

If a dl element has one or more dd element children but no dt element children, then it consists of one group with values but no names.

If a dl element's first dt or dd element child is a dd element, then the first group has no associated name.

If a dl element's last dt or dd element child is a dt element, then the last group has no associated value.

When a dl element doesn't match its content model, it is often due to accidentally using dd elements in the place of dt elements and vice versa. Conformance checkers can spot such mistakes and might be able to advise authors how to correctly use the markup.

In the following example, one entry ("Authors") is linked to two values ("John" and "Luke").

<dl>
 <dt> Authors
 <dd> John
 <dd> Luke
 <dt> Editor
 <dd> Frank
</dl>

In the following example, one definition is linked to two terms.

<dl>
 <dt lang="en-US"> <dfn>color</dfn> </dt>
 <dt lang="en-GB"> <dfn>colour</dfn> </dt>
 <dd> A sensation which (in humans) derives from the ability of
 the fine structure of the eye to distinguish three differently
 filtered analyses of a view. </dd>
</dl>

The following example illustrates the use of the dl element to mark up metadata of sorts. At the end of the example, one group has two metadata labels ("Authors" and "Editors") and two values ("Robert Rothman" and "Daniel Jackson").

<dl>
 <dt> Last modified time </dt>
 <dd> 2004-12-23T23:33Z </dd>
 <dt> Recommended update interval </dt>
 <dd> 60s </dd>
 <dt> Authors </dt>
 <dt> Editors </dt>
 <dd> Robert Rothman </dd>
 <dd> Daniel Jackson </dd>
</dl>

The following example shows the dl element used to give a set of instructions. The order of the instructions here is important (in the other examples, the order of the blocks was not important).

<p>Determine the victory points as follows (use the
first matching case):</p>
<dl>
 <dt> If you have exactly five gold coins </dt>
 <dd> You get five victory points </dd>
 <dt> If you have one or more gold coins, and you have one or more silver coins </dt>
 <dd> You get two victory points </dd>
 <dt> If you have one or more silver coins </dt>
 <dd> You get one victory point </dd>
 <dt> Otherwise </dt>
 <dd> You get no victory points </dd>
</dl>

The following snippet shows a dl element being used as a glossary. Note the use of dfn to indicate the word being defined.

<dl>
 <dt><dfn>Apartment</dfn>, n.</dt>
 <dd>An execution context grouping one or more threads with one or
 more COM objects.</dd>
 <dt><dfn>Flat</dfn>, n.</dt>
 <dd>A deflated tire.</dd>
 <dt><dfn>Home</dfn>, n.</dt>
 <dd>The user's login directory.</dd>
</dl>

The dl element is inappropriate for marking up dialogue. Examples of how to mark up dialogue are shown below.

4.4.9 The dt element

Categories:
None.
Contexts in which this element can be used:
Before dd or dt elements inside dl elements.
Content model:
Flow content, but with no header, footer, sectioning content, or heading content descendants.
Content attributes:
Global attributes
Tag omission in text/html:

A dt element's end tag may be omitted if the dt element is immediately followed by another dt element or a dd element.

Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The dt element represents the term, or name, part of a term-description group in a description list (dl element).

The dt element itself, when used in a dl element, does not indicate that its contents are a term being defined, but this can be indicated using the dfn element.

This example shows a list of frequently asked questions (a FAQ) marked up using the dt element for questions and the dd element for answers.

<article>
 <h1>FAQ</h1>
 <dl>
  <dt>What do we want?</dt>
  <dd>Our data.</dd>
  <dt>When do we want it?</dt>
  <dd>Now.</dd>
  <dt>Where is it?</dt>
  <dd>We are not sure.</dd>
 </dl>
</article>

4.4.10 The dd element

Categories:
None.
Contexts in which this element can be used:
After dt or dd elements inside dl elements.
Content model:
Flow content.
Content attributes:
Global attributes
Tag omission in text/html:

A dd element's end tag may be omitted if the dd element is immediately followed by another dd element or a dt element, or if there is no more content in the parent element.

Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The dd element represents the description, definition, or value, part of a term-description group in a description list (dl element).

A dl can be used to define a vocabulary list, like in a dictionary. In the following example, each entry, given by a dt with a dfn, has several dds, showing the various parts of the definition.

<dl>
 <dt><dfn>happiness</dfn></dt>
 <dd class="pronunciation">/'hæ p. nes/</dd>
 <dd class="part-of-speech"><i><abbr>n.</abbr></i></dd>
 <dd>The state of being happy.</dd>
 <dd>Good fortune; success. <q>Oh <b>happiness</b>! It worked!</q></dd>
 <dt><dfn>rejoice</dfn></dt>
 <dd class="pronunciation">/ri jois'/</dd>
 <dd><i class="part-of-speech"><abbr>v.intr.</abbr></i> To be delighted oneself.</dd>
 <dd><i class="part-of-speech"><abbr>v.tr.</abbr></i> To cause one to be delighted.</dd>
</dl>

4.4.11 The figure element

Categories:
Flow content.
Sectioning root.
Palpable content.
Contexts in which this element can be used:
Where flow content is expected.
Content model:
Either: One figcaption element followed by flow content.
Or: Flow content followed by one figcaption element.
Or: Flow content.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The figure element represents some flow content, optionally with a caption, that is self-contained (like a complete sentence) and is typically referenced as a single unit from the main flow of the document.

Self-contained in this context does not necessarily mean independent. For example, each sentence in a paragraph is self-contained; an image that is part of a sentence would be inappropriate for figure, but an entire sentence made of images would be fitting.

The element can thus be used to annotate illustrations, diagrams, photos, code listings, etc.

When a figure is referred to from the main content of the document by identifying it by its caption (e.g. by figure number), it enables such content to be easily moved away from that primary content, e.g. to the side of the page, to dedicated pages, or to an appendix, without affecting the flow of the document.

If a figure element is referenced by its relative position, e.g. "in the photograph above" or "as the next figure shows", then moving the figure would disrupt the page's meaning. Authors are encouraged to consider using labels to refer to figures, rather than using such relative references, so that the page can easily be restyled without affecting the page's meaning.

The first figcaption element child of the element, if any, represents the caption of the figure element's contents. If there is no child figcaption element, then there is no caption.

A figure element's contents are part of the surrounding flow. If the purpose of the page is to display the figure, for example a photograph on an image sharing site, the figure and figcaption elements can be used to explicitly provide a caption for that figure. For content that is only tangentially related, or that serves a separate purpose than the surrounding flow, the aside element should be used (and can itself wrap a figure). For example, a pull quote that repeats content from an article would be more appropriate in an aside than in a figure, because it isn't part of the content, it's a repetition of the content for the purposes of enticing readers or highlighting key topics.

This example shows the figure element to mark up a code listing.

<p>In <a href="#l4">listing 4</a> we see the primary core interface
API declaration.</p>
<figure id="l4">
 <figcaption>Listing 4. The primary core interface API declaration.</figcaption>
 <pre><code>interface PrimaryCore {
 boolean verifyDataLine();
 void sendData(in sequence&lt;byte> data);
 void initSelfDestruct();
}</code></pre>
</figure>
<p>The API is designed to use UTF-8.</p>

Here we see a figure element to mark up a photo that is the main content of the page (as in a gallery).

<!DOCTYPE HTML>
<title>Bubbles at work — My Gallery™</title>
<figure>
 <img src="bubbles-work.jpeg"
      alt="Bubbles, sitting in his office chair, works on his
           latest project intently.">
 <figcaption>Bubbles at work</figcaption>
</figure>
<nav><a href="19414.html">Prev</a> — <a href="19416.html">Next</a></nav>

In this example, we see an image that is not a figure, as well as an image and a video that are. The first image is literally part of the example's second sentence, so it's not a self-contained unit, and thus figure would be inappropriate.

<h2>Malinko's comics</h2>

<p>This case centered on some sort of "intellectual property"
infringement related to a comic (see Exhibit A). The suit started
after a trailer ending with these words:

<blockquote>
 <img src="promblem-packed-action.png" alt="ROUGH COPY! Promblem-Packed Action!">
</blockquote>

<p>...was aired. A lawyer, armed with a Bigger Notebook, launched a
preemptive strike using snowballs. A complete copy of the trailer is
included with Exhibit B.

<figure>
 <img src="ex-a.png" alt="Two squiggles on a dirty piece of paper.">
 <figcaption>Exhibit A. The alleged <cite>rough copy</cite> comic.</figcaption>
</figure>

<figure>
 <video src="ex-b.mov"></video>
 <figcaption>Exhibit B. The <cite>Rough Copy</cite> trailer.</figcaption>
</figure>

<p>The case was resolved out of court.

Here, a part of a poem is marked up using figure.

<figure>
 <p>'Twas brillig, and the slithy toves<br>
 Did gyre and gimble in the wabe;<br>
 All mimsy were the borogoves,<br>
 And the mome raths outgrabe.</p>
 <figcaption><cite>Jabberwocky</cite> (first verse). Lewis Carroll, 1832-98</figcaption>
</figure>

In this example, which could be part of a much larger work discussing a castle, nested figure elements are used to provide both a group caption and individual captions for each figure in the group:

<figure>
 <figcaption>The castle through the ages: 1423, 1858, and 1999 respectively.</figcaption>
 <figure>
  <figcaption>Etching. Anonymous, ca. 1423.</figcaption>
  <img src="castle1423.jpeg" alt="The castle has one tower, and a tall wall around it.">
 </figure>
 <figure>
  <figcaption>Oil-based paint on canvas. Maria Towle, 1858.</figcaption>
  <img src="castle1858.jpeg" alt="The castle now has two towers and two walls.">
 </figure>
 <figure>
  <figcaption>Film photograph. Peter Jankle, 1999.</figcaption>
  <img src="castle1999.jpeg" alt="The castle lies in ruins, the original tower all that remains in one piece.">
 </figure>
</figure>

The figure is sometimes referenced only implicitly from the content:

<article>
 <h1>Fiscal negotiations stumble in Congress as deadline nears</h1>
 <figure>
  <img src="obama-reid.jpeg" alt="Obama and Reid sit together smiling in the Oval Office.">
  <figcaption>Barrak Obama and Harry Reid. White House press photograph.</figcaption>
 </figure>
 <p>Negotiations in Congress to end the fiscal impasse sputtered on Tuesday, leaving both chambers
 grasping for a way to reopen the government and raise the country's borrowing authority with a
 Thursday deadline drawing near.</p>
 ...
</article>

4.4.12 The figcaption element

Categories:
None.
Contexts in which this element can be used:
As the first or last child of a figure element.
Content model:
Flow content.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The figcaption element represents a caption or legend for the rest of the contents of the figcaption element's parent figure element, if any.

4.4.13 The main element

Categories:
Flow content.
Palpable content.
Contexts in which this element can be used:
Where flow content is expected, but with no article, aside, footer, header or nav element ancestors.
Content model:
Flow content.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
main role (default - do not set) or presentation.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement

The main element represents the main content of the body of a document or application. The main content area consists of content that is directly related to or expands upon the central topic of a document or central functionality of an application.

The main element is not sectioning content and has no effect on the document outline

The main content area of a document includes content that is unique to that document and excludes content that is repeated across a set of documents such as site navigation links, copyright information, site logos and banners and search forms (unless the document or applications main function is that of a search form).

User agents that support keyboard navigation of content are strongly encouraged to provide a method to navigate to the main element and once navigated to, ensure the next element in the focus order is the first focusable element within the main element. This will provide a simple method for keyboard users to bypass blocks of content such as navigation links.

Authors must not include more than one main element in a document.

Authors must not include the main element as a descendant of an article, aside, footer, header or nav element.

The main element is not suitable for use to identify the main content areas of sub sections of a document or application. The simplest solution is to not mark up the main content of a sub section at all, and just leave it as implicit, but an author could use a grouping content or sectioning content element as appropriate.

Authors are advised to use ARIA role="main" attribute on the main element until user agents implement the required role mapping.

  <main role="main"> 
  ... 
  </main>

In the following example, we see 2 articles about skateboards (the main topic of a Web page) the main topic content is identified by the use of the main element.

<!-- other content -->

<main>

  <h1>Skateboards</h1>
  <p>The skateboard is the way cool kids get around</p>
  
  <article>
  <h2>Longboards</h2>
  <p>Longboards are a type of skateboard with a longer 
  wheelbase and larger, softer wheels.</p>
  <p>... </p>
  <p>... </p>
  </article>

  <article>
  <h2>Electric Skateboards</h2>
  <p>These no longer require the propelling of the skateboard
  by means of the feet; rather an electric motor propels the board, 
  fed by an electric battery.</p>
  <p>... </p>
  <p>... </p>
  </article>

</main>

  <!-- other content -->

Here is a graduation programme the main content section is defined by the use of the main element. Note in this example the main element contains a nav element consisting of links to sub sections of the main content.

<!DOCTYPE html>
  <html>
  <head>
<title>Graduation Ceremony Summer 2022</title> </head> <body> <header>The Lawson Academy: <nav> <ul> <li><a href="courses.html">Courses</a></li> <li><a href="fees.html">Fees</a></li> <li><a>Graduation</a></li> </ul> </nav> </header> <main> <h1>Graduation</h1> <nav> <ul> <li><a href="#ceremony">Ceremony</a></li> <li><a href="#graduates">Graduates</a></li> <li><a href="#awards">Awards</a></li> </ul> </nav> <H2 id="ceremony">Ceremony</H2> <p>Opening Procession</p> <p>Speech by Valedictorian</p> <p>Speech by Class President</p> <p>Presentation of Diplomas</p> <p>Closing Speech by Headmaster</p> <h2 id="graduates">Graduates</h2> <ul> <li>Eileen Williams</li> <li>Andy Maseyk</li> <li>Blanca Sainz Garcia</li> <li>Clara Faulkner</li> <li>Gez Lemon</li> <li>Eloisa Faulkner</li> </ul> <h2 id="awards">Awards</h2> <ul> <li>Clara Faulkner</li> <li>Eloisa Faulkner</li> <li>Blanca Sainz Garcia</li> </ul> </main> <footer> Copyright 2012 B.lawson</footer> </body> </html>

4.4.14 The div element

Categories:
Flow content.
Palpable content.
Contexts in which this element can be used:
Where flow content is expected.
Content model:
Flow content.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLDivElement : HTMLElement {};

The div element has no special meaning at all. It represents its children. It can be used with the class, lang, and title attributes to mark up semantics common to a group of consecutive elements.

Authors are strongly encouraged to view the div element as an element of last resort, for when no other element is suitable. Use of more appropriate elements instead of the div element leads to better accessibility for readers and easier maintainability for authors.

For example, a blog post would be marked up using article, a chapter using section, a page's navigation aids using nav, and a group of form controls using fieldset.

On the other hand, div elements can be useful for stylistic purposes or to wrap multiple paragraphs within a section that are all to be annotated in a similar way. In the following example, we see div elements used as a way to set the language of two paragraphs at once, instead of setting the language on the two paragraph elements separately:

<article lang="en-US">
 <h1>My use of language and my cats</h1>
 <p>My cat's behavior hasn't changed much since her absence, except
 that she plays her new physique to the neighbors regularly, in an
 attempt to get pets.</p>
 <div lang="en-GB">
  <p>My other cat, coloured black and white, is a sweetie. He followed
  us to the pool today, walking down the pavement with us. Yesterday
  he apparently visited our neighbours. I wonder if he recognises that
  their flat is a mirror image of ours.</p>
  <p>Hm, I just noticed that in the last paragraph I used British
  English. But I'm supposed to write in American English. So I
  shouldn't say "pavement" or "flat" or "colour"...</p>
 </div>
 <p>I should say "sidewalk" and "apartment" and "color"!</p>
</article>

4.5 Text-level semantics

4.5.1 The a element

Categories:
Flow content.
Phrasing content.
Interactive content.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Transparent, but there must be no interactive content descendant.
Content attributes:
Global attributes
href - Address of the hyperlink
target - Default browsing context for hyperlink navigation and form submission
download - Whether to download the resource instead of navigating to it, and its file name if so
rel - Relationship between the document containing the hyperlink and the destination resource
hreflang - Language of the linked resource
type - Hint for the type of the referenced resource
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
link (default - do not set), button, checkbox, menuitem, menuitemcheckbox, menuitemradio, tab or treeitem
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLAnchorElement : HTMLElement {
           attribute DOMString target;
           attribute DOMString download;

           attribute DOMString rel;
           
           attribute DOMString rev;
  readonly attribute DOMTokenList relList;
           attribute DOMString hreflang;
           attribute DOMString type;

           attribute DOMString text;
};
HTMLAnchorElement implements URLUtils;

If the a element has an href attribute, then it represents a hyperlink (a hypertext anchor) labeled by its contents.

If the a element has no href attribute, then the element represents a placeholder for where a link might otherwise have been placed, if it had been relevant, consisting of just the element's contents.

The target, download, rel, hreflang, and type attributes must be omitted if the href attribute is not present.

If the itemprop attribute is specified on an a element, then the href attribute must also be specified.

If a site uses a consistent navigation toolbar on every page, then the link that would normally link to the page itself could be marked up using an a element:

<nav>
 <ul>
  <li> <a href="/">Home</a> </li>
  <li> <a href="/news">News</a> </li>
  <li> <a>Examples</a> </li>
  <li> <a href="/legal">Legal</a> </li>
 </ul>
</nav>

The href, target, download, and attributes affect what happens when users follow hyperlinks or download hyperlinks created using the a element. The rel, hreflang, and type attributes may be used to indicate to the user the likely nature of the target resource before the user follows the link.

The activation behavior of a elements that create hyperlinks is to run the following steps:

  1. If the a element's Document is not fully active, then abort these steps.

  2. If either the a element has a download attribute and the algorithm is not allowed to show a popup, or the element's target attribute is present and applying the rules for choosing a browsing context given a browsing context name, using the value of the target attribute as the browsing context name, would result in there not being a chosen browsing context, then run these substeps:

    1. If there is an entry settings object, throw an InvalidAccessError exception.

    2. Abort these steps without following the hyperlink.

  3. If the target of the click event is an img element with an ismap attribute specified, then server-side image map processing must be performed, as follows:

    1. If the click event was a real pointing-device-triggered click event on the img element, then let x be the distance in CSS pixels from the left edge of the image's left border, if it has one, or the left edge of the image otherwise, to the location of the click, and let y be the distance in CSS pixels from the top edge of the image's top border, if it has one, or the top edge of the image otherwise, to the location of the click. Otherwise, let x and y be zero.
    2. Let the hyperlink suffix be a U+003F QUESTION MARK character, the value of x expressed as a base-ten integer using ASCII digits, a "," (U+002C) character, and the value of y expressed as a base-ten integer using ASCII digits.
  4. Finally, the user agent must follow the hyperlink or download the hyperlink created by the a element, as determined by the download attribute and any expressed user preference. If the steps above defined a hyperlink suffix, then take that into account when following or downloading the hyperlink.

a . text

Same as textContent.

The IDL attributes download, target, rel, rev, hreflang, and type, must reflect the respective content attributes of the same name.

The IDL attribute relList must reflect the rel content attribute.

The text IDL attribute, on getting, must return the same value as the textContent IDL attribute on the element, and on setting, must act as if the textContent IDL attribute on the element had been set to the new value.


The a element also supports the URLUtils interface. [URL]

When the element is created, and whenever the element's href content attribute is set, changed, or removed, the user agent must invoke the element's URLUtils interface's set the input algorithm with the value of the href content attribute, if any, or the empty string otherwise, as the given value.

The element's URLUtils interface's get the base algorithm must simply return the element's base URL.

The element's URLUtils interface's query encoding is the document's character encoding.

When the element's URLUtils interface invokes its update steps with a string value, the user agent must set the element's href content attribute to the string value.

The a element may be wrapped around entire paragraphs, lists, tables, and so forth, even entire sections, so long as there is no interactive content within (e.g. buttons or other links). This example shows how this can be used to make an entire advertising block into a link:

<aside class="advertising">
 <h1>Advertising</h1>
 <a href="http://ad.example.com/?adid=1929&amp;pubid=1422">
  <section>
   <h1>Mellblomatic 9000!</h1>
   <p>Turn all your widgets into mellbloms!</p>
   <p>Only $9.99 plus shipping and handling.</p>
  </section>
 </a>
 <a href="http://ad.example.com/?adid=375&amp;pubid=1422">
  <section>
   <h1>The Mellblom Browser</h1>
   <p>Web browsing at the speed of light.</p>
   <p>No other browser goes faster!</p>
  </section>
 </a>
</aside>

4.5.2 The em element

Categories:
Flow content.
Phrasing content.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The em element represents stress emphasis of its contents.

The level of stress that a particular piece of content has is given by its number of ancestor em elements.

The placement of stress emphasis changes the meaning of the sentence. The element thus forms an integral part of the content. The precise way in which stress is used in this way depends on the language.

These examples show how changing the stress emphasis changes the meaning. First, a general statement of fact, with no stress:

<p>Cats are cute animals.</p>

By emphasizing the first word, the statement implies that the kind of animal under discussion is in question (maybe someone is asserting that dogs are cute):

<p><em>Cats</em> are cute animals.</p>

Moving the stress to the verb, one highlights that the truth of the entire sentence is in question (maybe someone is saying cats are not cute):

<p>Cats <em>are</em> cute animals.</p>

By moving it to the adjective, the exact nature of the cats is reasserted (maybe someone suggested cats were mean animals):

<p>Cats are <em>cute</em> animals.</p>

Similarly, if someone asserted that cats were vegetables, someone correcting this might emphasise the last word:

<p>Cats are cute <em>animals</em>.</p>

By emphasizing the entire sentence, it becomes clear that the speaker is fighting hard to get the point across. This kind of stress emphasis also typically affects the punctuation, hence the exclamation mark here.

<p><em>Cats are cute animals!</em></p>

Anger mixed with emphasizing the cuteness could lead to markup such as:

<p><em>Cats are <em>cute</em> animals!</em></p>

The em element isn't a generic "italics" element. Sometimes, text is intended to stand out from the rest of the paragraph, as if it was in a different mood or voice. For this, the i element is more appropriate.

The em element also isn't intended to convey importance; for that purpose, the strong element is more appropriate.

4.5.3 The strong element

Categories:
Flow content.
Phrasing content.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The strong element represents strong importance, seriousness, or urgency for its contents.

Importance: The strong element can be used in a heading, caption, or paragraph to distinguish the part that really matters from other parts of the that might be more detailed, more jovial, or merely boilerplate.

For example, the first word of the previous paragraph is marked up with strong to distinguish it from the more detailed text in the rest of the paragraph.

Seriousness: The strong element can be used to mark up a warning or caution notice.

Urgency: The strong element can be used to denote contents that the user needs to see sooner than other parts of the document.

The relative level of importance of a piece of content is given by its number of ancestor strong elements; each strong element increases the importance of its contents.

Changing the importance of a piece of text with the strong element does not change the meaning of the sentence.

Here, the word "chapter" and the actual chapter number are mere boilerplate, and the actual name of the chapter is marked up with strong:

<h1>Chapter 1: <strong>The Praxis</strong></h1>

In the following example, the name of the diagram in the caption is marked up with strong, to distinguish it from boilerplate text (before) and the description (after):

<figcaption>Figure 1. <strong>Ant colony dynamics</strong>. The ants in this colony are
affected by the heat source (upper left) and the food source (lower right).</figcaption>

In this example, the heading is really "Flowers, Bees, and Honey", but the author has added a light-hearted addition to the heading. The strong element is thus used to mark up the first part to distinguish it from the latter part.

<h1><strong>Flowers, Bees, and Honey</strong> and other things I don't understand</h1>

Here is an example of a warning notice in a game, with the various parts marked up according to how important they are:

<p><strong>Warning.</strong> This dungeon is dangerous.
<strong>Avoid the ducks.</strong> Take any gold you find.
<strong><strong>Do not take any of the diamonds</strong>,
they are explosive and <strong>will destroy anything within
ten meters.</strong></strong> You have been warned.</p>

In this example, the strong element is used to denote the part of the text that the user is intended to read first.

<p>Welcome to Remy, the reminder system.</p>
<p>Your tasks for today:</p>
<ul>
 <li><p><strong>Turn off the oven.</strong></p></li>
 <li><p>Put out the trash.</p></li>
 <li><p>Do the laundry.</p></li>
</ul>

4.5.4 The small element

Categories:
Flow content.
Phrasing content.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The small element represents side comments such as small print.

Small print typically features disclaimers, caveats, legal restrictions, or copyrights. Small print is also sometimes used for attribution, or for satisfying licensing requirements.

The small element does not "de-emphasize" or lower the importance of text emphasized by the em element or marked as important with the strong element. To mark text as not emphasized or important, simply do not mark it up with the em or strong elements respectively.

The small element should not be used for extended spans of text, such as multiple paragraphs, lists, or sections of text. It is only intended for short runs of text. The text of a page listing terms of use, for instance, would not be a suitable candidate for the small element: in such a case, the text is not a side comment, it is the main content of the page.

In this example, the small element is used to indicate that value-added tax is not included in a price of a hotel room:

<dl>
 <dt>Single room
 <dd>199 € <small>breakfast included, VAT not included</small>
 <dt>Double room
 <dd>239 € <small>breakfast included, VAT not included</small>
</dl>

In this second example, the small element is used for a side comment in an article.

<p>Example Corp today announced record profits for the
second quarter <small>(Full Disclosure: Foo News is a subsidiary of
Example Corp)</small>, leading to speculation about a third quarter
merger with Demo Group.</p>

This is distinct from a sidebar, which might be multiple paragraphs long and is removed from the main flow of text. In the following example, we see a sidebar from the same article. This sidebar also has small print, indicating the source of the information in the sidebar.

<aside>
 <h1>Example Corp</h1>
 <p>This company mostly creates small software and Web
 sites.</p>
 <p>The Example Corp company mission is "To provide entertainment
 and news on a sample basis".</p>
 <p><small>Information obtained from <a
 href="http://example.com/about.html">example.com</a> home
 page.</small></p>
</aside>

In this last example, the small element is marked as being important small print.

<p><strong><small>Continued use of this service will result in a kiss.</small></strong></p>

4.5.5 The s element

Categories:
Flow content.
Phrasing content.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content.
Content attributes:
Global attributes
Tag omission in text/html
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The s element represents contents that are no longer accurate or no longer relevant.

The s element is not appropriate when indicating document edits; to mark a span of text as having been removed from a document, use the del element.

In this example a recommended retail price has been marked as no longer relevant as the product in question has a new sale price.

<p>Buy our Iced Tea and Lemonade!</p>
<p><s>Recommended retail price: $3.99 per bottle</s></p>
<p><strong>Now selling for just $2.99 a bottle!</strong></p>

4.5.6 The cite element

Categories:
Flow content.
Phrasing content.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The cite element represents a reference to a creative work. It must include the title of the work or the name of the author(person, people or organization) or an URL reference, or a reference in abbreviated form as per the conventions used for the addition of citation metadata.

Creative works include a book, a paper, an essay, a poem, a score, a song, a script, a film, a TV show, a game, a sculpture, a painting, a theatre production, a play, an opera, a musical, an exhibition, a legal case report, a computer program, , a web site, a web page, a blog post or comment, a forum post or comment, a tweet, a written or oral statement, etc.

Here is an example of the author of a quote referenced using the cite element:

  
  <p>In the words of <cite>Charles Bukowski</cite> -  
  <q>An intellectual says a simple thing in a hard way. An artist says a hard thing in a simple way.</q></p> 
  

This second example identifies the author of a tweet by referencing the authors name using the cite element:

  
  <blockquote class="twitter-tweet">
  <p>♥ Bukowski in <a href="https://twitter.com/search?q=%23HTML5&src=hash">#HTML5</a> spec examples
  <a href="http://t.co/0FIEiYN1pC">http://t.co/0FIEiYN1pC</a></p><cite>— karl dubost (@karlpro) 
  <a href="https://twitter.com/karlpro/statuses/370905307293442048">August 23, 2013</a></cite>
  </blockquote> 
  

In this example the cite element is used to reference the title of a work in a bibliography:

<p><cite>Universal Declaration of Human Rights</cite>, United Nations,
December 1948. Adopted by General Assembly resolution 217 A (III).</p>

In this example the cite element is used to reference the title of a television show:

<p>Who is your favorite doctor (in <cite>Doctor Who</cite>)?</p>

A very common use for the cite element is to identify the author of a comment in a blog post or forum, as in this example:

  <article id="comment-1"> 
  Comment by <cite><a href="http://oli.jp">Oli Studholme</a></cite> 
  <time datetime="2013-08-19T16:01">August 19th, 2013 at 4:01 pm</time>
  <p>Unfortunately I don't think adding names back into the definition of <code>cite</code>
  solves the problem: of the 12 blockquote examples in
  <a href="http://oli.jp/example/blockquote-metadata/">Examples of block quote metadata</a>,
  there's not even one that's <em>just</em> a person’s name.</p>
  <p>A subset of the problem, maybe…</p>
  </article>

Another common use for the cite element is to reference the URL of a search result, as in this example:

  <div id="resultStats">About 416,000,000 results 0.33 seconds) </div>
  ...
  <p><a href="http://www.w3.org/html/wg/">W3C <i>HTML Working Group</i></a></p>
  <p><cite>www.w3.org/<b>html</b>/wg/</cite></p>
  <p>15 Apr 2013 - The <i>HTML Working Group</i> is currently chartered to continue its 
  work through 31 December 2014. A Plan 2014 document published by the...</p>
  ...
  

Where the cite element is used to identify an abbreviated reference such as Ibid. it is suggested that this reference be linked to the base reference:

  <article>
  <h2>Book notes</h2>
  ...
  ...
  <blockquote>"Money is the real cause of poverty," 
  <footer> 
  <cite id="baseref">The Ragged-Trousered Philanthropists, page 89.</cite>
  </footer>
  </blockquote>
  ...
  ...
  <blockquote>"Money is the cause of poverty because it is the device by which those who 
  are too lazy to work are enabled to rob the workers of the fruits of their labour."
  <a href="#baseref"><cite>Ibid.</cite></a> 
  </blockquote>
  ...
  </article>
  

A citation is not a quote (for which the q element is appropriate).

This is incorrect usage, because cite is not for quotes:

<p><cite>This is wrong!, said Hillary.</cite> is a quote from the
  popular daytime TV drama When Ian became Hillary.</p>

This is an example of the correct usage:

<p><q>This is correct, said Hillary.</q> is a quote from the
  popular daytime TV drama <cite>When Ian became Hillary</cite>.</p>

4.5.7 The q element

Categories:
Flow content.
Phrasing content.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content.
Content attributes:
Global attributes
cite - Link to the source of the quotation or more information about the edit
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLQuoteElement.

The q element represents some phrasing content quoted from another source.

Quotation punctuation (such as quotation marks) that is quoting the contents of the element must not appear immediately before, after, or inside q elements; they will be inserted into the rendering by the user agent.

Content inside a q element must be quoted from another source, whose address, if it has one, may be cited in the cite attribute. The source may be fictional, as when quoting characters in a novel or screenplay.

If the cite attribute is present, it must be a valid URL potentially surrounded by spaces. To obtain the corresponding citation link, the value of the attribute must be resolved relative to the element. User agents may allow users to follow such citation links, but they are primarily intended for private use (e.g. by server-side scripts collecting statistics about a site's use of quotations), not for readers.

The q element must not be used in place of quotation marks that do not represent quotes; for example, it is inappropriate to use the q element for marking up sarcastic statements.

The use of q elements to mark up quotations is entirely optional; using explicit quotation punctuation without q elements is just as correct.

Here is a simple example of the use of the q element:

<p>The man said <q>Things that are impossible just take
longer</q>. I disagreed with him.</p>

Here is an example with both an explicit citation link in the q element, and an explicit citation outside:

<p>The W3C page <cite>About W3C</cite> says the W3C's
mission is <q cite="http://www.w3.org/Consortium/">To lead the
World Wide Web to its full potential by developing protocols and
guidelines that ensure long-term growth for the Web</q>. I
disagree with this mission.</p>

In the following example, the quotation itself contains a quotation:

<p>In <cite>Example One</cite>, he writes <q>The man
said <q>Things that are impossible just take longer</q>. I
disagreed with him</q>. Well, I disagree even more!</p>

In the following example, quotation marks are used instead of the q element:

<p>His best argument was ❝I disagree❞, which
I thought was laughable.</p>

In the following example, there is no quote — the quotation marks are used to name a word. Use of the q element in this case would be inappropriate.

<p>The word "ineffable" could have been used to describe the disaster
resulting from the campaign's mismanagement.</p>

4.5.8 The dfn element

Categories:
Flow content.
Phrasing content.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content, but there must be no dfn element descendants.
Content attributes:
Global attributes
Also, the title attribute has special semantics on this element.
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The dfn element represents the defining instance of a term. The paragraph, description list group, or section that is the nearest ancestor of the dfn element must also contain the definition(s) for the term given by the dfn element.

Defining term: If the dfn element has a title attribute, then the exact value of that attribute is the term being defined. Otherwise, if it contains exactly one element child node and no child Text nodes, and that child element is an abbr element with a title attribute, then the exact value of that attribute is the term being defined. Otherwise, it is the exact textContent of the dfn element that gives the term being defined.

If the title attribute of the dfn element is present, then it must contain only the term being defined.

The title attribute of ancestor elements does not affect dfn elements.

An a element that links to a dfn element represents an instance of the term defined by the dfn element.

In the following fragment, the term "Garage Door Opener" is first defined in the first paragraph, then used in the second. In both cases, its abbreviation is what is actually displayed.

<p>The <dfn><abbr title="Garage Door Opener">GDO</abbr></dfn>
is a device that allows off-world teams to open the iris.</p>
<!-- ... later in the document: -->
<p>Teal'c activated his <abbr title="Garage Door Opener">GDO</abbr>
and so Hammond ordered the iris to be opened.</p>

With the addition of an a element, the reference can be made explicit:

<p>The <dfn id=gdo><abbr title="Garage Door Opener">GDO</abbr></dfn>
is a device that allows off-world teams to open the iris.</p>
<!-- ... later in the document: -->
<p>Teal'c activated his <a href=#gdo><abbr title="Garage Door Opener">GDO</abbr></a>
and so Hammond ordered the iris to be opened.</p>

4.5.9 The abbr element

Categories:
Flow content.
Phrasing content.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content.
Content attributes:
Global attributes
Also, the title attribute has special semantics on this element.
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The abbr element represents an abbreviation or acronym, optionally with its expansion. The title attribute may be used to provide an expansion of the abbreviation. The attribute, if specified, must contain an expansion of the abbreviation, and nothing else.

The paragraph below contains an abbreviation marked up with the abbr element. This paragraph defines the term "Web Hypertext Application Technology Working Group".

<p>The <dfn id=whatwg><abbr
title="Web Hypertext Application Technology Working Group">WHATWG</abbr></dfn>
is a loose unofficial collaboration of Web browser manufacturers and
interested parties who wish to develop new technologies designed to
allow authors to write and deploy Applications over the World Wide
Web.</p>

An alternative way to write this would be:

<p>The <dfn id=whatwg>Web Hypertext Application Technology
Working Group</dfn> (<abbr
title="Web Hypertext Application Technology Working Group">WHATWG</abbr>)
is a loose unofficial collaboration of Web browser manufacturers and
interested parties who wish to develop new technologies designed to
allow authors to write and deploy Applications over the World Wide
Web.</p>

This paragraph has two abbreviations. Notice how only one is defined; the other, with no expansion associated with it, does not use the abbr element.

<p>The
<abbr title="Web Hypertext Application Technology Working Group">WHATWG</abbr>
started working on HTML5 in 2004.</p>

This paragraph links an abbreviation to its definition.

<p>The <a href="#whatwg"><abbr
title="Web Hypertext Application Technology Working Group">WHATWG</abbr></a>
community does not have much representation from Asia.</p>

This paragraph marks up an abbreviation without giving an expansion, possibly as a hook to apply styles for abbreviations (e.g. smallcaps).

<p>Philip` and Dashiva both denied that they were going to
get the issue counts from past revisions of the specification to
backfill the <abbr>WHATWG</abbr> issue graph.</p>

If an abbreviation is pluralized, the expansion's grammatical number (plural vs singular) must match the grammatical number of the contents of the element.

Here the plural is outside the element, so the expansion is in the singular:

<p>Two <abbr title="Working Group">WG</abbr>s worked on
this specification: the <abbr>WHATWG</abbr> and the
<abbr>HTMLWG</abbr>.</p>

Here the plural is inside the element, so the expansion is in the plural:

<p>Two <abbr title="Working Groups">WGs</abbr> worked on
this specification: the <abbr>WHATWG</abbr> and the
<abbr>HTMLWG</abbr>.</p>

Abbreviations do not have to be marked up using this element. It is expected to be useful in the following cases:

Providing an expansion in a title attribute once will not necessarily cause other abbr elements in the same document with the same contents but without a title attribute to behave as if they had the same expansion. Every abbr element is independent.

4.5.10 The ruby element

Categories:
Flow content.
Phrasing content.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
See prose.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The ruby element allows one or more spans of phrasing content to be marked with ruby annotations. Ruby annotations are short runs of text presented alongside base text, primarily used in East Asian typography as a guide for pronunciation or to include other annotations. In Japanese, this form of typography is also known as furigana. Ruby text can appear on either side, and sometimes both sides, of the base text, and it is possible to control its position using CSS. A more complete introduction to ruby can be found in the Use Cases & Exploratory Approaches for Ruby Markup document as well as in CSS Ruby Module Level 1. [RUBY-UC] [CSSRUBY]

The content model of ruby elements consists of one or more of the following sequences:

  1. One or more phrasing content nodes or rb elements.
  2. One or more rt or rtc elements, each of which either immediately preceded or followed by an rp elements.

The ruby, rb, rtc, and rt elements can be used for a variety of kinds of annotations, including in particular (though by no means limited to) those described below. For more details on Japanese Ruby in particular, and how to render Ruby for Japanese, see Requirements for Japanese Text Layout. [JLREQ] The rp element can be used as fallback content when ruby rendering is not supported.

Mono-ruby for individual base characters

Annotations (the ruby text) are associated individually with each ideographic character (the base text). In Japanese this is typically hiragana or katakana characters used to provide readings of kanji characters.

<ruby>base<rt>annotation</ruby>

When no rb element is used, the base is implied, as above. But you can also make it explicit. This can be useful notably for styling, or when consecutive bases are to be treated as a group, as in the jukugo ruby example further down.

<ruby><rb>base<rt>annotation</ruby>

In the following example, notice how each annotation corresponds to a single base character.

<ruby>日<rt>に</rt></ruby><ruby>本<rt>ほん</rt></ruby>
<ruby>語<rt>ご</rt></ruby>で<ruby>書<rt>か</rt></ruby>
いた<ruby>作<rt>さく</rt></ruby><ruby>文<rt>ぶん</rt></ruby>です。
      

Ruby text interspersed in regular text provides structure akin to the following image:

An example of ruby text mixed up with regular text.

This example can also be written as follows, using one ruby element with two segments of base text and two annotations (one for each) rather than two back-to-back ruby elements each with one base text segment and annotation (as in the markup above):

<ruby>日<rt>に</rt>本<rt>ほん</rt>語<rt>ご</rt></ruby>
で<ruby>書<rt>か</rt></ruby>
いた<ruby>作<rt>さく</rt>文<rt>ぶん</rt></ruby>です。
      
Group ruby

Group ruby is often used where phonetic annotations don't map to discreet base characters, or for semantic glosses that span the whole base text. For example, the word "today" is written with the characters 今日, literally "this day". But it's pronounced きょう (kyou), which can't be broken down into a "this" part and a "day" part. In typical rendering, you can't split text that is annotated with group ruby; it has to wrap as a single unit onto the next line. When a ruby text annotation maps to a base that is comprised of more than one character, then that base is grouped.

The following group ruby:

Group ruby example with きょう annotating 今日

Can be marked up as follows:

<ruby>今日<rt>きょう</ruby>
Jukugo ruby

Jukugo refers to a Japanese compound noun, i.e. a word made up of more than one kanji character. Jukugo ruby is a term that is used not to describe ruby annotations over jukugo text, but rather to describe ruby with a behaviour slightly different from mono or group ruby. Jukugo ruby is similar to mono ruby, in that there is a strong association between ruby text and individual base characters, but the ruby text is typically rendered as grouped together over multiple ideographs when they are on the same line.

The distinction is captured in this example:

Example of jukugo ruby

Which can be marked up as follows:

<ruby>法<rb>華<rb>経<rt>ほ<rt>け<rt>きょう</ruby>

In this example, each rt element is paired with its respective rb element, the difference with an interleaved rb/rt approach being that the sequences of both base text and ruby annotations are implicitly placed in common containers so that the grouping information is captured.

For more details on Jukugo Ruby rendering, see Appendix F in the Requirements for Japanese Text Layout and Use Case C: Jukugo ruby in the Use Cases & Exploratory Approaches for Ruby Markup. [JLREQ] [RUBY-UC]

Inline ruby

In some contexts, for instance when the font size or line height are too small for ruby to be readable, it is desirable to inline the ruby annotation such that it appears in parentheses after the text it annotates. This also provides a convenient fallback strategy for user agents that do not support rendering ruby annotations.

Inlining takes grouping into account. For example, Tokyo is written with two kanji characters, 東, which is pronounced とう, and 京, which is pronounced きょう. Each base character should be annotated individually, but the fallback should be 東京(とうきょう) not 東(とう)京(きょう). This can be marked up as follows:

<ruby>東<rb>京<rt>とう<rt>きょう</ruby>

Note that the above markup will enable the usage of parentheses when inlining for browsers that support ruby layout, but for those that don't it will fail to provide parenthetical fallback. This is where the rp element is useful. It can be inserted into the above example to provide the appropriate fallback when ruby layout is not supported:

<ruby>東<rb>京<rp>(<rt>とう<rt>きょう<rp>)</ruby>
Text with both phonetic and semantic annotations (double-sided ruby)

Sometimes, ruby can be used to annotate a base twice.

In the following example, the Chinese word for San Francisco (旧金山, i.e. “old gold mountain”) is annotated both using pinyin to give the pronunciation, and with the original English.

San Francisco in Chinese, with both pinyin and the original English as annotations.

Which is marked up as follows:

<ruby><rb>旧<rb>金<rb>山<rt>jiù<rt>jīn<rt>shān<rtc>San Francisco</ruby>
      

In this example, a single base run of three base characters is annotated with three pinyin ruby text segments in a first (implicit) container, and an rtc element is introduced in order to provide a second single ruby text annotation being the city's English name.

We can also revisit our jukugo example above with 上手 ("skill") to show how it can be annotation in both kana and romaji phonetics while at the same time maintaining the pairing to bases and annotation grouping information.

上手 ("skill") annotated in both kana and romaji, shown in both jukugo and mono styles.

Which is marked up as follows:

<ruby><rb>上<rb>手<rt>じよう<rt>ず<rtc><rt>jou<rt>zu</ruby>
      

Text that is a direct child of the rtc element implicitly produces a ruby text segment as if it were contained in an rt element. In this contrived example, this is shown with some symbols that are given names in English and French with annotations intended to appear on either side of the base symbol.

<ruby>
  ♥<rt>Heart<rtc lang=fr>Cœur</rtc>
  ☘<rt>Shamrock<rtc lang=fr>Trèfle</rtc>
  ✶<rt>Star<rtc lang=fr>Étoile
</ruby>
      

Similarly, text directly inside a ruby element implicitly produces a ruby base as if it were contained in an rb element, and rt children of ruby are implicitly contained in an rtc container. In effect, the above example is equivalent (in meaning, though not in the DOM it produces) to the following:

<ruby>
  <rb>♥</rb><rtc><rt>Heart</rt></rtc><rtc lang=fr><rt>Cœur</rt></rtc>
  <rb>☘</rb><rtc><rt>Shamrock</rt></rtc><rtc lang=fr><rt>Trèfle</rt></rtc>
  <rb>✶</rb><rtc><rt>Star</rt></rtc><rtc lang=fr><rt>Étoile</rt></rtc>
</ruby>
      

Within a ruby element, content is parcelled into a series of ruby segments. Each ruby segment is described by:

Each ruby text container is described by zero or more ruby text annotations each of which is a DOM range that may contain phrasing content or an rt element, and an annotations range that is a range including all the annotations for that container. A ruby text container is also known (primarily in a CSS context) as a ruby annotation container.

Furthermore, a ruby element contains ignored ruby content. Ignored ruby content does not form part of the document's semantics. It consists of some inter-element whitespace and rp elements, the latter of which are used for legacy user agents that do not support ruby at all.

The process of annotation pairing associates ruby annotations with ruby bases. Within each ruby segment, each ruby base in the ruby base container is paired with one ruby text annotation from the ruby text container, in order. If there are not enough ruby text annotations in a ruby annotation container, the last one is associated with any excess ruby bases. (If there are not any in the ruby annotation container, an anonymous empty one is assumed to exist.) If there are not enough ruby bases, any remaining ruby text annotations are assumed to be associated with empty, anonymous bases inserted at the end of the ruby base container.

Note that the terms ruby segment, ruby base, ruby text annotation, ruby text container, ruby base container, and ruby annotation container have their equivalents in CSS Ruby Module Level 1. [CSSRUBY]

Informally, the segmentation and categorisation algorithm below performs a simple set of tasks. First it processes adjacent rb elements, text nodes, and non-ruby elements into a list of bases. Then it processes any number of rtc elements or sequences of rt elements that are considered to automatically map to an anonymous ruby text container. Put together these data items form a ruby segment as detailed in the data model above. It will continue to produce such segments until it reaches the end of the content of a given ruby element. The complexity of the algorithm below compared to this informal description stems from the need to support an author-friendly syntax and being mindful of inter-element white space.

At any particular time, the segmentation and categorisation of content of a ruby element is the result that would be obtained from running the following algorithm:

  1. Let root be the ruby element for which the algorithm is being run.
  2. Let index be 0.
  3. Let ruby segments be an empty list.
  4. Let current bases be an empty list of DOM ranges.
  5. Let current bases range be null.
  6. Let current bases range start be null.
  7. Let current annotations be an empty list of DOM ranges.
  8. Let current annotations range be null.
  9. Let current annotations range start be null.
  10. Let current annotation containers be an empty list.
  11. Let current automatic base nodes be an empty list of DOM Nodes.
  12. Let current automatic base range start be null.
  13. Process a ruby child: If index is equal to or greater than the number of child nodes in root, then run the steps to commit a ruby segment, return ruby segments, and abort these steps.
  14. Let current child be the indexth node in root.
  15. If current child is not a Text node and is not an Element node, then increment index by one and jump to the step labelled process a ruby child.
  16. If current child is an rp element, then increment index by one and jump to the step labelled process a ruby child. (Note that this has the effect of including this element in any range that we are currently processing. This is done intentionally so that misplaced rp can be processed correctly; semantically they are ignored all the same.)
  17. If current child is an rt element, then run these substeps:
    1. Run the steps to commit an automatic base.
    2. Run the steps to commit the base range.
    3. If current annotations is empty, set current annotations range start to the value of index.
    4. Create a new DOM range whose start is the boundary point (root, index) and whose end is the boundary point (root, index plus one), and append it at the end of current annotations.
    5. Increment index by one and jump to the step labelled process a ruby child.
  18. If current child is an rtc element, then run these substeps:
    1. Run the steps to commit an automatic base.
    2. Run the steps to commit the base range.
    3. Run the steps to commit current annotations.
    4. Create a new ruby annotation container. It is described by the list of annotations returned by running the steps to process an rtc element and a DOM range whose start is the boundary point (root, index) and whose end is the boundary point (root, index plus one). Append this new ruby annotation container at the end of current annotation containers.
    5. Increment index by one and jump to the step labelled process a ruby child.
  19. If current child is a Text node and is inter-element whitespace, then run these substeps:
    1. If current annotations is not empty, increment index by one and jump to the step labelled process a ruby child.
    2. Run the following substeps:
      1. Let lookahead index be set to the value of index.
      2. Peek ahead: Increment lookahead index by one.
      3. If lookahead index is equal to or greater than the number of child nodes in root, then abort these substeps.
      4. Let peek child be the lookahead indexth node in root.
      5. If peek child is a Text node and is inter-element whitespace, then jump to the step labelled peek ahead.
      6. If peek child is an rt element, an rtc element, or an rp element, then set index to the value of lookahead index and jump to the step labelled process a ruby child.
  20. If current annotations is not empty or if current annotation containers is not empty, then run the steps to commit a ruby segment.
  21. If current child is an rb element, then run these substeps:
    1. Run the steps to commit an automatic base.
    2. If current bases is empty, then set current bases range start to the value of index.
    3. Create a new DOM range whose start is the boundary point (root, index) and whose end is the boundary point (root, index plus one), and append it at the end of current bases.
    4. Increment index by one and jump to the step labelled process a ruby child.
  22. If current automatic base nodes is empty, set current automatic base range start to the value of index.
  23. Append current child at the end of current automatic base nodes.
  24. Increment index by one and jump to the step labelled process a ruby child.

When the steps above say to commit a ruby segment, it means to run the following steps at that point in the algorithm:

  1. Run the steps to commit an automatic base.
  2. If current bases, current annotations, and current annotation containers are all empty, abort these steps.
  3. Run the steps to commit the base range.
  4. Run the steps to commit current annotations.
  5. Create a new ruby segment. It is described by a list of bases set to current bases, a base DOM range set to current bases range, and a list of ruby annotation containers that are the current annotation containers list. Append this new ruby segment at the end of ruby segments.
  6. Let current bases be an empty list.
  7. Let current bases range be null.
  8. Let current bases range start be null.
  9. Let current annotation containers be an empty list.

When the steps above say to commit the base range, it means to run the following steps at that point in the algorithm:

  1. If current bases is empty, abort these steps.
  2. If current bases range is not null, abort these steps.
  3. Let current bases range be a DOM range whose start is the boundary point (root, current bases range start) and whose end is the boundary point (root, index).

When the steps above say to commit current annotations, it means to run the following steps at that point in the algorithm:

  1. If current annotations is not empty and current annotations range is null let current annotations range be a DOM range whose start is the boundary point (root, current annotations range start) and whose end is the boundary point (root, index).
  2. If current annotations is not empty, create a new ruby annotation container. It is described by an annotations list set to current annotations and a range set to current annotations range. Append this new ruby annotation container at the end of current annotation containers.
  3. Let current annotations be an empty list of DOM ranges.
  4. Let current annotations range be null.
  5. Let current annotations range start be null.

When the steps above say to commit an automatic base, it means to run the following steps at that point in the algorithm:

  1. If current automatic base nodes is empty, abort these steps.
  2. If current automatic base nodes contains nodes that are not Text nodes, or Text nodes that are not inter-element whitespace, then run these substeps:
    1. It current bases is empty, set current bases range start to the value of current automatic base range start.
    2. Create a new DOM range whose start is the boundary point (root, current automatic base range start) and whose end is the boundary point (root, index), and append it at the end of current bases.
  3. Let current automatic base nodes be an empty list of DOM Nodes.
  4. Let current automatic base range start be null.

4.5.11 The rb element

Categories:
None.
Contexts in which this element can be used:
As a child of a ruby element.
Content model:
Phrasing content.
Content attributes:
Global attributes
Tag omission in text/html:

An rb element's end tag may be omitted if the rb element is immediately followed by an rb, rt, rtc or rp element, or if there is no more content in the parent element.

Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The rb element marks the base text component of a ruby annotation. When it is the child of a ruby element, it doesn't represent anything itself, but its parent ruby element uses it as part of determining what it represents.

An rb element that is not a child of a ruby element represents the same thing as its children.

4.5.12 The rt element

Categories:
None.
Contexts in which this element can be used:
As a child of a ruby or of an rtc element.
Content model:
Phrasing content.
Content attributes:
Global attributes
Tag omission in text/html:

An rt element's end tag may be omitted if the rt element is immediately followed by an rb, rt, rtc or rp element, or if there is no more content in the parent element.

Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The rt element marks the ruby text component of a ruby annotation. When it is the child of a ruby element or of an rtc element that is itself the child of a ruby element, it doesn't represent anything itself, but its ancestor ruby element uses it as part of determining what it represents.

An rt element that is not a child of a ruby element or of an rtc element that is itself the child of a ruby element represents the same thing as its children.

4.5.13 The rtc element

Categories:
None.
Contexts in which this element can be used:
As a child of a ruby element.
Content model:
Phrasing content or rt elements.
Content attributes:
Global attributes
Tag omission in text/html:

An rtc element's end tag may be omitted if the rtc element is immediately followed by an rb, rtc or rp element, or if there is no more content in the parent element.

Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The rtc element marks a ruby text container for ruby text components in a ruby annotation. When it is the child of a ruby element it doesn't represent anything itself, but its parent ruby element uses it as part of determining what it represents.

An rtc element that is not a child of a ruby element represents the same thing as its children.

When an rtc element is processed as part of the segmentation and categorisation of content for a ruby element, the following algorithm defines how to process an rtc element:

  1. Let root be the rtc element for which the algorithm is being run.
  2. Let index be 0.
  3. Let annotations be an empty list of DOM ranges.
  4. Let current automatic annotation nodes be an empty list of DOM nodes.
  5. Let current automatic annotation range start be null.
  6. Process an rtc child: If index is equal to or greater than the number of child nodes in root, then run the steps to commit an automatic annotation, return annotations, and abort these steps.
  7. Let current child be the indexth node in root.
  8. If current child is an rt element, then run these substeps:
    1. Run the steps to commit an automatic annotation.
    2. Create a new DOM range whose start is the boundary point (root, index) and whose end is the boundary point (root, index plus one), and append it at the end of annotations.
    3. Increment index by one and jump to the step labelled process an rtc child.
  9. If current automatic annotation nodes is empty, set current automatic annotation range start to the value of index.
  10. Append current child at the end of current automatic annotation nodes.
  11. Increment index by one and jump to the step labelled process an rtc child.

When the steps above say to commit an automatic annotation, it means to run the following steps at that point in the algorithm:

  1. If current automatic annotation nodes is empty, abort these steps.
  2. If current automatic annotation nodes contains nodes that are not Text nodes, or Text nodes that are not inter-element whitespace, then create a new DOM range whose start is the boundary point (root, current automatic annotation range start) and whose end is the boundary point (root, index), and append it at the end of annotations.
  3. Let current automatic annotation nodes be an empty list of DOM nodes.
  4. Let current automatic annotation range start be null.

4.5.14 The rp element

Categories:
None.
Contexts in which this element can be used:
As a child of a ruby element, either immediately before or immediately after an rt or rtc element, but not between rt elements.
Content model:
Phrasing content.
Content attributes:
Global attributes
Tag omission in text/html:

An rp element's end tag may be omitted if the rp element is immediately followed by an rb, rt, rtc or rp element, or if there is no more content in the parent element.

Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The rp element is used to provide fallback text to be shown by user agents that don't support ruby annotations. One widespread convention is to provide parentheses around the ruby text component of a ruby annotation.

The contents of the rp elements are typically not displayed by user agents which do support ruby annotations

An rp element that is a child of a ruby element represents nothing. An rp element whose parent element is not a ruby element represents its children.

The example shown previously, in which each ideograph in the text 漢字 is annotated with its phonetic reading, could be expanded to use rp so that in legacy user agents the readings are in parentheses (please note that white space has been introduced into this example in order to make it more readable):

...
<ruby>
  漢
  <rb>字</rb>
  <rp> (</rp>
  <rt>かん</rt>
  <rt>じ</rt>
  <rp>) </rp>
</ruby>
...
  

In conforming user agents the rendering would be as above, but in user agents that do not support ruby, the rendering would be:

... 漢字 (かんじ) ...

When there are multiple annotations for a segment, rp elements can also be placed between the annotations. Here is another copy of an earlier contrived example showing some symbols with names given in English and French using double-sided annotations, but this time with rp elements as well:

<ruby>
  ♥<rp>: </rp><rt>Heart</rt><rp>, </rp><rtc><rt lang=fr>Cœur</rt></rtc><rp>.</rp>
  ☘<rp>: </rp><rt>Shamrock</rt><rp>, </rp><rtc><rt lang=fr>Trèfle</rt></rtc><rp>.</rp>
  ✶<rp>: </rp><rt>Star</rt><rp>, </rp><rtc><rt lang=fr>Étoile</rt></rtc><rp>.</rp>
</ruby>
  

This would make the example render as follows in non-ruby-capable user agents:

♥: Heart, Cœur.
☘: Shamrock, Trèfle.
✶: Star, Étoile.
  

4.5.15 The data element

Categories:
Flow content.
Phrasing content.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content.
Content attributes:
Global attributes
value - Machine-readable value
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLDataElement : HTMLElement {
           attribute DOMString value;
};

The data element represents its contents, along with a machine-readable form of those contents in the value attribute.

The value attribute must be present. Its value must be a representation of the element's contents in a machine-readable format.

When the value is date- or time-related, the more specific time element can be used instead.

The element can be used for several purposes.

When combined with microformats or microdata, the element serves to provide both a machine-readable value for the purposes of data processors, and a human-readable value for the purposes of rendering in a Web browser. In this case, the format to be used in the value attribute is determined by the microformats or microdata vocabulary in use.

The element can also, however, be used in conjunction with scripts in the page, for when a script has a literal value to store alongside a human-readable value. In such cases, the format to be used depends only on the needs of the script. (The data-* attributes can also be useful in such situations.)

The value IDL attribute must reflect the content attribute of the same name.

Here, a short table has its numeric values encoded using data so that the table sorting model can provide a sorting mechanism on each column, despite the numbers being presented in textual form in one column and in a decomposed form in another.

<table sortable>
 <thead> <tr> <th> Game <th> Corporations <th> Map Size
 <tbody>
  <tr> <td> 1830 <td> <data value="8">Eight</data> <td> <data value="93">19+74 hexes (93 total)</data>
  <tr> <td> 1856 <td> <data value="11">Eleven</data> <td> <data value="99">12+87 hexes (99 total)</data>
  <tr> <td> 1870 <td> <data value="10">Ten</data> <td> <data value="149">4+145 hexes (149 total)</data>
</table>

4.5.16 The time element

Categories:
Flow content.
Phrasing content.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content.
Content attributes:
Global attributes
datetime - Machine-readable value
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLTimeElement : HTMLElement {
           attribute DOMString dateTime;
};

The time element represents its contents, along with a machine-readable form of those contents in the datetime attribute. The kind of content is limited to various kinds of dates, times, time-zone offsets, and durations, as described below.

The datetime attribute may be present. If present, its value must be a representation of the element's contents in a machine-readable format.

A time element that does not have a datetime content attribute must not have any element descendants.

The datetime value of a time element is the value of the element's datetime content attribute, if it has one, or the element's textContent, if it does not.

The datetime value of a time element must match one of the following syntaxes.

A valid month string
<time>2011-11</time>
A valid date string
<time>2011-11-12</time>
A valid yearless date string
<time>11-12</time>
A valid time string
<time>14:54</time>
<time>14:54:39</time>
<time>14:54:39.929</time>
A valid floating date and time string
<time>2011-11-12T14:54</time>
<time>2011-11-12T14:54:39</time>
<time>2011-11-12T14:54:39.929</time>
<time>2011-11-12 14:54</time>
<time>2011-11-12 14:54:39</time>
<time>2011-11-12 14:54:39.929</time>

Times with dates but without a time zone offset are useful for specifying events that are observed at the same specific time in each time zone, throughout a day. For example, the 2020 new year is celebrated at 2020-01-01 00:00 in each time zone, not at the same precise moment across all time zones. For events that occur at the same time across all time zones, for example a videoconference meeting, a valid global date and time string is likely more useful.

A valid time-zone offset string
<time>Z</time>
<time>+0000</time>
<time>+00:00</time>
<time>-0800</time>
<time>-08:00</time>

For times without dates (or times referring to events that recur on multiple dates), specifying the geographic location that controls the time is usually more useful than specifying a time zone offset, because geographic locations change time zone offsets with daylight savings time. In some cases, geographic locations even change time zone, e.g. when the boundaries of those time zones are redrawn, as happened with Samoa at the end of 2011. There exists a time zone database that describes the boundaries of time zones and what rules apply within each such zone, known as the time zone database. [TZDATABASE]

A valid global date and time string
<time>2011-11-12T14:54Z</time>
<time>2011-11-12T14:54:39Z</time>
<time>2011-11-12T14:54:39.929Z</time>
<time>2011-11-12T14:54+0000</time>
<time>2011-11-12T14:54:39+0000</time>
<time>2011-11-12T14:54:39.929+0000</time>
<time>2011-11-12T14:54+00:00</time>
<time>2011-11-12T14:54:39+00:00</time>
<time>2011-11-12T14:54:39.929+00:00</time>
<time>2011-11-12T06:54-0800</time>
<time>2011-11-12T06:54:39-0800</time>
<time>2011-11-12T06:54:39.929-0800</time>
<time>2011-11-12T06:54-08:00</time>
<time>2011-11-12T06:54:39-08:00</time>
<time>2011-11-12T06:54:39.929-08:00</time>
<time>2011-11-12 14:54Z</time>
<time>2011-11-12 14:54:39Z</time>
<time>2011-11-12 14:54:39.929Z</time>
<time>2011-11-12 14:54+0000</time>
<time>2011-11-12 14:54:39+0000</time>
<time>2011-11-12 14:54:39.929+0000</time>
<time>2011-11-12 14:54+00:00</time>
<time>2011-11-12 14:54:39+00:00</time>
<time>2011-11-12 14:54:39.929+00:00</time>
<time>2011-11-12 06:54-0800</time>
<time>2011-11-12 06:54:39-0800</time>
<time>2011-11-12 06:54:39.929-0800</time>
<time>2011-11-12 06:54-08:00</time>
<time>2011-11-12 06:54:39-08:00</time>
<time>2011-11-12 06:54:39.929-08:00</time>

Times with dates and a time zone offset are useful for specifying specific events, or recurring virtual events where the time is not anchored to a specific geographic location. For example, the precise time of an asteroid impact, or a particular meeting in a series of meetings held at 1400 UTC every day, regardless of whether any particular part of the world is observing daylight savings time or not. For events where the precise time varies by the local time zone offset of a specific geographic location, a valid floating date and time string combined with that geographic location is likely more useful.

A valid week string
<time>2011-W46</time>
Four or more ASCII digits, at least one of which is not "0" (U+0030)
<time>2011</time>
<time>0001</time>
A valid duration string
<time>PT4H18M3S</time>
<time>4h 18m 3s</time>

Many of the preceding valid syntaxes describe "floating" date and/or time values (they do not include a time-zone offset). Care is needed when converting floating time values to or from global ("incremental") time values (e.g., JavaScript's Date object). In many cases, an implicit time-of-day and time zone are used in the conversion and may result in unexpected changes to the value of the date itself. [TIMEZONES]

The machine-readable equivalent of the element's contents must be obtained from the element's datetime value by using the following algorithm:

  1. If parsing a month string from the element's datetime value returns a month, that is the machine-readable equivalent; abort these steps.

  2. If parsing a date string from the element's datetime value returns a date, that is the machine-readable equivalent; abort these steps.

  3. If parsing a yearless date string from the element's datetime value returns a yearless date, that is the machine-readable equivalent; abort these steps.

  4. If parsing a time string from the element's datetime value returns a time, that is the machine-readable equivalent; abort these steps.

  5. If parsing a local date and time string from the element's datetime value returns a local date and time, that is the machine-readable equivalent; abort these steps.

  6. If parsing a time-zone offset string from the element's datetime value returns a time-zone offset, that is the machine-readable equivalent; abort these steps.

  7. If parsing a global date and time string from the element's datetime value returns a global date and time, that is the machine-readable equivalent; abort these steps.

  8. If parsing a week string from the element's datetime value returns a week, that is the machine-readable equivalent; abort these steps.

  9. If the element's datetime value consists of only ASCII digits, at least one of which is not "0" (U+0030), then the machine-readable equivalent is the base-ten interpretation of those digits, representing a year; abort these steps.

  10. If parsing a duration string from the element's datetime value returns a duration, that is the machine-readable equivalent; abort these steps.

  11. There is no machine-readable equivalent.

The algorithms referenced above are intended to be designed such that for any arbitrary string s, only one of the algorithms returns a value. A more efficient approach might be to create a single algorithm that parses all these data types in one pass; developing such an algorithm is left as an exercise to the reader.

The dateTime IDL attribute must reflect the element's datetime content attribute.

The time element can be used to encode dates, for example in microformats. The following shows a hypothetical way of encoding an event using a variant on hCalendar that uses the time element:

<div class="vevent">
 <a class="url" href="http://www.web2con.com/">http://www.web2con.com/</a>
  <span class="summary">Web 2.0 Conference</span>:
  <time class="dtstart" datetime="2005-10-05">October 5</time> -
  <time class="dtend" datetime="2005-10-07">7</time>,
  at the <span class="location">Argent Hotel, San Francisco, CA</span>
 </div>

Here, a fictional microdata vocabulary based on the Atom vocabulary is used with the time element to mark up a blog post's publication date.

<article itemscope itemtype="http://n.example.org/rfc4287">
 <h1 itemprop="title">Big tasks</h1>
 <footer>Published <time itemprop="published" datetime="2009-08-29">two days ago</time>.</footer>
 <p itemprop="content">Today, I went out and bought a bike for my kid.</p>
</article>

In this example, another article's publication date is marked up using time, this time using the schema.org microdata vocabulary:

<article itemscope itemtype="http://schema.org/BlogPosting">
 <h1 itemprop="headline">Small tasks</h1>
 <footer>Published <time itemprop="datePublished" datetime="2009-08-30">yesterday</time>.</footer>
 <p itemprop="articleBody">I put a bike bell on his bike.</p>
</article>

In the following snippet, the time element is used to encode a date in the ISO8601 format, for later processing by a script:

<p>Our first date was <time datetime="2006-09-23">a Saturday</time>.</p>

In this second snippet, the value includes a time:

<p>We stopped talking at <time datetime="2006-09-24T05:00-07:00">5am the next morning</time>.</p>

A script loaded by the page (and thus privy to the page's internal convention of marking up dates and times using the time element) could scan through the page and look at all the time elements therein to create an index of dates and times.

For example, this element conveys the string "Tuesday" with the additional semantic that the 12th of November 2011 is the meaning that corresponds to "Tuesday":

Today is <time datetime="2011-11-12">Tuesday</time>.

In this example, a specific time in the Pacific Standard Time timezone is specified:

Your next meeting is at <time datetime="2011-11-12T15:00-08:00">3pm</time>.

4.5.17 The code element

Categories:
Flow content.
Phrasing content.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The code element represents a fragment of computer code. This could be an XML element name, a file name, a computer program, or any other string that a computer would recognize.

There is no formal way to indicate the language of computer code being marked up. Authors who wish to mark code elements with the language used, e.g. so that syntax highlighting scripts can use the right rules, can use the class attribute, e.g. by adding a class prefixed with "language-" to the element.

The following example shows how the element can be used in a paragraph to mark up element names and computer code, including punctuation.

<p>The <code>code</code> element represents a fragment of computer
code.</p>

<p>When you call the <code>activate()</code> method on the
<code>robotSnowman</code> object, the eyes glow.</p>

<p>The example below uses the <code>begin</code> keyword to indicate
the start of a statement block. It is paired with an <code>end</code>
keyword, which is followed by the <code>.</code> punctuation character
(full stop) to indicate the end of the program.</p>

The following example shows how a block of code could be marked up using the pre and code elements.

<pre><code class="language-pascal">var i: Integer;
begin
   i := 1;
end.</code></pre>

A class is used in that example to indicate the language used.

See the pre element for more details.

4.5.18 The var element

Categories:
Flow content.
Phrasing content.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The var element represents a variable. This could be an actual variable in a mathematical expression or programming context, an identifier representing a constant, a symbol identifying a physical quantity, a function parameter, or just be a term used as a placeholder in prose.

In the paragraph below, the letter "n" is being used as a variable in prose:

<p>If there are <var>n</var> pipes leading to the ice
cream factory then I expect at <em>least</em> <var>n</var>
flavors of ice cream to be available for purchase!</p>

For mathematics, in particular for anything beyond the simplest of expressions, MathML is more appropriate. However, the var element can still be used to refer to specific variables that are then mentioned in MathML expressions.

In this example, an equation is shown, with a legend that references the variables in the equation. The expression itself is marked up with MathML, but the variables are mentioned in the figure's legend using var.

<figure>
 <math>
  <mi>a</mi>
  <mo>=</mo>
  <msqrt>
   <msup><mi>b</mi><mn>2</mn></msup>
   <mi>+</mi>
   <msup><mi>c</mi><mn>2</mn></msup>
  </msqrt>
 </math>
 <figcaption>
  Using Pythagoras' theorem to solve for the hypotenuse <var>a</var> of
  a triangle with sides <var>b</var> and <var>c</var>
 </figcaption>
</figure>

Here, the equation describing mass-energy equivalence is used in a sentence, and the var element is used to mark the variables and constants in that equation:

<p>Then he turned to the blackboard and picked up the chalk. After a few moment's
thought, he wrote <var>E</var> = <var>m</var> <var>c</var><sup>2</sup>. The teacher
looked pleased.</p>

4.5.19 The samp element

Categories:
Flow content.
Phrasing content.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The samp element represents sample or quoted output from another program or computing system.

See the pre and kbd elements for more details.

This element can be contrasted with the output element, which can be used to provide immediate output in a Web application.

This example shows the samp element being used inline:

<p>The computer said <samp>Too much cheese in tray
two</samp> but I didn't know what that meant.</p>

This second example shows a block of sample output. Nested samp and kbd elements allow for the styling of specific elements of the sample output using a style sheet. There's also a few parts of the samp that are annotated with even more detailed markup, to enable very precise styling. To achieve this, span elements are used.

<pre><samp><span class="prompt">jdoe@mowmow:~$</span> <kbd>ssh demo.example.com</kbd>
Last login: Tue Apr 12 09:10:17 2005 from mowmow.example.com on pts/1
Linux demo 2.6.10-grsec+gg3+e+fhs6b+nfs+gr0501+++p3+c4a+gr2b-reslog-v6.189 #1 SMP Tue Feb 1 11:22:36 PST 2005 i686 unknown

<span class="prompt">jdoe@demo:~$</span> <span class="cursor">_</span></samp></pre>

4.5.20 The kbd element

Categories:
Flow content.
Phrasing content.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The kbd element represents user input (typically keyboard input, although it may also be used to represent other input, such as voice commands).

When the kbd element is nested inside a samp element, it represents the input as it was echoed by the system.

When the kbd element contains a samp element, it represents input based on system output, for example invoking a menu item.

When the kbd element is nested inside another kbd element, it represents an actual key or other single unit of input as appropriate for the input mechanism.

Here the kbd element is used to indicate keys to press:

<p>To make George eat an apple, press <kbd><kbd>Shift</kbd>+<kbd>F3</kbd></kbd></p>

In this second example, the user is told to pick a particular menu item. The outer kbd element marks up a block of input, with the inner kbd elements representing each individual step of the input, and the samp elements inside them indicating that the steps are input based on something being displayed by the system, in this case menu labels:

<p>To make George eat an apple, select
    <kbd><kbd><samp>File</samp></kbd>|<kbd><samp>Eat Apple...</samp></kbd></kbd>
</p>

Such precision isn't necessary; the following is equally fine:

<p>To make George eat an apple, select <kbd>File | Eat Apple...</kbd></p>

4.5.21 The sub and sup elements

Categories:
Flow content.
Phrasing content.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Use HTMLElement.

The sup element represents a superscript and the sub element represents a subscript.

These elements must be used only to mark up typographical conventions with specific meanings, not for typographical presentation for presentation's sake. For example, it would be inappropriate for the sub and sup elements to be used in the name of the LaTeX document preparation system. In general, authors should use these elements only if the absence of those elements would change the meaning of the content.

In certain languages, superscripts are part of the typographical conventions for some abbreviations.

<p>The most beautiful women are
<span lang="fr"><abbr>M<sup>lle</sup></abbr> Gwendoline</span> and
<span lang="fr"><abbr>M<sup>me</sup></abbr> Denise</span>.</p>

The sub element can be used inside a var element, for variables that have subscripts.

Here, the sub element is used to represent the subscript that identifies the variable in a family of variables:

<p>The coordinate of the <var>i</var>th point is
(<var>x<sub><var>i</var></sub></var>, <var>y<sub><var>i</var></sub></var>).
For example, the 10th point has coordinate
(<var>x<sub>10</sub></var>, <var>y<sub>10</sub></var>).</p>

Mathematical expressions often use subscripts and superscripts. Authors are encouraged to use MathML for marking up mathematics, but authors may opt to use sub and sup if detailed mathematical markup is not desired. [MATHML]

<var>E</var>=<var>m</var><var>c</var><sup>2</sup>
f(<var>x</var>, <var>n</var>) = log<sub>4</sub><var>x</var><sup><var>n</var></sup>

4.5.22 The i element

Categories:
Flow content.
Phrasing content.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The i element represents a span of text in an alternate voice or mood, or otherwise offset from the normal prose in a manner indicating a different quality of text, such as a taxonomic designation, a technical term, an idiomatic phrase from another language, transliteration, a thought, or a ship name in Western texts.

Terms in languages different from the main text should be annotated with lang attributes (or, in XML, lang attributes in the XML namespace).

The examples below show uses of the i element:

<p>The <i class="taxonomy">Felis silvestris catus</i> is cute.</p>
<p>The term <i>prose content</i> is defined above.</p>
<p>There is a certain <i lang="fr">je ne sais quoi</i> in the air.</p>

In the following example, a dream sequence is marked up using i elements.

<p>Raymond tried to sleep.</p>
<p><i>The ship sailed away on Thursday</i>, he
dreamt. <i>The ship had many people aboard, including a beautiful
princess called Carey. He watched her, day-in, day-out, hoping she
would notice him, but she never did.</i></p>
<p><i>Finally one night he picked up the courage to speak with
her—</i></p>
<p>Raymond woke with a start as the fire alarm rang out.</p>

Authors can use the class attribute on the i element to identify why the element is being used, so that if the style of a particular use (e.g. dream sequences as opposed to taxonomic terms) is to be changed at a later date, the author doesn't have to go through the entire document (or series of related documents) annotating each use.

Authors are encouraged to consider whether other elements might be more applicable than the i element, for instance the em element for marking up stress emphasis, or the dfn element to mark up the defining instance of a term.

Style sheets can be used to format i elements, just like any other element can be restyled. Thus, it is not the case that content in i elements will necessarily be italicized.

4.5.23 The b element

Categories:
Flow content.
Phrasing content.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The b element represents a span of text to which attention is being drawn for utilitarian purposes without conveying any extra importance and with no implication of an alternate voice or mood, such as key words in a document abstract, product names in a review, actionable words in interactive text-driven software, or an article lede.

The following example shows a use of the b element to highlight key words without marking them up as important:

<p>The <b>frobonitor</b> and <b>barbinator</b> components are fried.</p>

In the following example, objects in a text adventure are highlighted as being special by use of the b element.

<p>You enter a small room. Your <b>sword</b> glows
brighter. A <b>rat</b> scurries past the corner wall.</p>

Another case where the b element is appropriate is in marking up the lede (or lead) sentence or paragraph. The following example shows how a BBC article about kittens adopting a rabbit as their own could be marked up:

<article>
 <h2>Kittens 'adopted' by pet rabbit</h2>
 <p><b class="lede">Six abandoned kittens have found an
 unexpected new mother figure — a pet rabbit.</b></p>
 <p>Veterinary nurse Melanie Humble took the three-week-old
 kittens to her Aberdeen home.</p>
[...]

As with the i element, authors can use the class attribute on the b element to identify why the element is being used, so that if the style of a particular use is to be changed at a later date, the author doesn't have to go through annotating each use.

The b element should be used as a last resort when no other element is more appropriate. In particular, headings should use the h1 to h6 elements, stress emphasis should use the em element, importance should be denoted with the strong element, and text marked or highlighted should use the mark element.

The following would be incorrect usage:

<p><b>WARNING!</b> Do not frob the barbinator!</p>

In the previous example, the correct element to use would have been strong, not b.

Style sheets can be used to format b elements, just like any other element can be restyled. Thus, it is not the case that content in b elements will necessarily be boldened.

4.5.24 The u element

Categories:
Flow content.
Phrasing content.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The u element represents a span of text with an unarticulated, though explicitly rendered, non-textual annotation, such as labeling the text as being a proper name in Chinese text (a Chinese proper name mark), or labeling the text as being misspelt.

In most cases, another element is likely to be more appropriate: for marking stress emphasis, the em element should be used; for marking key words or phrases either the b element or the mark element should be used, depending on the context; for marking book titles, the cite element should be used; for labeling text with explicit textual annotations, the ruby element should be used; for labeling ship names in Western texts, the i element should be used.

The default rendering of the u element in visual presentations clashes with the conventional rendering of hyperlinks (underlining). Authors are encouraged to avoid using the u element where it could be confused for a hyperlink.

4.5.25 The mark element

Categories:
Flow content.
Phrasing content.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The mark element represents a run of text in one document marked or highlighted for reference purposes, due to its relevance in another context. When used in a quotation or other block of text referred to from the prose, it indicates a highlight that was not originally present but which has been added to bring the reader's attention to a part of the text that might not have been considered important by the original author when the block was originally written, but which is now under previously unexpected scrutiny. When used in the main prose of a document, it indicates a part of the document that has been highlighted due to its likely relevance to the user's current activity.

This example shows how the mark element can be used to bring attention to a particular part of a quotation:

<p lang="en-US">Consider the following quote:</p>
<blockquote lang="en-GB">
 <p>Look around and you will find, no-one's really
 <mark>colour</mark> blind.</p>
</blockquote>
<p lang="en-US">As we can tell from the <em>spelling</em> of the word,
the person writing this quote is clearly not American.</p>

(If the goal was to mark the element as misspelt, however, the u element, possibly with a class, would be more appropriate.)

Another example of the mark element is highlighting parts of a document that are matching some search string. If someone looked at a document, and the server knew that the user was searching for the word "kitten", then the server might return the document with one paragraph modified as follows:

<p>I also have some <mark>kitten</mark>s who are visiting me
these days. They're really cute. I think they like my garden! Maybe I
should adopt a <mark>kitten</mark>.</p>

In the following snippet, a paragraph of text refers to a specific part of a code fragment.

<p>The highlighted part below is where the error lies:</p>
<pre><code>var i: Integer;
begin
   i := <mark>1.1</mark>;
end.</code></pre>

This is separate from syntax highlighting, for which span is more appropriate. Combining both, one would get:

<p>The highlighted part below is where the error lies:</p>
<pre><code><span class=keyword>var</span> <span class=ident>i</span>: <span class=type>Integer</span>;
<span class=keyword>begin</span>
   <span class=ident>i</span> := <span class=literal><mark>1.1</mark></span>;
<span class=keyword>end</span>.</code></pre>

This is another example showing the use of mark to highlight a part of quoted text that was originally not emphasized. In this example, common typographic conventions have led the author to explicitly style mark elements in quotes to render in italics.

<article>
 <style scoped>
  blockquote mark, q mark {
    font: inherit; font-style: italic;
    text-decoration: none;
    background: transparent; color: inherit;
  }
  .bubble em {
    font: inherit; font-size: larger;
    text-decoration: underline;
  }
 </style>
 <h1>She knew</h1>
 <p>Did you notice the subtle joke in the joke on panel 4?</p>
 <blockquote>
  <p class="bubble">I didn't <em>want</em> to believe. <mark>Of course
  on some level I realised it was a known-plaintext attack.</mark> But I
  couldn't admit it until I saw for myself.</p>
 </blockquote>
 <p>(Emphasis mine.) I thought that was great. It's so pedantic, yet it
 explains everything neatly.</p>
</article>

Note, incidentally, the distinction between the em element in this example, which is part of the original text being quoted, and the mark element, which is highlighting a part for comment.

The following example shows the difference between denoting the importance of a span of text (strong) as opposed to denoting the relevance of a span of text (mark). It is an extract from a textbook, where the extract has had the parts relevant to the exam highlighted. The safety warnings, important though they may be, are apparently not relevant to the exam.

<h3>Wormhole Physics Introduction</h3>

<p><mark>A wormhole in normal conditions can be held open for a
maximum of just under 39 minutes.</mark> Conditions that can increase
the time include a powerful energy source coupled to one or both of
the gates connecting the wormhole, and a large gravity well (such as a
black hole).</p>

<p><mark>Momentum is preserved across the wormhole. Electromagnetic
radiation can travel in both directions through a wormhole,
but matter cannot.</mark></p>

<p>When a wormhole is created, a vortex normally forms.
<strong>Warning: The vortex caused by the wormhole opening will
annihilate anything in its path.</strong> Vortexes can be avoided when
using sufficiently advanced dialing technology.</p>

<p><mark>An obstruction in a gate will prevent it from accepting a
wormhole connection.</mark></p>

4.5.26 The bdi element

Categories:
Flow content.
Phrasing content.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content.
Content attributes:
Global attributes
Also, the dir global attribute has special semantics on this element.
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The bdi element represents a span of text that is to be isolated from its surroundings for the purposes of bidirectional text formatting. [BIDI]

The dir global attribute defaults to auto on this element (it never inherits from the parent element like with other elements).

This element has rendering requirements involving the bidirectional algorithm.

This element is especially useful when embedding user-generated content with an unknown directionality.

In this example, usernames are shown along with the number of posts that the user has submitted. If the bdi element were not used, the username of the Arabic user would end up confusing the text (the bidirectional algorithm would put the colon and the number "3" next to the word "User" rather than next to the word "posts").

<ul>
 <li>User <bdi>jcranmer</bdi>: 12 posts.
 <li>User <bdi>hober</bdi>: 5 posts.
 <li>User <bdi>إيان</bdi>: 3 posts.
</ul>

4.5.27 The bdo element

Categories:
Flow content.
Phrasing content.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content.
Content attributes:
Global attributes
Also, the dir global attribute has special semantics on this element.
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The bdo element represents explicit text directionality formatting control for its children. It allows authors to override the Unicode bidirectional algorithm by explicitly specifying a direction override. [BIDI]

Authors must specify the dir attribute on this element, with the value ltr to specify a left-to-right override and with the value rtl to specify a right-to-left override. The auto value must not be specified.

This element has rendering requirements involving the bidirectional algorithm.

4.5.28 The span element

Categories:
Flow content.
Phrasing content.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLSpanElement : HTMLElement {};

The span element doesn't mean anything on its own, but can be useful when used together with the global attributes, e.g. class, lang, or dir. It represents its children.

In this example, a code fragment is marked up using span elements and class attributes so that its keywords and identifiers can be color-coded from CSS:

<pre><code class="lang-c"><span class="keyword">for</span> (<span class="ident">j</span> = 0; <span class="ident">j</span> &lt; 256; <span class="ident">j</span>++) {
  <span class="ident">i_t3</span> = (<span class="ident">i_t3</span> & 0x1ffff) | (<span class="ident">j</span> &lt;&lt; 17);
  <span class="ident">i_t6</span> = (((((((<span class="ident">i_t3</span> >> 3) ^ <span class="ident">i_t3</span>) >> 1) ^ <span class="ident">i_t3</span>) >> 8) ^ <span class="ident">i_t3</span>) >> 5) & 0xff;
  <span class="keyword">if</span> (<span class="ident">i_t6</span> == <span class="ident">i_t1</span>)
    <span class="keyword">break</span>;
}</code></pre>

4.5.29 The br element

Categories:
Flow content.
Phrasing content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Empty.
Content attributes:
Global attributes
Tag omission in text/html:
No end tag
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLBRElement : HTMLElement {};

The br element represents a line break.

While line breaks are usually represented in visual media by physically moving subsequent text to a new line, a style sheet or user agent would be equally justified in causing line breaks to be rendered in a different manner, for instance as green dots, or as extra spacing.

br elements must be used only for line breaks that are actually part of the content, as in poems or addresses.

The following example is correct usage of the br element:

<p>P. Sherman<br>
42 Wallaby Way<br>
Sydney</p>

br elements must not be used for separating thematic groups in a paragraph.

The following examples are non-conforming, as they abuse the br element:

<p><a ...>34 comments.</a><br>
<a ...>Add a comment.</a></p>
<p><label>Name: <input name="name"></label><br>
<label>Address: <input name="address"></label></p>

Here are alternatives to the above, which are correct:

<p><a ...>34 comments.</a></p>
<p><a ...>Add a comment.</a></p>
<p><label>Name: <input name="name"></label></p>
<p><label>Address: <input name="address"></label></p>

If a paragraph consists of nothing but a single br element, it represents a placeholder blank line (e.g. as in a template). Such blank lines must not be used for presentation purposes.

Any content inside br elements must not be considered part of the surrounding text.

This element has rendering requirements involving the bidirectional algorithm.

4.5.30 The wbr element

Categories:
Flow content.
Phrasing content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Empty.
Content attributes:
Global attributes
Tag omission in text/html:
No end tag
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The wbr element represents a line break opportunity.

In the following example, someone is quoted as saying something which, for effect, is written as one long word. However, to ensure that the text can be wrapped in a readable fashion, the individual words in the quote are separated using a wbr element.

<p>So then he pointed at the tiger and screamed
"there<wbr>is<wbr>no<wbr>way<wbr>you<wbr>are<wbr>ever<wbr>going<wbr>to<wbr>catch<wbr>me"!</p>

Here, especially long lines of code in a program listing have suggested wrapping points given using wbr elements.

<pre>...
Heading heading = Helm.HeadingFactory(HeadingCoordinates[1], <wbr>HeadingCoordinates[2], <wbr>HeadingCoordinates[3], <wbr>HeadingCoordinates[4]);
Course course = Helm.CourseFactory(Heading, <wbr>Maps.MapFactoryFromHeading(heading), <wbr>Speeds.GetMaximumSpeed().ConvertToWarp());
...</pre>

Any content inside wbr elements must not be considered part of the surrounding text.

This element has rendering requirements involving the bidirectional algorithm.

4.5.31 Usage summary

This section is non-normative.

Element Purpose Example
a Hyperlinks
Visit my <a href="drinks.html">drinks</a> page.
em Stress emphasis
I must say I <em>adore</em> lemonade.
strong Importance
This tea is <strong>very hot</strong>.
small Side comments
These grapes are made into wine. <small>Alcohol is addictive.</small>
s Inaccurate text
Price: <s>£4.50</s> £2.00!
cite Titles of works
The case <cite>Hugo v. Danielle</cite> is relevant here.
q Quotations
The judge said <q>You can drink water from the fish tank</q> but advised against it.
dfn Defining instance
The term <dfn>organic food</dfn> refers to food produced without synthetic chemicals.
abbr Abbreviations
Organic food in Ireland is certified by the <abbr title="Irish Organic Farmers and Growers Association">IOFGA</abbr>.
ruby, rb, rp, rt, rtc Ruby annotations
<ruby> <rb>OJ <rp>(<rtc><rt>Orange Juice</rtc><rp>)</ruby>
data Machine-readable equivalent
Available starting today! <data value="UPC:022014640201">North Coast Organic Apple Cider</data>
time Machine-readable equivalent of date- or time-related data
Available starting on <time datetime="2011-11-12">November 12th</time>!
code Computer code
The <code>fruitdb</code> program can be used for tracking fruit production.
var Variables
If there are <var>n</var> fruit in the bowl, at least <var>n</var>÷2 will be ripe.
samp Computer output
The computer said <samp>Unknown error -3</samp>.
kbd User input
Hit <kbd>F1</kbd> to continue.
sub Subscripts
Water is H<sub>2</sub>O.
sup Superscripts
The Hydrogen in heavy water is usually <sup>2</sup>H.
i Alternative voice
Lemonade consists primarily of <i>Citrus limon</i>.
b Keywords
Take a <b>lemon</b> and squeeze it with a <b>juicer</b>.
u Annotations
The mixture of apple juice and <u class="spelling">eldeflower</u> juice is very pleasant.
mark Highlight
Elderflower cordial, with one <mark>part</mark> cordial to ten <mark>part</mark>s water, stands a<mark>part</mark> from the rest.
bdi Text directionality isolation
The recommended restaurant is <bdi lang="">My Juice Café (At The Beach)</bdi>.
bdo Text directionality formatting
The proposal is to write English, but in reverse order. "Juice" would become "<bdo dir=rtl>Juice</bdo>"
span Other
In French we call it <span lang="fr">sirop de sureau</span>.
br Line break
Simply Orange Juice Company<br>Apopka, FL 32703<br>U.S.A.
wbr Line breaking opportunity
www.simply<wbr>orange<wbr>juice.com

4.6 Edits

The ins and del elements represent edits to the document.

4.6.1 The ins element

Categories:
Flow content.
Phrasing content.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Transparent.
Content attributes:
Global attributes
cite - Link to the source of the quotation or more information about the edit
datetime - Date and (optionally) time of the change
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses the HTMLModElement interface.

The ins element represents an addition to the document.

The following represents the addition of a single paragraph:

<aside>
 <ins>
  <p> I like fruit. </p>
 </ins>
</aside>

As does the following, because everything in the aside element here counts as phrasing content and therefore there is just one paragraph:

<aside>
 <ins>
  Apples are <em>tasty</em>.
 </ins>
 <ins>
  So are pears.
 </ins>
</aside>

ins elements should not cross implied paragraph boundaries.

The following example represents the addition of two paragraphs, the second of which was inserted in two parts. The first ins element in this example thus crosses a paragraph boundary, which is considered poor form.

<aside>
 <!-- don't do this -->
 <ins datetime="2005-03-16 00:00Z">
  <p> I like fruit. </p>
  Apples are <em>tasty</em>.
 </ins>
 <ins datetime="2007-12-19 00:00Z">
  So are pears.
 </ins>
</aside>

Here is a better way of marking this up. It uses more elements, but none of the elements cross implied paragraph boundaries.

<aside>
 <ins datetime="2005-03-16 00:00Z">
  <p> I like fruit. </p>
 </ins>
 <ins datetime="2005-03-16 00:00Z">
  Apples are <em>tasty</em>.
 </ins>
 <ins datetime="2007-12-19 00:00Z">
  So are pears.
 </ins>
</aside>

4.6.2 The del element

Categories:
Flow content.
Phrasing content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Transparent.
Content attributes:
Global attributes
cite - Link to the source of the quotation or more information about the edit
datetime - Date and (optionally) time of the change
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses the HTMLModElement interface.

The del element represents a removal from the document.

del elements should not cross implied paragraph boundaries.

The following shows a "to do" list where items that have been done are crossed-off with the date and time of their completion.

<h1>To Do</h1>
<ul>
 <li>Empty the dishwasher</li>
 <li><del datetime="2009-10-11T01:25-07:00">Watch Walter Lewin's lectures</del></li>
 <li><del datetime="2009-10-10T23:38-07:00">Download more tracks</del></li>
 <li>Buy a printer</li>
</ul>

4.6.3 Attributes common to ins and del elements

The cite attribute may be used to specify the address of a document that explains the change. When that document is long, for instance the minutes of a meeting, authors are encouraged to include a fragment identifier pointing to the specific part of that document that discusses the change.

If the cite attribute is present, it must be a valid URL potentially surrounded by spaces that explains the change. To obtain the corresponding citation link, the value of the attribute must be resolved relative to the element. User agents may allow users to follow such citation links, but they are primarily intended for private use (e.g. by server-side scripts collecting statistics about a site's edits), not for readers.

The datetime attribute may be used to specify the time and date of the change.

If present, the datetime attribute's value must be a valid date string with optional time.

User agents must parse the datetime attribute according to the parse a date or time string algorithm. If that doesn't return a date or a global date and time, then the modification has no associated timestamp (the value is non-conforming; it is not a valid date string with optional time). Otherwise, the modification is marked as having been made at the given date or global date and time. If the given value is a global date and time then user agents should use the associated time-zone offset information to determine which time zone to present the given datetime in.

This value may be shown to the user, but it is primarily intended for private use.

The ins and del elements must implement the HTMLModElement interface:

interface HTMLModElement : HTMLElement {
           attribute DOMString cite;
           attribute DOMString dateTime;
};

The cite IDL attribute must reflect the element's cite content attribute. The dateTime IDL attribute must reflect the element's datetime content attribute.

4.6.4 Edits and paragraphs

This section is non-normative.

Since the ins and del elements do not affect paragraphing, it is possible, in some cases where paragraphs are implied (without explicit p elements), for an ins or del element to span both an entire paragraph or other non-phrasing content elements and part of another paragraph. For example:

<section>
 <ins>
  <p>
   This is a paragraph that was inserted.
  </p>
  This is another paragraph whose first sentence was inserted
  at the same time as the paragraph above.
 </ins>
 This is a second sentence, which was there all along.
</section>

By only wrapping some paragraphs in p elements, one can even get the end of one paragraph, a whole second paragraph, and the start of a third paragraph to be covered by the same ins or del element (though this is very confusing, and not considered good practice):

<section>
 This is the first paragraph. <ins>This sentence was
 inserted.
 <p>This second paragraph was inserted.</p>
 This sentence was inserted too.</ins> This is the
 third paragraph in this example.
 <!-- (don't do this) -->
</section>

However, due to the way implied paragraphs are defined, it is not possible to mark up the end of one paragraph and the start of the very next one using the same ins or del element. You instead have to use one (or two) p element(s) and two ins or del elements, as for example:

<section>
 <p>This is the first paragraph. <del>This sentence was
 deleted.</del></p>
 <p><del>This sentence was deleted too.</del> That
 sentence needed a separate &lt;del&gt; element.</p>
</section>

Partly because of the confusion described above, authors are strongly encouraged to always mark up all paragraphs with the p element, instead of having ins or del elements that cross implied paragraphs boundaries.

4.6.5 Edits and lists

This section is non-normative.

The content models of the ol and ul elements do not allow ins and del elements as children. Lists always represent all their items, including items that would otherwise have been marked as deleted.

To indicate that an item is inserted or deleted, an ins or del element can be wrapped around the contents of the li element. To indicate that an item has been replaced by another, a single li element can have one or more del elements followed by one or more ins elements.

In the following example, a list that started empty had items added and removed from it over time. The bits in the example that have been emphasized show the parts that are the "current" state of the list. The list item numbers don't take into account the edits, though.

<h1>Stop-ship bugs</h1>
<ol>
 <li><ins datetime="2008-02-12T15:20Z">Bug 225:
 Rain detector doesn't work in snow</ins></li>
 <li><del datetime="2008-03-01T20:22Z"><ins datetime="2008-02-14T12:02Z">Bug 228:
 Water buffer overflows in April</ins></del></li>
 <li><ins datetime="2008-02-16T13:50Z">Bug 230:
 Water heater doesn't use renewable fuels</ins></li>
 <li><del datetime="2008-02-20T21:15Z"><ins datetime="2008-02-16T14:25Z">Bug 232:
 Carbon dioxide emissions detected after startup</ins></del></li>
</ol>

In the following example, a list that started with just fruit was replaced by a list with just colors.

<h1>List of <del>fruits</del><ins>colors</ins></h1>
<ul>
 <li><del>Lime</del><ins>Green</ins></li>
 <li><del>Apple</del></li>
 <li>Orange</li>
 <li><del>Pear</del></li>
 <li><ins>Teal</ins></li>
 <li><del>Lemon</del><ins>Yellow</ins></li>
 <li>Olive</li>
 <li><ins>Purple</ins></li>
</ul>

4.6.6 Edits and tables

This section is non-normative.

The elements that form part of the table model have complicated content model requirements that do not allow for the ins and del elements, so indicating edits to a table can be difficult.

To indicate that an entire row or an entire column has been added or removed, the entire contents of each cell in that row or column can be wrapped in ins or del elements (respectively).

Here, a table's row has been added:

<table>
 <thead>
  <tr> <th> Game name           <th> Game publisher   <th> Verdict
 <tbody>
  <tr> <td> Diablo 2            <td> Blizzard         <td> 8/10
  <tr> <td> Portal              <td> Valve            <td> 10/10
  <tr> <td> <ins>Portal 2</ins> <td> <ins>Valve</ins> <td> <ins>10/10</ins>
</table>

Here, a column has been removed (the time at which it was removed is given also, as is a link to the page explaining why):

<table>
 <thead>
  <tr> <th> Game name           <th> Game publisher   <th> <del cite="/edits/r192" datetime="2011-05-02 14:23Z">Verdict</del>
 <tbody>
  <tr> <td> Diablo 2            <td> Blizzard         <td> <del cite="/edits/r192" datetime="2011-05-02 14:23Z">8/10</del>
  <tr> <td> Portal              <td> Valve            <td> <del cite="/edits/r192" datetime="2011-05-02 14:23Z">10/10</del>
  <tr> <td> Portal 2            <td> Valve            <td> <del cite="/edits/r192" datetime="2011-05-02 14:23Z">10/10</del>
</table>

Generally speaking, there is no good way to indicate more complicated edits (e.g. that a cell was removed, moving all subsequent cells up or to the left).

4.7 Embedded content

4.7.1 The img element

Categories:
Flow content.
Phrasing content.
Embedded content.
Form-associated element.
If the element has a usemap attribute: Interactive content.
Palpable content.
Contexts in which this element can be used:
Where embedded content is expected.
Content model:
Empty.
Content attributes:
Global attributes
alt - Replacement text for use when images are not available
src - Address of the resource
crossorigin - How the element handles crossorigin requests
usemap - Name of image map to use
ismap - Whether the image is a server-side image map
width - Horizontal dimension
height - Vertical dimension
Tag omission in text/html:
No end tag.
Allowed ARIA role attribute values:
presentation role only, for an img element whose alt attribute's value is empty (alt=""), otherwise any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
[NamedConstructor=Image(optional unsigned long width, optional unsigned long height)]
interface HTMLImageElement : HTMLElement {
           attribute DOMString alt;
           attribute DOMString src;

           attribute DOMString crossOrigin;
           attribute DOMString useMap;
           attribute boolean isMap;
           attribute unsigned long width;
           attribute unsigned long height;
  readonly attribute unsigned long naturalWidth;
  readonly attribute unsigned long naturalHeight;
  readonly attribute boolean complete;
};

An img element represents an image.

The image given by the src attributes is the embedded content; the value of the alt attribute provides equivalent content for those who cannot process images or who have image loading disabled.

The requirements on the alt attribute's value are described in the next section.

The src attribute must be present, and must contain a valid non-empty URL potentially surrounded by spaces referencing a non-interactive, optionally animated, image resource that is neither paged nor scripted.

The requirements above imply that images can be static bitmaps (e.g. PNGs, GIFs, JPEGs), single-page vector documents (single-page PDFs, XML files with an SVG root element), animated bitmaps (APNGs, animated GIFs), animated vector graphics (XML files with an SVG root element that use declarative SMIL animation), and so forth. However, these definitions preclude SVG files with script, multipage PDF files, interactive MNG files, HTML documents, plain text documents, and so forth. [PNG] [GIF] [JPEG] [PDF] [XML] [APNG] [SVG] [MNG]

The img element must not be used as a layout tool. In particular, img elements should not be used to display transparent images, as such images rarely convey meaning and rarely add anything useful to the document.


The crossorigin attribute is a CORS settings attribute. Its purpose is to allow images from third-party sites that allow cross-origin access to be used with canvas.


An img is always in one of the following states:

Unavailable
The user agent hasn't obtained any image data.
Partially available
The user agent has obtained some of the image data.
Completely available
The user agent has obtained all of the image data and at least the image dimensions are available.
Broken
The user agent has obtained all of the image data that it can, but it cannot even decode the image enough to get the image dimensions (e.g. the image is corrupted, or the format is not supported, or no data could be obtained).

When an img element is either in the partially available state or in the completely available state, it is said to be available.

An img element is initially unavailable.

When an img element is available, it provides a paint source whose width is the image's intrinsic width, whose height is the image's intrinsic height, and whose appearance is the intrinsic appearance of the image.

In a browsing context where scripting is disabled, user agents may obtain images immediately or on demand. In a browsing context where scripting is enabled, user agents must obtain images immediately.

A user agent that obtains images immediately must synchronously update the image data of an img element whenever that element is created with a src attribute. A user agent that obtains images immediately must also synchronously update the image data of an img element whenever that element has its src or crossorigin attribute set, changed, or removed, and whenever that element's adopting steps are run.

A user agent that obtains images on demand must update the image data of an img element whenever it needs the image data (i.e. on demand), but only if the img element has a src attribute, and only if the img element is in the unavailable state. When an img element's src or crossorigin attribute set, changed, or removed, if the user agent only obtains images on demand, the img element must return to the unavailable state.

Each img element has a last selected source, which must initially be null, and a current pixel density, which must initially be undefined.

When an img element has a current pixel density that is not 1.0, the element's image data must be treated as if its resolution, in device pixels per CSS pixels, was the current pixel density.

For example, if the current pixel density is 3.125, that means that there are 300 device pixels per CSS inch, and thus if the image data is 300x600, it has an intrinsic dimension of 96 CSS pixels by 192 CSS pixels.

Each Document object must have a list of available images. Each image in this list is identified by a tuple consisting of an absolute URL, a CORS settings attribute mode, and, if the mode is not No CORS, an origin. User agents may copy entries from one Document object's list of available images to another at any time (e.g. when the Document is created, user agents can add to it all the images that are loaded in other Documents), but must not change the keys of entries copied in this way when doing so. User agents may also remove images from such lists at any time (e.g. to save memory).

When the user agent is to update the image data of an img element, it must run the following steps:

  1. Return the img element to the unavailable state.

  2. If an instance of the fetching algorithm is still running for this element, then abort that algorithm, discarding any pending tasks generated by that algorithm.

  3. Forget the img element's current image data, if any.

  4. If the user agent cannot support images, or its support for images has been disabled, then abort these steps.

  5. Otherwise, if the element has a src attribute specified and its value is not the empty string, let selected source be the value of the element's src attribute, and selected pixel density be 1.0. Otherwise, let selected source be null and selected pixel density be undefined.

  6. Let the img element's last selected source be selected source and the img element's current pixel density be selected pixel density.

  7. If selected source is not null, run these substeps:

    1. Resolve selected source, relative to the element. If that is not successful, abort these steps.

    2. Let key be a tuple consisting of the resulting absolute URL, the img element's crossorigin attribute's mode, and, if that mode is not No CORS, the Document object's origin.

    3. If the list of available images contains an entry for key, then set the img element to the completely available state, update the presentation of the image appropriately, queue a task to fire a simple event named load at the img element, and abort these steps.

  8. Asynchronously await a stable state, allowing the task that invoked this algorithm to continue. The synchronous section consists of all the remaining steps of this algorithm until the algorithm says the synchronous section has ended. (Steps in synchronous sections are marked with ⌛.)

  9. ⌛ If another instance of this algorithm for this img element was started after this instance (even if it aborted and is no longer running), then abort these steps.

    Only the last instance takes effect, to avoid multiple requests when, for example, the src and crossorigin attributes are all set in succession.

  10. ⌛ If selected source is null, then set the element to the broken state, queue a task to fire a simple event named error at the img element, and abort these steps.

  11. Queue a task to fire a progress event named loadstart at the img element.

  12. ⌛ Do a potentially CORS-enabled fetch of the absolute URL that resulted from the earlier step, with the mode being the current state of the element's crossorigin content attribute, the origin being the origin of the img element's Document, and the default origin behaviour set to taint.

    The resource obtained in this fashion, if any, is the img element's image data. It can be either CORS-same-origin or CORS-cross-origin; this affects the origin of the image itself (e.g. when used on a canvas).

    Fetching the image must delay the load event of the element's document until the task that is queued by the networking task source once the resource has been fetched (defined below) has been run.

    This, unfortunately, can be used to perform a rudimentary port scan of the user's local network (especially in conjunction with scripting, though scripting isn't actually necessary to carry out such an attack). User agents may implement cross-origin access control policies that are stricter than those described above to mitigate this attack, but unfortunately such policies are typically not compatible with existing Web content.

    If the resource is CORS-same-origin, each task that is queued by the networking task source while the image is being fetched must fire a progress event named progress at the img element.

  13. End the synchronous section, continuing the remaining steps asynchronously, but without missing any data from the fetch algorithm.

  14. As soon as possible, jump to the first applicable entry from the following list:

    If the resource type is multipart/x-mixed-replace

    The next task that is queued by the networking task source while the image is being fetched must set the img element's state to partially available.

    Each task that is queued by the networking task source while the image is being fetched must update the presentation of the image, but as each new body part comes in, it must replace the previous image. Once one body part has been completely decoded, the user agent must set the img element to the completely available state and queue a task to fire a simple event named load at the img element.

    The progress and loadend events are not fired for multipart/x-mixed-replace image streams.

    If the resource type and data corresponds to a supported image format, as described below

    The next task that is queued by the networking task source while the image is being fetched must set the img element's state to partially available.

    That task, and each subsequent task, that is queued by the networking task source while the image is being fetched must update the presentation of the image appropriately (e.g. if the image is a progressive JPEG, each packet can improve the resolution of the image).

    Furthermore, the last task that is queued by the networking task source once the resource has been fetched must additionally run the steps for the matching entry in the following list:

    If the download was successful and the user agent was able to determine the image's width and height
    1. Set the img element to the completely available state.

    2. Add the image to the list of available images using the key key.

    3. If the resource is CORS-same-origin: fire a progress event named load at the img element.

      If the resource is CORS-cross-origin: fire a simple event named load at the img element.

    4. If the resource is CORS-same-origin: fire a progress event named loadend at the img element.

      If the resource is CORS-cross-origin: fire a simple event named loadend at the img element.

    Otherwise
    1. Set the img element to the broken state.

    2. If the resource is CORS-same-origin: fire a progress event named load at the img element.

      If the resource is CORS-cross-origin: fire a simple event named load at the img element.

    3. If the resource is CORS-same-origin: fire a progress event named loadend at the img element.

      If the resource is CORS-cross-origin: fire a simple event named loadend at the img element.

    Otherwise

    Either the image data is corrupted in some fatal way such that the image dimensions cannot be obtained, or the image data is not in a supported file format; the user agent must set the img element to the broken state, abort the fetching algorithm, discarding any pending tasks generated by that algorithm, and then queue a task to first fire a simple event named error at the img element and then fire a simple event named loadend at the img element.

While a user agent is running the above algorithm for an element x, there must be a strong reference from the element's Document to the element x, even if that element is not in its Document.

When an img element is in the completely available state and the user agent can decode the media data without errors, then the img element is said to be fully decodable.

Whether the image is fetched successfully or not (e.g. whether the response code was a 2xx code or equivalent) must be ignored when determining the image's type and whether it is a valid image.

This allows servers to return images with error responses, and have them displayed.

The user agent should apply the image sniffing rules to determine the type of the image, with the image's associated Content-Type headers giving the official type. If these rules are not applied, then the type of the image must be the type given by the image's associated Content-Type headers.

User agents must not support non-image resources with the img element (e.g. XML files whose root element is an HTML element). User agents must not run executable code (e.g. scripts) embedded in the image resource. User agents must only display the first page of a multipage resource (e.g. a PDF file). User agents must not allow the resource to act in an interactive fashion, but should honor any animation in the resource.

This specification does not specify which image types are to be supported.



What an img element represents depends on the src attribute and the alt attribute.

If the src attribute is set and the alt attribute is set to the empty string

The image is either decorative or supplemental to the rest of the content, redundant with some other information in the document.

If the image is available and the user agent is configured to display that image, then the element represents the element's image data.

Otherwise, the element represents nothing, and may be omitted completely from the rendering. User agents may provide the user with a notification that an image is present but has been omitted from the rendering.

If the src attribute is set and the alt attribute is set to a value that isn't empty

The image is a key part of the content; the alt attribute gives a textual equivalent or replacement for the image.

If the image is available and the user agent is configured to display that image, then the element represents the element's image data.

Otherwise, the element represents the text given by the alt attribute. User agents may provide the user with a notification that an image is present but has been omitted from the rendering.

If the src attribute is set and the alt attribute is not

There is no textual equivalent of the image available.

If the image is available and the user agent is configured to display that image, then the element represents the element's image data.

Otherwise, the user agent should display some sort of indicator that there is an image that is not being rendered, and may, if requested by the user, or if so configured, or when required to provide contextual information in response to navigation, provide caption information for the image, derived as follows:

  1. If the image is a descendant of a figure element that has a child figcaption element, and, ignoring the figcaption element and its descendants, the figure element has no Text node descendants other than inter-element whitespace, and no embedded content descendant other than the img element, then the contents of the first such figcaption element are the caption information; abort these steps.

  2. There is no caption information.

If the src attribute is not set and either the alt attribute is set to the empty string or the alt attribute is not set at all

The element represents nothing.

Otherwise

The element represents the text given by the alt attribute.

The alt attribute does not represent advisory information. User agents must not present the contents of the alt attribute in the same way as content of the title attribute.

While user agents are encouraged to repair cases of missing alt attributes, authors must not rely on such behavior. Requirements for providing text to act as an alternative for images are described in detail below.

The contents of img elements, if any, are ignored for the purposes of rendering.


The usemap attribute, if present, can indicate that the image has an associated image map.

The ismap attribute, when used on an element that is a descendant of an a element with an href attribute, indicates by its presence that the element provides access to a server-side image map. This affects how events are handled on the corresponding a element.

The ismap attribute is a boolean attribute. The attribute must not be specified on an element that does not have an ancestor a element with an href attribute.

The img element supports dimension attributes.

The alt, src IDL attributes must reflect the respective content attributes of the same name.

The crossOrigin IDL attribute must reflect the crossorigin content attribute, limited to only known values.

The useMap IDL attribute must reflect the usemap content attribute.

The isMap IDL attribute must reflect the ismap content attribute.

image . width [ = value ]
image . height [ = value ]

These attributes return the actual rendered dimensions of the image, or zero if the dimensions are not known.

They can be set, to change the corresponding content attributes.

image . naturalWidth
image . naturalHeight

These attributes return the intrinsic dimensions of the image, or zero if the dimensions are not known.

image . complete

Returns true if the image has been completely downloaded or if no image is specified; otherwise, returns false.

image = new Image( [ width [, height ] ] )

Returns a new img element, with the width and height attributes set to the values passed in the relevant arguments, if applicable.

The IDL attributes width and height must return the rendered width and height of the image, in CSS pixels, if the image is being rendered, and is being rendered to a visual medium; or else the intrinsic width and height of the image, in CSS pixels, if the image is available but not being rendered to a visual medium; or else 0, if the image is not available. [CSS]

On setting, they must act as if they reflected the respective content attributes of the same name.

The IDL attributes naturalWidth and naturalHeight must return the intrinsic width and height of the image, in CSS pixels, if the image is available, or else 0. [CSS]

The IDL attribute complete must return true if any of the following conditions is true:

Otherwise, the attribute must return false.

The value of complete can thus change while a script is executing.

A constructor is provided for creating HTMLImageElement objects (in addition to the factory methods from DOM such as createElement()): Image(width, height). When invoked as a constructor, this must return a new HTMLImageElement object (a new img element). If the width argument is present, the new object's width content attribute must be set to width. If the height argument is also present, the new object's height content attribute must be set to height. The element's document must be the active document of the browsing context of the Window object on which the interface object of the invoked constructor is found.

4.7.1.1 Requirements for providing text to act as an alternative for images

Text alternatives, [WCAG] are a primary way of making visual information accessible, because they can be rendered through any sensory modality (for example, visual, auditory or tactile) to match the needs of the user. Providing text alternatives allows the information to be rendered in a variety of ways by a variety of user agents. For example, a person who cannot see a picture can have the text alternative read aloud using synthesized speech.

The alt attribute on images is a very important accessibility attribute. Authoring useful alt attribute content requires the author to carefully consider the context in which the image appears and the function that image may have in that context. The guidance included here addresses the most common ways authors use images. Additional guidance and techniques are available in Resources on Alternative Text for Images.

4.7.1.1.1 Examples of scenarios where users benefit from text alternatives for images
4.7.1.1.2 General guidelines

Except where otherwise specified, the alt attribute must be specified and its value must not be empty; the value must be an appropriate functional replacement for the image. The specific requirements for the alt attribute content depend on the image's function in the page, as described in the following sections.

To determine an appropriate text alternative it is important to think about why an image is being included in a page. What is its purpose? Thinking like this will help you to understand what is important about the image for the intended audience. Every image has a reason for being on a page, because it provides useful information, performs a function, labels an interactive element, enhances aesthetics or is purely decorative. Therefore, knowing what the image is for, makes writing an appropriate text alternative easier.

When an a element that is a hyperlink, or a button element, has no text content but contains one or more images, include text in the alt attribute(s) that together convey the purpose of the link or button.

In this example, a user is asked to pick her preferred color from a list of three. Each color is given by an image, but for users who cannot view the images, the color names are included within the alt attributes of the images:

The example HTML code as displayed in a browser. 3 links each containing a rectangular image:  1 is blue with the text 'blue', 2 red with the text 'red' and 3 is green with the text 'green'.

  <ul>
  <li><a href="red.html"><img src="red.jpeg" alt="Red"></a></li>
  <li><a href="green.html"><img src="green.jpeg" alt="Green"></a></li>
  <li><a href="blue.html"><img src="blue.jpeg" alt="Blue"></a></li>
  </ul>
  

In this example, a link contains a logo. The link points to the W3C web site from an external site. The text alternative is a brief description of the link target.

W3C logo used as link content.

  <a href="http://w3.org">
  <img src="images/w3c_home.png" width="72" height="48" alt="W3C web site">
  </a>
  

This example is the same as the previous example, except that the link is on the W3C web site. The text alternative is a brief description of the link target.

W3C logo used as link content.

  <a href="http://w3.org">
  <img src="images/w3c_home.png" width="72" height="48" alt="W3C home">
  </a>
  

Depending on the context in which an image of a logo is used it could be appropriate to provide an indication, as part of the text alternative, that the image is a logo. Refer to section 4.7.1.1.19 Logos, insignia, flags, or emblems.

In this example, a link contains a print preview icon. The link points to a version of the page with a print stylesheet applied. The text alternative is a brief description of the link target.

Print preview icon used as link content.

  <a href="preview.html">
  <img src="images/preview.png" width="32" height="30" alt="Print preview.">
  </a>
  

In this example, a button contains a search icon. The button submits a search form. The text alternative is a brief description of what the button does.

Search icon used as button content.

  <button>
  <img src="images/search.png" width="74" height="29" alt="Search">
  </button>
  

In this example, a company logo for the PIP Corporation has been split into the following two images, the first containing the word PIP and the second with the abbreviated word CO. The images are the sole content of a link to the PIPCO home page. In this case a brief description of the link target is provided. As the images are presented to the user as a single entity the text alternative PIP CO home is in the alt attribute of the first image.

Image containing the text 'PIP'.Image containing the text 'CO'.

  <a href="pipco-home.html">
  <img src="pip.gif" alt="PIP CO home"><img src="co.gif" alt="">
  </a>
  
4.7.1.1.4 Graphical Representations: Charts, diagrams, graphs, maps, illustrations

Users can benefit when content is presented in graphical form, for example as a flowchart, a diagram, a graph, or a map showing directions. Users also benefit when content presented in a graphical form is also provided in a textual format, these users include those who are unable to view the image (e.g. because they have a very slow connection, or because they are using a text-only browser, or because they are listening to the page being read out by a hands-free automobile voice Web browser, or because they have a visual impairment and use an assistive technology to render the text to speech).

In the following example we have an image of a pie chart, with text in the alt attribute representing the data shown in the pie chart:

Browser Share: Internet Explorer 25%, Firefox 40%, Chrome 25%, Safari 6% and Opera 4%.

  <img src="piechart.gif" alt="Pie chart: Browser Share - Internet Explorer 25%, Firefox 40%, Chrome 25%, Safari 6% and Opera 4%.">
  

In the case where an image repeats the previous paragraph in graphical form. The alt attribute content labels the image.

 <p>According to a recent study Firefox has a 40% browser share, Internet Explorer has 25%, Chrome has 25%, Safari has 6% and Opera has 4%.</p>
 <p><img src="piechart.gif" alt="Pie chart representing the data in the previous paragraph."></p>

It can be seen that when the image is not available, for example because the src attribute value is incorrect, the text alternative provides the user with a brief description of the image content:

Representation of the code snippet above.

In cases where the text alternative is lengthy, more than a sentence or two, or would benefit from the use of structured markup, provide a brief description or label using the alt attribute, and an associated text alternative.

Here's an example of a flowchart image, with a short text alternative included in the alt attribute, in this case the text alternative is a description of the link target as the image is the sole content of a link. The link points to a description, within the same document, of the process represented in the flowchart.

Flowchart: Dealing with a broken lamp.

  
  <a href="#desc"><img src="flowchart.gif" alt="Flowchart: Dealing with a broken lamp."></a>

  ...

  ...

  <div id="desc">
  <h2>Dealing with a broken lamp</h2>
  <ol>
  <li>Check if it's plugged in, if not, plug it in.</li>
  <li>If it still doesn't work; check if the bulb is burned out. If it is, replace the bulb.</li>
  <li>If it still doesn't work; buy a new lamp.</li>
  </ol>
  </div>

In this example, there is an image of a chart. It would be inappropriate to provide the information depicted in the chart as a plain text alternative in an alt attribute as the information is a data set. Instead a structured text alternative is provided below the image in the form of a data table using the data that is represented in the chart image.

Bar Chart showing average rainfall in millimetres by Country and Season.

Indications of the highest and lowest rainfall for each season have been included in the table, so trends easily identified in the chart are also available in the data table.

Average rainfall in millimetres by country and season.
United KingdomJapanAustralia
Spring5.3 (highest)2.42 (lowest)
Summer4.5 (highest)3.42 (lowest)
Autumn3.5 (highest)1.81.5 (lowest)
Winter1.5 (highest)1.21 (lowest)
  <figure>
  <figcaption>Rainfall Data</figcaption>
  <img src="rainchart.gif" alt="Bar chart: Average rainfall in millimetres by Country and Season.">
  <table>
  <caption>Rainfall in millimetres by Country and Season.</caption>
  <tr><td><th scope="col">UK <th scope="col">Japan<th scope="col">Australia</tr>
  <tr><th scope="row">Spring <td>5.5 (highest)<td>2.4 <td>2 (lowest)</tr>
  <tr><th scope="row">Summer <td>4.5 (highest)<td>3.4<td>2 (lowest)</tr>
  <tr><th scope="row">Autumn <td>3.5 (highest) <td>1.8 <td>1.5 (lowest)</tr>
  <tr><th scope="row">Winter <td>1.5 (highest) <td>1.2 <td>1 lowest</tr>
  </table>
  </figure>
  

The figure element is used to group the Bar Chart image and data table. The figcaption element provides a caption for the grouped content.

For any of the examples in this section the details and summary elements could be used so that the text descriptions for the images are only displayed on demand:

Details element in the closed state.

Details element in the open state with list content displayed.

  <figure>
  <img src="flowchart.gif" alt="Flowchart: Dealing with a broken lamp.">
  <details>
  <summary>Dealing with a broken lamp</summary>
  <ol>
  lt;li>Check if it's plugged in, if not, plug it in.</li>
  <li>If it still doesn't work; check if the bulb is burned out. If it is, replace the bulb.</li>
  <li>If it still doesn't work; buy a new lamp.</li>
  </ol>
  </details>
  </figure>
  

The details and summary elements are not currently well supported by browsers, until such times they are supported, if used, you will need to use scripting to provide the functionality. There are a number of scripted Polyfills and scripted custom controls available, in popular JavaScript UI widget libraries, which provide similar functionality.

4.7.1.1.5 Images of text

Sometimes, an image only contains text, and the purpose of the image is to display text using visual effects and /or fonts. It is strongly recommended that text styled using CSS be used, but if this is not possible, provide the same text in the alt attribute as is in the image.

This example shows an image of the text "Get Happy!" written in a fancy multi colored freehand style. The image makes up the content of a heading. In this case the text alternative for the image is "Get Happy!".

Get Happy!

<h1><img src="gethappy.gif" alt="Get Happy!"></h1>

In this example we have an advertising image consisting of text, the phrase "The BIG sale" is repeated 3 times, each time the text gets smaller and fainter, the last line reads "...ends Friday" In the context of use, as an advertisement, it is recommended that the image's text alternative only include the text "The BIG sale" once as the repetition is for visual effect and the repetition of the text for users who cannot view the image is unnecessary and could be confusing.

The big sale ...ends Friday.

  <p><img src="sale.gif" alt="The BIG sale ...ends Friday."></p>
  

In situations where there is also a photo or other graphic along with the image of text, ensure that the words in the image text are included in the text alternative, along with any other description of the image that conveys meaning to users who can view the image, so the information is also available to users who cannot view the image.

When an image is used to represent a character that cannot otherwise be represented in Unicode, for example gaiji, itaiji, or new characters such as novel currency symbols, the text alternative should be a more conventional way of writing the same thing, e.g. using the phonetic hiragana or katakana to give the character's pronunciation.

In this example from 1997, a new-fangled currency symbol that looks like a curly E with two bars in the middle instead of one is represented using an image. The alternative text gives the character's pronunication.

Only euro 5.99!

<p>Only <img src="euro.png" alt="euro ">5.99!

An image should not be used if Unicode characters would serve an identical purpose. Only when the text cannot be directly represented using Unicode, e.g. because of decorations or because the character is not in the Unicode character set (as in the case of gaiji), would an image be appropriate.

If an author is tempted to use an image because their default system font does not support a given character, then Web Fonts are a better solution than images.

An illuminated manuscript might use graphics for some of its letters. The text alternative in such a situation is just the character that the image represents.

Once upon a time and a long long time ago...

<p><img src="initials/fancyO.png" alt="O">nce upon a time and a long long time ago...
4.7.1.1.6 Images that include text

Sometimes, an image consists of a graphics such as a chart and associated text. In this case it is recommended that the text in the image is included in the text alternative.

Consider an image containing a pie chart and associated text. It is recommended wherever possible to provide any associated text as text, not an image of text. If this is not possible include the text in the text alternative along with the pertinent information conveyed in the image.

Figure 1. Distribution of Articles by Journal 
  Category. Pie chart: Language=68%, Education=14% and Science=18%.

  <p><img src="figure1.gif" alt="Figure 1. Distribution of Articles by Journal Category. 
  Pie chart: Language=68%, Education=14% and Science=18%."></p>
  

Here's another example of the same pie chart image, showing a short text alternative included in the alt attribute and a longer text alternative in text. The figure and figcaption elements are used to associate the longer text alternative with the image. The alt attribute is used to label the image.

  <figure>
  <img src="figure1.gif" alt="Figure 1">
  <figcaption><strong>Figure 1.</strong> Distribution of Articles by Journal Category. 
  Pie chart: Language=68%, Education=14% and Science=18%.</figcaption>
  </figure>
  

The advantage of this method over the previous example is that the text alternative is available to all users at all times. It also allows structured mark up to be used in the text alternative, where as a text alternative provided using the alt attribute does not.

4.7.1.1.7 Images that enhance the themes or subject matter of the page content

An image that isn't discussed directly by the surrounding text but still has some relevance can be included in a page using the img element. Such images are more than mere decoration, they may augment the themes or subject matter of the page content and so still form part of the content. In these cases, it is recommeneded that a text alternative be provided.

Here is an example of an image closely related to the subject matter of the page content but not directly discussed. An image of a painting inspired by a poem, on a page reciting that poem. The following snippet shows an example. The image is a painting titled the "Lady of Shallot", it is inspired by the poem and its subject matter is derived from the poem. Therefore it is strongly recommended that a text alternative is provided. There is a short description of the content of the image in the alt attribute and a link below the image to a longer description located at the bottom of the document. At the end of the longer description there is also a link to further information about the painting.

A painting inspired by Alfred Tennyson's poem The Lady of Shalott

  <header>
  <h1>The Lady of Shalott</h1>
  <p>A poem by Alfred Lord Tennyson</p>
  </header>

  <img src="shalott.jpeg" alt="Painting of a  young woman with long hair, sitting in a wooden boat. ">
  <p><a href="#des">Description of the painting</a>.</p>


  <!-- Full Recitation of Alfred, Lord Tennyson's Poem.  -->

  ...
  ...
  ...
  <p id="des">The woman in the painting is wearing a flowing white dress. A large piece of intricately 
  patterned fabric is draped over the side. In her right hand she holds the chain mooring the boat. Her expression 
  is mournful. She stares at a crucifix lying in front of her. Beside it are three candles. Two have blown out. 
  <a href="http://bit.ly/5HJvVZ">Further information about the painting</a>.</p>
  

This example illustrates the provision of a text alternative identifying an image as a photo of the main subject of a page.

Portrait photo(black and white) of Robin, accompanied by a heading 'Robin Berjon' and a question
  'what more needs to be said?'
  <img src="orateur_robin_berjon.png" alt="Portrait photo(black and white) of Robin.">
  <h1>Robin Berjon</h1>
  <p>What more needs to be said?</p>
  
4.7.1.1.8 A graphical representation of some of the surrounding text

In many cases, the image is actually just supplementary, and its presence merely reinforces the surrounding text. In these cases, the alt attribute must be present but its value must be the empty string.

In general, an image falls into this category if removing the image doesn't make the page any less useful, but including the image makes it a lot easier for users of visual browsers to understand the concept.

It is not always easy to write a useful text alternative for an image, another option is to provide a link to a description or further information about the image when one is available.

In this example of the same image, there is a short text alternative included in the alt attribute, and there is a link after the image. The link points to a page containing information about the painting.

The Lady of Shalott
A poem by Alfred Lord Tennyson.

Painting of a woman in a white flowing dress, sitting in a small boat.

About this painting.

Full recitation of Alfred, Lord Tennyson's poem.

  <header><h1>The Lady of Shalott</h1>
  <p>A poem by Alfred Lord Tennyson</p></header>
  <figure>
  <img src="shalott.jpeg" alt="Painting of a woman in a white flowing dress, sitting in a small boat.">
  <p><a href="http://bit.ly/5HJvVZ">About this painting.</a></p>
  </figure>
  <!-- Full Recitation of Alfred, Lord Tennyson's Poem.  -->
  
4.7.1.1.9 A purely decorative image that doesn't add any information

Purely decorative images are visual enhancements, decorations or embellishments that provide no function or information beyond aesthetics to users who can view the images.

Mark up purely decorative images so they can be ignored by assistive technology by using an empty alt attribute (alt=""). While it is not unacceptable to include decorative images inline, it is recommended if they are purely decorative to include the image using CSS.

Here's an example of an image being used as a decorative banner for a person's blog, the image offers no information and so an empty alt attribute is used.

Clara's Blog

Welcome to my blog...

  <header>
  <div><img src="border.gif" alt="" width="400" height="30"></div>
  <h1>Clara's Blog</h1>
  </header>
  <p>Welcome to my blog...</p>
  
4.7.1.1.10 Inline images

When images are used inline as part of the flow of text in a sentence, provide a word or phrase as a text alternative which makes sense in the context of the sentence it is apart of.

I love you.

I <img src="heart.png" alt="love"> you.

My heart breaks.

My <img src="heart.png" alt="heart"> breaks.

When a picture has been sliced into smaller image files that are then displayed together to form the complete picture again, include a text alternative for one of the images using the alt attribute as per the relevant relevant guidance for the picture as a whole, and then include an empty alt attribute on the other images.

In this example, a picture representing a company logo for the PIP Corporation has been split into two pieces, the first containing the letters "PIP" and the second with the word "CO". The text alternatve PIP CO is in the alt attribute of the first image.

Image containing the text 'PIP'.Image containing the text 'CO'.

  <img src="pip.gif" alt="PIP CO"><img src="co.gif" alt="">
  

In the following example, a rating is shown as three filled stars and two empty stars. While the text alternative could have been "★★★☆☆", the author has instead decided to more helpfully give the rating in the form "3 out of 5". That is the text alternative of the first image, and the rest have empty alt attributes.

3 out of 5.

  <p>Rating: <meter max=5 value=3>
  <img src="1" alt="3 out of 5">
  <img src="1" alt=""><img src="1" alt="">
  <img src="0" alt=""><img src="0" alt="">
  </meter></p>
  
4.7.1.1.12 Image maps
If an img element has a usemap attribute which references a map element containing area elements that have href attributes, the img is considered to be interactive content. In such cases, always provide a text alternative for the image using the alt attribute.

Consider the following image which is a map of Katoomba, it has 2 interactive regions corresponding to the areas of North and South Katoomba:

Map of Katoomba.

North Katoomba South Katoomba

The text alternative is a brief description of the image. The alt attribute on each of the area elements provides text describing the content of the target page of each linked region:

<p>View houses for sale in North Katoomba or South Katoomba:</p>
 <p><img src="imagemap.png" width="209" alt="Map of Katoomba" height="249" usemap="#Map">

 <map name="Map"> 
 <area shape="poly" coords="78,124,124,10,189,29,173,93,168,132,136,151,110,130" 
 href="north.html" alt="Houses in North Katoomba">
 <area shape="poly" coords="66,63,80,135,106,138,137,154,167,137,175,133,144,240,49,223,17,137,17,61" 
 alt="Houses in South Katoomba" href="south.html">
 </map> 

Generally, image maps should be used instead of slicing an image for links.

Sometimes, when you create a composite picture from multiple images, you may wish to link one or more of the images. Provide an alt attribute for each linked image to describe the purpose of the link.

In the following example, a composite picture is used to represent a "crocoduck"; a fictional creature which defies evolutionary principles by being part crocodile and part duck. You are asked to interact with the crocoduck, but you need to exercise caution...

crocodile's angry, chomping headduck's soft, feathery body

  <h1>The crocoduck</h1>
  <p>You encounter a strange creature called a "crocoduck". 
  The creature seems angry! Perhaps some friendly stroking will help to calm 
  it, but be careful not to stroke any crocodile parts. This would just enrage 
  the beast further.</p>
  <a href="?stroke=head"><img src="crocoduck1.png" alt="Stroke crocodile's angry, chomping head"></a> 
  <a href="?stroke=body"><img src="crocoduck2.png" alt="Stroke duck's soft, feathery body"></a>  
  
4.7.1.1.14 Images of Pictures

Images of pictures or graphics include visual representations of objects, people, scenes, abstractions, etc. This non-text content, [WCAG] can convey a significant amount of information visually or provide a specific sensory experience, [WCAG] to a sighted person. Examples include photographs, paintings, drawings and artwork.

An appropriate text alternative for a picture is a brief description, or name [WCAG]. As in all text alternative authoring decisions, writing suitable text alternatives for pictures requires human judgment. The text value is subjective to the context where the image is used and the page author's writing style. Therefore, there is no single 'right' or 'correct' piece of alt text for any particular image. In addition to providing a short text alternative that gives a brief description of the non-text content, also providing supplemental content through another means when appropriate may be useful.

This first example shows an image uploaded to a photo-sharing site. The photo is of a cat, sitting in the bath. The image has a text alternative provided using the img element's alt attribute. It also has a caption provided by including the img element in a figure element and using a figcaption element to identify the caption text.

Lola the cat sitting under an umbrella in the bath tub.

Lola prefers a bath to a shower.

  <figure>
  <img src="664aef.jpg" alt="Lola the cat sitting under an umbrella in the bath tub.">
  <figcaption>Lola prefers a bath to a shower.</figcaption>
  </figure>
  

This example is of an image that defies a complete description, as the subject of the image is open to interpretation. The image has a text alternative in the alt attribute which gives users who cannot view the image a sense of what the image is. It also has a caption provided by including the img element in a figure element and using a figcaption element to identify the caption text.

An abstract, freeform, vertically symmetrical, black inkblot on a light background.

The first of the ten cards in the Rorschach test.

<figure>
  <img src="Rorschach1.jpg" alt="An abstract, freeform, vertically symmetrical, black inkblot on a light background.">
  <figcaption>The first of the ten cards in the Rorschach test.</figcaption>
  </figure> 
4.7.1.1.15 Webcam images

Webcam images are static images that are automatically updated periodically. Typically the images are from a fixed viewpoint, the images may update on the page automatically as each new image is uploaded from the camera or the user may be required to refresh the page to view an updated image. Examples include traffic and weather cameras.

This example is fairly typical; the title and a time stamp are included in the image, automatically generated by the webcam software. It would be better if the text information was not included in the image, but as it is part of the image, include it as part of the text alternative. A caption is also provided using the figure and figcaption elements. As the image is provided to give a visual indication of the current weather near a building, a link to a local weather forecast is provided, as with automatically generated and uploaded webcam images it may be impractical to provide such information as a text alternative.

The text of the alt attribute includes a prose version of the timestamp, designed to make the text more understandable when announced by text to speech software. The text alternative also includes a description of some aspects of what can be seen in the image which are unchanging, although weather conditions and time of day change.

Sopwith house weather cam. Taken on the 21/04/10 at 11:51 and 34 seconds. In the foreground are the safety
  rails on the flat part of the roof. Nearby ther are low rise industrial buildings, beyond those are block of flats. In the distance there's a
  church steeple.

View from the top of Sopwith house, looking towards North Kingston. This image is updated every hour.

View the latest weather details for Kingston upon Thames.

<figure>
  <img src="webcam1.jpg" alt="Sopwith house weather cam. Taken on the 21/04/10 at 11:51 and 34 seconds.
  In the foreground are the safety rails on the flat part of the roof. Nearby there are low rise industrial buildings,
  beyond are blocks of flats. In the distance there's a church steeple.">
  <figcaption>View from Sopwith house, looking towards north Kingston. This image is updated every hour.</figcaption>
  </figure>
  <p>View the <a href="http://news.bbc.co.uk/weather/forecast/4296?area=Kingston">latest weather details</a> for Kingston upon Thames.</p>
  
4.7.1.1.16 When a text alternative is not available at the time of publication

In some cases an image is included in a published document, but the author is unable to provide an appropriate text alternative. In such cases the minimum requirement is to provide a caption for the image using the figure and figcaption elements under the following conditions:

In other words, the only content of the figure is an img element and a figcaption element, and the figcaption element must include (caption) content.

Such cases are to be kept to an absolute minimum. If there is even the slightest possibility of the author having the ability to provide real alternative text, then it would not be acceptable to omit the alt attribute.

In this example, a person uploads a photo, as part of a bulk upoad of many images, to a photo sharing site. The user has not provided a text alternative or a caption for the image. The site's authoring tool inserts a caption automatically using whatever useful information it has for the image. In this case it's the file name and date the photo was taken.

The caption text in the example below is not a suitable text alternative and is not conforming to the Web Accessibility Guidelines 2.0. [WCAG]

no text alternative provided

clara.jpg, taken on 12/11/2010.

  <figure>
  <img src="clara.jpg">
  <figcaption>clara.jpg, taken on 12/11/2010.</figcaption>
  </figure>
  

Notice that even in this example, as much useful information as possible is still included in the figcaption element.

In this second example, a person uploads a photo to a photo sharing site. She has provided a caption for the image but not a text alternative. This may be because the site does not provide users with the ability to add a text alternative in the alt attribute.

no text alternative provided

Eloisa with Princess Belle

  <figure>
  <img src="elo.jpg">
  <figcaption>Eloisa with Princess Belle</figcaption>
  </figure>
  

Sometimes the entire point of the image is that a textual description is not available, and the user is to provide the description. For example, software that displays images and asks for alternative text precisely for the purpose of then writing a page with correct alternative text. Such a page could have a table of images, like this:

<table>
  <tr><tr> <th> Image <th> Description<tr>
  <td>
  <figure>
  <img src="2421.png">
  <figcaption>Image 640 by 100, filename 'banner.gif'</figcaption>
  </figure>
  <td> <input name="alt2421">
  <tr>
  <td> <figure>
  <img src="2422.png">
  <figcaption>Image 200 by 480, filename 'ad3.gif'</figcaption>
  </figure>
  <td> <input name="alt2422">
  </table>

Since some users cannot use images at all (e.g. because they are blind) the alt attribute is only allowed to be omitted when no text alternative is available and none can be made available, as in the above examples.

4.7.1.1.17 An image not intended for the user

Generally authors should avoid using img elements for purposes other than showing images.

If an img element is being used for purposes other than showing an image, e.g. as part of a service to count page views, use an empty alt attribute.

An example of an img element used to collect web page statistics. The alt attribute is empty as the image has no meaning.

  <img src="http://server3.stats.com/count.pl?NeonMeatDream.com" width="0" height="0" alt="">
  

It is recommended for the example use above the width and height attributes be set to zero.

Another example use is when an image such as a spacer.gif is used to aid positioning of content. The alt attribute is empty as the image has no meaning.

  <img src="spacer.gif" width="10" height="10" alt="">
  

It is recommended that that CSS be used to position content instead of img elements.

4.7.1.1.18 Icon Images

An icon is usually a simple picture representing a program, action, data file or a concept. Icons are intended to help users of visual browsers to recognize features at a glance.

Use an empty alt attribute when an icon is supplemental to text conveying the same meaning.

In this example, we have a link pointing to a site's home page, the link contains a house icon image and the text "home". The image has an empty alt text. Where images are used in this way, it would also be appropriate to add the image using CSS

A house icon next to the word 'home'.

  <a href="home.html"><img src="home.gif" width="15" height="15" alt="">Home</a>
  
  #home:before
  { 
  content: url(home.png);
  }

  <a href="home.html" id="home">Home</a>
  

In this example, there is a warning message, with a warning icon. The word "Warning!" is in emphasized text next to the icon. As the information conveyed by the icon is redundant the img element is given an an empty alt attribute.

Warning! Warning! Your session is about to expire.

  <p><img src="warning.png" width="15" height="15" alt="">
  <strong>Warning!</strong> 
  Your session is about to expire</p>
  

When an icon conveys additional information not available in text, provide a text alternative.

In this example, there is a warning message, with a warning icon. The icon emphasizes the importance of the message and identifies it as a particular type of content.

Warning! Your session is about to expire.

  <p><img src="warning.png" width="15" height="15" alt="Warning!">
  Your session is about to expire</p>
  
4.7.1.1.19 Logos, insignia, flags, or emblems

Many pages include logos, insignia, flags, or emblems, which stand for a company, organization, project, band, software package, country, or other entity. What can be considered as an appropriate text alternative depends upon, like all images, the context in which the image is being used and what function it serves in the given context.

If a logo is the sole content of a link, provide a brief description of the link target in the alt attribute.

This example illustrates the use of the HTML5 logo as the sole content of a link to the HTML specification.

HTML 5.1 Nightly specification

  <a href="http://dev.w3.org/html5/spec/spec.html">
  <img src="HTML5_Logo.png" alt="HTML 5.1 specification"></a>
  

If a logo is being used to represent the entity, e.g. as a page heading, provide the name of the entity being represented by the logo as the text alternative.

This example illustrates the use of the WebPlatform.org logo being used to represent itself.

WebPlatform.org and other developer resources

  <h2><img src="images/webplatform.png" alt="WebPlatform.org"> and other developer resources<h2>
  

The text alternative in the example above could also include the word "logo" to describe the type of image content. If so, it is suggested that square brackets be used to delineate this information: alt="[logo] WebPlatform.org".

If a logo is being used next to the name of the what that it represents, then the logo is supplemental. Include an empty alt attribute as the text alternative is already provided.

This example illustrates the use of a logo next to the name of the organization it represents.

WebPlatform.org

  <img src="images/webplatform1.png" alt=""> WebPlatform.org
  

If the logo is used alongside text discussing the subject or entity the logo represents, then provide a text alternative which describes the logo.

This example illustrates the use of a logo next to text discussing the subject the logo represents.

HTML5 logo: Shaped like a shield with the 
  text 'HTML' above and the numeral '5' prominent on the face of the shield.

HTML5 is a language for structuring and presenting content for the World Wide Web, a core technology of the Internet. It is the latest revision of the HTML standard (originally created in 1990 and most recently standardized as HTML4 in 1997) and currently remains under development. Its core aims have been to improve the language with support for the latest multimedia while keeping it easily readable by humans and consistently understood by computers and devices (web browsers, parsers etc.).

  <p><img src="HTML5_Logo.png" alt="HTML5 logo: Shaped like a shield with the 
  text 'HTML' above and the numeral '5' prominent on the face of the shield."></p>
  
  Information about HTML5
4.7.1.1.20 CAPTCHA Images

CAPTCHA stands for "Completely Automated Public Turing test to tell Computers and Humans Apart". CAPTCHA images are used for security purposes to confirm that content is being accessed by a person rather than a computer. This authentication is done through visual verification of an image. CAPTCHA typically presents an image with characters or words in it that the user is to re-type. The image is usually distorted and has some noise applied to it to make the characters difficult to read.

To improve the accessibility of CAPTCHA provide text alternatives that identify and describe the purpose of the image, and provide alternative forms of the CAPTCHA using output modes for different types of sensory perception. For instance provide an audio alternative along with the visual image. Place the audio option right next to the visual one. This helps but is still problematic for people without sound cards, the deaf-blind, and some people with limited hearing. Another method is to include a form that asks a question along with the visual image. This helps but can be problematic for people with cognitive impairments.

It is strongly recommended that alternatives to CAPTCHA be used, as all forms of CAPTCHA introduce unacceptable barriers to entry for users with disabilities. Further information is available in Inaccessibility of CAPTCHA.

This example shows a CAPTCHA test which uses a distorted image of text. The text alternative in the alt attribute provides instructions for a user in the case where she cannot access the image content.

captcha containing the words 'aides' and 'sprucest'. The letters are distorted and the color of the letters and background is partially inverted,

Example code:

<img src="captcha.png" alt="If you cannot view this image an audio challenge is provided."> 
  <!-- audio CAPTCHA option that allows the user to listen and type the word -->  
  <!-- form that asks a question -->
  
4.7.1.1.21 Guidance for markup generators

Markup generators (such as WYSIWYG authoring tools) should, wherever possible, obtain a text alternative from their users. However, it is recognized that in many cases, this will not be possible.

For images that are the sole contents of links, markup generators should examine the link target to determine the title of the target, or the URL of the target, and use information obtained in this manner as the text alternative.

For images that have captions, markup generators should use the figure and figcaption elements to provide the image's caption.

As a last resort, implementors should either set the alt attribute to the empty string, under the assumption that the image is a purely decorative image that doesn't add any information but is still specific to the surrounding content, or omit the alt attribute altogether, under the assumption that the image is a key part of the content.

Markup generators may specify a generator-unable-to-provide-required-alt attribute on img elements for which they have been unable to obtain a text alternative and for which they have therefore omitted the alt attribute. The value of this attribute must be the empty string. Documents containing such attributes are not conforming, but conformance checkers will silently ignore this error.

This is intended to avoid markup generators from being pressured into replacing the error of omitting the alt attribute with the even more egregious error of providing phony text alternatives, because state-of-the-art automated conformance checkers cannot distinguish phony text alternatives from correct text alternatives.

Markup generators should generally avoid using the image's own file name as the text alternative. Similarly, markup generators should avoid generating text alternatives from any content that will be equally available to presentation user agents (e.g. Web browsers).

This is because once a page is generated, it will typically not be updated, whereas the browsers that later read the page can be updated by the user, therefore the browser is likely to have more up-to-date and finely-tuned heuristics than the markup generator did when generating the page.

4.7.1.1.22 Guidance for conformance checkers

A conformance checker must report the lack of an alt attribute as an error unless one of the conditions listed below applies:

4.7.2 The iframe element

Categories:
Flow content.
Phrasing content.
Embedded content.
Interactive content.
Palpable content.
Contexts in which this element can be used:
Where embedded content is expected.
Content model:
Text that conforms to the requirements given in the prose.
Content attributes:
Global attributes
src - Address of the resource
srcdoc - A document to render in the iframe
name - Name of nested browsing context
sandbox - Security rules for nested content
seamless - Whether to apply the document's styles to the nested content
allowfullscreen - Whether to allow the iframe's contents to use requestFullscreen()
width - Horizontal dimension
height - Vertical dimension
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
application, document, img or presentation.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLIFrameElement : HTMLElement {
           attribute DOMString src;
           attribute DOMString srcdoc;
           attribute DOMString name;
  [PutForwards=value] readonly attribute DOMSettableTokenList sandbox;
           attribute boolean seamless;
           attribute boolean allowFullscreen;
           attribute DOMString width;
           attribute DOMString height;
  readonly attribute Document? contentDocument;
  readonly attribute WindowProxy? contentWindow;
};

The iframe element represents a nested browsing context.

The src attribute gives the address of a page that the nested browsing context is to contain. The attribute, if present, must be a valid non-empty URL potentially surrounded by spaces. If the itemprop is specified on an iframe element, then the src attribute must also be specified.

The srcdoc attribute gives the content of the page that the nested browsing context is to contain. The value of the attribute is the source of an iframe srcdoc document.

For iframe elements in HTML documents, the srcdoc attribute, if present, must have a value using the HTML syntax that consists of the following syntactic components, in the given order:

  1. Any number of comments and space characters.
  2. Optionally, a DOCTYPE.
  3. Any number of comments and space characters.
  4. The root element, in the form of an html element.
  5. Any number of comments and space characters.

For iframe elements in XML documents, the srcdoc attribute, if present, must have a value that matches the production labeled document in the XML specification. [XML]

Here a blog uses the srcdoc attribute in conjunction with the sandbox and seamless attributes described below to provide users of user agents that support this feature with an extra layer of protection from script injection in the blog post comments:

<article>
 <h1>I got my own magazine!</h1>
 <p>After much effort, I've finally found a publisher, and so now I
 have my own magazine! Isn't that awesome?! The first issue will come
 out in September, and we have articles about getting food, and about
 getting in boxes, it's going to be great!</p>
 <footer>
  <p>Written by <a href="/users/cap">cap</a>, 1 hour ago.
 </footer>
 <article>
  <footer> Thirteen minutes ago, <a href="/users/ch">ch</a> wrote: </footer>
  <iframe seamless sandbox srcdoc="<p>did you get a cover picture yet?"></iframe>
 </article>
 <article>
  <footer> Nine minutes ago, <a href="/users/cap">cap</a> wrote: </footer>
  <iframe seamless sandbox srcdoc="<p>Yeah, you can see it <a href=&quot;/gallery?mode=cover&amp;amp;page=1&quot;>in my gallery</a>."></iframe>
 </article>
 <article>
  <footer> Five minutes ago, <a href="/users/ch">ch</a> wrote: </footer>
  <iframe seamless sandbox srcdoc="<p>hey that's earl's table.
<p>you should get earl&amp;amp;me on the next cover."></iframe>
 </article>

Notice the way that quotes have to be escaped (otherwise the srcdoc attribute would end prematurely), and the way raw ampersands (e.g. in URLs or in prose) mentioned in the sandboxed content have to be doubly escaped — once so that the ampersand is preserved when originally parsing the srcdoc attribute, and once more to prevent the ampersand from being misinterpreted when parsing the sandboxed content.

Furthermore, notice that since the DOCTYPE is optional in iframe srcdoc documents, and the html, head, and body elements have optional start and end tags, and the title element is also optional in iframe srcdoc documents, the markup in a srcdoc attribute can be relatively succint despite representing an entire document, since only the contents of the body element need appear literally in the syntax. The other elements are still present, but only by implication.

In the HTML syntax, authors need only remember to use """ (U+0022) characters to wrap the attribute contents and then to escape all """ (U+0022) and U+0026 AMPERSAND (&) characters, and to specify the sandbox attribute, to ensure safe embedding of content.

Due to restrictions of the XHTML syntax, in XML the "<" (U+003C) character needs to be escaped as well. In order to prevent attribute-value normalization, some of XML's whitespace characters — specifically "tab" (U+0009), "LF" (U+000A), and "CR" (U+000D) — also need to be escaped. [XML]

If the src attribute and the srcdoc attribute are both specified together, the srcdoc attribute takes priority. This allows authors to provide a fallback URL for legacy user agents that do not support the srcdoc attribute.


When an iframe element is inserted into a document, the user agent must create a nested browsing context, and then process the iframe attributes for the "first time".

When an iframe element is removed from a document, the user agent must discard the nested browsing context.

This happens without any unload events firing (the nested browsing context and its Document are discarded, not unloaded).

Whenever an iframe element with a nested browsing context has its srcdoc attribute set, changed, or removed, the user agent must process the iframe attributes.

Similarly, whenever an iframe element with a nested browsing context but with no srcdoc attribute specified has its src attribute set, changed, or removed, the user agent must process the iframe attributes.

When the user agent is to process the iframe attributes, it must run the first appropriate steps from the following list:

If the srcdoc attribute is specified

Navigate the element's child browsing context to a resource whose Content-Type is text/html, whose URL is about:srcdoc, and whose data consists of the value of the attribute. The resulting Document must be considered an iframe srcdoc document.

Otherwise, if the element has no src attribute specified, and the user agent is processing the iframe's attributes for the "first time"

Queue a task to run the iframe load event steps.

The task source for this task is the DOM manipulation task source.

Otherwise
  1. If the value of the src attribute is missing, or its value is the empty string, let url be the string "about:blank".

    Otherwise, resolve the value of the src attribute, relative to the iframe element.

    If that is not successful, then let url be the string "about:blank". Otherwise, let url be the resulting absolute URL.

  2. If there exists an ancestor browsing context whose active document's address, ignoring fragment identifiers, is equal to url, then abort these steps.

  3. Navigate the element's child browsing context to url.

Any navigation required of the user agent in the process the iframe attributes algorithm must be completed as an explicit self-navigation override and with the iframe element's document's browsing context as the source browsing context.

Furthermore, if the active document of the element's child browsing context before such a navigation was not completely loaded at the time of the new navigation, then the navigation must be completed with replacement enabled.

Similarly, if the child browsing context's session history contained only one Document when the process the iframe attributes algorithm was invoked, and that was the about:blank Document created when the child browsing context was created, then any navigation required of the user agent in that algorithm must be completed with replacement enabled.

When a Document in an iframe is marked as completely loaded, the user agent must synchronously run the iframe load event steps.

A load event is also fired at the iframe element when it is created if no other data is loaded in it.

Each Document has an iframe load in progress flag and a mute iframe load flag. When a Document is created, these flags must be unset for that Document.

The iframe load event steps are as follows:

  1. Let child document be the active document of the iframe element's nested browsing context.

  2. If child document has its mute iframe load flag set, abort these steps.

  3. Set child document's iframe load in progress flag.

  4. Fire a simple event named load at the iframe element.

  5. Unset child document's iframe load in progress flag.

This, in conjunction with scripting, can be used to probe the URL space of the local network's HTTP servers. User agents may implement cross-origin access control policies that are stricter than those described above to mitigate this attack, but unfortunately such policies are typically not compatible with existing Web content.

When the iframe's browsing context's active document is not ready for post-load tasks, and when anything in the iframe is delaying the load event of the iframe's browsing context's active document, and when the iframe's browsing context is in the delaying load events mode, the iframe must delay the load event of its document.

If, during the handling of the load event, the browsing context in the iframe is again navigated, that will further delay the load event.

If, when the element is created, the srcdoc attribute is not set, and the src attribute is either also not set or set but its value cannot be resolved, the browsing context will remain at the initial about:blank page.

If the user navigates away from this page, the iframe's corresponding WindowProxy object will proxy new Window objects for new Document objects, but the src attribute will not change.


The name attribute, if present, must be a valid browsing context name. The given value is used to name the nested browsing context. When the browsing context is created, if the attribute is present, the browsing context name must be set to the value of this attribute; otherwise, the browsing context name must be set to the empty string.

Whenever the name attribute is set, the nested browsing context's name must be changed to the new value. If the attribute is removed, the browsing context name must be set to the empty string.


The sandbox attribute, when specified, enables a set of extra restrictions on any content hosted by the iframe. Its value must be an unordered set of unique space-separated tokens that are ASCII case-insensitive. The allowed values are allow-forms, allow-pointer-lock, allow-popups, allow-same-origin, allow-scripts, and allow-top-navigation.

When the attribute is set, the content is treated as being from a unique origin, forms, scripts, and various potentially annoying APIs are disabled, links are prevented from targeting other browsing contexts, and plugins are secured. The allow-same-origin keyword causes the content to be treated as being from its real origin instead of forcing it into a unique origin; the allow-top-navigation keyword allows the content to navigate its top-level browsing context; and the allow-forms, allow-pointer-lock, allow-popups and allow-scripts keywords re-enable forms, the pointer lock API, popups, and scripts respectively. [POINTERLOCK]

Setting both the allow-scripts and allow-same-origin keywords together when the embedded page has the same origin as the page containing the iframe allows the embedded page to simply remove the sandbox attribute and then reload itself, effectively breaking out of the sandbox altogether.

These flags only take effect when the nested browsing context of the iframe is navigated. Removing them, or removing the entire sandbox attribute, has no effect on an already-loaded page.

Potentially hostile files should not be served from the same server as the file containing the iframe element. Sandboxing hostile content is of minimal help if an attacker can convince the user to just visit the hostile content directly, rather than in the iframe. To limit the damage that can be caused by hostile HTML content, it should be served from a separate dedicated domain. Using a different domain ensures that scripts in the files are unable to attack the site, even if the user is tricked into visiting those pages directly, without the protection of the sandbox attribute.

When an iframe element with a sandbox attribute has its nested browsing context created (before the initial about:blank Document is created), and when an iframe element's sandbox attribute is set or changed while it has a nested browsing context, the user agent must parse the sandboxing directive using the attribute's value as the input, the iframe element's nested browsing context's iframe sandboxing flag set as the output, and, if the iframe has an allowfullscreen attribute, the allow fullscreen flag.

When an iframe element's sandbox attribute is removed while it has a nested browsing context, the user agent must empty the iframe element's nested browsing context's iframe sandboxing flag set as the output.

In this example, some completely-unknown, potentially hostile, user-provided HTML content is embedded in a page. Because it is served from a separate domain, it is affected by all the normal cross-site restrictions. In addition, the embedded page has scripting disabled, plugins disabled, forms disabled, and it cannot navigate any frames or windows other than itself (or any frames or windows it itself embeds).

<p>We're not scared of you! Here is your content, unedited:</p>
<iframe sandbox src="http://usercontent.example.net/getusercontent.cgi?id=12193"></iframe>

It is important to use a separate domain so that if the attacker convinces the user to visit that page directly, the page doesn't run in the context of the site's origin, which would make the user vulnerable to any attack found in the page.

In this example, a gadget from another site is embedded. The gadget has scripting and forms enabled, and the origin sandbox restrictions are lifted, allowing the gadget to communicate with its originating server. The sandbox is still useful, however, as it disables plugins and popups, thus reducing the risk of the user being exposed to malware and other annoyances.

<iframe sandbox="allow-same-origin allow-forms allow-scripts"
        src="http://maps.example.com/embedded.html"></iframe>

Suppose a file A contained the following fragment:

<iframe sandbox="allow-same-origin allow-forms" src=B></iframe>

Suppose that file B contained an iframe also:

<iframe sandbox="allow-scripts" src=C></iframe>

Further, suppose that file C contained a link:

<a href=D>Link</a>

For this example, suppose all the files were served as text/html.

Page C in this scenario has all the sandboxing flags set. Scripts are disabled, because the iframe in A has scripts disabled, and this overrides the allow-scripts keyword set on the iframe in B. Forms are also disabled, because the inner iframe (in B) does not have the allow-forms keyword set.

Suppose now that a script in A removes all the sandbox attributes in A and B. This would change nothing immediately. If the user clicked the link in C, loading page D into the iframe in B, page D would now act as if the iframe in B had the allow-same-origin and allow-forms keywords set, because that was the state of the nested browsing context in the iframe in A when page B was loaded.

Generally speaking, dynamically removing or changing the sandbox attribute is ill-advised, because it can make it quite hard to reason about what will be allowed and what will not.


The seamless attribute is a boolean attribute. When specified, it indicates that the iframe element's browsing context is to be rendered in a manner that makes it appear to be part of the containing document (seamlessly included in the parent document).

An HTML inclusion is effected using this attribute as in the following example. In this case, the inclusion is of a site-wide navigation bar. Any links in the iframe will, in new user agents, be automatically opened in the iframe's parent browsing context; for legacy user agents, the site could also include a base element with a target attribute with the value _parent. Similarly, in new user agents the styles of the parent page will be automatically applied to the contents of the frame, but to support legacy user agents authors might wish to include the styles explicitly.

<!DOCTYPE HTML>
<title>Mirror Mirror — MovieInfo™</title>
<header>
  <h1>Mirror Mirror</h1>
  <p>Part of the MovieInfo™ Database</p>
 <nav>
  <iframe seamless src="nav.inc"></iframe>
 </nav>
</header>
...

An iframe element is said to be in seamless mode when all of the following conditions are met:

When an iframe element is in seamless mode, the following requirements apply:

If the attribute is not specified, or if the origin conditions listed above are not met, then the user agent should render the nested browsing context in a manner that is clearly distinguishable as a separate browsing context, and the seamless browsing context flag must be set to false for that browsing context.

It is important that user agents recheck the above conditions whenever the active document of the nested browsing context of the iframe changes, such that the seamless browsing context flag gets unset if the nested browsing context is navigated to another origin.

The attribute can be set or removed dynamically, with the rendering updating in tandem.

The contenteditable attribute does not propagate into seamless iframes.


The allowfullscreen attribute is a boolean attribute. When specified, it indicates that Document objects in the iframe element's browsing context are to be allowed to use requestFullscreen() (if it's not blocked for other reasons, e.g. there is another ancestor iframe without this attribute set).

Here, an iframe is used to embed a player from a video site. The allowfullscreen attribute is needed to enable the player to show its video full-screen.

<article>
 <header>
  <p><img src="/usericons/1627591962735"> <b>Fred Flintstone</b></p>
  <p><a href="/posts/3095182851" rel=bookmark>12:44</a> — <a href="#acl-3095182851">Private Post</a></p>
 </header>
 <main>
  <p>Check out my new ride!</p>
  <iframe src="https://video.example.com/embed?id=92469812" allowfullscreen></iframe>
 </main>
</article>

The iframe element supports dimension attributes for cases where the embedded content has specific dimensions (e.g. ad units have well-defined dimensions).

An iframe element never has fallback content, as it will always create a nested browsing context, regardless of whether the specified initial contents are successfully used.


Descendants of iframe elements represent nothing. (In legacy user agents that do not support iframe elements, the contents would be parsed as markup that could act as fallback content.)

When used in HTML documents, the allowed content model of iframe elements is text, except that invoking the HTML fragment parsing algorithm with the iframe element as the context element and the text contents as the input must result in a list of nodes that are all phrasing content, with no parse errors having occurred, with no script elements being anywhere in the list or as descendants of elements in the list, and with all the elements in the list (including their descendants) being themselves conforming.

The iframe element must be empty in XML documents.

The HTML parser treats markup inside iframe elements as text.


The IDL attributes src, srcdoc, name, sandbox, and seamless must reflect the respective content attributes of the same name.

The allowFullscreen IDL attribute must reflect the allowfullscreen content attribute.

The contentDocument IDL attribute must return the Document object of the active document of the iframe element's nested browsing context, if any and if its effective script origin is the same origin as the effective script origin specified by the incumbent settings object, or null otherwise.

The contentWindow IDL attribute must return the WindowProxy object of the iframe element's nested browsing context, if any, or null otherwise.

Here is an example of a page using an iframe to include advertising from an advertising broker:

<iframe src="http://ads.example.com/?customerid=923513721&amp;format=banner"
        width="468" height="60"></iframe>

4.7.3 The embed element

Categories:
Flow content.
Phrasing content.
Embedded content.
Interactive content.
Palpable content.
Contexts in which this element can be used:
Where embedded content is expected.
Content model:
Empty.
Content attributes:
Global attributes
src - Address of the resource
type - Type of embedded resource
width - Horizontal dimension
height- Vertical dimension
Any other attribute that has no namespace (see prose).
Tag omission in text/html:
No end tag
Allowed ARIA role attribute values:
application, document or img or presentation.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLEmbedElement : HTMLElement {
           attribute DOMString src;
           attribute DOMString type;
           attribute DOMString width;
           attribute DOMString height;
  legacycaller any (any... arguments);
};

Depending on the type of content instantiated by the embed element, the node may also support other interfaces.

The embed element provides an integration point for an external (typically non-HTML) application or interactive content.

The src attribute gives the address of the resource being embedded. The attribute, if present, must contain a valid non-empty URL potentially surrounded by spaces.

If the itemprop attribute is specified on an embed element, then the src attribute must also be specified.

The type attribute, if present, gives the MIME type by which the plugin to instantiate is selected. The value must be a valid MIME type. If both the type attribute and the src attribute are present, then the type attribute must specify the same type as the explicit Content-Type metadata of the resource given by the src attribute.

While any of the following conditions are occurring, any plugin instantiated for the element must be removed, and the embed element represents nothing:

An embed element is said to be potentially active when the following conditions are all met simultaneously:

Whenever an embed element that was not potentially active becomes potentially active, and whenever a potentially active embed element that is remaining potentially active and has its src attribute set, changed, or removed or its type attribute set, changed, or removed, the user agent must queue a task using the embed task source to run the embed element setup steps.

The embed element setup steps are as follows:

  1. If another task has since been queued to run the embed element setup steps for this element, then abort these steps.

  2. If the element has a src attribute set

    The user agent must resolve the value of the element's src attribute, relative to the element. If that is successful, the user agent should fetch the resulting absolute URL, from the element's browsing context scope origin if it has one. The task that is queued by the networking task source once the resource has been fetched must run the following steps:

    1. If another task has since been queued to run the embed element setup steps for this element, then abort these steps.

    2. Determine the type of the content being embedded, as follows (stopping at the first substep that determines the type):

      1. If the element has a type attribute, and that attribute's value is a type that a plugin supports, then the value of the type attribute is the content's type.

      2. Otherwise, if applying the URL parser algorithm to the URL of the specified resource (after any redirects) results in a parsed URL whose path component matches a pattern that a plugin supports, then the content's type is the type that that plugin can handle.

        For example, a plugin might say that it can handle resources with path components that end with the four character string ".swf".

      3. Otherwise, if the specified resource has explicit Content-Type metadata, then that is the content's type.

      4. Otherwise, the content has no type and there can be no appropriate plugin for it.

    3. If the previous step determined that the content's type is image/svg+xml, then run the following substeps:

      1. If the embed element is not associated with a nested browsing context, associate the element with a newly created nested browsing context, and, if the element has a name attribute, set the browsing context name of the element's nested browsing context to the value of this attribute.

      2. Navigate the nested browsing context to the fetched resource, with replacement enabled, and with the embed element's document's browsing context as the source browsing context. (The src attribute of the embed element doesn't get updated if the browsing context gets further navigated to other locations.)

      3. The embed element now represents its associated nested browsing context.

    4. Otherwise, find and instantiate an appropriate plugin based on the content's type, and hand that plugin the content of the resource, replacing any previously instantiated plugin for the element. The embed element now represents this plugin instance.

    5. Once the resource or plugin has completely loaded, queue a task to fire a simple event named load at the element.

    Whether the resource is fetched successfully or not (e.g. whether the response code was a 2xx code or equivalent) must be ignored when determining the content's type and when handing the resource to the plugin.

    This allows servers to return data for plugins even with error responses (e.g. HTTP 500 Internal Server Error codes can still contain plugin data).

    Fetching the resource must delay the load event of the element's document.

    If the element has no src attribute set

    The user agent should find and instantiate an appropriate plugin based on the value of the type attribute. The embed element now represents this plugin instance.

    Once the plugin is completely loaded, queue a task to fire a simple event named load at the element.

The embed element has no fallback content. If the user agent can't find a suitable plugin when attempting to find and instantiate one for the algorithm above, then the user agent must use a default plugin. This default could be as simple as saying "Unsupported Format".

Whenever an embed element that was potentially active stops being potentially active, any plugin that had been instantiated for that element must be unloaded.

When a plugin is to be instantiated but it cannot be secured and the sandboxed plugins browsing context flag is set on the embed element's Document's active sandboxing flag set, then the user agent must not instantiate the plugin, and must instead render the embed element in a manner that conveys that the plugin was disabled. The user agent may offer the user the option to override the sandbox and instantiate the plugin anyway; if the user invokes such an option, the user agent must act as if the conditions above did not apply for the purposes of this element.

Plugins that cannot be secured are disabled in sandboxed browsing contexts because they might not honor the restrictions imposed by the sandbox (e.g. they might allow scripting even when scripting in the sandbox is disabled). User agents should convey the danger of overriding the sandbox to the user if an option to do so is provided.

When an embed element represents a nested browsing context: if the embed element's nested browsing context's active document is not ready for post-load tasks, and when anything is delaying the load event of the embed element's browsing context's active document, and when the embed element's browsing context is in the delaying load events mode, the embed must delay the load event of its document.

The task source for the tasks mentioned in this section is the DOM manipulation task source.

Any namespace-less attribute other than name, align, hspace, and vspace may be specified on the embed element, so long as its name is XML-compatible and contains no uppercase ASCII letters. These attributes are then passed as parameters to the plugin.

All attributes in HTML documents get lowercased automatically, so the restriction on uppercase letters doesn't affect such documents.

The four exceptions are to exclude legacy attributes that have side-effects beyond just sending parameters to the plugin.

The user agent should pass the names and values of all the attributes of the embed element that have no namespace to the plugin used, when one is instantiated.

The HTMLEmbedElement object representing the element must expose the scriptable interface of the plugin instantiated for the embed element, if any. At a minimum, this interface must implement the legacy caller operation. (It is suggested that the default behavior of this legacy caller operation, e.g. the behavior of the default plugin's legacy caller operation, be to throw a NotSupportedError exception.)

The embed element supports dimension attributes.

The IDL attributes src and type each must reflect the respective content attributes of the same name.

Here's a way to embed a resource that requires a proprietary plugin, like Flash:

<embed src="catgame.swf">

If the user does not have the plugin (for example if the plugin vendor doesn't support the user's platform), then the user will be unable to use the resource.

To pass the plugin a parameter "quality" with the value "high", an attribute can be specified:

<embed src="catgame.swf" quality="high">

This would be equivalent to the following, when using an object element instead:

<object data="catgame.swf">
 <param name="quality" value="high">
</object>

4.7.4 The object element

Categories:
Flow content.
Phrasing content.
Embedded content.
If the element has a usemap attribute: Interactive content.
Listed, submittable, and reassociateable form-associated element.
Palpable content.
Contexts in which this element can be used:
Where embedded content is expected.
Content model:
Zero or more param elements, then, transparent.
Content attributes:
Global attributes
data - Address of the resource
type - Type of embedded resource
typemustmatch - Whether the type attribute and the Content-Type value need to match for the resource to be used
name - Name of nested browsing context
usemap - Name of image map to use
form - Associates the control with a form element
width - Horizontal dimension
height - Vertical dimension
Tag omission in text/html:
Neither tag is omissible.
Allowed ARIA role attribute values:
application, document or img or presentation.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLObjectElement : HTMLElement {
           attribute DOMString data;
           attribute DOMString type;
           attribute boolean typeMustMatch;
           attribute DOMString name;
           attribute DOMString useMap;
  readonly attribute HTMLFormElement? form;
           attribute DOMString width;
           attribute DOMString height;
  readonly attribute Document? contentDocument;
  readonly attribute WindowProxy? contentWindow;

  readonly attribute boolean willValidate;
  readonly attribute ValidityState validity;
  readonly attribute DOMString validationMessage;
  boolean checkValidity();
  boolean reportValidity();
  void setCustomValidity(DOMString error);

  legacycaller any (any... arguments);
};

Depending on the type of content instantiated by the object element, the node also supports other interfaces.

The object element can represent an external resource, which, depending on the type of the resource, will either be treated as an image, as a nested browsing context, or as an external resource to be processed by a plugin.

The data attribute, if present, specifies the address of the resource. If present, the attribute must be a valid non-empty URL potentially surrounded by spaces.

Authors who reference resources from other origins that they do not trust are urged to use the typemustmatch attribute defined below. Without that attribute, it is possible in certain cases for an attacker on the remote host to use the plugin mechanism to run arbitrary scripts, even if the author has used features such as the Flash "allowScriptAccess" parameter.

The type attribute, if present, specifies the type of the resource. If present, the attribute must be a valid MIME type.

At least one of either the data attribute or the type attribute must be present.

If the itemprop attribute is specified on an object element, then the data attribute must also be specified.

The typemustmatch attribute is a boolean attribute whose presence indicates that the resource specified by the data attribute is only to be used if the value of the type attribute and the Content-Type of the aforementioned resource match.

The typemustmatch attribute must not be specified unless both the data attribute and the type attribute are present.

The name attribute, if present, must be a valid browsing context name. The given value is used to name the nested browsing context, if applicable.

Whenever one of the following conditions occur:

...the user agent must queue a task to run the following steps to (re)determine what the object element represents. This task being queued or actively running must delay the load event of the element's document.

  1. If the user has indicated a preference that this object element's fallback content be shown instead of the element's usual behavior, then jump to the step below labeled fallback.

    For example, a user could ask for the element's fallback content to be shown because that content uses a format that the user finds more accessible.

  2. If the element has an ancestor media element, or has an ancestor object element that is not showing its fallback content, or if the element is not in a Document with a browsing context, or if the element's Document is not fully active, or if the element is still in the stack of open elements of an HTML parser or XML parser, or if the element is not being rendered, then jump to the step below labeled fallback.

  3. If the classid attribute is present, and has a value that isn't the empty string, then: if the user agent can find a plugin suitable according to the value of the classid attribute, and either plugins aren't being sandboxed or that plugin can be secured, then that plugin should be used, and the value of the data attribute, if any, should be passed to the plugin. If no suitable plugin can be found, or if the plugin reports an error, jump to the step below labeled fallback.

  4. If the data attribute is present and its value is not the empty string, then:

    1. If the type attribute is present and its value is not a type that the user agent supports, and is not a type that the user agent can find a plugin for, then the user agent may jump to the step below labeled fallback without fetching the content to examine its real type.

    2. Resolve the URL specified by the data attribute, relative to the element.

    3. If that failed, fire a simple event named error at the element, then jump to the step below labeled fallback.

    4. Fetch the resulting absolute URL, from the element's browsing context scope origin if it has one.

      Fetching the resource must delay the load event of the element's document until the task that is queued by the networking task source once the resource has been fetched (defined next) has been run.

      For the purposes of the application cache networking model, this fetch operation is not for a child browsing context (though it might end up being used for one after all, as defined below).

    5. If the resource is not yet available (e.g. because the resource was not available in the cache, so that loading the resource required making a request over the network), then jump to the step below labeled fallback. The task that is queued by the networking task source once the resource is available must restart this algorithm from this step. Resources can load incrementally; user agents may opt to consider a resource "available" whenever enough data has been obtained to begin processing the resource.

    6. If the load failed (e.g. there was an HTTP 404 error, there was a DNS error), fire a simple event named error at the element, then jump to the step below labeled fallback.

    7. Determine the resource type, as follows:

      1. Let the resource type be unknown.

      2. If the object element has a type attribute and a typemustmatch attribute, and the resource has associated Content-Type metadata, and the type specified in the resource's Content-Type metadata is an ASCII case-insensitive match for the value of the element's type attribute, then let resource type be that type and jump to the step below labeled handler.

      3. If the object element has a typemustmatch attribute, jump to the step below labeled handler.

      4. If the user agent is configured to strictly obey Content-Type headers for this resource, and the resource has associated Content-Type metadata, then let the resource type be the type specified in the resource's Content-Type metadata, and jump to the step below labeled handler.

        This can introduce a vulnerability, wherein a site is trying to embed a resource that uses a particular plugin, but the remote site overrides that and instead furnishes the user agent with a resource that triggers a different plugin with different security characteristics.

      5. If there is a type attribute present on the object element, and that attribute's value is not a type that the user agent supports, but it is a type that a plugin supports, then let the resource type be the type specified in that type attribute, and jump to the step below labeled handler.

      6. Run the appropriate set of steps from the following list:

        If the resource has associated Content-Type metadata
        1. Let binary be false.

        2. If the type specified in the resource's Content-Type metadata is "text/plain", and the result of applying the rules for distinguishing if a resource is text or binary to the resource is that the resource is not text/plain, then set binary to true.

        3. If the type specified in the resource's Content-Type metadata is "application/octet-stream", then set binary to true.

        4. If binary is false, then let the resource type be the type specified in the resource's Content-Type metadata, and jump to the step below labeled handler.

        5. If there is a type attribute present on the object element, and its value is not application/octet-stream, then run the following steps:

          1. If the attribute's value is a type that a plugin supports, or the attribute's value is a type that starts with "image/" that is not also an XML MIME type, then let the resource type be the type specified in that type attribute.

          2. Jump to the step below labeled handler.

        Otherwise, if the resource does not have associated Content-Type metadata
        1. If there is a type attribute present on the object element, then let the tentative type be the type specified in that type attribute.

          Otherwise, let tentative type be the sniffed type of the resource.

        2. If tentative type is not application/octet-stream, then let resource type be tentative type and jump to the step below labeled handler.

      7. If applying the URL parser algorithm to the URL of the specified resource (after any redirects) results in a parsed URL whose path component matches a pattern that a plugin supports, then let resource type be the type that that plugin can handle.

        For example, a plugin might say that it can handle resources with path components that end with the four character string ".swf".

      It is possible for this step to finish, or for one of the substeps above to jump straight to the next step, with resource type still being unknown. In both cases, the next step will trigger fallback.

    8. Handler: Handle the content as given by the first of the following cases that matches:

      If the resource type is not a type that the user agent supports, but it is a type that a plugin supports

      If plugins are being sandboxed and the plugin that supports resource type cannot be secured, jump to the step below labeled fallback.

      Otherwise, the user agent should use the plugin that supports resource type and pass the content of the resource to that plugin. If the plugin reports an error, then jump to the step below labeled fallback.

      If the resource type is an XML MIME type, or if the resource type does not start with "image/"

      The object element must be associated with a newly created nested browsing context, if it does not already have one.

      If the URL of the given resource is not about:blank, the element's nested browsing context must then be navigated to that resource, with replacement enabled, and with the object element's document's browsing context as the source browsing context. (The data attribute of the object element doesn't get updated if the browsing context gets further navigated to other locations.)

      If the URL of the given resource is about:blank, then, instead, the user agent must queue a task to fire a simple event named load at the object element. No load event is fired at the about:blank document itself.

      The object element represents the nested browsing context.

      If the name attribute is present, the browsing context name must be set to the value of this attribute; otherwise, the browsing context name must be set to the empty string.

      In certain situations, e.g. if the resource was fetched from an application cache but it is an HTML file with a manifest attribute that points to a different application cache manifest, the navigation of the browsing context will be restarted so as to load the resource afresh from the network or a different application cache. Even if the resource is then found to have a different type, it is still used as part of a nested browsing context: only the navigate algorithm is restarted, not this object algorithm.

      If the resource type starts with "image/", and support for images has not been disabled

      Apply the image sniffing rules to determine the type of the image.

      The object element represents the specified image. The image is not a nested browsing context.

      If the image cannot be rendered, e.g. because it is malformed or in an unsupported format, jump to the step below labeled fallback.

      Otherwise

      The given resource type is not supported. Jump to the step below labeled fallback.

      If the previous step ended with the resource type being unknown, this is the case that is triggered.

    9. The element's contents are not part of what the object element represents.

    10. Abort these steps. Once the resource is completely loaded, queue a task to fire a simple event named load at the element.

  5. If the data attribute is absent but the type attribute is present, and the user agent can find a plugin suitable according to the value of the type attribute, and either plugins aren't being sandboxed or the plugin can be secured, then that plugin should be used. If these conditions cannot be met, or if the plugin reports an error, jump to the step below labeled fallback. Otherwise abort these steps; once the plugin is completely loaded, queue a task to fire a simple event named load at the element.

  6. Fallback: The object element represents the element's children, ignoring any leading param element children. This is the element's fallback content. If the element has an instantiated plugin, then unload it.

When the algorithm above instantiates a plugin, the user agent should pass to the plugin used the names and values of all the attributes on the element, in the order they were added to the element, with the attributes added by the parser being ordered in source order, followed by a parameter named "PARAM" whose value is null, followed by all the names and values of parameters given by param elements that are children of the object element, in tree order. If the plugin supports a scriptable interface, the HTMLObjectElement object representing the element should expose that interface. The object element represents the plugin. The plugin is not a nested browsing context.

Plugins are considered sandboxed for the purpose of an object element if the sandboxed plugins browsing context flag is set on the object element's Document's active sandboxing flag set.

Due to the algorithm above, the contents of object elements act as fallback content, used only when referenced resources can't be shown (e.g. because it returned a 404 error). This allows multiple object elements to be nested inside each other, targeting multiple user agents with different capabilities, with the user agent picking the first one it supports.

When an object element represents a nested browsing context: if the object element's nested browsing context's active document is not ready for post-load tasks, and when anything is delaying the load event of the object element's browsing context's active document, and when the object element's browsing context is in the delaying load events mode, the object must delay the load event of its document.

The task source for the tasks mentioned in this section is the DOM manipulation task source.

Whenever the name attribute is set, if the object element has a nested browsing context, its name must be changed to the new value. If the attribute is removed, if the object element has a browsing context, the browsing context name must be set to the empty string.

The usemap attribute, if present while the object element represents an image, can indicate that the object has an associated image map. The attribute must be ignored if the object element doesn't represent an image.

The form attribute is used to explicitly associate the object element with its form owner.

Constraint validation: object elements are always barred from constraint validation.

The object element supports dimension attributes.

The IDL attributes data, type and name each must reflect the respective content attributes of the same name. The typeMustMatch IDL attribute must reflect the typemustmatch content attribute. The useMap IDL attribute must reflect the usemap content attribute.

The contentDocument IDL attribute must return the Document object of the active document of the object element's nested browsing context, if any and if its effective script origin is the same origin as the effective script origin specified by the incumbent settings object, or null otherwise.

The contentWindow IDL attribute must return the WindowProxy object of the object element's nested browsing context, if it has one; otherwise, it must return null.

The willValidate, validity, and validationMessage attributes, and the checkValidity(), reportValidity(), and setCustomValidity() methods, are part of the constraint validation API. The form IDL attribute is part of the element's forms API.

All object elements have a legacy caller operation. If the object element has an instantiated plugin that supports a scriptable interface that defines a legacy caller operation, then that must be the behavior of the object's legacy caller operation. Otherwise, the object's legacy caller operation must be to throw a NotSupportedError exception.

In the following example, a Java applet is embedded in a page using the object element. (Generally speaking, it is better to avoid using applets like these and instead use native JavaScript and HTML to provide the functionality, since that way the application will work on all Web browsers without requiring a third-party plugin. Many devices, especially embedded devices, do not support third-party technologies like Java.)

<figure>
 <object type="application/x-java-applet">
  <param name="code" value="MyJavaClass">
  <p>You do not have Java available, or it is disabled.</p>
 </object>
 <figcaption>My Java Clock</figcaption>
</figure>

In this example, an HTML page is embedded in another using the object element.

<figure>
 <object data="clock.html"></object>
 <figcaption>My HTML Clock</figcaption>
</figure>

The following example shows how a plugin can be used in HTML (in this case the Flash plugin, to show a video file). Fallback is provided for users who do not have Flash enabled, in this case using the video element to show the video for those using user agents that support video, and finally providing a link to the video for those who have neither Flash nor a video-capable browser.

<p>Look at my video:
 <object type="application/x-shockwave-flash">
  <param name=movie value="http://video.example.com/library/watch.swf">
  <param name=allowfullscreen value=true>
  <param name=flashvars value="http://video.example.com/vids/315981">
  <video controls src="http://video.example.com/vids/315981">
   <a href="http://video.example.com/vids/315981">View video</a>.
  </video>
 </object>
</p>

4.7.5 The param element

Categories:
None.
Contexts in which this element can be used:
As a child of an object element, before any flow content.
Content model:
Empty.
Content attributes:
Global attributes
name - Name of parameter
value - Value of parameter
Tag omission in text/html:
No end tag
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes
DOM interface:
interface HTMLParamElement : HTMLElement {
           attribute DOMString name;
           attribute DOMString value;
};

The param element defines parameters for plugins invoked by object elements. It does not represent anything on its own.

The name attribute gives the name of the parameter.

The value attribute gives the value of the parameter.

Both attributes must be present. They may have any value.

If both attributes are present, and if the parent element of the param is an object element, then the element defines a parameter with the given name-value pair.

If either the name or value of a parameter defined by a param element that is the child of an object element that represents an instantiated plugin changes, and if that plugin is communicating with the user agent using an API that features the ability to update the plugin when the name or value of a parameter so changes, then the user agent must appropriately exercise that ability to notify the plugin of the change.

The IDL attributes name and value must both reflect the respective content attributes of the same name.

The following example shows how the param element can be used to pass a parameter to a plugin, in this case the O3D plugin.

<!DOCTYPE HTML>
<html lang="en">
  <head>
   <title>O3D Utah Teapot</title>
  </head>
  <body>
   <p>
    <object type="application/vnd.o3d.auto">
     <param name="o3d_features" value="FloatingPointTextures">
     <img src="o3d-teapot.png"
          title="3D Utah Teapot illustration rendered using O3D."
          alt="When O3D renders the Utah Teapot, it appears as a squat
          teapot with a shiny metallic finish on which the
          surroundings are reflected, with a faint shadow caused by
          the lighting.">
     <p>To see the teapot actually rendered by O3D on your
     computer, please download and install the <a
     href="http://code.google.com/apis/o3d/docs/gettingstarted.html#install">O3D plugin</a>.</p>
    </object>
    <script src="o3d-teapot.js"></script>
   </p>
  </body>
</html>

4.7.6 The video element

Categories:
Flow content.
Phrasing content.
Embedded content.
If the element has a controls attribute: Interactive content.
Palpable content.
Contexts in which this element can be used:
Where embedded content is expected.
Content model:
If the element has a src attribute: zero or more track elements, then transparent, but with no media element descendants.
If the element does not have a src attribute: zero or more source elements, then zero or more track elements, then transparent, but with no media element descendants.
Content attributes:
Global attributes
src - Address of the resource
crossorigin - How the element handles crossorigin requests
poster - Poster frame to show prior to video playback
preload - Hints how much buffering the media resource will likely need
autoplay - Hint that the media resource can be started automatically when the page is loaded
mediagroup - Groups media elements together with an implicit MediaController
loop - Whether to loop the media resource
muted - Whether to mute the media resource by default
controls - Show user agent controls
width - Horizontal dimension
height - Vertical dimension
Tag omission in text/html
Neither tag is omissible
Allowed ARIA role attribute values:
application.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLVideoElement : HTMLMediaElement {
           attribute unsigned long width;
           attribute unsigned long height;
  readonly attribute unsigned long videoWidth;
  readonly attribute unsigned long videoHeight;
           attribute DOMString poster;
};

A video element is used for playing videos or movies, and audio files with captions.

Content may be provided inside the video element. User agents should not show this content to the user; it is intended for older Web browsers which do not support video, so that legacy video plugins can be tried, or to show text to the users of these older browsers informing them of how to access the video contents.

In particular, this content is not intended to address accessibility concerns. To make video content accessible to the partially sighted, the blind, the hard-of-hearing, the deaf, and those with other physical or cognitive disabilities, a variety of features are available. Captions can be provided, either embedded in the video stream or as external files using the track element. Sign-language tracks can be provided, again either embedded in the video stream or by synchronizing multiple video elements using the mediagroup attribute or a MediaController object. Audio descriptions can be provided, either as a separate track embedded in the video stream, or a separate audio track in an audio element slaved to the same controller as the video element(s), or in text form using a WebVTT file referenced using the track element and synthesized into speech by the user agent. WebVTT can also be used to provide chapter titles. For users who would rather not use a media element at all, transcripts or other textual alternatives can be provided by simply linking to them in the prose near the video element. [WEBVTT]

The video element is a media element whose media data is ostensibly video data, possibly with associated audio data.

The src, preload, autoplay, mediagroup, loop, muted, and controls attributes are the attributes common to all media elements.

The poster attribute gives the address of an image file that the user agent can show while no video data is available. The attribute, if present, must contain a valid non-empty URL potentially surrounded by spaces.

If the specified resource is to be used, then, when the element is created or when the poster attribute is set, changed, or removed, the user agent must run the following steps to determine the element's poster frame (regardless of the value of the element's show poster flag):

  1. If there is an existing instance of this algorithm running for this video element, abort that instance of this algorithm without changing the poster frame.

  2. If the poster attribute's value is the empty string or if the attribute is absent, then there is no poster frame; abort these steps.

  3. Resolve the poster attribute's value relative to the element. If this fails, then there is no poster frame; abort these steps.

  4. Fetch the resulting absolute URL, from the element's Document's origin. This must delay the load event of the element's document.

  5. If an image is thus obtained, the poster frame is that image. Otherwise, there is no poster frame.

The image given by the poster attribute, the poster frame, is intended to be a representative frame of the video (typically one of the first non-blank frames) that gives the user an idea of what the video is like.


A video element represents what is given for the first matching condition in the list below:

When no video data is available (the element's readyState attribute is either HAVE_NOTHING, or HAVE_METADATA but no video data has yet been obtained at all, or the element's readyState attribute is any subsequent value but the media resource does not have a video channel)
The video element represents its poster frame, if any, or else transparent black with no intrinsic dimensions.
When the video element is paused, the current playback position is the first frame of video, and the element's show poster flag is set
The video element represents its poster frame, if any, or else the first frame of the video.
When the video element is paused, and the frame of video corresponding to the current playback position is not available (e.g. because the video is seeking or buffering)
When the video element is neither potentially playing nor paused (e.g. when seeking or stalled)
The video element represents the last frame of the video to have been rendered.
When the video element is paused
The video element represents the frame of video corresponding to the current playback position.
Otherwise (the video element has a video channel and is potentially playing)
The video element represents the frame of video at the continuously increasing "current" position. When the current playback position changes such that the last frame rendered is no longer the frame corresponding to the current playback position in the video, the new frame must be rendered.

Which frame in a video stream corresponds to a particular playback position is defined by the video stream's format.

The video element also represents any text track cues whose text track cue active flag is set and whose text track is in the showing mode, and any audio from the media resource, at the current playback position.

Any audio associated with the media resource must, if played, be played synchronised with the current playback position, at the element's effective media volume.

In addition to the above, the user agent may provide messages to the user (such as "buffering", "no video loaded", "error", or more detailed information) by overlaying text or icons on the video or other areas of the element's playback area, or in another appropriate manner.

User agents that cannot render the video may instead make the element represent a link to an external video playback utility or to the video data itself.

When a video element's media resource has a video channel, the element provides a paint source whose width is the media resource's intrinsic width, whose height is the media resource's intrinsic height, and whose appearance is the frame of video corresponding to the current playback position, if that is available, or else (e.g. when the video is seeking or buffering) its previous appearance, if any, or else (e.g. because the video is still loading the first frame) blackness.


video . videoWidth
video . videoHeight

These attributes return the intrinsic dimensions of the video, or zero if the dimensions are not known.

The intrinsic width and intrinsic height of the media resource are the dimensions of the resource in CSS pixels after taking into account the resource's dimensions, aspect ratio, clean aperture, resolution, and so forth, as defined for the format used by the resource. If an anamorphic format does not define how to apply the aspect ratio to the video data's dimensions to obtain the "correct" dimensions, then the user agent must apply the ratio by increasing one dimension and leaving the other unchanged.

The videoWidth IDL attribute must return the intrinsic width of the video in CSS pixels. The videoHeight IDL attribute must return the intrinsic height of the video in CSS pixels. If the element's readyState attribute is HAVE_NOTHING, then the attributes must return 0.

Whenever the intrinsic width or intrinsic height of the video changes (including, for example, because the selected video track was changed), if the element's readyState attribute is not HAVE_NOTHING, the user agent must queue a task to fire a simple event named resize at the media element.

The video element supports dimension attributes.

In the absence of style rules to the contrary, video content should be rendered inside the element's playback area such that the video content is shown centered in the playback area at the largest possible size that fits completely within it, with the video content's aspect ratio being preserved. Thus, if the aspect ratio of the playback area does not match the aspect ratio of the video, the video will be shown letterboxed or pillarboxed. Areas of the element's playback area that do not contain the video represent nothing.

In user agents that implement CSS, the above requirement can be implemented by using the style rule suggested in the rendering section.

The intrinsic width of a video element's playback area is the intrinsic width of the poster frame, if that is available and the element currently represents its poster frame; otherwise, it is the intrinsic width of the video resource, if that is available; otherwise the intrinsic width is missing.

The intrinsic height of a video element's playback area is the intrinsic height of the poster frame, if that is available and the element currently represents its poster frame; otherwise it is the intrinsic height of the video resource, if that is available; otherwise the intrinsic height is missing.

The default object size is a width of 300 CSS pixels and a height of 150 CSS pixels. [CSSIMAGES]


User agents should provide controls to enable or disable the display of closed captions, audio description tracks, and other additional data associated with the video stream, though such features should, again, not interfere with the page's normal rendering.

User agents may allow users to view the video content in manners more suitable to the user (e.g. full-screen or in an independent resizable window). As for the other user interface features, controls to enable this should not interfere with the page's normal rendering unless the user agent is exposing a user interface. In such an independent context, however, user agents may make full user interfaces visible, with, e.g., play, pause, seeking, and volume controls, even if the controls attribute is absent.

User agents may allow video playback to affect system features that could interfere with the user's experience; for example, user agents could disable screensavers while video playback is in progress.


The poster IDL attribute must reflect the poster content attribute.

This example shows how to detect when a video has failed to play correctly:

<script>
 function failed(e) {
   // video playback failed - show a message saying why
   switch (e.target.error.code) {
     case e.target.error.MEDIA_ERR_ABORTED:
       alert('You aborted the video playback.');
       break;
     case e.target.error.MEDIA_ERR_NETWORK:
       alert('A network error caused the video download to fail part-way.');
       break;
     case e.target.error.MEDIA_ERR_DECODE:
       alert('The video playback was aborted due to a corruption problem or because the video used features your browser did not support.');
       break;
     case e.target.error.MEDIA_ERR_SRC_NOT_SUPPORTED:
       alert('The video could not be loaded, either because the server or network failed or because the format is not supported.');
       break;
     default:
       alert('An unknown error occurred.');
       break;
   }
 }
</script>
<p><video src="tgif.vid" autoplay controls onerror="failed(event)"></video></p>
<p><a href="tgif.vid">Download the video file</a>.</p>

4.7.7 The audio element

Categories:
Flow content.
Phrasing content.
Embedded content.
If the element has a controls attribute: Interactive content.
If the element has a controls attribute: Palpable content.
Contexts in which this element can be used:
Where embedded content is expected.
Content model:
If the element has a src attribute: zero or more track elements, then transparent, but with no media element descendants.
If the element does not have a src attribute: zero or more source elements, then zero or more track elements, then transparent, but with no media element descendants.
Content attributes:
Global attributes
src - Address of the resource
crossorigin - How the element handles crossorigin requests
preload - Hints how much buffering the media resource will likely need
autoplay - Hint that the media resource can be started automatically when the page is loaded
mediagroup - Groups media elements together with an implicit MediaController
loop - Whether to loop the media resource
muted - Whether to mute the media resource by default
controls - Show user agent controls
Tag omission in text/html
Neither tag is omissible
Allowed ARIA role attribute values:
application.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
[NamedConstructor=Audio(optional DOMString src)]
interface HTMLAudioElement : HTMLMediaElement {};

An audio element represents a sound or audio stream.

Content may be provided inside the audio element. User agents should not show this content to the user; it is intended for older Web browsers which do not support audio, so that legacy audio plugins can be tried, or to show text to the users of these older browsers informing them of how to access the audio contents.

In particular, this content is not intended to address accessibility concerns. To make audio content accessible to the deaf or to those with other physical or cognitive disabilities, a variety of features are available. If captions or a sign language video are available, the video element can be used instead of the audio element to play the audio, allowing users to enable the visual alternatives. Chapter titles can be provided to aid navigation, using the track element and a WebVTT file. And, naturally, transcripts or other textual alternatives can be provided by simply linking to them in the prose near the audio element. [WEBVTT]

The audio element is a media element whose media data is ostensibly audio data.

The src, preload, autoplay, mediagroup, loop, muted, and controls attributes are the attributes common to all media elements.

When an audio element is potentially playing, it must have its audio data played synchronised with the current playback position, at the element's effective media volume.

When an audio element is not potentially playing, audio must not play for the element.

audio = new Audio( [ url ] )

Returns a new audio element, with the src attribute set to the value passed in the argument, if applicable.

A constructor is provided for creating HTMLAudioElement objects (in addition to the factory methods from DOM such as createElement()): Audio(src). When invoked as a constructor, it must return a new HTMLAudioElement object (a new audio element). The element must be created with its preload attribute set to the literal value "auto". If the src argument is present, the object created must be created with its src content attribute set to the provided value (this will cause the user agent to invoke the object's resource selection algorithm before returning). The element's document must be the active document of the browsing context of the Window object on which the interface object of the invoked constructor is found.

4.7.8 The source element

Categories:
None.
Contexts in which this element can be used:
As a child of a media element, before any flow content or track elements.
Content model:
Empty.
Content attributes:
Global attributes
src - Address of the resource
type - Type of embedded resource
Tag omission in text/html:
No end tag
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes
DOM interface:
interface HTMLSourceElement : HTMLElement {
           attribute DOMString src;
           attribute DOMString type;
};

The source element allows authors to specify multiple alternative media resources for media elements. It does not represent anything on its own.

The src attribute gives the address of the media resource. The value must be a valid non-empty URL potentially surrounded by spaces. This attribute must be present.

Dynamically modifying a source element and its attribute when the element is already inserted in a video or audio element will have no effect. To change what is playing, just use the src attribute on the media element directly, possibly making use of the canPlayType() method to pick from amongst available resources. Generally, manipulating source elements manually after the document has been parsed is an unnecessarily complicated approach.

The type attribute gives the type of the media resource, to help the user agent determine if it can play this media resource before fetching it. If specified, its value must be a valid MIME type. The codecs parameter, which certain MIME types define, might be necessary to specify exactly how the resource is encoded. [RFC4281]

The following list shows some examples of how to use the codecs= MIME parameter in the type attribute.

H.264 Constrained baseline profile video (main and extended video compatible) level 3 and Low-Complexity AAC audio in MP4 container
<source src='video.mp4' type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>
H.264 Extended profile video (baseline-compatible) level 3 and Low-Complexity AAC audio in MP4 container
<source src='video.mp4' type='video/mp4; codecs="avc1.58A01E, mp4a.40.2"'>
H.264 Main profile video level 3 and Low-Complexity AAC audio in MP4 container
<source src='video.mp4' type='video/mp4; codecs="avc1.4D401E, mp4a.40.2"'>
H.264 'High' profile video (incompatible with main, baseline, or extended profiles) level 3 and Low-Complexity AAC audio in MP4 container
<source src='video.mp4' type='video/mp4; codecs="avc1.64001E, mp4a.40.2"'>
MPEG-4 Visual Simple Profile Level 0 video and Low-Complexity AAC audio in MP4 container
<source src='video.mp4' type='video/mp4; codecs="mp4v.20.8, mp4a.40.2"'>
MPEG-4 Advanced Simple Profile Level 0 video and Low-Complexity AAC audio in MP4 container
<source src='video.mp4' type='video/mp4; codecs="mp4v.20.240, mp4a.40.2"'>
MPEG-4 Visual Simple Profile Level 0 video and AMR audio in 3GPP container
<source src='video.3gp' type='video/3gpp; codecs="mp4v.20.8, samr"'>
Theora video and Vorbis audio in Ogg container
<source src='video.ogv' type='video/ogg; codecs="theora, vorbis"'>
Theora video and Speex audio in Ogg container
<source src='video.ogv' type='video/ogg; codecs="theora, speex"'>
Vorbis audio alone in Ogg container
<source src='audio.ogg' type='audio/ogg; codecs=vorbis'>
Speex audio alone in Ogg container
<source src='audio.spx' type='audio/ogg; codecs=speex'>
FLAC audio alone in Ogg container
<source src='audio.oga' type='audio/ogg; codecs=flac'>
Dirac video and Vorbis audio in Ogg container
<source src='video.ogv' type='video/ogg; codecs="dirac, vorbis"'>

If a source element is inserted as a child of a media element that has no src attribute and whose networkState has the value NETWORK_EMPTY, the user agent must invoke the media element's resource selection algorithm.

The IDL attributes src and type must reflect the respective content attributes of the same name.

If the author isn't sure if user agents will all be able to render the media resources provided, the author can listen to the error event on the last source element and trigger fallback behavior:

<script>
 function fallback(video) {
   // replace <video> with its contents
   while (video.hasChildNodes()) {
     if (video.firstChild instanceof HTMLSourceElement)
       video.removeChild(video.firstChild);
     else
       video.parentNode.insertBefore(video.firstChild, video);
   }
   video.parentNode.removeChild(video);
 }
</script>
<video controls autoplay>
 <source src='video.mp4' type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>
 <source src='video.ogv' type='video/ogg; codecs="theora, vorbis"'
         onerror="fallback(parentNode)">
 ...
</video>

4.7.9 The track element

Categories:
None.
Contexts in which this element can be used:
As a child of a media element, before any flow content.
Content model:
Empty.
Content attributes:
Global attributes
kind - The type of text track
src - Address of the resource
srclang - Language of the text track
label - User-visible label
default - Enable the track if no other text track is more suitable
Tag omission in text/html:
No end tag
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes
DOM interface:
interface HTMLTrackElement : HTMLElement {
           attribute DOMString kind;
           attribute DOMString src;
           attribute DOMString srclang;
           attribute DOMString label;
           attribute boolean default;

  const unsigned short NONE = 0;
  const unsigned short LOADING = 1;
  const unsigned short LOADED = 2;
  const unsigned short ERROR = 3;
  readonly attribute unsigned short readyState;

  readonly attribute TextTrack track;
};

The track element allows authors to specify explicit external timed text tracks for media elements. It does not represent anything on its own.

The kind attribute is an enumerated attribute. The following table lists the keywords defined for this attribute. The keyword given in the first cell of each row maps to the state given in the second cell.

Keyword State Brief description
subtitles Subtitles Transcription or translation of the dialogue, suitable for when the sound is available but not understood (e.g. because the user does not understand the language of the media resource's audio track). Overlaid on the video.
captions Captions Transcription or translation of the dialogue, sound effects, relevant musical cues, and other relevant audio information, suitable for when sound is unavailable or not clearly audible (e.g. because it is muted, drowned-out by ambient noise, or because the user is deaf). Overlaid on the video; labeled as appropriate for the hard-of-hearing.
descriptions Descriptions Textual descriptions of the video component of the media resource, intended for audio synthesis when the visual component is obscured, unavailable, or not usable (e.g. because the user is interacting with the application without a screen while driving, or because the user is blind). Synthesized as audio.
chapters Chapters Chapter titles, intended to be used for navigating the media resource. Displayed as an interactive (potentially nested) list in the user agent's interface.
metadata Metadata Tracks intended for use from script. Not displayed by the user agent.

The attribute may be omitted. The missing value default is the subtitles state.

The src attribute gives the address of the text track data. The value must be a valid non-empty URL potentially surrounded by spaces. This attribute must be present.

If the element has a src attribute whose value is not the empty string and whose value, when the attribute was set, could be successfully resolved relative to the element, then the element's track URL is the resulting absolute URL. Otherwise, the element's track URL is the empty string.

If the element's track URL identifies a WebVTT resource, and the element's kind attribute is not in the metadata state, then the WebVTT file must be a WebVTT file using cue text. [WEBVTT]

Furthermore, if the element's track URL identifies a WebVTT resource, and the element's kind attribute is in the chapters state, then the WebVTT file must be both a WebVTT file using chapter title text and a WebVTT file using only nested cues. [WEBVTT]

The srclang attribute gives the language of the text track data. The value must be a valid BCP 47 language tag. This attribute must be present if the element's kind attribute is in the subtitles state. [BCP47]

If the element has a srclang attribute whose value is not the empty string, then the element's track language is the value of the attribute. Otherwise, the element has no track language.

The label attribute gives a user-readable title for the track. This title is used by user agents when listing subtitle, caption, and audio description tracks in their user interface.

The value of the label attribute, if the attribute is present, must not be the empty string. Furthermore, there must not be two track element children of the same media element whose kind attributes are in the same state, whose srclang attributes are both missing or have values that represent the same language, and whose label attributes are again both missing or both have the same value.

If the element has a label attribute whose value is not the empty string, then the element's track label is the value of the attribute. Otherwise, the element's track label is an empty string.

The default attribute is a boolean attribute, which, if specified, indicates that the track is to be enabled if the user's preferences do not indicate that another track would be more appropriate.

Each media element must have no more than one track element child whose kind attribute is in the subtitles or captions state and whose default attribute is specified.

Each media element must have no more than one track element child whose kind attribute is in the description state and whose default attribute is specified.

Each media element must have no more than one track element child whose kind attribute is in the chapters state and whose default attribute is specified.

There is no limit on the number of track elements whose kind attribute is in the metadata state and whose default attribute is specified.

track . readyState

Returns the text track readiness state, represented by a number from the following list:

track . NONE (0)

The text track not loaded state.

track . LOADING (1)

The text track loading state.

track . LOADED (2)

The text track loaded state.

track . ERROR (3)

The text track failed to load state.

track . track

Returns the TextTrack object corresponding to the text track of the track element.

The readyState attribute must return the numeric value corresponding to the text track readiness state of the track element's text track, as defined by the following list:

NONE (numeric value 0)
The text track not loaded state.
LOADING (numeric value 1)
The text track loading state.
LOADED (numeric value 2)
The text track loaded state.
ERROR (numeric value 3)
The text track failed to load state.

The track IDL attribute must, on getting, return the track element's text track's corresponding TextTrack object.

The src, srclang, label, and default IDL attributes must reflect the respective content attributes of the same name. The kind IDL attribute must reflect the content attribute of the same name, limited to only known values.

This video has subtitles in several languages:

<video src="brave.webm">
 <track kind=subtitles src=brave.en.vtt srclang=en label="English">
 <track kind=captions src=brave.en.hoh.vtt srclang=en label="English for the Hard of Hearing">
 <track kind=subtitles src=brave.fr.vtt srclang=fr lang=fr label="Français">
 <track kind=subtitles src=brave.de.vtt srclang=de lang=de label="Deutsch">
</video>

(The lang attributes on the last two describe the language of the label attribute, not the language of the subtitles themselves. The language of the subtitles is given by the srclang attribute.)

4.7.10 Media elements

Media elements (audio and video, in this specification) implement the following interface:

enum CanPlayTypeResult { "" /* empty string */, "maybe", "probably" };
interface HTMLMediaElement : HTMLElement {

  // error state
  readonly attribute MediaError? error;

  // network state
           attribute DOMString src;
  readonly attribute DOMString currentSrc;
           attribute DOMString crossOrigin;
  const unsigned short NETWORK_EMPTY = 0;
  const unsigned short NETWORK_IDLE = 1;
  const unsigned short NETWORK_LOADING = 2;
  const unsigned short NETWORK_NO_SOURCE = 3;
  readonly attribute unsigned short networkState;
           attribute DOMString preload;
  readonly attribute TimeRanges buffered;
  void load();
  CanPlayTypeResult canPlayType(DOMString type);

  // ready state
  const unsigned short HAVE_NOTHING = 0;
  const unsigned short HAVE_METADATA = 1;
  const unsigned short HAVE_CURRENT_DATA = 2;
  const unsigned short HAVE_FUTURE_DATA = 3;
  const unsigned short HAVE_ENOUGH_DATA = 4;
  readonly attribute unsigned short readyState;
  readonly attribute boolean seeking;

  // playback state
           attribute double currentTime;
  void fastSeek(double time);
  readonly attribute unrestricted double duration;
  Date getStartDate();
  readonly attribute boolean paused;
           attribute double defaultPlaybackRate;
           attribute double playbackRate;
  readonly attribute TimeRanges played;
  readonly attribute TimeRanges seekable;
  readonly attribute boolean ended;
           attribute boolean autoplay;
           attribute boolean loop;
  void play();
  void pause();

  // media controller
           attribute DOMString mediaGroup;
           attribute MediaController? controller;

  // controls
           attribute boolean controls;
           attribute double volume;
           attribute boolean muted;
           attribute boolean defaultMuted;

  // tracks
  readonly attribute AudioTrackList audioTracks;
  readonly attribute VideoTrackList videoTracks;
  readonly attribute TextTrackList textTracks;
  TextTrack addTextTrack(TextTrackKind kind, optional DOMString label = "", optional DOMString language = "");
};

The media element attributes, src, crossorigin, preload, autoplay, mediagroup, loop, muted, and controls, apply to all media elements. They are defined in this section.

Media elements are used to present audio data, or video and audio data, to the user. This is referred to as media data in this section, since this section applies equally to media elements for audio or for video. The term media resource is used to refer to the complete set of media data, e.g. the complete video file, or complete audio file.

A media resource can have multiple audio and video tracks. For the purposes of a media element, the video data of the media resource is only that of the currently selected track (if any) given by the element's videoTracks attribute, and the audio data of the media resource is the result of mixing all the currently enabled tracks (if any) given by the element's audioTracks attribute.

Both audio and video elements can be used for both audio and video. The main difference between the two is simply that the audio element has no playback area for visual content (such as video or captions), whereas the video element does.

Except where otherwise explicitly specified, the task source for all the tasks queued in this section and its subsections is the media element event task source of the media element in question.

4.7.10.1 Error codes
media . error

Returns a MediaError object representing the current error state of the element.

Returns null if there is no error.

All media elements have an associated error status, which records the last error the element encountered since its resource selection algorithm was last invoked. The error attribute, on getting, must return the MediaError object created for this last error, or null if there has not been an error.

interface MediaError {
  const unsigned short MEDIA_ERR_ABORTED = 1;
  const unsigned short MEDIA_ERR_NETWORK = 2;
  const unsigned short MEDIA_ERR_DECODE = 3;
  const unsigned short MEDIA_ERR_SRC_NOT_SUPPORTED = 4;
  readonly attribute unsigned short code;
};
media . error . code

Returns the current error's error code, from the list below.

The code attribute of a MediaError object must return the code for the error, which must be one of the following:

MEDIA_ERR_ABORTED (numeric value 1)
The fetching process for the media resource was aborted by the user agent at the user's request.
MEDIA_ERR_NETWORK (numeric value 2)
A network error of some description caused the user agent to stop fetching the media resource, after the resource was established to be usable.
MEDIA_ERR_DECODE (numeric value 3)
An error of some description occurred while decoding the media resource, after the resource was established to be usable.
MEDIA_ERR_SRC_NOT_SUPPORTED (numeric value 4)
The media resource indicated by the src attribute was not suitable.
4.7.10.2 Location of the media resource

The src content attribute on media elements gives the address of the media resource (video, audio) to show. The attribute, if present, must contain a valid non-empty URL potentially surrounded by spaces.

If the itemprop attribute is specified on the media element, then the src attribute must also be specified.

The crossorigin content attribute on media elements is a CORS settings attribute.

If a media element is created with a src attribute, the user agent must synchronously invoke the media element's resource selection algorithm.

If a src attribute of a media element is set or changed, the user agent must invoke the media element's media element load algorithm. (Removing the src attribute does not do this, even if there are source elements present.)

The src IDL attribute on media elements must reflect the content attribute of the same name.

The crossOrigin IDL attribute must reflect the crossorigin content attribute, limited to only known values.

media . currentSrc

Returns the address of the current media resource.

Returns the empty string when there is no media resource.

The currentSrc IDL attribute is initially the empty string. Its value is changed by the resource selection algorithm defined below.

There are two ways to specify a media resource, the src attribute, or source elements. The attribute overrides the elements.

4.7.10.3 MIME types

A media resource can be described in terms of its type, specifically a MIME type, in some cases with a codecs parameter. (Whether the codecs parameter is allowed or not depends on the MIME type.) [RFC4281]

Types are usually somewhat incomplete descriptions; for example "video/mpeg" doesn't say anything except what the container type is, and even a type like "video/mp4; codecs="avc1.42E01E, mp4a.40.2"" doesn't include information like the actual bitrate (only the maximum bitrate). Thus, given a type, a user agent can often only know whether it might be able to play media of that type (with varying levels of confidence), or whether it definitely cannot play media of that type.

A type that the user agent knows it cannot render is one that describes a resource that the user agent definitely does not support, for example because it doesn't recognise the container type, or it doesn't support the listed codecs.

The MIME type "application/octet-stream" with no parameters is never a type that the user agent knows it cannot render. User agents must treat that type as equivalent to the lack of any explicit Content-Type metadata when it is used to label a potential media resource.

Only the MIME type "application/octet-stream" with no parameters is special-cased here; if any parameter appears with it, it will be treated just like any other MIME type. This is a deviation from the rule that unknown MIME type parameters should be ignored.

media . canPlayType(type)

Returns the empty string (a negative response), "maybe", or "probably" based on how confident the user agent is that it can play media resources of the given type.

The canPlayType(type) method must return the empty string if type is a type that the user agent knows it cannot render or is the type "application/octet-stream"; it must return "probably" if the user agent is confident that the type represents a media resource that it can render if used in with this audio or video element; and it must return "maybe" otherwise. Implementors are encouraged to return "maybe" unless the type can be confidently established as being supported or not. Generally, a user agent should never return "probably" for a type that allows the codecs parameter if that parameter is not present.

This script tests to see if the user agent supports a (fictional) new format to dynamically decide whether to use a video element or a plugin:

<section id="video">
 <p><a href="playing-cats.nfv">Download video</a></p>
</section>
<script>
 var videoSection = document.getElementById('video');
 var videoElement = document.createElement('video');
 var support = videoElement.canPlayType('video/x-new-fictional-format;codecs="kittens,bunnies"');
 if (support != "probably" && "New Fictional Video Plugin" in navigator.plugins) {
   // not confident of browser support
   // but we have a plugin
   // so use plugin instead
   videoElement = document.createElement("embed");
 } else if (support == "") {
   // no support from browser and no plugin
   // do nothing
   videoElement = null;
 }
 if (videoElement) {
   while (videoSection.hasChildNodes())
     videoSection.removeChild(videoSection.firstChild);
   videoElement.setAttribute("src", "playing-cats.nfv");
   videoSection.appendChild(videoElement);
 }
</script>

The type attribute of the source element allows the user agent to avoid downloading resources that use formats it cannot render.

4.7.10.4 Network states
media . networkState

Returns the current state of network activity for the element, from the codes in the list below.

As media elements interact with the network, their current network activity is represented by the networkState attribute. On getting, it must return the current network state of the element, which must be one of the following values:

NETWORK_EMPTY (numeric value 0)
The element has not yet been initialized. All attributes are in their initial states.
NETWORK_IDLE (numeric value 1)
The element's resource selection algorithm is active and has selected a resource, but it is not actually using the network at this time.
NETWORK_LOADING (numeric value 2)
The user agent is actively trying to download data.
NETWORK_NO_SOURCE (numeric value 3)
The element's resource selection algorithm is active, but it has not yet found a resource to use.

The resource selection algorithm defined below describes exactly when the networkState attribute changes value and what events fire to indicate changes in this state.

4.7.10.5 Loading the media resource
media . load()

Causes the element to reset and start selecting and loading a new media resource from scratch.

All media elements have an autoplaying flag, which must begin in the true state, and a delaying-the-load-event flag, which must begin in the false state. While the delaying-the-load-event flag is true, the element must delay the load event of its document.

When the load() method on a media element is invoked, the user agent must run the media element load algorithm.

The media element load algorithm consists of the following steps.

  1. Abort any already-running instance of the resource selection algorithm for this element.

  2. If there are any tasks from the media element's media element event task source in one of the task queues, then remove those tasks.

    Basically, pending events and callbacks for the media element are discarded when the media element starts loading a new resource.

  3. If the media element's networkState is set to NETWORK_LOADING or NETWORK_IDLE, queue a task to fire a simple event named abort at the media element.

  4. If the media element's networkState is not set to NETWORK_EMPTY, then run these substeps:

    1. Queue a task to fire a simple event named emptied at the media element.

    2. If a fetching process is in progress for the media element, the user agent should stop it.

    3. Forget the media element's media-resource-specific tracks.

    4. If readyState is not set to HAVE_NOTHING, then set it to that state.

    5. If the paused attribute is false, then set it to true.

    6. If seeking is true, set it to false.

    7. Set the current playback position to 0.

      Set the official playback position to 0.

      If this changed the official playback position, then queue a task to fire a simple event named timeupdate at the media element.

    8. Set the initial playback position to 0.

    9. Set the timeline offset to Not-a-Number (NaN).

    10. Update the duration attribute to Not-a-Number (NaN).

      The user agent will not fire a durationchange event for this particular change of the duration.

  5. Set the playbackRate attribute to the value of the defaultPlaybackRate attribute.

  6. Set the error attribute to null and the autoplaying flag to true.

  7. Invoke the media element's resource selection algorithm.

  8. Playback of any previously playing media resource for this element stops.

The resource selection algorithm for a media element is as follows. This algorithm is always invoked synchronously, but one of the first steps in the algorithm is to return and continue running the remaining steps asynchronously, meaning that it runs in the background with scripts and other tasks running in parallel. In addition, this algorithm interacts closely with the event loop mechanism; in particular, it has synchronous sections (which are triggered as part of the event loop algorithm). Steps in such sections are marked with ⌛.

  1. Set the element's networkState attribute to the NETWORK_NO_SOURCE value.

  2. Set the element's show poster flag to true.

  3. Set the media element's delaying-the-load-event flag to true (this delays the load event).

  4. Asynchronously await a stable state, allowing the task that invoked this algorithm to continue. The synchronous section consists of all the remaining steps of this algorithm until the algorithm says the synchronous section has ended. (Steps in synchronous sections are marked with ⌛.)

  5. ⌛ If the media element's blocked-on-parser flag is false, then populate the list of pending text tracks.

  6. ⌛ If the media element has a src attribute, then let mode be attribute.

    ⌛ Otherwise, if the media element does not have a src attribute but has a source element child, then let mode be children and let candidate be the first such source element child in tree order.

    ⌛ Otherwise the media element has neither a src attribute nor a source element child: set the networkState to NETWORK_EMPTY, and abort these steps; the synchronous section ends.

  7. ⌛ Set the media element's networkState to NETWORK_LOADING.

  8. Queue a task to fire a simple event named loadstart at the media element.

  9. If mode is attribute, then run these substeps:

    1. ⌛ If the src attribute's value is the empty string, then end the synchronous section, and jump down to the failed with attribute step below.

    2. ⌛ Let absolute URL be the absolute URL that would have resulted from resolving the URL specified by the src attribute's value relative to the media element when the src attribute was last changed.

    3. ⌛ If absolute URL was obtained successfully, set the currentSrc attribute to absolute URL.

    4. End the synchronous section, continuing the remaining steps asynchronously.

    5. If absolute URL was obtained successfully, run the resource fetch algorithm with absolute URL. If that algorithm returns without aborting this one, then the load failed.

    6. Failed with attribute: Reaching this step indicates that the media resource failed to load or that the given URL could not be resolved. Queue a task to run the following steps:

      1. Set the error attribute to a new MediaError object whose code attribute is set to MEDIA_ERR_SRC_NOT_SUPPORTED.

      2. Forget the media element's media-resource-specific tracks.

      3. Set the element's networkState attribute to the NETWORK_NO_SOURCE value.

      4. Set the element's show poster flag to true.

      5. Fire a simple event named error at the media element.

      6. Set the element's delaying-the-load-event flag to false. This stops delaying the load event.

    7. Wait for the task queued by the previous step to have executed.

    8. Abort these steps. Until the load() method is invoked or the src attribute is changed, the element won't attempt to load another resource.

    Otherwise, the source elements will be used; run these substeps:

    1. ⌛ Let pointer be a position defined by two adjacent nodes in the media element's child list, treating the start of the list (before the first child in the list, if any) and end of the list (after the last child in the list, if any) as nodes in their own right. One node is the node before pointer, and the other node is the node after pointer. Initially, let pointer be the position between the candidate node and the next node, if there are any, or the end of the list, if it is the last node.

      As nodes are inserted and removed into the media element, pointer must be updated as follows:

      If a new node is inserted between the two nodes that define pointer
      Let pointer be the point between the node before pointer and the new node. In other words, insertions at pointer go after pointer.
      If the node before pointer is removed
      Let pointer be the point between the node after pointer and the node before the node after pointer. In other words, pointer doesn't move relative to the remaining nodes.
      If the node after pointer is removed
      Let pointer be the point between the node before pointer and the node after the node before pointer. Just as with the previous case, pointer doesn't move relative to the remaining nodes.

      Other changes don't affect pointer.

    2. Process candidate: If candidate does not have a src attribute, or if its src attribute's value is the empty string, then end the synchronous section, and jump down to the failed with elements step below.

    3. ⌛ Let absolute URL be the absolute URL that would have resulted from resolving the URL specified by candidate's src attribute's value relative to the candidate when the src attribute was last changed.

    4. ⌛ If absolute URL was not obtained successfully, then end the synchronous section, and jump down to the failed with elements step below.

    5. ⌛ If candidate has a type attribute whose value, when parsed as a MIME type (including any codecs described by the codecs parameter, for types that define that parameter), represents a type that the user agent knows it cannot render, then end the synchronous section, and jump down to the failed with elements step below.

    6. ⌛ Set the currentSrc attribute to absolute URL.

    7. End the synchronous section, continuing the remaining steps asynchronously.

    8. Run the resource fetch algorithm with absolute URL. If that algorithm returns without aborting this one, then the load failed.

    9. Failed with elements: Queue a task to fire a simple event named error at the candidate element.

    10. Asynchronously await a stable state. The synchronous section consists of all the remaining steps of this algorithm until the algorithm says the synchronous section has ended. (Steps in synchronous sections are marked with ⌛.)

    11. Forget the media element's media-resource-specific tracks.

    12. Find next candidate: Let candidate be null.

    13. Search loop: If the node after pointer is the end of the list, then jump to the waiting step below.

    14. ⌛ If the node after pointer is a source element, let candidate be that element.

    15. ⌛ Advance pointer so that the node before pointer is now the node that was after pointer, and the node after pointer is the node after the node that used to be after pointer, if any.

    16. ⌛ If candidate is null, jump back to the search loop step. Otherwise, jump back to the process candidate step.

    17. Waiting: Set the element's networkState attribute to the NETWORK_NO_SOURCE value.

    18. ⌛ Set the element's show poster flag to true.

    19. Queue a task to set the element's delaying-the-load-event flag to false. This stops delaying the load event.

    20. End the synchronous section, continuing the remaining steps asynchronously.

    21. Wait until the node after pointer is a node other than the end of the list. (This step might wait forever.)

    22. Asynchronously await a stable state. The synchronous section consists of all the remaining steps of this algorithm until the algorithm says the synchronous section has ended. (Steps in synchronous sections are marked with ⌛.)

    23. ⌛ Set the element's delaying-the-load-event flag back to true (this delays the load event again, in case it hasn't been fired yet).

    24. ⌛ Set the networkState back to NETWORK_LOADING.

    25. ⌛ Jump back to the find next candidate step above.

The resource fetch algorithm for a media element and a given absolute URL is as follows:

  1. Let the current media resource be the resource given by the absolute URL passed to this algorithm. This is now the element's media resource.

  2. Remove all media-resource-specific text tracks from the media element's list of pending text tracks, if any.

  3. Optionally, run the following substeps. This is the expected behavior if the user agent intends to not attempt to fetch the resource until the user requests it explicitly (e.g. as a way to implement the preload attribute's none keyword).

    1. Set the networkState to NETWORK_IDLE.

    2. Queue a task to fire a simple event named suspend at the element.

    3. Queue a task to set the element's delaying-the-load-event flag to false. This stops delaying the load event.

    4. Wait for the task to be run.

    5. Wait for an implementation-defined event (e.g. the user requesting that the media element begin playback).

    6. Set the element's delaying-the-load-event flag back to true (this delays the load event again, in case it hasn't been fired yet).

    7. Set the networkState to NETWORK_LOADING.

  4. Perform a potentially CORS-enabled fetch of the current media resource's absolute URL, with the mode being the state of the media element's crossorigin content attribute, the origin being the origin of the media element's Document, and the default origin behaviour set to taint.

    The resource obtained in this fashion, if any, contains the media data. It can be CORS-same-origin or CORS-cross-origin; this affects whether subtitles referenced in the media data are exposed in the API and, for video elements, whether a canvas gets tainted when the video is drawn on it.

    While the load is not suspended (see below), every 350ms (±200ms) or for every byte received, whichever is least frequent, queue a task to fire a simple event named progress at the element.

    The stall timeout is a user-agent defined length of time, which should be about three seconds. When a media element that is actively attempting to obtain media data has failed to receive any data for a duration equal to the stall timeout, the user agent must queue a task to fire a simple event named stalled at the element.

    User agents may allow users to selectively block or slow media data downloads. When a media element's download has been blocked altogether, the user agent must act as if it was stalled (as opposed to acting as if the connection was closed). The rate of the download may also be throttled automatically by the user agent, e.g. to balance the download with other connections sharing the same bandwidth.

    User agents may decide to not download more content at any time, e.g. after buffering five minutes of a one hour media resource, while waiting for the user to decide whether to play the resource or not, while waiting for user input in an interactive resource, or when the user navigates away from the page. When a media element's download has been suspended, the user agent must queue a task, to set the networkState to NETWORK_IDLE and fire a simple event named suspend at the element. If and when downloading of the resource resumes, the user agent must queue a task to set the networkState to NETWORK_LOADING. Between the queuing of these tasks, the load is suspended (so progress events don't fire, as described above).

    The preload attribute provides a hint regarding how much buffering the author thinks is advisable, even in the absence of the autoplay attribute.

    When a user agent decides to completely stall a download, e.g. if it is waiting until the user starts playback before downloading any further content, the user agent must queue a task to set the element's delaying-the-load-event flag to false. This stops delaying the load event.

    The user agent may use whatever means necessary to fetch the resource (within the constraints put forward by this and other specifications); for example, reconnecting to the server in the face of network errors, using HTTP range retrieval requests, or switching to a streaming protocol. The user agent must consider a resource erroneous only if it has given up trying to fetch it.

    This specification does not currently say whether or how to check the MIME types of the media resources, or whether or how to perform file type sniffing using the actual file data. Implementors differ in their intentions on this matter and it is therefore unclear what the right solution is. In the absence of any requirement here, the HTTP specification's strict requirement to follow the Content-Type header prevails ("Content-Type specifies the media type of the underlying data." ... "If and only if the media type is not given by a Content-Type field, the recipient MAY attempt to guess the media type via inspection of its content and/or the name extension(s) of the URI used to identify the resource.").

    The networking task source tasks to process the data as it is being fetched must each immediately queue a task to run the first appropriate steps from the following list. (A new task is used for this so that the work described below occurs relative to the media element event task source rather than the networking task source.)

    If the media data cannot be fetched at all, due to network errors, causing the user agent to give up trying to fetch the resource
    If the media data can be fetched but is found by inspection to be in an unsupported format, or can otherwise not be rendered at all

    DNS errors, HTTP 4xx and 5xx errors (and equivalents in other protocols), and other fatal network errors that occur before the user agent has established whether the current media resource is usable, as well as the file using an unsupported container format, or using unsupported codecs for all the data, must cause the user agent to execute the following steps:

    1. The user agent should cancel the fetching process.

    2. Abort this subalgorithm, returning to the resource selection algorithm.

    If the media resource is found to have an audio track
    1. Create an AudioTrack object to represent the audio track.

    2. Update the media element's audioTracks attribute's AudioTrackList object with the new AudioTrack object.

    3. Let enable be unknown.

    4. If either the media resource or the address of the current media resource indicate a particular set of audio tracks to enable, or if the user agent has information that would facilitate the selection of specific audio tracks to improve the user's experience, then: if this audio track is one of the ones to enable, then set enable to true, otherwise, set enable to false.

      This could be triggered by Media Fragments URI fragment identifier syntax, but it could also be triggered e.g. by the user agent selecting a 5.1 surround sound audio track over a stereo audio track. [MEDIAFRAG]

    5. If enable is still unknown, then, if the media element does not yet have a selected audio track, then set enable to true, otherwise, set enable to false.

    6. If enable is true, then enable this audio track, otherwise, do not enable this audio track.

    7. Fire a trusted event with the name addtrack, that does not bubble and is not cancelable, and that uses the TrackEvent interface, with the track attribute initialised to the new AudioTrack object, at this AudioTrackList object.

    If the media resource is found to have a video track
    1. Create a VideoTrack object to represent the video track.

    2. Update the media element's videoTracks attribute's VideoTrackList object with the new VideoTrack object.

    3. Let enable be unknown.

    4. If either the media resource or the address of the current media resource indicate a particular set of video tracks to enable, or if the user agent has information that would facilitate the selection of specific video tracks to improve the user's experience, then: if this video track is the first such video track, then set enable to true, otherwise, set enable to false.

      This could again be triggered by Media Fragments URI fragment identifier syntax.

    5. If enable is still unknown, then, if the media element does not yet have a selected video track, then set enable to true, otherwise, set enable to false.

    6. If enable is true, then select this track and unselect any previously selected video tracks, otherwise, do not select this video track. If other tracks are unselected, then a change event will be fired.

    7. Fire a trusted event with the name addtrack, that does not bubble and is not cancelable, and that uses the TrackEvent interface, with the track attribute initialised to the new VideoTrack object, at this VideoTrackList object.

    Once enough of the media data has been fetched to determine the duration of the media resource, its dimensions, and other metadata

    This indicates that the resource is usable. The user agent must follow these substeps:

    1. Establish the media timeline for the purposes of the current playback position, the earliest possible position, and the initial playback position, based on the media data.

    2. Update the timeline offset to the date and time that corresponds to the zero time in the media timeline established in the previous step, if any. If no explicit time and date is given by the media resource, the timeline offset must be set to Not-a-Number (NaN).

    3. Set the current playback position and the official playback position to the earliest possible position.

    4. Update the duration attribute with the time of the last frame of the resource, if known, on the media timeline established above. If it is not known (e.g. a stream that is in principle infinite), update the duration attribute to the value positive Infinity.

      The user agent will queue a task to fire a simple event named durationchange at the element at this point.

    5. For video elements, set the videoWidth and videoHeight attributes, and queue a task to fire a simple event named resize at the media element.

      Further resize events will be fired if the dimensions subsequently change.

    6. Set the readyState attribute to HAVE_METADATA.

      A loadedmetadata DOM event will be fired as part of setting the readyState attribute to a new value.

    7. Let jumped be false.

    8. If the media element's default playback start position is greater than zero, then seek to that time, and let jumped be true.

    9. Let the media element's default playback start position be zero.

    10. If either the media resource or the address of the current media resource indicate a particular start time, then set the initial playback position to that time and, if jumped is still false, seek to that time and let jumped be true.

      For example, with media formats that support the Media Fragments URI fragment identifier syntax, the fragment identifier can be used to indicate a start position. [MEDIAFRAG]

    11. If there is no enabled audio track, then enable an audio track. This will cause a change event to be fired.

    12. If there is no selected video track, then select a video track. This will cause a change event to be fired.

    13. If the media element has a current media controller, then: if jumped is true and the initial playback position, relative to the current media controller's timeline, is greater than the current media controller's media controller position, then seek the media controller to the media element's initial playback position, relative to the current media controller's timeline; otherwise, seek the media element to the media controller position, relative to the media element's timeline.

    Once the readyState attribute reaches HAVE_CURRENT_DATA, after the loadeddata event has been fired, set the element's delaying-the-load-event flag to false. This stops delaying the load event.

    A user agent that is attempting to reduce network usage while still fetching the metadata for each media resource would also stop buffering at this point, following the rules described previously, which involve the networkState attribute switching to the NETWORK_IDLE value and a suspend event firing.

    The user agent is required to determine the duration of the media resource and go through this step before playing.

    Once the entire media resource has been fetched (but potentially before any of it has been decoded)

    Fire a simple event named progress at the media element.

    Set the networkState to NETWORK_IDLE and fire a simple event named suspend at the media element.

    If the user agent ever discards any media data and then needs to resume the network activity to obtain it again, then it must queue a task to set the networkState to NETWORK_LOADING.

    If the user agent can keep the media resource loaded, then the algorithm will continue to its final step below, which aborts the algorithm.

    If the connection is interrupted after some media data has been received, causing the user agent to give up trying to fetch the resource

    Fatal network errors that occur after the user agent has established whether the current media resource is usable (i.e. once the media element's readyState attribute is no longer HAVE_NOTHING) must cause the user agent to execute the following steps:

    1. The user agent should cancel the fetching process.

    2. Set the error attribute to a new MediaError object whose code attribute is set to MEDIA_ERR_NETWORK.

    3. Fire a simple event named error at the media element.

    4. Set the element's networkState attribute to the NETWORK_IDLE value.

    5. Set the element's delaying-the-load-event flag to false. This stops delaying the load event.

    6. Abort the overall resource selection algorithm.

    If the media data is corrupted

    Fatal errors in decoding the media data that occur after the user agent has established whether the current media resource is usable must cause the user agent to execute the following steps:

    1. The user agent should cancel the fetching process.

    2. Set the error attribute to a new MediaError object whose code attribute is set to MEDIA_ERR_DECODE.

    3. Fire a simple event named error at the media element.

    4. If the media element's readyState attribute has a value equal to HAVE_NOTHING, set the element's networkState attribute to the NETWORK_EMPTY value, set the element's show poster flag to true, and fire a simple event named emptied at the element.

      Otherwise, set the element's networkState attribute to the NETWORK_IDLE value.

    5. Set the element's delaying-the-load-event flag to false. This stops delaying the load event.

    6. Abort the overall resource selection algorithm.

    If the media data fetching process is aborted by the user

    The fetching process is aborted by the user, e.g. because the user pressed a "stop" button, the user agent must execute the following steps. These steps are not followed if the load() method itself is invoked while these steps are running, as the steps above handle that particular kind of abort.

    1. The user agent should cancel the fetching process.

    2. Set the error attribute to a new MediaError object whose code attribute is set to MEDIA_ERR_ABORTED.

    3. Fire a simple event named abort at the media element.

    4. If the media element's readyState attribute has a value equal to HAVE_NOTHING, set the element's networkState attribute to the NETWORK_EMPTY value, set the element's show poster flag to true, and fire a simple event named emptied at the element.

      Otherwise, set the element's networkState attribute to the NETWORK_IDLE value.

    5. Set the element's delaying-the-load-event flag to false. This stops delaying the load event.

    6. Abort the overall resource selection algorithm.

    If the media data can be fetched but has non-fatal errors or uses, in part, codecs that are unsupported, preventing the user agent from rendering the content completely correctly but not preventing playback altogether

    The server returning data that is partially usable but cannot be optimally rendered must cause the user agent to render just the bits it can handle, and ignore the rest.

    If the media resource is found to declare a media-resource-specific text track that the user agent supports

    If the media data is CORS-same-origin, run the steps to expose a media-resource-specific text track with the relevant data.

    Cross-origin videos do not expose their subtitles, since that would allow attacks such as hostile sites reading subtitles from confidential videos on a user's intranet.

    When the networking task source has queued the last task as part of fetching the media resource (i.e. once the download has completed), if the fetching process completes without errors, including decoding the media data, and if all of the data is available to the user agent without network access, then, the user agent must move on to the next step. This might never happen, e.g. when streaming an infinite resource such as Web radio, or if the resource is longer than the user agent's ability to cache data.

    While the user agent might still need network access to obtain parts of the media resource, the user agent must remain on this step.

    For example, if the user agent has discarded the first half of a video, the user agent will remain at this step even once the playback has ended, because there is always the chance the user will seek back to the start. In fact, in this situation, once playback has ended, the user agent will end up firing a suspend event, as described earlier.

  5. If the user agent ever reaches this step (which can only happen if the entire resource gets loaded and kept available): abort the overall resource selection algorithm.

When a media element is to forget the media element's media-resource-specific tracks, the user agent must remove from the media element's list of text tracks all the media-resource-specific text tracks, then empty the media element's audioTracks attribute's AudioTrackList object, then empty the media element's videoTracks attribute's VideoTrackList object. No events (in particular, no removetrack events) are fired as part of this; the error and emptied events, fired by the algorithms that invoke this one, can be used instead.


The preload attribute is an enumerated attribute. The following table lists the keywords and states for the attribute — the keywords in the left column map to the states in the cell in the second column on the same row as the keyword. The attribute can be changed even once the media resource is being buffered or played; the descriptions in the table below are to be interpreted with that in mind.

Keyword State Brief description
none None Hints to the user agent that either the author does not expect the user to need the media resource, or that the server wants to minimise unnecessary traffic. This state does not provide a hint regarding how aggressively to actually download the media resource if buffering starts anyway (e.g. once the user hits "play").
metadata Metadata Hints to the user agent that the author does not expect the user to need the media resource, but that fetching the resource metadata (dimensions, track list, duration, etc), and maybe even the first few frames, is reasonable. If the user agent precisely fetches no more than the metadata, then the media element will end up with its readyState attribute set to HAVE_METADATA; typically though, some frames will be obtained as well and it will probably be HAVE_CURRENT_DATA or HAVE_FUTURE_DATA. When the media resource is playing, hints to the user agent that bandwidth is to be considered scarce, e.g. suggesting throttling the download so that the media data is obtained at the slowest possible rate that still maintains consistent playback.
auto Automatic Hints to the user agent that the user agent can put the user's needs first without risk to the server, up to and including optimistically downloading the entire resource.

The empty string is also a valid keyword, and maps to the Automatic state. The attribute's missing value default is user-agent defined, though the Metadata state is suggested as a compromise between reducing server load and providing an optimal user experience.

Authors might switch the attribute from "none" or "metadata" to "auto" dynamically once the user begins playback. For example, on a page with many videos this might be used to indicate that the many videos are not to be downloaded unless requested, but that once one is requested it is to be downloaded aggressively.

The preload attribute is intended to provide a hint to the user agent about what the author thinks will lead to the best user experience. The attribute may be ignored altogether, for example based on explicit user preferences or based on the available connectivity.

The preload IDL attribute must reflect the content attribute of the same name, limited to only known values.

The autoplay attribute can override the preload attribute (since if the media plays, it naturally has to buffer first, regardless of the hint given by the preload attribute). Including both is not an error, however.


media . buffered

Returns a TimeRanges object that represents the ranges of the media resource that the user agent has buffered.

The buffered attribute must return a new static normalised TimeRanges object that represents the ranges of the media resource, if any, that the user agent has buffered, at the time the attribute is evaluated. Users agents must accurately determine the ranges available, even for media streams where this can only be determined by tedious inspection.

Typically this will be a single range anchored at the zero point, but if, e.g. the user agent uses HTTP range requests in response to seeking, then there could be multiple ranges.

User agents may discard previously buffered data.

Thus, a time position included within a range of the objects return by the buffered attribute at one time can end up being not included in the range(s) of objects returned by the same attribute at later times.

4.7.10.6 Offsets into the media resource
media . duration

Returns the length of the media resource, in seconds, assuming that the start of the media resource is at time zero.

Returns NaN if the duration isn't available.

Returns Infinity for unbounded streams.

media . currentTime [ = value ]

Returns the official playback position, in seconds.

Can be set, to seek to the given time.

Will throw an InvalidStateError exception if there is no selected media resource or if there is a current media controller.

A media resource has a media timeline that maps times (in seconds) to positions in the media resource. The origin of a timeline is its earliest defined position. The duration of a timeline is its last defined position.

Establishing the media timeline: If the media resource somehow specifies an explicit timeline whose origin is not negative (i.e. gives each frame a specific time offset and gives the first frame a zero or positive offset), then the media timeline should be that timeline. (Whether the media resource can specify a timeline or not depends on the media resource's format.) If the media resource specifies an explicit start time and date, then that time and date should be considered the zero point in the media timeline; the timeline offset will be the time and date, exposed using the getStartDate() method.

If the media resource has a discontinuous timeline, the user agent must extend the timeline used at the start of the resource across the entire resource, so that the media timeline of the media resource increases linearly starting from the earliest possible position (as defined below), even if the underlying media data has out-of-order or even overlapping time codes.

For example, if two clips have been concatenated into one video file, but the video format exposes the original times for the two clips, the video data might expose a timeline that goes, say, 00:15..00:29 and then 00:05..00:38. However, the user agent would not expose those times; it would instead expose the times as 00:15..00:29 and 00:29..01:02, as a single video.

In the rare case of a media resource that does not have an explicit timeline, the zero time on the media timeline should correspond to the first frame of the media resource. In the even rarer case of a media resource with no explicit timings of any kind, not even frame durations, the user agent must itself determine the time for each frame in a user-agent-defined manner. (This is a fingerprinting vector.)

An example of a file format with no explicit timeline but with explicit frame durations is the Animated GIF format. An example of a file format with no explicit timings at all is the JPEG-push format (multipart/x-mixed-replace with JPEG frames, often used as the format for MJPEG streams).

If, in the case of a resource with no timing information, the user agent will nonetheless be able to seek to an earlier point than the first frame originally provided by the server, then the zero time should correspond to the earliest seekable time of the media resource; otherwise, it should correspond to the first frame received from the server (the point in the media resource at which the user agent began receiving the stream).

At the time of writing, there is no known format that lacks explicit frame time offsets yet still supports seeking to a frame before the first frame sent by the server.

Consider a stream from a TV broadcaster, which begins streaming on a sunny Friday afternoon in October, and always sends connecting user agents the media data on the same media timeline, with its zero time set to the start of this stream. Months later, user agents connecting to this stream will find that the first frame they receive has a time with millions of seconds. The getStartDate() method would always return the date that the broadcast started; this would allow controllers to display real times in their scrubber (e.g. "2:30pm") rather than a time relative to when the broadcast began ("8 months, 4 hours, 12 minutes, and 23 seconds").

Consider a stream that carries a video with several concatenated fragments, broadcast by a server that does not allow user agents to request specific times but instead just streams the video data in a predetermined order, with the first frame delivered always being identified as the frame with time zero. If a user agent connects to this stream and receives fragments defined as covering timestamps 2010-03-20 23:15:00 UTC to 2010-03-21 00:05:00 UTC and 2010-02-12 14:25:00 UTC to 2010-02-12 14:35:00 UTC, it would expose this with a media timeline starting at 0s and extending to 3,600s (one hour). Assuming the streaming server disconnected at the end of the second clip, the duration attribute would then return 3,600. The getStartDate() method would return a Date object with a time corresponding to 2010-03-20 23:15:00 UTC. However, if a different user agent connected five minutes later, it would (presumably) receive fragments covering timestamps 2010-03-20 23:20:00 UTC to 2010-03-21 00:05:00 UTC and 2010-02-12 14:25:00 UTC to 2010-02-12 14:35:00 UTC, and would expose this with a media timeline starting at 0s and extending to 3,300s (fifty five minutes). In this case, the getStartDate() method would return a Date object with a time corresponding to 2010-03-20 23:20:00 UTC.

In both of these examples, the seekable attribute would give the ranges that the controller would want to actually display in its UI; typically, if the servers don't support seeking to arbitrary times, this would be the range of time from the moment the user agent connected to the stream up to the latest frame that the user agent has obtained; however, if the user agent starts discarding earlier information, the actual range might be shorter.

In any case, the user agent must ensure that the earliest possible position (as defined below) using the established media timeline, is greater than or equal to zero.

The media timeline also has an associated clock. Which clock is used is user-agent defined, and may be media resource-dependent, but it should approximate the user's wall clock.

All the media elements that share current media controller use the same clock for their media timeline.

Media elements have a current playback position, which must initially (i.e. in the absence of media data) be zero seconds. The current playback position is a time on the media timeline.

Media elements also have an official playback position, which must initially be set to zero seconds. The official playback position is an approximation of the current playback position that is kept stable while scripts are running.

Media elements also have a default playback start position, which must initially be set to zero seconds. This time is used to allow the element to be seeked even before the media is loaded.

Each media element has a show poster flag. When a media element is created, this flag must be set to true. This flag is used to control when the user agent is to show a poster frame for a video element instead of showing the video contents.

The currentTime attribute must, on getting, return the media element's default playback start position, unless that is zero, in which case it must return the element's official playback position. The returned value must be expressed in seconds. On setting, if the media element has a current media controller, then the user agent must throw an InvalidStateError exception; otherwise, if the media element's readyState is HAVE_NOTHING, then it must set the media element's default playback start position to the new value; otherwise, it must set the official playback position to the new value and then seek to the new value. The new value must be interpreted as being in seconds.

Media elements have an initial playback position, which must initially (i.e. in the absence of media data) be zero seconds. The initial playback position is updated when a media resource is loaded. The initial playback position is a time on the media timeline.

If the media resource is a streaming resource, then the user agent might be unable to obtain certain parts of the resource after it has expired from its buffer. Similarly, some media resources might have a media timeline that doesn't start at zero. The earliest possible position is the earliest position in the stream or resource that the user agent can ever obtain again. It is also a time on the media timeline.

The earliest possible position is not explicitly exposed in the API; it corresponds to the start time of the first range in the seekable attribute's TimeRanges object, if any, or the current playback position otherwise.

When the earliest possible position changes, then: if the current playback position is before the earliest possible position, the user agent must seek to the earliest possible position; otherwise, if the user agent has not fired a timeupdate event at the element in the past 15 to 250ms and is not still running event handlers for such an event, then the user agent must queue a task to fire a simple event named timeupdate at the element.

Because of the above requirement and the requirement in the resource fetch algorithm that kicks in when the metadata of the clip becomes known, the current playback position can never be less than the earliest possible position.

If at any time the user agent learns that an audio or video track has ended and all media data relating to that track corresponds to parts of the media timeline that are before the earliest possible position, the user agent may queue a task to first remove the track from the audioTracks attribute's AudioTrackList object or the videoTracks attribute's VideoTrackList object as appropriate and then fire a trusted event with the name removetrack, that does not bubble and is not cancelable, and that uses the TrackEvent interface, with the track attribute initialised to the AudioTrack or VideoTrack object representing the track, at the media element's aforementioned AudioTrackList or VideoTrackList object.

The duration attribute must return the time of the end of the media resource, in seconds, on the media timeline. If no media data is available, then the attributes must return the Not-a-Number (NaN) value. If the media resource is not known to be bounded (e.g. streaming radio, or a live event with no announced end time), then the attribute must return the positive Infinity value.

The user agent must determine the duration of the media resource before playing any part of the media data and before setting readyState to a value equal to or greater than HAVE_METADATA, even if doing so requires fetching multiple parts of the resource.

When the length of the media resource changes to a known value (e.g. from being unknown to known, or from a previously established length to a new length) the user agent must queue a task to fire a simple event named durationchange at the media element. (The event is not fired when the duration is reset as part of loading a new media resource.) If the duration is changed such that the current playback position ends up being greater than the time of the end of the media resource, then the user agent must also seek to the time of the end of the media resource.

If an "infinite" stream ends for some reason, then the duration would change from positive Infinity to the time of the last frame or sample in the stream, and the durationchange event would be fired. Similarly, if the user agent initially estimated the media resource's duration instead of determining it precisely, and later revises the estimate based on new information, then the duration would change and the durationchange event would be fired.

Some video files also have an explicit date and time corresponding to the zero time in the media timeline, known as the timeline offset. Initially, the timeline offset must be set to Not-a-Number (NaN).

The getStartDate() method must return a new Date object representing the current timeline offset.


The loop attribute is a boolean attribute that, if specified, indicates that the media element is to seek back to the start of the media resource upon reaching the end.

The loop attribute has no effect while the element has a current media controller.

The loop IDL attribute must reflect the content attribute of the same name.

4.7.10.7 Ready states
media . readyState

Returns a value that expresses the current state of the element with respect to rendering the current playback position, from the codes in the list below.

Media elements have a ready state, which describes to what degree they are ready to be rendered at the current playback position. The possible values are as follows; the ready state of a media element at any particular time is the greatest value describing the state of the element:

HAVE_NOTHING (numeric value 0)

No information regarding the media resource is available. No data for the current playback position is available. Media elements whose networkState attribute are set to NETWORK_EMPTY are always in the HAVE_NOTHING state.

HAVE_METADATA (numeric value 1)

Enough of the resource has been obtained that the duration of the resource is available. In the case of a video element, the dimensions of the video are also available. The API will no longer throw an exception when seeking. No media data is available for the immediate current playback position.

HAVE_CURRENT_DATA (numeric value 2)

Data for the immediate current playback position is available, but either not enough data is available that the user agent could successfully advance the current playback position in the direction of playback at all without immediately reverting to the HAVE_METADATA state, or there is no more data to obtain in the direction of playback. For example, in video this corresponds to the user agent having data from the current frame, but not the next frame, when the current playback position is at the end of the current frame; and to when playback has ended.

HAVE_FUTURE_DATA (numeric value 3)

Data for the immediate current playback position is available, as well as enough data for the user agent to advance the current playback position in the direction of playback at least a little without immediately reverting to the HAVE_METADATA state, and the text tracks are ready. For example, in video this corresponds to the user agent having data for at least the current frame and the next frame when the current playback position is at the instant in time between the two frames, or to the user agent having the video data for the current frame and audio data to keep playing at least a little when the current playback position is in the middle of a frame. The user agent cannot be in this state if playback has ended, as the current playback position can never advance in this case.

HAVE_ENOUGH_DATA (numeric value 4)

All the conditions described for the HAVE_FUTURE_DATA state are met, and, in addition, either of the following conditions is also true:

In practice, the difference between HAVE_METADATA and HAVE_CURRENT_DATA is negligible. Really the only time the difference is relevant is when painting a video element onto a canvas, where it distinguishes the case where something will be drawn (HAVE_CURRENT_DATA or greater) from the case where nothing is drawn (HAVE_METADATA or less). Similarly, the difference between HAVE_CURRENT_DATA (only the current frame) and HAVE_FUTURE_DATA (at least this frame and the next) can be negligible (in the extreme, only one frame). The only time that distinction really matters is when a page provides an interface for "frame-by-frame" navigation.

When the ready state of a media element whose networkState is not NETWORK_EMPTY changes, the user agent must follow the steps given below:

  1. Apply the first applicable set of substeps from the following list:

    If the previous ready state was HAVE_NOTHING, and the new ready state is HAVE_METADATA

    Queue a task to fire a simple event named loadedmetadata at the element.

    Before this task is run, as part of the event loop mechanism, the rendering will have been updated to resize the video element if appropriate.

    If the previous ready state was HAVE_METADATA and the new ready state is HAVE_CURRENT_DATA or greater

    If this is the first time this occurs for this media element since the load() algorithm was last invoked, the user agent must queue a task to fire a simple event named loadeddata at the element.

    If the new ready state is HAVE_FUTURE_DATA or HAVE_ENOUGH_DATA, then the relevant steps below must then be run also.

    If the previous ready state was HAVE_FUTURE_DATA or more, and the new ready state is HAVE_CURRENT_DATA or less

    If the media element was potentially playing before its readyState attribute changed to a value lower than HAVE_FUTURE_DATA, and the element has not ended playback, and playback has not stopped due to errors, paused for user interaction, or paused for in-band content, the user agent must queue a task to fire a simple event named timeupdate at the element, and queue a task to fire a simple event named waiting at the element.

    If the previous ready state was HAVE_CURRENT_DATA or less, and the new ready state is HAVE_FUTURE_DATA

    The user agent must queue a task to fire a simple event named canplay at the element.

    If the element's paused attribute is false, the user agent must queue a task to fire a simple event named playing at the element.

    If the new ready state is HAVE_ENOUGH_DATA

    If the previous ready state was HAVE_CURRENT_DATA or less, the user agent must queue a task to fire a simple event named canplay at the element, and, if the element's paused attribute is false, queue a task to fire a simple event named playing at the element.

    If the autoplaying flag is true, and the paused attribute is true, and the media element has an autoplay attribute specified, and the media element's Document's active sandboxing flag set does not have the sandboxed automatic features browsing context flag set, then the user agent may also run the following substeps:

    1. Set the paused attribute to false.
    2. If the element's show poster flag is true, set it to false and run the time marches on steps.
    3. Queue a task to fire a simple event named play at the element.
    4. Queue a task to fire a simple event named playing at the element.

    User agents do not need to support autoplay, and it is suggested that user agents honor user preferences on the matter. Authors are urged to use the autoplay attribute rather than using script to force the video to play, so as to allow the user to override the behavior if so desired.

    In any case, the user agent must finally queue a task to fire a simple event named canplaythrough at the element.

  2. If the media element has a current media controller, then report the controller state for the media element's current media controller.

It is possible for the ready state of a media element to jump between these states discontinuously. For example, the state of a media element can jump straight from HAVE_METADATA to HAVE_ENOUGH_DATA without passing through the HAVE_CURRENT_DATA and HAVE_FUTURE_DATA states.

The readyState IDL attribute must, on getting, return the value described above that describes the current ready state of the media element.

The autoplay attribute is a boolean attribute. When present, the user agent (as described in the algorithm described herein) will automatically begin playback of the media resource as soon as it can do so without stopping.

Authors are urged to use the autoplay attribute rather than using script to trigger automatic playback, as this allows the user to override the automatic playback when it is not desired, e.g. when using a screen reader. Authors are also encouraged to consider not using the automatic playback behavior at all, and instead to let the user agent wait for the user to start playback explicitly.

The autoplay IDL attribute must reflect the content attribute of the same name.

4.7.10.8 Playing the media resource
media . paused

Returns true if playback is paused; false otherwise.

media . ended

Returns true if playback has reached the end of the media resource.

media . defaultPlaybackRate [ = value ]

Returns the default rate of playback, for when the user is not fast-forwarding or reversing through the media resource.

Can be set, to change the default rate of playback.

The default rate has no direct effect on playback, but if the user switches to a fast-forward mode, when they return to the normal playback mode, it is expected that the rate of playback will be returned to the default rate of playback.

When the element has a current media controller, the defaultPlaybackRate attribute is ignored and the current media controller's defaultPlaybackRate is used instead.

media . playbackRate [ = value ]

Returns the current rate playback, where 1.0 is normal speed.

Can be set, to change the rate of playback.

When the element has a current media controller, the playbackRate attribute is ignored and the current media controller's playbackRate is used instead.

media . played

Returns a TimeRanges object that represents the ranges of the media resource that the user agent has played.

media . play()

Sets the paused attribute to false, loading the media resource and beginning playback if necessary. If the playback had ended, will restart it from the start.

media . pause()

Sets the paused attribute to true, loading the media resource if necessary.

The paused attribute represents whether the media element is paused or not. The attribute must initially be true.

A media element is a blocked media element if its readyState attribute is in the HAVE_NOTHING state, the HAVE_METADATA state, or the HAVE_CURRENT_DATA state, or if the element has paused for user interaction or paused for in-band content.

A media element is said to be potentially playing when its paused attribute is false, the element has not ended playback, playback has not stopped due to errors, the element either has no current media controller or has a current media controller but is not blocked on its media controller, and the element is not a blocked media element.

A waiting DOM event can be fired as a result of an element that is potentially playing stopping playback due to its readyState attribute changing to a value lower than HAVE_FUTURE_DATA.

A media element is said to have ended playback when:

The ended attribute must return true if, the last time the event loop reached step 1, the media element had ended playback and the direction of playback was forwards, and false otherwise.

A media element is said to have stopped due to errors when the element's readyState attribute is HAVE_METADATA or greater, and the user agent encounters a non-fatal error during the processing of the media data, and due to that error, is not able to play the content at the current playback position.

A media element is said to have paused for user interaction when its paused attribute is false, the readyState attribute is either HAVE_FUTURE_DATA or HAVE_ENOUGH_DATA and the user agent has reached a point in the media resource where the user has to make a selection for the resource to continue. If the media element has a current media controller when this happens, then the user agent must report the controller state for the media element's current media controller. If the media element has a current media controller when the user makes a selection, allowing playback to resume, the user agent must similarly report the controller state for the media element's current media controller.

It is possible for a media element to have both ended playback and paused for user interaction at the same time.

When a media element that is potentially playing stops playing because it has paused for user interaction, the user agent must queue a task to fire a simple event named timeupdate at the element.

A media element is said to have paused for in-band content when its paused attribute is false, the readyState attribute is either HAVE_FUTURE_DATA or HAVE_ENOUGH_DATA and the user agent has suspended playback of the media resource in order to play content that is temporally anchored to the media resource and has a non-zero length, or to play content that is temporally anchored to a segment of the media resource but has a length longer than that segment. If the media element has a current media controller when this happens, then the user agent must report the controller state for the media element's current media controller. If the media element has a current media controller when the user agent unsuspends playback, the user agent must similarly report the controller state for the media element's current media controller.

One example of when a media element would be paused for in-band content is when the user agent is playing audio descriptions from an external WebVTT file, and the synthesized speech generated for a cue is longer than the time between the text track cue start time and the text track cue end time.


When the current playback position reaches the end of the media resource when the direction of playback is forwards, then the user agent must follow these steps:

  1. If the media element has a loop attribute specified and does not have a current media controller, then seek to the earliest possible position of the media resource and abort these steps.

  2. As defined above, the ended IDL attribute starts returning true once the event loop returns to step 1.

  3. Queue a task to fire a simple event named timeupdate at the media element.

  4. Queue a task that, if the media element does not have a current media controller, and the media element has still ended playback, and the direction of playback is still forwards, and paused is false, changes paused to true and fires a simple event named pause at the media element.

  5. Queue a task to fire a simple event named ended at the media element.

  6. If the media element has a current media controller, then report the controller state for the media element's current media controller.

When the current playback position reaches the earliest possible position of the media resource when the direction of playback is backwards, then the user agent must only queue a task to fire a simple event named timeupdate at the element.

The word "reaches" here does not imply that the current playback position needs to have changed during normal playback; it could be via seeking, for instance.


The defaultPlaybackRate attribute gives the desired speed at which the media resource is to play, as a multiple of its intrinsic speed. The attribute is mutable: on getting it must return the last value it was set to, or 1.0 if it hasn't yet been set; on setting the attribute must be set to the new value.

The defaultPlaybackRate is used by the user agent when it exposes a user interface to the user.

The playbackRate attribute gives the effective playback rate (assuming there is no current media controller overriding it), which is the speed at which the media resource plays, as a multiple of its intrinsic speed. If it is not equal to the defaultPlaybackRate, then the implication is that the user is using a feature such as fast forward or slow motion playback. The attribute is mutable: on getting it must return the last value it was set to, or 1.0 if it hasn't yet been set; on setting the attribute must be set to the new value, and the playback will change speed (if the element is potentially playing and there is no current media controller).

When the defaultPlaybackRate or playbackRate attributes change value (either by being set by script or by being changed directly by the user agent, e.g. in response to user control) the user agent must queue a task to fire a simple event named ratechange at the media element.

The defaultPlaybackRate and playbackRate attributes have no effect when the media element has a current media controller; the namesake attributes on the MediaController object are used instead in that situation.


The played attribute must return a new static normalised TimeRanges object that represents the ranges of points on the media timeline of the media resource reached through the usual monotonic increase of the current playback position during normal playback, if any, at the time the attribute is evaluated.


When the play() method on a media element is invoked, the user agent must run the following steps.

  1. If the media element's networkState attribute has the value NETWORK_EMPTY, invoke the media element's resource selection algorithm.

  2. If the playback has ended and the direction of playback is forwards, and the media element does not have a current media controller, seek to the earliest possible position of the media resource.

    This will cause the user agent to queue a task to fire a simple event named timeupdate at the media element.

  3. If the media element has a current media controller, then bring the media element up to speed with its new media controller.

  4. If the media element's paused attribute is true, run the following substeps:

    1. Change the value of paused to false.

    2. If the show poster flag is true, set the element's show poster flag to false and run the time marches on steps.

    3. Queue a task to fire a simple event named play at the element.

    4. If the media element's readyState attribute has the value HAVE_NOTHING, HAVE_METADATA, or HAVE_CURRENT_DATA, queue a task to fire a simple event named waiting at the element.

      Otherwise, the media element's readyState attribute has the value HAVE_FUTURE_DATA or HAVE_ENOUGH_DATA: queue a task to fire a simple event named playing at the element.

  5. Set the media element's autoplaying flag to false.

  6. If the media element has a current media controller, then report the controller state for the media element's current media controller.


When the pause() method is invoked, and when the user agent is required to pause the media element, the user agent must run the following steps:

  1. If the media element's networkState attribute has the value NETWORK_EMPTY, invoke the media element's resource selection algorithm.

  2. Run the internal pause steps for the media element.

The internal pause steps for a media element are as follows:

  1. Set the media element's autoplaying flag to false.

  2. If the media element's paused attribute is false, run the following steps:

    1. Change the value of paused to true.

    2. Queue a task to fire a simple event named timeupdate at the element.

    3. Queue a task to fire a simple event named pause at the element.

    4. Set the official playback position to the current playback position.

  3. If the media element has a current media controller, then report the controller state for the media element's current media controller.


The effective playback rate is not necessarily the element's playbackRate. When a media element has a current media controller, its effective playback rate is the MediaController's media controller playback rate. Otherwise, the effective playback rate is just the element's playbackRate. Thus, the current media controller overrides the media element.

If the effective playback rate is positive or zero, then the direction of playback is forwards. Otherwise, it is backwards.

When a media element is potentially playing and its Document is a fully active Document, its current playback position must increase monotonically at effective playback rate units of media time per unit time of the media timeline's clock. (This specification always refers to this as an increase, but that increase could actually be a decrease if the effective playback rate is negative.)

The effective playback rate can be 0.0, in which case the current playback position doesn't move, despite playback not being paused (paused doesn't become true, and the pause event doesn't fire).

This specification doesn't define how the user agent achieves the appropriate playback rate — depending on the protocol and media available, it is plausible that the user agent could negotiate with the server to have the server provide the media data at the appropriate rate, so that (except for the period between when the rate is changed and when the server updates the stream's playback rate) the client doesn't actually have to drop or interpolate any frames.

Any time the user agent provides a stable state, the official playback position must be set to the current playback position.

While the direction of playback is backwards, any corresponding audio must be muted. While the effective playback rate is so low or so high that the user agent cannot play audio usefully, the corresponding audio must also be muted. If the effective playback rate is not 1.0, the user agent may apply pitch adjustments to the audio as necessary to render it faithfully.

Media elements that are potentially playing while not in a Document must not play any video, but should play any audio component. Media elements must not stop playing just because all references to them have been removed; only once a media element is in a state where no further audio could ever be played by that element may the element be garbage collected.

It is possible for an element to which no explicit references exist to play audio, even if such an element is not still actively playing: for instance, it could have a current media controller that still has references and can still be unpaused, or it could be unpaused but stalled waiting for content to buffer.


Each media element has a list of newly introduced cues, which must be initially empty. Whenever a text track cue is added to the list of cues of a text track that is in the list of text tracks for a media element, that cue must be added to the media element's list of newly introduced cues. Whenever a text track is added to the list of text tracks for a media element, all of the cues in that text track's list of cues must be added to the media element's list of newly introduced cues. When a media element's list of newly introduced cues has new cues added while the media element's show poster flag is not set, then the user agent must run the time marches on steps.

When a text track cue is removed from the list of cues of a text track that is in the list of text tracks for a media element, and whenever a text track is removed from the list of text tracks of a media element, if the media element's show poster flag is not set, then the user agent must run the time marches on steps.

When the current playback position of a media element changes (e.g. due to playback or seeking), the user agent must run the time marches on steps. If the current playback position changes while the steps are running, then the user agent must wait for the steps to complete, and then must immediately rerun the steps. (These steps are thus run as often as possible or needed — if one iteration takes a long time, this can cause certain cues to be skipped over as the user agent rushes ahead to "catch up".)

The time marches on steps are as follows:

  1. Let current cues be a list of cues, initialised to contain all the cues of all the hidden or showing text tracks of the media element (not the disabled ones) whose start times are less than or equal to the current playback position and whose end times are greater than the current playback position.

  2. Let other cues be a list of cues, initialised to contain all the cues of hidden and showing text tracks of the media element that are not present in current cues.

  3. Let last time be the current playback position at the time this algorithm was last run for this media element, if this is not the first time it has run.

  4. If the current playback position has, since the last time this algorithm was run, only changed through its usual monotonic increase during normal playback, then let missed cues be the list of cues in other cues whose start times are greater than or equal to last time and whose end times are less than or equal to the current playback position. Otherwise, let missed cues be an empty list.

  5. Remove all the cues in missed cues that are also in the media element's list of newly introduced cues, and then empty the element's list of newly introduced cues.

  6. If the time was reached through the usual monotonic increase of the current playback position during normal playback, and if the user agent has not fired a timeupdate event at the element in the past 15 to 250ms and is not still running event handlers for such an event, then the user agent must queue a task to fire a simple event named timeupdate at the element. (In the other cases, such as explicit seeks, relevant events get fired as part of the overall process of changing the current playback position.)

    The event thus is not to be fired faster than about 66Hz or slower than 4Hz (assuming the event handlers don't take longer than 250ms to run). User agents are encouraged to vary the frequency of the event based on the system load and the average cost of processing the event each time, so that the UI updates are not any more frequent than the user agent can comfortably handle while decoding the video.

  7. If all of the cues in current cues have their text track cue active flag set, none of the cues in other cues have their text track cue active flag set, and missed cues is empty, then abort these steps.

  8. If the time was reached through the usual monotonic increase of the current playback position during normal playback, and there are cues in other cues that have their text track cue pause-on-exit flag set and that either have their text track cue active flag set or are also in missed cues, then immediately pause the media element.

    In the other cases, such as explicit seeks, playback is not paused by going past the end time of a cue, even if that cue has its text track cue pause-on-exit flag set.

  9. Let events be a list of tasks, initially empty. Each task in this list will be associated with a text track, a text track cue, and a time, which are used to sort the list before the tasks are queued.

    Let affected tracks be a list of text tracks, initially empty.

    When the steps below say to prepare an event named event for a text track cue target with a time time, the user agent must run these substeps:

    1. Let track be the text track with which the text track cue target is associated.

    2. Create a task to fire a simple event named event at target.

    3. Add the newly created task to events, associated with the time time, the text track track, and the text track cue target.

    4. Add track to affected tracks.

  10. For each text track cue in missed cues, prepare an event named enter for the TextTrackCue object with the text track cue start time.

  11. For each text track cue in other cues that either has its text track cue active flag set or is in missed cues, prepare an event named exit for the TextTrackCue object with the later of the text track cue end time and the text track cue start time.

  12. For each text track cue in current cues that does not have its text track cue active flag set, prepare an event named enter for the TextTrackCue object with the text track cue start time.

  13. Sort the tasks in events in ascending time order (tasks with earlier times first).

    Further sort tasks in events that have the same time by the relative text track cue order of the text track cues associated with these tasks.

    Finally, sort tasks in events that have the same time and same text track cue order by placing tasks that fire enter events before those that fire exit events.

  14. Queue each task in events, in list order.

  15. Sort affected tracks in the same order as the text tracks appear in the media element's list of text tracks, and remove duplicates.

  16. For each text track in affected tracks, in the list order, queue a task to fire a simple event named cuechange at the TextTrack object, and, if the text track has a corresponding track element, to then fire a simple event named cuechange at the track element as well.

  17. Set the text track cue active flag of all the cues in the current cues, and unset the text track cue active flag of all the cues in the other cues.

  18. Run the rules for updating the text track rendering of each of the text tracks in affected tracks that are showing. For example, for text tracks based on WebVTT, the rules for updating the display of WebVTT text tracks. [WEBVTT]

For the purposes of the algorithm above, a text track cue is considered to be part of a text track only if it is listed in the text track list of cues, not merely if it is associated with the text track.

If the media element's Document stops being a fully active document, then the playback will stop until the document is active again.

When a media element is removed from a Document, the user agent must run the following steps:

  1. Asynchronously await a stable state, allowing the task that removed the media element from the Document to continue. The synchronous section consists of all the remaining steps of this algorithm. (Steps in the synchronous section are marked with ⌛.)

  2. ⌛ If the media element is in a Document, abort these steps.

  3. ⌛ Run the internal pause steps for the media element.

4.7.10.9 Seeking
media . seeking

Returns true if the user agent is currently seeking.

media . seekable

Returns a TimeRanges object that represents the ranges of the media resource to which it is possible for the user agent to seek.

media . fastSeek( time )

Seeks to near the given time as fast as possible, trading precision for speed. (To seek to a precise time, use the currentTime attribute.)

This does nothing if the media resource has not been loaded.

The seeking attribute must initially have the value false.

The fastSeek() method must seek to the time given by the method's argument, with the approximate-for-speed flag set.

When the user agent is required to seek to a particular new playback position in the media resource, optionally with the approximate-for-speed flag set, it means that the user agent must run the following steps. This algorithm interacts closely with the event loop mechanism; in particular, it has a synchronous section (which is triggered as part of the event loop algorithm). Steps in that section are marked with ⌛.

  1. Set the media element's show poster flag to false.

  2. If the media element's readyState is HAVE_NOTHING, abort these steps.

  3. If the element's seeking IDL attribute is true, then another instance of this algorithm is already running. Abort that other instance of the algorithm without waiting for the step that it is running to complete.

  4. Set the seeking IDL attribute to true.

  5. If the seek was in response to a DOM method call or setting of an IDL attribute, then continue the script. The remainder of these steps must be run asynchronously. With the exception of the steps marked with ⌛, they could be aborted at any time by another instance of this algorithm being invoked.

  6. If the new playback position is later than the end of the media resource, then let it be the end of the media resource instead.

  7. If the new playback position is less than the earliest possible position, let it be that position instead.

  8. If the (possibly now changed) new playback position is not in one of the ranges given in the seekable attribute, then let it be the position in one of the ranges given in the seekable attribute that is the nearest to the new playback position. If two positions both satisfy that constraint (i.e. the new playback position is exactly in the middle between two ranges in the seekable attribute) then use the position that is closest to the current playback position. If there are no ranges given in the seekable attribute then set the seeking IDL attribute to false and abort these steps.

  9. If the approximate-for-speed flag is set, adjust the new playback position to a value that will allow for playback to resume promptly. If new playback position before this step is before current playback position, then the adjusted new playback position must also be before the current playback position. Similarly, if the new playback position before this step is after current playback position, then the adjusted new playback position must also be after the current playback position.

    For example, the user agent could snap to the nearest key frame, so that it doesn't have to spend time decoding then discarding intermediate frames before resuming playback.

  10. Queue a task to fire a simple event named seeking at the element.

  11. Set the current playback position to the given new playback position.

    If the media element was potentially playing immediately before it started seeking, but seeking caused its readyState attribute to change to a value lower than HAVE_FUTURE_DATA, then a waiting will be fired at the element.

    This step sets the current playback position, and thus can immediately trigger other conditions, such as the rules regarding when playback "reaches the end of the media resource" (part of the logic that handles looping), even before the user agent is actually able to render the media data for that position (as determined in the next step).

    The currentTime attribute does not get updated asynchronously, as it returns the official playback position, not the current playback position.

  12. Wait until the user agent has established whether or not the media data for the new playback position is available, and, if it is, until it has decoded enough data to play back that position.

  13. Await a stable state. The synchronous section consists of all the remaining steps of this algorithm. (Steps in the synchronous section are marked with ⌛.)

  14. ⌛ Set the seeking IDL attribute to false.

  15. ⌛ Run the time marches on steps.

  16. Queue a task to fire a simple event named timeupdate at the element.

  17. Queue a task to fire a simple event named seeked at the element.


The seekable attribute must return a new static normalised TimeRanges object that represents the ranges of the media resource, if any, that the user agent is able to seek to, at the time the attribute is evaluated.

If the user agent can seek to anywhere in the media resource, e.g. because it is a simple movie file and the user agent and the server support HTTP Range requests, then the attribute would return an object with one range, whose start is the time of the first frame (the earliest possible position, typically zero), and whose end is the same as the time of the first frame plus the duration attribute's value (which would equal the time of the last frame, and might be positive Infinity).

The range might be continuously changing, e.g. if the user agent is buffering a sliding window on an infinite stream. This is the behavior seen with DVRs viewing live TV, for instance.

Media resources might be internally scripted or interactive. Thus, a media element could play in a non-linear fashion. If this happens, the user agent must act as if the algorithm for seeking was used whenever the current playback position changes in a discontinuous fashion (so that the relevant events fire). If the media element has a current media controller, then the user agent must seek the media controller appropriately instead.

4.7.10.10 Media resources with multiple media tracks

A media resource can have multiple embedded audio and video tracks. For example, in addition to the primary video and audio tracks, a media resource could have foreign-language dubbed dialogues, director's commentaries, audio descriptions, alternative angles, or sign-language overlays.

media . audioTracks

Returns an AudioTrackList object representing the audio tracks available in the media resource.

media . videoTracks

Returns a VideoTrackList object representing the video tracks available in the media resource.

The audioTracks attribute of a media element must return a live AudioTrackList object representing the audio tracks available in the media element's media resource. The same object must be returned each time.

The videoTracks attribute of a media element must return a live VideoTrackList object representing the video tracks available in the media element's media resource. The same object must be returned each time.

There are only ever one AudioTrackList object and one VideoTrackList object per media element, even if another media resource is loaded into the element: the objects are reused. (The AudioTrack and VideoTrack objects are not, though.)

In this example, a script defines a function that takes a URL to a video and a reference to an element where the video is to be placed. That function then tries to load the video, and, once it is loaded, checks to see if there is a sign-language track available. If there is, it also displays that track. Both tracks are just placed in the given container; it's assumed that styles have been applied to make this work in a pretty way!

<script>
 function loadVideo(url, container) {
   var controller = new MediaController();
   var video = document.createElement('video');
   video.src = url;
   video.autoplay = true;
   video.controls = true;
   video.controller = controller;
   container.appendChild(video);
   video.onloadedmetadata = function (event) {
     for (var i = 0; i < video.videoTracks.length; i += 1) {
       if (video.videoTracks[i].kind == 'sign') {
         var sign = document.createElement('video');
         sign.src = url + '#track=' + video.videoTracks[i].id; 
         sign.autoplay = true;
         sign.controller = controller;
         container.appendChild(sign);
         return;
       }
     }
   };
 }
</script>
4.7.10.10.1 AudioTrackList and VideoTrackList objects

The AudioTrackList and VideoTrackList interfaces are used by attributes defined in the previous section.

interface AudioTrackList : EventTarget {
  readonly attribute unsigned long length;
  getter AudioTrack (unsigned long index);
  AudioTrack? getTrackById(DOMString id);

           attribute EventHandler onchange;
           attribute EventHandler onaddtrack;
           attribute EventHandler onremovetrack;
};

interface AudioTrack {
  readonly attribute DOMString id;
  readonly attribute DOMString kind;
  readonly attribute DOMString label;
  readonly attribute DOMString language;
           attribute boolean enabled;
};

interface VideoTrackList : EventTarget {
  readonly attribute unsigned long length;
  getter VideoTrack (unsigned long index);
  VideoTrack? getTrackById(DOMString id);
  readonly attribute long selectedIndex;

           attribute EventHandler onchange;
           attribute EventHandler onaddtrack;
           attribute EventHandler onremovetrack;
};

interface VideoTrack {
  readonly attribute DOMString id;
  readonly attribute DOMString kind;
  readonly attribute DOMString label;
  readonly attribute DOMString language;
           attribute boolean selected;
};
media . audioTracks . length
media . videoTracks . length

Returns the number of tracks in the list.

audioTrack = media . audioTracks[index]
videoTrack = media . videoTracks[index]

Returns the specified AudioTrack or VideoTrack object.

audioTrack = media . audioTracks . getTrackById( id )
videoTrack = media . videoTracks . getTrackById( id )

Returns the AudioTrack or VideoTrack object with the given identifier, or null if no track has that identifier.

audioTrack . id
videoTrack . id

Returns the ID of the given track. This is the ID that can be used with a fragment identifier if the format supports the Media Fragments URI syntax, and that can be used with the getTrackById() method. [MEDIAFRAG]

audioTrack . kind
videoTrack . kind

Returns the category the given track falls into. The possible track categories are given below.

audioTrack . label
videoTrack . label

Returns the label of the given track, if known, or the empty string otherwise.

audioTrack . language
videoTrack . language

Returns the language of the given track, if known, or the empty string otherwise.

audioTrack . enabled [ = value ]

Returns true if the given track is active, and false otherwise.

Can be set, to change whether the track is enabled or not. If multiple audio tracks are enabled simultaneously, they are mixed.

media . videoTracks . selectedIndex

Returns the index of the currently selected track, if any, or −1 otherwise.

videoTrack . selected [ = value ]

Returns true if the given track is active, and false otherwise.

Can be set, to change whether the track is selected or not. Either zero or one video track is selected; selecting a new track while a previous one is selected will unselect the previous one.

An AudioTrackList object represents a dynamic list of zero or more audio tracks, of which zero or more can be enabled at a time. Each audio track is represented by an AudioTrack object.

A VideoTrackList object represents a dynamic list of zero or more video tracks, of which zero or one can be selected at a time. Each video track is represented by a VideoTrack object.

Tracks in AudioTrackList and VideoTrackList objects must be consistently ordered. If the media resource is in a format that defines an order, then that order must be used; otherwise, the order must be the relative order in which the tracks are declared in the media resource. The order used is called the natural order of the list.

Each track in a TrackList thus has an index; the first has the index 0, and each subsequent track is numbered one higher than the previous one. If a media resource dynamically adds or removes audio or video tracks, then the indices of the tracks will change dynamically. If the media resource changes entirely, then all the previous tracks will be removed and replaced with new tracks.

The AudioTrackList.length and VideoTrackList.length attributes must return the number of tracks represented by their objects at the time of getting.

The supported property indices of AudioTrackList and VideoTrackList objects at any instant are the numbers from zero to the number of tracks represented by the respective object minus one, if any tracks are represented. If an AudioTrackList or VideoTrackList object represents no tracks, it has no supported property indices.

To determine the value of an indexed property for a given index index in an AudioTrackList or VideoTrackList object list, the user agent must return the AudioTrack or VideoTrack object that represents the indexth track in list.

The AudioTrackList.getTrackById(id) and VideoTrackList.getTrackById(id) methods must return the first AudioTrack or VideoTrack object (respectively) in the AudioTrackList or VideoTrackList object (respectively) whose identifier is equal to the value of the id argument (in the natural order of the list, as defined above). When no tracks match the given argument, the methods must return null.

The AudioTrack and VideoTrack objects represent specific tracks of a media resource. Each track can have an identifier, category, label, and language. These aspects of a track are permanent for the lifetime of the track; even if a track is removed from a media resource's AudioTrackList or VideoTrackList objects, those aspects do not change.

In addition, AudioTrack objects can each be enabled or disabled; this is the audio track's enabled state. When an AudioTrack is created, its enabled state must be set to false (disabled). The resource fetch algorithm can override this.

Similarly, a single VideoTrack object per VideoTrackList object can be selected, this is the video track's selection state. When a VideoTrack is created, its selection state must be set to false (not selected). The resource fetch algorithm can override this.

The AudioTrack.id and VideoTrack.id attributes must return the identifier of the track, if it has one, or the empty string otherwise. If the media resource is in a format that supports the Media Fragments URI fragment identifier syntax, the identifier returned for a particular track must be the same identifier that would enable the track if used as the name of a track in the track dimension of such a fragment identifier. [MEDIAFRAG]

For example, in Ogg files, this would be the Name header field of the track. [OGGSKELETONHEADERS]

The AudioTrack.kind and VideoTrack.kind attributes must return the category of the track, if it has one, or the empty string otherwise.

The category of a track is the string given in the first column of the table below that is the most appropriate for the track based on the definitions in the table's second and third columns, as determined by the metadata included in the track in the media resource. The cell in the third column of a row says what the category given in the cell in the first column of that row applies to; a category is only appropriate for an audio track if it applies to audio tracks, and a category is only appropriate for video tracks if it applies to video tracks. Categories must only be returned for AudioTrack objects if they are appropriate for audio, and must only be returned for VideoTrack objects if they are appropriate for video.

Return values for AudioTrack.kind and VideoTrack.kind
Category Definition Applies to...
"alternative" A possible alternative to the main track, e.g. a different take of a song (audio), or a different angle (video). Audio and video.
"captions" A version of the main video track with captions burnt in. (For legacy content; new content would use text tracks.) Video only.
"descriptions" An audio description of a video track. Audio only.
"main" The primary audio or video track. Audio and video.
"main-desc" The primary audio track, mixed with audio descriptions. Audio only.
"sign" A sign-language interpretation of an audio track. Video only.
"subtitles" A version of the main video track with subtitles burnt in. (For legacy content; new content would use text tracks.) Video only.
"translation" A translated version of the main audio track. Audio only.
"commentary" Commentary on the primary audio or video track, e.g. a director's commentary. Audio and video.
"" (empty string) No explicit kind, or the kind given by the track's metadata is not recognised by the user agent. Audio and video.

The AudioTrack.label and VideoTrack.label attributes must return the label of the track, if it has one, or the empty string otherwise.

The AudioTrack.language and VideoTrack.language attributes must return the BCP 47 language tag of the language of the track, if it has one, or the empty string otherwise. If the user agent is not able to express that language as a BCP 47 language tag (for example because the language information in the media resource's format is a free-form string without a defined interpretation), then the method must return the empty string, as if the track had no language.

Source attribute values for id, kind, label and language of multitrack audio and video tracks as described for the relevant media resource format. [INBANDTRACKS]

The AudioTrack.enabled attribute, on getting, must return true if the track is currently enabled, and false otherwise. On setting, it must enable the track if the new value is true, and disable it otherwise. (If the track is no longer in an AudioTrackList object, then the track being enabled or disabled has no effect beyond changing the value of the attribute on the AudioTrack object.)

Whenever an audio track in an AudioTrackList that was disabled is enabled, and whenever one that was enabled is disabled, the user agent must queue a task to fire a simple event named change at the AudioTrackList object.

The VideoTrackList.selectedIndex attribute must return the index of the currently selected track, if any. If the VideoTrackList object does not currently represent any tracks, or if none of the tracks are selected, it must instead return −1.

The VideoTrack.selected attribute, on getting, must return true if the track is currently selected, and false otherwise. On setting, it must select the track if the new value is true, and unselect it otherwise. If the track is in a VideoTrackList, then all the other VideoTrack objects in that list must be unselected. (If the track is no longer in a VideoTrackList object, then the track being selected or unselected has no effect beyond changing the value of the attribute on the VideoTrack object.)

Whenever a track in a VideoTrackList that was previously not selected is selected, the user agent must queue a task to fire a simple event named change at the VideoTrackList object. This task must be queued before the task that fires the resize event, if any.


The following are the event handlers (and their corresponding event handler event types) that must be supported, as event handler IDL attributes, by all objects implementing the AudioTrackList and VideoTrackList interfaces:

Event handler Event handler event type
onchange change
onaddtrack addtrack
onremovetrack removetrack
4.7.10.10.2 Selecting specific audio and video tracks declaratively

The audioTracks and videoTracks attributes allow scripts to select which track should play, but it is also possible to select specific tracks declaratively, by specifying particular tracks in the fragment identifier of the URL of the media resource. The format of the fragment identifier depends on the MIME type of the media resource. [RFC2046] [URL]

In this example, a video that uses a format that supports the Media Fragments URI fragment identifier syntax is embedded in such a way that the alternative angles labeled "Alternative" are enabled instead of the default video track. [MEDIAFRAG]

<video src="myvideo#track=Alternative"></video>
4.7.10.11 Synchronising multiple media elements
4.7.10.11.1 Introduction

Each media element can have a MediaController. A MediaController is an object that coordinates the playback of multiple media elements, for instance so that a sign-language interpreter track can be overlaid on a video track, with the two being kept in sync.

By default, a media element has no MediaController. An implicit MediaController can be assigned using the mediagroup content attribute. An explicit MediaController can be assigned directly using the controller IDL attribute.

Media elements with a MediaController are said to be slaved to their controller. The MediaController modifies the playback rate and the playback volume of each of the media elements slaved to it, and ensures that when any of its slaved media elements unexpectedly stall, the others are stopped at the same time.

When a media element is slaved to a MediaController, its playback rate is fixed to that of the other tracks in the same MediaController, and any looping is disabled.

4.7.10.11.2 Media controllers
enum MediaControllerPlaybackState { "waiting", "playing", "ended" };
[Constructor]
interface MediaController : EventTarget {
  readonly attribute unsigned short readyState; // uses HTMLMediaElement.readyState's values

  readonly attribute TimeRanges buffered;
  readonly attribute TimeRanges seekable;
  readonly attribute unrestricted double duration;
           attribute double currentTime;

  readonly attribute boolean paused;
  readonly attribute MediaControllerPlaybackState playbackState;
  readonly attribute TimeRanges played;
  void pause();
  void unpause();
  void play(); // calls play() on all media elements as well

           attribute double defaultPlaybackRate;
           attribute double playbackRate;

           attribute double volume;
           attribute boolean muted;

           attribute EventHandler onemptied;
           attribute EventHandler onloadedmetadata;
           attribute EventHandler onloadeddata;
           attribute EventHandler oncanplay;
           attribute EventHandler oncanplaythrough;
           attribute EventHandler onplaying;
           attribute EventHandler onended;
           attribute EventHandler onwaiting;

           attribute EventHandler ondurationchange;
           attribute EventHandler ontimeupdate;
           attribute EventHandler onplay;
           attribute EventHandler onpause;
           attribute EventHandler onratechange;
           attribute EventHandler onvolumechange;
};
controller = new MediaController()

Returns a new MediaController object.

media . controller [ = controller ]

Returns the current MediaController for the media element, if any; returns null otherwise.

Can be set, to set an explicit MediaController. Doing so removes the mediagroup attribute, if any.

controller . readyState

Returns the state that the MediaController was in the last time it fired events as a result of reporting the controller state. The values of this attribute are the same as for the readyState attribute of media elements.

controller . buffered

Returns a TimeRanges object that represents the intersection of the time ranges for which the user agent has all relevant media data for all the slaved media elements.

controller . seekable

Returns a TimeRanges object that represents the intersection of the time ranges into which the user agent can seek for all the slaved media elements.

controller . duration

Returns the difference between the earliest playable moment and the latest playable moment (not considering whether the data in question is actually buffered or directly seekable, but not including time in the future for infinite streams). Will return zero if there is no media.

controller . currentTime [ = value ]

Returns the current playback position, in seconds, as a position between zero time and the current duration.

Can be set, to seek to the given time.

controller . paused

Returns true if playback is paused; false otherwise. When this attribute is true, any media element slaved to this controller will be stopped.

controller . playbackState

Returns the state that the MediaController was in the last time it fired events as a result of reporting the controller state. The value of this attribute is either "playing", indicating that the media is actively playing, "ended", indicating that the media is not playing because playback has reached the end of all the slaved media elements, or "waiting", indicating that the media is not playing for some other reason (e.g. the MediaController is paused).

controller . pause()

Sets the paused attribute to true.

controller . unpause()

Sets the paused attribute to false.

controller . play()

Sets the paused attribute to false and invokes the play() method of each slaved media element.

controller . played

Returns a TimeRanges object that represents the union of the time ranges in all the slaved media elements that have been played.

controller . defaultPlaybackRate [ = value ]

Returns the default rate of playback.

Can be set, to change the default rate of playback.

This default rate has no direct effect on playback, but if the user switches to a fast-forward mode, when they return to the normal playback mode, it is expected that rate of playback (playbackRate) will be returned to this default rate.

controller . playbackRate [ = value ]

Returns the current rate of playback.

Can be set, to change the rate of playback.

controller . volume [ = value ]

Returns the current playback volume multiplier, as a number in the range 0.0 to 1.0, where 0.0 is the quietest and 1.0 the loudest.

Can be set, to change the volume multiplier.

Throws an IndexSizeError exception if the new value is not in the range 0.0 .. 1.0.

controller . muted [ = value ]

Returns true if all audio is muted (regardless of other attributes either on the controller or on any media elements slaved to this controller), and false otherwise.

Can be set, to change whether the audio is muted or not.

A media element can have a current media controller, which is a MediaController object. When a media element is created without a mediagroup attribute, it does not have a current media controller. (If it is created with such an attribute, then that attribute initializes the current media controller, as defined below.)

The slaved media elements of a MediaController are the media elements whose current media controller is that MediaController. All the slaved media elements of a MediaController must use the same clock for their definition of their media timeline's unit time. When the user agent is required to act on each slaved media element in turn, they must be processed in the order that they were last associated with the MediaController.


The controller attribute on a media element, on getting, must return the element's current media controller, if any, or null otherwise. On setting, the user agent must run the following steps:

  1. Let m be the media element in question.

  2. Let old controller be m's current media controller, if it currently has one, and null otherwise.

  3. Let new controller be null.

  4. Let m have no current media controller, if it currently has one.

  5. Remove the element's mediagroup content attribute, if any.

  6. If the new value is null, then jump to the update controllers step below.

  7. Let m's current media controller be the new value.

  8. Let new controller be m's current media controller.

  9. Bring the media element up to speed with its new media controller.

  10. Update controllers: If old controller and new controller are the same (whether both null or both the same controller) then abort these steps.

  11. If old controller is not null and still has one or more slaved media elements, then report the controller state for old controller.

  12. If new controller is not null, then report the controller state for new controller.


The MediaController() constructor, when invoked, must return a newly created MediaController object.


The readyState attribute must return the value to which it was most recently set. When the MediaController object is created, the attribute must be set to the value 0 (HAVE_NOTHING). The value is updated by the report the controller state algorithm below.

The seekable attribute must return a new static normalised TimeRanges object that represents the intersection of the ranges of the media resources of the slaved media elements that the user agent is able to seek to, at the time the attribute is evaluated.

The buffered attribute must return a new static normalised TimeRanges object that represents the intersection of the ranges of the media resources of the slaved media elements that the user agent has buffered, at the time the attribute is evaluated. Users agents must accurately determine the ranges available, even for media streams where this can only be determined by tedious inspection.

The duration attribute must return the media controller duration.

Every 15 to 250ms, or whenever the MediaController's media controller duration changes, whichever happens least often, the user agent must queue a task to fire a simple event named durationchange at the MediaController. If the MediaController's media controller duration decreases such that the media controller position is greater than the media controller duration, the user agent must immediately seek the media controller to media controller duration.

The currentTime attribute must return the media controller position on getting, and on setting must seek the media controller to the new value.

Every 15 to 250ms, or whenever the MediaController's media controller position changes, whichever happens least often, the user agent must queue a task to fire a simple event named timeupdate at the MediaController.


When a MediaController is created it is a playing media controller. It can be changed into a paused media controller and back either via the user agent's user interface (when the element is exposing a user interface to the user) or by script using the APIs defined in this section (see below).

The paused attribute must return true if the MediaController object is a paused media controller, and false otherwise.

When the pause() method is invoked, if the MediaController is a playing media controller then the user agent must change the MediaController into a paused media controller, queue a task to fire a simple event named pause at the MediaController, and then report the controller state of the MediaController.

When the unpause() method is invoked, if the MediaController is a paused media controller, the user agent must change the MediaController into a playing media controller, queue a task to fire a simple event named play at the MediaController, and then report the controller state of the MediaController.

When the play() method is invoked, the user agent must invoke the play() method of each slaved media element in turn, and then invoke the unpause method of the MediaController.

The playbackState attribute must return the value to which it was most recently set. When the MediaController object is created, the attribute must be set to the value "waiting". The value is updated by the report the controller state algorithm below.

The played attribute must return a new static normalised TimeRanges object that represents the union of the ranges of points on the media timelines of the media resources of the slaved media elements that the user agent has so far reached through the usual monotonic increase of their current playback positions during normal playback, at the time the attribute is evaluated.


A MediaController has a media controller default playback rate and a media controller playback rate, which must both be set to 1.0 when the MediaController object is created.

The defaultPlaybackRate attribute, on getting, must return the MediaController's media controller default playback rate, and on setting, must set the MediaController's media controller default playback rate to the new value, then queue a task to fire a simple event named ratechange at the MediaController.

The playbackRate attribute, on getting, must return the MediaController's media controller playback rate, and on setting, must set the MediaController's media controller playback rate to the new value, then queue a task to fire a simple event named ratechange at the MediaController.


A MediaController has a media controller volume multiplier, which must be set to 1.0 when the MediaController object is created, and a media controller mute override, much must initially be false.

The volume attribute, on getting, must return the MediaController's media controller volume multiplier, and on setting, if the new value is in the range 0.0 to 1.0 inclusive, must set the MediaController's media controller volume multiplier to the new value and queue a task to fire a simple event named volumechange at the MediaController. If the new value is outside the range 0.0 to 1.0 inclusive, then, on setting, an IndexSizeError exception must be thrown instead.

The muted attribute, on getting, must return the MediaController's media controller mute override, and on setting, must set the MediaController's media controller mute override to the new value and queue a task to fire a simple event named volumechange at the MediaController.


The media resources of all the slaved media elements of a MediaController have a defined temporal relationship which provides relative offsets between the zero time of each such media resource: for media resources with a timeline offset, their relative offsets are the difference between their timeline offset; the zero times of all the media resources without a timeline offset are not offset from each other (i.e. the origins of their timelines are cotemporal); and finally, the zero time of the media resource with the earliest timeline offset (if any) is not offset from the zero times of the media resources without a timeline offset (i.e. the origins of media resources without a timeline offset are further cotemporal with the earliest defined point on the timeline of the media resource with the earliest timeline offset).

The media resource end position of a media resource in a media element is defined as follows: if the media resource has a finite and known duration, the media resource end position is the duration of the media resource's timeline (the last defined position on that timeline); otherwise, the media resource's duration is infinite or unknown, and the media resource end position is the time of the last frame of media data currently available for that media resource.

Each MediaController also has its own defined timeline. On this timeline, all the media resources of all the slaved media elements of the MediaController are temporally aligned according to their defined offsets. The media controller duration of that MediaController is the time from the earliest earliest possible position, relative to this MediaController timeline, of any of the media resources of the slaved media elements of the MediaController, to the time of the latest media resource end position of the media resources of the slaved media elements of the MediaController, again relative to this MediaController timeline.

Each MediaController has a media controller position. This is the time on the MediaController's timeline at which the user agent is trying to play the slaved media elements. When a MediaController is created, its media controller position is initially zero.

When the user agent is to bring a media element up to speed with its new media controller, it must seek that media element to the MediaController's media controller position relative to the media element's timeline.

When the user agent is to seek the media controller to a particular new playback position, it must follow these steps:

  1. If the new playback position is less than zero, then set it to zero.

  2. If the new playback position is greater than the media controller duration, then set it to the media controller duration.

  3. Set the media controller position to the new playback position.

  4. Seek each slaved media element to the new playback position relative to the media element timeline.

A MediaController is a restrained media controller if the MediaController is a playing media controller, but either at least one of its slaved media elements whose autoplaying flag is true still has its paused attribute set to true, or, all of its slaved media elements have their paused attribute set to true.

A MediaController is a blocked media controller if the MediaController is a paused media controller, or if any of its slaved media elements are blocked media elements, or if any of its slaved media elements whose autoplaying flag is true still have their paused attribute set to true, or if all of its slaved media elements have their paused attribute set to true.

A media element is blocked on its media controller if the MediaController is a blocked media controller, or if its media controller position is either before the media resource's earliest possible position relative to the MediaController's timeline or after the end of the media resource relative to the MediaController's timeline.

When a MediaController is not a blocked media controller and it has at least one slaved media element whose Document is a fully active Document, the MediaController's media controller position must increase monotonically at media controller playback rate units of time on the MediaController's timeline per unit time of the clock used by its slaved media elements.

When the zero point on the timeline of a MediaController moves relative to the timelines of the slaved media elements by a time difference ΔT, the MediaController's media controller position must be decremented by ΔT.

In some situations, e.g. when playing back a live stream without buffering anything, the media controller position would increase monotonically as described above at the same rate as the ΔT described in the previous paragraph decreases it, with the end result that for all intents and purposes, the media controller position would appear to remain constant (probably with the value 0).


A MediaController has a most recently reported readiness state, which is a number from 0 to 4 derived from the numbers used for the media element readyState attribute, and a most recently reported playback state, which is either playing, waiting, or ended.

When a MediaController is created, its most recently reported readiness state must be set to 0, and its most recently reported playback state must be set to waiting.

When a user agent is required to report the controller state for a MediaController, the user agent must run the following steps:

  1. If the MediaController has no slaved media elements, let new readiness state be 0.

    Otherwise, let it have the lowest value of the readyState IDL attributes of all of its slaved media elements.

  2. If the MediaController's most recently reported readiness state is less than the new readiness state, then run these substeps:

    1. Let next state be the MediaController's most recently reported readiness state.

    2. Loop: Increment next state by one.

    3. Queue a task to run the following steps:

      1. Set the MediaController's readyState attribute to the value next state.

      2. Fire a simple event at the MediaController object, whose name is the event name corresponding to the value of next state given in the table below.

    4. If next state is less than new readiness state, then return to the step labeled loop.

    Otherwise, if the MediaController's most recently reported readiness state is greater than new readiness state then queue a task to fire a simple event at the MediaController object, whose name is the event name corresponding to the value of new readiness state given in the table below.

    Value of new readiness state Event name
    0 emptied
    1 loadedmetadata
    2 loadeddata
    3 canplay
    4 canplaythrough
  3. Let the MediaController's most recently reported readiness state be new readiness state.

  4. Initialise new playback state by setting it to the state given for the first matching condition from the following list:

    If the MediaController has no slaved media elements
    Let new playback state be waiting.
    If all of the MediaController's slaved media elements have ended playback and the media controller playback rate is positive or zero
    Let new playback state be ended.
    If the MediaController is a blocked media controller
    Let new playback state be waiting.
    Otherwise
    Let new playback state be playing.
  5. If the MediaController's most recently reported playback state is not equal to new playback state and the new playback state is ended, then queue a task that, if the MediaController object is a playing media controller, and all of the MediaController's slaved media elements have still ended playback, and the media controller playback rate is still positive or zero, changes the MediaController object to a paused media controller and then fires a simple event named pause at the MediaController object.

  6. If the MediaController's most recently reported playback state is not equal to new playback state then queue a task to run the following steps:

    1. Set the MediaController's playbackState attribute to the value given in the second column of the row of the following table whose first column contains the new playback state.

    2. Fire a simple event at the MediaController object, whose name is the value given in the third column of the row of the following table whose first column contains the new playback state.

    New playback state New value for playbackState Event name
    playing "playing" playing
    waiting "waiting" waiting
    ended "ended" ended
  7. Let the MediaController's most recently reported playback state be new playback state.


The following are the event handlers (and their corresponding event handler event types) that must be supported, as event handler IDL attributes, by all objects implementing the MediaController interface:

Event handler Event handler event type
onemptied emptied
onloadedmetadata loadedmetadata
onloadeddata loadeddata
oncanplay canplay
oncanplaythrough canplaythrough
onplaying playing
onended ended
onwaiting waiting
ondurationchange durationchange
ontimeupdate timeupdate
onplay play
onpause pause
onratechange ratechange
onvolumechange volumechange

The task source for the tasks listed in this section is the DOM manipulation task source.

4.7.10.11.3 Assigning a media controller declaratively

The mediagroup content attribute on media elements can be used to link multiple media elements together by implicitly creating a MediaController. The value is text; media elements with the same value are automatically linked by the user agent.

When a media element is created with a mediagroup attribute, and when a media element's mediagroup attribute is set, changed, or removed, the user agent must run the following steps:

  1. Let m be the media element in question.

  2. Let old controller be m's current media controller, if it currently has one, and null otherwise.

  3. Let new controller be null.

  4. Let m have no current media controller, if it currently has one.

  5. If m's mediagroup attribute is being removed, then jump to the update controllers step below.

  6. If there is another media element whose Document is the same as m's Document (even if one or both of these elements are not actually in the Document), and which also has a mediagroup attribute, and whose mediagroup attribute has the same value as the new value of m's mediagroup attribute, then let controller be that media element's current media controller.

    Otherwise, let controller be a newly created MediaController.

  7. Let m's current media controller be controller.

  8. Let new controller be m's current media controller.

  9. Bring the media element up to speed with its new media controller.

  10. Update controllers: If old controller and new controller are the same (whether both null or both the same controller) then abort these steps.

  11. If old controller is not null and still has one or more slaved media elements, then report the controller state for old controller.

  12. If new controller is not null, then report the controller state for new controller.

The mediaGroup IDL attribute on media elements must reflect the mediagroup content attribute.

Multiple media elements referencing the same media resource will share a single network request. This can be used to efficiently play two (video) tracks from the same media resource in two different places on the screen. Used with the mediagroup attribute, these elements can also be kept synchronised.

In this example, a sign-languge interpreter track from a movie file is overlaid on the primary video track of that same video file using two video elements, some CSS, and an implicit MediaController:

<article>
 <style scoped>
  div { margin: 1em auto; position: relative; width: 400px; height: 300px; }
  video { position; absolute; bottom: 0; right: 0; }
  video:first-child { width: 100%; height: 100%; }
  video:last-child { width: 30%; }
 </style>
 <div>
  <video src="movie.vid#track=Video&amp;track=English" autoplay controls mediagroup=movie></video>
  <video src="movie.vid#track=sign" autoplay mediagroup=movie></video>
 </div>
</article>
4.7.10.12 Timed text tracks
4.7.10.12.1 Text track model

A media element can have a group of associated text tracks, known as the media element's list of text tracks. The text tracks are sorted as follows:

  1. The text tracks corresponding to track element children of the media element, in tree order.
  2. Any text tracks added using the addTextTrack() method, in the order they were added, oldest first.
  3. Any media-resource-specific text tracks (text tracks corresponding to data in the media resource), in the order defined by the media resource's format specification.

A text track consists of:

The kind of text track

This decides how the track is handled by the user agent. The kind is represented by a string. The possible strings are:

The kind of track can change dynamically, in the case of a text track corresponding to a track element.

A label

This is a human-readable string intended to identify the track for the user.

The label of a track can change dynamically, in the case of a text track corresponding to a track element.

When a text track label is the empty string, the user agent should automatically generate an appropriate label from the text track's other properties (e.g. the kind of text track and the text track's language) for use in its user interface. This automatically-generated label is not exposed in the API.

An in-band metadata track dispatch type

This is a string extracted from the media resource specifically for in-band metadata tracks to enable such tracks to be dispatched to different scripts in the document.

For example, a traditional TV station broadcast streamed on the Web and augmented with Web-specific interactive features could include text tracks with metadata for ad targeting, trivia game data during game shows, player states during sports games, recipe information during food programs, and so forth. As each program starts and ends, new tracks might be added or removed from the stream, and as each one is added, the user agent could bind them to dedicated script modules using the value of this attribute.

Other than for in-band metadata text tracks, the in-band metadata track dispatch type is the empty string. How this value is populated for different media formats is described in steps to expose a media-resource-specific text track.

A language

This is a string (a BCP 47 language tag) representing the language of the text track's cues. [BCP47]

The language of a text track can change dynamically, in the case of a text track corresponding to a track element.

A readiness state

One of the following:

Not loaded

Indicates that the text track's cues have not been obtained.

Loading

Indicates that the text track is loading and there have been no fatal errors encountered so far. Further cues might still be added to the track by the parser.

Loaded

Indicates that the text track has been loaded with no fatal errors.

Failed to load

Indicates that the text track was enabled, but when the user agent attempted to obtain it, this failed in some way (e.g. URL could not be resolved, network error, unknown text track format). Some or all of the cues are likely missing and will not be obtained.

The readiness state of a text track changes dynamically as the track is obtained.

A mode

One of the following:

Disabled

Indicates that the text track is not active. Other than for the purposes of exposing the track in the DOM, the user agent is ignoring the text track. No cues are active, no events are fired, and the user agent will not attempt to obtain the track's cues.

Hidden

Indicates that the text track is active, but that the user agent is not actively displaying the cues. If no attempt has yet been made to obtain the track's cues, the user agent will perform such an attempt momentarily. The user agent is maintaining a list of which cues are active, and events are being fired accordingly.

Showing

Indicates that the text track is active. If no attempt has yet been made to obtain the track's cues, the user agent will perform such an attempt momentarily. The user agent is maintaining a list of which cues are active, and events are being fired accordingly. In addition, for text tracks whose kind is subtitles or captions, the cues are being overlaid on the video as appropriate; for text tracks whose kind is descriptions, the user agent is making the cues available to the user in a non-visual fashion; and for text tracks whose kind is chapters, the user agent is making available to the user a mechanism by which the user can navigate to any point in the media resource by selecting a cue.

A list of zero or more cues

A list of text track cues, along with rules for updating the text track rendering. For example, for WebVTT, the rules for updating the display of WebVTT text tracks. [WEBVTT]

The list of cues of a text track can change dynamically, either because the text track has not yet been loaded or is still loading, or due to DOM manipulation.

Each text track has a corresponding TextTrack object.


Each media element has a list of pending text tracks, which must initially be empty, a blocked-on-parser flag, which must initially be false, and a did-perform-automatic-track-selection flag, which must also initially be false.

When the user agent is required to populate the list of pending text tracks of a media element, the user agent must add to the element's list of pending text tracks each text track in the element's list of text tracks whose text track mode is not disabled and whose text track readiness state is loading.

Whenever a track element's parent node changes, the user agent must remove the corresponding text track from any list of pending text tracks that it is in.

Whenever a text track's text track readiness state changes to either loaded or failed to load, the user agent must remove it from any list of pending text tracks that it is in.

When a media element is created by an HTML parser or XML parser, the user agent must set the element's blocked-on-parser flag to true. When a media element is popped off the stack of open elements of an HTML parser or XML parser, the user agent must honor user preferences for automatic text track selection, populate the list of pending text tracks, and set the element's blocked-on-parser flag to false.

The text tracks of a media element are ready when both the element's list of pending text tracks is empty and the element's blocked-on-parser flag is false.

Each media element has a pending text track change notification flag, which must initially be unset.

Whenever a text track that is in a media element's list of text tracks has its text track mode change value, the user agent must run the following steps for the media element:

  1. If the media element's pending text track change notification flag is set, abort these steps.

  2. Set the media element's pending text track change notification flag.

  3. Queue a task that runs the following substeps:

    1. Unset the media element's pending text track change notification flag.

    2. Fire a simple event named change at the media element's textTracks attribute's TextTrackList object.

  4. If the media element's show poster flag is not set, run the time marches on steps.

The task source for the tasks listed in this section is the DOM manipulation task source.


A text track cue is the unit of time-sensitive data in a text track, corresponding for instance for subtitles and captions to the text that appears at a particular time and disappears at another time.

Each text track cue consists of:

An identifier

An arbitrary string.

A start time

The time, in seconds and fractions of a second, that describes the beginning of the range of the media data to which the cue applies.

An end time

The time, in seconds and fractions of a second, that describes the end of the range of the media data to which the cue applies.

A pause-on-exit flag

A boolean indicating whether playback of the media resource is to pause when the end of the range to which the cue applies is reached.

Some additional format-specific data

Additional fields, as needed for the format. For example, WebVTT has a text track cue writing direction and so forth. [WEBVTT]

The data of the cue

The raw data of the cue, and rules for rendering the cue in isolation.

The precise nature of this data is defined by the format. For example, WebVTT uses text.

The text track cue start time and text track cue end time can be negative. (The current playback position can never be negative, though, so cues entirely before time zero cannot be active.)

Each text track cue has a corresponding TextTrackCue object (or more specifically, an object that inherits from TextTrackCue — for example, WebVTT cues use the VTTCue interface). A text track cue's in-memory representation can be dynamically changed through this TextTrackCue API. [WEBVTT]

A text track cue is associated with rules for updating the text track rendering, as defined by the specification for the specific kind of text track cue. These rules are used specifically when the object representing the cue is added to a TextTrack object using the addCue() method.

In addition, each text track cue has two pieces of dynamic information:

The active flag

This flag must be initially unset. The flag is used to ensure events are fired appropriately when the cue becomes active or inactive, and to make sure the right cues are rendered.

The user agent must synchronously unset this flag whenever the text track cue is removed from its text track's text track list of cues; whenever the text track itself is removed from its media element's list of text tracks or has its text track mode changed to disabled; and whenever the media element's readyState is changed back to HAVE_NOTHING. When the flag is unset in this way for one or more cues in text tracks that were showing prior to the relevant incident, the user agent must, after having unset the flag for all the affected cues, apply the rules for updating the text track rendering of those text tracks. For example, for text tracks based on WebVTT, the rules for updating the display of WebVTT text tracks. [WEBVTT]

The display state

This is used as part of the rendering model, to keep cues in a consistent position. It must initially be empty. Whenever the text track cue active flag is unset, the user agent must empty the text track cue display state.

The text track cues of a media element's text tracks are ordered relative to each other in the text track cue order, which is determined as follows: first group the cues by their text track, with the groups being sorted in the same order as their text tracks appear in the media element's list of text tracks; then, within each group, cues must be sorted by their start time, earliest first; then, any cues with the same start time must be sorted by their end time, latest first; and finally, any cues with identical end times must be sorted in the order they were last added to their respective text track list of cues, oldest first (so e.g. for cues from a WebVTT file, that would initially be the order in which the cues were listed in the file). [WEBVTT]

4.7.10.12.2 Sourcing in-band text tracks

A media-resource-specific text track is a text track that corresponds to data found in the media resource.

Rules for processing and rendering such data are defined by the relevant specifications, e.g. the specification of the video format if the media resource is a video.

When a media resource contains data that the user agent recognises and supports as being equivalent to a text track, the user agent runs the steps to expose a media-resource-specific text track with the relevant data, as follows.

  1. Associate the relevant data with a new text track and its corresponding new TextTrack object. The text track is a media-resource-specific text track.

  2. Set the new text track's kind, label, and language based on the semantics of the relevant data, as defined for the relevant format [INBANDTRACKS]. If there is no label in that data, then the label must be set to the empty string.

  3. Associate the text track list of cues with the rules for updating the text track rendering appropriate for the format in question.

  4. If the new text track's kind is metadata, then set the text track in-band metadata track dispatch type as follows, based on the type of the media resource:

    If the media resource is an Ogg file
    The text track in-band metadata track dispatch type must be set to the value of the Role header field. [OGGSKELETONHEADERS]
    If the media resource is a WebM file
    The text track in-band metadata track dispatch type must be set to the value of the CodecID element. [WEBMCG]
    If the media resource is an MPEG-2 file
    Let stream type be the value of the "stream_type" field describing the text track's type in the file's program map section, interpreted as an 8-bit unsigned integer. Let length be the value of the "ES_info_length" field for the track in the same part of the program map section, interpreted as an integer as defined by the MPEG-2 specification. Let descriptor bytes be the length bytes following the "ES_info_length" field. The text track in-band metadata track dispatch type must be set to the concatenation of the stream type byte and the zero or more descriptor bytes bytes, expressed in hexadecimal using uppercase ASCII hex digits. [MPEG2]
    If the media resource is an MPEG-4 file
    Let the first stsd box of the first stbl box of the first minf box of the first mdia box of the text track's trak box in the first moov box of the file be the stsd box, if any. If the file has no stsd box, or if the stsd box has neither a mett box nor a metx box, then the text track in-band metadata track dispatch type must be set to the empty string. Otherwise, if the stsd box has a mett box then the text track in-band metadata track dispatch type must be set to the concatenation of the string "mett", a U+0020 SPACE character, and the value of the first mime_format field of the first mett box of the stsd box, or the empty string if that field is absent in that box. Otherwise, if the stsd box has no mett box but has a metx box then the text track in-band metadata track dispatch type must be set to the concatenation of the string "metx", a U+0020 SPACE character, and the value of the first namespace field of the first metx box of the stsd box, or the empty string if that field is absent in that box. [MPEG4]
    If the media resource is a DASH media resource
    The text track in-band metadata track dispatch type must be set to the concatenation of the "AdaptationSet" element attributes and all child Role descriptors. [DASH]
  5. Populate the new text track's list of cues with the cues parsed so far, following the guidelines for exposing cues, and begin updating it dynamically as necessary.

  6. Set the new text track's readiness state to loaded.

  7. Set the new text track's mode to the mode consistent with the user's preferences and the requirements of the relevant specification for the data.

    For instance, if there are no other active subtitles, and this is a forced subtitle track (a subtitle track giving subtitles in the audio track's primary language, but only for audio that is actually in another language), then those subtitles might be activated here.

  8. Add the new text track to the media element's list of text tracks.

  9. Fire a trusted event with the name addtrack, that does not bubble and is not cancelable, and that uses the TrackEvent interface, with the track attribute initialised to the text track's TextTrack object, at the media element's textTracks attribute's TextTrackList object.

4.7.10.12.3 Sourcing out-of-band text tracks

When a track element is created, it must be associated with a new text track (with its value set as defined below) and its corresponding new TextTrack object.

The text track kind is determined from the state of the element's kind attribute according to the following table; for a state given in a cell of the first column, the kind is the string given in the second column:

State String
Subtitles subtitles
Captions captions
Descriptions descriptions
Chapters chapters
Metadata metadata

The text track label is the element's track label.

The text track language is the element's track language, if any, or the empty string otherwise.

As the kind, label, and srclang attributes are set, changed, or removed, the text track must update accordingly, as per the definitions above.

Changes to the track URL are handled in the algorithm below.

The text track readiness state is initially not loaded, and the text track mode is initially disabled.

The text track list of cues is initially empty. It is dynamically modified when the referenced file is parsed. Associated with the list are the rules for updating the text track rendering appropriate for the format in question; for WebVTT, this is the rules for updating the display of WebVTT text tracks. [WEBVTT]

When a track element's parent element changes and the new parent is a media element, then the user agent must add the track element's corresponding text track to the media element's list of text tracks, and then queue a task to fire a trusted event with the name addtrack, that does not bubble and is not cancelable, and that uses the TrackEvent interface, with the track attribute initialised to the text track's TextTrack object, at the media element's textTracks attribute's TextTrackList object.

When a track element's parent element changes and the old parent was a media element, then the user agent must remove the track element's corresponding text track from the media element's list of text tracks, and then queue a task to fire a trusted event with the name removetrack, that does not bubble and is not cancelable, and that uses the TrackEvent interface, with the track attribute initialised to the text track's TextTrack object, at the media element's textTracks attribute's TextTrackList object.


When a text track corresponding to a track element is added to a media element's list of text tracks, the user agent must queue a task to run the following steps for the media element:

  1. If the element's blocked-on-parser flag is true, abort these steps.

  2. If the element's did-perform-automatic-track-selection flag is true, abort these steps.

  3. Honor user preferences for automatic text track selection for this element.

When the user agent is required to honor user preferences for automatic text track selection for a media element, the user agent must run the following steps:

  1. Perform automatic text track selection for subtitles and captions.

  2. Perform automatic text track selection for descriptions.

  3. Perform automatic text track selection for chapters.

  4. If there are any text tracks in the media element's list of text tracks whose text track kind is metadata that correspond to track elements with a default attribute set whose text track mode is set to disabled, then set the text track mode of all such tracks to hidden

  5. Set the element's did-perform-automatic-track-selection flag to true.

When the steps above say to perform automatic text track selection for one or more text track kinds, it means to run the following steps:

  1. Let candidates be a list consisting of the text tracks in the media element's list of text tracks whose text track kind is one of the kinds that were passed to the algorithm, if any, in the order given in the list of text tracks.

  2. If candidates is empty, then abort these steps.

  3. If any of the text tracks in candidates have a text track mode set to showing, abort these steps.

  4. If the user has expressed an interest in having a track from candidates enabled based on its text track kind, text track language, and text track label, then set its text track mode to showing.

    For example, the user could have set a browser preference to the effect of "I want French captions whenever possible", or "If there is a subtitle track with 'Commentary' in the title, enable it", or "If there are audio description tracks available, enable one, ideally in Swiss German, but failing that in Standard Swiss German or Standard German".

    Otherwise, if there are any text tracks in candidates that correspond to track elements with a default attribute set whose text track mode is set to disabled, then set the text track mode of the first such track to showing.

When a text track corresponding to a track element experiences any of the following circumstances, the user agent must start the track processing model for that text track and its track element:

When a user agent is to start the track processing model for a text track and its track element, it must run the following algorithm. This algorithm interacts closely with the event loop mechanism; in particular, it has a synchronous section (which is triggered as part of the event loop algorithm). The steps in that section are marked with ⌛.

  1. If another occurrence of this algorithm is already running for this text track and its track element, abort these steps, letting that other algorithm take care of this element.

  2. If the text track's text track mode is not set to one of hidden or showing, abort these steps.

  3. If the text track's track element does not have a media element as a parent, abort these steps.

  4. Run the remainder of these steps asynchronously, allowing whatever caused these steps to run to continue.

  5. Top: Await a stable state. The synchronous section consists of the following steps. (The steps in the synchronous section are marked with ⌛.)

  6. ⌛ Set the text track readiness state to loading.

  7. ⌛ Let URL be the track URL of the track element.

  8. ⌛ If the track element's parent is a media element then let CORS mode be the state of the parent media element's crossorigin content attribute. Otherwise, let CORS mode be No CORS.

  9. End the synchronous section, continuing the remaining steps asynchronously.

  10. If URL is not the empty string, perform a potentially CORS-enabled fetch of URL, with the mode being CORS mode, the origin being the origin of the track element's Document, and the default origin behaviour set to fail.

    The resource obtained in this fashion, if any, contains the text track data. If any data is obtained, it is by definition CORS-same-origin (cross-origin resources that are not suitably CORS-enabled do not get this far).

    The tasks queued by the fetching algorithm on the networking task source to process the data as it is being fetched must determine the type of the resource. If the type of the resource is not a supported text track format, the load will fail, as described below. Otherwise, the resource's data must be passed to the appropriate parser (e.g. the WebVTT parser) as it is received, with the text track list of cues being used for that parser's output. [WEBVTT]

    The appropriate parser will synchronously (during these networking task source tasks) and incrementally (as each such task is run with whatever data has been received from the network) update the text track list of cues.

    This specification does not currently say whether or how to check the MIME types of text tracks, or whether or how to perform file type sniffing using the actual file data. Implementors differ in their intentions on this matter and it is therefore unclear what the right solution is. In the absence of any requirement here, the HTTP specification's strict requirement to follow the Content-Type header prevails ("Content-Type specifies the media type of the underlying data." ... "If and only if the media type is not given by a Content-Type field, the recipient MAY attempt to guess the media type via inspection of its content and/or the name extension(s) of the URI used to identify the resource.").

    If the fetching algorithm fails for any reason (network error, the server returns an error code, a cross-origin check fails, etc), or if URL is the empty string, then queue a task to first change the text track readiness state to failed to load and then fire a simple event named error at the track element. This task must use the DOM manipulation task source.

    If the fetching algorithm does not fail, but the type of the resource is not a supported text track format, or the file was not successfully processed (e.g. the format in question is an XML format and the file contained a well-formedness error that the XML specification requires be detected and reported to the application), then the task that is queued by the networking task source in which the aforementioned problem is found must change the text track readiness state to failed to load and fire a simple event named error at the track element.

    If the fetching algorithm does not fail, and the file was successfully processed, then the final task that is queued by the networking task source, after it has finished parsing the data, must change the text track readiness state to loaded, and fire a simple event named load at the track element.

    If, while the fetching algorithm is active, either:

    ...then the user agent must abort the fetching algorithm, discarding any pending tasks generated by that algorithm (and in particular, not adding any cues to the text track list of cues after the moment the URL changed), and then queue a task that first changes the text track readiness state to failed to load and then fires a simple event named error at the track element. This task must use the DOM manipulation task source.

  11. Wait until the text track readiness state is no longer set to loading.

  12. Wait until the track URL is no longer equal to URL, at the same time as the text track mode is set to hidden or showing.

  13. Jump to the step labeled top.

Whenever a track element has its src attribute set, changed, or removed, the user agent must synchronously empty the element's text track's text track list of cues. (This also causes the algorithm above to stop adding cues from the resource being obtained using the previously given URL, if any.)

4.7.10.12.4 Guidelines for exposing cues in various formats as text track cues

How a specific format's text track cues are to be interpreted for the purposes of processing by an HTML user agent is defined by that format [INBANDTRACKS]. In the absence of such a specification, this section provides some constraints within which implementations can attempt to consistently expose such formats.

To support the text track model of HTML, each unit of timed data is converted to a text track cue. Where the mapping of the format's features to the aspects of a text track cue as defined in this specification are not defined, implementations must ensure that the mapping is consistent with the definitions of the aspects of a text track cue as defined above, as well as with the following constraints:

The text track cue identifier

Should be set to the empty string if the format has no obvious analogue to a per-cue identifier.

The text track cue pause-on-exit flag

Should be set to false.

For media-resource-specific text tracks of kind metadata, text track cues are exposed using the DataCue object unless there is a more appropriate TextTrackCue interface available. For example, if the media-resource-specific text track format is WebVTT, then VTTCue is more appropriate.

4.7.10.12.5 Text track API
interface TextTrackList : EventTarget {
  readonly attribute unsigned long length;
  getter TextTrack (unsigned long index);
  TextTrack? getTrackById(DOMString id);

           attribute EventHandler onchange;
           attribute EventHandler onaddtrack;
           attribute EventHandler onremovetrack;
};
media . textTracks . length

Returns the number of text tracks associated with the media element (e.g. from track elements). This is the number of text tracks in the media element's list of text tracks.

media . textTracks[ n ]

Returns the TextTrack object representing the nth text track in the media element's list of text tracks.

textTrack = media . textTracks . getTrackById( id )

Returns the TextTrack object with the given identifier, or null if no track has that identifier.

track . track

Returns the TextTrack object representing the track element's text track.

A TextTrackList object represents a dynamically updating list of text tracks in a given order.

The textTracks attribute of media elements must return a TextTrackList object representing the TextTrack objects of the text tracks in the media element's list of text tracks, in the same order as in the list of text tracks. The same object must be returned each time the attribute is accessed. [WEBIDL]

The length attribute of a TextTrackList object must return the number of text tracks in the list represented by the TextTrackList object.

The supported property indices of a TextTrackList object at any instant are the numbers from zero to the number of text tracks in the list represented by the TextTrackList object minus one, if any. If there are no text tracks in the list, there are no supported property indices.

To determine the value of an indexed property of a TextTrackList object for a given index index, the user agent must return the indexth text track in the list represented by the TextTrackList object.

The getTrackById(id) method must return the first TextTrack in the TextTrackList object whose id IDL attribute would return a value equal to the value of the id argument. When no tracks match the given argument, the method must return null.


enum TextTrackMode { "disabled",  "hidden",  "showing" };
enum TextTrackKind { "subtitles",  "captions",  "descriptions",  "chapters",  "metadata" };
interface TextTrack : EventTarget {
  readonly attribute TextTrackKind kind;
  readonly attribute DOMString label;
  readonly attribute DOMString language;

  readonly attribute DOMString id;
  readonly attribute DOMString inBandMetadataTrackDispatchType;

           attribute TextTrackMode mode;

  readonly attribute TextTrackCueList? cues;
  readonly attribute TextTrackCueList? activeCues;

  void addCue(TextTrackCue cue);
  void removeCue(TextTrackCue cue);

           attribute EventHandler oncuechange;
};
textTrack = media . addTextTrack( kind [, label [, language ] ] )

Creates and returns a new TextTrack object, which is also added to the media element's list of text tracks.

textTrack . kind

Returns the text track kind string.

textTrack . label

Returns the text track label, if there is one, or the empty string otherwise (indicating that a custom label probably needs to be generated from the other attributes of the object if the object is exposed to the user).

textTrack . language

Returns the text track language string.

textTrack . id

Returns the ID of the given track.

For in-band tracks, this is the ID that can be used with a fragment identifier if the format supports the Media Fragments URI syntax, and that can be used with the getTrackById() method. [MEDIAFRAG]

For TextTrack objects corresponding to track elements, this is the ID of the track element.

textTrack . inBandMetadataTrackDispatchType

Returns the text track in-band metadata track dispatch type string.

textTrack . mode [ = value ]

Returns the text track mode, represented by a string from the following list:

"disabled"

The text track disabled mode.

"hidden"

The text track hidden mode.

"showing"

The text track showing mode.

Can be set, to change the mode.

textTrack . cues

Returns the text track list of cues, as a TextTrackCueList object.

textTrack . activeCues

Returns the text track cues from the text track list of cues that are currently active (i.e. that start before the current playback position and end after it), as a TextTrackCueList object.

textTrack . addCue( cue )

Adds the given cue to textTrack's text track list of cues.

textTrack . removeCue( cue )

Removes the given cue from textTrack's text track list of cues.

The addTextTrack(kind, label, language) method of media elements, when invoked, must run the following steps:

  1. Create a new TextTrack object.

  2. Create a new text track corresponding to the new object, and set its text track kind to kind, its text track label to label, its text track language to language, its text track readiness state to the text track loaded state, its text track mode to the text track hidden mode, and its text track list of cues to an empty list.

    Initially, the text track list of cues is not associated with any rules for updating the text track rendering. When a text track cue is added to it, the text track list of cues has its rules permanently set accordingly.

  3. Add the new text track to the media element's list of text tracks.

  4. Queue a task to fire a trusted event with the name addtrack, that does not bubble and is not cancelable, and that uses the TrackEvent interface, with the track attribute initialised to the new text track's TextTrack object, at the media element's textTracks attribute's TextTrackList object.

  5. Return the new TextTrack object.


The kind attribute must return the text track kind of the text track that the TextTrack object represents.

The label attribute must return the text track label of the text track that the TextTrack object represents.

The language attribute must return the text track language of the text track that the TextTrack object represents.

The id attribute returns the track's identifier, if it has one, or the empty string otherwise. For tracks that correspond to track elements, the track's identifier is the value of the element's id attribute, if any. For in-band tracks, the track's identifier is specified by the media resource. If the media resource is in a format that supports the Media Fragments URI fragment identifier syntax, the identifier returned for a particular track must be the same identifier that would enable the track if used as the name of a track in the track dimension of such a fragment identifier. [MEDIAFRAG]

The inBandMetadataTrackDispatchType attribute must return the text track in-band metadata track dispatch type of the text track that the TextTrack object represents.

The mode attribute, on getting, must return the string corresponding to the text track mode of the text track that the TextTrack object represents, as defined by the following list:

"disabled"
The text track disabled mode.
"hidden"
The text track hidden mode.
"showing"
The text track showing mode.

On setting, if the new value isn't equal to what the attribute would currently return, the new value must be processed as follows:

If the new value is "disabled"

Set the text track mode of the text track that the TextTrack object represents to the text track disabled mode.

If the new value is "hidden"

Set the text track mode of the text track that the TextTrack object represents to the text track hidden mode.

If the new value is "showing"

Set the text track mode of the text track that the TextTrack object represents to the text track showing mode.

If the text track mode of the text track that the TextTrack object represents is not the text track disabled mode, then the cues attribute must return a live TextTrackCueList object that represents the subset of the text track list of cues of the text track that the TextTrack object represents whose end times occur at or after the earliest possible position when the script started, in text track cue order. Otherwise, it must return null. When an object is returned, the same object must be returned each time.

The earliest possible position when the script started is whatever the earliest possible position was the last time the event loop reached step 1.

If the text track mode of the text track that the TextTrack object represents is not the text track disabled mode, then the activeCues attribute must return a live TextTrackCueList object that represents the subset of the text track list of cues of the text track that the TextTrack object represents whose active flag was set when the script started, in text track cue order. Otherwise, it must return null. When an object is returned, the same object must be returned each time.

A text track cue's active flag was set when the script started if its text track cue active flag was set the last time the event loop reached step 1.


The addCue(cue) method of TextTrack objects, when invoked, must run the following steps:

  1. If the text track list of cues does not yet have any associated rules for updating the text track rendering, then associate the text track list of cues with the rules for updating the text track rendering appropriate to cue.

  2. If text track list of cues' associated rules for updating the text track rendering are not the same rules for updating the text track rendering as appropriate for cue, then throw an InvalidStateError exception and abort these steps.

  3. If the given cue is in a text track list of cues, then remove cue from that text track list of cues.

  4. Add cue to the method's TextTrack object's text track's text track list of cues.

The removeCue(cue) method of TextTrack objects, when invoked, must run the following steps:

  1. If the given cue is not currently listed in the method's TextTrack object's text track's text track list of cues, then throw a NotFoundError exception and abort these steps.

  2. Remove cue from the method's TextTrack object's text track's text track list of cues.

In this example, an audio element is used to play a specific sound-effect from a sound file containing many sound effects. A cue is used to pause the audio, so that it ends exactly at the end of the clip, even if the browser is busy running some script. If the page had relied on script to pause the audio, then the start of the next clip might be heard if the browser was not able to run the script at the exact time specified.

var sfx = new Audio('sfx.wav');
var sounds = sfx.addTextTrack('metadata');

// add sounds we care about
function addFX(start, end, name) {
  var cue = new VTTCue(start, end, '');
  cue.id = name;
  cue.pauseOnExit = true;
  sounds.addCue(cue);
}
addFX(12.783, 13.612, 'dog bark');
addFX(13.612, 15.091, 'kitten mew'))

function playSound(id) {
  sfx.currentTime = sounds.getCueById(id).startTime;
  sfx.play();
}

// play a bark as soon as we can
sfx.oncanplaythrough = function () {
  playSound('dog bark');
}
// meow when the user tries to leave
window.onbeforeunload = function () {
  playSound('kitten mew');
  return 'Are you sure you want to leave this awesome page?';
}

interface TextTrackCueList {
  readonly attribute unsigned long length;
  getter TextTrackCue (unsigned long index);
  TextTrackCue? getCueById(DOMString id);
};
cuelist . length

Returns the number of cues in the list.

cuelist[index]

Returns the text track cue with index index in the list. The cues are sorted in text track cue order.

cuelist . getCueById( id )

Returns the first text track cue (in text track cue order) with text track cue identifier id.

Returns null if none of the cues have the given identifier or if the argument is the empty string.

A TextTrackCueList object represents a dynamically updating list of text track cues in a given order.

The length attribute must return the number of cues in the list represented by the TextTrackCueList object.

The supported property indices of a TextTrackCueList object at any instant are the numbers from zero to the number of cues in the list represented by the TextTrackCueList object minus one, if any. If there are no cues in the list, there are no supported property indices.

To determine the value of an indexed property for a given index index, the user agent must return the indexth text track cue in the list represented by the TextTrackCueList object.

The getCueById(id) method, when called with an argument other than the empty string, must return the first text track cue in the list represented by the TextTrackCueList object whose text track cue identifier is id, if any, or null otherwise. If the argument is the empty string, then the method must return null.


interface TextTrackCue : EventTarget {
  readonly attribute TextTrack? track;

           attribute DOMString id;
           attribute double startTime;
           attribute double endTime;
           attribute boolean pauseOnExit;

           attribute EventHandler onenter;
           attribute EventHandler onexit;
};
cue . track

Returns the TextTrack object to which this text track cue belongs, if any, or null otherwise.

cue . id [ = value ]

Returns the text track cue identifier.

Can be set.

cue . startTime [ = value ]

Returns the text track cue start time, in seconds.

Can be set.

cue . endTime [ = value ]

Returns the text track cue end time, in seconds.

Can be set.

cue . pauseOnExit [ = value ]

Returns true if the text track cue pause-on-exit flag is set, false otherwise.

Can be set.

The track attribute, on getting, must return the TextTrack object of the text track in whose list of cues the text track cue that the TextTrackCue object represents finds itself, if any; or null otherwise.

The id attribute, on getting, must return the text track cue identifier of the text track cue that the TextTrackCue object represents. On setting, the text track cue identifier must be set to the new value.

The startTime attribute, on getting, must return the text track cue start time of the text track cue that the TextTrackCue object represents, in seconds. On setting, the text track cue start time must be set to the new value, interpreted in seconds; then, if the TextTrackCue object's text track cue is in a text track's list of cues, and that text track is in a media element's list of text tracks, and the media element's show poster flag is not set, then run the time marches on steps for that media element.

The endTime attribute, on getting, must return the text track cue end time of the text track cue that the TextTrackCue object represents, in seconds. On setting, the text track cue end time must be set to the new value, interpreted in seconds; then, if the TextTrackCue object's text track cue is in a text track's list of cues, and that text track is in a media element's list of text tracks, and the media element's show poster flag is not set, then run the time marches on steps for that media element.

The pauseOnExit attribute, on getting, must return true if the text track cue pause-on-exit flag of the text track cue that the TextTrackCue object represents is set; or false otherwise. On setting, the text track cue pause-on-exit flag must be set if the new value is true, and must be unset otherwise.

4.7.10.12.6 Text tracks exposing in-band metadata

Media resources often contain one or more media-resource-specific text tracks containing data that browsers don't render, but want to expose to script to allow being dealt with.

If the browser is unable to identify a TextTrackCue interface that is more appropriate to expose the data in the cues of a media-resource-specific text track, the DataCue object is used. [INBANDTRACKS]

[Constructor(double startTime, double endTime, ArrayBuffer data)]
   interface DataCue : TextTrackCue {
               attribute ArrayBuffer data;
};
cue = new DataCue( [ startTime, endTime, data ] )

Returns a new DataCue object, for use with the addCue() method.

The startTime argument sets the text track cue start time.

The endTime argument sets the text track cue end time.

The data argument is copied as the text track cue data.

cue . data [ = value ]

Returns the text track cue data in raw unparsed form.

Can be set.

The data attribute, on getting, must return the raw text track cue data of the text track cue that the TextTrackCue object represents. On setting, the text track cue data must be set to the new value.

The UA will use DataCue to expose only text track cue objects that belong to a text track that has a text track kind of metadata.

DataCue has a constructor to allow script to create DataCue objects in cases where generic metadata needs to be managed for a text track.

The rules for updating the text track rendering for a DataCue simply state that there is no rendering, even when the cues are in showing mode and the text track kind is one of subtitles or captions or descriptions or chapters.

4.7.10.12.7 Text tracks describing chapters

Chapters are segments of a media resource with a given title. Chapters can be nested, in the same way that sections in a document outline can have subsections.

Each text track cue in a text track being used for describing chapters has three key features: the text track cue start time, giving the start time of the chapter, the text track cue end time, giving the end time of the chapter, and the text track cue data giving the chapter title.

The rules for constructing the chapter tree from a text track are as follows. They produce a potentially nested list of chapters, each of which have a start time, end time, title, and a list of nested chapters. This algorithm discards cues that do not correctly nest within each other, or that are out of order.

  1. Let list be a copy of the list of cues of the text track being processed.

  2. Remove from list any text track cue whose text track cue end time is before its text track cue start time.

  3. Let output be an empty list of chapters, where a chapter is a record consisting of a start time, an end time, a title, and a (potentially empty) list of nested chapters. For the purpose of this algorithm, each chapter also has a parent chapter.

  4. Let current chapter be a stand-in chapter whose start time is negative infinity, whose end time is positive infinity, and whose list of nested chapters is output. (This is just used to make the algorithm easier to describe.)

  5. Loop: If list is empty, jump to the step labeled end.

  6. Let current cue be the first cue in list, and then remove it from list.

  7. If current cue's text track cue start time is less than the start time of current chapter, then return to the step labeled loop.

  8. While current cue's text track cue start time is greater than or equal to current chapter's end time, let current chapter be current chapter's parent chapter.

  9. If current cue's text track cue end time is greater than the end time of current chapter, then return to the step labeled loop.

  10. Create a new chapter new chapter, whose start time is current cue's text track cue start time, whose end time is current cue's text track cue end time, whose title is current cue's text track cue data interpreted according to its rules for rendering the cue in isolation, and whose list of nested chapters is empty.

    For WebVTT, the rules for rendering the cue in isolation are the rules for interpreting WebVTT cue text. [WEBVTT]

  11. Append new chapter to current chapter's list of nested chapters, and let current chapter be new chapter's parent.

  12. Let current chapter be new chapter.

  13. Return to the step labeled loop.

  14. End: Return output.

The following snippet of a WebVTT file shows how nested chapters can be marked up. The file describes three 50-minute chapters, "Astrophysics", "Computational Physics", and "General Relativity". The first has three subchapters, the second has four, and the third has two. [WEBVTT]

WEBVTT

00:00:00.000 --> 00:50:00.000
Astrophysics

00:00:00.000 --> 00:10:00.000
Introduction to Astrophysics

00:10:00.000 --> 00:45:00.000
The Solar System

00:00:00.000 --> 00:10:00.000
Coursework Description

00:50:00.000 --> 01:40:00.000
Computational Physics

00:50:00.000 --> 00:55:00.000
Introduction to Programming

00:55:00.000 --> 01:30:00.000
Data Structures

01:30:00.000 --> 01:35:00.000
Answers to Last Exam

01:35:00.000 --> 01:40:00.000
Coursework Description

01:40:00.000 --> 02:30:00.000
General Relativity

01:40:00.000 --> 02:00:00.000
Tensor Algebra

02:00:00.000 --> 02:30:00.000
The General Relativistic Field Equations
4.7.10.12.8 Event handlers for objects of the text track APIs

The following are the event handlers that (and their corresponding event handler event types) must be supported, as event handler IDL attributes, by all objects implementing the TextTrackList interface:

Event handler Event handler event type
onchange change
onaddtrack addtrack
onremovetrack removetrack

The following are the event handlers that (and their corresponding event handler event types) must be supported, as event handler IDL attributes, by all objects implementing the TextTrack interface:

Event handler Event handler event type
oncuechange cuechange

The following are the event handlers that (and their corresponding event handler event types) must be supported, as event handler IDL attributes, by all objects implementing the TextTrackCue interface:

Event handler Event handler event type
onenter enter
onexit exit
4.7.10.12.9 Best practices for metadata text tracks

This section is non-normative.

Text tracks can be used for storing data relating to the media data, for interactive or augmented views.

For example, a page showing a sports broadcast could include information about the current score. Suppose a robotics competition was being streamed live. The image could be overlayed with the scores, as follows:

In order to make the score display render correctly whenever the user seeks to an arbitrary point in the video, the metadata text track cues need to be as long as is appropriate for the score. For example, in the frame above, there would be maybe one cue that lasts the length of the match that gives the match number, one cue that lasts until the blue alliance's score changes, and one cue that lasts until the red alliance's score changes. If the video is just a stream of the live event, the time in the bottom right would presumably be automatically derived from the current video time, rather than based on a cue. However, if the video was just the highlights, then that might be given in cues also.

The following shows what fragments of this could look like in a WebVTT file:

WEBVTT

...

05:10:00.000 --> 05:12:15.000
matchtype:qual
matchnumber:37

...

05:11:02.251 --> 05:11:17.198
red:78

05:11:03.672 --> 05:11:54.198
blue:66

05:11:17.198 --> 05:11:25.912
red:80

05:11:25.912 --> 05:11:26.522
red:83

05:11:26.522 --> 05:11:26.982
red:86

05:11:26.982 --> 05:11:27.499
red:89

...

The key here is to notice that the information is given in cues that span the length of time to which the relevant event applies. If, instead, the scores were given as zero-length (or very brief, nearly zero-length) cues when the score changes, for example saying "red+2" at 05:11:17.198, "red+3" at 05:11:25.912, etc, problems arise: primarily, seeking is much harder to implement, as the script has to walk the entire list of cues to make sure that no notifications have been missed; but also, if the cues are short it's possible the script will never see that they are active unless it listens to them specifically.

When using cues in this manner, authors are encouraged to use the cuechange event to update the current annotations. (In particular, using the timeupdate event would be less appropriate as it would require doing work even when the cues haven't changed, and, more importantly, would introduce a higher latency between when the metatata cues become active and when the display is updated, since timeupdate events are rate-limited.)

4.7.10.13 User interface

The controls attribute is a boolean attribute. If present, it indicates that the author has not provided a scripted controller and would like the user agent to provide its own set of controls.

If the attribute is present, or if scripting is disabled for the media element, then the user agent should expose a user interface to the user. This user interface should include features to begin playback, pause playback, seek to an arbitrary position in the content (if the content supports arbitrary seeking), change the volume, change the display of closed captions or embedded sign-language tracks, select different audio tracks or turn on audio descriptions, and show the media content in manners more suitable to the user (e.g. full-screen video or in an independent resizable window). Other controls may also be made available.

If the media element has a current media controller, then the user agent should expose audio tracks from all the slaved media elements (although avoiding duplicates if the same media resource is being used several times). If a media resource's audio track exposed in this way has no known name, and it is the only audio track for a particular media element, the user agent should use the element's title attribute, if any, as the name (or as part of the name) of that track.

Even when the attribute is absent, however, user agents may provide controls to affect playback of the media resource (e.g. play, pause, seeking, and volume controls), but such features should not interfere with the page's normal rendering. For example, such features could be exposed in the media element's context menu. The user agent may implement this simply by exposing a user interface to the user as described above (as if the controls attribute was present).

If the user agent exposes a user interface to the user by displaying controls over the media element, then the user agent should suppress any user interaction events while the user agent is interacting with this interface. (For example, if the user clicks on a video's playback control, mousedown events and so forth would not simultaneously be fired at elements on the page.)

Where possible (specifically, for starting, stopping, pausing, and unpausing playback, for seeking, for changing the rate of playback, for fast-forwarding or rewinding, for listing, enabling, and disabling text tracks, and for muting or changing the volume of the audio), user interface features exposed by the user agent must be implemented in terms of the DOM API described above, so that, e.g., all the same events fire.

When a media element has a current media controller, the user agent's user interface for pausing and unpausing playback, for seeking, for changing the rate of playback, for fast-forwarding or rewinding, and for muting or changing the volume of audio of the entire group must be implemented in terms of the MediaController API exposed on that current media controller. When a media element has a current media controller, and all the slaved media elements of that MediaController are paused, the user agent should also unpause all the slaved media elements when the user invokes a user agent interface control for beginning playback.

The "play" function in the user agent's interface must set the playbackRate attribute to the value of the defaultPlaybackRate attribute before invoking the play() method. When a media element has a current media controller, the attributes and method with those names on that MediaController object must be used. Otherwise, the attributes and method with those names on the media element itself must be used.

Features such as fast-forward or rewind must be implemented by only changing the playbackRate attribute (and not the defaultPlaybackRate attribute). Again, when a media element has a current media controller, the attributes with those names on that MediaController object must be used; otherwise, the attributes with those names on the media element itself must be used.

When a media element has a current media controller, seeking must be implemented in terms of the currentTime attribute on that MediaController object. Otherwise, the user agent must directly seek to the requested position in the media element's media timeline. For media resources where seeking to an arbitrary position would be slow, user agents are encouraged to use the approximate-for-speed flag when seeking in response to the user manipulating an approximate position interface such as a seek bar.

When a media element has a current media controller, user agents may additionally provide the user with controls that directly manipulate an individual media element without affecting the MediaController, but such features are considered relatively advanced and unlikely to be useful to most users.

The activation behavior of a media element that is exposing a user interface to the user must be to run the following steps:

  1. If the media element has a current media controller, and that current media controller is a restrained media controller, then invoke the play() method of the MediaController.

  2. Otherwise, if the media element has a current media controller, and that current media controller is a paused media controller, then invoke the unpause() method of the MediaController.

  3. Otherwise, if the media element has a current media controller, then that current media controller is a playing media controller; invoke the pause() method of the MediaController.

  4. Otherwise, the media element has no current media controller; if the media element's paused attribute is true, then invoke the play() method on the media element.

  5. Otherwise, the media element has no current media controller, and the media element's paused attribute is false; invoke the pause() method on the media element.

For the purposes of listing chapters in the media resource, only text tracks in the media element's list of text tracks that are showing and whose text track kind is chapters should be used. Such tracks must be interpreted according to the rules for constructing the chapter tree from a text track. When seeking in response to a user maniplating a chapter selection interface, user agents should not use the approximate-for-speed flag.

The controls IDL attribute must reflect the content attribute of the same name.


media . volume [ = value ]

Returns the current playback volume, as a number in the range 0.0 to 1.0, where 0.0 is the quietest and 1.0 the loudest.

Can be set, to change the volume.

Throws an IndexSizeError exception if the new value is not in the range 0.0 .. 1.0.

media . muted [ = value ]

Returns true if audio is muted, overriding the volume attribute, and false if the volume attribute is being honored.

Can be set, to change whether the audio is muted or not.

A media element has a playback volume, which is a fraction in the range 0.0 (silent) to 1.0 (loudest). Initially, the volume should be 1.0, but user agents may remember the last set value across sessions, on a per-site basis or otherwise, so the volume may start at other values.

The volume IDL attribute must return the playback volume of any audio portions of the media element. On setting, if the new value is in the range 0.0 to 1.0 inclusive, the media element's playback volume must be set to the new value. If the new value is outside the range 0.0 to 1.0 inclusive, then, on setting, an IndexSizeError exception must be thrown instead.

A media element can also be muted. If anything is muting the element, then it is muted. (For example, when the direction of playback is backwards, the element is muted.)

The muted IDL attribute must return the value to which it was last set. When a media element is created, if the element has a muted content attribute specified, then the muted IDL attribute should be set to true; otherwise, the user agents may set the value to the user's preferred value (e.g. remembering the last set value across sessions, on a per-site basis or otherwise). While the muted IDL attribute is set to true, the media element must be muted.

Whenever either of the values that would be returned by the volume and muted IDL attributes change, the user agent must queue a task to fire a simple event named volumechange at the media element.

An element's effective media volume is determined as follows:

  1. If the user has indicated that the user agent is to override the volume of the element, then the element's effective media volume is the volume desired by the user. Abort these steps.

  2. If the element's audio output is muted, the element's effective media volume is zero. Abort these steps.

  3. If the element has a current media controller and that MediaController object's media controller mute override is true, the element's effective media volume is zero. Abort these steps.

  4. Let volume be the playback volume of the audio portions of the media element, in range 0.0 (silent) to 1.0 (loudest).

  5. If the element has a current media controller, multiply volume by that MediaController object's media controller volume multiplier. (The media controller volume multiplier is in the range 0.0 to 1.0, so this can only reduce the value.)

  6. The element's effective media volume is volume, interpreted relative to the range 0.0 to 1.0, with 0.0 being silent, and 1.0 being the loudest setting, values in between increasing in loudness. The range need not be linear. The loudest setting may be lower than the system's loudest possible setting; for example the user could have set a maximum volume.

The muted content attribute on media elements is a boolean attribute that controls the default state of the audio output of the media resource, potentially overriding user preferences.

The defaultMuted IDL attribute must reflect the muted content attribute.

This attribute has no dynamic effect (it only controls the default state of the element).

This video (an advertisement) autoplays, but to avoid annoying users, it does so without sound, and allows the user to turn the sound on.

<video src="adverts.cgi?kind=video" controls autoplay loop muted></video>
4.7.10.14 Time ranges

Objects implementing the TimeRanges interface represent a list of ranges (periods) of time.

interface TimeRanges {
  readonly attribute unsigned long length;
  double start(unsigned long index);
  double end(unsigned long index);
};
media . length

Returns the number of ranges in the object.

time = media . start(index)

Returns the time for the start of the range with the given index.

Throws an IndexSizeError exception if the index is out of range.

time = media . end(index)

Returns the time for the end of the range with the given index.

Throws an IndexSizeError exception if the index is out of range.

The length IDL attribute must return the number of ranges represented by the object.

The start(index) method must return the position of the start of the indexth range represented by the object, in seconds measured from the start of the timeline that the object covers.

The end(index) method must return the position of the end of the indexth range represented by the object, in seconds measured from the start of the timeline that the object covers.

These methods must throw IndexSizeError exceptions if called with an index argument greater than or equal to the number of ranges represented by the object.

When a TimeRanges object is said to be a normalised TimeRanges object, the ranges it represents must obey the following criteria:

In other words, the ranges in such an object are ordered, don't overlap, aren't empty, and don't touch (adjacent ranges are folded into one bigger range).

Ranges in a TimeRanges object must be inclusive.

Thus, the end of a range would be equal to the start of a following adjacent (touching but not overlapping) range. Similarly, a range covering a whole timeline anchored at zero would have a start equal to zero and an end equal to the duration of the timeline.

The timelines used by the objects returned by the buffered, seekable and played IDL attributes of media elements must be that element's media timeline.

4.7.10.15 The TrackEvent interface
[Constructor(DOMString type, optional TrackEventInit eventInitDict)]
interface TrackEvent : Event {
  readonly attribute (VideoTrack or AudioTrack or TextTrack) track;
};

dictionary TrackEventInit : EventInit {
  (VideoTrack or AudioTrack or TextTrack) track;
};
event . track

Returns the track object (TextTrack, AudioTrack, or VideoTrack) to which the event relates.

The track attribute must return the value it was initialised to. When the object is created, this attribute must be initialised to null. It represents the context information for the event.

4.7.10.16 Event summary

This section is non-normative.

The following events fire on media elements as part of the processing model described above:

Event name Interface Fired when... Preconditions
loadstart Event The user agent begins looking for media data, as part of the resource selection algorithm. networkState equals NETWORK_LOADING
progress Event The user agent is fetching media data. networkState equals NETWORK_LOADING
suspend Event The user agent is intentionally not currently fetching media data. networkState equals NETWORK_IDLE
abort Event The user agent stops fetching the media data before it is completely downloaded, but not due to an error. error is an object with the code MEDIA_ERR_ABORTED. networkState equals either NETWORK_EMPTY or NETWORK_IDLE, depending on when the download was aborted.
error Event An error occurs while fetching the media data. error is an object with the code MEDIA_ERR_NETWORK or higher. networkState equals either NETWORK_EMPTY or NETWORK_IDLE, depending on when the download was aborted.
emptied Event A media element whose networkState was previously not in the NETWORK_EMPTY state has just switched to that state (either because of a fatal error during load that's about to be reported, or because the load() method was invoked while the resource selection algorithm was already running). networkState is NETWORK_EMPTY; all the IDL attributes are in their initial states.
stalled Event The user agent is trying to fetch media data, but data is unexpectedly not forthcoming. networkState is NETWORK_LOADING.
loadedmetadata Event The user agent has just determined the duration and dimensions of the media resource and the text tracks are ready. readyState is newly equal to HAVE_METADATA or greater for the first time.
loadeddata Event The user agent can render the media data at the current playback position for the first time. readyState newly increased to HAVE_CURRENT_DATA or greater for the first time.
canplay Event The user agent can resume playback of the media data, but estimates that if playback were to be started now, the media resource could not be rendered at the current playback rate up to its end without having to stop for further buffering of content. readyState newly increased to HAVE_FUTURE_DATA or greater.
canplaythrough Event The user agent estimates that if playback were to be started now, the media resource could be rendered at the current playback rate all the way to its end without having to stop for further buffering. readyState is newly equal to HAVE_ENOUGH_DATA.
playing Event Playback is ready to start after having been paused or delayed due to lack of media data. readyState is newly equal to or greater than HAVE_FUTURE_DATA and paused is false, or paused is newly false and readyState is equal to or greater than HAVE_FUTURE_DATA. Even if this event fires, the element might still not be potentially playing, e.g. if the element is blocked on its media controller (e.g. because the current media controller is paused, or another slaved media element is stalled somehow, or because the media resource has no data corresponding to the media controller position), or the element is paused for user interaction or paused for in-band content.
waiting Event Playback has stopped because the next frame is not available, but the user agent expects that frame to become available in due course. readyState is equal to or less than HAVE_CURRENT_DATA, and paused is false. Either seeking is true, or the current playback position is not contained in any of the ranges in buffered. It is possible for playback to stop for other reasons without paused being false, but those reasons do not fire this event (and when those situations resolve, a separate playing event is not fired either): e.g. the element is newly blocked on its media controller, or playback ended, or playback stopped due to errors, or the element has paused for user interaction or paused for in-band content.
seeking Event The seeking IDL attribute changed to true, and the user agent has started seeking to a new position.
seeked Event The seeking IDL attribute changed to false after the current playback position was changed.
ended Event Playback has stopped because the end of the media resource was reached. currentTime equals the end of the media resource; ended is true.
durationchange Event The duration attribute has just been updated.
timeupdate Event The current playback position changed as part of normal playback or in an especially interesting way, for example discontinuously.
play Event The element is no longer paused. Fired after the play() method has returned, or when the autoplay attribute has caused playback to begin. paused is newly false.
pause Event The element has been paused. Fired after the pause() method has returned. paused is newly true.
ratechange Event Either the defaultPlaybackRate or the playbackRate attribute has just been updated.
resize Event One or both of the videoWidth and videoHeight attributes have just been updated. Media element is a video element; readyState is not HAVE_NOTHING
volumechange Event Either the volume attribute or the muted attribute has changed. Fired after the relevant attribute's setter has returned.

The following events fire on MediaController objects:

Event name Interface Fired when...
emptied Event All the slaved media elements newly have readyState set to HAVE_NOTHING or greater, or there are no longer any slaved media elements.
loadedmetadata Event All the slaved media elements newly have readyState set to HAVE_METADATA or greater.
loadeddata Event All the slaved media elements newly have readyState set to HAVE_CURRENT_DATA or greater.
canplay Event All the slaved media elements newly have readyState set to HAVE_FUTURE_DATA or greater.
canplaythrough Event All the slaved media elements newly have readyState set to HAVE_ENOUGH_DATA or greater.
playing Event The MediaController is no longer a blocked media controller.
waiting Event The MediaController is now a blocked media controller.
ended Event All the slaved media elements have newly ended playback; the MediaController has reached the end of all the slaved media elements.
durationchange Event The duration attribute has just been updated.
timeupdate Event The media controller position changed.
play Event The paused attribute is newly false.
pause Event The paused attribute is newly true.
ratechange Event Either the defaultPlaybackRate attribute or the playbackRate attribute has just been updated.
volumechange Event Either the volume attribute or the muted attribute has just been updated.

The following events fire on AudioTrackList, VideoTrackList, and TextTrackList objects:

Event name Interface Fired when...
change Event One or more tracks in the track list have been enabled or disabled.
addtrack TrackEvent A track has been added to the track list.
removetrack TrackEvent A track has been removed from the track list.

The following event fires on TextTrack objects and track elements:

Event name Interface Fired when...
cuechange Event One or more cues in the track have become active or stopped being active.

The following events fire on TextTrackCue objects:

Event name Interface Fired when...
enter Event The cue has become active.
exit Event The cue has stopped being active.
4.7.10.17 Security and privacy considerations

The main security and privacy implications of the video and audio elements come from the ability to embed media cross-origin. There are two directions that threats can flow: from hostile content to a victim page, and from a hostile page to victim content.


If a victim page embeds hostile content, the threat is that the content might contain scripted code that attempts to interact with the Document that embeds the content. To avoid this, user agents must ensure that there is no access from the content to the embedding page. In the case of media content that uses DOM concepts, the embedded content must be treated as if it was in its own unrelated top-level browsing context.

For instance, if an SVG animation was embedded in a video element, the user agent would not give it access to the DOM of the outer page. From the perspective of scripts in the SVG resource, the SVG file would appear to be in a lone top-level browsing context with no parent.


If a hostile page embeds victim content, the threat is that the embedding page could obtain information from the content that it would not otherwise have access to. The API does expose some information: the existence of the media, its type, its duration, its size, and the performance characteristics of its host. Such information is already potentially problematic, but in practice the same information can more or less be obtained using the img element, and so it has been deemed acceptable.

However, significantly more sensitive information could be obtained if the user agent further exposes metadata within the content such as subtitles or chapter titles. Such information is therefore only exposed if the video resource passes a CORS resource sharing check. The crossorigin attribute allows authors to control how this check is performed. [FETCH]

Without this restriction, an attacker could trick a user running within a corporate network into visiting a site that attempts to load a video from a previously leaked location on the corporation's intranet. If such a video included confidential plans for a new product, then being able to read the subtitles would present a serious confidentiality breach.

4.7.10.18 Best practices for authors using media elements

This section is non-normative.

Playing audio and video resources on small devices such as set-top boxes or mobile phones is often constrained by limited hardware resources in the device. For example, a device might only support three simultaneous videos. For this reason, it is a good practice to release resources held by media elements when they are done playing, either by being very careful about removing all references to the element and allowing it to be garbage collected, or, even better, by removing the element's src attribute and any source element descendants, and invoking the element's load() method.

Similarly, when the playback rate is not exactly 1.0, hardware, software, or format limitations can cause video frames to be dropped and audio to be choppy or muted.

4.7.10.19 Best practices for implementors of media elements

This section is non-normative.

How accurately various aspects of the media element API are implemented is considered a quality-of-implementation issue.

For example, when implementing the buffered attribute, how precise an implementation reports the ranges that have been buffered depends on how carefully the user agent inspects the data. Since the API reports ranges as times, but the data is obtained in byte streams, a user agent receiving a variable-bit-rate stream might only be able to determine precise times by actually decoding all of the data. User agents aren't required to do this, however; they can instead return estimates (e.g. based on the average bit rate seen so far) which get revised as more information becomes available.

As a general rule, user agents are urged to be conservative rather than optimistic. For example, it would be bad to report that everything had been buffered when it had not.

Another quality-of-implementation issue would be playing a video backwards when the codec is designed only for forward playback (e.g. there aren't many key frames, and they are far apart, and the intervening frames only have deltas from the previous frame). User agents could do a poor job, e.g. only showing key frames; however, better implementations would do more work and thus do a better job, e.g. actually decoding parts of the video forwards, storing the complete frames, and then playing the frames backwards.

Similarly, while implementations are allowed to drop buffered data at any time (there is no requirement that a user agent keep all the media data obtained for the lifetime of the media element), it is again a quality of implementation issue: user agents with sufficient resources to keep all the data around are encouraged to do so, as this allows for a better user experience. For example, if the user is watching a live stream, a user agent could allow the user only to view the live video; however, a better user agent would buffer everything and allow the user to seek through the earlier material, pause it, play it forwards and backwards, etc.

When multiple tracks are synchronised with a MediaController, it is possible for scripts to add and remove media elements from the MediaController's list of slaved media elements, even while these tracks are playing. How smoothly the media plays back in such situations is another quality-of-implementation issue.


When a media element that is paused is removed from a document and not reinserted before the next time the event loop reaches step 1, implementations that are resource constrained are encouraged to take that opportunity to release all hardware resources (like video planes, networking resources, and data buffers) used by the media element. (User agents still have to keep track of the playback position and so forth, though, in case playback is later restarted.)

4.7.11 The map element

Categories:
Flow content.
Phrasing content.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Transparent.
Content attributes:
Global attributes
name - Name of image map to reference from the usemap attribute
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes
DOM interface:
interface HTMLMapElement : HTMLElement {
           attribute DOMString name;
  readonly attribute HTMLCollection areas;
  readonly attribute HTMLCollection images;
};

The map element, in conjunction with an img element and any area element descendants, defines an image map. The element represents its children.

The name attribute gives the map a name so that it can be referenced. The attribute must be present and must have a non-empty value with no space characters. The value of the name attribute must not be a compatibility-caseless match for the value of the name attribute of another map element in the same document. If the id attribute is also specified, both attributes must have the same value.

map . areas

Returns an HTMLCollection of the area elements in the map.

map . images

Returns an HTMLCollection of the img and object elements that use the map.

The areas attribute must return an HTMLCollection rooted at the map element, whose filter matches only area elements.

The images attribute must return an HTMLCollection rooted at the Document node, whose filter matches only img and object elements that are associated with this map element according to the image map processing model.

The IDL attribute name must reflect the content attribute of the same name.

Image maps can be defined in conjunction with other content on the page, to ease maintenance. This example is of a page with an image map at the top of the page and a corresponding set of text links at the bottom.

<!DOCTYPE HTML>
<TITLE>Babies™: Toys</TITLE>
<HEADER>
 <H1>Toys</H1>
 <IMG SRC="/images/menu.gif"
      ALT="Babies™ navigation menu. Select a department to go to its page."
      USEMAP="#NAV">
</HEADER>
 ...
<FOOTER>
 <MAP NAME="NAV">
  <P>
   <A HREF="/clothes/">Clothes</A>
   <AREA ALT="Clothes" COORDS="0,0,100,50" HREF="/clothes/"> |
   <A HREF="/toys/">Toys</A>
   <AREA ALT="Toys" COORDS="100,0,200,50" HREF="/toys/"> |
   <A HREF="/food/">Food</A>
   <AREA ALT="Food" COORDS="200,0,300,50" HREF="/food/"> |
   <A HREF="/books/">Books</A>
   <AREA ALT="Books" COORDS="300,0,400,50" HREF="/books/">
 </MAP>
</FOOTER>

4.7.12 The area element

Categories:
Flow content.
Phrasing content.
Contexts in which this element can be used:
Where phrasing content is expected, but only if there is a map element ancestor or a template element ancestor.
Content model:
Empty.
Content attributes:
Global attributes
alt - Replacement text for use when images are not available
coords - Coordinates for the shape to be created in an image map
download - Whether to download the resource instead of navigating to it, and its file name if so
href - Address of the hyperlink
hreflang - Language of the linked resource
rel Relationship between the document containing the hyperlink and the destination resource
shape - The kind of shape to be created in an image map
target - Browsing context for hyperlink navigation
type - Hint for the type of the referenced resource
Tag omission in text/html:
No end tag
Allowed ARIA role attribute values:
link role (default - do not set).
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLAreaElement : HTMLElement {
           attribute DOMString alt;
           attribute DOMString coords;
           attribute DOMString shape;
           attribute DOMString target;
           attribute DOMString download;

           attribute DOMString rel;
  readonly attribute DOMTokenList relList;
           attribute DOMString hreflang;
           attribute DOMString type;
};
HTMLAreaElement implements URLUtils;

The area element represents either a hyperlink with some text and a corresponding area on an image map, or a dead area on an image map.

An area element with a parent node must have a map element ancestor or a template element ancestor.

If the area element has an href attribute, then the area element represents a hyperlink. In this case, the alt attribute must be present. It specifies the text of the hyperlink. Its value must be text that, when presented with the texts specified for the other hyperlinks of the image map, and with the alternative text of the image, but without the image itself, provides the user with the same kind of choice as the hyperlink would when used without its text but with its shape applied to the image. The alt attribute may be left blank if there is another area element in the same image map that points to the same resource and has a non-blank alt attribute.

If the area element has no href attribute, then the area represented by the element cannot be selected, and the alt attribute must be omitted.

In both cases, the shape and coords attributes specify the area.

The shape attribute is an enumerated attribute. The following table lists the keywords defined for this attribute. The states given in the first cell of the rows with keywords give the states to which those keywords map. Some of the keywords are non-conforming, as noted in the last column.

State Keywords Notes
Circle state circle
circ Non-conforming
Default state default
Polygon state poly
polygon Non-conforming
Rectangle state rect
rectangle Non-conforming

The attribute may be omitted. The missing value default is the rectangle state.

The coords attribute must, if specified, contain a valid list of integers. This attribute gives the coordinates for the shape described by the shape attribute. The processing for this attribute is described as part of the image map processing model.

In the circle state, area elements must have a coords attribute present, with three integers, the last of which must be non-negative. The first integer must be the distance in CSS pixels from the left edge of the image to the center of the circle, the second integer must be the distance in CSS pixels from the top edge of the image to the center of the circle, and the third integer must be the radius of the circle, again in CSS pixels.

In the default state state, area elements must not have a coords attribute. (The area is the whole image.)

In the polygon state, area elements must have a coords attribute with at least six integers, and the number of integers must be even. Each pair of integers must represent a coordinate given as the distances from the left and the top of the image in CSS pixels respectively, and all the coordinates together must represent the points of the polygon, in order.

In the rectangle state, area elements must have a coords attribute with exactly four integers, the first of which must be less than the third, and the second of which must be less than the fourth. The four points must represent, respectively, the distance from the left edge of the image to the left side of the rectangle, the distance from the top edge to the top side, the distance from the left edge to the right side, and the distance from the top edge to the bottom side, all in CSS pixels.

When user agents allow users to follow hyperlinks or download hyperlinks created using the area element, as described in the next section, the href, target, download, and attributes decide how the link is followed. The rel, hreflang, and type attributes may be used to indicate to the user the likely nature of the target resource before the user follows the link.

The target, download, rel, hreflang, and type attributes must be omitted if the href attribute is not present.

If the itemprop attribute is specified on an area element, then the href attribute must also be specified.

The activation behavior of area elements is to run the following steps:

  1. If the area element's Document is not fully active, then abort these steps.

  2. If the area element has a download attribute and the algorithm is not allowed to show a popup, or the element's target attribute is present and applying the rules for choosing a browsing context given a browsing context name, using the value of the target attribute as the browsing context name, would result in there not being a chosen browsing context, then run these substeps:

    1. If there is an entry settings object, throw an InvalidAccessError exception.

    2. Abort these steps without following the hyperlink.

  3. Otherwise, the user agent must follow the hyperlink or download the hyperlink created by the area element, if any, and as determined by the download attribute and any expressed user preference.

The IDL attributes alt, coords, target, download, rel, hreflang, and type, each must reflect the respective content attributes of the same name.

The IDL attribute shape must reflect the shape content attribute.

The IDL attribute relList must reflect the rel content attribute.


The area element also supports the URLUtils interface. [URL]

When the element is created, and whenever the element's href content attribute is set, changed, or removed, the user agent must invoke the element's URLUtils interface's set the input algorithm with the value of the href content attribute, if any, or the empty string otherwise, as the given value.

The element's URLUtils interface's get the base algorithm must simply return the element's base URL.

The element's URLUtils interface's query encoding is the document's character encoding.

When the element's URLUtils interface invokes its update steps with a string value, the user agent must set the element's href content attribute to the string value.

4.7.13 Image maps

4.7.13.1 Authoring

An image map allows geometric areas on an image to be associated with hyperlinks.

An image, in the form of an img element or an object element representing an image, may be associated with an image map (in the form of a map element) by specifying a usemap attribute on the img or object element. The usemap attribute, if specified, must be a valid hash-name reference to a map element.

Consider an image that looks as follows:

A line with four shapes in it, equally spaced: a red hollow box, a green circle, a blue triangle, and a yellow four-pointed star.

If we wanted just the colored areas to be clickable, we could do it as follows:

<p>
 Please select a shape:
 <img src="shapes.png" usemap="#shapes"
      alt="Four shapes are available: a red hollow box, a green circle, a blue triangle, and a yellow four-pointed star.">
 <map name="shapes">
  <area shape=rect coords="50,50,100,100"> <!-- the hole in the red box -->
  <area shape=rect coords="25,25,125,125" href="red.html" alt="Red box.">
  <area shape=circle coords="200,75,50" href="green.html" alt="Green circle.">
  <area shape=poly coords="325,25,262,125,388,125" href="blue.html" alt="Blue triangle.">
  <area shape=poly coords="450,25,435,60,400,75,435,90,450,125,465,90,500,75,465,60"
        href="yellow.html" alt="Yellow star.">
 </map>
</p>
4.7.13.2 Processing model

If an img element or an object element representing an image has a usemap attribute specified, user agents must process it as follows:

  1. First, rules for parsing a hash-name reference to a map element must be followed. This will return either an element (the map) or null.

  2. If that returned null, then abort these steps. The image is not associated with an image map after all.

  3. Otherwise, the user agent must collect all the area elements that are descendants of the map. Let those be the areas.

Having obtained the list of area elements that form the image map (the areas), interactive user agents must process the list in one of two ways.

If the user agent intends to show the text that the img element represents, then it must use the following steps.

In user agents that do not support images, or that have images disabled, object elements cannot represent images, and thus this section never applies (the fallback content is shown instead). The following steps therefore only apply to img elements.

  1. Remove all the area elements in areas that have no href attribute.

  2. Remove all the area elements in areas that have no alt attribute, or whose alt attribute's value is the empty string, if there is another area element in areas with the same value in the href attribute and with a non-empty alt attribute.

  3. Each remaining area element in areas represents a hyperlink. Those hyperlinks should all be made available to the user in a manner associated with the text of the img.

    In this context, user agents may represent area and img elements with no specified alt attributes, or whose alt attributes are the empty string or some other non-visible text, in a user-agent-defined fashion intended to indicate the lack of suitable author-provided text.

If the user agent intends to show the image and allow interaction with the image to select hyperlinks, then the image must be associated with a set of layered shapes, taken from the area elements in areas, in reverse tree order (so the last specified area element in the map is the bottom-most shape, and the first element in the map, in tree order, is the top-most shape).

Each area element in areas must be processed as follows to obtain a shape to layer onto the image:

  1. Find the state that the element's shape attribute represents.

  2. Use the rules for parsing a list of integers to parse the element's coords attribute, if it is present, and let the result be the coords list. If the attribute is absent, let the coords list be the empty list.

  3. If the number of items in the coords list is less than the minimum number given for the area element's current state, as per the following table, then the shape is empty; abort these steps.

    State Minimum number of items
    Circle state 3
    Default state 0
    Polygon state 6
    Rectangle state 4
  4. Check for excess items in the coords list as per the entry in the following list corresponding to the shape attribute's state:

    Circle state
    Drop any items in the list beyond the third.
    Default state
    Drop all items in the list.
    Polygon state
    Drop the last item if there's an odd number of items.
    Rectangle state
    Drop any items in the list beyond the fourth.
  5. If the shape attribute represents the rectangle state, and the first number in the list is numerically less than the third number in the list, then swap those two numbers around.

  6. If the shape attribute represents the rectangle state, and the second number in the list is numerically less than the fourth number in the list, then swap those two numbers around.

  7. If the shape attribute represents the circle state, and the third number in the list is less than or equal to zero, then the shape is empty; abort these steps.

  8. Now, the shape represented by the element is the one described for the entry in the list below corresponding to the state of the shape attribute:

    Circle state

    Let x be the first number in coords, y be the second number, and r be the third number.

    The shape is a circle whose center is x CSS pixels from the left edge of the image and y CSS pixels from the top edge of the image, and whose radius is r pixels.

    Default state

    The shape is a rectangle that exactly covers the entire image.

    Polygon state

    Let xi be the (2i)th entry in coords, and yi be the (2i+1)th entry in coords (the first entry in coords being the one with index 0).

    Let the coordinates be (xi, yi), interpreted in CSS pixels measured from the top left of the image, for all integer values of i from 0 to (N/2)-1, where N is the number of items in coords.

    The shape is a polygon whose vertices are given by the coordinates, and whose interior is established using the even-odd rule. [GRAPHICS]

    Rectangle state

    Let x1 be the first number in coords, y1 be the second number, x2 be the third number, and y2 be the fourth number.

    The shape is a rectangle whose top-left corner is given by the coordinate (x1, y1) and whose bottom right corner is given by the coordinate (x2, y2), those coordinates being interpreted as CSS pixels from the top left corner of the image.

    For historical reasons, the coordinates must be interpreted relative to the displayed image after any stretching caused by the CSS 'width' and 'height' properties (or, for non-CSS browsers, the image element's width and height attributes — CSS browsers map those attributes to the aforementioned CSS properties).

    Browser zoom features and transforms applied using CSS or SVG do not affect the coordinates.

Pointing device interaction with an image associated with a set of layered shapes per the above algorithm must result in the relevant user interaction events being first fired to the top-most shape covering the point that the pointing device indicated, if any, or to the image element itself, if there is no shape covering that point. User agents may also allow individual area elements representing hyperlinks to be selected and activated (e.g. using a keyboard).

Because a map element (and its area elements) can be associated with multiple img and object elements, it is possible for an area element to correspond to multiple focusable areas of the document.

Image maps are live; if the DOM is mutated, then the user agent must act as if it had rerun the algorithms for image maps.

4.7.14 MathML

The math element from the MathML namespace falls into the embedded content, phrasing content, and flow content categories for the purposes of the content models in this specification.

When the MathML annotation-xml element contains elements from the HTML namespace, such elements must all be flow content. [MATHML]

When the MathML token elements (mi, mo, mn, ms, and mtext) are descendants of HTML elements, they may contain phrasing content elements from the HTML namespace. [MATHML]

User agents must handle text other than inter-element whitespace found in MathML elements whose content models do not allow straight text by pretending for the purposes of MathML content models, layout, and rendering that that text is actually wrapped in an mtext element in the MathML namespace. (Such text is not, however, conforming.)

User agents must act as if any MathML element whose contents does not match the element's content model was replaced, for the purposes of MathML layout and rendering, by an merror element in the MathML namespace containing some appropriate error message.

To enable authors to use MathML tools that only accept MathML in its XML form, interactive HTML user agents are encouraged to provide a way to export any MathML fragment as an XML namespace-well-formed XML fragment.

The semantics of MathML elements are defined by the MathML specification and other applicable specifications. [MATHML]

Here is an example of the use of MathML in an HTML document:

<!DOCTYPE html>
<html>
 <head>
  <title>The quadratic formula</title>
 </head>
 <body>
  <h1>The quadratic formula</h1>
  <p>
   <math>
    <mi>x</mi>
    <mo>=</mo>
    <mfrac>
     <mrow>
      <mo form="prefix">−</mo> <mi>b</mi>
      <mo>±</mo>
      <msqrt>
       <msup> <mi>b</mi> <mn>2</mn> </msup>
       <mo>−</mo>
       <mn>4</mn> <mo>⁢</mo> <mi>a</mi> <mo>⁢</mo> <mi>c</mi>
      </msqrt>
     </mrow>
     <mrow>
      <mn>2</mn> <mo>⁢</mo> <mi>a</mi>
     </mrow>
    </mfrac>
   </math>
  </p>
 </body>
</html>

4.7.15 SVG

The svg element from the SVG namespace falls into the embedded content, phrasing content, and flow content categories for the purposes of the content models in this specification.

To enable authors to use SVG tools that only accept SVG in its XML form, interactive HTML user agents are encouraged to provide a way to export any SVG fragment as an XML namespace-well-formed XML fragment.

When the SVG foreignObject element contains elements from the HTML namespace, such elements must all be flow content. [SVG]

The content model for title elements in the SVG namespace inside HTML documents is phrasing content. (This further constrains the requirements given in the SVG specification.)

The semantics of SVG elements are defined by the SVG specification and other applicable specifications. [SVG]

4.7.16 Dimension attributes

Author requirements: The width and height attributes on img, iframe, embed, object, video, and, when their type attribute is in the Image Button state, input elements may be specified to give the dimensions of the visual content of the element (the width and height respectively, relative to the nominal direction of the output medium), in CSS pixels. The attributes, if specified, must have values that are valid non-negative integers.

The specified dimensions given may differ from the dimensions specified in the resource itself, since the resource may have a resolution that differs from the CSS pixel resolution. (On screens, CSS pixels have a resolution of 96ppi, but in general the CSS pixel resolution depends on the reading distance.) If both attributes are specified, then one of the following statements must be true:

The target ratio is the ratio of the intrinsic width to the intrinsic height in the resource. The specified width and specified height are the values of the width and height attributes respectively.

The two attributes must be omitted if the resource in question does not have both an intrinsic width and an intrinsic height.

If the two attributes are both zero, it indicates that the element is not intended for the user (e.g. it might be a part of a service to count page views).

The dimension attributes are not intended to be used to stretch the image.

User agent requirements: User agents are expected to use these attributes as hints for the rendering.

The width and height IDL attributes on the iframe, embed, object, and video elements must reflect the respective content attributes of the same name.

For iframe, embed, and object the IDL attributes are DOMString; for video the IDL attributes are unsigned long.

The corresponding IDL attributes for img and input elements are defined in those respective elements' sections, as they are slightly more specific to those elements' other behaviors.

Links are a conceptual construct, created by a, area, and link elements, that represent a connection between two resources, one of which is the current Document. There are two kinds of links in HTML:

Links to external resources

These are links to resources that are to be used to augment the current document, generally automatically processed by the user agent.

Hyperlinks

These are links to other resources that are generally exposed to the user by the user agent so that the user can cause the user agent to navigate to those resources, e.g. to visit them in a browser or download them.

For link elements with an href attribute and a rel attribute, links must be created for the keywords of the rel attribute, as defined for those keywords in the link types section.

Similarly, for a and area elements with an href attribute and a rel attribute, links must be created for the keywords of the rel attribute as defined for those keywords in the link types section. Unlike link elements, however, a and area element with an href attribute that either do not have a rel attribute, or whose rel attribute has no keywords that are defined as specifying hyperlinks, must also create a hyperlink. This implied hyperlink has no special meaning (it has no link type) beyond linking the element's document to the resource given by the element's href attribute.

A hyperlink can have one or more hyperlink annotations that modify the processing semantics of that hyperlink.

The href attribute on a and area elements must have a value that is a valid URL potentially surrounded by spaces.

The href attribute on a and area elements is not required; when those elements do not have href attributes they do not create hyperlinks.

The target attribute, if present, must be a valid browsing context name or keyword. It gives the name of the browsing context that will be used. User agents use this name when following hyperlinks.

When an a or area element's activation behavior is invoked, the user agent may allow the user to indicate a preference regarding whether the hyperlink is to be used for navigation or whether the resource it specifies is to be downloaded.

In the absence of a user preference, the default should be navigation if the element has no download attribute, and should be to download the specified resource if it does.

Whether determined by the user's preferences or via the presence or absence of the attribute, if the decision is to use the hyperlink for navigation then the user agent must follow the hyperlink, and if the decision is to use the hyperlink to download a resource, the user agent must download the hyperlink. These terms are defined in subsequent sections below.

The download attribute, if present, indicates that the author intends the hyperlink to be used for downloading a resource. The attribute may have a value; the value, if any, specifies the default file name that the author recommends for use in labeling the resource in a local file system. There are no restrictions on allowed values, but authors are cautioned that most file systems have limitations with regard to what punctuation is supported in file names, and user agents are likely to adjust file names accordingly.

The rel attribute on a and area elements controls what kinds of links the elements create. The attribute's value must be a set of space-separated tokens. The allowed keywords and their meanings are defined below.

The rel attribute has no default value. If the attribute is omitted or if none of the values in the attribute are recognised by the user agent, then the document has no particular relationship with the destination resource other than there being a hyperlink between the two.

The hreflang attribute on a and area elements that create hyperlinks, if present, gives the language of the linked resource. It is purely advisory. The value must be a valid BCP 47 language tag. [BCP47] User agents must not consider this attribute authoritative — upon fetching the resource, user agents must use only language information associated with the resource to determine its language, not metadata included in the link to the resource.

The type attribute, if present, gives the MIME type of the linked resource. It is purely advisory. The value must be a valid MIME type. User agents must not consider the type attribute authoritative — upon fetching the resource, user agents must not use metadata included in the link to the resource to determine its type.

When a user follows a hyperlink created by an element subject, the user agent must run the following steps:

  1. Let replace be false.

  2. Let source be the browsing context that contains the Document object with which subject in question is associated.

  3. If the user indicated a specific browsing context when following the hyperlink, or if the user agent is configured to follow hyperlinks by navigating a particular browsing context, then let target be that browsing context.

    Otherwise, if subject is an a or area element that has a target attribute, then let target be the browsing context that is chosen by applying the rules for choosing a browsing context given a browsing context name, using the value of the target attribute as the browsing context name. If these rules result in the creation of a new browsing context, set replace to true.

    Otherwise, if target is an a or area element with no target attribute, but the Document contains a base element with a target attribute, then let target be the browsing context that is chosen by applying the rules for choosing a browsing context given a browsing context name, using the value of the target attribute of the first such base element as the browsing context name. If these rules result in the creation of a new browsing context, set replace to true.

    Otherwise, let target be the browsing context that subject itself is in.

  4. Resolve the URL given by the href attribute of that element, relative to that element.

  5. If that is successful, let URL be the resulting absolute URL.

    Otherwise, if resolving the URL failed, the user agent may report the error to the user in a user-agent-specific manner, may queue a task to navigate the target browsing context to an error page to report the error, or may ignore the error and do nothing. In any case, the user agent must then abort these steps.

  6. In the case of server-side image maps, append the hyperlink suffix to URL.

  7. Queue a task to navigate the target browsing context to URL. If replace is true, the navigation must be performed with replacement enabled. The source browsing context must be source.

The task source for the tasks mentioned above is the DOM manipulation task source.

4.8.3 Downloading resources

In some cases, resources are intended for later use rather than immediate viewing. To indicate that a resource is intended to be downloaded for use later, rather than immediately used, the download attribute can be specified on the a or area element that creates the hyperlink to that resource.

The attribute can furthermore be given a value, to specify the file name that user agents are to use when storing the resource in a file system. This value can be overridden by the Content-Disposition HTTP header's filename parameters. [RFC6266]

In cross-origin situations, the download attribute has to be combined with the Content-Disposition HTTP header, specifically with the attachment disposition type, to avoid the user being warned of possibly nefarious activity. (This is to protect users from being made to download sensitive personal or confidential information without their full understanding.)


When a user downloads a hyperlink created by an element, the user agent must run the following steps:

  1. Resolve the URL given by the href attribute of that element, relative to that element.

  2. If resolving the URL fails, the user agent may report the error to the user in a user-agent-specific manner, may navigate to an error page to report the error, or may ignore the error and do nothing. In either case, the user agent must abort these steps.

  3. Otherwise, let URL be the resulting absolute URL.

  4. In the case of server-side image maps, append the hyperlink suffix to URL.

  5. Return to whatever algorithm invoked these steps and continue these steps asynchronously.

  6. Fetch URL and handle the resulting resource as a download.

When a user agent is to handle a resource obtained from a fetch algorithm as a download, it should provide the user with a way to save the resource for later use, if a resource is successfully obtained; or otherwise should report any problems downloading the file to the user.

If the user agent needs a file name for a resource being handled as a download, it should select one using the following algorithm.

This algorithm is intended to mitigate security dangers involved in downloading files from untrusted sites, and user agents are strongly urged to follow it.

  1. Let filename be the void value.

  2. If the resource has a Content-Disposition header, that header specifies the attachment disposition type, and the header includes file name information, then let filename have the value specified by the header, and jump to the step labeled sanitize below. [RFC6266]

  3. Let interface origin be the origin of the Document in which the download or navigate action resulting in the download was initiated, if any.

  4. Let resource origin be the origin of the URL of the resource being downloaded, unless that URL's scheme component is data, in which case let resource origin be the same as the interface origin, if any.

  5. If there is no interface origin, then let trusted operation be true. Otherwise, let trusted operation be true if resource origin is the same origin as interface origin, and false otherwise.

  6. If trusted operation is true and the resource has a Content-Disposition header and that header includes file name information, then let filename have the value specified by the header, and jump to the step labeled sanitize below. [RFC6266]

  7. If the download was not initiated from a hyperlink created by an a or area element, or if the element of the hyperlink from which it was initiated did not have a download attribute when the download was initiated, or if there was such an attribute but its value when the download was initiated was the empty string, then jump to the step labeled no proposed file name.

  8. Let proposed filename have the value of the download attribute of the element of the hyperlink that initiated the download at the time the download was initiated.

  9. If trusted operation is true, let filename have the value of proposed filename, and jump to the step labeled sanitize below.

  10. If the resource has a Content-Disposition header and that header specifies the attachment disposition type, let filename have the value of proposed filename, and jump to the step labeled sanitize below. [RFC6266]

  11. No proposed file name: If trusted operation is true, or if the user indicated a preference for having the resource in question downloaded, let filename have a value derived from the URL of the resource in a user-agent-defined manner, and jump to the step labeled sanitize below.

  12. Act in a user-agent-defined manner to safeguard the user from a potentially hostile cross-origin download. If the download is not to be aborted, then let filename be set to the user's preferred file name or to a file name selected by the user agent, and jump to the step labeled sanitize below.

    If the algorithm reaches this step, then a download was begun from a different origin than the resource being downloaded, and the origin did not mark the file as suitable for downloading, and the download was not initiated by the user. This could be because a download attribute was used to trigger the download, or because the resource in question is not of a type that the user agent supports.

    This could be dangerous, because, for instance, a hostile server could be trying to get a user to unknowingly download private information and then re-upload it to the hostile server, by tricking the user into thinking the data is from the hostile server.

    Thus, it is in the user's interests that the user be somehow notified that the resource in question comes from quite a different source, and to prevent confusion, any suggested file name from the potentially hostile interface origin should be ignored.

  13. Sanitize: Optionally, allow the user to influence filename. For example, a user agent could prompt the user for a file name, potentially providing the value of filename as determined above as a default value.

  14. Adjust filename to be suitable for the local file system.

    For example, this could involve removing characters that are not legal in file names, or trimming leading and trailing whitespace.

  15. If the platform conventions do not in any way use extensions to determine the types of file on the file system, then return filename as the file name and abort these steps.

  16. Let claimed type be the type given by the resource's Content-Type metadata, if any is known. Let named type be the type given by filename's extension, if any is known. For the purposes of this step, a type is a mapping of a MIME type to an extension.

  17. If named type is consistent with the user's preferences (e.g. because the value of filename was determined by prompting the user), then return filename as the file name and abort these steps.

  18. If claimed type and named type are the same type (i.e. the type given by the resource's Content-Type metadata is consistent with the type given by filename's extension), then return filename as the file name and abort these steps.

  19. If the claimed type is known, then alter filename to add an extension corresponding to claimed type.

    Otherwise, if named type is known to be potentially dangerous (e.g. it will be treated by the platform conventions as a native executable, shell script, HTML application, or executable-macro-capable document) then optionally alter filename to add a known-safe extension (e.g. ".txt").

    This last step would make it impossible to download executables, which might not be desirable. As always, implementors are forced to balance security and usability in this matter.

  20. Return filename as the file name.

For the purposes of this algorithm, a file extension consists of any part of the file name that platform conventions dictate will be used for identifying the type of the file. For example, many operating systems use the part of the file name following the last dot (".") in the file name to determine the type of the file, and from that the manner in which the file is to be opened or executed.

User agents should ignore any directory or path information provided by the resource itself, its URL, and any download attribute, in deciding where to store the resulting file in the user's file system.

4.8.4 Link types

The following table summarizes the link types that are defined by this specification. This table is non-normative; the actual definitions for the link types are given in the next few sections.

In this section, the term referenced document refers to the resource identified by the element representing the link, and the term current document refers to the resource within which the element representing the link finds itself.

To determine which link types apply to a link, a, or area element, the element's rel attribute must be split on spaces. The resulting tokens are the link types that apply to that element.

Except where otherwise specified, a keyword must not be specified more than once per rel attribute.

Link types are always ASCII case-insensitive, and must be compared as such.

Thus, rel="next" is the same as rel="NEXT".

Link type Effect on... Brief description
link a and area
alternate Hyperlink Hyperlink Gives alternate representations of the current document.
author Hyperlink Hyperlink Gives a link to the author of the current document or article.
bookmark not allowed Hyperlink Gives the permalink for the nearest ancestor section.
help Hyperlink Hyperlink Provides a link to context-sensitive help.
icon External Resource not allowed Imports an icon to represent the current document.
license Hyperlink Hyperlink Indicates that the main content of the current document is covered by the copyright license described by the referenced document.
next Hyperlink Hyperlink Indicates that the current document is a part of a series, and that the next document in the series is the referenced document.
nofollow not allowed Annotation Indicates that the current document's original author or publisher does not endorse the referenced document.
noreferrer not allowed Annotation Requires that the user agent not send an HTTP Referer (sic) header if the user follows the hyperlink.
prefetch External Resource External Resource Specifies that the target resource should be preemptively cached.
prev Hyperlink Hyperlink Indicates that the current document is a part of a series, and that the previous document in the series is the referenced document.
search Hyperlink Hyperlink Gives a link to a resource that can be used to search through the current document and its related pages.
stylesheet External Resource not allowed Imports a stylesheet.
tag not allowed Hyperlink Gives a tag (identified by the given address) that applies to the current document.

Some of the types described below list synonyms for these values. These are to be handled as specified by user agents, but must not be used in documents.

4.8.4.1 Link type "alternate"

The alternate keyword may be used with link, a, and area elements.

The meaning of this keyword depends on the values of the other attributes.

If the element is a link element and the rel attribute also contains the keyword stylesheet

The alternate keyword modifies the meaning of the stylesheet keyword in the way described for that keyword. The alternate keyword does not create a link of its own.

If the alternate keyword is used with the type attribute set to the value application/rss+xml or the value application/atom+xml

The keyword creates a hyperlink referencing a syndication feed (though not necessarily syndicating exactly the same content as the current page).

The first link, a, or area element in the document (in tree order) with the alternate keyword used with the type attribute set to the value application/rss+xml or the value application/atom+xml must be treated as the default syndication feed for the purposes of feed autodiscovery.

The following link element gives the syndication feed for the current page:

<link rel="alternate" type="application/atom+xml" href="data.xml">

The following extract offers various different syndication feeds:

<p>You can access the planets database using Atom feeds:</p>
<ul>
 <li><a href="recently-visited-planets.xml" rel="alternate" type="application/atom+xml">Recently Visited Planets</a></li>
 <li><a href="known-bad-planets.xml" rel="alternate" type="application/atom+xml">Known Bad Planets</a></li>
 <li><a href="unexplored-planets.xml" rel="alternate" type="application/atom+xml">Unexplored Planets</a></li>
</ul>
Otherwise

The keyword creates a hyperlink referencing an alternate representation of the current document.

The nature of the referenced document is given by the hreflang, and type attributes.

If the alternate keyword is used with the hreflang attribute, and that attribute's value differs from the root element's language, it indicates that the referenced document is a translation.

If the alternate keyword is used with the type attribute, it indicates that the referenced document is a reformulation of the current document in the specified format.

The hreflang and type attributes can be combined when specified with the alternate keyword.

For example, the following link is a French translation that uses the PDF format:

<link rel=alternate type=application/pdf hreflang=fr href=manual-fr>

This relationship is transitive — that is, if a document links to two other documents with the link type "alternate", then, in addition to implying that those documents are alternative representations of the first document, it is also implying that those two documents are alternative representations of each other.

The author keyword may be used with link, a, and area elements. This keyword creates a hyperlink.

For a and area elements, the author keyword indicates that the referenced document provides further information about the author of the nearest article element ancestor of the element defining the hyperlink, if there is one, or of the page as a whole, otherwise.

For link elements, the author keyword indicates that the referenced document provides further information about the author for the page as a whole.

The "referenced document" can be, and often is, a mailto: URL giving the e-mail address of the author. [MAILTO]

Synonyms: For historical reasons, user agents must also treat link, a, and area elements that have a rev attribute with the value "made" as having the author keyword specified as a link relationship.

The bookmark keyword may be used with a and area elements. This keyword creates a hyperlink.

The bookmark keyword gives a permalink for the nearest ancestor article element of the linking element in question, or of the section the linking element is most closely associated with, if there are no ancestor article elements.

The following snippet has three permalinks. A user agent could determine which permalink applies to which part of the spec by looking at where the permalinks are given.

 ...
 <body>
  <h1>Example of permalinks</h1>
  <div id="a">
   <h2>First example</h2>
   <p><a href="a.html" rel="bookmark">This permalink applies to
   only the content from the first H2 to the second H2</a>. The DIV isn't
   exactly that section, but it roughly corresponds to it.</p>
  </div>
  <h2>Second example</h2>
  <article id="b">
   <p><a href="b.html" rel="bookmark">This permalink applies to
   the outer ARTICLE element</a> (which could be, e.g., a blog post).</p>
   <article id="c">
    <p><a href="c.html" rel="bookmark">This permalink applies to
    the inner ARTICLE element</a> (which could be, e.g., a blog comment).</p>
   </article>
  </article>
 </body>
 ...

The help keyword may be used with link, a, and area elements. This keyword creates a hyperlink.

For a and area elements, the help keyword indicates that the referenced document provides further help information for the parent of the element defining the hyperlink, and its children.

In the following example, the form control has associated context-sensitive help. The user agent could use this information, for example, displaying the referenced document if the user presses the "Help" or "F1" key.

 <p><label> Topic: <input name=topic> <a href="help/topic.html" rel="help">(Help)</a></label></p>

For link elements, the help keyword indicates that the referenced document provides help for the page as a whole.

For a and area elements, on some browsers, the help keyword causes the link to use a different cursor.

4.8.4.5 Link type "icon"

The icon keyword may be used with link elements. This keyword creates an external resource link.

The specified resource is an icon representing the page or site, and should be used by the user agent when representing the page in the user interface.

Icons could be auditory icons, visual icons, or other kinds of icons. If multiple icons are provided, the user agent must select the most appropriate icon according to the type, media, and sizes attributes. If there are multiple equally appropriate icons, user agents must use the last one declared in tree order at the time that the user agent collected the list of icons. If the user agent tries to use an icon but that icon is determined, upon closer examination, to in fact be inappropriate (e.g. because it uses an unsupported format), then the user agent must try the next-most-appropriate icon as determined by the attributes.

User agents are not required to update icons when the list of icons changes, but are encouraged to do so.

There is no default type for resources given by the icon keyword. However, for the purposes of determining the type of the resource, user agents must expect the resource to be an image.

The sizes attribute gives the sizes of icons for visual media. Its value, if present, is merely advisory. User agents may use the value to decide which icon(s) to use if multiple icons are available.

If specified, the attribute must have a value that is an unordered set of unique space-separated tokens which are ASCII case-insensitive. Each value must be either an ASCII case-insensitive match for the string "any", or a value that consists of two valid non-negative integers that do not have a leading "0" (U+0030) character and that are separated by a single U+0078 LATIN SMALL LETTER X or U+0058 LATIN CAPITAL LETTER X character.

The keywords represent icon sizes in raw pixels (as opposed to CSS pixels).

An icon that is 50 CSS pixels wide intended for displays with a device pixel density of two device pixels per CSS pixel (2x, 192dpi) would have a width of 100 raw pixels. This feature does not support indicating that a different resource is to be used for small high-resolution icons vs large low-resolution icons (e.g. 50×50 2x vs 100×100 1x).

To parse and process the attribute's value, the user agent must first split the attribute's value on spaces, and must then parse each resulting keyword to determine what it represents.

The any keyword represents that the resource contains a scalable icon, e.g. as provided by an SVG image.

Other keywords must be further parsed as follows to determine what they represent:

The keywords specified on the sizes attribute must not represent icon sizes that are not actually available in the linked resource.

In the absence of a link with the icon keyword, for Documents obtained over HTTP or HTTPS, user agents may instead attempt to fetch and use an icon with the absolute URL obtained by resolving the URL "/favicon.ico" against the document's address, as if the page had declared that icon using the icon keyword.

The following snippet shows the top part of an application with several icons.

<!DOCTYPE HTML>
<html>
 <head>
  <title>lsForums — Inbox</title>
  <link rel=icon href=favicon.png sizes="16x16" type="image/png">
  <link rel=icon href=windows.ico sizes="32x32 48x48" type="image/vnd.microsoft.icon">
  <link rel=icon href=mac.icns sizes="128x128 512x512 8192x8192 32768x32768">
  <link rel=icon href=iphone.png sizes="57x57" type="image/png">
  <link rel=icon href=gnome.svg sizes="any" type="image/svg+xml">
  <link rel=stylesheet href=lsforums.css>
  <script src=lsforums.js></script>
  <meta name=application-name content="lsForums">
 </head>
 <body>
  ...

For historical reasons, the icon keyword may be preceded by the keyword "shortcut". If the "shortcut" keyword is present, the rel attribute's entire value must be an ASCII case-insensitive match for the string "shortcut icon" (with a single U+0020 SPACE character between the tokens and no other space characters).

The license keyword may be used with link, a, and area elements. This keyword creates a hyperlink.

The license keyword indicates that the referenced document provides the copyright license terms under which the main content of the current document is provided.

This specification defines the main content of a document and content that is not deemed to be part of that main content via the main element. The distinction should be made clear to the user.

Consider a photo sharing site. A page on that site might describe and show a photograph, and the page might be marked up as follows:

<!DOCTYPE HTML>
<html>
 <head>
  <title>Exampl Pictures: Kissat</title>
  <link rel="stylesheet" href="/style/default">
 </head>
 <body>
  <h1>Kissat</h1>
  <nav>
   <a href="../">Return to photo index</a>
  </nav>
  
  <main>
  <figure>
   <img src="/pix/39627052_fd8dcd98b5.jpg">
   <figcaption>Kissat</figcaption>
  </figure>
  <p>One of them has six toes!</p>
  <p><small>This photograph is <a rel="license" href="http://www.opensource.org/licenses/mit-license.php">MIT Licensed</a></small></p>
  </main>
  <footer>
   <a href="/">Home</a> | <a href="../">Photo index</a>
   <p><small>© copyright 2009 Exampl Pictures. All Rights Reserved.</small></p>
  </footer>
 </body>
</html>

In this case the license applies to just the photo (the main content of the document), not the whole document. In particular not the design of the page itself, which is covered by the copyright given at the bottom of the document. This should be made clear in the text referencing the licensing link and could also be made clearer in the styling (e.g. making the license link prominently positioned near the photograph, while having the page copyright in small text at the foot of the page, or adding a border to the main element.)

Synonyms: For historical reasons, user agents must also treat the keyword "copyright" like the license keyword.

The nofollow keyword may be used with a and area elements. This keyword does not create a hyperlink, but annotates any other hyperlinks created by the element (the implied hyperlink, if no other keywords create one).

The nofollow keyword indicates that the link is not endorsed by the original author or publisher of the page, or that the link to the referenced document was included primarily because of a commercial relationship between people affiliated with the two pages.

The noreferrer keyword may be used with a and area elements. This keyword does not create a hyperlink, but annotates any other hyperlinks created by the element (the implied hyperlink, if no other keywords create one).

It indicates that no referrer information is to be leaked when following the link.

If a user agent follows a link defined by an a or area element that has the noreferrer keyword, the user agent must not include a Referer (sic) HTTP header (or equivalent for other protocols) in the request.

This keyword also causes the opener attribute to remain null if the hyperlink creates a new browsing context.

The prefetch keyword may be used with link, a, and area elements. This keyword creates an external resource link.

The prefetch keyword indicates that preemptively fetching and caching the specified resource is likely to be beneficial, as it is highly likely that the user will require this resource.

There is no default type for resources given by the prefetch keyword.

The search keyword may be used with link, a, and area elements. This keyword creates a hyperlink.

The search keyword indicates that the referenced document provides an interface specifically for searching the document and its related resources.

OpenSearch description documents can be used with link elements and the search link type to enable user agents to autodiscover search interfaces. [OPENSEARCH]

The stylesheet keyword may be used with link elements. This keyword creates an external resource link that contributes to the styling processing model.

The specified resource is a resource that describes how to present the document. Exactly how the resource is to be processed depends on the actual type of the resource.

If the alternate keyword is also specified on the link element, then the link is an alternative stylesheet; in this case, the title attribute must be specified on the link element, with a non-empty value.

The default type for resources given by the stylesheet keyword is text/css.

The appropriate times to obtain the resource are:

Quirk: If the document has been set to quirks mode, has the same origin as the URL of the external resource, and the Content-Type metadata of the external resource is not a supported style sheet type, the user agent must instead assume it to be text/css.

Once a resource has been obtained, if its Content-Type metadata is text/css, the user agent must run these steps:

  1. Let element be the link element that created the external resource link.

  2. If element has an associated CSS style sheet, remove the CSS style sheet in question.

  3. If element no longer creates an external resource link that contributes to the styling processing model, or if, since the resource in question was obtained, it has become appropriate to obtain it again (meaning this algorithm is about to be invoked again for a newly obtained resource), then abort these steps.

  4. Create a CSS style sheet with the following properties:

    type

    text/css

    location

    The resulting absolute URL determined during the obtain algorithm.

    This is before any redirects get applied.

    owner node

    element

    media

    The media attribute of element.

    This is a reference to the (possibly absent at this time) attribute, rather than a copy of the attribute's current value. The CSSOM specification defines what happens when the attribute is dynamically set, changed, or removed.

    title

    The title attribute of element.

    This is similarly a reference to the attribute, rather than a copy of the attribute's current value.

    alternate flag

    Set if the link is an alternative stylesheet; unset otherwise.

    origin-clean flag

    Set if the resource is CORS-same-origin; unset otherwise.

    parent CSS style sheet
    owner CSS rule

    null

    disabled flag

    Left at its default value.

    CSS rules

    Left uninitialized.

    The CSS environment encoding is the result of running the following steps: [CSSSYNTAX]

    1. If the element has a charset attribute, get an encoding from that attribute's value. If that succeeds, return the resulting encoding and abort these steps. [ENCODING]

    2. Otherwise, return the document's character encoding. [DOM]

The tag keyword may be used with a and area elements. This keyword creates a hyperlink.

The tag keyword indicates that the tag that the referenced document represents applies to the current document.

Since it indicates that the tag applies to the current document, it would be inappropriate to use this keyword in the markup of a tag cloud, which lists the popular tags across a set of pages.

This document is about some gems, and so it is tagged with "http://en.wikipedia.org/wiki/Gemstone" to unambiguously categorise it as applying to the "jewel" kind of gems, and not to, say, the towns in the US, the Ruby package format, or the Swiss locomotive class:

<!DOCTYPE HTML>
<html>
 <head>
  <title>My Precious</title>
 </head>
 <body>
  <header><h1>My precious</h1> <p>Summer 2012</p></header>
  <p>Recently I managed to dispose of a red gem that had been
  bothering me. I now have a much nicer blue sapphire.</p>
  <p>The red gem had been found in a bauxite stone while I was digging
  out the office level, but nobody was willing to haul it away. The
  same red gem stayed there for literally years.</p>
  <footer>
   Tags: <a rel=tag href="http://en.wikipedia.org/wiki/Gemstone">Gemstone</a>
  </footer>
 </body>
</html>

In this document, there are two articles. The "tag" link, however, applies to the whole page (and would do so wherever it was placed, including if it was within the article elements).

<!DOCTYPE HTML>
<html>
 <head>
  <title>Gem 4/4</title>
 </head>
 <body>
  <article>
   <h1>801: Steinbock</h1>
   <p>The number 801 Gem 4/4 electro-diesel has an ibex and was rebuilt in 2002.</p>
  </article>
  <article>
   <h1>802: Murmeltier</h1>
   <figure>
    <img src="http://upload.wikimedia.org/wikipedia/commons/b/b0/Trains_de_la_Bernina_en_hiver_2.jpg"
         alt="The 802 was red with pantographs and tall vents on the side.">
    <figcaption>The 802 in the 1980s, above Lago Bianco.</figcaption>
   </figure>
   <p>The number 802 Gem 4/4 electro-diesel has a marmot and was rebuilt in 2003.</p>
  </article>
  <p class="topic"><a rel=tag href="http://en.wikipedia.org/wiki/Rhaetian_Railway_Gem_4/4">Gem 4/4</a></p>
 </body>
</html>

Some documents form part of a sequence of documents.

A sequence of documents is one where each document can have a previous sibling and a next sibling. A document with no previous sibling is the start of its sequence, a document with no next sibling is the end of its sequence.

A document may be part of multiple sequences.

The next keyword may be used with link, a, and area elements. This keyword creates a hyperlink.

The next keyword indicates that the document is part of a sequence, and that the link is leading to the document that is the next logical document in the sequence.

The prev keyword may be used with link, a, and area elements. This keyword creates a hyperlink.

The prev keyword indicates that the document is part of a sequence, and that the link is leading to the document that is the previous logical document in the sequence.

Synonyms: For historical reasons, user agents must also treat the keyword "previous" like the prev keyword.

Extensions to the predefined set of link types may be registered in the microformats wiki existing-rel-values page. [MFREL]

Anyone is free to edit the microformats wiki existing-rel-values page at any time to add a type. Extension types must be specified with the following information:

Keyword

The actual value being defined. The value should not be confusingly similar to any other defined value (e.g. differing only in case).

If the value contains a ":" (U+003A) character, it must also be an absolute URL.

Effect on... link

One of the following:

Not allowed
The keyword must not be specified on link elements.
Hyperlink
The keyword may be specified on a link element; it creates a hyperlink.
External Resource
The keyword may be specified on a link element; it creates an external resource link.
Effect on... a and area

One of the following:

Not allowed
The keyword must not be specified on a and area elements.
Hyperlink
The keyword may be specified on a and area elements; it creates a hyperlink.
External Resource
The keyword may be specified on a and area elements; it creates an external resource link.
Hyperlink Annotation
The keyword may be specified on a and area elements; it annotates other hyperlinks created by the element.
Brief description

A short non-normative description of what the keyword's meaning is.

Specification

A link to a more detailed description of the keyword's semantics and requirements. It could be another page on the Wiki, or a link to an external page.

Synonyms

A list of other keyword values that have exactly the same processing requirements. Authors should not use the values defined to be synonyms, they are only intended to allow user agents to support legacy content. Anyone may remove synonyms that are not used in practice; only names that need to be processed as synonyms for compatibility with legacy content are to be registered in this way.

Status

One of the following:

Proposed
The keyword has not received wide peer review and approval. Someone has proposed it and is, or soon will be, using it.
Ratified
The keyword has received wide peer review and approval. It has a specification that unambiguously defines how to handle pages that use the keyword, including when they use it in incorrect ways.
Discontinued
The keyword has received wide peer review and it has been found wanting. Existing pages are using this keyword, but new pages should avoid it. The "brief description" and "specification" entries will give details of what authors should use instead, if anything.

If a keyword is found to be redundant with existing values, it should be removed and listed as a synonym for the existing value.

If a keyword is registered in the "proposed" state for a period of a month or more without being used or specified, then it may be removed from the registry.

If a keyword is added with the "proposed" status and found to be redundant with existing values, it should be removed and listed as a synonym for the existing value. If a keyword is added with the "proposed" status and found to be harmful, then it should be changed to "discontinued" status.

Anyone can change the status at any time, but should only do so in accordance with the definitions above.

Conformance checkers may use the information given on the microformats wiki existing-rel-values page to establish if a value is allowed or not: values defined in this specification or marked as "proposed" or "ratified" must be accepted when used on the elements for which they apply as described in the "Effect on..." field, whereas values marked as "discontinued" or values not containing a U+003A COLON character but not listed in either this specification or on the aforementioned page must be reported as invalid. The remaining values must be accepted as valid if they are absolute URLs containing US-ASCII characters only and rejected otherwise. Conformance checkers may cache this information (e.g. for performance reasons or to avoid the use of unreliable network connectivity).

Note: Even URL-valued link types are compared ASCII-case-insensitively. Validators might choose to warn about characters U+0041 (LATIN CAPITAL LETTER A) through U+005A (LATIN CAPITAL LETTER Z) (inclusive) in the pre-case-folded form of link types that contain a colon.

When an author uses a new type not defined by either this specification or the Wiki page, conformance checkers should offer to add the value to the Wiki, with the details described above, with the "proposed" status.

Types defined as extensions in the microformats wiki existing-rel-values page with the status "proposed" or "ratified" may be used with the rel attribute on link, a, and area elements in accordance to the "Effect on..." field. [MFREL]

4.9 Tabular data

4.9.1 The table element

Categories:
Flow content.
Palpable content.
Contexts in which this element can be used:
Where flow content is expected.
Content model:
In this order: optionally a caption element, followed by zero or more colgroup elements, followed optionally by a thead element, followed optionally by a tfoot element, followed by either zero or more tbody elements or one or more tr elements, followed optionally by a tfoot element (but there can only be one tfoot element child in total), optionally intermixed with one or more script-supporting elements.
Content attributes:
Global attributes
border
sortable - Enables a sorting interface for the table
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLTableElement : HTMLElement {
           attribute HTMLTableCaptionElement? caption;
  HTMLElement createCaption();
  void deleteCaption();
           attribute HTMLTableSectionElement? tHead;
  HTMLElement createTHead();
  void deleteTHead();
           attribute HTMLTableSectionElement? tFoot;
  HTMLElement createTFoot();
  void deleteTFoot();
  readonly attribute HTMLCollection tBodies;
  HTMLElement createTBody();
  readonly attribute HTMLCollection rows;
  HTMLElement insertRow(optional long index = -1);
  void deleteRow(long index);
           attribute DOMString border;
           attribute boolean sortable;
  void stopSorting();
};

The table element represents data with more than one dimension, in the form of a table.

The table element takes part in the table model. Tables have rows, columns, and cells given by their descendants. The rows and columns form a grid; a table's cells must completely cover that grid without overlap.

Precise rules for determining whether this conformance requirement is met are described in the description of the table model.

Authors are encouraged to provide information describing how to interpret complex tables. Guidance on how to provide such information is given below.

Tables should not be used as layout aids. Historically, many Web authors have tables in HTML as a way to control their page layout making it difficult to extract tabular data from such documents. In particular, users of accessibility tools, like screen readers, are likely to find it very difficult to navigate pages with tables used for layout. If a table is to be used for layout it must be marked with the attribute role="presentation" for a user agent to properly represent the table to an assistive technology and to properly convey the intent of the author to tools that wish to extract tabular data from the document.

There are a variety of alternatives to using HTML tables for layout, primarily using CSS positioning and the CSS table model. [CSS]

The border attribute may be specified on a table element to explicitly indicate that the table element is not being used for layout purposes. If specified, the attribute's value must either be the empty string or the value "1". The attribute is used by certain user agents as an indication that borders should be drawn around cells of the table.


Tables can be complicated to understand and navigate. To help users with this, user agents should clearly delineate cells in a table from each other, unless the user agent has classified the table as a layout table.

Authors and implementors are encouraged to consider using some of the table design techniques described below to make tables easier to navigate for users.

User agents, especially those that do table analysis on arbitrary content, are encouraged to find heuristics to determine which tables actually contain data and which are merely being used for layout. This specification does not define a precise heuristic, but the following are suggested as possible indicators:

Feature Indication
The use of the role attribute with the value presentation Probably a layout table
The use of the border attribute with the non-conforming value 0 Probably a layout table
The use of the non-conforming cellspacing and cellpadding attributes with the value 0 Probably a layout table
The use of caption, thead, or th elements Probably a non-layout table
The use of the headers and scope attributes Probably a non-layout table
The use of the border attribute with a value other than 0 Probably a non-layout table
Explicit visible borders set using CSS Probably a non-layout table
The use of the summary attribute Not a good indicator (both layout and non-layout tables have historically been given this attribute)

It is quite possible that the above suggestions are wrong. Implementors are urged to provide feedback elaborating on their experiences with trying to create a layout table detection heuristic.


The sortable attribute is used in the table sorting model.


table . caption [ = value ]

Returns the table's caption element.

Can be set, to replace the caption element.

caption = table . createCaption()

Ensures the table has a caption element, and returns it.

table . deleteCaption()

Ensures the table does not have a caption element.

table . tHead [ = value ]

Returns the table's thead element.

Can be set, to replace the thead element. If the new value is not a thead element, throws a HierarchyRequestError exception.

thead = table . createTHead()

Ensures the table has a thead element, and returns it.

table . deleteTHead()

Ensures the table does not have a thead element.

table . tFoot [ = value ]

Returns the table's tfoot element.

Can be set, to replace the tfoot element. If the new value is not a tfoot element, throws a HierarchyRequestError exception.

tfoot = table . createTFoot()

Ensures the table has a tfoot element, and returns it.

table . deleteTFoot()

Ensures the table does not have a tfoot element.

table . tBodies

Returns an HTMLCollection of the tbody elements of the table.

tbody = table . createTBody()

Creates a tbody element, inserts it into the table, and returns it.

table . rows

Returns an HTMLCollection of the tr elements of the table.

tr = table . insertRow( [ index ] )

Creates a tr element, along with a tbody if required, inserts them into the table at the position given by the argument, and returns the tr.

The position is relative to the rows in the table. The index −1, which is the default if the argument is omitted, is equivalent to inserting at the end of the table.

If the given position is less than −1 or greater than the number of rows, throws an IndexSizeError exception.

table . deleteRow(index)

Removes the tr element with the given position in the table.

The position is relative to the rows in the table. The index −1 is equivalent to deleting the last row of the table.

If the given position is less than −1 or greater than the index of the last row, or if there are no rows, throws an IndexSizeError exception.

The caption IDL attribute must return, on getting, the first caption element child of the table element, if any, or null otherwise. On setting, the first caption element child of the table element, if any, must be removed, and the new value, if not null, must be inserted as the first node of the table element.

The createCaption() method must return the first caption element child of the table element, if any; otherwise a new caption element must be created, inserted as the first node of the table element, and then returned.

The deleteCaption() method must remove the first caption element child of the table element, if any.

The tHead IDL attribute must return, on getting, the first thead element child of the table element, if any, or null otherwise. On setting, if the new value is null or a thead element, the first thead element child of the table element, if any, must be removed, and the new value, if not null, must be inserted immediately before the first element in the table element that is neither a caption element nor a colgroup element, if any, or at the end of the table if there are no such elements. If the new value is neither null nor a thead element, then a HierarchyRequestError DOM exception must be thrown instead.

The createTHead() method must return the first thead element child of the table element, if any; otherwise a new thead element must be created and inserted immediately before the first element in the table element that is neither a caption element nor a colgroup element, if any, or at the end of the table if there are no such elements, and then that new element must be returned.

The deleteTHead() method must remove the first thead element child of the table element, if any.

The tFoot IDL attribute must return, on getting, the first tfoot element child of the table element, if any, or null otherwise. On setting, if the new value is null or a tfoot element, the first tfoot element child of the table element, if any, must be removed, and the new value, if not null, must be inserted immediately before the first element in the table element that is neither a caption element, a colgroup element, nor a thead element, if any, or at the end of the table if there are no such elements. If the new value is neither null nor a tfoot element, then a HierarchyRequestError DOM exception must be thrown instead.

The createTFoot() method must return the first tfoot element child of the table element, if any; otherwise a new tfoot element must be created and inserted immediately before the first element in the table element that is neither a caption element, a colgroup element, nor a thead element, if any, or at the end of the table if there are no such elements, and then that new element must be returned.

The deleteTFoot() method must remove the first tfoot element child of the table element, if any.

The tBodies attribute must return an HTMLCollection rooted at the table node, whose filter matches only tbody elements that are children of the table element.

The createTBody() method must create a new tbody element, insert it immediately after the last tbody element child in the table element, if any, or at the end of the table element if the table element has no tbody element children, and then must return the new tbody element.

The rows attribute must return an HTMLCollection rooted at the table node, whose filter matches only tr elements that are either children of the table element, or children of thead, tbody, or tfoot elements that are themselves children of the table element. The elements in the collection must be ordered such that those elements whose parent is a thead are included first, in tree order, followed by those elements whose parent is either a table or tbody element, again in tree order, followed finally by those elements whose parent is a tfoot element, still in tree order.

The behavior of the insertRow(index) method depends on the state of the table. When it is called, the method must act as required by the first item in the following list of conditions that describes the state of the table and the index argument:

If index is less than −1 or greater than the number of elements in rows collection:
The method must throw an IndexSizeError exception.
If the rows collection has zero elements in it, and the table has no tbody elements in it:
The method must create a tbody element, then create a tr element, then append the tr element to the tbody element, then append the tbody element to the table element, and finally return the tr element.
If the rows collection has zero elements in it:
The method must create a tr element, append it to the last tbody element in the table, and return the tr element.
If index is −1 or equal to the number of items in rows collection:
The method must create a tr element, and append it to the parent of the last tr element in the rows collection. Then, the newly created tr element must be returned.
Otherwise:
The method must create a tr element, insert it immediately before the indexth tr element in the rows collection, in the same parent, and finally must return the newly created tr element.

When the deleteRow(index) method is called, the user agent must run the following steps:

  1. If index is equal to −1, then index must be set to the number of items in the rows collection, minus one.

  2. Now, if index is less than zero, or greater than or equal to the number of elements in the rows collection, the method must instead throw an IndexSizeError exception, and these steps must be aborted.

  3. Otherwise, the method must remove the indexth element in the rows collection from its parent.

The border IDL attribute must reflect the content attribute of the same name.

The stopSorting() method is used in the table sorting model.

The IDL attribute sortable must reflect the sortable content attribute.

Here is an example of a table being used to mark up a Sudoku puzzle. Observe the lack of headers, which are not necessary in such a table.

<section>
 <style scoped>
  table { border-collapse: collapse; border: solid thick; }
  colgroup, tbody { border: solid medium; }
  td { border: solid thin; height: 1.4em; width: 1.4em; text-align: center; padding: 0; }
 </style>
 <h1>Today's Sudoku</h1>
 <table>
  <colgroup><col><col><col>
  <colgroup><col><col><col>
  <colgroup><col><col><col>
  <tbody>
   <tr> <td> 1 <td>   <td> 3 <td> 6 <td>   <td> 4 <td> 7 <td>   <td> 9
   <tr> <td>   <td> 2 <td>   <td>   <td> 9 <td>   <td>   <td> 1 <td>
   <tr> <td> 7 <td>   <td>   <td>   <td>   <td>   <td>   <td>   <td> 6
  <tbody>
   <tr> <td> 2 <td>   <td> 4 <td>   <td> 3 <td>   <td> 9 <td>   <td> 8
   <tr> <td>   <td>   <td>   <td>   <td>   <td>   <td>   <td>   <td>
   <tr> <td> 5 <td>   <td>   <td> 9 <td>   <td> 7 <td>   <td>   <td> 1
  <tbody>
   <tr> <td> 6 <td>   <td>   <td>   <td> 5 <td>   <td>   <td>   <td> 2
   <tr> <td>   <td>   <td>   <td>   <td> 7 <td>   <td>   <td>   <td>
   <tr> <td> 9 <td>   <td>   <td> 8 <td>   <td> 2 <td>   <td>   <td> 5
 </table>
</section>
4.9.1.1 Techniques for describing tables

For tables that consist of more than just a grid of cells with headers in the first row and headers in the first column, and for any table in general where the reader might have difficulty understanding the content, authors should include explanatory information introducing the table. This information is useful for all users, but is especially useful for users who cannot see the table, e.g. users of screen readers.

Such explanatory information should introduce the purpose of the table, outline its basic cell structure, highlight any trends or patterns, and generally teach the user how to use the table.

For instance, the following table:

Characteristics with positive and negative sides
Negative Characteristic Positive
Sad Mood Happy
Failing Grade Passing

...might benefit from a description explaining the way the table is laid out, something like "Characteristics are given in the second column, with the negative side in the left column and the positive side in the right column".

There are a variety of ways to include this information, such as:

In prose, surrounding the table
<p id="summary">In the following table, characteristics are 
given in the second column, with the negative side in the left column and the positive
side in the right column.</p>
<table aria-describedby="summary">
 <caption>Characteristics with positive and negative sides</caption>
 <thead>
  <tr>
   <th id="n"> Negative
   <th> Characteristic
   <th> Positive
 <tbody>
  <tr>
   <td headers="n r1"> Sad
   <th id="r1"> Mood
   <td> Happy
  <tr>
   <td headers="n r2"> Failing
   <th id="r2"> Grade
   <td> Passing
</table>

In the example above the aria-describedby attribute is used to explicitly associate the information with the table for assistive technology users.

In the table's caption
<table>
 <caption>
  <strong>Characteristics with positive and negative sides.</strong>
  <p>Characteristics are given in the second column, with the
  negative side in the left column and the positive side in the right
  column.</p>
 </caption>
 <thead>
  <tr>
   <th id="n"> Negative
   <th> Characteristic
   <th> Positive
 <tbody>
  <tr>
   <td headers="n r1"> Sad
   <th id="r1"> Mood
   <td> Happy
  <tr>
   <td headers="n r2"> Failing
   <th id="r2"> Grade
   <td> Passing
</table>
In the table's caption, in a details element
<table>
 <caption>
  <strong>Characteristics with positive and negative sides.</strong>
  <details>
   <summary>Help</summary>
   <p>Characteristics are given in the second column, with the
   negative side in the left column and the positive side in the right
   column.</p>
  </details>
 </caption>
 <thead>
  <tr>
   <th id="n"> Negative
   <th> Characteristic
   <th> Positive
 <tbody>
  <tr>
   <td headers="n r1"> Sad
   <th id="r1"> Mood
   <td> Happy
  <tr>
   <td headers="n r2"> Failing
   <th id="r2"> Grade
   <td> Passing
</table>
Next to the table, in the same figure
<figure>
 <figcaption>Characteristics with positive and negative sides</figcaption>
 <p>Characteristics are given in the second column, with the
 negative side in the left column and the positive side in the right
 column.</p>
 <table>
  <thead>
   <tr>
    <th id="n"> Negative
    <th> Characteristic
    <th> Positive
  <tbody>
   <tr>
    <td headers="n r1"> Sad
    <th id="r1"> Mood
    <td> Happy
   <tr>
    <td headers="n r2"> Failing
    <th id="r2"> Grade
    <td> Passing
 </table>
</figure>
Next to the table, in a figure's figcaption
<figure>
 <figcaption>
  <strong>Characteristics with positive and negative sides</strong>
  <p>Characteristics are given in the second column, with the
  negative side in the left column and the positive side in the right
  column.</p>
 </figcaption>
 <table>
  <thead>
   <tr>
    <th id="n"> Negative
    <th> Characteristic
    <th> Positive
  <tbody>
   <tr>
    <td headers="n r1"> Sad
    <th id="r1"> Mood
    <td> Happy
   <tr>
    <td headers="n r2"> Failing
    <th id="r2"> Grade
    <td> Passing
 </table>
</figure>

Authors may also use other techniques, or combinations of the above techniques, as appropriate.

The best option, of course, rather than writing a description explaining the way the table is laid out, is to adjust the table such that no explanation is needed.

In the case of the table used in the examples above, a simple rearrangement of the table so that the headers are on the top and left sides removes the need for an explanation as well as removing the need for the use of headers attributes:

<table>
 <caption>Characteristics with positive and negative sides</caption>
 <thead>
  <tr>
   <th> Characteristic
   <th> Negative
   <th> Positive
 <tbody>
  <tr>
   <th> Mood
   <td> Sad
   <td> Happy
  <tr>
   <th> Grade
   <td> Failing
   <td> Passing
</table>
4.9.1.2 Techniques for table design

Good table design is key to making tables more readable and usable.

In visual media, providing column and row borders and alternating row backgrounds can be very effective to make complicated tables more readable.

For tables with large volumes of numeric content, using monospaced fonts can help users see patterns, especially in situations where a user agent does not render the borders. (Unfortunately, for historical reasons, not rendering borders on tables is a common default.)

In speech media, table cells can be distinguished by reporting the corresponding headers before reading the cell's contents, and by allowing users to navigate the table in a grid fashion, rather than serializing the entire contents of the table in source order.

Authors are encouraged to use CSS to achieve these effects.

User agents are encouraged to render tables using these techniques whenever the page does not use CSS and the table is not classified as a layout table.

4.9.2 The caption element

Categories:
None.
Contexts in which this element can be used:
As the first element child of a table element.
Content model:
Flow content, but with no descendant table elements.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLTableCaptionElement : HTMLElement {};

The caption element represents the title of the table that is its parent, if it has a parent and that is a table element.

The caption element takes part in the table model.

When a table element is the only content in a figure element other than the figcaption, the caption element should be omitted in favor of the figcaption.

A caption can introduce context for a table, making it significantly easier to understand.

Consider, for instance, the following table:

1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

In the abstract, this table is not clear. However, with a caption giving the table's number (for reference in the main prose) and explaining its use, it makes more sense:

<caption>
<p>Table 1.
<p>This table shows the total score obtained from rolling two
six-sided dice. The first row represents the value of the first die,
the first column the value of the second die. The total is given in
the cell that corresponds to the values of the two dice.
</caption>

This provides the user with more context:

Table 1.

This table shows the total score obtained from rolling two six-sided dice. The first row represents the value of the first die, the first column the value of the second die. The total is given in the cell that corresponds to the values of the two dice.

1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

4.9.3 The colgroup element

Categories:
None.
Contexts in which this element can be used:
As a child of a table element, after any caption elements and before any thead, tbody, tfoot, and tr elements.
Content model:
If the span attribute is present: Empty.
If the span attribute is absent: Zero or more col and template elements.
Content attributes:
Global attributes
span - Number of columns spanned by the element
Tag omission in text/html:
A colgroup element's end tag may be omitted if the colgroup element is not immediately followed by a space character or a comment. A colgroup element's end tag may be omitted if the colgroup element is not immediately followed by a space character or a comment.
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes
DOM interface:
interface HTMLTableColElement : HTMLElement {
           attribute unsigned long span;
};

The colgroup element represents a group of one or more columns in the table that is its parent, if it has a parent and that is a table element.

If the colgroup element contains no col elements, then the element may have a span content attribute specified, whose value must be a valid non-negative integer greater than zero.

The colgroup element and its span attribute take part in the table model.

The span IDL attribute must reflect the content attribute of the same name. The value must be limited to only non-negative numbers greater than zero.

4.9.4 The col element

Categories:
None.
Contexts in which this element can be used:
As a child of a colgroup element that doesn't have a span attribute.
Content model:
Empty.
Content attributes:
Global attributes
span - Number of columns spanned by the element
Tag omission in text/html:
No end tag.
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes
DOM interface:

HTMLTableColElement, same as for colgroup elements. This interface defines one member, span.

If a col element has a parent and that is a colgroup element that itself has a parent that is a table element, then the col element represents one or more columns in the column group represented by that colgroup.

The element may have a span content attribute specified, whose value must be a valid non-negative integer greater than zero.

The col element and its span attribute take part in the table model.

The span IDL attribute must reflect the content attribute of the same name. The value must be limited to only non-negative numbers greater than zero.

4.9.5 The tbody element

Categories:
None.
Contexts in which this element can be used:
As a child of a table element, after any caption, colgroup, and thead elements, but only if there are no tr elements that are children of the table element.
Content model:
Zero or more tr and script-supporting elements
Content attributes:
Global attributes
Tag omission in text/html:
A tbody element's start tag may be omitted if the first thing inside the tbody element is a tr element, and if the element is not immediately preceded by a tbody, thead, or tfoot element whose end tag has been omitted. (It can't be omitted if the element is empty.). A tbody element's end tag may be omitted if the tbody element is immediately followed by a tbody or tfoot element, or if there is no more content in the parent element.
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLTableSectionElement : HTMLElement {
  readonly attribute HTMLCollection rows;
  HTMLElement insertRow(optional long index = -1);
  void deleteRow(long index);
};

The HTMLTableSectionElement interface is also used for thead and tfoot elements.

The tbody element represents a block of rows that consist of a body of data for the parent table element, if the tbody element has a parent and it is a table.

The tbody element takes part in the table model.

tbody . rows

Returns an HTMLCollection of the tr elements of the table section.

tr = tbody . insertRow( [ index ] )

Creates a tr element, inserts it into the table section at the position given by the argument, and returns the tr.

The position is relative to the rows in the table section. The index −1, which is the default if the argument is omitted, is equivalent to inserting at the end of the table section.

If the given position is less than −1 or greater than the number of rows, throws an IndexSizeError exception.

tbody . deleteRow(index)

Removes the tr element with the given position in the table section.

The position is relative to the rows in the table section. The index −1 is equivalent to deleting the last row of the table section.

If the given position is less than −1 or greater than the index of the last row, or if there are no rows, throws an IndexSizeError exception.

The rows attribute must return an HTMLCollection rooted at the element, whose filter matches only tr elements that are children of the element.

The insertRow(index) method must, when invoked on an element table section, act as follows:

If index is less than −1 or greater than the number of elements in the rows collection, the method must throw an IndexSizeError exception.

If index is −1 or equal to the number of items in the rows collection, the method must create a tr element, append it to the element table section, and return the newly created tr element.

Otherwise, the method must create a tr element, insert it as a child of the table section element, immediately before the indexth tr element in the rows collection, and finally must return the newly created tr element.

The deleteRow(index) method must remove the indexth element in the rows collection from its parent. If index is less than zero or greater than or equal to the number of elements in the rows collection, the method must instead throw an IndexSizeError exception.

4.9.6 The thead element

Categories:
None.
Contexts in which this element can be used:
As a child of a table element, after any caption, and colgroup elements and before any tbody, tfoot, and tr elements, but only if there are no other thead elements that are children of the table element.
Content model:
Zero or more tr and script-supporting elements
Content attributes:
Global attributes
Tag omission in text/html:
A thead element's end tag may be omitted if the thead element is immediately followed by a tbody or tfoot element.
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
HTMLTableSectionElement, as defined for tbody elements.

The thead element represents the block of rows that consist of the column labels (headers) for the parent table element, if the thead element has a parent and it is a table.

The thead element takes part in the table model.

This example shows a thead element being used. Notice the use of both th and td elements in the thead element: the first row is the headers, and the second row is an explanation of how to fill in the table.

<table>
 <caption> School auction sign-up sheet </caption>
 <thead>
  <tr>
   <th><label for=e1>Name</label>
   <th><label for=e2>Product</label>
   <th><label for=e3>Picture</label>
   <th><label for=e4>Price</label>
  <tr>
   <td>Your name here
   <td>What are you selling?
   <td>Link to a picture
   <td>Your reserve price
 <tbody>
  <tr>
   <td>Ms Danus
   <td>Doughnuts
   <td><img src="http://example.com/mydoughnuts.png" title="Doughnuts from Ms Danus">
   <td>$45
  <tr>
   <td><input id=e1 type=text name=who required form=f>
   <td><input id=e2 type=text name=what required form=f>
   <td><input id=e3 type=url name=pic form=f>
   <td><input id=e4 type=number step=0.01 min=0 value=0 required form=f>
</table>
<form id=f action="/auction.cgi">
 <input type=button name=add value="Submit">
</form>

4.9.7 The tfoot element

Categories:
None.
Contexts in which this element can be used:
As a child of a table element, after any caption, colgroup, and thead elements and before any tbody and tr elements, but only if there are no other tfoot elements that are children of the table element.
As a child of a table element, after any caption, colgroup, thead, tbody, and tr elements, but only if there are no other tfoot elements that are children of the table element.
Content model:
Zero or more tr and script-supporting elements
Content attributes:
Global attributes
Tag omission in text/html:
A tfoot element's end tag may be omitted if the tfoot element is immediately followed by a tbody element, or if there is no more content in the parent element.
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
HTMLTableSectionElement, as defined for tbody elements.

The tfoot element represents the block of rows that consist of the column summaries (footers) for the parent table element, if the tfoot element has a parent and it is a table.

The tfoot element takes part in the table model.

4.9.8 The tr element

Categories:
None.
Contexts in which this element can be used:
As a child of a thead element.
As a child of a tbody element.
As a child of a tfoot element.
As a child of a table element, after any caption, colgroup, and thead elements, but only if there are no tbody elements that are children of the table element.
Content model:
Zero or more td, th, and script-supporting elements
Content attributes:
Global attributes
Tag omission in text/html:
A tr element's end tag may be omitted if the tr element is immediately followed by another tr element, or if there is no more content in the parent element.
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLTableRowElement : HTMLElement {
  readonly attribute long rowIndex;
  readonly attribute long sectionRowIndex;
  readonly attribute HTMLCollection cells;
  HTMLElement insertCell(optional long index = -1);
  void deleteCell(long index);
};

The tr element represents a row of cells in a table.

The tr element takes part in the table model.

tr . rowIndex

Returns the position of the row in the table's rows list.

Returns −1 if the element isn't in a table.

tr . sectionRowIndex

Returns the position of the row in the table section's rows list.

Returns −1 if the element isn't in a table section.

tr . cells

Returns an HTMLCollection of the td and th elements of the row.

cell = tr . insertCell( [ index ] )

Creates a td element, inserts it into the table row at the position given by the argument, and returns the td.

The position is relative to the cells in the row. The index −1, which is the default if the argument is omitted, is equivalent to inserting at the end of the row.

If the given position is less than −1 or greater than the number of cells, throws an IndexSizeError exception.

tr . deleteCell(index)

Removes the td or th element with the given position in the row.

The position is relative to the cells in the row. The index −1 is equivalent to deleting the last cell of the row.

If the given position is less than −1 or greater than the index of the last cell, or if there are no cells, throws an IndexSizeError exception.

The rowIndex attribute must, if the element has a parent table element, or a parent tbody, thead, or tfoot element and a grandparent table element, return the index of the tr element in that table element's rows collection. If there is no such table element, then the attribute must return −1.

The sectionRowIndex attribute must, if the element has a parent table, tbody, thead, or tfoot element, return the index of the tr element in the parent element's rows collection (for tables, that's the HTMLTableElement.rows collection; for table sections, that's the HTMLTableRowElement.rows collection). If there is no such parent element, then the attribute must return −1.

The cells attribute must return an HTMLCollection rooted at the tr element, whose filter matches only td and th elements that are children of the tr element.

The insertCell(index) method must act as follows:

If index is less than −1 or greater than the number of elements in the cells collection, the method must throw an IndexSizeError exception.

If index is equal to −1 or equal to the number of items in cells collection, the method must create a td element, append it to the tr element, and return the newly created td element.

Otherwise, the method must create a td element, insert it as a child of the tr element, immediately before the indexth td or th element in the cells collection, and finally must return the newly created td element.

The deleteCell(index) method must remove the indexth element in the cells collection from its parent. If index is less than zero or greater than or equal to the number of elements in the cells collection, the method must instead throw an IndexSizeError exception.

4.9.9 The td element

Categories:
Sectioning root.
Contexts in which this element can be used:
As a child of a tr element.
Content model:
Flow content.
Content attributes:
Global attributes
colspan - Number of columns that the cell is to span
rowspan - Number of rows that the cell is to span
headers - The header cells for this cell
Tag omission in text/html:
A td element's end tag may be omitted if the td element is immediately followed by a td or th element, or if there is no more content in the parent element.
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLTableDataCellElement : HTMLTableCellElement {};

The td element represents a data cell in a table.

The td element and its colspan, rowspan, and headers attributes take part in the table model.

User agents, especially in non-visual environments or where displaying the table as a 2D grid is impractical, may give the user context for the cell when rendering the contents of a cell; for instance, giving its position in the table model, or listing the cell's header cells (as determined by the algorithm for assigning header cells). When a cell's header cells are being listed, user agents may use the value of abbr attributes on those header cells, if any, instead of the contents of the header cells themselves.

4.9.10 The th element

Categories:
If the th element is a sorting interface th element: Interactive content.
Otherwise: None.
Contexts in which this element can be used:
As a child of a tr element.
Content model:
Flow content, but with no header, footer, sectioning content, or heading content descendants, and if the th element is a sorting interface th element, no interactive content descendants.
Content attributes:
Global attributes
colspan - Number of columns that the cell is to span
rowspan - Number of rows that the cell is to span
headers - The headers for this cell
scope - Specifies which cells the header cell applies to
abbr - Alternative label to use for the header cell when referencing the cell in other contexts
sorted - Column sort direction and ordinality
Tag omission in text/html:
A th element's end tag may be omitted if the th element is immediately followed by a td or th element, or if there is no more content in the parent element.
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLTableHeaderCellElement : HTMLTableCellElement {
           attribute DOMString scope;
           attribute DOMString abbr;
           attribute DOMString sorted;
  void sort();
};

The th element represents a header cell in a table.

The th element may have a scope content attribute specified. The scope attribute is an enumerated attribute with five states, four of which have explicit keywords:

The row keyword, which maps to the row state
The row state means the header cell applies to some of the subsequent cells in the same row(s).
The col keyword, which maps to the column state
The column state means the header cell applies to some of the subsequent cells in the same column(s).
The rowgroup keyword, which maps to the row group state
The row group state means the header cell applies to all the remaining cells in the row group. A th element's scope attribute must not be in the row group state if the element is not anchored in a row group.
The colgroup keyword, which maps to the column group state
The column group state means the header cell applies to all the remaining cells in the column group. A th element's scope attribute must not be in the column group state if the element is not anchored in a column group.
The auto state
The auto state makes the header cell apply to a set of cells selected based on context.

The scope attribute's missing value default is the auto state.

The th element may have an abbr content attribute specified. Its value must be an alternative label for the header cell, to be used when referencing the cell in other contexts (e.g. when describing the header cells that apply to a data cell). It is typically an abbreviated form of the full header cell, but can also be an expansion, or merely a different phrasing.

The sorted attribute is used in the table sorting model.

The th element and its colspan, rowspan, headers, and scope attributes take part in the table model.

The sort() method is used in the table sorting model.

The scope IDL attribute must reflect the content attribute of the same name, limited to only known values.

The abbr and sorted IDL attributes must reflect the content attributes of the same name.

The following example shows how the scope attribute's rowgroup value affects which data cells a header cell applies to.

Here is a markup fragment showing a table:

The tbody elements in this example identify the range of the row groups.

<table>
   <caption>Measurement of legs and tails in Cats and English speakers</caption>
 <thead>
  <tr> <th> ID <th> Measurement <th> Average <th> Maximum
 <tbody>
  <tr> <td> <th scope=rowgroup> Cats <td> <td>
  <tr> <td> 93 <th scope=row> Legs <td> 3.5 <td> 4
  <tr> <td> 10 <th scope=row> Tails <td> 1 <td> 1
 </tbody>
 <tbody>
  <tr> <td> <th scope=rowgroup> English speakers <td> <td>
  <tr> <td> 32 <th scope=row> Legs <td> 2.67 <td> 4
  <tr> <td> 35 <th scope=row> Tails <td> 0.33 <td> 1
 </tbody>
  </table>

This would result in the following table:

Measurement of legs and tails in Cats and English speakers
ID Measurement Average Maximum
Cats
93 Legs 3.5 4
10 Tails 1 1
English speakers
32 Legs 2.67 4
35 Tails 0.33 1

The header cells in row 1 ('ID', 'Measurement', 'Average' and 'Maximum') each apply only to the cells in their column.

The header cells with a scope=rowgroup ('Cats' and 'English speakers') apply to all the cells in their row group other than the cells (to their left) in column 1:

The header 'Cats' (row 2, column 2) applies to the headers 'Legs' (row 3, column 2) and 'Tails' (row 4, column 2) and to the data cells in rows 2, 3 and 4 of the 'Average' and 'Maximum' columns.

The header 'English speakers' (row 5, column 2) applies to the headers 'Legs' (row 6, column 2) and 'Tails' (row 7, column 2) and to the data cells in rows 5, 6 and 7 of the 'Average' and 'Maximum' columns.

Each of the 'Legs' and 'Tails' header cells has a scope=row and therefore apply to the data cells (to the right) in their row, from the 'Average' and 'Maximum' columns.

Representation of the example 
   table overlayed with arrows indicating which cells each header applies to.

4.9.11 Attributes common to td and th elements

The td and th elements may have a colspan content attribute specified, whose value must be a valid non-negative integer greater than zero.

The td and th elements may also have a rowspan content attribute specified, whose value must be a valid non-negative integer. For this attribute, the value zero means that the cell is to span all the remaining rows in the row group.

These attributes give the number of columns and rows respectively that the cell is to span. These attributes must not be used to overlap cells, as described in the description of the table model.


The td and th element may have a headers content attribute specified. The headers attribute, if specified, must contain a string consisting of an unordered set of unique space-separated tokens that are case-sensitive, each of which must have the value of an ID of a th element taking part in the same table as the td or th element (as defined by the table model).

A th element with ID id is said to be directly targeted by all td and th elements in the same table that have headers attributes whose values include as one of their tokens the ID id. A th element A is said to be targeted by a th or td element B if either A is directly targeted by B or if there exists an element C that is itself targeted by the element B and A is directly targeted by C.

A th element must not be targeted by itself.

The colspan, rowspan, and headers attributes take part in the table model.


The td and th elements implement interfaces that inherit from the HTMLTableCellElement interface:

interface HTMLTableCellElement : HTMLElement {
           attribute unsigned long colSpan;
           attribute unsigned long rowSpan;
  [PutForwards=value] readonly attribute DOMSettableTokenList headers;
  readonly attribute long cellIndex;
};
cell . cellIndex

Returns the position of the cell in the row's cells list. This does not necessarily correspond to the x-position of the cell in the table, since earlier cells might cover multiple rows or columns.

Returns −1 if the element isn't in a row.

The colSpan IDL attribute must reflect the colspan content attribute. Its default value is 1.

The rowSpan IDL attribute must reflect the rowspan content attribute. Its default value is 1.

The headers IDL attribute must reflect the content attribute of the same name.

The cellIndex IDL attribute must, if the element has a parent tr element, return the index of the cell's element in the parent element's cells collection. If there is no such parent element, then the attribute must return −1.

4.9.12 Processing model

The various table elements and their content attributes together define the table model.

A table consists of cells aligned on a two-dimensional grid of slots with coordinates (x, y). The grid is finite, and is either empty or has one or more slots. If the grid has one or more slots, then the x coordinates are always in the range 0 ≤ x < xwidth, and the y coordinates are always in the range 0 ≤ y < yheight. If one or both of xwidth and yheight are zero, then the table is empty (has no slots). Tables correspond to table elements.

A cell is a set of slots anchored at a slot (cellx, celly), and with a particular width and height such that the cell covers all the slots with coordinates (x, y) where cellx ≤ x < cellx+width and celly ≤ y < celly+height. Cells can either be data cells or header cells. Data cells correspond to td elements, and header cells correspond to th elements. Cells of both types can have zero or more associated header cells.

It is possible, in certain error cases, for two cells to occupy the same slot.

A row is a complete set of slots from x=0 to x=xwidth-1, for a particular value of y. Rows usually correspond to tr elements, though a row group can have some implied rows at the end in some cases involving cells spanning multiple rows.

A column is a complete set of slots from y=0 to y=yheight-1, for a particular value of x. Columns can correspond to col elements. In the absence of col elements, columns are implied.

A row group is a set of rows anchored at a slot (0, groupy) with a particular height such that the row group covers all the slots with coordinates (x, y) where 0 ≤ x < xwidth and groupy ≤ y < groupy+height. Row groups correspond to tbody, thead, and tfoot elements. Not every row is necessarily in a row group.

A column group is a set of columns anchored at a slot (groupx, 0) with a particular width such that the column group covers all the slots with coordinates (x, y) where groupx ≤ x < groupx+width and 0 ≤ y < yheight. Column groups correspond to colgroup elements. Not every column is necessarily in a column group.

Row groups cannot overlap each other. Similarly, column groups cannot overlap each other.

A cell cannot cover slots that are from two or more row groups. It is, however, possible for a cell to be in multiple column groups. All the slots that form part of one cell are part of zero or one row groups and zero or more column groups.

In addition to cells, columns, rows, row groups, and column groups, tables can have a caption element associated with them. This gives the table a heading, or legend.

A table model error is an error with the data represented by table elements and their descendants. Documents must not have table model errors.

4.9.12.1 Forming a table

To determine which elements correspond to which slots in a table associated with a table element, to determine the dimensions of the table (xwidth and yheight), and to determine if there are any table model errors, user agents must use the following algorithm:

  1. Let xwidth be zero.

  2. Let yheight be zero.

  3. Let pending tfoot elements be a list of tfoot elements, initially empty.

  4. Let the table be the table represented by the table element. The xwidth and yheight variables give the table's dimensions. The table is initially empty.

  5. If the table element has no children elements, then return the table (which will be empty), and abort these steps.

  6. Associate the first caption element child of the table element with the table. If there are no such children, then it has no associated caption element.

  7. Let the current element be the first element child of the table element.

    If a step in this algorithm ever requires the current element to be advanced to the next child of the table when there is no such next child, then the user agent must jump to the step labeled end, near the end of this algorithm.

  8. While the current element is not one of the following elements, advance the current element to the next child of the table:

  9. If the current element is a colgroup, follow these substeps:

    1. Column groups: Process the current element according to the appropriate case below:

      If the current element has any col element children

      Follow these steps:

      1. Let xstart have the value of xwidth.

      2. Let the current column be the first col element child of the colgroup element.

      3. Columns: If the current column col element has a span attribute, then parse its value using the rules for parsing non-negative integers.

        If the result of parsing the value is not an error or zero, then let span be that value.

        Otherwise, if the col element has no span attribute, or if trying to parse the attribute's value resulted in an error or zero, then let span be 1.

      4. Increase xwidth by span.

      5. Let the last span columns in the table correspond to the current column col element.

      6. If current column is not the last col element child of the colgroup element, then let the current column be the next col element child of the colgroup element, and return to the step labeled columns.

      7. Let all the last columns in the table from x=xstart to x=xwidth-1 form a new column group, anchored at the slot (xstart, 0), with width xwidth-xstart, corresponding to the colgroup element.

      If the current element has no col element children
      1. If the colgroup element has a span attribute, then parse its value using the rules for parsing non-negative integers.

        If the result of parsing the value is not an error or zero, then let span be that value.

        Otherwise, if the colgroup element has no span attribute, or if trying to parse the attribute's value resulted in an error or zero, then let span be 1.

      2. Increase xwidth by span.

      3. Let the last span columns in the table form a new column group, anchored at the slot (xwidth-span, 0), with width span, corresponding to the colgroup element.

    2. Advance the current element to the next child of the table.

    3. While the current element is not one of the following elements, advance the current element to the next child of the table:

    4. If the current element is a colgroup element, jump to the step labeled column groups above.

  10. Let ycurrent be zero.

  11. Let the list of downward-growing cells be an empty list.

  12. Rows: While the current element is not one of the following elements, advance the current element to the next child of the table:

  13. If the current element is a tr, then run the algorithm for processing rows, advance the current element to the next child of the table, and return to the step labeled rows.

  14. Run the algorithm for ending a row group.

  15. If the current element is a tfoot, then add that element to the list of pending tfoot elements, advance the current element to the next child of the table, and return to the step labeled rows.

  16. The current element is either a thead or a tbody.

    Run the algorithm for processing row groups.

  17. Advance the current element to the next child of the table.

  18. Return to the step labeled rows.

  19. End: For each tfoot element in the list of pending tfoot elements, in tree order, run the algorithm for processing row groups.

  20. If there exists a row or column in the table containing only slots that do not have a cell anchored to them, then this is a table model error.

  21. Return the table.

The algorithm for processing row groups, which is invoked by the set of steps above for processing thead, tbody, and tfoot elements, is:

  1. Let ystart have the value of yheight.

  2. For each tr element that is a child of the element being processed, in tree order, run the algorithm for processing rows.

  3. If yheight > ystart, then let all the last rows in the table from y=ystart to y=yheight-1 form a new row group, anchored at the slot with coordinate (0, ystart), with height yheight-ystart, corresponding to the element being processed.

  4. Run the algorithm for ending a row group.

The algorithm for ending a row group, which is invoked by the set of steps above when starting and ending a block of rows, is:

  1. While ycurrent is less than yheight, follow these steps:

    1. Run the algorithm for growing downward-growing cells.

    2. Increase ycurrent by 1.

  2. Empty the list of downward-growing cells.

The algorithm for processing rows, which is invoked by the set of steps above for processing tr elements, is:

  1. If yheight is equal to ycurrent, then increase yheight by 1. (ycurrent is never greater than yheight.)

  2. Let xcurrent be 0.

  3. Run the algorithm for growing downward-growing cells.

  4. If the tr element being processed has no td or th element children, then increase ycurrent by 1, abort this set of steps, and return to the algorithm above.

  5. Let current cell be the first td or th element child in the tr element being processed.

  6. Cells: While xcurrent is less than xwidth and the slot with coordinate (xcurrent, ycurrent) already has a cell assigned to it, increase xcurrent by 1.

  7. If xcurrent is equal to xwidth, increase xwidth by 1. (xcurrent is never greater than xwidth.)

  8. If the current cell has a colspan attribute, then parse that attribute's value, and let colspan be the result.

    If parsing that value failed, or returned zero, or if the attribute is absent, then let colspan be 1, instead.

  9. If the current cell has a rowspan attribute, then parse that attribute's value, and let rowspan be the result.

    If parsing that value failed or if the attribute is absent, then let rowspan be 1, instead.

  10. If rowspan is zero and the table element's Document is not set to quirks mode, then let cell grows downward be true, and set rowspan to 1. Otherwise, let cell grows downward be false.

  11. If xwidth < xcurrent+colspan, then let xwidth be xcurrent+colspan.

  12. If yheight < ycurrent+rowspan, then let yheight be ycurrent+rowspan.

  13. Let the slots with coordinates (x, y) such that xcurrent ≤ x < xcurrent+colspan and ycurrent ≤ y < ycurrent+rowspan be covered by a new cell c, anchored at (xcurrent, ycurrent), which has width colspan and height rowspan, corresponding to the current cell element.

    If the current cell element is a th element, let this new cell c be a header cell; otherwise, let it be a data cell.

    To establish which header cells apply to the current cell element, use the algorithm for assigning header cells described in the next section.

    If any of the slots involved already had a cell covering them, then this is a table model error. Those slots now have two cells overlapping.

  14. If cell grows downward is true, then add the tuple {c, xcurrent, colspan} to the list of downward-growing cells.

  15. Increase xcurrent by colspan.

  16. If current cell is the last td or th element child in the tr element being processed, then increase ycurrent by 1, abort this set of steps, and return to the algorithm above.

  17. Let current cell be the next td or th element child in the tr element being processed.

  18. Return to the step labeled cells.

When the algorithms above require the user agent to run the algorithm for growing downward-growing cells, the user agent must, for each {cell, cellx, width} tuple in the list of downward-growing cells, if any, extend the cell cell so that it also covers the slots with coordinates (x, ycurrent), where cellx ≤ x < cellx+width.

4.9.12.2 Forming relationships between data cells and header cells

Each cell can be assigned zero or more header cells. The algorithm for assigning header cells to a cell principal cell is as follows.

  1. Let header list be an empty list of cells.

  2. Let (principalx, principaly) be the coordinate of the slot to which the principal cell is anchored.

  3. If the principal cell has a headers attribute specified
    1. Take the value of the principal cell's headers attribute and split it on spaces, letting id list be the list of tokens obtained.

    2. For each token in the id list, if the first element in the Document with an ID equal to the token is a cell in the same table, and that cell is not the principal cell, then add that cell to header list.

    If principal cell does not have a headers attribute specified
    1. Let principalwidth be the width of the principal cell.

    2. Let principalheight be the height of the principal cell.

    3. For each value of y from principaly to principaly+principalheight-1, run the internal algorithm for scanning and assigning header cells, with the principal cell, the header list, the initial coordinate (principalx,y), and the increments Δx=−1 and Δy=0.

    4. For each value of x from principalx to principalx+principalwidth-1, run the internal algorithm for scanning and assigning header cells, with the principal cell, the header list, the initial coordinate (x,principaly), and the increments Δx=0 and Δy=−1.

    5. If the principal cell is anchored in a row group, then add all header cells that are row group headers and are anchored in the same row group with an x-coordinate less than or equal to principalx+principalwidth-1 and a y-coordinate less than or equal to principaly+principalheight-1 to header list.

    6. If the principal cell is anchored in a column group, then add all header cells that are column group headers and are anchored in the same column group with an x-coordinate less than or equal to principalx+principalwidth-1 and a y-coordinate less than or equal to principaly+principalheight-1 to header list.

  4. Remove all the empty cells from the header list.

  5. Remove any duplicates from the header list.

  6. Remove principal cell from the header list if it is there.

  7. Assign the headers in the header list to the principal cell.

The internal algorithm for scanning and assigning header cells, given a principal cell, a header list, an initial coordinate (initialx, initialy), and Δx and Δy increments, is as follows:

  1. Let x equal initialx.

  2. Let y equal initialy.

  3. Let opaque headers be an empty list of cells.

  4. If principal cell is a header cell

    Let in header block be true, and let headers from current header block be a list of cells containing just the principal cell.

    Otherwise

    Let in header block be false and let headers from current header block be an empty list of cells.

  5. Loop: Increment x by Δx; increment y by Δy.

    For each invocation of this algorithm, one of Δx and Δy will be −1, and the other will be 0.

  6. If either x or y is less than 0, then abort this internal algorithm.

  7. If there is no cell covering slot (x, y), or if there is more than one cell covering slot (x, y), return to the substep labeled loop.

  8. Let current cell be the cell covering slot (x, y).

  9. If current cell is a header cell
    1. Set in header block to true.

    2. Add current cell to headers from current header block.

    3. Let blocked be false.

    4. If Δx is 0

      If there are any cells in the opaque headers list anchored with the same x-coordinate as the current cell, and with the same width as current cell, then let blocked be true.

      If the current cell is not a column header, then let blocked be true.

      If Δy is 0

      If there are any cells in the opaque headers list anchored with the same y-coordinate as the current cell, and with the same height as current cell, then let blocked be true.

      If the current cell is not a row header, then let blocked be true.

    5. If blocked is false, then add the current cell to the headers list.

    If current cell is a data cell and in header block is true

    Set in header block to false. Add all the cells in headers from current header block to the opaque headers list, and empty the headers from current header block list.

  10. Return to the step labeled loop.

A header cell anchored at the slot with coordinate (x, y) with width width and height height is said to be a column header if any of the following conditions are true:

A header cell anchored at the slot with coordinate (x, y) with width width and height height is said to be a row header if any of the following conditions are true:

A header cell is said to be a column group header if its scope attribute is in the column group state.

A header cell is said to be a row group header if its scope attribute is in the row group state.

A cell is said to be an empty cell if it contains no elements and its text content, if any, consists only of White_Space characters.

4.9.13 Table sorting model

The sortable attribute on table elements is a boolean attribute. When present, it indicates that the user agent is to allow the user to sort the table.

To make a column sortable in a table with a thead, the column needs to have th element that does not span multiple columns in a thead above any rows that it is to sort.

To make a column sortable in a table without a thead, the column needs to have th element that does not span multiple columns in the first tr element of the table, where that tr element is not in a tfoot.

When the user selects a column by which to sort, the user agent sets the th element's sorted attribute. This attribute can also be set manually, to indicate that the table should be automatically sorted, even when scripts modify the page on when the page is loaded.

The sorted attribute, if specified, must have a value that is a set of space-separated tokens consisting of optionally a token whose value is an ASCII case-insensitive match for the string "reversed", and optionally a token whose value is a valid non-negative integer greater than zero, in either order.

In other words, ignoring spaces and case, the sorted attribute's value can be empty, "reversed", "1", "reversed 1", or "1 reversed", where "1" is any number equal to or greater than 1.

While one or more th elements in the table have a sorted attribute, the user agent will keep the table's data rows sorted. The value of the attribute controls how the column is used in determining the sort order. The reversed keyword means that the column sort direction is reversed, rather than normal, which is the default if the keyword is omitted. The number, if present, indicates the column key ordinality; if the number is omitted, the column is the primary key, as if the value 1 had been specified.

Thus, sorted="1" indicates the table's primary key, sorted="2" its secondary key, and so forth.


A sorting-capable th element is a th element that matches all the following conditions simultaneously:

In other words, each column can have one sorting-capable th element; this will be the highest th in a thead that spans no other columns, or, if there is no thead, the th in the first row (that is not in a tfoot), assuming it spans no columns.

The sorting-capable th elements of the table element table are the sorting-capable th elements whose cell's table is table.

A table element table is a sorting-capable table element if there are one or more sorting-capable th elements of the table element table.

A th element is a sorting-enabled th element if it is a sorting-capable th element and it has a sorted attribute.

The sorting-enabled th elements of the table element table are the sorting-enabled th elements whose cell's table is table.

A table element table is a sorting-enabled table element if there are one or more sorting-capable th elements of the table element table, and at least one of them is a sorting-enabled th element (i.e. at least one has a sorted attribute).

A table element is a table element with a user-agent exposed sorting interface if it is a sorting-capable table element and has a sortable attribute specified.

A sorting interface th element is a sorting-capable th element whose cell's table is a table element with a user-agent exposed sorting interface.


Each table element has a currently-sorting flag, which must initially be false.


The sorted attribute must not be specified on th elements that are not sorting-capable th elements. The sortable attribute must not be specified on table elements that are not sorting-capable table elements.

To determine a th element's sorted attribute's column sort direction and column key ordinality, user agents must use the following algorithm:

  1. Let direction be normal.

  2. Let have explicit direction be false.

  3. Let ordinality be 1.

  4. Let have explicit ordinality be false.

  5. Let tokens be the result of splitting the attribute's value on spaces.

  6. For each token token in tokens, run the appropriate steps from the following list:

    If have explicit direction is false and token is an ASCII case-insensitive match for the string "reversed"

    Let direction be reversed and have explicit direction be true.

    If have explicit ordinality is false

    Parse token as an integer. If this resulted in an error or the value zero, then ignore the token. Otherwise, set ordinality to the parsed value, and set have explicit ordinality to true.

    Otherwise

    Ignore the token.

  7. The column sort direction is the value of direction, and the column key ordinality is the value of ordinality.

A table must not have two th elements whose sorted attribute have the same column key ordinality.


The table sorting algorithm, which is applied to a table, is as follows:

  1. Let table be the table element being sorted.

  2. If table's currently-sorting flag is true, then abort these steps.

  3. Set table's currently-sorting flag to true.

  4. Fire a simple event named sort that is cancelable at table.

  5. If the event fired in the previous step was canceled, then jump to the step labeled end below.

  6. If table is not now a sorting-enabled table element, then jump to the step labeled end below.

    Even if table was a sorting-enabled table element when the algorithm was invoked, the DOM might have been entirely changed by the event handlers for the sort event, so this has to be verified at this stage, not earlier.

  7. Let key heading cells be the sorting-enabled th elements of the table element table.

  8. Sort key heading cells in ascending order of the column key ordinality of their sorted attributes, with those having the same column key ordinality being sorted in tree order.

  9. Let row collection cursor be a pointer to an element, initially pointing at the first child of table that is after table's first thead, if any, and that is either a tbody or a tr element, assuming there is one. If there is no such child, then jump to the step labeled end below.

  10. If table has no row group corresponding to a thead element, then set ignore first group to true. Otherwise, set it to false.

  11. Row loop: Let rows be an empty list of tr elements.

  12. Run the appropriate steps from the following list:

    If row collection cursor points to a tr element
    1. Collect: Append the element pointed to by row collection cursor to rows.

    2. If there are no tr or tbody children of table that are later siblings of the element pointed to by row collection cursor, or if the next such child is a tbody element, then jump to the step labeled group below.

    3. Let row collection cursor point to the next tr child of table that is a later sibling of the element pointed to by row collection cursor.

    4. Return to the step labeled collect above.

    If row collection cursor points to a tbody element
    1. Place all the tr element children of the element pointed to by row collection cursor into rows, in tree order.

    2. If rows is empty, jump to the step labeled increment loop below.

  13. Group: Let groups be an empty list of groups of tr elements.

  14. Let group be an empty group of tr elements.

  15. Let group cursor be a pointer to an element, initially pointing at the first tr element in rows.

  16. Start group: Let pending rows in group be 1.

  17. Group loop: Append the tr element pointed to by group cursor to group.

  18. If there are any cells whose highest row's element is the one pointed to by group cursor, then let tallest height be the number of rows covered by the tallest such cell.

  19. If tallest height is greater than pending rows in group then set pending rows in group to tallest height.

  20. Decrement pending rows in group by one.

  21. Let group cursor point to the next tr element in rows, if any; otherwise, let it be null.

  22. If group cursor is not null and pending rows in group is not zero, return to the step labeled group loop.

  23. Append a new group to groups consisting of the tr elements in group.

  24. Empty group.

  25. If group cursor is not null, then return to the step labeled start group.

  26. If ignore first group is true, then drop the first group in groups and set ignore first group to false.

  27. Drop leading header groups: If groups is now empty, jump to the step labeled increment loop below.

  28. If the first group of groups consists of tr elements whose element children are all th elements, then drop the first group in groups and return to the previous step (labeled drop leading header groups).

  29. Let insertion point be a placeholder in a DOM tree, which can be used to reinsert nodes at a specific point in the DOM. Insert insertion point into the parent of the first tr element of the first group in groups, immediately before that tr element.

  30. Sort the groups in groups, using the following algorithm to decide the relative order of any two groups a and b (the algorithm either returns that a comes before b, or that b comes before a):

    1. Let key index be an index into key heading cells, initially denoting the first element in the list.

    2. Let direction be a sort direction, initially ascending. Its other possible value is descending. When direction is toggled, that means that if its value is ascending, it must be changed to descending, and when its value is descending, it must be changed to ascending.

    3. Column loop: Let th be the key indexth th in key heading cells.

    4. If th's sorted attribute's column sort direction is reversed, then toggle direction.

    5. Let tentative order be the result of comparing two row groups using the th element th, with a and b as the rows.

    6. If tentative order is not "equal", then jump to the step labeled return below.

    7. Increment key index.

    8. If key index still denotes a th element in key heading cells, then jump back to the step above labeled column loop.

    9. If a's tr elements precede b's in tree order, then let tentative order be "a before b". Otherwise, let tentative order be "b before a".

    10. Return: Return the relative order given by the matching option from the following list:

      If direction is ascending and tentative order is "a before b"
      Return that a comes before b.
      If direction is ascending and tentative order is "b before a"
      Return that b comes before a.
      If direction is descending and tentative order is "a before b"
      Return that b comes before a.
      If direction is descending and tentative order is "b before a"
      Return that a comes before b.

    When the user agent is required to compare two row groups using the th element th, with a and b being the two row groups respectively, the user agent must run the following steps:

    1. Let x be the x-coordinate of the slots that th covers in its table.

    2. Let cella be the element corresponding to the cell in the first row of group a that covers the slot in that row whose x-coordinate is x.

      Let cellb be the element corresponding to the cell in the first row of group b that covers the slot in that row whose x-coordinate is x.

      In either case, if there's no cell that actually covers the slot, then use the value null instead.

    3. Let typea and valuea be the type and value of the cell cella, as defined below.

      Let typeb and valueb be the type and value of the cell cellb, as defined below.

      The type and value of the cell cell are computed as follows.

      1. If cell is null, then the type is "string" and the value is the empty string; abort these steps.

      2. If, ignoring inter-element whitespace and nodes other than Element and Text nodes, cell has only one child and that child is a data element, then the value is the value of that data element's value attribute, if there is one, or the empty string otherwise; the type is "string".

      3. If, ignoring inter-element whitespace and nodes other than Element and Text nodes, cell has only one child and that child is a progress element, then the value is the value of that progress element's value attribute, if there is one, or the empty string otherwise; the type is "string".

      4. If, ignoring inter-element whitespace and nodes other than Element and Text nodes, cell has only one child and that child is a meter element, then the value is the value of that meter element's value attribute, if there is one, or the empty string otherwise; the type is "string".

      5. If, ignoring inter-element whitespace and nodes other than Element and Text nodes, cell has only one child and that child is a time element, then the value is the machine-readable equivalent of the element's contents, if any, and the type is the kind of value that is thus obtained (a month, a date, a yearless date, a time, a floating date and time, a time-zone offset, a global date and time, a week, a year, or a duration); abort these steps after completing this one.

        If there is no machine-readable equivalent, then the type is "string" and the value is the empty string.

        If the type is a month, a date, a week, or a year, then change the value to be the instant in time (with no time zone) that describes the earliest moment that the value represents, and change the type to be a floating date and time.

        For example, if the cell was <td><time>2011-11</time> then for sorting purposes the value is interpreted as "2011-11-01T00:00:00.000" and the type is treated as a floating date and time rather than a month.

        Similarly, if the cell was <td><time datetime="2014">MMXIV</time> then for sorting purposes the value is interpreted as "2014-01-01T00:00:00.000" and the type is treated as a floating date and time rather than a year.

      6. The value is the element's textContent. The type is "string".

    4. If typea and typeb are not equal, then: return "a before b" if typea is earlier in the following list than typeb, otherwise, return "b before a"; then, abort these steps.

      1. time
      2. yearless date
      3. floating date and time
      4. global date and time
      5. time-zone offset
      6. duration
      7. "string"
    5. If valuea and valueb are equal, then return "equal" and abort these steps.

    6. If typea and typeb are not "string", then: if valuea is earlier than valueb then return "a before b" and abort these steps, otherwise, return "b before a" and abort these steps.

      Values sort in their natural order, with the following additional constraints:

      For time values, 00:00:00.000 is the earliest value and 23:59:59.999 is the latest value.

      For yearless date values, 01-01 is the earliest value and 12-31 is the latest value; 02-28 is earlier than 02-29 which is earlier than 03-01.

      Values that are floating date and time compare as if they were in the same time zone.

      For time-zone offset values, -23:59 is the earliest value and +23:59 is the latest value.

    7. Let componentsa be the result of parsing the sort key valuea.

      Let componentsb be the result of parsing the sort key valueb.

      As described below, componentsa and componentsb are tuples consisting of a list of n numbers, a list of n number strings, a list of n+1 non-numeric strings, and a list of 2n+1 raw strings, for any non-negative integer value of n (zero or more).

    8. Let order be the result of a locale-specific string comparison of componentsa's first non-numeric string and componentsb's first non-numeric string, in the context of th.

      If order is not "equal" then return order and abort these steps.

    9. If componentsa and componentsb both have exactly one number, then run these substeps:

      1. If componentsa's number is less than componentsb's number, return "a before b".

        If componentsb's number is less than componentsa's number, return "b before a".

      2. Let order be the result of a locale-specific string comparison of componentsa's second non-numeric string and componentsb's second non-numeric string, in the context of th.

        If order is not "equal" then return order and abort these steps.

      3. Let order be the result of a locale-specific string comparison of componentsa's number string and componentsb's number string, in the context of th.

        If order is not "equal" then return order and abort these steps.

      Otherwise, run these substeps:

      1. If componentsa has zero numbers but componentsb has more than zero numbers, return "a before b".

        If componentsb has zero numbers but componentsa has more than zero numbers, return "b before a".

      2. If componentsa has one number, return "a before b".

        If componentsb has one number, return "b before a".

      3. If componentsa and componentsb have more than one number, run these substeps:

        1. Let count be the smaller of the number of numbers in componentsa and the number of numbers in componentsb.

        2. For each number in componentsa and componentsb from the first to the countth, in order: if componentsa's number is less than componentsb's number, then return "a before b" and abort these steps; otherwise, if componentsb's number is less than componentsa's number, return "b before a" and abort these steps.

        3. If componentsa has fewer numbers than componentsb, return "a before b" and abort these steps.

          If componentsb has fewer numbers than componentsa, return "b before a" and abort these steps.

        4. Let index be zero.

        5. String loop: Let order be the result of a locale-specific string comparison of componentsa's indexth number string and componentsb's indexth number string, in the context of th.

          If order is not "equal" then return order and abort these steps.

        6. Increment index.

        7. Let order be the result of a locale-specific string comparison of componentsa's indexth separator string and componentsb's indexth separator string, in the context of th.

          If order is not "equal" then return order and abort these steps.

        8. If index is less than the number of numbers in componentsa and componentsb, return to the step labeled string loop.

    10. Let index be zero.

    11. Final loop: Let order be the result of a raw string comparison of componentsa's nth raw string and componentsb's nth raw string.

      If order is not "equal" then return order and abort these steps.

    12. Increment index.

    13. If index is less than the number of raw strings in componentsa and componentsb, return to the step labeled final loop.

    14. Return "equal".

  31. Let new order be a list of tr elements consisting of the tr elements of all the groups in the newly ordered groups, with the tr elements being in the same order as the groups to which they belong are in groups, and the tr elements within each such group themselves being ordered in tree order.

  32. Remove all the tr elements in new order from their parents, in tree order.

  33. Insert all the tr elements in new order into the DOM at the location of insertion point, in the order these elements are found in new order.

  34. Remove insertion point from the DOM.

  35. Increment loop: If there are no tr or tbody children of table that are later siblings of the element pointed to by row collection cursor, then jump to the step labeled end below.

  36. Let row collection cursor point to the next tr or tbody child of table that is a later sibling of the element pointed to by row collection cursor.

  37. Return to the step labeled row loop above.

  38. End: Set table's currently-sorting flag to false.

When a user agent is to parse the sort key value, it must run the following steps. These return a tuple consisting of a list of n numbers, a list of n number strings, a list of n+1 non-numeric strings, and a list of 2n+1 raw strings, respectively, for any non-negative integer value of n (zero or more).

  1. Let raw strings be a list of strings initially containing just one entry, an empty string.

  2. Let negatives prejudiced be false.

    Let decimals prejudiced be false.

    Let exponents prejudiced be false.

  3. Let buffer be the empty string.

    Let index be zero.

    Let mode be "separator".

    When a subsequent step in this algorithm says to push the buffer, the user agent must run the following substeps:

    1. Add an entry to raw strings that consists of the value of buffer.

    2. Add an entry to raw strings that is the empty string.

    3. Decrement index by one.

    4. Set mode to "separator".

  4. Let checkpoint buffer be the empty string.

    Let checkpoint index be zero.

    When a subsequent step in this algorithm says to checkpoint, the user agent must run the following substeps:

    1. Set the checkpoint buffer to the value of buffer.

    2. Set the checkpoint index to the value of index.

    When a subsequent step in this algorithm says to push the checkpoint, the user agent must run the following substeps:

    1. Add an entry to raw strings that consists of the value of checkpoint buffer.

    2. Add an entry to raw strings that is the empty string.

    3. Decrement index by one.

    4. Set mode to "separator".

  5. Run through the following steps repeatedly until the condition in the last step is met.

    1. Top of loop: If index is equal to or greater than the number of characters in value, let c be EOF. Otherwise, let c be the indexth character in value.

    2. Run the appropriate steps from the following list:

      If mode is "separator"

      Run the appropriate substeps from the following list:

      If c is a space character

      Set negatives prejudiced to false.

      Set decimals prejudiced to false.

      Set exponents prejudiced to false.

      Append c to the last entry in raw strings.

      If c is a "-" (U+002D) character and negatives prejudiced is false

      Set buffer to the value of c.

      Set mode to "negative".

      If c is a "." (U+002E) character and decimals prejudiced is false

      Set buffer to the value of c.

      Set mode to "leading-decimal".

      If c is an ASCII digit

      Set buffer to the value of c.

      Set mode to "integral".

      If c is an uppercase ASCII letter or a lowercase ASCII letter

      Set exponents prejudiced to true.

      Append c to the last entry in raw strings.

      If c is EOF

      Do nothing.

      Otherwise

      Append c to the last entry in raw strings.

      If mode is "negative"

      Run the appropriate substeps from the following list:

      If c is a "-" (U+002D) character

      Set negatives prejudiced to true.

      Append buffer to the last entry in raw strings.

      Append c to the last entry in raw strings.

      Set mode to "separator".

      If c is a "." (U+002E) character and decimals prejudiced is false

      Append c to buffer.

      Set mode to "leading-decimal".

      If c is an ASCII digit

      Append c to buffer.

      Set mode to "integral".

      Otherwise

      Append buffer to the last entry in raw strings.

      Decrement index by one.

      Set mode to "separator".

      If mode is "integral"

      Run the appropriate substeps from the following list:

      If c is a "-" (U+002D) character

      Set negatives prejudiced to true.

      Push the buffer.

      If c is a "." (U+002E) character and decimals prejudiced is false

      Checkpoint.

      Append c to buffer.

      Set mode to "decimal".

      If c is an ASCII digit

      Append c to the last entry in raw strings.

      If c is a U+0045 LATIN CAPITAL LETTER E character or a U+0065 LATIN SMALL LETTER E character and exponents prejudiced is false

      Checkpoint.

      Append c to buffer.

      Set mode to "exponent".

      Otherwise

      Push the buffer.

      If mode is "leading-decimal"

      Run the appropriate substeps from the following list:

      If c is an ASCII digit

      Append c to buffer.

      Set mode to "decimal".

      Otherwise

      Append buffer to the last entry in raw strings.

      Decrement index by one.

      Set mode to "separator".

      If mode is "decimal"

      Run the appropriate substeps from the following list:

      If c is a "-" (U+002D) character

      Set negatives prejudiced to true.

      Push the buffer.

      If c is a "." (U+002E) character and numbers are coming is true

      Set decimals prejudiced to true.

      Push the checkpoint.

      If c is a "." (U+002E) character and numbers are not coming is true

      Push the buffer.

      If c is an ASCII digit

      Append c to buffer.

      If c is a U+0045 LATIN CAPITAL LETTER E character or a U+0065 LATIN SMALL LETTER E character and exponents prejudiced is false

      Checkpoint.

      Append c to buffer.

      Set mode to "exponent".

      Otherwise

      Push the buffer.

      If mode is "exponent"

      Run the appropriate substeps from the following list:

      If c is a "-" (U+002D) character and negatives prejudiced is false

      Append c to buffer.

      Set mode to "exponent-negative".

      If c is a "." (U+002E) character

      Set decimals prejudiced to true.

      Push the checkpoint.

      If c is an ASCII digit

      Append c to buffer.

      Set mode to "exponent-number".

      If c is a U+0045 LATIN CAPITAL LETTER E character or a U+0065 LATIN SMALL LETTER E character

      Set exponents prejudiced to true.

      Push the checkpoint.

      Otherwise

      Push the checkpoint.

      If mode is "exponent-negative"

      Run the appropriate substeps from the following list:

      If c is a "-" (U+002D) character

      Set negatives prejudiced to true.

      Push the checkpoint.

      If c is a "." (U+002E) character

      Set decimals prejudiced to true.

      Push the checkpoint.

      If c is an ASCII digit

      Append c to buffer.

      Set mode to "exponent-negative-number".

      If c is a U+0045 LATIN CAPITAL LETTER E character or a U+0065 LATIN SMALL LETTER E character

      Set exponents prejudiced to true.

      Push the checkpoint.

      Otherwise

      Push the checkpoint.

      If mode is "exponent-number"

      Run the appropriate substeps from the following list:

      If c is a "-" (U+002D) character

      Set negatives prejudiced to true.

      Push the buffer.

      If c is a "." (U+002E) character

      Set decimals prejudiced to true.

      Push the checkpoint.

      If c is an ASCII digit

      Append c to buffer.

      If c is a U+0045 LATIN CAPITAL LETTER E character or a U+0065 LATIN SMALL LETTER E character

      Set exponents prejudiced to true.

      Push the checkpoint.

      Otherwise

      Push the buffer.

      If mode is "exponent-negative-number"

      Run the appropriate substeps from the following list:

      If c is a "-" (U+002D) character

      Set negatives prejudiced to true.

      Push the checkpoint.

      If c is a "." (U+002E) character

      Set decimals prejudiced to true.

      Push the checkpoint.

      If c is an ASCII digit

      Append c to buffer.

      If c is a U+0045 LATIN CAPITAL LETTER E character or a U+0065 LATIN SMALL LETTER E character

      Set exponents prejudiced to true.

      Push the checkpoint.

      Otherwise

      Push the buffer.

    3. Increment index by one.

    4. If index is greater than the number of characters in value, stop repeating these substeps and continue along the overall steps. Otherwise, return to the step labeled top of loop.

  6. Let numbers be an empty list.

    Let number strings be an empty list.

    Let non-numeric strings be an empty list.

  7. For each even-numbered entry in raw strings, in order, starting from the first entry (numbered 0), append an entry to non-numeric strings that consists of the result of trimming and collapsing the value of the entry.

  8. If raw strings has more than one entry, then, for each odd-numbered entry in raw strings, in order, starting from the second entry (numbered 1), append an entry to number strings that consists of the value of the entry, and append an entry to number strings that consists of the result of parsing the value of the entry using the rules for parsing floating-point number values.

  9. Return numbers, number strings, non-numeric strings, and raw strings respectively.

When the user agent is required by the step above to perform a locale-specific string comparison of two strings a and b in the context of an element e, the user agent must apply the Unicode Collation Algorithm, using the Default Unicode Collation Element Table as customised for the language of the element e in the Common Locale Data Repository, to the strings a and b, ignoring case. If the result of this algorithm places a first, then return "a before b"; if it places b first, then return "b before a"; otherwise, if they compare as equal, then return "equal". [UCA] [CLDR]

When the user agent is required by the step above to perform a raw string comparison of two strings a and b, the user agent must apply the Unicode Collation Algorithm, using the Default Unicode Collation Element Table without customizations, to the strings a and b. If the result of this algorithm places a first, then return "a before b"; if it places b first, then return "b before a"; otherwise, if they compare as equal, then return "equal". [UCA]

Where the steps above refer to trimming and collapsing a string value, it means running the following algorithm:

  1. Strip leading and trailing whitespace from value.

  2. Replace any sequence of one or more space characters in value with a single U+0020 SPACE character.


When any of the descendants of a sorting-enabled table element change in any way (including attributes changing), and when a table element becomes a sorting-enabled table element, the table element is said to become a table with a pending sort. When a table element becomes a table with a pending sort, the user agent must queue a microtask that applies the table sorting algorithm to that table, and then flags the table as no longer being a table with a pending sort.


When the user agent is to set the sort key to a th element target, it must run the following algorithm:

  1. Let table be the table of the table of which target is a header cell.

  2. If th is a sorting-enabled th element whose column key ordinality is 1, then: if its column sort direction is normal, set that element's sorted attribute to the string "reversed", otherwise, set it to the empty string; then, abort these steps.

  3. Let current headers be the sorting-enabled th elements of the table element table, excluding target.

  4. Sort current headers by their sorted attributes' column key ordinality, in ascending order, with elements that have the same column key ordinality being sorted in tree order.

  5. Let level be 2.

  6. For each th element th in current headers, in order, run the following substeps:

    1. If th's sorted attribute's column sort direction is normal, then set th's sorted attribute to a valid integer whose value is level. Otherwise, set it to the concatenation of the string "reversed", a U+0020 SPACE character, and a valid integer whose value is level.

    2. Increment level by 1.

  7. Set target's sorted attribute to the empty string.


The activation behavior of a sorting interface th element is to set the sort key to the th element.

The table will be sorted the next time the user agent performs a microtask checkpoint.

th . sort()

Act as if the user had indicated that this was to be the new primary sort column.

The table won't actually be sorted until the script terminates.

table . stopSorting()

Removes all the sorted attributes that are causing the table to automatically sort its contents, if any.

The th element's sort() method, when invoked, must run the following steps:

  1. If the th element is not a sorting-capable th element, then abort these steps.

  2. Set the sort key to the th element.

    The table will be sorted the next time the user agent performs a microtask checkpoint.

The table element's stopSorting() method, when invoked, must remove the sorted attribute of all the sorting-enabled th elements of the table element on which the method was invoked.

4.9.14 Examples

This section is non-normative.

The following shows how might one mark up the bottom part of table 45 of the Smithsonian physical tables, Volume 71:

<table>
 <caption>Specification values: <b>Steel</b>, <b>Castings</b>,
 Ann. A.S.T.M. A27-16, Class B;* P max. 0.06; S max. 0.05.</caption>
 <thead>
  <tr>
   <th rowspan=2>Grade.</th>
   <th rowspan=2>Yield Point.</th>
   <th colspan=2>Ultimate tensile strength</th>
   <th rowspan=2>Per cent elong. 50.8mm or 2 in.</th>
   <th rowspan=2>Per cent reduct. area.</th>
  </tr>
  <tr>
   <th>kg/mm<sup>2</sup></th>
   <th>lb/in<sup>2</sup></th>
  </tr>
 </thead>
 <tbody>
  <tr>
   <td>Hard</td>
   <td>0.45 ultimate</td>
   <td>56.2</td>
   <td>80,000</td>
   <td>15</td>
   <td>20</td>
  </tr>
  <tr>
   <td>Medium</td>
   <td>0.45 ultimate</td>
   <td>49.2</td>
   <td>70,000</td>
   <td>18</td>
   <td>25</td>
  </tr>
  <tr>
   <td>Soft</td>
   <td>0.45 ultimate</td>
   <td>42.2</td>
   <td>60,000</td>
   <td>22</td>
   <td>30</td>
  </tr>
 </tbody>
</table>

This table could look like this:

Specification values: Steel, Castings, Ann. A.S.T.M. A27-16, Class B;* P max. 0.06; S max. 0.05.
Grade. Yield Point. Ultimate tensile strength Per cent elong. 50.8 mm or 2 in. Per cent reduct. area.
kg/mm2 lb/in2
Hard 0.45 ultimate 56.2 80,000 15 20
Medium 0.45 ultimate 49.2 70,000 18 25
Soft 0.45 ultimate 42.2 60,000 22 30

The following shows how one might mark up the gross margin table on page 46 of Apple, Inc's 10-K filing for fiscal year 2008:

<table>
 <thead>
  <tr>
   <th>
   <th>2008
   <th>2007
   <th>2006
 <tbody>
  <tr>
   <th>Net sales
   <td>$ 32,479
   <td>$ 24,006
   <td>$ 19,315
  <tr>
   <th>Cost of sales
   <td>  21,334
   <td>  15,852
   <td>  13,717
 <tbody>
  <tr>
   <th>Gross margin
   <td>$ 11,145
   <td>$  8,154
   <td>$  5,598
 <tfoot>
  <tr>
   <th>Gross margin percentage
   <td>34.3%
   <td>34.0%
   <td>29.0%
</table>

This table could look like this:

2008 2007 2006
Net sales $ 32,479 $ 24,006 $ 19,315
Cost of sales 21,334 15,852 13,717
Gross margin $ 11,145 $ 8,154 $ 5,598
Gross margin percentage 34.3% 34.0% 29.0%

The following shows how one might mark up the operating expenses table from lower on the same page of that document:

<table>
 <colgroup> <col>
 <colgroup> <col> <col> <col>
 <thead>
  <tr> <th> <th>2008 <th>2007 <th>2006
 <tbody>
  <tr> <th scope=rowgroup> Research and development
       <td> $ 1,109 <td> $ 782 <td> $ 712
  <tr> <th scope=row> Percentage of net sales
       <td> 3.4% <td> 3.3% <td> 3.7%
 <tbody>
  <tr> <th scope=rowgroup> Selling, general, and administrative
       <td> $ 3,761 <td> $ 2,963 <td> $ 2,433
  <tr> <th scope=row> Percentage of net sales
       <td> 11.6% <td> 12.3% <td> 12.6%
</table>

This table could look like this:

2008 2007 2006
Research and development $ 1,109 $ 782 $ 712
Percentage of net sales 3.4% 3.3% 3.7%
Selling, general, and administrative $ 3,761 $ 2,963 $ 2,433
Percentage of net sales 11.6% 12.3% 12.6%

Sometimes, tables are used for dense data. For examples, here a table is used to show entries in an access log:

<table sortable>
 <thead>
  <tr>
   <th sorted> Timestamp
   <th> IP
   <th> Message
 <tbody>
  <tr>
   <td> <time>21:01</time>
   <td> 128.30.52.199
   <td> Exceeded ingress limit
  <tr>
   <td> <time>21:04</time>
   <td> 128.30.52.3
   <td> Authentication failure
  <tr>
   <td> <time>22:35</time>
   <td> 128.30.52.29
   <td> Malware command request blocked
  <tr>
   <td> <time>22:36</time>
   <td> 128.30.52.3
   <td> Authentication failure
</table>

Because the table element has a sortable attribute, the column headers can be selected to change the table's sort order.

This might render as follows:

The table as marked above, but with the column headers having interactive affordances to select which column to sort by, the first being already selected.

If the user activates the second column, the table might change as follows:

The same table, but with the second column header's interactive affordance marked as selected, with the IP addresses sorted in numeric order (first the rows with the address ending in '3', then the row with the address ending in '29', and finally the row with the address ending in '199'.

If the user activates the second column again, reversing the sort order, it might change as follows:

The same table, but with the second column header's interactive affordance marked as selected and reversed, with the IP addresses sorted in reverse numeric order (first the row with the address ending in '199', then the row with the address ending in '29', and finally the rows with the address ending in '3'.

4.10 Forms

4.10.1 Introduction

This section is non-normative.

A form is a component of a Web page that has form controls, such as text fields, buttons, checkboxes, range controls, or color pickers. A user can interact with such a form, providing data that can then be sent to the server for further processing (e.g. returning the results of a search or calculation). No client-side scripting is needed in many cases, though an API is available so that scripts can augment the user experience or use forms for purposes other than submitting data to a server.

Writing a form consists of several steps, which can be performed in any order: writing the user interface, implementing the server-side processing, and configuring the user interface to communicate with the server.

4.10.1.1 Writing a form's user interface

This section is non-normative.

For the purposes of this brief introduction, we will create a pizza ordering form.

Any form starts with a form element, inside which are placed the controls. Most controls are represented by the input element, which by default provides a one-line text field. To label a control, the label element is used; the label text and the control itself go inside the label element. Each part of a form is considered a paragraph, and is typically separated from other parts using p elements. Putting this together, here is how one might ask for the customer's name:

<form>
 <p><label>Customer name: <input></label></p>
</form>

To let the user select the size of the pizza, we can use a set of radio buttons. Radio buttons also use the input element, this time with a type attribute with the value radio. To make the radio buttons work as a group, they are given a common name using the name attribute. To group a batch of controls together, such as, in this case, the radio buttons, one can use the fieldset element. The title of such a group of controls is given by the first element in the fieldset, which has to be a legend element.

<form>
 <p><label>Customer name: <input></label></p>
 <fieldset>
  <legend> Pizza Size </legend>
  <p><label> <input type=radio name=size> Small </label></p>
  <p><label> <input type=radio name=size> Medium </label></p>
  <p><label> <input type=radio name=size> Large </label></p>
 </fieldset>
</form>

Changes from the previous step are highlighted.

To pick toppings, we can use checkboxes. These use the input element with a type attribute with the value checkbox:

<form>
 <p><label>Customer name: <input></label></p>
 <fieldset>
  <legend> Pizza Size </legend>
  <p><label> <input type=radio name=size> Small </label></p>
  <p><label> <input type=radio name=size> Medium </label></p>
  <p><label> <input type=radio name=size> Large </label></p>
 </fieldset>
 <fieldset>
  <legend> Pizza Toppings </legend>
  <p><label> <input type=checkbox> Bacon </label></p>
  <p><label> <input type=checkbox> Extra Cheese </label></p>
  <p><label> <input type=checkbox> Onion </label></p>
  <p><label> <input type=checkbox> Mushroom </label></p>
 </fieldset>
</form>

The pizzeria for which this form is being written is always making mistakes, so it needs a way to contact the customer. For this purpose, we can use form controls specifically for telephone numbers (input elements with their type attribute set to tel) and e-mail addresses (input elements with their type attribute set to email):

<form>
 <p><label>Customer name: <input></label></p>
 <p><label>Telephone: <input type=tel></label></p>
 <p><label>E-mail address: <input type=email></label></p>
 <fieldset>
  <legend> Pizza Size </legend>
  <p><label> <input type=radio name=size> Small </label></p>
  <p><label> <input type=radio name=size> Medium </label></p>
  <p><label> <input type=radio name=size> Large </label></p>
 </fieldset>
 <fieldset>
  <legend> Pizza Toppings </legend>
  <p><label> <input type=checkbox> Bacon </label></p>
  <p><label> <input type=checkbox> Extra Cheese </label></p>
  <p><label> <input type=checkbox> Onion </label></p>
  <p><label> <input type=checkbox> Mushroom </label></p>
 </fieldset>
</form>

We can use an input element with its type attribute set to time to ask for a delivery time. Many of these form controls have attributes to control exactly what values can be specified; in this case, three attributes of particular interest are min, max, and step. These set the minimum time, the maximum time, and the interval between allowed values (in seconds). This pizzeria only delivers between 11am and 9pm, and doesn't promise anything better than 15 minute increments, which we can mark up as follows:

<form>
 <p><label>Customer name: <input></label></p>
 <p><label>Telephone: <input type=tel></label></p>
 <p><label>E-mail address: <input type=email></label></p>
 <fieldset>
  <legend> Pizza Size </legend>
  <p><label> <input type=radio name=size> Small </label></p>
  <p><label> <input type=radio name=size> Medium </label></p>
  <p><label> <input type=radio name=size> Large </label></p>
 </fieldset>
 <fieldset>
  <legend> Pizza Toppings </legend>
  <p><label> <input type=checkbox> Bacon </label></p>
  <p><label> <input type=checkbox> Extra Cheese </label></p>
  <p><label> <input type=checkbox> Onion </label></p>
  <p><label> <input type=checkbox> Mushroom </label></p>
 </fieldset>
 <p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900"></label></p>
</form>

The textarea element can be used to provide a free-form text field. In this instance, we are going to use it to provide a space for the customer to give delivery instructions:

<form>
 <p><label>Customer name: <input></label></p>
 <p><label>Telephone: <input type=tel></label></p>
 <p><label>E-mail address: <input type=email></label></p>
 <fieldset>
  <legend> Pizza Size </legend>
  <p><label> <input type=radio name=size> Small </label></p>
  <p><label> <input type=radio name=size> Medium </label></p>
  <p><label> <input type=radio name=size> Large </label></p>
 </fieldset>
 <fieldset>
  <legend> Pizza Toppings </legend>
  <p><label> <input type=checkbox> Bacon </label></p>
  <p><label> <input type=checkbox> Extra Cheese </label></p>
  <p><label> <input type=checkbox> Onion </label></p>
  <p><label> <input type=checkbox> Mushroom </label></p>
 </fieldset>
 <p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900"></label></p>
 <p><label>Delivery instructions: <textarea></textarea></label></p>
</form>

Finally, to make the form submittable we use the button element:

<form>
 <p><label>Customer name: <input></label></p>
 <p><label>Telephone: <input type=tel></label></p>
 <p><label>E-mail address: <input type=email></label></p>
 <fieldset>
  <legend> Pizza Size </legend>
  <p><label> <input type=radio name=size> Small </label></p>
  <p><label> <input type=radio name=size> Medium </label></p>
  <p><label> <input type=radio name=size> Large </label></p>
 </fieldset>
 <fieldset>
  <legend> Pizza Toppings </legend>
  <p><label> <input type=checkbox> Bacon </label></p>
  <p><label> <input type=checkbox> Extra Cheese </label></p>
  <p><label> <input type=checkbox> Onion </label></p>
  <p><label> <input type=checkbox> Mushroom </label></p>
 </fieldset>
 <p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900"></label></p>
 <p><label>Delivery instructions: <textarea></textarea></label></p>
 <p><button>Submit order</button></p>
</form>
4.10.1.2 Implementing the server-side processing for a form

This section is non-normative.

The exact details for writing a server-side processor are out of scope for this specification. For the purposes of this introduction, we will assume that the script at https://pizza.example.com/order.cgi is configured to accept submissions using the application/x-www-form-urlencoded format, expecting the following parameters sent in an HTTP POST body:

custname
Customer's name
custtel
Customer's telephone number
custemail
Customer's e-mail address
size
The pizza size, either small, medium, or large
topping
A topping, specified once for each selected topping, with the allowed values being bacon, cheese, onion, and mushroom
delivery
The requested delivery time
comments
The delivery instructions
4.10.1.3 Configuring a form to communicate with a server

This section is non-normative.

Form submissions are exposed to servers in a variety of ways, most commonly as HTTP GET or POST requests. To specify the exact method used, the method attribute is specified on the form element. This doesn't specify how the form data is encoded, though; to specify that, you use the enctype attribute. You also have to specify the URL of the service that will handle the submitted data, using the action attribute.

For each form control you want submitted, you then have to give a name that will be used to refer to the data in the submission. We already specified the name for the group of radio buttons; the same attribute (name) also specifies the submission name. Radio buttons can be distinguished from each other in the submission by giving them different values, using the value attribute.

Multiple controls can have the same name; for example, here we give all the checkboxes the same name, and the server distinguishes which checkbox was checked by seeing which values are submitted with that name — like the radio buttons, they are also given unique values with the value attribute.

Given the settings in the previous section, this all becomes:

<form method="post"
      enctype="application/x-www-form-urlencoded"
      action="https://pizza.example.com/order.cgi">
 <p><label>Customer name: <input name="custname"></label></p>
 <p><label>Telephone: <input type=tel name="custtel"></label></p>
 <p><label>E-mail address: <input type=email name="custemail"></label></p>
 <fieldset>
  <legend> Pizza Size </legend>
  <p><label> <input type=radio name=size value="small"> Small </label></p>
  <p><label> <input type=radio name=size value="medium"> Medium </label></p>
  <p><label> <input type=radio name=size value="large"> Large </label></p>
 </fieldset>
 <fieldset>
  <legend> Pizza Toppings </legend>
  <p><label> <input type=checkbox name="topping" value="bacon"> Bacon </label></p>
  <p><label> <input type=checkbox name="topping" value="cheese"> Extra Cheese </label></p>
  <p><label> <input type=checkbox name="topping" value="onion"> Onion </label></p>
  <p><label> <input type=checkbox name="topping" value="mushroom"> Mushroom </label></p>
 </fieldset>
 <p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900" name="delivery"></label></p>
 <p><label>Delivery instructions: <textarea name="comments"></textarea></label></p>
 <p><button>Submit order</button></p>
</form>

There is no particular significance to the way some of the attributes have their values quoted and others don't. The HTML syntax allows a variety of equally valid ways to specify attributes, as discussed in the syntax section.

For example, if the customer entered "Denise Lawrence" as their name, "555-321-8642" as their telephone number, did not specify an e-mail address, asked for a medium-sized pizza, selected the Extra Cheese and Mushroom toppings, entered a delivery time of 7pm, and left the delivery instructions text field blank, the user agent would submit the following to the online Web service:

custname=Denise+Lawrence&custtel=555-321-8624&custemail=&size=medium&topping=cheese&topping=mushroom&delivery=19%3A00&comments=
4.10.1.4 Client-side form validation

This section is non-normative.

Forms can be annotated in such a way that the user agent will check the user's input before the form is submitted. The server still has to verify the input is valid (since hostile users can easily bypass the form validation), but it allows the user to avoid the wait incurred by having the server be the sole checker of the user's input.

The simplest annotation is the required attribute, which can be specified on input elements to indicate that the form is not to be submitted until a value is given. By adding this attribute to the customer name, pizza size, and delivery time fields, we allow the user agent to notify the user when the user submits the form without filling in those fields:

<form method="post"
      enctype="application/x-www-form-urlencoded"
      action="https://pizza.example.com/order.cgi">
 <p><label>Customer name: <input name="custname" required></label></p>
 <p><label>Telephone: <input type=tel name="custtel"></label></p>
 <p><label>E-mail address: <input type=email name="custemail"></label></p>
 <fieldset>
  <legend> Pizza Size </legend>
  <p><label> <input type=radio name=size required value="small"> Small </label></p>
  <p><label> <input type=radio name=size required value="medium"> Medium </label></p>
  <p><label> <input type=radio name=size required value="large"> Large </label></p>
 </fieldset>
 <fieldset>
  <legend> Pizza Toppings </legend>
  <p><label> <input type=checkbox name="topping" value="bacon"> Bacon </label></p>
  <p><label> <input type=checkbox name="topping" value="cheese"> Extra Cheese </label></p>
  <p><label> <input type=checkbox name="topping" value="onion"> Onion </label></p>
  <p><label> <input type=checkbox name="topping" value="mushroom"> Mushroom </label></p>
 </fieldset>
 <p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900" name="delivery" required></label></p>
 <p><label>Delivery instructions: <textarea name="comments"></textarea></label></p>
 <p><button>Submit order</button></p>
</form>

It is also possible to limit the length of the input, using the maxlength attribute. By adding this to the textarea element, we can limit users to 1000 characters, preventing them from writing huge essays to the busy delivery drivers instead of staying focused and to the point:

<form method="post"
      enctype="application/x-www-form-urlencoded"
      action="https://pizza.example.com/order.cgi">
 <p><label>Customer name: <input name="custname" required></label></p>
 <p><label>Telephone: <input type=tel name="custtel"></label></p>
 <p><label>E-mail address: <input type=email name="custemail"></label></p>
 <fieldset>
  <legend> Pizza Size </legend>
  <p><label> <input type=radio name=size required value="small"> Small </label></p>
  <p><label> <input type=radio name=size required value="medium"> Medium </label></p>
  <p><label> <input type=radio name=size required value="large"> Large </label></p>
 </fieldset>
 <fieldset>
  <legend> Pizza Toppings </legend>
  <p><label> <input type=checkbox name="topping" value="bacon"> Bacon </label></p>
  <p><label> <input type=checkbox name="topping" value="cheese"> Extra Cheese </label></p>
  <p><label> <input type=checkbox name="topping" value="onion"> Onion </label></p>
  <p><label> <input type=checkbox name="topping" value="mushroom"> Mushroom </label></p>
 </fieldset>
 <p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900" name="delivery" required></label></p>
 <p><label>Delivery instructions: <textarea name="comments" maxlength=1000></textarea></label></p>
 <p><button>Submit order</button></p>
</form>

When a form is submitted, invalid events are fired at each form control that is invalid, and then at the form element itself. This can be useful for displaying a summary of the problems with the form, since typically the browser itself will only report one problem at a time.

4.10.1.5 Enabling client-side automatic filling of form controls

This section is non-normative.

Some browsers attempt to aid the user by automatically filling form controls rather than having the user reenter their information each time. For example, a field asking for the user's telephone number can be automatically filled with the user's phone number.

To help the user agent with this, the autocomplete attribute can be used to describe the field's purpose. In the case of this form, we have three fields that can be usefully annotated in this way: the information about who the pizza is to be delivered to. Adding this information looks like this:

<form method="post"
      enctype="application/x-www-form-urlencoded"
      action="https://pizza.example.com/order.cgi">
 <p><label>Customer name: <input name="custname" required autocomplete="shipping name"></label></p>
 <p><label>Telephone: <input type=tel name="custtel" autocomplete="shipping tel"></label></p>
 <p><label>E-mail address: <input type=email name="custemail" autocomplete="shipping email"></label></p>
 <fieldset>
  <legend> Pizza Size </legend>
  <p><label> <input type=radio name=size required value="small"> Small </label></p>
  <p><label> <input type=radio name=size required value="medium"> Medium </label></p>
  <p><label> <input type=radio name=size required value="large"> Large </label></p>
 </fieldset>
 <fieldset>
  <legend> Pizza Toppings </legend>
  <p><label> <input type=checkbox name="topping" value="bacon"> Bacon </label></p>
  <p><label> <input type=checkbox name="topping" value="cheese"> Extra Cheese </label></p>
  <p><label> <input type=checkbox name="topping" value="onion"> Onion </label></p>
  <p><label> <input type=checkbox name="topping" value="mushroom"> Mushroom </label></p>
 </fieldset>
 <p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900" name="delivery" required></label></p>
 <p><label>Delivery instructions: <textarea name="comments" maxlength=1000></textarea></label></p>
 <p><button>Submit order</button></p>
</form>
4.10.1.6 Improving the user experience on mobile devices

This section is non-normative.

Some devices, in particular those with on-screen keyboards and those in locales with languages with many characters (e.g. Japanese), can provide the user with multiple input modalities. For example, when typing in a credit card number the user may wish to only see keys for digits 0-9, while when typing in their name they may wish to see a form field that by default capitalises each word.

Using the inputmode attribute we can select appropriate input modalities:

<form method="post"
      enctype="application/x-www-form-urlencoded"
      action="https://pizza.example.com/order.cgi">
 <p><label>Customer name: <input name="custname" required autocomplete="shipping name" inputmode="latin-name"></label></p>
 <p><label>Telephone: <input type=tel name="custtel" autocomplete="shipping tel"></label></p>
 <p><label>E-mail address: <input type=email name="custemail" autocomplete="shipping email"></label></p>
 <fieldset>
  <legend> Pizza Size </legend>
  <p><label> <input type=radio name=size required value="small"> Small </label></p>
  <p><label> <input type=radio name=size required value="medium"> Medium </label></p>
  <p><label> <input type=radio name=size required value="large"> Large </label></p>
 </fieldset>
 <fieldset>
  <legend> Pizza Toppings </legend>
  <p><label> <input type=checkbox name="topping" value="bacon"> Bacon </label></p>
  <p><label> <input type=checkbox name="topping" value="cheese"> Extra Cheese </label></p>
  <p><label> <input type=checkbox name="topping" value="onion"> Onion </label></p>
  <p><label> <input type=checkbox name="topping" value="mushroom"> Mushroom </label></p>
 </fieldset>
 <p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900" name="delivery" required></label></p>
 <p><label>Delivery instructions: <textarea name="comments" maxlength=1000 inputmode="latin-prose"></textarea></label></p>
 <p><button>Submit order</button></p>
</form>
4.10.1.7 The difference between the field type, the autofill field name, and the input modality

This section is non-normative.

The type, autocomplete, and inputmode attributes can seem confusingly similar. For instance, in all three cases, the string "email" is a valid value. This section attempts to illustrate the difference between the three attributes and provides advice suggesting how to use them.

The type attribute on input elements decides what kind of control the user agent will use to expose the field. Choosing between different values of this attribute is the same choice as choosing whether to use an input element, a textarea element, a select element, a keygen element, etc.

The autocomplete attribute, in contrast, describes what the value that the user will enter actually represents. Choosing between different values of this attribute is the same choice as choosing what the label for the element will be.

First, consider telephone numbers. If a page is asking for a telephone number from the user, the right form control to use is <input type=tel>. However, which autocomplete value to use depends on which phone number the page is asking for, whether they expect a telephone number in the international format or just the local format, and so forth.

For example, a page that forms part of a checkout process on an e-commerce site for a customer buying a gift to be shipped to a friend might need both the buyer's telephone number (in case of payment issues) and the friend's telephone number (in case of delivery issues). If the site expects international phone numbers (with the country code prefix), this could thus look like this:

<p><label>Your phone number: <input type=tel name=custtel autocomplete="billing tel"></label>
<p><label>Recipient's phone number: <input type=tel name=shiptel autocomplete="shipping tel"></label>
<p>Please enter complete phone numbers including the country code prefix, as in "+1 555 123 4567".

But if the site only supports British customers and recipients, it might instead look like this (notice the use of tel-national rather than tel):

<p><label>Your phone number: <input type=tel name=custtel autocomplete="billing tel-national"></label>
<p><label>Recipient's phone number: <input type=tel name=shiptel autocomplete="shipping tel-national"></label>
<p>Please enter complete UK phone numbers, as in "(01632) 960 123".

Now, consider a person's preferred languages. The right autocomplete value is language. However, there could be a number of different form controls used for the purpose: a free text field (<input type=text>), a drop-down list (<select>), radio buttons (<input type=radio>), etc. It only depends on what kind of interface is desired.

The inputmode decides what kind of input modality (e.g. keyboard) to use, when the control is a free-form text field.

Consider names. If a page just wants one name from the user, then the relevant control is <input type=text>. If the page is asking for the user's full name, then the relevant autocomplete value is name. But if the user is Japanese, and the page is asking for the user's Japanese name and the user's romanised name, then it would be helpful to the user if the first field defaulted to a Japanese input modality, while the second defaulted to a Latin input modality (ideally with automatic capitalization of each word). This is where the inputmode attribute can help:

<p><label>Japanese name: <input name="j" type="text" autocomplete="section-jp name" inputmode="kana"></label>
<label>Romanised name: <input name="e" type="text" autocomplete="section-en name" inputmode="latin-name"></label>

In this example, the "section-*" keywords in the autocomplete attributes' values tell the user agent that the two fields expect different names. Without them, the user agent could automatically fill the second field with the value given in the first field when the user gave a value to the first field.

The "-jp" and "-en" parts of the keywords are opaque to the user agent; the user agent cannot guess, from those, that the two names are expected to be in Japanese and English respectively.

4.10.1.8 Date, time, and number formats

This section is non-normative.

In this pizza delivery example, the times are specified in the format "HH:MM": two digits for the hour, in 24-hour format, and two digits for the time. (Seconds could also be specified, though they are not necessary in this example.)

In some locales, however, times are often expressed differently when presented to users. For example, in the United States, it is still common to use the 12-hour clock with an am/pm indicator, as in "2pm". In France, it is common to separate the hours from the minutes using an "h" character, as in "14h00".

Similar issues exist with dates, with the added complication that even the order of the components is not always consistent — for example, in Cyprus the first of February 2003 would typically be written "1/2/03", while that same date in Japan would typically be written as "2003年02月01日" — and even with numbers, where locales differ, for example, in what punctuation is used as the decimal separator and the thousands separator.

It is therefore important to distinguish the time, date, and number formats used in HTML and in form submissions, which are always the formats defined in this specification (and based on the well-established ISO 8601 standard for computer-readable date and time formats), from the time, date, and number formats presented to the user by the browser and accepted as input from the user by the browser.

The format used "on the wire", i.e. in HTML markup and in form submissions, is intended to be computer-readable and consistent irrespective of the user's locale. Dates, for instance, are always written in the format "YYYY-MM-DD", as in "2003-02-01". Users are not expected to ever see this format.

The time, date, or number given by the page in the wire format is then translated to the user's preferred presentation (based on user preferences or on the locale of the page itself), before being displayed to the user. Similarly, after the user inputs a time, date, or number using their preferred format, the user agent converts it back to the wire format before putting it in the DOM or submitting it.

This allows scripts in pages and on servers to process times, dates, and numbers in a consistent manner without needing to support dozens of different formats, while still supporting the users' needs.

See also the implementation notes regarding localization of form controls.

4.10.2 Categories

Mostly for historical reasons, elements in this section fall into several overlapping (but subtly different) categories in addition to the usual ones like flow content, phrasing content, and interactive content.

A number of the elements are form-associated elements, which means they can have a form owner.

The form-associated elements fall into several subcategories:

Listed elements

Denotes elements that are listed in the form.elements and fieldset.elements APIs.

Submittable elements

Denotes elements that can be used for constructing the form data set when a form element is submitted.

Some submittable elements can be, depending on their attributes, buttons. The prose below defines when an element is a button. Some buttons are specifically submit buttons.

Resettable elements

Denotes elements that can be affected when a form element is reset.

Reassociateable elements

Denotes elements that have a form content attribute, and a matching form IDL attribute, that allow authors to specify an explicit form owner.

Some elements, not all of them form-associated, are categorised as labelable elements. These are elements that can be associated with a label element.

4.10.3 The form element

Categories:
Flow content.
Palpable content.
Contexts in which this element can be used:
Where flow content is expected.
Content model:
Flow content, but with no form element descendants.
Content attributes:
Global attributes
accept-charset - Character encodings to use for form submission
action - URL to use for form submission
autocomplete - Default setting for autofill feature for controls in the form
enctype - Form data set encoding type to use for form submission
method - HTTP method to use for form submission
name - Name of form to use in the document.forms API
novalidate - Bypass form control validation for form submission
target - Browsing context for form submission
Tag omission in text/html:
Neither tag is omissible.
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
[OverrideBuiltins]
interface HTMLFormElement : HTMLElement {
           attribute DOMString acceptCharset;
           attribute DOMString action;
           attribute DOMString autocomplete;
           attribute DOMString enctype;
           attribute DOMString encoding;
           attribute DOMString method;
           attribute DOMString name;
           attribute boolean noValidate;
           attribute DOMString target;

  readonly attribute HTMLFormControlsCollection elements;
  readonly attribute long length;
  getter Element (unsigned long index);
  getter (RadioNodeList or Element) (DOMString name);

  void submit();
  void reset();
  boolean checkValidity();
  boolean reportValidity();

  void requestAutocomplete();
};

The form element represents a collection of form-associated elements, some of which can represent editable values that can be submitted to a server for processing.

The accept-charset attribute gives the character encodings that are to be used for the submission. If specified, the value must be an ordered set of unique space-separated tokens that are ASCII case-insensitive, and each token must be an ASCII case-insensitive match for one of the labels of an ASCII-compatible character encoding. [ENCODING]

The name attribute represents the form's name within the forms collection. The value must not be the empty string, and the value must be unique amongst the form elements in the forms collection that it is in, if any.

The autocomplete attribute is an enumerated attribute. The attribute has two states. The on keyword maps to the on state, and the off keyword maps to the off state. The attribute may also be omitted. The missing value default is the on state. The off state indicates that by default, form controls in the form will have their autofill field name set to "off"; the on state indicates that by default, form controls in the form will have their autofill field name set to "on".

The action, enctype, method, novalidate, and target attributes are attributes for form submission.

form . elements

Returns an HTMLCollection of the form controls in the form (excluding image buttons for historical reasons).

form . length

Returns the number of form controls in the form (excluding image buttons for historical reasons).

form[index]

Returns the indexth element in the form (excluding image buttons for historical reasons).

form[name]

Returns the form control (or, if there are several, a RadioNodeList of the form controls) in the form with the given ID or name (excluding image buttons for historical reasons); or, if there are none, returns the img element with the given ID.

Once an element has been referenced using a particular name, that name will continue being available as a way to reference that element in this method, even if the element's actual ID or name changes, for as long as the element remains in the Document.

If there are multiple matching items, then a RadioNodeList object containing all those elements is returned.

form . submit()

Submits the form.

form . reset()

Resets the form.

form . checkValidity()

Returns true if the form's controls are all valid; otherwise, returns false.

form . reportValidity()

Returns true if the form's controls are all valid; otherwise, returns false and informs the user.

form . requestAutocomplete()

Triggers a user-agent-specific asynchronous user interface to help the user fill in any fields that have an autofill field name other than "on" or "off".

The form element will subsequently receive an event, either autocomplete, indicating that the fields have been prefilled, or autocompleteerror (using the AutocompleteErrorEvent interface), indicating that there was some problem (the general class of problem is described by the reason IDL attribute on the event).

The autocomplete IDL attribute must reflect the content attribute of the same name, limited to only known values.

The requestAutocomplete() method is part of the autofill mechanism.

The name IDL attribute must reflect the content attribute of the same name.

The acceptCharset IDL attribute must reflect the accept-charset content attribute.


The elements IDL attribute must return an HTMLFormControlsCollection rooted at the form element's home subtree's root element, whose filter matches listed elements whose form owner is the form element, with the exception of input elements whose type attribute is in the Image Button state, which must, for historical reasons, be excluded from this particular collection.

The length IDL attribute must return the number of nodes represented by the elements collection.

The supported property indices at any instant are the indices supported by the object returned by the elements attribute at that instant.

When a form element is indexed for indexed property retrieval, the user agent must return the value returned by the item method on the elements collection, when invoked with the given index as its argument.


Each form element has a mapping of names to elements called the past names map. It is used to persist names of controls even when they change names.

The supported property names consist of the names obtained from the following algorithm, in the order obtained from this algorithm:

  1. Let sourced names be an initially empty ordered list of tuples consisting of a string, an element, a source, where the source is either id, name, or past, and, if the source is past, an age.

  2. For each listed element candidate whose form owner is the form element, with the exception of any input elements whose type attribute is in the Image Button state, run these substeps:

    1. If candidate has an id attribute, add an entry to sourced names with that id attribute's value as the string, candidate as the element, and id as the source.

    2. If candidate has a name attribute, add an entry to sourced names with that name attribute's value as the string, candidate as the element, and name as the source.

  3. For each img element candidate whose form owner is the form element, run these substeps:

    1. If candidate has an id attribute, add an entry to sourced names with that id attribute's value as the string, candidate as the element, and id as the source.

    2. If candidate has a name attribute, add an entry to sourced names with that name attribute's value as the string, candidate as the element, and name as the source.

  4. For each entry past entry in the past names map add an entry to sourced names with the past entry's name as the string, past entry's element as the element, past as the source, and the length of time past entry has been in the past names map as the age.

  5. Sort sourced names by tree order of the element entry of each tuple, sorting entries with the same element by putting entries whose source is id first, then entries whose source is name, and finally entries whose source is past, and sorting entries with the same element and source by their age, oldest first.

  6. Remove any entries in sourced names that have the empty string as their name.

  7. Remove any entries in sourced names that have the same name as an earlier entry in the map.

  8. Return the list of names from sourced names, maintaining their relative order.

The properties exposed in this way must be unenumerable.

When a form element is indexed for named property retrieval, the user agent must run the following steps:

  1. Let candidates be a live RadioNodeList object containing all the listed elements whose form owner is the form element that have either an id attribute or a name attribute equal to name, with the exception of input elements whose type attribute is in the Image Button state, in tree order.

  2. If candidates is empty, let candidates be a live RadioNodeList object containing all the img elements that are descendants of the form element and that have either an id attribute or a name attribute equal to name, in tree order.

  3. If candidates is empty, name is the name of one of the entries in the form element's past names map: return the object associated with name in that map.

  4. If candidates contains more than one node, return candidates and abort these steps.

  5. Otherwise, candidates contains exactly one node. Add a mapping from name to the node in candidates in the form element's past names map, replacing the previous entry with the same name, if any.

  6. Return the node in candidates.

If an element listed in a form element's past names map changes form owner, then its entries must be removed from that map.


The submit() method, when invoked, must submit the form element from the form element itself, with the submitted from submit() method flag set.

The reset() method, when invoked, must run the following steps:

  1. If the form element is marked as locked for reset, then abort these steps.

  2. Mark the form element as locked for reset.

  3. Reset the form element.

  4. Unmark the form element as locked for reset.

If the checkValidity() method is invoked, the user agent must statically validate the constraints of the form element, and return true if the constraint validation return a positive result, and false if it returned a negative result.

If the reportValidity() method is invoked, the user agent must interactively validate the constraints of the form element, and return true if the constraint validation return a positive result, and false if it returned a negative result.

This example shows two search forms:

<form action="http://www.google.com/search" method="get">
 <label>Google: <input type="search" name="q"></label> <input type="submit" value="Search...">
</form>
<form action="http://www.bing.com/search" method="get">
 <label>Bing: <input type="search" name="q"></label> <input type="submit" value="Search...">
</form>

4.10.4 The label element

Categories:
Flow content.
Phrasing content.
Interactive content.
Reassociateable form-associated element.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content, but with no descendant labelable elements unless it is the element's labeled control, and no descendant label elements.
Content attributes:
Global attributes
form - Associates the control with a form element
for - Associate the label with form control
Tag omission in text/html:
Neither tag is omissable
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes
DOM interface:
interface HTMLLabelElement : HTMLElement {
  readonly attribute HTMLFormElement? form;
           attribute DOMString htmlFor;
  readonly attribute HTMLElement? control;
};

The label element represents a caption in a user interface. The caption can be associated with a specific form control, known as the label element's labeled control, either using the for attribute, or by putting the form control inside the label element itself.

Except where otherwise specified by the following rules, a label element has no labeled control.

The for attribute may be specified to indicate a form control with which the caption is to be associated. If the attribute is specified, the attribute's value must be the ID of a labelable element in the same Document as the label element. If the attribute is specified and there is an element in the Document whose ID is equal to the value of the for attribute, and the first such element is a labelable element, then that element is the label element's labeled control.

If the for attribute is not specified, but the label element has a labelable element descendant, then the first such descendant in tree order is the label element's labeled control.

The label element's exact default presentation and behavior, in particular what its activation behavior might be, if anything, should match the platform's label behavior. The activation behavior of a label element for events targeted at interactive content descendants of a label element, and any descendants of those interactive content descendants, must be to do nothing.

For example, on platforms where clicking or pressing a checkbox label checks the checkbox, clicking or pressing the label in the following snippet could trigger the user agent to run synthetic click activation steps on the input element, as if the element itself had been triggered by the user:

<label><input type=checkbox name=lost> Lost</label>

On other platforms, the behavior might be just to focus the control, or do nothing.


Note: The ability to click or press a label to trigger an event on a control provides usability and accessibility benefits by increasing the hit area of a control, making it easier for a user to operate. These benefits may be lost or reduced, if the label element contains an element with its own activation behavior, such as a link:

  <!-- bad example - link inside label reduces checkbox activation area -->
  <label><input type=checkbox name=tac>I agree to <a href="tandc.html">the terms and conditions</a></label>
  
  <!-- bad example - all label text inside the link reduces activation area to checkbox only -->
  <label><input type=checkbox name=tac><a href="tandc.html">I agree to the terms and conditions</a></label>

The usability and accessibility benefits can be maintained by placing such elements outside the label element:

 <!-- good example - link outside label means checkbox activation area includes the checkbox and all the label text -->
 <label><input type=checkbox name=tac>I agree to the terms and conditions</label>
(read <a href="tandc.html">Terms and Conditions</a>)
 

The form attribute is used to explicitly associate the label element with its form owner.

The following example shows three form controls each with a label, two of which have small text showing the right format for users to use.

<p><label>Full name: <input name=fn> <small>Format: First Last</small></label></p>
<p><label>Age: <input name=age type=number min=0></label></p>
<p><label>Post code: <input name=pc> <small>Format: AB12 3CD</small></label></p>
label . control

Returns the form control that is associated with this element.

The htmlFor IDL attribute must reflect the for content attribute.

The control IDL attribute must return the label element's labeled control, if any, or null if there isn't one.

The form IDL attribute is part of the element's forms API.


control . labels

Returns a NodeList of all the label elements that the form control is associated with.

Labelable elements have a NodeList object associated with them that represents the list of label elements, in tree order, whose labeled control is the element in question. The labels IDL attribute of labelable elements, on getting, must return that NodeList object.

4.10.5 The input element

Categories:
Flow content.
Phrasing content.
If the type attribute is not in the Hidden state: Interactive content.
If the type attribute is not in the Hidden state: Listed, labelable, submittable, resettable, and reassociateable form-associated element.
If the type attribute is in the Hidden state: Listed, submittable, resettable, and reassociateable form-associated element.
If the type attribute is not in the Hidden state: Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Empty.
Content attributes:
Global attributes
accept - Hint for expected file type in file upload controls
alt - Replacement text for use when images are not available
autocomplete - Hint for form autofill feature
autofocus - Automatically focus the form control when the page is loaded
checked - Whether the command or control is checked
dirname - Name of form field to use for sending the element's directionality in form submission
disabled - Whether the form control is disabled
form - Associates the control with a form element
formaction - URL to use for form submission
formenctype - Form data set encoding type to use for form submission
formmethod - HTTP method to use for form submission
formnovalidate - Bypass form control validation for form submission
formtarget - Browsing context for form submission
height - Vertical dimension
inputmode - Hint for selecting an input modality
list - List of autocomplete options
max - Maximum value
maxlength - Maximum length of value
min - Minimum value
minlength - Minimum length of value
multiple - Whether to allow multiple values
name - Name of form control to use for form submission and in the form.elements API
pattern - Pattern to be matched by the form control's value
placeholder - User-visible label to be placed within the form control
readonly - Whether to allow the value to be edited by the user
required - Whether the control is required for form submission
size - Size of the control
src - Address of the resource
step - Granularity to be matched by the form control's value
type - Type of form control
value - Value of the form control
width - Horizontal dimension
Also, the title attribute has special semantics on this element when used in conjunction with the pattern attribute.
Tag omission in text/html:
No end tag
Allowed ARIA role attribute values:
Depends upon state of the type attribute.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLInputElement : HTMLElement {
           attribute DOMString accept;
           attribute DOMString alt;
           attribute DOMString autocomplete;
           attribute boolean autofocus;
           attribute boolean defaultChecked;
           attribute boolean checked;
           attribute DOMString dirName;
           attribute boolean disabled;
  readonly attribute HTMLFormElement? form;
  readonly attribute FileList? files;
           attribute DOMString formAction;
           attribute DOMString formEnctype;
           attribute DOMString formMethod;
           attribute boolean formNoValidate;
           attribute DOMString formTarget;
           attribute unsigned long height;
           attribute boolean indeterminate;
           attribute DOMString inputMode;
  readonly attribute HTMLElement? list;
           attribute DOMString max;
           attribute long maxLength;
           attribute DOMString min;
           attribute long minLength;
           attribute boolean multiple;
           attribute DOMString name;
           attribute DOMString pattern;
           attribute DOMString placeholder;
           attribute boolean readOnly;
           attribute boolean required;
           attribute unsigned long size;
           attribute DOMString src;
           attribute DOMString step;
           attribute DOMString type;
           attribute DOMString defaultValue;
  [TreatNullAs=EmptyString] attribute DOMString value;
           attribute Date? valueAsDate;
           attribute unrestricted double valueAsNumber;
           attribute double valueLow;
           attribute double valueHigh;
           attribute unsigned long width;

  void stepUp(optional long n = 1);
  void stepDown(optional long n = 1);

  readonly attribute boolean willValidate;
  readonly attribute ValidityState validity;
  readonly attribute DOMString validationMessage;
  boolean checkValidity();
  boolean reportValidity();
  void setCustomValidity(DOMString error);

  readonly attribute NodeList labels;

  void select();
           attribute unsigned long selectionStart;
           attribute unsigned long selectionEnd;
           attribute DOMString selectionDirection;
  void setRangeText(DOMString replacement);
  void setRangeText(DOMString replacement, unsigned long start, unsigned long end, optional SelectionMode selectionMode = "preserve");
  void setSelectionRange(unsigned long start, unsigned long end, optional DOMString direction);
};

The input element represents a typed data field, usually with a form control to allow the user to edit the data.

The type attribute controls the data type (and associated control) of the element. It is an enumerated attribute. The following table lists the keywords and states for the attribute — the keywords in the left column map to the states in the cell in the second column on the same row as the keyword.

Keyword State Data type Control type
hidden Hidden An arbitrary string n/a
text Text Text with no line breaks A text field
search Search Text with no line breaks Search field
tel Telephone Text with no line breaks A text field
url URL An absolute URL A text field
email E-mail An e-mail address or list of e-mail addresses A text field
password Password Text with no line breaks (sensitive information) A text field that obscures data entry
datetime Date and Time A date and time (year, month, day, hour, minute, second, fraction of a second) with the time zone set to UTC A date and time control
date Date A date (year, month, day) with no time zone A date control
month Month A date consisting of a year and a month with no time zone A month control
week Week A date consisting of a week-year number and a week number with no time zone A week control
time Time A time (hour, minute, seconds, fractional seconds) with no time zone A time control
number Number A numerical value A text field or spinner control
range Range A numerical value, with the extra semantic that the exact value is not important A slider control or similar
color Color An sRGB color with 8-bit red, green, and blue components A color well
checkbox Checkbox A set of zero or more values from a predefined list A checkbox
radio Radio Button An enumerated value A radio button
file File Upload Zero or more files each with a MIME type and optionally a file name A label and a button
submit Submit Button An enumerated value, with the extra semantic that it must be the last value selected and initiates form submission A button
image Image Button A coordinate, relative to a particular image's size, with the extra semantic that it must be the last value selected and initiates form submission Either a clickable image, or a button
reset Reset Button n/a A button
button Button n/a A button

The missing value default is the Text state.

Which of the accept, alt, autocomplete, checked, dirname, formaction, formenctype, formmethod, formnovalidate, formtarget, height, inputmode, list, max, maxlength, min, minlength, multiple, pattern, placeholder, readonly, required, size, src, step, and width content attributes, the checked, files, valueAsDate, valueAsNumber, valueLow, valueHigh, and list IDL attributes, the select() method, the selectionStart, selectionEnd, and selectionDirection, IDL attributes, the setRangeText() and setSelectionRange() methods, the stepUp() and stepDown() methods, and the input and change events apply to an input element depends on the state of its type attribute. The subsections that define each type also clearly define in normative "bookkeeping" sections which of these feature apply, and which do not apply, to each type. The behavior of these features depends on whether they apply or not, as defined in their various sections (q.v. for content attributes, for APIs, for events).

The following table is non-normative and summarizes which of those content attributes, IDL attributes, methods, and events apply to each state:

Hidden Text, Search URL, Telephone E-mail Password Date and Time, Date, Month, Week, Time Number Range Color Checkbox, Radio Button File Upload Submit Button Image Button Reset Button, Button
Content attributes
accept · · · · · · · · · · Yes · · ·
alt · · · · · · · · · · · · Yes ·
autocomplete · Yes Yes Yes Yes Yes Yes Yes Yes · · · · ·
checked · · · · · · · · · Yes · · · ·
dirname · Yes · · · · · · · · · · · ·
formaction · · · · · · · · · · · Yes Yes ·
formenctype · · · · · · · · · · · Yes Yes ·
formmethod · · · · · · · · · · · Yes Yes ·
formnovalidate · · · · · · · · · · · Yes Yes ·
formtarget · · · · · · · · · · · Yes Yes ·
height · · · · · · · · · · · · Yes ·
inputmode · Yes · · Yes · · · · · · · · ·
list · Yes Yes Yes · Yes Yes Yes Yes · · · · ·
max · · · · · Yes Yes Yes · · · · · ·
maxlength · Yes Yes Yes Yes · · · · · · · · ·
min · · · · · Yes Yes Yes · · · · · ·
minlength · Yes Yes Yes Yes · · · · · · · · ·
multiple · · · Yes · · · Yes · · Yes · · ·
pattern · Yes Yes Yes Yes · · · · · · · · ·
placeholder · Yes Yes Yes Yes · Yes · · · · · · ·
readonly · Yes Yes Yes Yes Yes Yes · · · · · · ·
required · Yes Yes Yes Yes Yes Yes · · Yes Yes · · ·
size · Yes Yes Yes Yes · · · · · · · · ·
src · · · · · · · · · · · · Yes ·
step · · · · · Yes Yes Yes · · · · · ·
width · · · · · · · · · · · · Yes ·
IDL attributes and methods
checked · · · · · · · · · Yes · · · ·
files · · · · · · · · · · Yes · · ·
value default value value value value value value value value default/on filename default default default
valueAsDate · · · · · Yes · · · · · · · ·
valueAsNumber · · · · · Yes Yes Yes* · · · · · ·
valueLow · · · · · · · Yes** · · · · · ·
valueHigh · · · · · · · Yes** · · · · · ·
list · Yes Yes Yes · Yes Yes Yes Yes · · · · ·
select() · Yes Yes · Yes · · · · · · · · ·
selectionStart · Yes Yes · Yes · · · · · · · · ·
selectionEnd · Yes Yes · Yes · · · · · · · · ·
selectionDirection · Yes Yes · Yes · · · · · · · · ·
setRangeText() · Yes Yes · Yes · · · · · · · · ·
setSelectionRange() · Yes Yes · Yes · · · · · · · · ·
stepDown() · · · · · Yes Yes Yes · · · · · ·
stepUp() · · · · · Yes Yes Yes · · · · · ·
Events
input event · Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes · · ·
change event · Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes · · ·

* If the multiple attribute is not specified.

** If the multiple attribute is specified.

Some states of the type attribute define a value sanitization algorithm.

Each input element has a value, which is exposed by the value IDL attribute. Some states define an algorithm to convert a string to a number, an algorithm to convert a number to a string, an algorithm to convert a string to a Date object, and an algorithm to convert a Date object to a string, which are used by max, min, step, valueAsDate, valueAsNumber, valueLow, valueHigh, stepDown(), and stepUp().

Each input element has a boolean dirty value flag. The dirty value flag must be initially set to false when the element is created, and must be set to true whenever the user interacts with the control in a way that changes the value. (It is also set to true when the value is programmatically changed, as described in the definition of the value IDL attribute.)

The value content attribute gives the default value of the input element. When the value content attribute is added, set, or removed, if the control's dirty value flag is false, the user agent must set the value of the element to the value of the value content attribute, if there is one, or the empty string otherwise, and then run the current value sanitization algorithm, if one is defined.

Each input element has a checkedness, which is exposed by the checked IDL attribute.

Each input element has a boolean dirty checkedness flag. When it is true, the element is said to have a dirty checkedness. The dirty checkedness flag must be initially set to false when the element is created, and must be set to true whenever the user interacts with the control in a way that changes the checkedness.

The checked content attribute is a boolean attribute that gives the default checkedness of the input element. When the checked content attribute is added, if the control does not have dirty checkedness, the user agent must set the checkedness of the element to true; when the checked content attribute is removed, if the control does not have dirty checkedness, the user agent must set the checkedness of the element to false.

The reset algorithm for input elements is to set the dirty value flag and dirty checkedness flag back to false, set the value of the element to the value of the value content attribute, if there is one, or the empty string otherwise, set the checkedness of the element to true if the element has a checked content attribute and false if it does not, empty the list of selected files, and then invoke the value sanitization algorithm, if the type attribute's current state defines one.

Each input element can be mutable. Except where otherwise specified, an input element is always mutable. Similarly, except where otherwise specified, the user agent should not allow the user to modify the element's value or checkedness.

When an input element is disabled, it is not mutable.

The readonly attribute can also in some cases (e.g. for the Date state, but not the Checkbox state) stop an input element from being mutable.

The cloning steps for input elements must propagate the value, dirty value flag, checkedness, and dirty checkedness flag from the node being cloned to the copy.


When an input element is first created, the element's rendering and behavior must be set to the rendering and behavior defined for the type attribute's state, and the value sanitization algorithm, if one is defined for the type attribute's state, must be invoked.

When an input element's type attribute changes state, the user agent must run the following steps:

  1. If the previous state of the element's type attribute put the value IDL attribute in the value mode, and the element's value is not the empty string, and the new state of the element's type attribute puts the value IDL attribute in either the default mode or the default/on mode, then set the element's value content attribute to the element's value.

  2. Otherwise, if the previous state of the element's type attribute put the value IDL attribute in any mode other than the value mode, and the new state of the element's type attribute puts the value IDL attribute in the value mode, then set the value of the element to the value of the value content attribute, if there is one, or the empty string otherwise, and then set the control's dirty value flag to false.

  3. Update the element's rendering and behavior to the new state's.

  4. Invoke the value sanitization algorithm, if one is defined for the type attribute's new state.


The name attribute represents the element's name. The dirname attribute controls how the element's directionality is submitted. The disabled attribute is used to make the control non-interactive and to prevent its value from being submitted. The form attribute is used to explicitly associate the input element with its form owner. The autofocus attribute controls focus. The inputmode attribute controls the user interface's input modality for the control. The autocomplete attribute controls how the user agent provides autofill behavior.

The indeterminate IDL attribute must initially be set to false. On getting, it must return the last value it was set to. On setting, it must be set to the new value. It has no effect except for changing the appearance of checkbox controls.

The accept, alt, max, min, multiple, pattern, placeholder, required, size, src, and step IDL attributes must reflect the respective content attributes of the same name. The dirName IDL attribute must reflect the dirname content attribute. The readOnly IDL attribute must reflect the readonly content attribute. The defaultChecked IDL attribute must reflect the checked content attribute. The defaultValue IDL attribute must reflect the value content attribute.

The type IDL attribute must reflect the respective content attribute of the same name, limited to only known values. The inputMode IDL attribute must reflect the inputmode content attribute, limited to only known values. The maxLength IDL attribute must reflect the maxlength content attribute, limited to only non-negative numbers. The minLength IDL attribute must reflect the minlength content attribute, limited to only non-negative numbers.

The IDL attributes width and height must return the rendered width and height of the image, in CSS pixels, if an image is being rendered, and is being rendered to a visual medium; or else the intrinsic width and height of the image, in CSS pixels, if an image is available but not being rendered to a visual medium; or else 0, if no image is available. When the input element's type attribute is not in the Image Button state, then no image is available. [CSS]

On setting, they must act as if they reflected the respective content attributes of the same name.

The willValidate, validity, and validationMessage IDL attributes, and the checkValidity(), reportValidity(), and setCustomValidity() methods, are part of the constraint validation API. The labels IDL attribute provides a list of the element's labels. The select(), selectionStart, selectionEnd, selectionDirection, setRangeText(), and setSelectionRange() methods and IDL attributes expose the element's text selection. The autofocus, disabled, form, and name IDL attributes are part of the element's forms API.

4.10.5.1 States of the type attribute
4.10.5.1.1 Hidden state (type=hidden)
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes

When an input element's type attribute is in the Hidden state, the rules in this section apply.

The input element represents a value that is not intended to be examined or manipulated by the user.

Constraint validation: If an input element's type attribute is in the Hidden state, it is barred from constraint validation.

If the name attribute is present and has a value that is a case-sensitive match for the string "_charset_", then the element's value attribute must be omitted.

The value IDL attribute applies to this element and is in mode default.

The following content attributes must not be specified and do not apply to the element: accept, alt, autocomplete, checked, dirname, formaction, formenctype, formmethod, formnovalidate, formtarget, height, inputmode, list, max, maxlength, min, minlength, multiple, pattern, placeholder, readonly, required, size, src, step, and width.

The following IDL attributes and methods do not apply to the element: checked, files, list, selectionStart, selectionEnd, selectionDirection, valueAsDate, valueAsNumber, valueLow, and valueHigh IDL attributes; select(), setRangeText(), setSelectionRange(), stepDown(), and stepUp() methods.

The input and change events do not apply.

4.10.5.1.2 Text (type=text) state and Search state (type=search)
Allowed ARIA role attribute values:
textbox (default - do not set) or combobox.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.

When an input element's type attribute is in the Text state or the Search state, the rules in this section apply.

The input element represents a one line plain text edit control for the element's value.

The difference between the Text state and the Search state is primarily stylistic: on platforms where search fields are distinguished from regular text fields, the Search state might result in an appearance consistent with the platform's search fields rather than appearing like a regular text field.

If the element is mutable, its value should be editable by the user. User agents must not allow users to insert "LF" (U+000A) or "CR" (U+000D) characters into the element's value.

If the element is mutable, the user agent should allow the user to change the writing direction of the element, setting it either to a left-to-right writing direction or a right-to-left writing direction. If the user does so, the user agent must then run the following steps:

  1. Set the element's dir attribute to "ltr" if the user selected a left-to-right writing direction, and "rtl" if the user selected a right-to-left writing direction.

  2. Queue a task to fire a simple event that bubbles named input at the input element.

The value attribute, if specified, must have a value that contains no "LF" (U+000A) or "CR" (U+000D) characters.

The value sanitization algorithm is as follows: Strip line breaks from the value.

The following common input element content attributes, IDL attributes, and methods apply to the element: autocomplete, dirname, inputmode, list, maxlength, minlength, pattern, placeholder, readonly, required, and size content attributes; list, selectionStart, selectionEnd, selectionDirection, and value IDL attributes; select(), setRangeText(), and setSelectionRange() methods.

The value IDL attribute is in mode value.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element: accept, alt, checked, formaction, formenctype, formmethod, formnovalidate, formtarget, height, max, min, multiple, src, step, and width.

The following IDL attributes and methods do not apply to the element: checked, files, valueAsDate, valueAsNumber, valueLow, and valueHigh IDL attributes; stepDown() and stepUp() methods.

4.10.5.1.3 Telephone state (type=tel)
Allowed ARIA role attribute values:
textbox (default - do not set) or combobox.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.

When an input element's type attribute is in the Telephone state, the rules in this section apply.

The input element represents a control for editing a telephone number given in the element's value.

If the element is mutable, its value should be editable by the user. User agents may change the spacing and, with care, the punctuation of values that the user enters. User agents must not allow users to insert "LF" (U+000A) or "CR" (U+000D) characters into the element's value.

The value attribute, if specified, must have a value that contains no "LF" (U+000A) or "CR" (U+000D) characters.

The value sanitization algorithm is as follows: Strip line breaks from the value.

Unlike the URL and E-mail types, the Telephone type does not enforce a particular syntax. This is intentional; in practice, telephone number fields tend to be free-form fields, because there are a wide variety of valid phone numbers. Systems that need to enforce a particular format are encouraged to use the pattern attribute or the setCustomValidity() method to hook into the client-side validation mechanism.

The following common input element content attributes, IDL attributes, and methods apply to the element: autocomplete, list, maxlength, minlength, pattern, placeholder, readonly, required, and size content attributes; list, selectionStart, selectionEnd, selectionDirection, and value IDL attributes; select(), setRangeText(), and setSelectionRange() methods.

The value IDL attribute is in mode value.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element: accept, alt, checked, dirname, formaction, formenctype, formmethod, formnovalidate, formtarget, height, inputmode, max, min, multiple, src, step, and width.

The following IDL attributes and methods do not apply to the element: checked, files, valueAsDate, valueAsNumber, valueLow, and valueHigh IDL attributes; stepDown() and stepUp() methods.

4.10.5.1.4 URL state (type=url)
Allowed ARIA role attribute values:
textbox (default - do not set) or combobox.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.

When an input element's type attribute is in the URL state, the rules in this section apply.

The input element represents a control for editing a single absolute URL given in the element's value.

If the element is mutable, the user agent should allow the user to change the URL represented by its value. User agents may allow the user to set the value to a string that is not a valid absolute URL, but may also or instead automatically escape characters entered by the user so that the value is always a valid absolute URL (even if that isn't the actual value seen and edited by the user in the interface). User agents should allow the user to set the value to the empty string. User agents must not allow users to insert "LF" (U+000A) or "CR" (U+000D) characters into the value.

The value attribute, if specified and not empty, must have a value that is a valid URL potentially surrounded by spaces that is also an absolute URL.

The value sanitization algorithm is as follows: Strip line breaks from the value, then strip leading and trailing whitespace from the value.

Constraint validation: While the value of the element is neither the empty string nor a valid absolute URL, the element is suffering from a type mismatch.

The following common input element content attributes, IDL attributes, and methods apply to the element: autocomplete, list, maxlength, minlength, pattern, placeholder, readonly, required, and size content attributes; list, selectionStart, selectionEnd, selectionDirection, and value IDL attributes; select(), setRangeText(), and setSelectionRange() methods.

The value IDL attribute is in mode value.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element: accept, alt, checked, dirname, formaction, formenctype, formmethod, formnovalidate, formtarget, height, inputmode, max, min, multiple, src, step, and width.

The following IDL attributes and methods do not apply to the element: checked, files, valueAsDate, valueAsNumber, valueLow, and valueHigh IDL attributes; stepDown() and stepUp() methods.

If a document contained the following markup:

<input type="url" name="location" list="urls">
<datalist id="urls">
 <option label="MIME: Format of Internet Message Bodies" value="http://tools.ietf.org/html/rfc2045">
 <option label="HTML 4.01 Specification" value="http://www.w3.org/TR/html4/">
 <option label="Form Controls" value="http://www.w3.org/TR/xforms/slice8.html#ui-commonelems-hint">
 <option label="Scalable Vector Graphics (SVG) 1.1 Specification" value="http://www.w3.org/TR/SVG/">
 <option label="Feature Sets - SVG 1.1 - 20030114" value="http://www.w3.org/TR/SVG/feature.html">
 <option label="The Single UNIX Specification, Version 3" value="http://www.unix-systems.org/version3/">
</datalist>

...and the user had typed "www.w3", and the user agent had also found that the user had visited http://www.w3.org/Consortium/#membership and http://www.w3.org/TR/XForms/ in the recent past, then the rendering might look like this:

A text box with an icon on the left followed by the text "www.w3" and a cursor, with a drop down button on the right hand side; with, below, a drop down box containing a list of six URLs on the left, with the first four having grayed out labels on the right; and a scroll bar to the right of the drop down box, indicating further values are available.

The first four URLs in this sample consist of the four URLs in the author-specified list that match the text the user has entered, sorted in some UA-defined manner (maybe by how frequently the user refers to those URLs). Note how the UA is using the knowledge that the values are URLs to allow the user to omit the scheme part and perform intelligent matching on the domain name.

The last two URLs (and probably many more, given the scrollbar's indications of more values being available) are the matches from the user agent's session history data. This data is not made available to the page DOM. In this particular case, the UA has no titles to provide for those values.

4.10.5.1.5 E-mail state (type=email)
Allowed ARIA role attribute values:
textbox (default - do not set) or combobox.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.

When an input element's type attribute is in the E-mail state, the rules in this section apply.

How the E-mail state operates depends on whether the multiple attribute is specified or not.

When the multiple attribute is not specified on the element

The input element represents a control for editing an e-mail address given in the element's value.

If the element is mutable, the user agent should allow the user to change the e-mail address represented by its value. User agents may allow the user to set the value to a string that is not a valid e-mail address. The user agent should act in a manner consistent with expecting the user to provide a single e-mail address. User agents should allow the user to set the value to the empty string. User agents must not allow users to insert "LF" (U+000A) or "CR" (U+000D) characters into the value. User agents may transform the value for display and editing; in particular, user agents should convert punycode in the value to IDN in the display and vice versa.

Constraint validation: While the user interface is representing input that the user agent cannot convert to punycode, the control is suffering from bad input.

The value attribute, if specified and not empty, must have a value that is a single valid e-mail address.

The value sanitization algorithm is as follows: Strip line breaks from the value, then strip leading and trailing whitespace from the value.

Constraint validation: While the value of the element is neither the empty string nor a single valid e-mail address, the element is suffering from a type mismatch.

When the multiple attribute is specified on the element

The input element represents a control for adding, removing, and editing the e-mail addresses given in the element's values.

If the element is mutable, the user agent should allow the user to add, remove, and edit the e-mail addresses represented by its values. User agents may allow the user to set any individual value in the list of values to a string that is not a valid e-mail address, but must not allow users to set any individual value to a string containing "," (U+002C), "LF" (U+000A), or "CR" (U+000D) characters. User agents should allow the user to remove all the addresses in the element's values. User agents may transform the values for display and editing; in particular, user agents should convert punycode in the value to IDN in the display and vice versa.

Constraint validation: While the user interface describes a situation where an individual value contains a "," (U+002C) or is representing input that the user agent cannot convert to punycode, the control is suffering from bad input.

Whenever the user changes the element's values, the user agent must run the following steps:

  1. Let latest values be a copy of the element's values.

  2. Strip leading and trailing whitespace from each value in latest values.

  3. Let the element's value be the result of concatenating all the values in latest values, separating each value from the next by a single "," (U+002C) character, maintaining the list's order.

The value attribute, if specified, must have a value that is a valid e-mail address list.

The value sanitization algorithm is as follows:

  1. Split on commas the element's value, strip leading and trailing whitespace from each resulting token, if any, and let the element's values be the (possibly empty) resulting list of (possibly empty) tokens, maintaining the original order.

  2. Let the element's value be the result of concatenating the element's values, separating each value from the next by a single "," (U+002C) character, maintaining the list's order.

Constraint validation: While the value of the element is not a valid e-mail address list, the element is suffering from a type mismatch.

When the multiple attribute is set or removed, the user agent must run the value sanitization algorithm.

A valid e-mail address is a string that matches the email production of the following ABNF, the character set for which is Unicode. This ABNF implements the extensions described in RFC 1123. [ABNF] [RFC5322] [RFC1034] [RFC1123]

email         = 1*( atext / "." ) "@" label *( "." label )
label         = let-dig [ [ ldh-str ] let-dig ]  ; limited to a length of 63 characters by RFC 1034 section 3.5
atext         = < as defined in RFC 5322 section 3.2.3 >
let-dig       = < as defined in RFC 1034 section 3.5 >
ldh-str       = < as defined in RFC 1034 section 3.5 >

This requirement is a willful violation of RFC 5322, which defines a syntax for e-mail addresses that is simultaneously too strict (before the "@" character), too vague (after the "@" character), and too lax (allowing comments, whitespace characters, and quoted strings in manners unfamiliar to most users) to be of practical use here.

The following JavaScript- and Perl-compatible regular expression is an implementation of the above definition.

/^[a-zA-Z0-9.!#$%&'*+/=?^_`{|}~-]+@[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?(?:\.[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?)*$/

A valid e-mail address list is a set of comma-separated tokens, where each token is itself a valid e-mail address. To obtain the list of tokens from a valid e-mail address list, and implementation must split the string on commas.

The following common input element content attributes, IDL attributes, and methods apply to the element: autocomplete, list, maxlength, minlength, multiple, pattern, placeholder, readonly, required, and size content attributes; list and value IDL attributes.

The value IDL attribute is in mode value.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element: accept, alt, checked, dirname, formaction, formenctype, formmethod, formnovalidate, formtarget, height, inputmode, max, min, src, step, and width.

The following IDL attributes and methods do not apply to the element: checked, files, selectionStart, selectionEnd, selectionDirection, valueAsDate, valueAsNumber, valueLow, and valueHigh IDL attributes; select(), setRangeText(), setSelectionRange(), stepDown() and stepUp() methods.

4.10.5.1.6 Password state (type=password)
Allowed ARIA role attribute values:
textbox (default - do not set).
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.

When an input element's type attribute is in the Password state, the rules in this section apply.

The input element represents a one line plain text edit control for the element's value. The user agent should obscure the value so that people other than the user cannot see it.

If the element is mutable, its value should be editable by the user. User agents must not allow users to insert "LF" (U+000A) or "CR" (U+000D) characters into the value.

The value attribute, if specified, must have a value that contains no "LF" (U+000A) or "CR" (U+000D) characters.

The value sanitization algorithm is as follows: Strip line breaks from the value.

The following common input element content attributes, IDL attributes, and methods apply to the element: autocomplete, inputmode, maxlength, minlength, pattern, placeholder, readonly, required, and size content attributes; selectionStart, selectionEnd, selectionDirection, and value IDL attributes; select(), setRangeText(), and setSelectionRange() methods.

The value IDL attribute is in mode value.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element: accept, alt, checked, dirname, formaction, formenctype, formmethod, formnovalidate, formtarget, height, list, max, min, multiple, src, step, and width.

The following IDL attributes and methods do not apply to the element: checked, files, list, valueAsDate, valueAsNumber, valueLow, and valueHigh IDL attributes; stepDown() and stepUp() methods.

4.10.5.1.7 Date and Time state (type=datetime)
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes

When an input element's type attribute is in the Date and Time state, the rules in this section apply.

The input element represents a control for setting the element's value to a string representing a specific global date and time. User agents may display the date and time in whatever time zone is appropriate for the user.

If the element is mutable, the user agent should allow the user to change the global date and time represented by its value, as obtained by parsing a global date and time from it. User agents must not allow the user to set the value to a non-empty string that is not a valid normalised forced-UTC global date and time string, though user agents may allow the user to set and view the time in another time zone and silently translate the time to and from the UTC time zone in the value. If the user agent provides a user interface for selecting a global date and time, then the value must be set to a valid normalised forced-UTC global date and time string representing the user's selection. User agents should allow the user to set the value to the empty string.

Constraint validation: While the user interface describes input that the user agent cannot convert to a valid normalised forced-UTC global date and time string, the control is suffering from bad input.

See the introduction section for a discussion of the difference between the input format and submission format for date, time, and number form controls, and the implementation notes regarding localization of form controls.

The value attribute, if specified and not empty, must have a value that is a valid global date and time string.

The value sanitization algorithm is as follows: If the value of the element is a valid global date and time string, then adjust the time so that the value represents the same point in time but expressed in the UTC time zone as a valid normalized forced-UTC global date and time string, otherwise, set it to the empty string instead.

The min attribute, if specified, must have a value that is a valid global date and time string. The max attribute, if specified, must have a value that is a valid global date and time string.

The step attribute is expressed in seconds. The step scale factor is 1000 (which converts the seconds to milliseconds, as used in the other algorithms). The default step is 60 seconds.

When the element is suffering from a step mismatch, the user agent may round the element's value to the nearest global date and time for which the element would not suffer from a step mismatch.

The algorithm to convert a string to a number, given a string input, is as follows: If parsing a global date and time from input results in an error, then return an error; otherwise, return the number of milliseconds elapsed from midnight UTC on the morning of 1970-01-01 (the time represented by the value "1970-01-01T00:00:00.0Z") to the parsed global date and time, ignoring leap seconds.

The algorithm to convert a number to a string, given a number input, is as follows: Return a valid normalised forced-UTC global date and time string that represents the global date and time that is input milliseconds after midnight UTC on the morning of 1970-01-01 (the time represented by the value "1970-01-01T00:00:00.0Z").

The algorithm to convert a string to a Date object, given a string input, is as follows: If parsing a global date and time from input results in an error, then return an error; otherwise, return a new Date object representing the parsed global date and time, expressed in UTC.

The algorithm to convert a Date object to a string, given a Date object input, is as follows: Return a valid normalised forced-UTC global date and time string that represents the global date and time that is represented by input.

The Date and Time state (and other date- and time-related states described in subsequent sections) is not intended for the entry of values for which a precise date and time relative to the contemporary calendar cannot be established. For example, it would be inappropriate for the entry of times like "one millisecond after the big bang", "the early part of the Jurassic period", or "a winter around 250 BCE".

For the input of dates before the introduction of the Gregorian calendar, authors are encouraged to not use the Date and Time state (and the other date- and time-related states described in subsequent sections), as user agents are not required to support converting dates and times from earlier periods to the Gregorian calendar, and asking users to do so manually puts an undue burden on users. (This is complicated by the manner in which the Gregorian calendar was phased in, which occurred at different times in different countries, ranging from partway through the 16th century all the way to early in the 20th.) Instead, authors are encouraged to provide fine-grained input controls using the select element and input elements with the Number state.

The following common input element content attributes, IDL attributes, and methods apply to the element: autocomplete, list, max, min, readonly, required, and step content attributes; list, value, valueAsDate, and valueAsNumber IDL attributes; stepDown() and stepUp() methods.

The value IDL attribute is in mode value.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element: accept, alt, checked, dirname, formaction, formenctype, formmethod, formnovalidate, formtarget, height, inputmode, maxlength, minlength, multiple, pattern, placeholder, size, src, and width.

The following IDL attributes and methods do not apply to the element: checked, files, selectionStart, selectionEnd, selectionDirection, valueLow, and valueHigh IDL attributes; select(), setRangeText(), and setSelectionRange() methods.

The following fragment shows part of a calendar application. A user can specify a date and time for a meeting (in his local time zone, probably, though the user agent can allow the user to change that), and since the submitted data includes the time-zone offset, the application can ensure that the meeting is shown at the correct time regardless of the time zones used by all the participants.

<fieldset>
 <legend>Add Meeting</legend>
 <p><label>Meeting name: <input type=text name="meeting.label"></label>
 <p><label>Meeting time: <input type=datetime name="meeting.start"></label>
</fieldset>

Had the application used the date and/or time types instead, the calendar application would have also had to explicitly determine which time zone the user intended.

For events where the precise time is to vary as the user travels (e.g. "celebrate the new year!"), and for recurring events that are to stay at the same time for a specific geographic location even though that location may go in and out of daylight savings time (e.g. "bring the kid to school"), the date and/or time types combined with a select element (or other similar control) to pick the specific geographic location to which to anchor the time would be more appropriate.

4.10.5.1.8 Date state (type=date)
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes

When an input element's type attribute is in the Date state, the rules in this section apply.

The input element represents a control for setting the element's value to a string representing a specific date.

date values represent a "floating" time and do not include time zone information. Care is needed when converting values of this type to or from date data types in JavaScript and other programming languages. In many cases, an implicit time-of-day and time zone are used to create a global ("incremental") time (an integer value that represents the offset from some arbitrary epoch time). Processing or conversion of these values, particularly across time zones, can change the value of the date itself. [TIMEZONES]

If the element is mutable, the user agent should allow the user to change the date represented by its value, as obtained by parsing a date from it. User agents must not allow the user to set the value to a non-empty string that is not a valid date string. If the user agent provides a user interface for selecting a date, then the value must be set to a valid date string representing the user's selection. User agents should allow the user to set the value to the empty string.

Constraint validation: While the user interface describes input that the user agent cannot convert to a valid date string, the control is suffering from bad input.

See the introduction section for a discussion of the difference between the input format and submission format for date, time, and number form controls, and the implementation notes regarding localization of form controls.

The value attribute, if specified and not empty, must have a value that is a valid date string.

The value sanitization algorithm is as follows: If the value of the element is not a valid date string, then set it to the empty string instead.

The min attribute, if specified, must have a value that is a valid date string. The max attribute, if specified, must have a value that is a valid date string.

The step attribute is expressed in days. The step scale factor is 86,400,000 (which converts the days to milliseconds, as used in the other algorithms). The default step is 1 day.

When the element is suffering from a step mismatch, the user agent may round the element's value to the nearest date for which the element would not suffer from a step mismatch.

The algorithm to convert a string to a number, given a string input, is as follows: If parsing a date from input results in an error, then return an error; otherwise, return the number of milliseconds elapsed from midnight UTC on the morning of 1970-01-01 (the time represented by the value "1970-01-01T00:00:00.0Z") to midnight UTC on the morning of the parsed date, ignoring leap seconds.

The algorithm to convert a number to a string, given a number input, is as follows: Return a valid date string that represents the date that, in UTC, is current input milliseconds after midnight UTC on the morning of 1970-01-01 (the time represented by the value "1970-01-01T00:00:00.0Z").

The algorithm to convert a string to a Date object, given a string input, is as follows: If parsing a date from input results in an error, then return an error; otherwise, return a new Date object representing midnight UTC on the morning of the parsed date.

The algorithm to convert a Date object to a string, given a Date object input, is as follows: Return a valid date string that represents the date current at the time represented by input in the UTC time zone.

See the note on historical dates in the Date and Time state section.

The following common input element content attributes, IDL attributes, and methods apply to the element: autocomplete, list, max, min, readonly, required, and step content attributes; list, value, valueAsDate, and valueAsNumber IDL attributes; stepDown() and stepUp() methods.

The value IDL attribute is in mode value.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element: accept, alt, checked, dirname, formaction, formenctype, formmethod, formnovalidate, formtarget, height, inputmode, maxlength, minlength, multiple, pattern, placeholder, size, src, and width.

The following IDL attributes and methods do not apply to the element: checked, selectionStart, selectionEnd, selectionDirection, valueLow, and valueHigh IDL attributes; select(), setRangeText(), and setSelectionRange() methods.

4.10.5.1.9 Month state (type=month)
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes

When an input element's type attribute is in the Month state, the rules in this section apply.

The input element represents a control for setting the element's value to a string representing a specific month.

If the element is mutable, the user agent should allow the user to change the month represented by its value, as obtained by parsing a month from it. User agents must not allow the user to set the value to a non-empty string that is not a valid month string. If the user agent provides a user interface for selecting a month, then the value must be set to a valid month string representing the user's selection. User agents should allow the user to set the value to the empty string.

Constraint validation: While the user interface describes input that the user agent cannot convert to a valid month string, the control is suffering from bad input.

See the introduction section for a discussion of the difference between the input format and submission format for date, time, and number form controls, and the implementation notes regarding localization of form controls.

The value attribute, if specified and not empty, must have a value that is a valid month string.

The value sanitization algorithm is as follows: If the value of the element is not a valid month string, then set it to the empty string instead.

The min attribute, if specified, must have a value that is a valid month string. The max attribute, if specified, must have a value that is a valid month string.

The step attribute is expressed in months. The step scale factor is 1 (there is no conversion needed as the algorithms use months). The default step is 1 month.

When the element is suffering from a step mismatch, the user agent may round the element's value to the nearest month for which the element would not suffer from a step mismatch.

The algorithm to convert a string to a number, given a string input, is as follows: If parsing a month from input results in an error, then return an error; otherwise, return the number of months between January 1970 and the parsed month.

The algorithm to convert a number to a string, given a number input, is as follows: Return a valid month string that represents the month that has input months between it and January 1970.

The algorithm to convert a string to a Date object, given a string input, is as follows: If parsing a month from input results in an error, then return an error; otherwise, return a new Date object representing midnight UTC on the morning of the first day of the parsed month.

The algorithm to convert a Date object to a string, given a Date object input, is as follows: Return a valid month string that represents the month current at the time represented by input in the UTC time zone.

The following common input element content attributes, IDL attributes, and methods apply to the element: autocomplete, list, max, min, readonly, required, and step content attributes; list, value, valueAsDate, and valueAsNumber IDL attributes; stepDown() and stepUp() methods.

The value IDL attribute is in mode value.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element: accept, alt, checked, dirname, formaction, formenctype, formmethod, formnovalidate, formtarget, height, inputmode, maxlength, minlength, multiple, pattern, placeholder, size, src, and width.

The following IDL attributes and methods do not apply to the element: checked, files, selectionStart, selectionEnd, selectionDirection, valueLow, and valueHigh IDL attributes; select(), setRangeText(), and setSelectionRange() methods.

4.10.5.1.10 Week state (type=week)
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes

When an input element's type attribute is in the Week state, the rules in this section apply.

The input element represents a control for setting the element's value to a string representing a specific week.

If the element is mutable, the user agent should allow the user to change the week represented by its value, as obtained by parsing a week from it. User agents must not allow the user to set the value to a non-empty string that is not a valid week string. If the user agent provides a user interface for selecting a week, then the value must be set to a valid week string representing the user's selection. User agents should allow the user to set the value to the empty string.

Constraint validation: While the user interface describes input that the user agent cannot convert to a valid week string, the control is suffering from bad input.

See the introduction section for a discussion of the difference between the input format and submission format for date, time, and number form controls, and the implementation notes regarding localization of form controls.

The value attribute, if specified and not empty, must have a value that is a valid week string.

The value sanitization algorithm is as follows: If the value of the element is not a valid week string, then set it to the empty string instead.

The min attribute, if specified, must have a value that is a valid week string. The max attribute, if specified, must have a value that is a valid week string.

The step attribute is expressed in weeks. The step scale factor is 604,800,000 (which converts the weeks to milliseconds, as used in the other algorithms). The default step is 1 week. The default step base is −259,200,000 (the start of week 1970-W01).

When the element is suffering from a step mismatch, the user agent may round the element's value to the nearest week for which the element would not suffer from a step mismatch.

The algorithm to convert a string to a number, given a string input, is as follows: If parsing a week string from input results in an error, then return an error; otherwise, return the number of milliseconds elapsed from midnight UTC on the morning of 1970-01-01 (the time represented by the value "1970-01-01T00:00:00.0Z") to midnight UTC on the morning of the Monday of the parsed week, ignoring leap seconds.

The algorithm to convert a number to a string, given a number input, is as follows: Return a valid week string that represents the week that, in UTC, is current input milliseconds after midnight UTC on the morning of 1970-01-01 (the time represented by the value "1970-01-01T00:00:00.0Z").

The algorithm to convert a string to a Date object, given a string input, is as follows: If parsing a week from input results in an error, then return an error; otherwise, return a new Date object representing midnight UTC on the morning of the Monday of the parsed week.

The algorithm to convert a Date object to a string, given a Date object input, is as follows: Return a valid week string that represents the week current at the time represented by input in the UTC time zone.

The following common input element content attributes, IDL attributes, and methods apply to the element: autocomplete, list, max, min, readonly, required, and step content attributes; list, value, valueAsDate, and valueAsNumber IDL attributes; stepDown() and stepUp() methods.

The value IDL attribute is in mode value.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element: accept, alt, checked, dirname, formaction, formenctype, formmethod, formnovalidate, formtarget, height, inputmode, maxlength, minlength, multiple, pattern, placeholder, size, src, and width.

The following IDL attributes and methods do not apply to the element: checked, files, selectionStart, selectionEnd, selectionDirection, valueLow, and valueHigh IDL attributes; select(), setRangeText(), and setSelectionRange() methods.

4.10.5.1.11 Time state (type=time)
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes

When an input element's type attribute is in the Time state, the rules in this section apply.

The input element represents a control for setting the element's value to a string representing a specific time.

If the element is mutable, the user agent should allow the user to change the time represented by its value, as obtained by parsing a time from it. User agents must not allow the user to set the value to a non-empty string that is not a valid time string. If the user agent provides a user interface for selecting a time, then the value must be set to a valid time string representing the user's selection. User agents should allow the user to set the value to the empty string.

Constraint validation: While the user interface describes input that the user agent cannot convert to a valid time string, the control is suffering from bad input.

See the introduction section for a discussion of the difference between the input format and submission format for date, time, and number form controls, and the implementation notes regarding localization of form controls.

The value attribute, if specified and not empty, must have a value that is a valid time string.

The value sanitization algorithm is as follows: If the value of the element is not a valid time string, then set it to the empty string instead.

The form control has a periodic domain.

The min attribute, if specified, must have a value that is a valid time string. The max attribute, if specified, must have a value that is a valid time string.

The step attribute is expressed in seconds. The step scale factor is 1000 (which converts the seconds to milliseconds, as used in the other algorithms). The default step is 60 seconds.

When the element is suffering from a step mismatch, the user agent may round the element's value to the nearest time for which the element would not suffer from a step mismatch.

The algorithm to convert a string to a number, given a string input, is as follows: If parsing a time from input results in an error, then return an error; otherwise, return the number of milliseconds elapsed from midnight to the parsed time on a day with no time changes.

The algorithm to convert a number to a string, given a number input, is as follows: Return a valid time string that represents the time that is input milliseconds after midnight on a day with no time changes.

The algorithm to convert a string to a Date object, given a string input, is as follows: If parsing a time from input results in an error, then return an error; otherwise, return a new Date object representing the parsed time in UTC on 1970-01-01.

The algorithm to convert a Date object to a string, given a Date object input, is as follows: Return a valid time string that represents the UTC time component that is represented by input.

The following common input element content attributes, IDL attributes, and methods apply to the element: autocomplete, list, max, min, readonly, required, and step content attributes; list, value, valueAsDate, and valueAsNumber IDL attributes; stepDown() and stepUp() methods.

The value IDL attribute is in mode value.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element: accept, alt, checked, dirname, formaction, formenctype, formmethod, formnovalidate, formtarget, height, inputmode, maxlength, minlength, multiple, pattern, placeholder, size, src, and width.

The following IDL attributes and methods do not apply to the element: checked, files, selectionStart, selectionEnd, selectionDirection, valueLow, and valueHigh IDL attributes; select(), setRangeText(), and setSelectionRange() methods.

4.10.5.1.12 Number state (type=number)
Allowed ARIA role attribute values:
spinbutton (default - do not set).
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.

When an input element's type attribute is in the Number state, the rules in this section apply.

The input element represents a control for setting the element's value to a string representing a number.

If the element is mutable, the user agent should allow the user to change the number represented by its value, as obtained from applying the rules for parsing floating-point number values to it. User agents must not allow the user to set the value to a non-empty string that is not a valid floating-point number. If the user agent provides a user interface for selecting a number, then the value must be set to the best representation of the number representing the user's selection as a floating-point number. User agents should allow the user to set the value to the empty string.

Constraint validation: While the user interface describes input that the user agent cannot convert to a valid floating-point number, the control is suffering from bad input.

This specification does not define what user interface user agents are to use; user agent vendors are encouraged to consider what would best serve their users' needs. For example, a user agent in Persian or Arabic markets might support Persian and Arabic numeric input (converting it to the format required for submission as described above). Similarly, a user agent designed for Romans might display the value in Roman numerals rather than in decimal; or (more realistically) a user agent designed for the French market might display the value with apostrophes between thousands and commas before the decimals, and allow the user to enter a value in that manner, internally converting it to the submission format described above.

The value attribute, if specified and not empty, must have a value that is a valid floating-point number.

The value sanitization algorithm is as follows: If the value of the element is not a valid floating-point number, then set it to the empty string instead.

The min attribute, if specified, must have a value that is a valid floating-point number. The max attribute, if specified, must have a value that is a valid floating-point number.

The step scale factor is 1. The default step is 1 (allowing only integers to be selected by the user, unless the step base has a non-integer value).

When the element is suffering from a step mismatch, the user agent may round the element's value to the nearest number for which the element would not suffer from a step mismatch. If there are two such numbers, user agents are encouraged to pick the one nearest positive infinity.

The algorithm to convert a string to a number, given a string input, is as follows: If applying the rules for parsing floating-point number values to input results in an error, then return an error; otherwise, return the resulting number.

The algorithm to convert a number to a string, given a number input, is as follows: Return a valid floating-point number that represents input.

The following common input element content attributes, IDL attributes, and methods apply to the element: autocomplete, list, max, min, placeholder, readonly, required, and step content attributes; list, value, and valueAsNumber IDL attributes; stepDown() and stepUp() methods.

The value IDL attribute is in mode value.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element: accept, alt, checked, dirname, formaction, formenctype, formmethod, formnovalidate, formtarget, height, inputmode, maxlength, minlength, multiple, pattern, size, src, and width.

The following IDL attributes and methods do not apply to the element: checked, files, selectionStart, selectionEnd, selectionDirection, valueAsDate, valueLow, and valueHigh IDL attributes; select(), setRangeText(), and setSelectionRange() methods.

Here is an example of using a numeric input control:

<label>How much do you want to charge? $<input type=number min=0 step=0.01 name=price></label>

As described above, a user agent might support numeric input in the user's local format, converting it to the format required for submission as described above. This might include handling grouping separators (as in "872,000,000,000") and various decimal separators (such as "3,99" vs "3.99") or using local digits (such as those in Arabic, Devanagari, Persian, and Thai).

The type=number state is not appropriate for input that happens to only consist of numbers but isn't strictly speaking a number. For example, it would be inappropriate for credit card numbers or US postal codes. A simple way of determining whether to use type=number is to consider whether it would make sense for the input control to have a spinbox interface (e.g. with "up" and "down" arrows). Getting a credit card number wrong by 1 in the last digit isn't a minor mistake, it's as wrong as getting every digit incorrect. So it would not make sense for the user to select a credit card number using "up" and "down" buttons. When a spinbox interface is not appropriate, type=text is probably the right choice (possibly with a pattern attribute).

4.10.5.1.13 Range state (type=range)
Allowed ARIA role attribute values:
slider (default - do not set).
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.

When an input element's type attribute is in the Range state, the rules in this section apply.

How the Range state operates depends on whether the multiple attribute is specified or not.

When the multiple attribute is not specified on the element

The input element represents a control for setting the element's value to a string representing a number, but with the caveat that the exact value is not important, letting UAs provide a simpler interface than they do for the Number state.

If the element is mutable, the user agent should allow the user to change the number represented by its value, as obtained from applying the rules for parsing floating-point number values to it. User agents must not allow the user to set the value to a string that is not a valid floating-point number. If the user agent provides a user interface for selecting a number, then the value must be set to a best representation of the number representing the user's selection as a floating-point number. User agents must not allow the user to set the value to the empty string.

Constraint validation: While the user interface describes input that the user agent cannot convert to a valid floating-point number, the control is suffering from bad input.

The value attribute, if specified, must have a value that is a valid floating-point number.

The value sanitization algorithm is as follows: If the value of the element is not a valid floating-point number, then set it to the best representation, as a floating-point number, of the default value.

The default value is the minimum plus half the difference between the minimum and the maximum, unless the maximum is less than the minimum, in which case the default value is the minimum.

When the element is suffering from an underflow, the user agent must set the element's value to the best representation, as a floating-point number, of the minimum.

When the element is suffering from an overflow, if the maximum is not less than the minimum, the user agent must set the element's value to a valid floating-point number that represents the maximum.

When the element is suffering from a step mismatch, the user agent must round the element's value to the nearest number for which the element would not suffer from a step mismatch, and which is greater than or equal to the minimum, and, if the maximum is not less than the minimum, which is less than or equal to the maximum, if there is a number that matches these constraints. If two numbers match these constraints, then user agents must use the one nearest to positive infinity.

For example, the markup <input type="range" min=0 max=100 step=20 value=50> results in a range control whose initial value is 60.

Here is an example of a range control using an autocomplete list with the list attribute. This could be useful if there are values along the full range of the control that are especially important, such as preconfigured light levels or typical speed limits in a range control used as a speed control. The following markup fragment:

<input type="range" min="-100" max="100" value="0" step="10" name="power" list="powers">
<datalist id="powers">
 <option value="0">
 <option value="-30">
 <option value="30">
 <option value="++50">
</datalist>

...with the following style sheet applied:

input { height: 75px; width: 49px; background: #D5CCBB; color: black; }

...might render as:

A vertical slider control whose primary color is black and whose background color is beige, with the slider having five tick marks, one long one at each extremity, and three short ones clustered around the midpoint.

Note how the UA determined the orientation of the control from the ratio of the style-sheet-specified height and width properties. The colors were similarly derived from the style sheet. The tick marks, however, were derived from the markup. In particular, the step attribute has not affected the placement of tick marks, the UA deciding to only use the author-specified completion values and then adding longer tick marks at the extremes.

Note also how the invalid value ++50 was completely ignored.

For another example, consider the following markup fragment:

<input name=x type=range min=100 max=700 step=9.09090909 value=509.090909>

A user agent could display in a variety of ways, for instance:

As a dial.

Or, alternatively, for instance:

As a long horizontal slider with tick marks.

The user agent could pick which one to display based on the dimensions given in the style sheet. This would allow it to maintain the same resolution for the tick marks, despite the differences in width.

Finally, here is an example of a range control with two labeled values:

<input type="range" name="a" list="a-values">
<datalist id="a-values">
 <option value="10" label="Low">
 <option value="90" label="High">
</datalist>

With styles that make the control draw vertically, it might look as follows:

A vertical slider control with two tick marks, one near the top labeled 'High', and one near the bottom labeled 'Low'.

When the multiple attribute is specified on the element

The input element represents a control for setting the element's values to two strings representing numbers, but with the caveat that the exact values are not important, enabling UAs provide a graphical interface rather than requiring the user to type the numbers directly.

If the element is mutable, the user agent should allow the user to change either the first or second number represented by its values, as obtained from applying the rules for parsing floating-point number values to them, and ensuring that the first value is never larger than the second value. User agents must not allow the user to set either the first or second of the values to a string that is not a valid floating-point number. If the user agent provides a user interface for selecting a number, then these values must be set to the best representations of the numbers representing the user's selections as floating-point numbers. User agents must not allow the user to set the values to the empty string.

Constraint validation: While the user interface describes input that the user agent cannot convert to a pair of valid floating-point numbers, the control is suffering from bad input.

The value attribute, if specified, must have a value that is a pair of valid floating-point numbers separated by a single "," (U+002C) character.

The value sanitization algorithm is as follows:

  1. Split on commas the element's value.

  2. If there are not exactly two values, or if either value is not a valid floating-point number, then let the element's values be a pair of values consisting of a best representation, as a floating-point number, of the element's minimum and the element's maximum, with the smaller value first.

  3. Othwerwise, let the element's values be the two values, with the smaller value first.

  4. Let the element's value be the result of concatenating the element's values, separating them by a single "," (U+002C) character, with the lower value coming first.

Whenever the user changes the element's values, the user agent must set the element's value to the result of concatenating the element's values, separating them by a single "," (U+002C) character, with the lower value coming first.

When the element is suffering from an underflow, the user agent must set either of the element's values that represent values less than the minimum to the best representation, as a floating-point number, of the minimum.

When the element is suffering from an overflow, if the maximum is not less than the minimum, the user agent must set either of the element's values that represent values greater than the maximum to a valid floating-point number that represents the maximum.

When the element is suffering from a step mismatch, the user agent must round the values represented by the element's values to, in each case, the nearest number for which the element would not suffer from a step mismatch, and which is greater than or equal to the minimum, and, if the maximum is not less than the minimum, which is less than or equal to the maximum, if there is a number that matches these constraints. If two numbers match these constraints, then user agents must use the one nearest to positive infinity.

Whenever the user agent changes the element's values according to the three previous paragraphs, the user agent must set the element's value to the result of concatenating the element's values, separating them by a single U+002C COMMA character (,), with the lower value coming first.

Consider a user interface that filters possible flights by departure and arrival time:

<form ...>
 <fieldset>
  <legend>Outbound flight time</legend>
  <select ...>
   <option>Departure
   <option>Arrival
  </select>
  <p><output name=o1>00:00</output> – <output name=o2>24:00</output></p>
  <input type=range multiple min=0 max=24 value=0,24 step=1.0 ...
         oninput="o1.value = valueLow + ':00'; o2.value = valueHigh + ':00'">
 </fieldset>
 ...
</form>

With appropriate styling, this might look like:

A control group with the label 'Outbound flight time', showing a drop-down that lets you select Departure vs Arrival, a two-handled range control that lets you set the start and end time of the range, and a label showing the currently selected times.

When the multiple attribute is set or removed, the user agent must run the value sanitization algorithm.

In this state, the range and step constraints are enforced even during user input, and there is no way to set the value to the empty string.

The min attribute, if specified, must have a value that is a valid floating-point number. The default minimum is 0. The max attribute, if specified, must have a value that is a valid floating-point number. The default maximum is 100.

The step scale factor is 1. The default step is 1 (allowing only integers, unless the min attribute has a non-integer value).

The algorithm to convert a string to a number, given a string input, is as follows: If applying the rules for parsing floating-point number values to input results in an error, then return an error; otherwise, return the resulting number.

The algorithm to convert a number to a string, given a number input, is as follows: Return the best representation, as a floating-point number, of input.

The following common input element content attributes, IDL attributes, and methods apply to the element: autocomplete, list, max, min, multiple, and step content attributes; list, value, and valueAsNumber IDL attributes; stepDown() and stepUp() methods.

The following common input IDL attribute applies to the element if the multiple content attribute is not specified: valueAsNumber.

The following common input IDL attributes apply to the element if the multiple content attribute is specified: valueLow and valueHigh.

The value IDL attribute is in mode value.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element: accept, alt, checked, dirname, formaction, formenctype, formmethod, formnovalidate, formtarget, height, inputmode, maxlength, minlength, pattern, placeholder, readonly, required, size, src, and width.

The following IDL attributes and methods do not apply to the element: checked, files, selectionStart, selectionEnd, selectionDirection, valueAsDate, valueLow, and valueHigh IDL attributes; select(), setRangeText(), and setSelectionRange() methods.

The following common input IDL attributes do not apply to the element if the multiple content attribute is not specified: valueLow and valueHigh.

The following common input IDL attribute does not apply to the element if the multiple content attribute is specified: valueAsNumber.

4.10.5.1.14 Color state (type=color)
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes

When an input element's type attribute is in the Color state, the rules in this section apply.

The input element represents a color well control, for setting the element's value to a string representing a simple color.

In this state, there is always a color picked, and there is no way to set the value to the empty string.

If the element is mutable, the user agent should allow the user to change the color represented by its value, as obtained from applying the rules for parsing simple color values to it. User agents must not allow the user to set the value to a string that is not a valid lowercase simple color. If the user agent provides a user interface for selecting a color, then the value must be set to the result of using the rules for serializing simple color values to the user's selection. User agents must not allow the user to set the value to the empty string.

Constraint validation: While the user interface describes input that the user agent cannot convert to a valid lowercase simple color, the control is suffering from bad input.

The value attribute, if specified and not empty, must have a value that is a valid simple color.

The value sanitization algorithm is as follows: If the value of the element is a valid simple color, then set it to the value of the element converted to ASCII lowercase; otherwise, set it to the string "#000000".

The following common input element content attributes and IDL attributes apply to the element: autocomplete and list content attributes; list and value IDL attributes.

The value IDL attribute is in mode value.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element: accept, alt, checked, dirname, formaction, formenctype, formmethod, formnovalidate, formtarget, height, inputmode, max, maxlength, min, minlength, multiple, pattern, placeholder, readonly, required, size, src, step, and width.

The following IDL attributes and methods do not apply to the element: checked, files, selectionStart, selectionEnd, selectionDirection, valueAsDate, valueAsNumber, valueLow, and valueHigh IDL attributes; select(), setRangeText(), setSelectionRange(), stepDown(), and stepUp() methods.

4.10.5.1.15 Checkbox state (type=checkbox)
Allowed ARIA role attribute values:
checkbox (default - do not set) or menuitemcheckbox.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.

When an input element's type attribute is in the Checkbox state, the rules in this section apply.

The input element represents a two-state control that represents the element's checkedness state. If the element's checkedness state is true, the control represents a positive selection, and if it is false, a negative selection. If the element's indeterminate IDL attribute is set to true, then the control's selection should be obscured as if the control was in a third, indeterminate, state.

The control is never a true tri-state control, even if the element's indeterminate IDL attribute is set to true. The indeterminate IDL attribute only gives the appearance of a third state.

If the element is mutable, then: The pre-click activation steps consist of setting the element's checkedness to its opposite value (i.e. true if it is false, false if it is true), and of setting the element's indeterminate IDL attribute to false. The canceled activation steps consist of setting the checkedness and the element's indeterminate IDL attribute back to the values they had before the pre-click activation steps were run. The activation behavior is to fire a simple event that bubbles named input at the element and then fire a simple event that bubbles named change at the element.

If the element is not mutable, it has no activation behavior.

Constraint validation: If the element is required and its checkedness is false, then the element is suffering from being missing.

input . indeterminate [ = value ]

When set, overrides the rendering of checkbox controls so that the current value is not visible.

The following common input element content attributes and IDL attributes apply to the element: checked, and required content attributes; checked and value IDL attributes.

The value IDL attribute is in mode default/on.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element: accept, alt, autocomplete, dirname, formaction, formenctype, formmethod, formnovalidate, formtarget, height, inputmode, list, max, maxlength, min, minlength, multiple, pattern, placeholder, readonly, size, src, step, and width.

The following IDL attributes and methods do not apply to the element: files, list, selectionStart, selectionEnd, selectionDirection, valueAsDate, valueAsNumber, valueLow, and valueHigh IDL attributes; select(), setRangeText(), setSelectionRange(), stepDown(), and stepUp() methods.

4.10.5.1.16 Radio Button state (type=radio)
Allowed ARIA role attribute values:
radio (default - do not set) or menuitemradio.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.

When an input element's type attribute is in the Radio Button state, the rules in this section apply.

The input element represents a control that, when used in conjunction with other input elements, forms a radio button group in which only one control can have its checkedness state set to true. If the element's checkedness state is true, the control represents the selected control in the group, and if it is false, it indicates a control in the group that is not selected.

The radio button group that contains an input element a also contains all the other input elements b that fulfill all of the following conditions:

A document must not contain an input element whose radio button group contains only that element.

When any of the following phenomena occur, if the element's checkedness state is true after the occurrence, the checkedness state of all the other elements in the same radio button group must be set to false:

If the element is mutable, then: The pre-click activation steps consist of setting the element's checkedness to true. The canceled activation steps consist of setting the element's checkedness to false. The activation behavior is to fire a simple event that bubbles named input at the element and then fire a simple event that bubbles named change at the element. .

If the element is not mutable, it has no activation behavior.

Constraint validation: If an element in the radio button group is required, and all of the input elements in the radio button group have a checkedness that is false, then the element is suffering from being missing.

If none of the radio buttons in a radio button group are checked when they are inserted into the document, then they will all be initially unchecked in the interface, until such time as one of them is checked (either by the user or by script).

The following common input element content attributes and IDL attributes apply to the element: checked and required content attributes; checked and value IDL attributes.

The value IDL attribute is in mode default/on.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element: accept, alt, autocomplete, dirname, formaction, formenctype, formmethod, formnovalidate, formtarget, height, inputmode, list, max, maxlength, min, minlength, multiple, pattern, placeholder, readonly, size, src, step, and width.

The following IDL attributes and methods do not apply to the element: files, list, selectionStart, selectionEnd, selectionDirection, valueAsDate, valueAsNumber, valueLow, and valueHigh IDL attributes; select(), setRangeText(), setSelectionRange(), stepDown(), and stepUp() methods.

4.10.5.1.17 File Upload state (type=file)
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes

When an input element's type attribute is in the File Upload state, the rules in this section apply.

The input element represents a list of selected files, each file consisting of a file name, a file type, and a file body (the contents of the file).

File names must not contain path components, even in the case that a user has selected an entire directory hierarchy or multiple files with the same name from different directories. Path components, for the purposes of the File Upload state, are those parts of file names that are separated by "\" (U+005C) character characters.

Unless the multiple attribute is set, there must be no more than one file in the list of selected files.

If the element is mutable, then the element's activation behavior is to run the following steps:

  1. If the algorithm is not allowed to show a popup, then abort these steps without doing anything else.

  2. Return, but continue running these steps asynchronously.

  3. Optionally, wait until any prior execution of this algorithm has terminated.

  4. Display a prompt to the user requesting that the user specify some files. If the multiple attribute is not set, there must be no more than one file selected; otherwise, any number may be selected. Files can be from the filesystem or created on the fly, e.g. a picture taken from a camera connected to the user's device.

  5. Wait for the user to have made their selection.

  6. Queue a task to first update the element's selected files so that it represents the user's selection, then fire a simple event that bubbles named input at the input element, and finally fire a simple event that bubbles named change at the input element.

If the element is mutable, the user agent should allow the user to change the files on the list in other ways also, e.g. adding or removing files by drag-and-drop. When the user does so, the user agent must queue a task to first update the element's selected files so that it represents the user's new selection, then fire a simple event that bubbles named input at the input element, and finally fire a simple event that bubbles named change at the input element.

If the element is not mutable, it has no activation behavior and the user agent must not allow the user to change the element's selection.

Constraint validation: If the element is required and the list of selected files is empty, then the element is suffering from being missing.


The accept attribute may be specified to provide user agents with a hint of what file types will be accepted.

If specified, the attribute must consist of a set of comma-separated tokens, each of which must be an ASCII case-insensitive match for one of the following:

The string audio/*
Indicates that sound files are accepted.
The string video/*
Indicates that video files are accepted.
The string image/*
Indicates that image files are accepted.
A valid MIME type with no parameters
Indicates that files of the specified type are accepted.
A string whose first character is a "." (U+002E) character
Indicates that files with the specified file extension are accepted.

The tokens must not be ASCII case-insensitive matches for any of the other tokens (i.e. duplicates are not allowed). To obtain the list of tokens from the attribute, the user agent must split the attribute value on commas.

User agents may use the value of this attribute to display a more appropriate user interface than a generic file picker. For instance, given the value image/*, a user agent could offer the user the option of using a local camera or selecting a photograph from their photo collection; given the value audio/*, a user agent could offer the user the option of recording a clip using a headset microphone.

User agents should prevent the user from selecting files that are not accepted by one (or more) of these tokens.

Authors are encouraged to specify both any MIME types and any corresponding extensions when looking for data in a specific format.

For example, consider an application that converts Microsoft Word documents to Open Document Format files. Since Microsoft Word documents are described with a wide variety of MIME types and extensions, the site can list several, as follows:

<input type="file" accept=".doc,.docx,.xml,application/msword,application/vnd.openxmlformats-officedocument.wordprocessingml.document">

On platforms that only use file extensions to describe file types, the extensions listed here can be used to filter the allowed documents, while the MIME types can be used with the system's type registration table (mapping MIME types to extensions used by the system), if any, to determine any other extensions to allow. Similarly, on a system that does not have file names or extensions but labels documents with MIME types internally, the MIME types can be used to pick the allowed files, while the extensions can be used if the system has an extension registration table that maps known extensions to MIME types used by the system.

Extensions tend to be ambiguous (e.g. there are an untold number of formats that use the ".dat" extension, and users can typically quite easily rename their files to have a ".doc" extension even if they are not Microsoft Word documents), and MIME types tend to be unreliable (e.g. many formats have no formally registered types, and many formats are in practice labeled using a number of different MIME types). Authors are reminded that, as usual, data received from a client should be treated with caution, as it may not be in an expected format even if the user is not hostile and the user agent fully obeyed the accept attribute's requirements.

For historical reasons, the value IDL attribute prefixes the file name with the string "C:\fakepath\". Some legacy user agents actually included the full path (which was a security vulnerability). As a result of this, obtaining the file name from the value IDL attribute in a backwards-compatible way is non-trivial. The following function extracts the file name in a suitably compatible manner:

function extractFilename(path) {
  if (path.substr(0, 12) == "C:\\fakepath\\")
    return path.substr(12); // modern browser
  var x;
  x = path.lastIndexOf('/');
  if (x >= 0) // Unix-based path
    return path.substr(x+1);
  x = path.lastIndexOf('\\');
  if (x >= 0) // Windows-based path
    return path.substr(x+1);
  return path; // just the file name
}

This can be used as follows:

<p><input type=file name=image onchange="updateFilename(this.value)"></p>
<p>The name of the file you picked is: <span id="filename">(none)</span></p>
<script>
 function updateFilename(path) {
   var name = extractFilename(path);
   document.getElementById('filename').textContent = name;
 }
</script>

The following common input element content attributes and IDL attributes apply to the element: accept, multiple, and required content attributes; files and value IDL attributes.

The value IDL attribute is in mode filename.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element: alt, autocomplete, checked, dirname, formaction, formenctype, formmethod, formnovalidate, formtarget, height, inputmode, list, max, maxlength, min, minlength, pattern, placeholder, readonly, size, src, step, and width.

The element's value attribute must be omitted.

The following IDL attributes and methods do not apply to the element: checked, list, selectionStart, selectionEnd, selectionDirection, valueAsDate, valueAsNumber, valueLow, and valueHigh IDL attributes; select(), setRangeText(), setSelectionRange(), stepDown(), and stepUp() methods.

4.10.5.1.18 Submit Button state (type=submit)
Allowed ARIA role attribute values:
button (default - do not set).
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.

When an input element's type attribute is in the Submit Button state, the rules in this section apply.

The input element represents a button that, when activated, submits the form. If the element has a value attribute, the button's label must be the value of that attribute; otherwise, it must be an implementation-defined string that means "Submit" or some such. The element is a button, specifically a submit button. (This is a fingerprinting vector.)

If the element is mutable, then the element's activation behavior is as follows: if the element has a form owner, and the element's Document is fully active, submit the form owner from the input element; otherwise, do nothing.

If the element is not mutable, it has no activation behavior.

The formaction, formenctype, formmethod, formnovalidate, and formtarget attributes are attributes for form submission.

The formnovalidate attribute can be used to make submit buttons that do not trigger the constraint validation.

The following common input element content attributes and IDL attributes apply to the element: formaction, formenctype, formmethod, formnovalidate, and formtarget content attributes; value IDL attribute.

The value IDL attribute is in mode default.

The following content attributes must not be specified and do not apply to the element: accept, alt, autocomplete, checked, dirname, height, inputmode, list, max, maxlength, min, minlength, multiple, pattern, placeholder, readonly, required, size, src, step, and width.

The following IDL attributes and methods do not apply to the element: checked, files, list, selectionStart, selectionEnd, selectionDirection, valueAsDate, valueAsNumber, valueLow, and valueHigh IDL attributes; select(), setRangeText(), setSelectionRange(), stepDown(), and stepUp() methods.

The input and change events do not apply.

4.10.5.1.19 Image Button state (type=image)
Allowed ARIA role attribute values:
button (default - do not set), link, menuitem, menuitemcheckbox, menuitemradio or radio.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.

When an input element's type attribute is in the Image Button state, the rules in this section apply.

The input element represents either an image from which a user can select a coordinate and submit the form, or alternatively a button from which the user can submit the form. The element is a button, specifically a submit button.

The coordinate is sent to the server during form submission by sending two entries for the element, derived from the name of the control but with ".x" and ".y" appended to the name with the x and y components of the coordinate respectively.


The image is given by the src attribute. The src attribute must be present, and must contain a valid non-empty URL potentially surrounded by spaces referencing a non-interactive, optionally animated, image resource that is neither paged nor scripted.

When any of the following events occur, unless the user agent cannot support images, or its support for images has been disabled, or the user agent only fetches elements on demand, or the src attribute's value is the empty string, the user agent must resolve the value of the src attribute, relative to the element, and if that is successful, must fetch the resulting absolute URL:

Fetching the image must delay the load event of the element's document until the task that is queued by the networking task source once the resource has been fetched (defined below) has been run.

If the image was successfully obtained, with no network errors, and the image's type is a supported image type, and the image is a valid image of that type, then the image is said to be available. If this is true before the image is completely downloaded, each task that is queued by the networking task source while the image is being fetched must update the presentation of the image appropriately.

The user agent should apply the image sniffing rules to determine the type of the image, with the image's associated Content-Type headers giving the official type. If these rules are not applied, then the type of the image must be the type given by the image's associated Content-Type headers.

User agents must not support non-image resources with the input element. User agents must not run executable code embedded in the image resource. User agents must only display the first page of a multipage resource. User agents must not allow the resource to act in an interactive fashion, but should honor any animation in the resource.

The task that is queued by the networking task source once the resource has been fetched, must, if the download was successful and the image is available, queue a task to fire a simple event named load at the input element; and otherwise, if the fetching process fails without a response from the remote server, or completes but the image is not a valid or supported image, queue a task to fire a simple event named error on the input element.


The alt attribute provides the textual label for the button for users and user agents who cannot use the image. The alt attribute must be present, and must contain a non-empty string giving the label that would be appropriate for an equivalent button if the image was unavailable.

The input element supports dimension attributes.


If the src attribute is set, and the image is available and the user agent is configured to display that image, then: The element represents a control for selecting a coordinate from the image specified by the src attribute; if the element is mutable, the user agent should allow the user to select this coordinate, and the element's activation behavior is as follows: if the element has a form owner, and the element's Document is fully active, take the user's selected coordinate, and submit the input element's form owner from the input element. If the user activates the control without explicitly selecting a coordinate, then the coordinate (0,0) must be assumed.

Otherwise, the element represents a submit button whose label is given by the value of the alt attribute; if the element is mutable, then the element's activation behavior is as follows: if the element has a form owner, and the element's Document is fully active, set the selected coordinate to (0,0), and submit the input element's form owner from the input element.

In either case, if the element is mutable but has no form owner or the element's Document is not fully active, then its activation behavior must be to do nothing. If the element is not mutable, it has no activation behavior.

The selected coordinate must consist of an x-component and a y-component. The coordinates represent the position relative to the edge of the image, with the coordinate space having the positive x direction to the right, and the positive y direction downwards.

The x-component must be a valid integer representing a number x in the range −(borderleft+paddingleft) ≤ xwidth+borderright+paddingright, where width is the rendered width of the image, borderleft is the width of the border on the left of the image, paddingleft is the width of the padding on the left of the image, borderright is the width of the border on the right of the image, and paddingright is the width of the padding on the right of the image, with all dimensions given in CSS pixels.

The y-component must be a valid integer representing a number y in the range −(bordertop+paddingtop) ≤ yheight+borderbottom+paddingbottom, where height is the rendered height of the image, bordertop is the width of the border above the image, paddingtop is the width of the padding above the image, borderbottom is the width of the border below the image, and paddingbottom is the width of the padding below the image, with all dimensions given in CSS pixels.

Where a border or padding is missing, its width is zero CSS pixels.


The formaction, formenctype, formmethod, formnovalidate, and formtarget attributes are attributes for form submission.

image . width [ = value ]
image . height [ = value ]

These attributes return the actual rendered dimensions of the image, or zero if the dimensions are not known.

They can be set, to change the corresponding content attributes.

The following common input element content attributes and IDL attributes apply to the element: alt, formaction, formenctype, formmethod, formnovalidate, formtarget, height, src, and width content attributes; value IDL attribute.

The value IDL attribute is in mode default.

The following content attributes must not be specified and do not apply to the element: accept, autocomplete, checked, dirname, inputmode, list, max, maxlength, min, minlength, multiple, pattern, placeholder, readonly, required, size, and step.

The element's value attribute must be omitted.

The following IDL attributes and methods do not apply to the element: checked, files, list, selectionStart, selectionEnd, selectionDirection, valueAsDate, valueAsNumber, valueLow, and valueHigh IDL attributes; select(), setRangeText(), setSelectionRange(), stepDown(), and stepUp() methods.

The input and change events do not apply.

Many aspects of this state's behavior are similar to the behavior of the img element. Readers are encouraged to read that section, where many of the same requirements are described in more detail.

Take the following form:

<form action="process.cgi">
 <input type=image src=map.png name=where alt="Show location list">
</form>

If the user clicked on the image at coordinate (127,40) then the URL used to submit the form would be "process.cgi?where.x=127&where.y=40".

(In this example, it's assumed that for users who don't see the map, and who instead just see a button labeled "Show location list", clicking the button will cause the server to show a list of locations to pick from instead of the map.)

4.10.5.1.20 Reset Button state (type=reset)
Allowed ARIA role attribute values:
button (default - do not set).
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.

When an input element's type attribute is in the Reset Button state, the rules in this section apply.

The input element represents a button that, when activated, resets the form. If the element has a value attribute, the button's label must be the value of that attribute; otherwise, it must be an implementation-defined string that means "Reset" or some such. The element is a button. (This is a fingerprinting vector.)

If the element is mutable, then the element's activation behavior, if the element has a form owner and the element's Document is fully active, is to reset the form owner; otherwise, it is to do nothing.

If the element is not mutable, it has no activation behavior.

Constraint validation: The element is barred from constraint validation.

The value IDL attribute applies to this element and is in mode default.

The following content attributes must not be specified and do not apply to the element: accept, alt, autocomplete, checked, dirname, formaction, formenctype, formmethod, formnovalidate, formtarget, height, inputmode, list, max, maxlength, min, minlength, multiple, pattern, placeholder, readonly, required, size, src, step, and width.

The following IDL attributes and methods do not apply to the element: checked, files, list, selectionStart, selectionEnd, selectionDirection, valueAsDate, valueAsNumber, valueLow, and valueHigh IDL attributes; select(), setRangeText(), setSelectionRange(), stepDown(), and stepUp() methods.

The input and change events do not apply.

4.10.5.1.21 Button state (type=button)
Allowed ARIA role attribute values:
button (default - do not set), link, menuitem, menuitemcheckbox, menuitemradio or radio.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.

When an input element's type attribute is in the Button state, the rules in this section apply.

The input element represents a button with no default behavior. A label for the button must be provided in the value attribute, though it may be the empty string. If the element has a value attribute, the button's label must be the value of that attribute; otherwise, it must be the empty string. The element is a button.

If the element is mutable, the element's activation behavior is to do nothing.

If the element is not mutable, it has no activation behavior.

Constraint validation: The element is barred from constraint validation.

The value IDL attribute applies to this element and is in mode default.

The following content attributes must not be specified and do not apply to the element: accept, alt, autocomplete, checked, dirname, formaction, formenctype, formmethod, formnovalidate, formtarget, height, inputmode, list, max, maxlength, min, minlength, multiple, pattern, placeholder, readonly, required, size, src, step, and width.

The following IDL attributes and methods do not apply to the element: checked, files, list, selectionStart, selectionEnd, selectionDirection, valueAsDate, valueAsNumber, valueLow, and valueHigh IDL attributes; select(), setRangeText(), setSelectionRange(), stepDown(), and stepUp() methods.

The input and change events do not apply.

4.10.5.2 Implemention notes regarding localization of form controls

This section is non-normative.

The formats shown to the user in date, time, and number controls is independent of the format used for form submission.

Browsers are encouraged to use user interfaces that present dates, times, and numbers according to the conventions of either the locale implied by the input element's language or the user's preferred locale. Using the page's locale will ensure consistency with page-provided data.

For example, it would be confusing to users if an American English page claimed that a Cirque De Soleil show was going to be showing on 02/03, but their browser, configured to use the British English locale, only showed the date 03/02 in the ticket purchase date picker. Using the page's locale would at least ensure that the date was presented in the same format everywhere. (There's still a risk that the user would end up arriving a month late, of course, but there's only so much that can be done about such cultural differences...)

4.10.5.3 Common input element attributes

These attributes only apply to an input element if its type attribute is in a state whose definition declares that the attribute applies. When an attribute doesn't apply to an input element, user agents must ignore the attribute, regardless of the requirements and definitions below.

4.10.5.3.1 The maxlength and minlength attributes

The maxlength attribute, when it applies, is a form control maxlength attribute controlled by the input element's dirty value flag.

The minlength attribute, when it applies, is a form control minlength attribute controlled by the input element's dirty value flag.

If the input element has a maximum allowed value length, then the code-unit length of the value of the element's value attribute must be equal to or less than the element's maximum allowed value length.

The following extract shows how a messaging client's text entry could be arbitrarily restricted to a fixed number of characters, thus forcing any conversation through this medium to be terse and discouraging intelligent discourse.

<label>What are you doing? <input name=status maxlength=140></label>

Here, a password is given a minimum length:

<p><label>Username: <input name=u required></label>
<p><label>Password: <input name=p required minlength=12></label>
4.10.5.3.2 The size attribute

The size attribute gives the number of characters that, in a visual rendering, the user agent is to allow the user to see while editing the element's value.

The size attribute, if specified, must have a value that is a valid non-negative integer greater than zero.

If the attribute is present, then its value must be parsed using the rules for parsing non-negative integers, and if the result is a number greater than zero, then the user agent should ensure that at least that many characters are visible.

The size IDL attribute is limited to only non-negative numbers greater than zero and has a default value of 20.

4.10.5.3.3 The readonly attribute

The readonly attribute is a boolean attribute that controls whether or not the user can edit the form control. When specified, the element is not mutable.

Constraint validation: If the readonly attribute is specified on an input element, the element is barred from constraint validation.

The difference between disabled and readonly is that read-only controls are still focusable, so the user can still select the text and interact with it, whereas disabled controls are entirely non-interactive. (For this reason, only text controls can be made read-only: it wouldn't make sense for checkboxes or buttons, for instances.)

In the following example, the existing product identifiers cannot be modified, but they are still displayed as part of the form, for consistency with the row representing a new product (where the identifier is not yet filled in).

<form action="products.cgi" method="post" enctype="multipart/form-data">
 <table>
  <tr> <th> Product ID <th> Product name <th> Price <th> Action
  <tr>
   <td> <input readonly="readonly" name="1.pid" value="H412">
   <td> <input required="required" name="1.pname" value="Floor lamp Ulke">
   <td> $<input required="required" type="number" min="0" step="0.01" name="1.pprice" value="49.99">
   <td> <button formnovalidate="formnovalidate" name="action" value="delete:1">Delete</button>
  <tr>
   <td> <input readonly="readonly" name="2.pid" value="FG28">
   <td> <input required="required" name="2.pname" value="Table lamp Ulke">
   <td> $<input required="required" type="number" min="0" step="0.01" name="2.pprice" value="24.99">
   <td> <button formnovalidate="formnovalidate" name="action" value="delete:2">Delete</button>
  <tr>
   <td> <input required="required" name="3.pid" value="" pattern="[A-Z0-9]+">
   <td> <input required="required" name="3.pname" value="">
   <td> $<input required="required" type="number" min="0" step="0.01" name="3.pprice" value="">
   <td> <button formnovalidate="formnovalidate" name="action" value="delete:3">Delete</button>
 </table>
 <p> <button formnovalidate="formnovalidate" name="action" value="add">Add</button> </p>
 <p> <button name="action" value="update">Save</button> </p>
</form>
4.10.5.3.4 The required attribute

The required attribute is a boolean attribute. When specified, the element is required.

Constraint validation: If the element is required, and its value IDL attribute applies and is in the mode value, and the element is mutable, and the element's value is the empty string, then the element is suffering from being missing.

The following form has two required fields, one for an e-mail address and one for a password. It also has a third field that is only considered valid if the user types the same password in the password field and this third field.

<h1>Create new account</h1>
<form action="/newaccount" method=post
      oninput="up2.setCustomValidity(up2.value != up.value ? 'Passwords do not match.' : '')">
 <p>
  <label for="username">E-mail address:</label>
  <input id="username" type=email required name=un>
 <p>
  <label for="password1">Password:</label>
  <input id="password1" type=password required name=up>
 <p>
  <label for="password2">Confirm password:</label>
  <input id="password2" type=password name=up2>
 <p>
  <input type=submit value="Create account">
</form>

For radio buttons, the required attribute is satisfied if any of the radio buttons in the group is selected. Thus, in the following example, any of the radio buttons can be checked, not just the one marked as required:

<fieldset>
 <legend>Did the movie pass the Bechdel test?</legend>
 <p><label><input type="radio" name="bechdel" value="no-characters"> No, there are not even two female characters in the movie. </label>
 <p><label><input type="radio" name="bechdel" value="no-names"> No, the female characters never talk to each other. </label>
 <p><label><input type="radio" name="bechdel" value="no-topic"> No, when female characters talk to each other it's always about a male character. </label>
 <p><label><input type="radio" name="bechdel" value="yes" required> Yes. </label>
 <p><label><input type="radio" name="bechdel" value="unknown"> I don't know. </label>
</fieldset>

To avoid confusion as to whether a radio button group is required or not, authors are encouraged to specify the attribute on all the radio buttons in a group. Indeed, in general, authors are encouraged to avoid having radio button groups that do not have any initially checked controls in the first place, as this is a state that the user cannot return to, and is therefore generally considered a poor user interface.

4.10.5.3.5 The multiple attribute

The multiple attribute is a boolean attribute that indicates whether the user is to be allowed to specify more than one value.

The following extract shows how an e-mail client's "Cc" field could accept multiple e-mail addresses.

<label>Cc: <input type=email multiple name=cc></label>

If the user had, amongst many friends in his user contacts database, two friends "Arthur Dent" (with address "art@example.net") and "Adam Josh" (with address "adamjosh@example.net"), then, after the user has typed "a", the user agent might suggest these two e-mail addresses to the user.

Form control group containing 'Send', 
   'Save now' and 'Discard' buttons, a 'To:' combo box with an 'a' displayed in the text box and 2 list items below.

The page could also link in the user's contacts database from the site:

<label>Cc: <input type=email multiple name=cc list=contacts></label>
...
<datalist id="contacts">
 <option value="hedral@damowmow.com">
 <option value="pillar@example.com">
 <option value="astrophy@cute.example">
 <option value="astronomy@science.example.org">
</datalist>

Suppose the user had entered "bob@example.net" into this text field, and then started typing a second e-mail address starting with "a". The user agent might show both the two friends mentioned earlier, as well as the "astrophy" and "astronomy" values given in the datalist element.

Form control group containing 'send', 
   'save now' and 'discard' buttons and a 'To:' combo box with 'bob@example.net,a' displayed in the text box and 4 list items below.

The following extract shows how an e-mail client's "Attachments" field could accept multiple files for upload.

<label>Attachments: <input type=file multiple name=att></label>
4.10.5.3.6 The pattern attribute

The pattern attribute specifies a regular expression against which the control's value, or, when the multiple attribute applies and is set, the control's values, are to be checked.

If specified, the attribute's value must match the JavaScript Pattern production. [ECMA262]

If an input element has a pattern attribute specified, and the attribute's value, when compiled as a JavaScript regular expression with the global, ignoreCase, and multiline flags disabled (see ECMA262 Edition 5, sections 15.10.7.2 through 15.10.7.4), compiles successfully, then the resulting regular expression is the element's compiled pattern regular expression. If the element has no such attribute, or if the value doesn't compile successfully, then the element has no compiled pattern regular expression. [ECMA262]

Constraint validation: If the element's value is not the empty string, and either the element's multiple attribute is not specified or it does not apply to the input element given its type attribute's current state, and the element has a compiled pattern regular expression but that regular expression does not match the entirety of the element's value, then the element is suffering from a pattern mismatch.

Constraint validation: If the element's value is not the empty string, and the element's multiple attribute is specified and applies to the input element, and the element has a compiled pattern regular expression but that regular expression does not match the entirety of each of the element's values, then the element is suffering from a pattern mismatch.

The compiled pattern regular expression, when matched against a string, must have its start anchored to the start of the string and its end anchored to the end of the string.

This implies that the regular expression language used for this attribute is the same as that used in JavaScript, except that the pattern attribute is matched against the entire value, not just any subset (somewhat as if it implied a ^(?: at the start of the pattern and a )$ at the end).

When an input element has a pattern attribute specified, authors should provide a description of the pattern in text near the control. Authors may also include a title attribute to give a description of the pattern. User agents may use the contents of this attribute, if it is present, when informing the user that the pattern is not matched, or at any other suitable time, such as in a tooltip or read out by assistive technology when the control gains focus.

Relying on the title attribute alone is currently discouraged as many user agents do not expose the attribute in an accessible manner as required by this specification (e.g. requiring a pointing device such as a mouse to cause a tooltip to appear, which excludes keyboard-only users and touch-only users, such as anyone with a modern phone or tablet).

For example, the following snippet includes the pattern description in text below the input, the pattern description is also included in the title attribute:

<label> Part number:
        <input pattern="[0-9][A-Z]{3}" name="part"
        data-x="A part number is a digit followed by three uppercase letters."/>
        </label>
        <p>A part number is a digit followed by three uppercase letters.</p>

The presence of the pattern description in text makes the advice available to any user regardless of device.

The presence of the pattern description in the title attribute, results in the description being announced by assistive technology such as screen readers when the input receives focus.

If the user has attempted to submit the form with incorrect information, the presence of the title attribute text could also cause the UA to display an alert such as:

A part number is a digit followed by three uppercase letters.
    You cannot submit this form when the field is incorrect.

In this example, the pattern description is in text below the input, but not in the title attribute. The aria-describedby attribute is used to explicitly associate the text description with the control, the description is announced by assistive technology such as screen readers when the input receives focus:

<label> Part number:
        <input pattern="[0-9][A-Z]{3}" name="part" aria-describedby="description">
        </label>
        <p id="description">A part number is a digit followed by three uppercase letters.</p>

When a control has a pattern attribute, the title attribute, if used, must describe the pattern. Additional information could also be included, so long as it assists the user in filling in the control. Otherwise, assistive technology would be impaired.

For instance, if the title attribute contained the caption of the control, assistive technology could end up saying something like The text you have entered does not match the required pattern. Birthday, which is not useful.

UAs may still show the title in non-error situations (for example, as a tooltip when hovering over the control), so authors should be careful not to word titles as if an error has necessarily occurred.

4.10.5.3.7 The min and max attributes

Some form controls can have explicit constraints applied limiting the allowed range of values that the user can provide. Normally, such a range would be linear and continuous. A form control can have a periodic domain, however, in which case the form control's broadest possible range is finite, and authors can specify explicit ranges within it that span the boundaries.

Specifically, the broadest range of a type=time control is midnight to midnight (24 hours), and authors can set both continuous linear ranges (such as 9pm to 11pm) and discontinuous ranges spanning midnight (such as 11pm to 1am).

The min and max attributes indicate the allowed range of values for the element.

Their syntax is defined by the section that defines the type attribute's current state.

If the element has a min attribute, and the result of applying the algorithm to convert a string to a number to the value of the min attribute is a number, then that number is the element's minimum; otherwise, if the type attribute's current state defines a default minimum, then that is the minimum; otherwise, the element has no minimum.

The min attribute also defines the step base.

If the element has a max attribute, and the result of applying the algorithm to convert a string to a number to the value of the max attribute is a number, then that number is the element's maximum; otherwise, if the type attribute's current state defines a default maximum, then that is the maximum; otherwise, the element has no maximum.

If the element does not have a periodic domain, the max attribute's value (the maximum) must not be less than the min attribute's value (its minimum).

If an element that does not have a periodic domain has a maximum that is less than its minimum, then so long as the element has a value, it will either be suffering from an underflow or suffering from an overflow.

An element has a reversed range if it has a periodic domain and its maximum is less than its minimum.

An element has range limitations if it has a defined minimum or a defined maximum.

How these range limitations apply depends on whether the element has a multiple attribute.

If the element does not have a multiple attribute specified or if the multiple attribute does not apply

Constraint validation: When the element has a minimum and does not have a reversed range, and the result of applying the algorithm to convert a string to a number to the string given by the element's value is a number, and the number obtained from that algorithm is less than the minimum, the element is suffering from an underflow.

Constraint validation: When the element has a maximum and does not have a reversed range, and the result of applying the algorithm to convert a string to a number to the string given by the element's value is a number, and the number obtained from that algorithm is more than the maximum, the element is suffering from an overflow.

Constraint validation: When an element has a reversed range, and the result of applying the algorithm to convert a string to a number to the string given by the element's value is a number, and the number obtained from that algorithm is more than the maximum and less than the minimum, the element is simultaneously suffering from an underflow and suffering from an overflow.

If the element does have a multiple attribute specified and the multiple attribute does apply

Constraint validation: When the element has a minimum, and the result of applying the algorithm to convert a string to a number to any of the strings in the element's values is a number that is less than the minimum, the element is suffering from an underflow.

Constraint validation: When the element has a maximum, and the result of applying the algorithm to convert a string to a number to any of the strings in the element's values is a number that is more than the maximum, the element is suffering from an overflow.

The following date control limits input to dates that are before the 1980s:

<input name=bday type=date max="1979-12-31">

The following number control limits input to whole numbers greater than zero:

<input name=quantity required="" type="number" min="1" value="1">

The following time control limits input to those minutes that occur between 9pm and 6am, defaulting to midnight:

<input name="sleepStart" type=time min="21:00" max="06:00" step="60" value="00:00">
4.10.5.3.8 The step attribute

The step attribute indicates the granularity that is expected (and required) of the value or values, by limiting the allowed values. The section that defines the type attribute's current state also defines the default step, the step scale factor, and in some cases the default step base, which are used in processing the attribute as described below.

The step attribute, if specified, must either have a value that is a valid floating-point number that parses to a number that is greater than zero, or must have a value that is an ASCII case-insensitive match for the string "any".

The attribute provides the allowed value step for the element, as follows:

  1. If the attribute is absent, then the allowed value step is the default step multiplied by the step scale factor.
  2. Otherwise, if the attribute's value is an ASCII case-insensitive match for the string "any", then there is no allowed value step.
  3. Otherwise, if the rules for parsing floating-point number values, when they are applied to the attribute's value, return an error, zero, or a number less than zero, then the allowed value step is the default step multiplied by the step scale factor.
  4. Otherwise, the allowed value step is the number returned by the rules for parsing floating-point number values when they are applied to the attribute's value, multiplied by the step scale factor.

The step base is the value returned by the following algorithm:

  1. If the element has a min content attribute, and the result of applying the algorithm to convert a string to a number to the value of the min content attribute is not an error, then return that result and abort these steps.

  2. If the element does not have a multiple attribute specified or if the multiple attribute does not apply, then: if the element has a value content attribute, and the result of applying the algorithm to convert a string to a number to the value of the value content attribute is not an error, then return that result and abort these steps.

    Otherwise, the element's type attribute is in the Range state and the element has a multiple attribute specified: run these substeps:

    1. If the element does not have a value content attribute, skip these substeps.

    2. Split on commas the value of the value content attribute.

    3. If the result of the previous step was not exactly two values, or if either gets an error when you apply the algorithm to convert a string to a number, then skip these substeps.

    4. Return the lower of the two numbers obtained in the previous step, and abort these steps.

  3. If a default step base is defined for this element given its type attribute's state, then return it and abort these steps.

  4. Return zero.

How these range limitations apply depends on whether the element has a multiple attribute.

If the element does not have a multiple attribute specified or if the multiple attribute does not apply

Constraint validation: When the element has an allowed value step, and the result of applying the algorithm to convert a string to a number to the string given by the element's value is a number, and that number subtracted from the step base is not an integral multiple of the allowed value step, the element is suffering from a step mismatch.

If the element does have a multiple attribute specified and the multiple attribute does apply

Constraint validation: When the element has an allowed value step, and the result of applying the algorithm to convert a string to a number to any of the strings in the element's values is a number that, when subtracted from the step base, is not an integral multiple of the allowed value step, the element is suffering from a step mismatch.

The following range control only accepts values in the range 0..1, and allows 256 steps in that range:

<input name=opacity type=range min=0 max=1 step=0.00392156863>

The following control allows any time in the day to be selected, with any accuracy (e.g. thousandth-of-a-second accuracy or more):

<input name=favtime type=time step=any>

Normally, time controls are limited to an accuracy of one minute.

4.10.5.3.9 The list attribute

The list attribute is used to identify an element that lists predefined options suggested to the user.

If present, its value must be the ID of a datalist element in the same document.

The suggestions source element is the first element in the document in tree order to have an ID equal to the value of the list attribute, if that element is a datalist element. If there is no list attribute, or if there is no element with that ID, or if the first element with that ID is not a datalist element, then there is no suggestions source element.

If there is a suggestions source element, then, when the user agent is allowing the user to edit the input element's value, the user agent should offer the suggestions represented by the suggestions source element to the user in a manner suitable for the type of control used. The user agent may use the suggestion's label to identify the suggestion if appropriate.

How user selections of suggestions are handled depends on whether the element is a control accepting a single value only, or whether it accepts multiple values:

If the element does not have a multiple attribute specified or if the multiple attribute does not apply

When the user selects a suggestion, the input element's value must be set to the selected suggestion's value, as if the user had written that value himself.

If the element's type attribute is in the Range state and the element has a multiple attribute specified

When the user selects a suggestion, the user agent must identify which value in the element's values the user intended to update, and must then update the element's values so that the relevant value is changed to the value given by the selected suggestion's value, as if the user had himself set it to that value.

If the element's type attribute is in the Email state and the element has a multiple attribute specified

When the user selects a suggestion, the user agent must either add a new entry to the input element's values, whose value is the selected suggestion's value, or change an existing entry in the input element's values to have the value given by the selected suggestion's value, as if the user had himself added an entry with that value, or edited an existing entry to be that value. Which behavior is to be applied depends on the user interface in a user-agent-defined manner.


If the list attribute does not apply, there is no suggestions source element.

This URL field offers some suggestions.

<label>Homepage: <input name=hp type=url list=hpurls></label>
<datalist id=hpurls>
 <option value="http://www.google.com/" label="Google">
 <option value="http://www.reddit.com/" label="Reddit">
</datalist>

Other URLs from the user's history might show also; this is up to the user agent.

This example demonstrates how to design a form that uses the autocompletion list feature while still degrading usefully in legacy user agents.

If the autocompletion list is merely an aid, and is not important to the content, then simply using a datalist element with children option elements is enough. To prevent the values from being rendered in legacy user agents, they need to be placed inside the value attribute instead of inline.

<p>
 <label>
  Enter a breed:
  <input type="text" name="breed" list="breeds">
  <datalist id="breeds">
   <option value="Abyssinian">
   <option value="Alpaca">
   <!-- ... -->
  </datalist>
 </label>
</p>

However, if the values need to be shown in legacy UAs, then fallback content can be placed inside the datalist element, as follows:

<p>
 <label>
  Enter a breed:
  <input type="text" name="breed" list="breeds">
 </label>
 <datalist id="breeds">
  <label>
   or select one from the list:
   <select name="breed">
    <option value=""> (none selected)
    <option>Abyssinian
    <option>Alpaca
    <!-- ... -->
   </select>
  </label>
 </datalist>
</p>

The fallback content will only be shown in UAs that don't support datalist. The options, on the other hand, will be detected by all UAs, even though they are not children of the datalist element.

Note that if an option element used in a datalist is selected, it will be selected by default by legacy UAs (because it affects the select), but it will not have any effect on the input element in UAs that support datalist.

4.10.5.3.10 The placeholder attribute

The placeholder attribute represents a short hint (a word or short phrase) intended to aid the user with data entry when the control has no value. A hint could be a sample value or a brief description of the expected format. The attribute, if specified, must have a value that contains no "LF" (U+000A) or "CR" (U+000D) characters.

The placeholder attribute should not be used as a replacement for a label. For a longer hint or other advisory text, place the text next to the control.

Use of the placeholder attribute as a replacement for a label can reduce the accessibility and usability of the control for a range of users including older users and users with cognitive, mobility, fine motor skill or vision impairments. While the hint given by the control's label is shown at all times, the short hint given in the placeholder attribute is only shown before the user enters a value. Furthermore, placeholder text may be mistaken for a pre-filled value, and as commonly implemented the default color of the placeholder text provides insufficient contrast and the lack of a separate visible label reduces the size of the hit region available for setting focus on the control.

User agents should present this hint to the user, after having stripped line breaks from it, when the element's value is the empty string or the control is not focused (or both), e.g. by displaying it inside a blank unfocused control and hiding it otherwise.

Here is an example of a mail configuration user interface that uses the placeholder attribute:

<fieldset>
 <legend>Mail Account</legend>
 <p><label>Name: <input type="text" name="fullname" placeholder="John Ratzenberger"></label></p>
 <p><label>Address: <input type="email" name="address" placeholder="john@example.net"></label></p>
 <p><label>Password: <input type="password" name="password"></label></p>
 <p><label>Description: <input type="text" name="desc" placeholder="My Email Account"></label></p>
</fieldset>

In situations where the control's content has one directionality but the placeholder needs to have a different directionality, Unicode's bidirectional-algorithm formatting characters can be used in the attribute value:

<input name=t1 type=tel placeholder="&#x202B;رقم الهاتف 1&#x202E;">
<input name=t2 type=tel placeholder="&#x202B;رقم الهاتف 2&#x202E;">

For slightly more clarity, here's the same example using numeric character references instead of inline Arabic:

<input name=t1 type=tel placeholder="&#x202B;&#1585;&#1602;&#1605; &#1575;&#1604;&#1607;&#1575;&#1578;&#1601; 1&#x202E;">
<input name=t2 type=tel placeholder="&#x202B;&#1585;&#1602;&#1605; &#1575;&#1604;&#1607;&#1575;&#1578;&#1601; 2&#x202E;">
4.10.5.4 Common input element APIs
input . value [ = value ]

Returns the current value of the form control.

Can be set, to change the value.

Throws an InvalidStateError exception if it is set to any value other than the empty string when the control is a file upload control.

input . checked [ = value ]

Returns the current checkedness of the form control.

Can be set, to change the checkedness.

input . files

Returns a FileList object listing the selected files of the form control.

Returns null if the control isn't a file control.

input . valueAsDate [ = value ]

Returns a Date object representing the form control's value, if applicable; otherwise, returns null.

Can be set, to change the value.

Throws an InvalidStateError exception if the control isn't date- or time-based.

input . valueAsNumber [ = value ]

Returns a number representing the form control's value, if applicable; otherwise, returns NaN.

Can be set, to change the value. Setting this to NaN will set the underlying value to the empty string.

Throws an InvalidStateError exception if the control is neither date- or time-based nor numeric.

input . valueLow [ = value ]
input . valueHigh [ = value ]

Returns a number representing the low and high components of form control's value respectively, if applicable; otherwise, returns NaN.

Can be set, to change the value.

Throws an InvalidStateError exception if the control is not a two-handle range control.

input . stepUp( [ n ] )
input . stepDown( [ n ] )

Changes the form control's value by the value given in the step attribute, multiplied by n. The default value for n is 1.

Throws InvalidStateError exception if the control is neither date- or time-based nor numeric, or if the step attribute's value is "any".

input . list

Returns the datalist element indicated by the list attribute.

The value IDL attribute allows scripts to manipulate the value of an input element. The attribute is in one of the following modes, which define its behavior:

value

On getting, it must return the current value of the element. On setting, it must set the element's value to the new value, set the element's dirty value flag to true, invoke the value sanitization algorithm, if the element's type attribute's current state defines one, and then, if the element has a text entry cursor position, should move the text entry cursor position to the end of the text field, unselecting any selected text and resetting the selection direction to none.

default

On getting, if the element has a value attribute, it must return that attribute's value; otherwise, it must return the empty string. On setting, it must set the element's value attribute to the new value.

default/on

On getting, if the element has a value attribute, it must return that attribute's value; otherwise, it must return the string "on". On setting, it must set the element's value attribute to the new value.

filename

On getting, it must return the string "C:\fakepath\" followed by the name of the first file in the list of selected files, if any, or the empty string if the list is empty. On setting, if the new value is the empty string, it must empty the list of selected files; otherwise, it must throw an InvalidStateError exception.

This "fakepath" requirement is a sad accident of history. See the example in the File Upload state section for more information.

Since path components are not permitted in file names in the list of selected files, the "\fakepath\" cannot be mistaken for a path component.


The checked IDL attribute allows scripts to manipulate the checkedness of an input element. On getting, it must return the current checkedness of the element; and on setting, it must set the element's checkedness to the new value and set the element's dirty checkedness flag to true.


The files IDL attribute allows scripts to access the element's selected files. On getting, if the IDL attribute applies, it must return a FileList object that represents the current selected files. The same object must be returned until the list of selected files changes. If the IDL attribute does not apply, then it must instead return null. [FILEAPI]


The valueAsDate IDL attribute represents the value of the element, interpreted as a date.

On getting, if the valueAsDate attribute does not apply, as defined for the input element's type attribute's current state, then return null. Otherwise, run the algorithm to convert a string to a Date object defined for that state to the element's value; if the algorithm returned a Date object, then return it, otherwise, return null.

On setting, if the valueAsDate attribute does not apply, as defined for the input element's type attribute's current state, then throw an InvalidStateError exception; otherwise, if the new value is null or a Date object representing the NaN time value, then set the value of the element to the empty string; otherwise, run the algorithm to convert a Date object to a string, as defined for that state, on the new value, and set the value of the element to the resulting string.


The valueAsNumber IDL attribute represents the value of the element, interpreted as a number.

On getting, if the valueAsNumber attribute does not apply, as defined for the input element's type attribute's current state, then return a Not-a-Number (NaN) value. Otherwise, if the valueAsDate attribute applies, run the algorithm to convert a string to a Date object defined for that state to the element's value; if the algorithm returned a Date object, then return the time value of the object (the number of milliseconds from midnight UTC the morning of 1970-01-01 to the time represented by the Date object), otherwise, return a Not-a-Number (NaN) value. Otherwise, run the algorithm to convert a string to a number defined for that state to the element's value; if the algorithm returned a number, then return it, otherwise, return a Not-a-Number (NaN) value.

On setting, if the new value is infinite, then throw a TypeError exception. Otherwise, if the valueAsNumber attribute does not apply, as defined for the input element's type attribute's current state, then throw an InvalidStateError exception. Otherwise, if the new value is a Not-a-Number (NaN) value, then set the value of the element to the empty string. Otherwise, if the valueAsDate attribute applies, run the algorithm to convert a Date object to a string defined for that state, passing it a Date object whose time value is the new value, and set the value of the element to the resulting string. Otherwise, run the algorithm to convert a number to a string, as defined for that state, on the new value, and set the value of the element to the resulting string.


The valueLow and valueHigh IDL attributes represent the value of the element, interpreted as a comma-separated pair of numbers.

On getting, if the attributes do not apply, as defined for the input element's type attribute's current state, then return zero; otherwise, run the following steps:

  1. Let values be the values of the element, interpreted according to the algorithm to convert a string to a number, as defined by the input element's type attribute's current state.

  2. If the attribute in question is valueLow, return the lowest of the values in values; otherwise, return the highest of the values in values.

On setting, if the attributes do not apply, as defined for the input element's type attribute's current state, then throw an InvalidStateError exception. Otherwise, run the following steps:

  1. Let values be the values of the element, interpreted according to the algorithm to convert a string to a number, as defined by the input element's type attribute's current state.

  2. Let new value be the result of running the algorithm to convert a number to a string, as defined for that state, on the new value.

  3. If the attribute in question is valueLow, replace the lower value in values with new value; otherwise, replace the higher value in values with new value.

  4. Sort values in increasing numeric order.

  5. Let values be the result of running the algorithm to convert a number to a string, as defined by the input element's type attribute's current state, to the values in values.

  6. Set the element's value to the concatenation of the strings in in values, separating each value from the next by a "," (U+002C) character.


The stepDown(n) and stepUp(n) methods, when invoked, must run the following algorithm:

  1. If the stepDown() and stepUp() methods do not apply, as defined for the input element's type attribute's current state, then throw an InvalidStateError exception, and abort these steps.

  2. If the element has no allowed value step, then throw an InvalidStateError exception, and abort these steps.

  3. If the element has a minimum and a maximum and the minimum is greater than the maximum, then abort these steps.

  4. If the element has a minimum and a maximum and there is no value greater than or equal to the element's minimum and less than or equal to the element's maximum that, when subtracted from the step base, is an integral multiple of the allowed value step, then abort these steps.

  5. If applying the algorithm to convert a string to a number to the string given by the element's value does not result in an error, then let value be the result of that algorithm. Otherwise, let value be zero.

  6. If value subtracted from the step base is not an integral multiple of the allowed value step, then set value to the nearest value that, when subtracted from the step base, is an integral multiple of the allowed value step, and that is less than value if the method invoked was the stepDown() and more than value otherwise.

    Otherwise (value subtracted from the step base is an integral multiple of the allowed value step), run the following substeps:

    1. Let n be the argument.

    2. Let delta be the allowed value step multiplied by n.

    3. If the method invoked was the stepDown() method, negate delta.

    4. Let value be the result of adding delta to value.

  7. If the element has a minimum, and value is less than that minimum, then set value to the smallest value that, when subtracted from the step base, is an integral multiple of the allowed value step, and that is more than or equal to minimum.

  8. If the element has a maximum, and value is greater than that maximum, then set value to the largest value that, when subtracted from the step base, is an integral multiple of the allowed value step, and that is less than or equal to maximum.

  9. Let value as string be the result of running the algorithm to convert a number to a string, as defined for the input element's type attribute's current state, on value.

  10. Set the value of the element to value as string.


The list IDL attribute must return the current suggestions source element, if any, or null otherwise.

4.10.5.5 Common event behaviors

When the input and change events apply (which is the case for all input controls other than buttons and those with the type attribute in the Hidden state), the events are fired to indicate that the user has interacted with the control. The input event fires whenever the user has modified the data of the control. The change event fires when the value is committed, if that makes sense for the control, or else when the control loses focus. In all cases, the input event comes before the corresponding change event (if any).

When an input element has a defined activation behavior, the rules for dispatching these events, if they apply, are given in the section above that defines the type attribute's state. (This is the case for all input controls with the type attribute in the Checkbox state, the Radio Button state, or the File Upload state.)

For input elements without a defined activation behavior, but to which these events apply, and for which the user interface involves both interactive manipulation and an explicit commit action, then when the user changes the element's value, the user agent must queue a task to fire a simple event that bubbles named input at the input element, and any time the user commits the change, the user agent must queue a task to fire a simple event that bubbles named change at the input element.

An example of a user interface involving both interactive manipulation and a commit action would be a Range controls that use a slider, when manipulated using a pointing device. While the user is dragging the control's knob, input events would fire whenever the position changed, whereas the change event would only fire when the user let go of the knob, committing to a specific value.

For input elements without a defined activation behavior, but to which these events apply, and for which the user interface involves an explicit commit action but no intermediate manipulation, then any time the user commits a change to the element's value, the user agent must queue a task to first fire a simple event that bubbles named input at the input element, and then fire a simple event that bubbles named change at the input element.

An example of a user interface with a commit action would be a Color control that consists of a single button that brings up a color wheel: if the value only changes when the dialog is closed, then that would be the explicit commit action. On the other hand, if the control can be focused and manipulating the control changes the color interactively, then there might be no commit action.

Another example of a user interface with a commit action would be a Date control that allows both text-based user input and user selection from a drop-down calendar: while text input might not have an explicit commit step, selecting a date from the drop down calendar and then dismissing the drop down would be a commit action.

For input elements without a defined activation behavior, but to which these events apply, any time the user causes the element's value to change without an explicit commit action, the user agent must queue a task to fire a simple event that bubbles named input at the input element. The corresponding change event, if any, will be fired when the control loses focus.

Examples of a user changing the element's value would include the user typing into a text field, pasting a new value into the field, or undoing an edit in that field. Some user interactions do not cause changes to the value, e.g. hitting the "delete" key in an empty text field, or replacing some text in the field with text from the clipboard that happens to be exactly the same text.

A Range control in the form of a slider that the user has focused and is interacting with using a keyboard would be another example of the user changing the element's value without a commit step.

In the case of tasks that just fire an input event, user agents may wait for a suitable break in the user's interaction before queuing the tasks; for example, a user agent could wait for the user to have not hit a key for 100ms, so as to only fire the event when the user pauses, instead of continuously for each keystroke.

When the user agent is to change an input element's value on behalf of the user (e.g. as part of a form prefilling feature), the user agent must queue a task to first update the value accordingly, then fire a simple event that bubbles named input at the input element, then fire a simple event that bubbles named change at the input element.

These events are not fired in response to changes made to the values of form controls by scripts. (This is to make it easier to update the values of form controls in response to the user manipulating the controls, without having to then filter out the script's own changes to avoid an infinite loop.)

The task source for these tasks is the user interaction task source.

4.10.6 The button element

Categories:
Flow content.
Phrasing content.
Interactive content.
Listed, labelable, submittable, and reassociateable form-associated element.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content, but there must be no interactive content descendant.
Content attributes:
Global attributes
autofocus - Automatically focus the form control when the page is loaded
disabled - Whether the form control is disabled
form - Associates the control with a form element
formaction - URL to use for form submission
formenctype - Form data set encoding type to use for form submission
formmethod - HTTP method to use for form submission
formnovalidate - Bypass form control validation for form submission
formtarget - Browsing context for form submission
menu - Specifies the element's designated pop-up menu
name - Name of form control to use for form submission and in the form.elements API
type - Type of button
value - Value to be used for form submission
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
button (default - do not set), link, menuitem, menuitemcheckbox, menuitemradio or radio.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLButtonElement : HTMLElement {
           attribute boolean autofocus;
           attribute boolean disabled;
  readonly attribute HTMLFormElement? form;
           attribute DOMString formAction;
           attribute DOMString formEnctype;
           attribute DOMString formMethod;
           attribute boolean formNoValidate;
           attribute DOMString formTarget;
           attribute DOMString name;
           attribute DOMString type;
           attribute DOMString value;
           attribute HTMLMenuElement? menu;

  readonly attribute boolean willValidate;
  readonly attribute ValidityState validity;
  readonly attribute DOMString validationMessage;
  boolean checkValidity();
  boolean reportValidity();
  void setCustomValidity(DOMString error);

  readonly attribute NodeList labels;
};

The button element represents a button labeled by its contents.

The element is a button.

The type attribute controls the behavior of the button when it is activated. It is an enumerated attribute. The following table lists the keywords and states for the attribute — the keywords in the left column map to the states in the cell in the second column on the same row as the keyword.

Keyword State Brief description
submit Submit Button Submits the form.
reset Reset Button Resets the form.
button Button Does nothing.
menu Menu Shows a menu.

The missing value default is the Submit Button state.

If the type attribute is in the Submit Button state, the element is specifically a submit button.

Constraint validation: If the type attribute is in the Reset Button state, the Button state, or the Menu state, the element is barred from constraint validation.

When a button element is not disabled, its activation behavior element is to run the steps defined in the following list for the current state of the element's type attribute:

Submit Button

If the element has a form owner and the element's Document is fully active, the element must submit the form owner from the button element.

Reset Button

If the element has a form owner and the element's Document is fully active, the element must reset the form owner.

Button

Do nothing.

Menu

The element must follow these steps:

  1. If the button is not being rendered, abort these steps.

  2. If the button element's Document is not fully active, abort these steps.

  3. Let menu be the element's designated pop-up menu, if any. If there isn't one, then abort these steps.

  4. Fire a trusted event with the name show at menu, using the RelatedEvent interface, with the relatedTarget attribute initialised to the button element. The event must be cancelable.

  5. If the event is not canceled, then construct and show the menu for menu, with the button element as the subject.

The form attribute is used to explicitly associate the button element with its form owner. The name attribute represents the element's name. The disabled attribute is used to make the control non-interactive and to prevent its value from being submitted. The autofocus attribute controls focus. The formaction, formenctype, formmethod, formnovalidate, and formtarget attributes are attributes for form submission.

The formnovalidate attribute can be used to make submit buttons that do not trigger the constraint validation.

The formaction, formenctype, formmethod, formnovalidate, and formtarget must not be specified if the element's type attribute is not in the Submit Button state.

The value attribute gives the element's value for the purposes of form submission. The element's value is the value of the element's value attribute, if there is one, or the empty string otherwise.

A button (and its value) is only included in the form submission if the button itself was used to initiate the form submission.


If the element's type attribute is in the Menu state, the menu attribute must be specified to give the element's menu. The value must be the ID of a menu element in the same home subtree whose type attribute is in the popup menu state. The attribute must not be specified if the element's type attribute is not in the Menu state.

A button element's designated pop-up menu is the first element in the button's home subtree whose ID is that given by the button element's menu attribute, if there is such an element and its type attribute is in the popup menu state; otherwise, the element has no designated pop-up menu.


The value and menu IDL attributes must reflect the content attributes of the same name.

The type IDL attribute must reflect the content attribute of the same name, limited to only known values.

The willValidate, validity, and validationMessage IDL attributes, and the checkValidity(), reportValidity(), and setCustomValidity() methods, are part of the constraint validation API. The labels IDL attribute provides a list of the element's labels. The autofocus, disabled, form, and name IDL attributes are part of the element's forms API.

The following button is labeled "Show hint" and pops up a dialog box when activated:

<button type=button
        onclick="alert('This 15-20 minute piece was composed by George Gershwin.')">
 Show hint
</button>

4.10.7 The select element

Categories:
Flow content.
Phrasing content.
Interactive content.
Listed, labelable, submittable, resettable, and reassociateable form-associated element.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Zero or more option, optgroup, and script-supporting elements.
Content attributes:
Global attributes
autofocus - Automatically focus the form control when the page is loaded
disabled - Whether the form control is disabled
form - Associates the control with a form element
multiple - Whether to allow multiple values
name - Name of form control to use for form submission and in the form.elements API
required - Whether the control is required for form submission
size - Size of the control
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
listbox (default - do not set) or menu.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLSelectElement : HTMLElement {
           attribute boolean autofocus;
           attribute boolean disabled;
  readonly attribute HTMLFormElement? form;
           attribute boolean multiple;
           attribute DOMString name;
           attribute boolean required;
           attribute unsigned long size;

  readonly attribute DOMString type;

  readonly attribute HTMLOptionsCollection options;
           attribute unsigned long length;
  getter Element? item(unsigned long index);
  HTMLOptionElement? namedItem(DOMString name);
  void add((HTMLOptionElement or HTMLOptGroupElement) element, optional (HTMLElement or long)? before = null);
  void remove(); // ChildNode overload
  void remove(long index);
  setter creator void (unsigned long index, HTMLOptionElement? option);

  readonly attribute HTMLCollection selectedOptions;
           attribute long selectedIndex;
           attribute DOMString value;

  readonly attribute boolean willValidate;
  readonly attribute ValidityState validity;
  readonly attribute DOMString validationMessage;
  boolean checkValidity();
  boolean reportValidity();
  void setCustomValidity(DOMString error);

  readonly attribute NodeList labels;
};

The select element represents a control for selecting amongst a set of options.

The multiple attribute is a boolean attribute. If the attribute is present, then the select element represents a control for selecting zero or more options from the list of options. If the attribute is absent, then the select element represents a control for selecting a single option from the list of options.

The size attribute gives the number of options to show to the user. The size attribute, if specified, must have a value that is a valid non-negative integer greater than zero.

The display size of a select element is the result of applying the rules for parsing non-negative integers to the value of element's size attribute, if it has one and parsing it is successful. If applying those rules to the attribute's value is not successful, or if the size attribute is absent, then the element's display size is 4 if the element's multiple content attribute is present, and 1 otherwise.

The list of options for a select element consists of all the option element children of the select element, and all the option element children of all the optgroup element children of the select element, in tree order.

The required attribute is a boolean attribute. When specified, the user will be required to select a value before submitting the form.

If a select element has a required attribute specified, does not have a multiple attribute specified, and has a display size of 1; and if the value of the first option element in the select element's list of options (if any) is the empty string, and that option element's parent node is the select element (and not an optgroup element), then that option is the select element's placeholder label option.

If a select element has a required attribute specified, does not have a multiple attribute specified, and has a display size of 1, then the select element must have a placeholder label option.

Constraint validation: If the element has its required attribute specified, and either none of the option elements in the select element's list of options have their selectedness set to true, or the only option element in the select element's list of options with its selectedness set to true is the placeholder label option, then the element is suffering from being missing.

If the multiple attribute is absent, and the element is not disabled, then the user agent should allow the user to pick an option element in its list of options that is itself not disabled. Upon this option element being picked (either through a click, or through unfocusing the element after changing its value, or through a menu command, or through any other mechanism), and before the relevant user interaction event is queued (e.g. before the click event), the user agent must set the selectedness of the picked option element to true, set its dirtiness to true, and then send select update notifications.

If the multiple attribute is absent, whenever an option element in the select element's list of options has its selectedness set to true, and whenever an option element with its selectedness set to true is added to the select element's list of options, the user agent must set the selectedness of all the other option elements in its list of options to false.

If the multiple attribute is absent and the element's display size is greater than 1, then the user agent should also allow the user to request that the option whose selectedness is true, if any, be unselected. Upon this request being conveyed to the user agent, and before the relevant user interaction event is queued (e.g. before the click event), the user agent must set the selectedness of that option element to false, set its dirtiness to true, and then send select update notifications.

If nodes are inserted or nodes are removed causing the list of options to gain or lose one or more option elements, or if an option element in the list of options asks for a reset, then, if the select element's multiple attribute is absent, the select element's display size is 1, and no option elements in the select element's list of options have their selectedness set to true, the user agent must set the selectedness of the first option element in the list of options in tree order that is not disabled, if any, to true.

If the multiple attribute is present, and the element is not disabled, then the user agent should allow the user to toggle the selectedness of the option elements in its list of options that are themselves not disabled. Upon such an element being toggled (either through a click, or through a menu command, or any other mechanism), and before the relevant user interaction event is queued (e.g. before a related click event), the selectedness of the option element must be changed (from true to false or false to true), the dirtiness of the element must be set to true, and the user agent must send select update notifications.

When the user agent is to send select update notifications, queue a task to first fire a simple event that bubbles named input at the select element, and then fire a simple event that bubbles named change at the select element, using the user interaction task source as the task source.

The reset algorithm for select elements is to go through all the option elements in the element's list of options, set their selectedness to true if the option element has a selected attribute, and false otherwise, set their dirtiness to false, and then have the option elements ask for a reset.

The form attribute is used to explicitly associate the select element with its form owner. The name attribute represents the element's name. The disabled attribute is used to make the control non-interactive and to prevent its value from being submitted. The autofocus attribute controls focus. The autocomplete attribute controls how the user agent provides autofill behavior.

A select element that is not disabled is mutable.

select . type

Returns "select-multiple" if the element has a multiple attribute, and "select-one" otherwise.

select . options

Returns an HTMLOptionsCollection of the list of options.

select . length [ = value ]

Returns the number of elements in the list of options.

When set to a smaller number, truncates the number of option elements in the select.

When set to a greater number, adds new blank option elements to the select.

element = select . item(index)
select[index]

Returns the item with index index from the list of options. The items are sorted in tree order.

element = select . namedItem(name)

Returns the first item with ID or name name from the list of options.

Returns null if no element with that ID could be found.

select . add(element [, before ] )

Inserts element before the node given by before.

The before argument can be a number, in which case element is inserted before the item with that number, or an element from the list of options, in which case element is inserted before that element.

If before is omitted, null, or a number out of range, then element will be added at the end of the list.

This method will throw a HierarchyRequestError exception if element is an ancestor of the element into which it is to be inserted.

select . selectedOptions

Returns an HTMLCollection of the list of options that are selected.

select . selectedIndex [ = value ]

Returns the index of the first selected item, if any, or −1 if there is no selected item.

Can be set, to change the selection.

select . value [ = value ]

Returns the value of the first selected item, if any, or the empty string if there is no selected item.

Can be set, to change the selection.

The type IDL attribute, on getting, must return the string "select-one" if the multiple attribute is absent, and the string "select-multiple" if the multiple attribute is present.

The options IDL attribute must return an HTMLOptionsCollection rooted at the select node, whose filter matches the elements in the list of options.

The options collection is also mirrored on the HTMLSelectElement object. The supported property indices at any instant are the indices supported by the object returned by the options attribute at that instant.

The length IDL attribute must return the number of nodes represented by the options collection. On setting, it must act like the attribute of the same name on the options collection.

The item(index) method must return the value returned by the method of the same name on the options collection, when invoked with the same argument.

The namedItem(name) method must return the value returned by the method of the same name on the options collection, when invoked with the same argument.

When the user agent is to set the value of a new indexed property for a given property index index to a new value value, it must instead set the value of a new indexed property with the given property index index to the new value value on the options collection.

Similarly, the add() method must act like its namesake method on that same options collection.

The remove() method must act like its namesake method on that same options collection when it has arguments, and like its namesake method on the ChildNode interface implemented by the HTMLSelectElement ancestor interface Element when it has no arguments.

The selectedOptions IDL attribute must return an HTMLCollection rooted at the select node, whose filter matches the elements in the list of options that have their selectedness set to true.

The selectedIndex IDL attribute, on getting, must return the index of the first option element in the list of options in tree order that has its selectedness set to true, if any. If there isn't one, then it must return −1.

On setting, the selectedIndex attribute must set the selectedness of all the option elements in the list of options to false, and then the option element in the list of options whose index is the given new value, if any, must have its selectedness set to true and its dirtiness set to true.

This can result in no element having a selectedness set to true even in the case of the select element having no multiple attribute and a display size of 1.

The value IDL attribute, on getting, must return the value of the first option element in the list of options in tree order that has its selectedness set to true, if any. If there isn't one, then it must return the empty string.

On setting, the value attribute must set the selectedness of all the option elements in the list of options to false, and then the first option element in the list of options, in tree order, whose value is equal to the given new value, if any, must have its selectedness set to true and its dirtiness set to true.

This can result in no element having a selectedness set to true even in the case of the select element having no multiple attribute and a display size of 1.

The multiple, required, and size IDL attributes must reflect the respective content attributes of the same name. The size IDL attribute has a default value of zero.

For historical reasons, the default value of the size IDL attribute does not return the actual size used, which, in the absence of the size content attribute, is either 1 or 4 depending on the presence of the multiple attribute.

The willValidate, validity, and validationMessage IDL attributes, and the checkValidity(), reportValidity(), and setCustomValidity() methods, are part of the constraint validation API. The labels IDL attribute provides a list of the element's labels. The autofocus, disabled, form, and name IDL attributes are part of the element's forms API.

The following example shows how a select element can be used to offer the user with a set of options from which the user can select a single option. The default option is preselected.

<p>
 <label for="unittype">Select unit type:</label>
 <select id="unittype" name="unittype">
  <option value="1"> Miner </option>
  <option value="2"> Puffer </option>
  <option value="3" selected> Snipey </option>
  <option value="4"> Max </option>
  <option value="5"> Firebot </option>
 </select>
</p>

When there is no default option, a placeholder can be used instead:

<select name="unittype" required>
 <option value=""> Select unit type </option>
 <option value="1"> Miner </option>
 <option value="2"> Puffer </option>
 <option value="3"> Snipey </option>
 <option value="4"> Max </option>
 <option value="5"> Firebot </option>
</select>

Here, the user is offered a set of options from which he can select any number. By default, all five options are selected.

<p>
 <label for="allowedunits">Select unit types to enable on this map:</label>
 <select id="allowedunits" name="allowedunits" multiple>
  <option value="1" selected> Miner </option>
  <option value="2" selected> Puffer </option>
  <option value="3" selected> Snipey </option>
  <option value="4" selected> Max </option>
  <option value="5" selected> Firebot </option>
 </select>
</p>

Sometimes, a user has to select one or more items. This example shows such an interface.

<p>Select the songs from that you would like on your Act II Mix Tape:</p>
<select multiple required name="act2">
 <option value="s1">It Sucks to Be Me (Reprise)
 <option value="s2">There is Life Outside Your Apartment
 <option value="s3">The More You Ruv Someone
 <option value="s4">Schadenfreude
 <option value="s5">I Wish I Could Go Back to College
 <option value="s6">The Money Song
 <option value="s7">School for Monsters
 <option value="s8">The Money Song (Reprise)
 <option value="s9">There's a Fine, Fine Line (Reprise)
 <option value="s10">What Do You Do With a B.A. in English? (Reprise)
 <option value="s11">For Now
</select>

4.10.8 The datalist element

Categories:
Flow content.
Phrasing content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Either: phrasing content (with zero or more option elements descendants).
Or: Zero or more option elements.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
listbox (default - do not set).
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLDataListElement : HTMLElement {
  readonly attribute HTMLCollection options;
};

The datalist element represents a set of option elements that represent predefined options for other controls. In the rendering, the datalist element represents nothing and it, along with its children, should be hidden.

The datalist element can be used in two ways. In the simplest case, the datalist element has just option element children.

<label>
 Sex:
 <input name=sex list=sexes>
 <datalist id=sexes>
  <option value="Female">
  <option value="Male">
 </datalist>
</label>

In the more elaborate case, the datalist element can be given contents that are to be displayed for down-level clients that don't support datalist. In this case, the option elements are provided inside a select element inside the datalist element.

<label>
 Sex:
 <input name=sex list=sexes>
</label>
<datalist id=sexes>
 <label>
  or select from the list:
  <select name=sex>
   <option value="">
   <option>Female
   <option>Male
  </select>
 </label>
</datalist>

The datalist element is hooked up to an input element using the list attribute on the input element.

Each option element that is a descendant of the datalist element, that is not disabled, and whose value is a string that isn't the empty string, represents a suggestion. Each suggestion has a value and a label.

datalist . options

Returns an HTMLCollection of the options elements of the datalist element.

The options IDL attribute must return an HTMLCollection rooted at the datalist node, whose filter matches option elements.

Constraint validation: If an element has a datalist element ancestor, it is barred from constraint validation.

4.10.9 The optgroup element

Categories:
None.
Contexts in which this element can be used:
As a child of a select element.
Content model:
Zero or more option and script-supporting elements.
Content attributes:
Global attributes
disabled - Whether the form control is disabled
label - User-visible label
Tag omission in text/html:
An optgroup element's end tag may be omitted if the optgroup element is immediately followed by another optgroup element, or if there is no more content in the parent element.
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes
DOM interface:
interface HTMLOptGroupElement : HTMLElement {
           attribute boolean disabled;
           attribute DOMString label;
};

The optgroup element represents a group of option elements with a common label.

The element's group of option elements consists of the option elements that are children of the optgroup element.

When showing option elements in select elements, user agents should show the option elements of such groups as being related to each other and separate from other option elements.

The disabled attribute is a boolean attribute and can be used to disable a group of option elements together.

The label attribute must be specified. Its value gives the name of the group, for the purposes of the user interface. User agents should use this attribute's value when labeling the group of option elements in a select element.

The disabled and label attributes must reflect the respective content attributes of the same name.

There is no way to select an optgroup element. Only option elements can be selected. An optgroup element merely provides a label for a group of option elements.

The following snippet shows how a set of lessons from three courses could be offered in a select drop-down widget:

<form action="courseselector.dll" method="get">
 <p>Which course would you like to watch today?
 <p><label>Course:
  <select name="c">
   <optgroup label="8.01 Physics I: Classical Mechanics">
    <option value="8.01.1">Lecture 01: Powers of Ten
    <option value="8.01.2">Lecture 02: 1D Kinematics
    <option value="8.01.3">Lecture 03: Vectors
   <optgroup label="8.02 Electricity and Magnestism">
    <option value="8.02.1">Lecture 01: What holds our world together?
    <option value="8.02.2">Lecture 02: Electric Field
    <option value="8.02.3">Lecture 03: Electric Flux
   <optgroup label="8.03 Physics III: Vibrations and Waves">
    <option value="8.03.1">Lecture 01: Periodic Phenomenon
    <option value="8.03.2">Lecture 02: Beats
    <option value="8.03.3">Lecture 03: Forced Oscillations with Damping
  </select>
 </label>
 <p><input type=submit value="▶ Play">
</form>

4.10.10 The option element

Categories:
None.
Contexts in which this element can be used:
As a child of a select element.
As a child of a datalist element.
As a child of an optgroup element.
Content model:
If the element has a label attribute and a value attribute: Empty.
If the element has a label attribute but no value attribute: Text.
If the element has no label attribute: Text that is not inter-element whitespace.
Content attributes:
Global attributes
disabled - Whether the form control is disabled
label - User-visible label
selected - Whether the option is selected by default
value - Value to be used for form submission
Tag omission in text/html:
An option element's end tag may be omitted if the option element is immediately followed by another option element, or if it is immediately followed by an optgroup element, or if there is no more content in the parent element.
Allowed ARIA role attribute values:
option (default - do not set), menuitem, menuitemradio or separator.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
[NamedConstructor=Option(optional DOMString text = "", optional DOMString value, optional boolean defaultSelected = false, optional boolean selected = false)]
interface HTMLOptionElement : HTMLElement {
           attribute boolean disabled;
  readonly attribute HTMLFormElement? form;
           attribute DOMString label;
           attribute boolean defaultSelected;
           attribute boolean selected;
           attribute DOMString value;

           attribute DOMString text;
  readonly attribute long index;
};

The option element represents an option in a select element or as part of a list of suggestions in a datalist element.

In certain circumstances described in the definition of the select element, an option element can be a select element's placeholder label option. A placeholder label option does not represent an actual option, but instead represents a label for the select control.

The disabled attribute is a boolean attribute. An option element is disabled if its disabled attribute is present or if it is a child of an optgroup element whose disabled attribute is present.

An option element that is disabled must prevent any click events that are queued on the user interaction task source from being dispatched on the element.

The label attribute provides a label for element. The label of an option element is the value of the label content attribute, if there is one, or, if there is not, the value of the element's text IDL attribute.

The label content attribute, if specified, must not be empty.

The value attribute provides a value for element. The value of an option element is the value of the value content attribute, if there is one, or, if there is not, the value of the element's text IDL attribute.

The selected attribute is a boolean attribute. It represents the default selectedness of the element.

The dirtiness of an option element is a boolean state, initially false. It controls whether adding or removing the selected content attribute has any effect.

The selectedness of an option element is a boolean state, initially false. Except where otherwise specified, when the element is created, its selectedness must be set to true if the element has a selected attribute. Whenever an option element's selected attribute is added, if its dirtiness is false, its selectedness must be set to true. Whenever an option element's selected attribute is removed, if its dirtiness is false, its selectedness must be set to false.

The Option() constructor, when called with three or fewer arguments, overrides the initial state of the selectedness state to always be false even if the third argument is true (implying that a selected attribute is to be set). The fourth argument can be used to explicitly set the initial selectedness state when using the constructor.

A select element whose multiple attribute is not specified must not have more than one descendant option element with its selected attribute set.

An option element's index is the number of option elements that are in the same list of options but that come before it in tree order. If the option element is not in a list of options, then the option element's index is zero.

option . selected

Returns true if the element is selected, and false otherwise.

Can be set, to override the current state of the element.

option . index

Returns the index of the element in its select element's options list.

option . form

Returns the element's form element, if any, or null otherwise.

option . text

Same as textContent, except that spaces are collapsed and script elements are skipped.

option = new Option( [ text [, value [, defaultSelected [, selected ] ] ] ] )

Returns a new option element.

The text argument sets the contents of the element.

The value argument sets the value attribute.

The defaultSelected argument sets the selected attribute.

The selected argument sets whether or not the element is selected. If it is omitted, even if the defaultSelected argument is true, the element is not selected.

The disabled IDL attribute must reflect the content attribute of the same name. The defaultSelected IDL attribute must reflect the selected content attribute.

The label IDL attribute, on getting, must return the element's label. On setting, the element's label content attribute must be set to the new value.

The value IDL attribute, on getting, must return the element's value. On setting, the element's value content attribute must be set to the new value.

The selected IDL attribute, on getting, must return true if the element's selectedness is true, and false otherwise. On setting, it must set the element's selectedness to the new value, set its dirtiness to true, and then cause the element to ask for a reset.

The index IDL attribute must return the element's index.

The text IDL attribute, on getting, must return the result of stripping and collapsing whitespace from the concatenation of data of all the Text node descendants of the option element, in tree order, excluding any that are descendants of descendants of the option element that are themselves script elements in the HTML namespace or script elements in the SVG namespace.

On setting, the text attribute must act as if the textContent IDL attribute on the element had been set to the new value.

The form IDL attribute's behavior depends on whether the option element is in a select element or not. If the option has a select element as its parent, or has an optgroup element as its parent and that optgroup element has a select element as its parent, then the form IDL attribute must return the same value as the form IDL attribute on that select element. Otherwise, it must return null.

A constructor is provided for creating HTMLOptionElement objects (in addition to the factory methods from DOM such as createElement()): Option(text, value, defaultSelected, selected). When invoked as a constructor, it must return a new HTMLOptionElement object (a new option element). If the first argument is not the empty string, the new object must have as its only child a Text node whose data is the value of that argument. Otherwise, it must have no children. If the value argument is present, the new object must have a value attribute set with the value of the argument as its value. If the defaultSelected argument is true, the new object must have a selected attribute set with no value. If the selected argument is true, the new object must have its selectedness set to true; otherwise the selectedness must be set to false, even if the defaultSelected argument is true. The element's document must be the active document of the browsing context of the Window object on which the interface object of the invoked constructor is found.

4.10.11 The textarea element

Categories:
Flow content.
Phrasing content.
Interactive content.
Listed, labelable, submittable, resettable, and reassociateable form-associated element.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Text.
Content attributes:
Global attributes
autocomplete - - Hint for form autofill feature
autofocus - Automatically focus the form control when the page is loaded
cols - Maximum number of characters per line
dirname - Name of form field to use for sending the element's directionality in form submission
disabled - Whether the form control is disabled
form - Associates the control with a form element
inputmode - Hint for selecting an input modality
maxlength - Maximum length of value
minlength - Minimum length of value
name - Name of form control to use for form submission and in the form.elements API
placeholder - User-visible label to be placed within the form control
readonly - Whether to allow the value to be edited by the user
required - Whether the control is required for form submission
rows - Number of lines to show
wrap - How the value of the form control is to be wrapped for form submission
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
textbox (default - do not set).
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLTextAreaElement : HTMLElement {
           attribute DOMString autocomplete;
           attribute boolean autofocus;
           attribute unsigned long cols;
           attribute DOMString dirName;
           attribute boolean disabled;
  readonly attribute HTMLFormElement? form;
           attribute DOMString inputMode;
           attribute long maxLength;
           attribute long minLength;
           attribute DOMString name;
           attribute DOMString placeholder;
           attribute boolean readOnly;
           attribute boolean required;
           attribute unsigned long rows;
           attribute DOMString wrap;

  readonly attribute DOMString type;
           attribute DOMString defaultValue;
  [TreatNullAs=EmptyString] attribute DOMString value;
  readonly attribute unsigned long textLength;

  readonly attribute boolean willValidate;
  readonly attribute ValidityState validity;
  readonly attribute DOMString validationMessage;
  boolean checkValidity();
  boolean reportValidity();
  void setCustomValidity(DOMString error);

  readonly attribute NodeList labels;

  void select();
           attribute unsigned long selectionStart;
           attribute unsigned long selectionEnd;
           attribute DOMString selectionDirection;
  void setRangeText(DOMString replacement);
  void setRangeText(DOMString replacement, unsigned long start, unsigned long end, optional SelectionMode selectionMode = "preserve");
  void setSelectionRange(unsigned long start, unsigned long end, optional DOMString direction);
};

The textarea element represents a multiline plain text edit control for the element's raw value. The contents of the control represent the control's default value.

The raw value of a textarea control must be initially the empty string.

This element has rendering requirements involving the bidirectional algorithm.

The readonly attribute is a boolean attribute used to control whether the text can be edited by the user or not.

In this example, a text field is marked read-only because it represents a read-only file:

Filename: <code>/etc/bash.bashrc</code>
<textarea name="buffer" readonly>
# System-wide .bashrc file for interactive bash(1) shells.

# To enable the settings / commands in this file for login shells as well,
# this file has to be sourced in /etc/profile.

# If not running interactively, don't do anything
[ -z "$PS1" ] &amp;&amp; return

...</textarea>

Constraint validation: If the readonly attribute is specified on a textarea element, the element is barred from constraint validation.

A textarea element is mutable if it is neither disabled nor has a readonly attribute specified.

When a textarea is mutable, its raw value should be editable by the user: the user agent should allow the user to edit, insert, and remove text, and to insert and remove line breaks in the form of "LF" (U+000A) characters. Any time the user causes the element's raw value to change, the user agent must queue a task to fire a simple event that bubbles named input at the textarea element. User agents may wait for a suitable break in the user's interaction before queuing the task; for example, a user agent could wait for the user to have not hit a key for 100ms, so as to only fire the event when the user pauses, instead of continuously for each keystroke.

A textarea element has a dirty value flag, which must be initially set to false, and must be set to true whenever the user interacts with the control in a way that changes the raw value.

When the textarea element's textContent IDL attribute changes value, if the element's dirty value flag is false, then the element's raw value must be set to the value of the element's textContent IDL attribute.

The reset algorithm for textarea elements is to set the element's raw value to the value of the element's textContent IDL attribute.

If the element is mutable, the user agent should allow the user to change the writing direction of the element, setting it either to a left-to-right writing direction or a right-to-left writing direction. If the user does so, the user agent must then run the following steps:

  1. Set the element's dir attribute to "ltr" if the user selected a left-to-right writing direction, and "rtl" if the user selected a right-to-left writing direction.

  2. Queue a task to fire a simple event that bubbles named input at the textarea element.

The cols attribute specifies the expected maximum number of characters per line. If the cols attribute is specified, its value must be a valid non-negative integer greater than zero. If applying the rules for parsing non-negative integers to the attribute's value results in a number greater than zero, then the element's character width is that value; otherwise, it is 20.

The user agent may use the textarea element's character width as a hint to the user as to how many characters the server prefers per line (e.g. for visual user agents by making the width of the control be that many characters). In visual renderings, the user agent should wrap the user's input in the rendering so that each line is no wider than this number of characters.

The rows attribute specifies the number of lines to show. If the rows attribute is specified, its value must be a valid non-negative integer greater than zero. If applying the rules for parsing non-negative integers to the attribute's value results in a number greater than zero, then the element's character height is that value; otherwise, it is 2.

Visual user agents should set the height of the control to the number of lines given by character height.

The wrap attribute is an enumerated attribute with two keywords and states: the soft keyword which maps to the Soft state, and the hard keyword which maps to the Hard state. The missing value default is the Soft state.

The Soft state indicates that the text in the textarea is not to be wrapped when it is submitted (though it can still be wrapped in the rendering).

The Hard state indicates that the text in the textarea is to have newlines added by the user agent so that the text is wrapped when it is submitted.

If the element's wrap attribute is in the Hard state, the cols attribute must be specified.

For historical reasons, the element's value is normalised in three different ways for three different purposes. The raw value is the value as it was originally set. It is not normalized. The API value is the value used in the value IDL attribute. It is normalised so that line breaks use "LF" (U+000A) characters. Finally, there is the value, as used in form submission and other processing models in this specification. It is normalised so that line breaks use U+000D CARRIAGE RETURN "CRLF" (U+000A) character pairs, and in addition, if necessary given the element's wrap attribute, additional line breaks are inserted to wrap the text at the given width.

The element's API value is defined to be the element's raw value with the following transformation applied:

  1. Replace every U+000D CARRIAGE RETURN "CRLF" (U+000A) character pair from the raw value with a single "LF" (U+000A) character.

  2. Replace every remaining U+000D CARRIAGE RETURN character from the raw value with a single "LF" (U+000A) character.

The element's value is defined to be the element's raw value with the textarea wrapping transformation applied. The textarea wrapping transformation is the following algorithm, as applied to a string:

  1. Replace every occurrence of a "CR" (U+000D) character not followed by a "LF" (U+000A) character, and every occurrence of a "LF" (U+000A) character not preceded by a "CR" (U+000D) character, by a two-character string consisting of a U+000D CARRIAGE RETURN "CRLF" (U+000A) character pair.

  2. If the element's wrap attribute is in the Hard state, insert U+000D CARRIAGE RETURN "CRLF" (U+000A) character pairs into the string using a UA-defined algorithm so that each line has no more than character width characters. For the purposes of this requirement, lines are delimited by the start of the string, the end of the string, and U+000D CARRIAGE RETURN "CRLF" (U+000A) character pairs.

The maxlength attribute is a form control maxlength attribute controlled by the textarea element's dirty value flag.

If the textarea element has a maximum allowed value length, then the element's children must be such that the code-unit length of the value of the element's textContent IDL attribute with the textarea wrapping transformation applied is equal to or less than the element's maximum allowed value length.

The minlength attribute is a form control minlength attribute controlled by the textarea element's dirty value flag.

The required attribute is a boolean attribute. When specified, the user will be required to enter a value before submitting the form.

Constraint validation: If the element has its required attribute specified, and the element is mutable, and the element's value is the empty string, then the element is suffering from being missing.

The placeholder attribute represents a short hint (a word or short phrase) intended to aid the user with data entry when the control has no value. A hint could be a sample value or a brief description of the expected format.

The placeholder attribute should not be used as a replacement for a label. For a longer hint or other advisory text, place the text next to the control.

Use of the placeholder attribute as a replacement for a label can reduce the accessibility and usability of the control for a range of users including older users and users with cognitive, mobility, fine motor skill or vision impairments. While the hint given by the control's label is shown at all times, the short hint given in the placeholder attribute is only shown before the user enters a value. Furthermore, placeholder text may be mistaken for a pre-filled value, and as commonly implemented the default color of the placeholder text provides insufficient contrast and the lack of a separate visible label reduces the size of the hit region available for setting focus on the control.

User agents should present this hint to the user when the element's value is the empty string and the control is not focused (e.g. by displaying it inside a blank unfocused control). All U+000D CARRIAGE RETURN U+000A LINE FEED character pairs (CRLF) in the hint, as well as all other "CR" (U+000D) and "LF" (U+000A) characters in the hint, must be treated as line breaks when rendering the hint.

The name attribute represents the element's name. The dirname attribute controls how the element's directionality is submitted. The disabled attribute is used to make the control non-interactive and to prevent its value from being submitted. The form attribute is used to explicitly associate the textarea element with its form owner. The autofocus attribute controls focus. The inputmode attribute controls the user interface's input modality for the control. The autocomplete attribute controls how the user agent provides autofill behavior.

textarea . type

Returns the string "textarea".

textarea . value

Returns the current value of the element.

Can be set, to change the value.

The cols, placeholder, required, rows, and wrap attributes must reflect the respective content attributes of the same name. The cols and rows attributes are limited to only non-negative numbers greater than zero. The cols attribute's default value is 20. The rows attribute's default value is 2. The dirName IDL attribute must reflect the dirname content attribute. The inputMode IDL attribute must reflect the inputmode content attribute, limited to only known values. The maxLength IDL attribute must reflect the maxlength content attribute, limited to only non-negative numbers. The minLength IDL attribute must reflect the minlength content attribute, limited to only non-negative numbers. The readOnly IDL attribute must reflect the readonly content attribute.

The type IDL attribute must return the value "textarea".

The defaultValue IDL attribute must act like the element's textContent IDL attribute.

The value attribute must, on getting, return the element's API value; on setting, it must set the element's raw value to the new value, set the element's dirty value flag to true, and should then move the text entry cursor position to the end of the text field, unselecting any selected text and resetting the selection direction to none.

The textLength IDL attribute must return the code-unit length of the element's API value.

The willValidate, validity, and validationMessage IDL attributes, and the checkValidity(), reportValidity(), and setCustomValidity() methods, are part of the constraint validation API. The labels IDL attribute provides a list of the element's labels. The select(), selectionStart, selectionEnd, selectionDirection, setRangeText(), and setSelectionRange() methods and IDL attributes expose the element's text selection. The autofocus, disabled, form, and name IDL attributes are part of the element's forms API.

Here is an example of a textarea being used for unrestricted free-form text input in a form:

<p>If you have any comments, please let us know: <textarea cols=80 name=comments></textarea></p>

To specify a maximum length for the comments, one can use the maxlength attribute:

<p>If you have any short comments, please let us know: <textarea cols=80 name=comments maxlength=200></textarea></p>

To give a default value, text can be included inside the element:

<p>If you have any comments, please let us know: <textarea cols=80 name=comments>You rock!</textarea></p>

You can also give a minimum length. Here, a letter needs to be filled out by the user; a template (which is shorter than the minimum length) is provided, but is insufficient to submit the form:

<textarea required minlength="500">Dear Madam Speaker,

Regarding your letter dated ...

...

Yours Sincerely,

...</textarea>

A placeholder can be given as well, to suggest the basic form to the user, without providing an explicit template:

<textarea placeholder="Dear Francine,

They closed the parks this week, so we won't be able to
meet your there. Should we just have dinner?

Love,
Daddy"></textarea>

To have the browser submit the directionality of the element along with the value, the dirname attribute can be specified:

<p>If you have any comments, please let us know (you may use either English or Hebrew for your comments):
<textarea cols=80 name=comments dirname=comments.dir></textarea></p>

4.10.12 The keygen element

Categories:
Flow content.
Phrasing content.
Interactive content.
Listed, labelable, submittable, resettable, and reassociateable form-associated element.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Empty.
Content attributes:
Global attributes
autofocus - Automatically focus the form control when the page is loaded
challenge - String to package with the generated and signed public key
disabled - Whether the form control is disabled
form - Associates the control with a form element
keytype - The type of cryptographic key to generate
name - Name of form control to use for form submission and in the form.elements API
Tag omission in text/html:
No end tag.
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes
DOM interface:
interface HTMLKeygenElement : HTMLElement {
           attribute boolean autofocus;
           attribute DOMString challenge;
           attribute boolean disabled;
  readonly attribute HTMLFormElement? form;
           attribute DOMString keytype;
           attribute DOMString name;

  readonly attribute DOMString type;

  readonly attribute boolean willValidate;
  readonly attribute ValidityState validity;
  readonly attribute DOMString validationMessage;
  boolean checkValidity();
  boolean reportValidity();
  void setCustomValidity(DOMString error);

  readonly attribute NodeList labels;
};

The keygen element represents a key pair generator control. When the control's form is submitted, the private key is stored in the local keystore, and the public key is packaged and sent to the server.

The challenge attribute may be specified. Its value will be packaged with the submitted key.

The keytype attribute is an enumerated attribute. The following table lists the keywords and states for the attribute — the keywords in the left column map to the states listed in the cell in the second column on the same row as the keyword. User agents are not required to support these values, and must only recognise values whose corresponding algorithms they support.

Keyword State
rsa RSA

The invalid value default state is the unknown state. The missing value default state is the RSA state, if it is supported, or the unknown state otherwise.

This specification does not specify what key types user agents are to support — it is possible for a user agent to not support any key types at all.

The user agent may expose a user interface for each keygen element to allow the user to configure settings of the element's key pair generator, e.g. the key length.

The reset algorithm for keygen elements is to set these various configuration settings back to their defaults.

The element's value is the string returned from the following algorithm:

  1. Use the appropriate step from the following list:

    If the keytype attribute is in the RSA state

    Generate an RSA key pair using the settings given by the user, if appropriate, using the md5WithRSAEncryption RSA signature algorithm (the signature algorithm with MD5 and the RSA encryption algorithm) referenced in section 2.2.1 ("RSA Signature Algorithm") of RFC 3279, and defined in RFC 2313. [RFC3279] [RFC2313]

    Otherwise, the keytype attribute is in the unknown state

    The given key type is not supported. Return the empty string and abort this algorithm.

    Let private key be the generated private key.

    Let public key be the generated public key.

    Let signature algorithm be the selected signature algorithm.

  2. If the element has a challenge attribute, then let challenge be that attribute's value. Otherwise, let challenge be the empty string.

  3. Let algorithm be an ASN.1 AlgorithmIdentifier structure as defined by RFC 5280, with the algorithm field giving the ASN.1 OID used to identify signature algorithm, using the OIDs defined in section 2.2 ("Signature Algorithms") of RFC 3279, and the parameters field set up as required by RFC 3279 for AlgorithmIdentifier structures for that algorithm. [X690] [RFC5280] [RFC3279]

  4. Let spki be an ASN.1 SubjectPublicKeyInfo structure as defined by RFC 5280, with the algorithm field set to the algorithm structure from the previous step, and the subjectPublicKey field set to the BIT STRING value resulting from ASN.1 DER encoding the public key. [X690] [RFC5280]

  5. Let publicKeyAndChallenge be an ASN.1 PublicKeyAndChallenge structure as defined below, with the spki field set to the spki structure from the previous step, and the challenge field set to the string challenge obtained earlier. [X690]

  6. Let signature be the BIT STRING value resulting from ASN.1 DER encoding the signature generated by applying the signature algorithm to the byte string obtained by ASN.1 DER encoding the publicKeyAndChallenge structure, using private key as the signing key. [X690]

  7. Let signedPublicKeyAndChallenge be an ASN.1 SignedPublicKeyAndChallenge structure as defined below, with the publicKeyAndChallenge field set to the publicKeyAndChallenge structure, the signatureAlgorithm field set to the algorithm structure, and the signature field set to the BIT STRING signature from the previous step. [X690]

  8. Return the result of base64 encoding the result of ASN.1 DER encoding the signedPublicKeyAndChallenge structure. [RFC4648] [X690]

The data objects used by the above algorithm are defined as follows. These definitions use the same "ASN.1-like" syntax defined by RFC 5280. [RFC5280]

PublicKeyAndChallenge ::= SEQUENCE {
    spki SubjectPublicKeyInfo,
    challenge IA5STRING
}

SignedPublicKeyAndChallenge ::= SEQUENCE {
    publicKeyAndChallenge PublicKeyAndChallenge,
    signatureAlgorithm AlgorithmIdentifier,
    signature BIT STRING
}

Constraint validation: The keygen element is barred from constraint validation.

The form attribute is used to explicitly associate the keygen element with its form owner. The name attribute represents the element's name. The disabled attribute is used to make the control non-interactive and to prevent its value from being submitted. The autofocus attribute controls focus.

keygen . type

Returns the string "keygen".

The challenge IDL attribute must reflect the content attribute of the same name.

The keytype IDL attribute must reflect the content attribute of the same name, limited to only known values.

The type IDL attribute must return the value "keygen".

The willValidate, validity, and validationMessage IDL attributes, and the checkValidity(), reportValidity(), and setCustomValidity() methods, are part of the constraint validation API. The labels IDL attribute provides a list of the element's labels. The autofocus, disabled, form, and name IDL attributes are part of the element's forms API.

This specification does not specify how the private key generated is to be used. It is expected that after receiving the SignedPublicKeyAndChallenge (SPKAC) structure, the server will generate a client certificate and offer it back to the user for download; this certificate, once downloaded and stored in the key store along with the private key, can then be used to authenticate to services that use TLS and certificate authentication. For more information, see e.g. this MDN article.

To generate a key pair, add the private key to the user's key store, and submit the public key to the server, markup such as the following can be used:

<form action="processkey.cgi" method="post" enctype="multipart/form-data">
 <p><keygen name="key"></p>
 <p><input type=submit value="Submit key..."></p>
</form>

The server will then receive a form submission with a packaged RSA public key as the value of "key". This can then be used for various purposes, such as generating a client certificate, as mentioned above.

4.10.13 The output element

Categories:
Flow content.
Phrasing content.
Listed, labelable, resettable, and reassociateable form-associated element.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content.
Content attributes:
Global attributes
for - Specifies controls from which the output was calculated
form - Associates the control with a form element
name - Name of form control to use for form submission and in the form.elements API
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
status (default - do not set), any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLOutputElement : HTMLElement {
  [PutForwards=value] readonly attribute DOMSettableTokenList htmlFor;
  readonly attribute HTMLFormElement? form;
           attribute DOMString name;

  readonly attribute DOMString type;
           attribute DOMString defaultValue;
           attribute DOMString value;

  readonly attribute boolean willValidate;
  readonly attribute ValidityState validity;
  readonly attribute DOMString validationMessage;
  boolean checkValidity();
  boolean reportValidity();
  void setCustomValidity(DOMString error);

  readonly attribute NodeList labels;
};

The output element represents the result of a calculation performed by the application, or the result of a user action.

This element can be contrasted with the samp element, which is the appropriate element for quoting the output of other programs run previously.

The for content attribute allows an explicit relationship to be made between the result of a calculation and the elements that represent the values that went into the calculation or that otherwise influenced the calculation. The for attribute, if specified, must contain a string consisting of an unordered set of unique space-separated tokens that are case-sensitive, each of which must have the value of an ID of an element in the same Document.

The form attribute is used to explicitly associate the output element with its form owner. The name attribute represents the element's name.

The element has a value mode flag which is either value or default. Initially, the value mode flag must be set to default.

The element also has a default value. Initially, the default value must be the empty string.

When the value mode flag is in mode default, the contents of the element represent both the value of the element and its default value. When the value mode flag is in mode value, the contents of the element represent the value of the element only, and the default value is only accessible using the defaultValue IDL attribute.

Whenever the element's descendants are changed in any way, if the value mode flag is in mode default, the element's default value must be set to the value of the element's textContent IDL attribute.

The reset algorithm for output elements is to set the element's value mode flag to default and then to set the element's textContent IDL attribute to the value of the element's default value (thus replacing the element's child nodes).

output . value [ = value ]

Returns the element's current value.

Can be set, to change the value.

output . defaultValue [ = value ]

Returns the element's current default value.

Can be set, to change the default value.

output . type

Returns the string "output".

The value IDL attribute must act like the element's textContent IDL attribute, except that on setting, in addition, before the child nodes are changed, the element's value mode flag must be set to value.

The defaultValue IDL attribute, on getting, must return the element's default value. On setting, the attribute must set the element's default value, and, if the element's value mode flag is in the mode default, set the element's textContent IDL attribute as well.

The type attribute must return the string "output".

The htmlFor IDL attribute must reflect the for content attribute.

The willValidate, validity, and validationMessage IDL attributes, and the checkValidity(), reportValidity(), and setCustomValidity() methods, are part of the constraint validation API. The labels IDL attribute provides a list of the element's labels. The form and name IDL attributes are part of the element's forms API.

A simple calculator could use output for its display of calculated results:

<form onsubmit="return false" oninput="o.value = a.valueAsNumber + b.valueAsNumber">
 <input name=a type=number step=any> +
 <input name=b type=number step=any> =
 <output name=o for="a b"></output>
</form>

In this example, an output element is used to report the results from a remote server, as they come in:

<output id="result"></output>
<script>
 var primeSource = new WebSocket('ws://primes.example.net/');
 primeSource.onmessage = function (event) {
   document.getElementById('result').value = event.data;
 }
</script>

4.10.14 The progress element

Categories:
Flow content.
Phrasing content.
Labelable element.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content, but there must be no progress element descendants.
Content attributes:
Global attributes
value - Current value of the element
max - Upper bound of range
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
progressbar (default - do not set).
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLProgressElement : HTMLElement {
           attribute double value;
           attribute double max;
  readonly attribute double position;
  readonly attribute NodeList labels;
};

The progress element represents the completion progress of a task. The progress is either indeterminate, indicating that progress is being made but that it is not clear how much more work remains to be done before the task is complete (e.g. because the task is waiting for a remote host to respond), or the progress is a number in the range zero to a maximum, giving the fraction of work that has so far been completed.

There are two attributes that determine the current task completion represented by the element. The value attribute specifies how much of the task has been completed, and the max attribute specifies how much work the task requires in total. The units are arbitrary and not specified.

To make a determinate progress bar, add a value attribute with the current progress (either a number from 0.0 to 1.0, or, if the max attribute is specified, a number from 0 to the value of the max attribute). To make an indeterminate progress bar, remove the value attribute.

Authors are encouraged to also include the current value and the maximum value inline as text inside the element, so that the progress is made available to users of legacy user agents.

Here is a snippet of a Web application that shows the progress of some automated task:

<section>
 <h2>Task Progress</h2>
 <p>Progress: <progress id="p" max=100><span>0</span>%</progress></p>
 <script>
  var progressBar = document.getElementById('p');
  function updateProgress(newValue) {
    progressBar.value = newValue;
    progressBar.getElementsByTagName('span')[0].textContent = newValue;
  }
 </script>
</section>

(The updateProgress() method in this example would be called by some other code on the page to update the actual progress bar as the task progressed.)

The value and max attributes, when present, must have values that are valid floating-point numbers. The value attribute, if present, must have a value equal to or greater than zero, and less than or equal to the value of the max attribute, if present, or 1.0, otherwise. The max attribute, if present, must have a value greater than zero.

The progress element is the wrong element to use for something that is just a gauge, as opposed to task progress. For instance, indicating disk space usage using progress would be inappropriate. Instead, the meter element is available for such use cases.

User agent requirements: If the value attribute is omitted, then the progress bar is an indeterminate progress bar. Otherwise, it is a determinate progress bar.

If the progress bar is a determinate progress bar and the element has a max attribute, the user agent must parse the max attribute's value according to the rules for parsing floating-point number values. If this does not result in an error, and if the parsed value is greater than zero, then the maximum value of the progress bar is that value. Otherwise, if the element has no max attribute, or if it has one but parsing it resulted in an error, or if the parsed value was less than or equal to zero, then the maximum value of the progress bar is 1.0.

If the progress bar is a determinate progress bar, user agents must parse the value attribute's value according to the rules for parsing floating-point number values. If this does not result in an error, and if the parsed value is less than the maximum value and greater than zero, then the current value of the progress bar is that parsed value. Otherwise, if the parsed value was greater than or equal to the maximum value, then the current value of the progress bar is the maximum value of the progress bar. Otherwise, if parsing the value attribute's value resulted in an error, or a number less than or equal to zero, then the current value of the progress bar is zero.

UA requirements for showing the progress bar: When representing a progress element to the user, the UA should indicate whether it is a determinate or indeterminate progress bar, and in the former case, should indicate the relative position of the current value relative to the maximum value.

progress . position

For a determinate progress bar (one with known current and maximum values), returns the result of dividing the current value by the maximum value.

For an indeterminate progress bar, returns −1.

If the progress bar is an indeterminate progress bar, then the position IDL attribute must return −1. Otherwise, it must return the result of dividing the current value by the maximum value.

If the progress bar is an indeterminate progress bar, then the value IDL attribute, on getting, must return 0. Otherwise, it must return the current value. On setting, the given value must be converted to the best representation of the number as a floating-point number and then the value content attribute must be set to that string.

Setting the value IDL attribute to itself when the corresponding content attribute is absent would change the progress bar from an indeterminate progress bar to a determinate progress bar with no progress.

The max IDL attribute must reflect the content attribute of the same name, limited to numbers greater than zero. The default value for max is 1.0.

The labels IDL attribute provides a list of the element's labels.

4.10.15 The meter element

Categories:
Flow content.
Phrasing content.
Labelable element.
Palpable content.
Contexts in which this element can be used:
Where phrasing content is expected.
Content model:
Phrasing content, but there must be no meter element descendants.
Content attributes:
Global attributes
value - Current value of the element
min - Lower bound of range
max - Upper bound of range
low - High limit of low range
high - Low limit of high range
optimum - Optimum value in gauge
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes
DOM interface:
interface HTMLMeterElement : HTMLElement {
           attribute double value;
           attribute double min;
           attribute double max;
           attribute double low;
           attribute double high;
           attribute double optimum;
  readonly attribute NodeList labels;
};

The meter element represents a scalar measurement within a known range, or a fractional value; for example disk usage, the relevance of a query result, or the fraction of a voting population to have selected a particular candidate.

This is also known as a gauge.

The meter element should not be used to indicate progress (as in a progress bar). For that role, HTML provides a separate progress element.

The meter element also does not represent a scalar value of arbitrary range — for example, it would be wrong to use this to report a weight, or height, unless there is a known maximum value.

There are six attributes that determine the semantics of the gauge represented by the element.

The min attribute specifies the lower bound of the range, and the max attribute specifies the upper bound. The value attribute specifies the value to have the gauge indicate as the "measured" value.

The other three attributes can be used to segment the gauge's range into "low", "medium", and "high" parts, and to indicate which part of the gauge is the "optimum" part. The low attribute specifies the range that is considered to be the "low" part, and the high attribute specifies the range that is considered to be the "high" part. The optimum attribute gives the position that is "optimum"; if that is higher than the "high" value then this indicates that the higher the value, the better; if it's lower than the "low" mark then it indicates that lower values are better, and naturally if it is in between then it indicates that neither high nor low values are good.

Authoring requirements: The value attribute must be specified. The value, min, low, high, max, and optimum attributes, when present, must have values that are valid floating-point numbers.

In addition, the attributes' values are further constrained:

Let value be the value attribute's number.

If the min attribute is specified, then let minimum be that attribute's value; otherwise, let it be zero.

If the max attribute is specified, then let maximum be that attribute's value; otherwise, let it be 1.0.

The following inequalities must hold, as applicable:

If no minimum or maximum is specified, then the range is assumed to be 0..1, and the value thus has to be within that range.

Authors are encouraged to include a textual representation of the gauge's state in the element's contents, for users of user agents that do not support the meter element.

When used with microdata, the meter element's value attribute provides the element's machine-readable value.

The following examples show three gauges that would all be three-quarters full:

Storage space usage: <meter value=6 max=8>6 blocks used (out of 8 total)</meter>
Voter turnout: <meter value=0.75><img alt="75%" src="graph75.png"></meter>
Tickets sold: <meter min="0" max="100" value="75"></meter>

The following example is incorrect use of the element, because it doesn't give a range (and since the default maximum is 1, both of the gauges would end up looking maxed out):

<p>The grapefruit pie had a radius of <meter value=12>12cm</meter>
and a height of <meter value=2>2cm</meter>.</p> <!-- BAD! -->

Instead, one would either not include the meter element, or use the meter element with a defined range to give the dimensions in context compared to other pies:

<p>The grapefruit pie had a radius of 12cm and a height of
2cm.</p>
<dl>
 <dt>Radius: <dd> <meter min=0 max=20 value=12>12cm</meter>
 <dt>Height: <dd> <meter min=0 max=10 value=2>2cm</meter>
</dl>

There is no explicit way to specify units in the meter element, but the units may be specified in the title attribute in free-form text.

The example above could be extended to mention the units:

<dl>
 <dt>Radius: <dd> <meter min=0 max=20 value=12 title="centimeters">12cm</meter>
 <dt>Height: <dd> <meter min=0 max=10 value=2 title="centimeters">2cm</meter>
</dl>

User agent requirements: User agents must parse the min, max, value, low, high, and optimum attributes using the rules for parsing floating-point number values.

User agents must then use all these numbers to obtain values for six points on the gauge, as follows. (The order in which these are evaluated is important, as some of the values refer to earlier ones.)

The minimum value

If the min attribute is specified and a value could be parsed out of it, then the minimum value is that value. Otherwise, the minimum value is zero.

The maximum value

If the max attribute is specified and a value could be parsed out of it, then the candidate maximum value is that value. Otherwise, the candidate maximum value is 1.0.

If the candidate maximum value is greater than or equal to the minimum value, then the maximum value is the candidate maximum value. Otherwise, the maximum value is the same as the minimum value.

The actual value

If the value attribute is specified and a value could be parsed out of it, then that value is the candidate actual value. Otherwise, the candidate actual value is zero.

If the candidate actual value is less than the minimum value, then the actual value is the minimum value.

Otherwise, if the candidate actual value is greater than the maximum value, then the actual value is the maximum value.

Otherwise, the actual value is the candidate actual value.

The low boundary

If the low attribute is specified and a value could be parsed out of it, then the candidate low boundary is that value. Otherwise, the candidate low boundary is the same as the minimum value.

If the candidate low boundary is less than the minimum value, then the low boundary is the minimum value.

Otherwise, if the candidate low boundary is greater than the maximum value, then the low boundary is the maximum value.

Otherwise, the low boundary is the candidate low boundary.

The high boundary

If the high attribute is specified and a value could be parsed out of it, then the candidate high boundary is that value. Otherwise, the candidate high boundary is the same as the maximum value.

If the candidate high boundary is less than the low boundary, then the high boundary is the low boundary.

Otherwise, if the candidate high boundary is greater than the maximum value, then the high boundary is the maximum value.

Otherwise, the high boundary is the candidate high boundary.

The optimum point

If the optimum attribute is specified and a value could be parsed out of it, then the candidate optimum point is that value. Otherwise, the candidate optimum point is the midpoint between the minimum value and the maximum value.

If the candidate optimum point is less than the minimum value, then the optimum point is the minimum value.

Otherwise, if the candidate optimum point is greater than the maximum value, then the optimum point is the maximum value.

Otherwise, the optimum point is the candidate optimum point.

All of which will result in the following inequalities all being true:

UA requirements for regions of the gauge: If the optimum point is equal to the low boundary or the high boundary, or anywhere in between them, then the region between the low and high boundaries of the gauge must be treated as the optimum region, and the low and high parts, if any, must be treated as suboptimal. Otherwise, if the optimum point is less than the low boundary, then the region between the minimum value and the low boundary must be treated as the optimum region, the region from the low boundary up to the high boundary must be treated as a suboptimal region, and the remaining region must be treated as an even less good region. Finally, if the optimum point is higher than the high boundary, then the situation is reversed; the region between the high boundary and the maximum value must be treated as the optimum region, the region from the high boundary down to the low boundary must be treated as a suboptimal region, and the remaining region must be treated as an even less good region.

UA requirements for showing the gauge: When representing a meter element to the user, the UA should indicate the relative position of the actual value to the minimum and maximum values, and the relationship between the actual value and the three regions of the gauge.

The following markup:

<h3>Suggested groups</h3>
<menu type="toolbar">
 <a href="?cmd=hsg" onclick="hideSuggestedGroups()">Hide suggested groups</a>
</menu>
<ul>
 <li>
  <p><a href="/group/comp.infosystems.www.authoring.stylesheets/view">comp.infosystems.www.authoring.stylesheets</a> -
     <a href="/group/comp.infosystems.www.authoring.stylesheets/subscribe">join</a></p>
  <p>Group description: <strong>Layout/presentation on the WWW.</strong></p>
  <p><meter value="0.5">Moderate activity,</meter> Usenet, 618 subscribers</p>
 </li>
 <li>
  <p><a href="/group/netscape.public.mozilla.xpinstall/view">netscape.public.mozilla.xpinstall</a> -
     <a href="/group/netscape.public.mozilla.xpinstall/subscribe">join</a></p>
  <p>Group description: <strong>Mozilla XPInstall discussion.</strong></p>
  <p><meter value="0.25">Low activity,</meter> Usenet, 22 subscribers</p>
 </li>
 <li>
  <p><a href="/group/mozilla.dev.general/view">mozilla.dev.general</a> -
     <a href="/group/mozilla.dev.general/subscribe">join</a></p>
  <p><meter value="0.25">Low activity,</meter> Usenet, 66 subscribers</p>
 </li>
</ul>

Might be rendered as follows:

With the <meter> elements rendered as inline green bars of varying lengths.

User agents may combine the value of the title attribute and the other attributes to provide context-sensitive help or inline text detailing the actual values.

For example, the following snippet:

<meter min=0 max=60 value=23.2 title=seconds></meter>

...might cause the user agent to display a gauge with a tooltip saying "Value: 23.2 out of 60." on one line and "seconds" on a second line.

The value IDL attribute, on getting, must return the actual value. On setting, the given value must be converted to the best representation of the number as a floating-point number and then the value content attribute must be set to that string.

The min IDL attribute, on getting, must return the minimum value. On setting, the given value must be converted to the best representation of the number as a floating-point number and then the min content attribute must be set to that string.

The max IDL attribute, on getting, must return the maximum value. On setting, the given value must be converted to the best representation of the number as a floating-point number and then the max content attribute must be set to that string.

The low IDL attribute, on getting, must return the low boundary. On setting, the given value must be converted to the best representation of the number as a floating-point number and then the low content attribute must be set to that string.

The high IDL attribute, on getting, must return the high boundary. On setting, the given value must be converted to the best representation of the number as a floating-point number and then the high content attribute must be set to that string.

The optimum IDL attribute, on getting, must return the optimum value. On setting, the given value must be converted to the best representation of the number as a floating-point number and then the optimum content attribute must be set to that string.

The labels IDL attribute provides a list of the element's labels.

The following example shows how a gauge could fall back to localised or pretty-printed text.

<p>Disk usage: <meter min=0 value=170261928 max=233257824>170 261 928 bytes used
out of 233 257 824 bytes available</meter></p>

4.10.16 The fieldset element

Categories:
Flow content.
Sectioning root.
Listed and reassociateable form-associated element.
Palpable content.
Contexts in which this element can be used:
Where flow content is expected.
Content model:
Optionally a legend element, followed by flow content.
Content attributes:
Global attributes
disabled - Whether the form control is disabled
form - Associates the control with a form element
name - Name of form control to use for form submission and in the form.elements API
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
group (default - do not set) or presentation.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLFieldSetElement : HTMLElement {
           attribute boolean disabled;
  readonly attribute HTMLFormElement? form;
           attribute DOMString name;

  readonly attribute DOMString type;

  readonly attribute HTMLFormControlsCollection elements;

  readonly attribute boolean willValidate;
  readonly attribute ValidityState validity;
  readonly attribute DOMString validationMessage;
  boolean checkValidity();
  boolean reportValidity();
  void setCustomValidity(DOMString error);
};

The fieldset element represents a set of form controls optionally grouped under a common name.

The name of the group is given by the first legend element that is a child of the fieldset element, if any. The remainder of the descendants form the group.

The disabled attribute, when specified, causes all the form control descendants of the fieldset element, excluding those that are descendants of the fieldset element's first legend element child, if any, to be disabled.

The form attribute is used to explicitly associate the fieldset element with its form owner. The name attribute represents the element's name.

fieldset . type

Returns the string "fieldset".

fieldset . elements

Returns an HTMLFormControlsCollection of the form controls in the element.

The disabled IDL attribute must reflect the content attribute of the same name.

The type IDL attribute must return the string "fieldset".

The elements IDL attribute must return an HTMLFormControlsCollection rooted at the fieldset element, whose filter matches listed elements.

The willValidate, validity, and validationMessage attributes, and the checkValidity(), reportValidity(), and setCustomValidity() methods, are part of the constraint validation API. The form and name IDL attributes are part of the element's forms API.

This example shows a fieldset element being used to group a set of related controls:

<fieldset>
 <legend>Display</legend>
 <p><label><input type=radio name=c value=0 checked> Black on White</label>
 <p><label><input type=radio name=c value=1> White on Black</label>
 <p><label><input type=checkbox name=g> Use grayscale</label>
 <p><label>Enhance contrast <input type=range name=e list=contrast min=0 max=100 value=0 step=1></label>
 <datalist id=contrast>
  <option label=Normal value=0>
  <option label=Maximum value=100>
 </datalist>
</fieldset>

The following snippet shows a fieldset with a checkbox in the legend that controls whether or not the fieldset is enabled. The contents of the fieldset consist of two required text fields and an optional year/month control.

<fieldset name="clubfields" disabled>
 <legend> <label>
  <input type=checkbox name=club onchange="form.clubfields.disabled = !checked">
  Use Club Card
 </label> </legend>
 <p><label>Name on card: <input name=clubname required></label></p>
 <p><label>Card number: <input name=clubnum required pattern="[-0-9]+"></label></p>
 <p><label>Expiry date: <input name=clubexp type=month></label></p>
</fieldset>

You can also nest fieldset elements. Here is an example expanding on the previous one that does so:

<fieldset name="clubfields" disabled>
 <legend> <label>
  <input type=checkbox name=club onchange="form.clubfields.disabled = !checked">
  Use Club Card
 </label> </legend>
 <p><label>Name on card: <input name=clubname required></label></p>
 <fieldset name="numfields">
  <legend> <label>
   <input type=radio checked name=clubtype onchange="form.numfields.disabled = !checked">
   My card has numbers on it
  </label> </legend>
  <p><label>Card number: <input name=clubnum required pattern="[-0-9]+"></label></p>
 </fieldset>
 <fieldset name="letfields" disabled>
  <legend> <label>
   <input type=radio name=clubtype onchange="form.letfields.disabled = !checked">
   My card has letters on it
  </label> </legend>
  <p><label>Card code: <input name=clublet required pattern="[A-Za-z]+"></label></p>
 </fieldset>
</fieldset>

In this example, if the outer "Use Club Card" checkbox is not checked, everything inside the outer fieldset, including the two radio buttons in the legends of the two nested fieldsets, will be disabled. However, if the checkbox is checked, then the radio buttons will both be enabled and will let you select which of the two inner fieldsets is to be enabled.

4.10.17 The legend element

Categories:
None.
Contexts in which this element can be used:
As the first child of a fieldset element.
Content model:
Phrasing content.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role value.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLLegendElement : HTMLElement {
  readonly attribute HTMLFormElement? form;
};

The legend element represents a caption for the rest of the contents of the legend element's parent fieldset element, if any.

legend . form

Returns the element's form element, if any, or null otherwise.

The form IDL attribute's behavior depends on whether the legend element is in a fieldset element or not. If the legend has a fieldset element as its parent, then the form IDL attribute must return the same value as the form IDL attribute on that fieldset element. Otherwise, it must return null.

4.10.18 Form control infrastructure

4.10.18.1 A form control's value

Most form controls have a value and a checkedness. (The latter is only used by input elements.) These are used to describe how the user interacts with the control.

To define the behaviour of constraint validation in the face of the input element's multiple attribute, input elements can also have separately defined values.

The select element does not have a value; the selectedness of its option elements is what is used instead.

4.10.18.2 Mutability

A form control can be designated as mutable.

This determines (by means of definitions and requirements in this specification that rely on whether an element is so designated) whether or not the user can modify the value or checkedness of a form control, or whether or not a control can be automatically prefilled.

4.10.18.3 Association of controls and forms

A form-associated element can have a relationship with a form element, which is called the element's form owner. If a form-associated element is not associated with a form element, its form owner is said to be null.

A form-associated element is, by default, associated with its nearest ancestor form element (as described below), but, if it is reassociateable, may have a form attribute specified to override this.

This feature allows authors to work around the lack of support for nested form elements.

If a reassociateable form-associated element has a form attribute specified, then that attribute's value must be the ID of a form element in the element's owner Document.

The rules in this section are complicated by the fact that although conforming documents will never contain nested form elements, it is quite possible (e.g. using a script that performs DOM manipulation) to generate documents that have such nested elements. They are also complicated by rules in the HTML parser that, for historical reasons, can result in a form-associated element being associated with a form element that is not its ancestor.

When a form-associated element is created, its form owner must be initialised to null (no owner).

When a form-associated element is to be associated with a form, its form owner must be set to that form.

When a form-associated element or one of its ancestors is inserted into a Document, then the user agent must reset the form owner of that form-associated element. The HTML parser overrides this requirement when inserting form controls.

When an element changes its parent node resulting in a form-associated element and its form owner (if any) no longer being in the same home subtree, then the user agent must reset the form owner of that form-associated element.

When a reassociateable form-associated element's form attribute is set, changed, or removed, then the user agent must reset the form owner of that element.

When a reassociateable form-associated element has a form attribute and the ID of any of the elements in the Document changes, then the user agent must reset the form owner of that form-associated element.

When a reassociateable form-associated element has a form attribute and an element with an ID is inserted into or removed from the Document, then the user agent must reset the form owner of that form-associated element.

When the user agent is to reset the form owner of a form-associated element, it must run the following steps:

  1. If the element's form owner is not null, and either the element is not reassociateable or its form content attribute is not present, and the element's form owner is its nearest form element ancestor after the change to the ancestor chain, then do nothing, and abort these steps.

  2. Let the element's form owner be null.

  3. If the element is reassociateable, has a form content attribute, and is itself in a Document, then run these substeps:

    1. If the first element in the Document to have an ID that is case-sensitively equal to the element's form content attribute's value is a form element, then associate the form-associated element with that form element.

    2. Abort the "reset the form owner" steps.

  4. Otherwise, if the form-associated element in question has an ancestor form element, then associate the form-associated element with the nearest such ancestor form element.

  5. Otherwise, the element is left unassociated.

In the following non-conforming snippet:

...
 <form id="a">
  <div id="b"></div>
 </form>
 <script>
  document.getElementById('b').innerHTML =
     '<table><tr><td><form id="c"><input id="d"></table>' +
     '<input id="e">';
 </script>
...

The form owner of "d" would be the inner nested form "c", while the form owner of "e" would be the outer form "a".

This happens as follows: First, the "e" node gets associated with "c" in the HTML parser. Then, the innerHTML algorithm moves the nodes from the temporary document to the "b" element. At this point, the nodes see their ancestor chain change, and thus all the "magic" associations done by the parser are reset to normal ancestor associations.

This example is a non-conforming document, though, as it is a violation of the content models to nest form elements.

element . form

Returns the element's form owner.

Returns null if there isn't one.

Reassociateable form-associated elements have a form IDL attribute, which, on getting, must return the element's form owner, or null if there isn't one.

4.10.19 Attributes common to form controls

4.10.19.1 Naming form controls: the name attribute

The name content attribute gives the name of the form control, as used in form submission and in the form element's elements object. If the attribute is specified, its value must not be the empty string.

Any non-empty value for name is allowed, but the names "_charset_" and "isindex" are special:

isindex

This value, if used as the name of a Text control that is the first control in a form that is submitted using the application/x-www-form-urlencoded mechanism, causes the submission to only include the value of this control, with no name.

_charset_

This value, if used as the name of a Hidden control with no value attribute, is automatically given a value during submission consisting of the submission character encoding.

The name IDL attribute must reflect the name content attribute.

4.10.19.2 Submitting element directionality: the dirname attribute

The dirname attribute on a form control element enables the submission of the directionality of the element, and gives the name of the field that contains this value during form submission. If such an attribute is specified, its value must not be the empty string.

In this example, a form contains a text field and a submission button:

<form action="addcomment.cgi" method=post>
 <p><label>Comment: <input type=text name="comment" dirname="comment.dir" required></label></p>
 <p><button name="mode" type=submit value="add">Post Comment</button></p>
</form>

When the user submits the form, the user agent includes three fields, one called "comment", one called "comment.dir", and one called "mode"; so if the user types "Hello", the submission body might be something like:

comment=Hello&comment.dir=ltr&mode=add

If the user manually switches to a right-to-left writing direction and enters "مرحبا", the submission body might be something like:

comment=%D9%85%D8%B1%D8%AD%D8%A8%D8%A7&comment.dir=rtl&mode=add
4.10.19.3 Limiting user input length: the maxlength attribute

A form control maxlength attribute, controlled by a dirty value flag, declares a limit on the number of characters a user can input.

If an element has its form control maxlength attribute specified, the attribute's value must be a valid non-negative integer. If the attribute is specified and applying the rules for parsing non-negative integers to its value results in a number, then that number is the element's maximum allowed value length. If the attribute is omitted or parsing its value results in an error, then there is no maximum allowed value length.

Constraint validation: If an element has a maximum allowed value length, its dirty value flag is true, its value was last changed by a user edit (as opposed to a change made by a script), and the code-unit length of the element's value is greater than the element's maximum allowed value length, then the element is suffering from being too long.

User agents may prevent the user from causing the element's value to be set to a value whose code-unit length is greater than the element's maximum allowed value length.

In the case of textarea elements, this is the value, not the raw value, so the textarea wrapping transformation is applied before the maximum allowed value length is checked.

4.10.19.4 Setting minimum input length requirements: the minlength attribute

A form control minlength attribute, controlled by a dirty value flag, declares a lower bound on the number of characters a user can input.

The minlength attribute does not imply the required attribute. If the form control has no minlength attribute, then the value can still be omitted; the minlength attribute only kicks in once the user has entered a value at all. If the empty string is not allowed, then the required attribute also needs to be set.

If an element has its form control minlength attribute specified, the attribute's value must be a valid non-negative integer. If the attribute is specified and applying the rules for parsing non-negative integers to its value results in a number, then that number is the element's minimum allowed value length. If the attribute is omitted or parsing its value results in an error, then there is no minimum allowed value length.

If an element has both a maximum allowed value length and a minimum allowed value length, the minimum allowed value length must be smaller than or equal to the maximum allowed value length.

Constraint validation: If an element has a minimum allowed value length, its value is not the empty string, and the code-unit length of the element's value is less than the element's minimum allowed value length, then the element is suffering from being too short.

In this example, there are four text fields. The first is required, and has to be at least 5 characters long. The other three are optional, but if the user fills one in, the user has to enter at least 10 characters.

<form action="/events/menu.cgi" method="post">
 <p><label>Name of Event: <input required minlength=5 maxlength=50 name=event></label></p>
 <p><label>Describe what you would like for breakfast, if anything:
    <textarea name="breakfast" minlength="10"></textarea></label></p>
 <p><label>Describe what you would like for lunch, if anything:
    <textarea name="lunch" minlength="10"></textarea></label></p>
 <p><label>Describe what you would like for dinner, if anything:
    <textarea name="dinner" minlength="10"></textarea></label></p>
 <p><input type=submit value="Submit Request"></p>
</form>
4.10.19.5 Enabling and disabling form controls: the disabled attribute

The disabled content attribute is a boolean attribute.

A form control is disabled if its disabled attribute is set, or if it is a descendant of a fieldset element whose disabled attribute is set and is not a descendant of that fieldset element's first legend element child, if any.

A form control that is disabled must prevent any click events that are queued on the user interaction task source from being dispatched on the element.

Constraint validation: If an element is disabled, it is barred from constraint validation.

The disabled IDL attribute must reflect the disabled content attribute.

4.10.19.6 Form submission

Attributes for form submission can be specified both on form elements and on submit buttons (elements that represent buttons that submit forms, e.g. an input element whose type attribute is in the Submit Button state).

The attributes for form submission that may be specified on form elements are action, enctype, method, novalidate, and target.

The corresponding attributes for form submission that may be specified on submit buttons are formaction, formenctype, formmethod, formnovalidate, and formtarget. When omitted, they default to the values given on the corresponding attributes on the form element.


The action and formaction content attributes, if specified, must have a value that is a valid non-empty URL potentially surrounded by spaces.

The action of an element is the value of the element's formaction attribute, if the element is a submit button and has such an attribute, or the value of its form owner's action attribute, if it has one, or else the empty string.


The method and formmethod content attributes are enumerated attributes with the following keywords and states:

The invalid value default for these attributes is the GET state. The missing value default for the method attribute is also the GET state. (There is no missing value default for the formmethod attribute.)

The method of an element is one of those states. If the element is a submit button and has a formmethod attribute, then the element's method is that attribute's state; otherwise, it is the form owner's method attribute's state.

Here the method attribute is used to explicitly specify the default value, "get", so that the search query is submitted in the URL:

<form method="get" action="/search.cgi">
 <p><label>Search terms: <input type=search name=q></label></p>
 <p><input type=submit></p>
</form>

On the other hand, here the method attribute is used to specify the value "post", so that the user's message is submitted in the HTTP request's body:

<form method="post" action="/post-message.cgi">
 <p><label>Message: <input type=text name=m></label></p>
 <p><input type=submit value="Submit message"></p>
</form>

In this example, a form is used with a dialog. The method attribute's "dialog" keyword is used to have the dialog automatically close when the form is submitted.

<dialog id="ship">
 <form method=dialog>
  <p>A ship has arrived in the harbour.</p>
  <button type=submit value="board">Board the ship</button>
  <button type=submit value="call">Call to the captain</button>
 </form>
</dialog>
<script>
 var ship = document.getElementById('ship');
 ship.showModal();
 ship.onclose = function (event) {
   if (ship.returnValue == 'board') {
     // ...
   } else {
     // ...
   }
 };
</script>

The enctype and formenctype content attributes are enumerated attributes with the following keywords and states:

The invalid value default for these attributes is the application/x-www-form-urlencoded state. The missing value default for the enctype attribute is also the application/x-www-form-urlencoded state. (There is no missing value default for the formenctype attribute.)

The enctype of an element is one of those three states. If the element is a submit button and has a formenctype attribute, then the element's enctype is that attribute's state; otherwise, it is the form owner's enctype attribute's state.


The target and formtarget content attributes, if specified, must have values that are valid browsing context names or keywords.

The target of an element is the value of the element's formtarget attribute, if the element is a submit button and has such an attribute; or the value of its form owner's target attribute, if it has such an attribute; or, if the Document contains a base element with a target attribute, then the value of the target attribute of the first such base element; or, if there is no such element, the empty string.


The novalidate and formnovalidate content attributes are boolean attributes. If present, they indicate that the form is not to be validated during submission.

The no-validate state of an element is true if the element is a submit button and the element's formnovalidate attribute is present, or if the element's form owner's novalidate attribute is present, and false otherwise.

This attribute is useful to include "save" buttons on forms that have validation constraints, to allow users to save their progress even though they haven't fully entered the data in the form. The following example shows a simple form that has two required fields. There are three buttons: one to submit the form, which requires both fields to be filled in; one to save the form so that the user can come back and fill it in later; and one to cancel the form altogether.

<form action="editor.cgi" method="post">
 <p><label>Name: <input required name=fn></label></p>
 <p><label>Essay: <textarea required name=essay></textarea></label></p>
 <p><input type=submit name=submit value="Submit essay"></p>
 <p><input type=submit formnovalidate name=save value="Save essay"></p>
 <p><input type=submit formnovalidate name=cancel value="Cancel"></p>
</form>

The action IDL attribute must reflect the content attribute of the same name, except that on getting, when the content attribute is missing or its value is the empty string, the document's address must be returned instead. The target IDL attribute must reflect the content attribute of the same name. The method and enctype IDL attributes must reflect the respective content attributes of the same name, limited to only known values. The encoding IDL attribute must reflect the enctype content attribute, limited to only known values. The noValidate IDL attribute must reflect the novalidate content attribute. The formAction IDL attribute must reflect the formaction content attribute, except that on getting, when the content attribute is missing or its value is the empty string, the document's address must be returned instead. The formEnctype IDL attribute must reflect the formenctype content attribute, limited to only known values. The formMethod IDL attribute must reflect the formmethod content attribute, limited to only known values. The formNoValidate IDL attribute must reflect the formnovalidate content attribute. The formTarget IDL attribute must reflect the formtarget content attribute.

4.10.19.6.1 Autofocusing a form control: the autofocus attribute

The autofocus content attribute allows the author to indicate that a control is to be focused as soon as the page is loaded or as soon as the dialog within which it finds itself is shown, allowing the user to just start typing without having to manually focus the main control.

The autofocus attribute is a boolean attribute.

An element's nearest ancestor autofocus scoping root element is the element itself if the element is a dialog element, or else is the element's nearest ancestor dialog element, if any, or else is the element's root element.

There must not be two elements with the same nearest ancestor autofocus scoping root element that both have the autofocus attribute specified.

When an element with the autofocus attribute specified is inserted into a document, user agents should run the following steps:

  1. Let target be the element's Document.

  2. If target has no browsing context, abort these steps.

  3. If target's browsing context has no top-level browsing context (e.g. it is a nested browsing context with no parent browsing context), abort these steps.

  4. If target's active sandboxing flag set has the sandboxed automatic features browsing context flag, abort these steps.

  5. If target's origin is not the same as the origin of the Document of the currently focused element in target's top-level browsing context, abort these steps.

  6. If target's origin is not the same as the origin of the active document of target's top-level browsing context, abort these steps.

  7. If the user agent has already reached the last step of this list of steps in response to an element being inserted into a Document whose top-level browsing context's active document is the same as target's top-level browsing context's active document, abort these steps.

  8. If the user has indicated (for example, by starting to type in a form control) that he does not wish focus to be changed, then optionally abort these steps.

  9. Queue a task that checks to see if the element is focusable, and if so, runs the focusing steps for that element. User agents may also change the scrolling position of the document, or perform some other action that brings the element to the user's attention. The task source for this task is the user interaction task source.

This handles the automatic focusing during document load. The show() and showModal() methods of dialog elements also processes the autofocus attribute.

Focusing the control does not imply that the user agent must focus the browser window if it has lost focus.

The autofocus IDL attribute must reflect the content attribute of the same name.

In the following snippet, the text control would be focused when the document was loaded.

<input maxlength="256" name="q" value="" autofocus>
<input type="submit" value="Search">
4.10.19.7 Input modalities: the inputmode attribute

The inputmode content attribute is an enumerated attribute that specifies what kind of input mechanism would be most helpful for users entering content into the form control.

User agents must recognise all the keywords and corresponding states given below, but need not support all of the corresponding states. If a keyword's state is not supported, the user agent must act as if the keyword instead mapped to the given state's fallback state, as defined below. This fallback behaviour is transitive.

For example, if a user agent with a QWERTY keyboard layout does not support text prediction and automatic capitalization, then it could treat the latin-prose keyword in the same way as the verbatim keyword, following the chain Latin ProseLatin TextLatin Verbatim.

The possible keywords and states for the attributes are listed in the following table. The keywords are listed in the first column. Each maps to the state given in the cell in the second column of that keyword's row, and that state has the fallback state given in the cell in the third column of that row.

Keyword State Fallback state Description
verbatim Latin Verbatim Default Alphanumeric Latin-script input of non-prose content, e.g. usernames, passwords, product codes.
latin Latin Text Latin Verbatim Latin-script input in the user's preferred language(s), with some typing aids enabled (e.g. text prediction). Intended for human-to-computer communications, e.g. free-form text search fields.
latin-name Latin Name Latin Text Latin-script input in the user's preferred language(s), with typing aids intended for entering human names enabled (e.g. text prediction from the user's contact list and automatic capitalisation at every word). Intended for situations such as customer name fields.
latin-prose Latin Prose Latin Text Latin-script input in the user's preferred language(s), with aggressive typing aids intended for human-to-human communications enabled (e.g. text prediction and automatic capitalisation at the start of sentences). Intended for situations such as e-mails and instant messaging.
full-width-latin Full-width Latin Latin Prose Latin-script input in the user's secondary language(s), using full-width characters, with aggressive typing aids intended for human-to-human communications enabled (e.g. text prediction and automatic capitalisation at the start of sentences). Intended for latin text embedded inside CJK text.
kana Kana Default Kana or romaji input, typically hiragana input, using full-width characters, with support for converting to kanji. Intended for Japanese text input.
kana-name Kana Name Kana Kana or romaji input, typically hiragana input, using full-width characters, with support for converting to kanji, and with typing aids intended for entering human names enabled (e.g. text prediction from the user's contact list). Intended for situations such as customer name fields.
katakana Katakana Kana Katakana input, using full-width characters, with support for converting to kanji. Intended for Japanese text input.
numeric Numeric Default Numeric input, including keys for the digits 0 to 9, the user's preferred thousands separator character, and the character for indicating negative numbers. Intended for numeric codes, e.g. credit card numbers. (For numbers, prefer "<input type=number>".)
tel Telephone Numeric Telephone number input, including keys for the digits 0 to 9, the "#" character, and the "*" character. In some locales, this can also include alphabetic mnemonic labels (e.g. in the US, the key labeled "2" is historically also labeled with the letters A, B, and C). Rarely necessary; use "<input type=tel>" instead.
email E-mail Default Text input in the user's locale, with keys for aiding in the input of e-mail addresses, such as that for the "@" character and the "." character. Rarely necessary; use "<input type=email>" instead.
url URL Default Text input in the user's locale, with keys for aiding in the input of Web addresses, such as that for the "/" and "." characters and for quick input of strings commonly found in domain names such as "www." or ".co.uk". Rarely necessary; use "<input type=url>" instead.

The last three keywords listed above are only provided for completeness, and are rarely necessary, as dedicated input controls exist for their usual use cases (as described in the table above).

User agents must all support the Default input mode state, which corresponds to the user agent's default input modality. This specification does not define how the user agent's default modality is to operate. The missing value default is the default input mode state.

User agents should use the input modality corresponding to the state of the inputmode attribute when exposing a user interface for editing the value of a form control to which the attribute applies. An input modality corresponding to a state is one designed to fit the description of the state in the table above. This value can change dynamically; user agents should update their interface as the attribute changes state, unless that would go against the user's wishes.

4.10.19.8 Autofill
4.10.19.8.1 Autofilling form controls: the autocomplete attribute

User agents sometimes have features for helping users fill forms in, for example prefilling the user's address based on earlier user input. The autocomplete content attribute can be used to hint to the user agent how to, or indeed whether to, provide such a feature.

The attribute, if present, must have a value that is an ordered set of space-separated tokens consisting of either a single token that is an ASCII case-insensitive match for the string "off", or a single token that is an ASCII case-insensitive match for the string "on", or the following, in the order given below:

  1. Optionally, a token whose first eight characters are an ASCII case-insensitive match for the string "section-", meaning that the field belongs to the named group.

    For example, if there are two shipping addresses in the form, then they could be marked up as:

    <fieldset>
     <legend>Ship the blue gift to...</legend>
     <p> <label> Address:     <input name=ba autocomplete="section-blue shipping street-address"> </label>
     <p> <label> City:        <input name=bc autocomplete="section-blue shipping region"> </label>
     <p> <label> Postal Code: <input name=bp autocomplete="section-blue shipping postal-code"> </label>
    </fieldset>
    <fieldset>
     <legend>Ship the red gift to...</legend>
     <p> <label> Address:     <input name=ra autocomplete="section-red shipping street-address"> </label>
     <p> <label> City:        <input name=rc autocomplete="section-red shipping region"> </label>
     <p> <label> Postal Code: <input name=rp autocomplete="section-red shipping country"> </label>
    </fieldset>
  2. Optionally, a token that is an ASCII case-insensitive match for one of the following strings:

  3. Either of the following two options:

The "off" keyword indicates either that the control's input data is particularly sensitive (for example the activation code for a nuclear weapon); or that it is a value that will never be reused (for example a one-time-key for a bank login) and the user will therefore have to explicitly enter the data each time, instead of being able to rely on the UA to prefill the value for him; or that the document provides its own autocomplete mechanism and does not want the user agent to provide autocompletion values.

The "on" keyword indicates that the user agent is allowed to provide the user with autocompletion values, but does not provide any further information about what kind of data the user might be expected to enter. User agents would have to use heuristics to decide what autocompletion values to suggest.

The autofill fields names listed above indicate that the user agent is allowed to provide the user with autocompletion values, and specifies what kind of value is expected. The keywords relate to each other as described in the table below. Each field name listed on a row of this table corresponds to the meaning given in the cell for that row in the column labeled "Meaning". Some fields correspond to subparts of other fields; for example, a credit card expiry date can be expressed as one field giving both the month and year of expiry ("cc-exp"), or as two fields, one giving the month ("cc-exp-month") and one the year ("cc-exp-year"). In such cases, the names of the broader fields cover multiple rows, in which the narrower fields are defined.

Generally, authors are encouraged to use the broader fields rather than the narrower fields, as the narrower fields tend to expose Western biases. For example, while it is common in some Western cultures to have a given name and a family name, in that order (and thus often referred to as a first name and a surname), many cultures put the family name first and the given name second, and many others simply have one name (a mononym). Having a single field is therefore more flexible.

Some fields are only appropriate for certain form controls. An autofill field name is inappropriate for a control if the control does not belong to the group listed for that autofill field in the fifth column of the first row describing that autofill field in the table below. What controls fall into each group is described below the table.

Field name Meaning Canonical Format Canonical Format Example Control group
"name" Full name Free-form text, no newlines Sir Timothy John Berners-Lee, OM, KBE, FRS, FREng, FRSA Text
"honorific-prefix" Prefix or title (e.g. "Mr.", "Ms.", "Dr.", "Mlle") Free-form text, no newlines Sir Text
"given-name" Given name (in some Western cultures, also known as the first name) Free-form text, no newlines Timothy Text
"additional-name" Additional names (in some Western cultures, also known as middle names, forenames other than the first name) Free-form text, no newlines John Text
"family-name" Family name (in some Western cultures, also known as the last name or surname) Free-form text, no newlines Berners-Lee Text
"honorific-suffix" Suffix (e.g. "Jr.", "B.Sc.", "MBASW", "II") Free-form text, no newlines OM, KBE, FRS, FREng, FRSA Text
"nickname" Nickname, screen name, handle: a typically short name used instead of the full name Free-form text, no newlines Tim Text
"organization-title" Job title (e.g. "Software Engineer", "Senior Vice President", "Deputy Managing Director") Free-form text, no newlines Professor Text
"username" A username Free-form text, no newlines timbl Text
"new-password" A new password (e.g. when creating an account or changing a password) Free-form text, no newlines GUMFXbadyrS3 Password
"current-password" The current password for the account identified by the username field (e.g. when logging in) Free-form text, no newlines qwerty Password
"organization" Company name corresponding to the person, address, or contact information in the other fields associated with this field Free-form text, no newlines World Wide Web Consortium Text
"street-address" Street address (multiple lines, newlines preserved) Free-form text 32 Vassar Street
MIT Room 32-G524
Multiline
"address-line1" Street address (one line per field) Free-form text, no newlines 32 Vassar Street Text
"address-line2" Free-form text, no newlines MIT Room 32-G524 Text
"address-line3" Free-form text, no newlines Text
"locality" City, town, village, post town, or other locality within which the relevant street address is found Free-form text, no newlines Cambridge Text
"region" Province such as a state, county, or canton within which the locality is found Free-form text, no newlines MA Text
"country" Country code Valid ISO 3166-1-alpha-2 country code [ISO3166] US Text
"country-name" Country name Free-form text, no newlines; derived from country in some cases US Text
"postal-code" Postal code, post code, ZIP code, CEDEX code (if CEDEX, append "CEDEX", and the arrondissement if relevant, to the locality field) Free-form text, no newlines 02139 Text
"cc-name" Full name as given on the payment instrument Free-form text, no newlines Tim Berners-Lee Text
"cc-given-name" Given name as given on the payment instrument (in some Western cultures, also known as the first name) Free-form text, no newlines Tim Text
"cc-additional-name" Additional names given on the payment instrument (in some Western cultures, also known as middle names, forenames other than the first name) Free-form text, no newlines Text
"cc-family-name" Family name given on the payment instrument (in some Western cultures, also known as the last name or surname) Free-form text, no newlines Berners-Lee Text
"cc-number" Code identifying the payment instrument (e.g. the credit card number, bank account number) ASCII digits 4114360123456785 Text
"cc-exp" Expiration date of the payment instrument Valid month string 2014-12 Month
"cc-exp-month" Month component of the expiration date of the payment instrument Valid integer in the range 1..12 12 Numeric
"cc-exp-year" Year component of the expiration date of the payment instrument Valid integer greater than zero 2014 Numeric
"cc-csc" Security code for the payment instrument (also known as the card security code (CSC), card validation code (CVC), card verification value (CVV), signature panel code (SPC), credit card ID (CCID), etc) ASCII digits 419 Text
"cc-type" Type of payment instrument Free-form text, no newlines Visa Text
"language" Preferred language Valid BCP 47 language tag [BCP47] en Text
"bday" Birthday Valid date string 1955-06-08 Date
"bday-day" Day component of birthday Valid integer in the range 1..31 8 Numeric
"bday-month" Month component of birthday Valid integer in the range 1..12 6 Numeric
"bday-year" Year component of birthday Valid integer greater than zero 1955 Numeric
"sex" Gender identity (e.g. Female, Fa'afafine) Free-form text, no newlines Male Text
"url" Home page or other Web page corresponding to the company, person, address, or contact information in the other fields associated with this field Valid URL http://www.w3.org/People/Berners-Lee/ URL
"photo" Photograph, icon, or other image corresponding to the company, person, address, or contact information in the other fields associated with this field Valid URL http://www.w3.org/Press/Stock/Berners-Lee/2001-europaeum-eighth.jpg URL
"tel" Full telephone number, including country code ASCII digits and U+0020 SPACE characters, prefixed by a "+" (U+002B) character +1 617 253 5702 Tel
"tel-country-code" Country code component of the telephone number ASCII digits prefixed by a "+" (U+002B) character +1 Text
"tel-national" Telephone number without the county code component, with a country-internal prefix applied if applicable ASCII digits and U+0020 SPACE characters 617 253 5702 Text
"tel-area-code" Area code component of the telephone number, with a country-internal prefix applied if applicable ASCII digits 617 Text
"tel-local" Telephone number without the country code and area code components ASCII digits 2535702 Text
"tel-local-prefix" First part of the component of the telephone number that follows the area code, when that component is split into two components ASCII digits 253 Text
"tel-local-suffix" Second part of the component of the telephone number that follows the area code, when that component is split into two components ASCII digits 5702 Text
"tel-extension" Telephone number internal extension code ASCII digits 1000 Text
"email" E-mail address Valid e-mail address timbl@w3.org E-mail
"impp" URL representing an instant messaging protocol endpoint (for example, "aim:goim?screenname=example" or "xmpp:fred@example.net") Valid URL irc://example.org/timbl,isuser URL

The groups correspond to controls as follows:

Text
input elements whose type attribute is in the Text state
input elements whose type attribute is in the Search state
textarea elements
select elements
Multiline
textarea elements
select elements
Password
input elements whose type attribute is in the Text state
input elements whose type attribute is in the Search state
input elements whose type attribute is in the Password state
textarea elements
select elements
URL
input elements whose type attribute is in the Text state
input elements whose type attribute is in the Search state
input elements whose type attribute is in the URL state
textarea elements
select elements
E-mail
input elements whose type attribute is in the Text state
input elements whose type attribute is in the Search state
input elements whose type attribute is in the E-mail state
textarea elements
select elements
Tel
input elements whose type attribute is in the Text state
input elements whose type attribute is in the Search state
input elements whose type attribute is in the Telephone state
textarea elements
select elements
Numeric
input elements whose type attribute is in the Text state
input elements whose type attribute is in the Search state
input elements whose type attribute is in the Number state
textarea elements
select elements
Month
input elements whose type attribute is in the Text state
input elements whose type attribute is in the Search state
input elements whose type attribute is in the Month state
textarea elements
select elements
Date
input elements whose type attribute is in the Text state
input elements whose type attribute is in the Search state
input elements whose type attribute is in the Date state
textarea elements
select elements

If the autocomplete attribute is omitted, the default value corresponding to the state of the element's form owner's autocomplete attribute is used instead (either "on" or "off"). If there is no form owner, then the value "on" is used.

4.10.19.8.2 Processing model

Each input, select, and textarea element has an autofill hint set, an autofill scope, an autofill field name, and an IDL-exposed autofill value.

The autofill field name specifies the specific kind of data expected in the field, e.g. "street-address" or "cc-exp".

The autofill hint set identifies what address or contact information type the user agent is to look at, e.g. "shipping fax" or "billing".

The autofill scope identifies the group of fields that are to be filled with the information from the same source, and consists of the autofill hint set with, if applicable, the "section-*" prefix, e.g. "billing", "section-parent shipping", or "section-child home shipping".

These values are defined as the result of running the following algorithm:

  1. If the element has no autocomplete attribute, then jump to the step labeled default.

  2. Let tokens be the result of splitting the attribute's value on spaces.

  3. If tokens is empty, then jump to the step labeled default.

  4. Let index be the index of the last token in tokens.

  5. If the indexth token in tokens is not an ASCII case-insensitive match for one of the tokens given in the first column of the following table, or if the number of tokens in tokens is greater than the maximum number given in the cell in the second column of that token's row, then jump to the step labeled default. Otherwise, let field be the string given in the cell of the first column of the matching row, and let category be the value of the cell in the third column of that same row.

    Token Maximum number of tokens Category
    "off" 1 Off
    "on" 1 Automatic
    "name" 3 Normal
    "honorific-prefix" 3 Normal
    "given-name" 3 Normal
    "additional-name" 3 Normal
    "family-name" 3 Normal
    "honorific-suffix" 3 Normal
    "nickname" 3 Normal
    "organization-title" 3 Normal
    "username" 3 Normal
    "new-password" 3 Normal
    "current-password" 3 Normal
    "organization" 3 Normal
    "street-address" 3 Normal
    "address-line1" 3 Normal
    "address-line2" 3 Normal
    "address-line3" 3 Normal
    "locality" 3 Normal
    "region" 3 Normal
    "country" 3 Normal
    "country-name" 3 Normal
    "postal-code" 3 Normal
    "cc-name" 3 Normal
    "cc-given-name" 3 Normal
    "cc-additional-name" 3 Normal
    "cc-family-name" 3 Normal
    "cc-number" 3 Normal
    "cc-exp" 3 Normal
    "cc-exp-month" 3 Normal
    "cc-exp-year" 3 Normal
    "cc-csc" 3 Normal
    "cc-type" 3 Normal
    "language" 3 Normal
    "bday" 3 Normal
    "bday-day" 3 Normal
    "bday-month" 3 Normal
    "bday-year" 3 Normal
    "sex" 3 Normal
    "url" 3 Normal
    "photo" 3 Normal
    "tel" 4 Contact
    "tel-country-code" 4 Contact
    "tel-national" 4 Contact
    "tel-area-code" 4 Contact
    "tel-local" 4 Contact
    "tel-local-prefix" 4 Contact
    "tel-local-suffix" 4 Contact
    "tel-extension" 4 Contact
    "email" 4 Contact
    "impp" 4 Contact
  6. If category is Off, let the element's autofill field name be the string "off", let its autofill hint set be empty, and let its IDL-exposed autofill value be the string "off". Then, abort these steps.

  7. If category is Automatic, let the element's autofill field name be the string "on", let its autofill hint set be empty, and let its IDL-exposed autofill value be the string "on". Then, abort these steps.

  8. Let scope tokens be an empty list.

  9. Let hint tokens be an empty set.

  10. Let IDL value have the same value as field.

  11. If the indexth token in tokens is the first entry, then skip to the step labeled done.

  12. Decrement index by one.

  13. If category is Contact and the indexth token in tokens is an ASCII case-insensitive match for one of the strings in the following list, then run the substeps that follow:

    The substeps are:

    1. Let contact be the matching string from the list above.

    2. Insert contact at the start of scope tokens.

    3. Add contact to hint tokens.

    4. Let IDL value be the concatenation of contact, a U+0020 SPACE character, and the previous value of IDL value (which at this point will always be field).

    5. If the indexth entry in tokens is the first entry, then skip to the step labeled done.

    6. Decrement index by one.

  14. If the indexth token in tokens is an ASCII case-insensitive match for one of the strings in the following list, then run the substeps that follow:

    The substeps are:

    1. Let mode be the matching string from the list above.

    2. Insert mode at the start of scope tokens.

    3. Add mode to hint tokens.

    4. Let IDL value be the concatenation of mode, a U+0020 SPACE character, and the previous value of IDL value (which at this point will either be field or the concatenation of contact, a space, and field).

    5. If the indexth entry in tokens is the first entry, then skip to the step labeled done.

    6. Decrement index by one.

  15. If the indexth entry in tokens is not the first entry, then jump to the step labeled default.

  16. If the first eight characters of the indexth token in tokens are not an ASCII case-insensitive match for the string "section-", then jump to the step labeled default.

  17. Let section be the indexth token in tokens, converted to ASCII lowercase.

  18. Insert section at the start of scope tokens.

  19. Let IDL value be the concatenation of section, a U+0020 SPACE character, and the previous value of IDL value.

  20. Done: Let the element's autofill hint set be hint tokens.

  21. Let the element's autofill scope be scope tokens.

  22. Let the element's autofill field name be field.

  23. Let the element's IDL-exposed autofill value be IDL value.

  24. Abort these steps.

  25. Default: Let the element's IDL-exposed autofill value be the empty string, and its autofill hint set and autofill scope be empty.

  26. Let form be the element's form owner, if any, or null otherwise.

  27. If form is not null and form's autocomplete attribute is in the off state, then let the element's autofill field name be "off".

    Otherwise, let the element's autofill field name be "on".


For the purposes of autofill, a control's data depends on the kind of control:

An input element with its type attribute in the E-mail state and with the multiple attribute specified
The element's values.
Any other input element
A textarea element
The element's value.
A select element with its multiple attribute specified
The option elements in the select element's list of options that have their selectedness set to true.
Any other select element
The option element in the select element's list of options that has its selectedness set to true.

When an element's autofill field name is "off", the user agent should not remember the control's data, and should not offer past values to the user.

In addition, when an element's autofill field name is "off", values are reset when traversing the history.

Banks frequently do not want UAs to prefill login information:

<p><label>Account: <input type="text" name="ac" autocomplete="off"></label></p>
<p><label>PIN: <input type="password" name="pin" autocomplete="off"></label></p>

When an element's autofill field name is not "off", the user agent may store the control's data, and may offer previously stored values to the user.

For example, suppose a user visits a page with this control:

<select name="country">
 <option>Afghanistan
 <option>Albania
 <option>Algeria
 <option>Andorra
 <option>Angola
 <option>Antigua and Barbuda
 <option>Argentina
 <option>Armenia
 <!-- ... -->
 <option>Yemen
 <option>Zambia
 <option>Zimbabwe
</select>

This might render as follows:

A drop-down control with a long alphabetical list of countries.

Suppose that on the first visit to this page, the user selects "Zambia". On the second visit, the user agent could duplicate the entry for Zambia at the top of the list, so that the interface instead looks like this:

The same drop-down control with the alphabetical list of countries, but with Zambia as an entry at the top.

When the autofill field name is "on", the user agent should attempt to use heuristics to determine the most appropriate values to offer the user, e.g. based on the element's name value, the position of the element in the document's DOM, what other fields exist in the form, and so forth.

When the autofill field name is one of the names of the autofill fields described above, the user agent should provide suggestions that match the meaning of the field name as given in the table earlier in this section. The autofill hint set should be used to select amongst multiple possible suggestions.

For example, if a user once entered one address into fields that used the "shipping" keyword, and another address into fields that used the "billing" keyword, then in subsequent forms only the first address would be suggested for form controls whose autofill hint set contains the keyword "shipping". Both addresses might be suggested, however, for address-related form controls whose autofill hint set does not contain either keyword.

When the user agent autofills form controls, elements with the same form owner and the same autofill scope must use data relating to the same person, address, payment instrument, and contact details. When a user agent autofills "country" and "country-name" fields with the same form owner and autofill scope, and the user agent has a value for the country" field(s), then the "country-name" field(s) must be filled using a human-readable name for the same country. When a user agent fills in multiple fields at once, all fields with the same autofill field name, form owner and autofill scope must be filled with the same value.

Suppose a user agent knows of two phone numbers, +1 555 123 1234 and +1 555 666 7777. It would not be conforming for the user agent to fill a field with autocomplete="shipping tel-local-prefix" with the value "123" and another field in the same form with autocomplete="shipping tel-local-suffix" with the value "7777". The only valid prefilled values given the aforementioned information would be "123" and "1234", or "666" and "7777", respectively.

Similarly, if a form for some reason contained both a "cc-exp" field and a "cc-exp-month" field, and the user agent prefilled the form, then the month component of the former would have to match the latter.

The "section-*" tokens in the autofill scope are opaque; user agents must not attempt to derive meaning from the precise values of these tokens.

For example, it would not be conforming if the user agent decided that it should offer the address it knows to be the user's daughter's address for "section-child" and the addresses it knows to be the user's spouses' addresses for "section-spouse".

The autocompletion mechanism must be implemented by the user agent acting as if the user had modified the control's data, and must be done at a time where the element is mutable (e.g. just after the element has been inserted into the document, or when the user agent stops parsing). User agents must only prefill controls using values that the user could have entered.

For example, if a select element only has option elements with values "Steve" and "Rebecca", "Jay", and "Bob", and has an autofill field name "given-name", but the user agent's only idea for what to prefill the field with is "Evan", then the user agent cannot prefill the field. It would not be conforming to somehow set the select element to the value "Evan", since the user could not have done so themselves.

A user agent prefilling a form control's value must not cause that control to suffer from a type mismatch, suffer from being too long, suffer from being too short, suffer from an underflow, suffer from an overflow, or suffer from a step mismatch. Except when autofilling for requestAutocomplete(), a user agent prefilling a form control's value must not cause that control to suffer from a pattern mismatch either. Where possible given the control's constraints, user agents must use the format given as canonical in the aforementioned table. Where it's not possible for the canonical format to be used, user agents should use heuristics to attempt to convert values so that they can be used.

For example, if the user agent knows that the user's middle name is "Ines", and attempts to prefill a form control that looks like this:

<input name=middle-initial maxlength=1 autocomplete="additional-name">

...then the user agent could convert "Ines" to "I" and prefill it that way.

A more elaborate example would be with month values. If the user agent knows that the user's birthday is the 27th of July 2012, then it might try to prefill all of the following controls with slightly different values, all driven from this information:

<input name=b type=month autocomplete="bday">
2012-07 The day is dropped since the Month state only accepts a month/year combination.
<select name=c autocomplete="bday">
 <option>Jan
 <option>Feb
 ...
 <option>Jul
 <option>Aug
 ...
</select>
July The user agent picks the month from the listed options, either by noticing there are twelve options and picking the 7th, or by recognising that one of the strings (three characters "Jul" followed by a newline and a space) is a close match for the name of the month (July) in one of the user agent's supported languages, or through some other similar mechanism.
<input name=a type=number min=1 max=12 autocomplete="bday-month">
7 User agent converts "July" to a month number in the range 1..12, like the field.
<input name=a type=number min=0 max=11 autocomplete="bday-month">
6 User agent converts "July" to a month number in the range 0..11, like the field.
<input name=a type=number min=1 max=11 autocomplete="bday-month">
User agent doesn't fill in the field, since it can't make a good guess as to what the form expects.

A user agent may allow the user to override an element's autofill field name, e.g. to change it from "off" to "on" to allow values to be remembered and prefilled despite the page author's objections, or to always "off", never remembering values. However, user agents should not allow users to trivially override the autofill field name from "off" to "on" or other values, as there are significant security implications for the user if all values are always remembered, regardless of the site's preferences.

The autocomplete IDL attribute, on getting, must return the element's IDL-exposed autofill value, and on setting, must reflect the content attribute of the same name.

4.10.19.8.3 User interface for bulk autofill

When the requestAutocomplete() method on a form element is invoked, the user agent must run the following steps:

  1. Let form be the element on which the method was invoked.

  2. If any of the following conditions are met, then queue a task to fail the autofill request on form with the reason "disabled", and abort these steps:

    • the algorithm is not allowed to show a popup

    • form's Document is not fully active

    • form's autocomplete attribute is in the off state

    • the user has disabled this feature for this form's Document's origin

    • the user agent does not support this form's fields (e.g. the form has different fields whose autofill scope use different "section-*" tokens)

    • the form was obtained via unencrypted channels and the user agent does not support autofill in such situations

    • another instance of this algorithm is already being run for form

    User agents are encouraged to log the precise cause in a developer console, to aid debugging.

  3. Let pending autofills be an initially empty list of submittable elements, each annotated with a string known as the original autocomplete value.

  4. For each element that matches the following criteria, add the element to pending autofills, with the original autocomplete value annotation being the value of the element's autocomplete attribute:

  5. Return, but continue running these steps asynchronously.

  6. Provide an interface for the user to efficiently fill in some or all of the fields listed in pending autofills. Await the user's input.

  7. Queue a task to run the following steps:

    1. If any of the following conditions are met, then fail the autofill request on form with the reason "disabled", and abort these steps:

      Again, user agents are encouraged to log the precise cause in a developer console, to aid debugging.

    2. If the user canceled the operation, fail the autofill request on form with the reason "cancel", and abort these steps.

    3. For each element in pending autofills, run the following steps:

      1. Let candidate be the element in question.

      2. Let old autocomplete value be the original autocomplete value annotation associated with candidate in pending autofills.

      3. If all of the following conditions are met, then autofill candidate:

    4. Statically validate the constraints of form. If the result was negative, then fail the autofill request on form with the reason "invalid", and abort these steps.

      Statically validating the constraints of a form involves firing invalid events to each control that does not satisfy its contraints.

    5. Fire a simple event that bubbles named autocomplete at form.

When the user agent is required to fail the autofill request on a form element target with a reason reason, the user agent must dispatch an event that uses the AutocompleteErrorEvent interface, with the event type autocompleteerror, which bubbles, is not cancelable, has no default action, has its reason attribute set to reason, and which is trusted, at target.

The task source for the tasks mentioned in this section is the DOM manipulation task source.

4.10.19.8.4 The AutocompleteErrorEvent interface
enum AutocompleteErrorReason { "" /* empty string */, "cancel", "disabled", "invalid" };

[Constructor(DOMString type, optional AutocompleteErrorEventInit eventInitDict)]
interface AutocompleteErrorEvent : Event {
  readonly attribute AutocompleteErrorReason reason;
};

dictionary AutocompleteErrorEventInit : EventInit {
  AutocompleteErrorReason reason;
};
event . reason

For the autocompleteerror event, returns the general reason for the failure of the requestAutocomplete() method, from the list below.

The defined reason codes are:

"" (the empty string)

Reason is unknown.

"cancel"

The user canceled the autofill interface.

"disabled"

The autofill interface is disabled for this form.

There are many reasons why this might be the case; the precise reason is not given, to protect the user's privacy. Amongst these reasons are such factors as:

"invalid"

The fields have been prefilled, but at least one of the controls in the form does not satisfy its constraints.

The reason attribute must return the value it was initialised to. When the object is created, this attribute must be initialised to the empty string. It represents the context information for the event.

4.10.20 APIs for the text field selections

The input and textarea elements define the following members in their DOM interfaces for handling their selection:

  void select();
           attribute unsigned long selectionStart;
           attribute unsigned long selectionEnd;
           attribute DOMString selectionDirection;
  void setRangeText(DOMString replacement);
  void setRangeText(DOMString replacement, unsigned long start, unsigned long end, optional SelectionMode selectionMode = "preserve");
  void setSelectionRange(unsigned long start, unsigned long end, optional DOMString direction = "preserve");

The setRangeText method uses the following enumeration:

enum SelectionMode {
  "select",
  "start",
  "end",
  "preserve" // default
};

These methods and attributes expose and control the selection of input and textarea text fields.

element . select()

Selects everything in the text field.

element . selectionStart [ = value ]

Returns the offset to the start of the selection.

Can be set, to change the start of the selection.

element . selectionEnd [ = value ]

Returns the offset to the end of the selection.

Can be set, to change the end of the selection.

element . selectionDirection [ = value ]

Returns the current direction of the selection.

Can be set, to change the direction of the selection.

The possible values are "forward", "backward", and "none".

element . setSelectionRange(start, end [, direction] )

Changes the selection to cover the given substring in the given direction. If the direction is omitted, it will be reset to be the platform default (none or forward).

element . setRangeText(replacement [, start, end [, selectionMode ] ] )

Replaces a range of text with the new text. If the start and end arguments are not provided, the range is assumed to be the selection.

The final argument determines how the selection should be set after the text has been replaced. The possible values are:

"select"
Selects the newly inserted text.
"start"
Moves the selection to just before the inserted text.
"end"
Moves the selection to just after the selected text.
"preserve"
Attempts to preserve the selection. This is the default.

For input elements, calling these methods while they don't apply, and getting or setting these attributes while they don't apply, must throw an InvalidStateError exception. Otherwise, they must act as described below.

For input elements, these methods and attributes must operate on the element's value. For textarea elements, these methods and attributes must operate on the element's raw value.

Where possible, user interface features for changing the text selection in input and textarea elements must be implemented in terms of the DOM API described in this section, so that, e.g., all the same events fire.

The selections of input and textarea elements have a direction, which is either forward, backward, or none. This direction is set when the user manipulates the selection. The exact meaning of the selection direction depends on the platform.

On Windows, the direction indicates the position of the caret relative to the selection: a forward selection has the caret at the end of the selection and a backward selection has the caret at the start of the selection. Windows has no none direction. On Mac, the direction indicates which end of the selection is affected when the user adjusts the size of the selection using the arrow keys with the Shift modifier: the forward direction means the end of the selection is modified, and the backwards direction means the start of the selection is modified. The none direction is the default on Mac, it indicates that no particular direction has yet been selected. The user sets the direction implicitly when first adjusting the selection, based on which directional arrow key was used.

The select() method must cause the contents of the text field to be fully selected, with the selection direction being none, if the platform support selections with the direction none, or otherwise forward. The user agent must then queue a task to fire a simple event that bubbles named select at the element, using the user interaction task source as the task source.

The selectionStart attribute must, on getting, return the offset (in logical order) to the character that immediately follows the start of the selection. If there is no selection, then it must return the offset (in logical order) to the character that immediately follows the text entry cursor.

On setting, it must act as if the setSelectionRange() method had been called, with the new value as the first argument; the current value of the selectionEnd attribute as the second argument, unless the current value of the selectionEnd is less than the new value, in which case the second argument must also be the new value; and the current value of the selectionDirection as the third argument.

The selectionEnd attribute must, on getting, return the offset (in logical order) to the character that immediately follows the end of the selection. If there is no selection, then it must return the offset (in logical order) to the character that immediately follows the text entry cursor.

On setting, it must act as if the setSelectionRange() method had been called, with the current value of the selectionStart attribute as the first argument, the new value as the second argument, and the current value of the selectionDirection as the third argument.

The selectionDirection attribute must, on getting, return the string corresponding to the current selection direction: if the direction is forward, "forward"; if the direction is backward, "backward"; and otherwise, "none".

On setting, it must act as if the setSelectionRange() method had been called, with the current value of the selectionStart attribute as the first argument, the current value of the selectionEnd attribute as the second argument, and the new value as the third argument.

The setSelectionRange(start, end, direction) method must set the selection of the text field to the sequence of characters starting with the character at the startth position (in logical order) and ending with the character at the (end-1)th position. Arguments greater than the length of the value of the text field must be treated as pointing at the end of the text field. If end is less than or equal to start then the start of the selection and the end of the selection must both be placed immediately before the character with offset end. In UAs where there is no concept of an empty selection, this must set the cursor to be just before the character with offset end. The direction of the selection must be set to backward if direction is a case-sensitive match for the string "backward", forward if direction is a case-sensitive match for the string "forward" or if the platform does not support selections with the direction none, and none otherwise (including if the argument is omitted). The user agent must then queue a task to fire a simple event that bubbles named select at the element, using the user interaction task source as the task source.

The setRangeText(replacement, start, end, selectMode) method must run the following steps:

  1. If the method has only one argument, then let start and end have the values of the selectionStart attribute and the selectionEnd attribute respectively.

    Otherwise, let start, end have the values of the second and third arguments respectively.

  2. If start is greater than end, then throw an IndexSizeError exception and abort these steps.

  3. If start is greater than the length of the value of the text field, then set it to the length of the value of the text field.

  4. If end is greater than the length of the value of the text field, then set it to the length of the value of the text field.

  5. Let selection start be the current value of the selectionStart attribute.

  6. Let selection end be the current value of the selectionEnd attribute.

  7. If start is less than end, delete the sequence of characters starting with the character at the startth position (in logical order) and ending with the character at the (end-1)th position.

  8. Insert the value of the first argument into the text of the value of the text field, immediately before the startth character.

  9. Let new length be the length of the value of the first argument.

  10. Let new end be the sum of start and new length.

  11. Run the appropriate set of substeps from the following list:

    If the fourth argument's value is "select"

    Let selection start be start.

    Let selection end be new end.

    If the fourth argument's value is "start"

    Let selection start and selection end be start.

    If the fourth argument's value is "end"

    Let selection start and selection end be new end.

    If the fourth argument's value is "preserve" (the default)
    1. Let old length be end minus start.

    2. Let delta be new length minus old length.

    3. If selection start is greater than end, then increment it by delta. (If delta is negative, i.e. the new text is shorter than the old text, then this will decrease the value of selection start.)

      Otherwise: if selection start is greater than start, then set it to start. (This snaps the start of the selection to the start of the new text if it was in the middle of the text that it replaced.)

    4. If selection end is greater than end, then increment it by delta in the same way.

      Otherwise: if selection end is greater than start, then set it to new end. (This snaps the end of the selection to the end of the new text if it was in the middle of the text that it replaced.)

  12. Set the selection of the text field to the sequence of characters starting with the character at the selection startth position (in logical order) and ending with the character at the (selection end-1)th position. In UAs where there is no concept of an empty selection, this must set the cursor to be just before the character with offset end. The direction of the selection must be set to forward if the platform does not support selections with the direction none, and none otherwise.

  13. Queue a task to fire a simple event that bubbles named select at the element, using the user interaction task source as the task source.

All elements to which this API applies have either a selection or a text entry cursor position at all times (even for elements that are not being rendered). User agents should follow platform conventions to determine their initial state.

Characters with no visible rendering, such as U+200D ZERO WIDTH JOINER, still count as characters. Thus, for instance, the selection can include just an invisible character, and the text insertion cursor can be placed to one side or another of such a character.

To obtain the currently selected text, the following JavaScript suffices:

var selectionText = control.value.substring(control.selectionStart, control.selectionEnd);

...where control is the input or textarea element.

To add some text at the start of a text control, while maintaining the text selection, the three attributes must be preserved:

var oldStart = control.selectionStart;
var oldEnd = control.selectionEnd;
var oldDirection = control.selectionDirection;
var prefix = "http://";
control.value = prefix + control.value;
control.setSelectionRange(oldStart + prefix.length, oldEnd + prefix.length, oldDirection);

...where control is the input or textarea element.

4.10.21 Constraints

4.10.21.1 Definitions

A submittable element is a candidate for constraint validation except when a condition has barred the element from constraint validation. (For example, an element is barred from constraint validation if it is an object element.)

An element can have a custom validity error message defined. Initially, an element must have its custom validity error message set to the empty string. When its value is not the empty string, the element is suffering from a custom error. It can be set using the setCustomValidity() method. The user agent should use the custom validity error message when alerting the user to the problem with the control.

An element can be constrained in various ways. The following is the list of validity states that a form control can be in, making the control invalid for the purposes of constraint validation. (The definitions below are non-normative; other parts of this specification define more precisely when each state applies or does not.)

Suffering from being missing

When a control has no value but has a required attribute (input required, textarea required); or, in the case of an element in a radio button group, any of the other elements in the group has a required attribute; or, for select elements, none of the option elements have their selectedness set (select required).

Suffering from a type mismatch

When a control that allows arbitrary user input has a value that is not in the correct syntax (E-mail, URL).

Suffering from a pattern mismatch

When a control has a value that doesn't satisfy the pattern attribute.

Suffering from being too long

When a control has a value that is too long for the form control maxlength attribute (input maxlength, textarea maxlength).

Suffering from being too short

When a control has a value that is too short for the form control minlength attribute (input minlength, textarea minlength).

Suffering from an underflow

When a control has a value that is too low for the min attribute.

Suffering from an overflow

When a control has a value that is too high for the max attribute.

Suffering from a step mismatch

When a control has a value that doesn't fit the rules given by the step attribute.

Suffering from bad input

When a control has incomplete input and the user agent does not think the user ought to be able to submit the form in its current state.

Suffering from a custom error

When a control's custom validity error message (as set by the element's setCustomValidity() method) is not the empty string.

An element can still suffer from these states even when the element is disabled; thus these states can be represented in the DOM even if validating the form during submission wouldn't indicate a problem to the user.

An element satisfies its constraints if it is not suffering from any of the above validity states.

4.10.21.2 Constraint validation

When the user agent is required to statically validate the constraints of form element form, it must run the following steps, which return either a positive result (all the controls in the form are valid) or a negative result (there are invalid controls) along with a (possibly empty) list of elements that are invalid and for which no script has claimed responsibility:

  1. Let controls be a list of all the submittable elements whose form owner is form, in tree order.

  2. Let invalid controls be an initially empty list of elements.

  3. For each element field in controls, in tree order, run the following substeps:

    1. If field is not a candidate for constraint validation, then move on to the next element.

    2. Otherwise, if field satisfies its constraints, then move on to the next element.

    3. Otherwise, add field to invalid controls.

  4. If invalid controls is empty, then return a positive result and abort these steps.

  5. Let unhandled invalid controls be an initially empty list of elements.

  6. For each element field in invalid controls, if any, in tree order, run the following substeps:

    1. Fire a simple event named invalid that is cancelable at field.

    2. If the event was not canceled, then add field to unhandled invalid controls.

  7. Return a negative result with the list of elements in the unhandled invalid controls list.

If a user agent is to interactively validate the constraints of form element form, then the user agent must run the following steps:

  1. Statically validate the constraints of form, and let unhandled invalid controls be the list of elements returned if the result was negative.

  2. If the result was positive, then return that result and abort these steps.

  3. Report the problems with the constraints of at least one of the elements given in unhandled invalid controls to the user. User agents may focus one of those elements in the process, by running the focusing steps for that element, and may change the scrolling position of the document, or perform some other action that brings the element to the user's attention. User agents may report more than one constraint violation. User agents may coalesce related constraint violation reports if appropriate (e.g. if multiple radio buttons in a group are marked as required, only one error need be reported). If one of the controls is not being rendered (e.g. it has the hidden attribute set) then user agents may report a script error.

  4. Return a negative result.

4.10.21.3 The constraint validation API
element . willValidate

Returns true if the element will be validated when the form is submitted; false otherwise.

element . setCustomValidity(message)

Sets a custom error, so that the element would fail to validate. The given message is the message to be shown to the user when reporting the problem to the user.

If the argument is the empty string, clears the custom error.

element . validity . valueMissing

Returns true if the element has no value but is a required field; false otherwise.

element . validity . typeMismatch

Returns true if the element's value is not in the correct syntax; false otherwise.

element . validity . patternMismatch

Returns true if the element's value doesn't match the provided pattern; false otherwise.

element . validity . tooLong

Returns true if the element's value is longer than the provided maximum length; false otherwise.

element . validity . tooShort

Returns true if the element's value, if it is not the empty string, is shorter than the provided minimum length; false otherwise.

element . validity . rangeUnderflow

Returns true if the element's value is lower than the provided minimum; false otherwise.

element . validity . rangeOverflow

Returns true if the element's value is higher than the provided maximum; false otherwise.

element . validity . stepMismatch

Returns true if the element's value doesn't fit the rules given by the step attribute; false otherwise.

element . validity . badInput

Returns true if the user has provided input in the user interface that the user agent is unable to convert to a value; false otherwise.

element . validity . customError

Returns true if the element has a custom error; false otherwise.

element . validity . valid

Returns true if the element's value has no validity problems; false otherwise.

valid = element . checkValidity()

Returns true if the element's value has no validity problems; false otherwise. Fires an invalid event at the element in the latter case.

valid = element . reportValidity()

Returns true if the element's value has no validity problems; otherwise, returns false, fires an invalid event at the element, and (if the event isn't canceled) reports the problem to the user.

element . validationMessage

Returns the error message that would be shown to the user if the element was to be checked for validity.

The willValidate attribute must return true if an element is a candidate for constraint validation, and false otherwise (i.e. false if any conditions are barring it from constraint validation).

The setCustomValidity(message), when invoked, must set the custom validity error message to the value of the given message argument.

In the following example, a script checks the value of a form control each time it is edited, and whenever it is not a valid value, uses the setCustomValidity() method to set an appropriate message.

<label>Feeling: <input name=f type="text" oninput="check(this)"></label>
<script>
 function check(input) {
   if (input.value == "good" ||
       input.value == "fine" ||
       input.value == "tired") {
     input.setCustomValidity('"' + input.value + '" is not a feeling.');
   } else {
     // input is fine -- reset the error message
     input.setCustomValidity('');
   }
 }
</script>

The validity attribute must return a ValidityState object that represents the validity states of the element. This object is live, and the same object must be returned each time the element's validity attribute is retrieved.

interface ValidityState {
  readonly attribute boolean valueMissing;
  readonly attribute boolean typeMismatch;
  readonly attribute boolean patternMismatch;
  readonly attribute boolean tooLong;
  readonly attribute boolean tooShort;
  readonly attribute boolean rangeUnderflow;
  readonly attribute boolean rangeOverflow;
  readonly attribute boolean stepMismatch;
  readonly attribute boolean badInput;
  readonly attribute boolean customError;
  readonly attribute boolean valid;
};

A ValidityState object has the following attributes. On getting, they must return true if the corresponding condition given in the following list is true, and false otherwise.

valueMissing

The control is suffering from being missing.

typeMismatch

The control is suffering from a type mismatch.

patternMismatch

The control is suffering from a pattern mismatch.

tooLong

The control is suffering from being too long.

tooShort

The control is suffering from being too short.

rangeUnderflow

The control is suffering from an underflow.

rangeOverflow

The control is suffering from an overflow.

stepMismatch

The control is suffering from a step mismatch.

badInput

The control is suffering from bad input.

customError

The control is suffering from a custom error.

valid

None of the other conditions are true.

When the checkValidity() method is invoked, if the element is a candidate for constraint validation and does not satisfy its constraints, the user agent must fire a simple event named invalid that is cancelable (but in this case has no default action) at the element and return false. Otherwise, it must only return true without doing anything else.

When the reportValidity() method is invoked, if the element is a candidate for constraint validation and does not satisfy its constraints, the user agent must: fire a simple event named invalid that is cancelable at the element, and if that event is not canceled, report the problems with the constraints of that element to the user; then, return false. Otherwise, it must only return true without doing anything else. When reporting the problem with the constraints to the user, the user agent may run the focusing steps for that element, and may change the scrolling position of the document, or perform some other action that brings the element to the user's attention. User agents may report more than one constraint violation, if the element suffers from multiple problems at once. If the element is not being rendered, then the user agent may, instead of notifying the user, report a script error.

The validationMessage attribute must return the empty string if the element is not a candidate for constraint validation or if it is one but it satisfies its constraints; otherwise, it must return a suitably localised message that the user agent would show the user if this were the only form control with a validity constraint problem. If the user agent would not actually show a textual message in such a situation (e.g. it would show a graphical cue instead), then the attribute must return a suitably localised message that expresses (one or more of) the validity constraint(s) that the control does not satisfy. If the element is a candidate for constraint validation and is suffering from a custom error, then the custom validity error message should be present in the return value.

4.10.21.4 Security

Servers should not rely on client-side validation. Client-side validation can be intentionally bypassed by hostile users, and unintentionally bypassed by users of older user agents or automated tools that do not implement these features. The constraint validation features are only intended to improve the user experience, not to provide any kind of security mechanism.

4.10.22 Form submission

4.10.22.1 Introduction

This section is non-normative.

When a form is submitted, the data in the form is converted into the structure specified by the enctype, and then sent to the destination specified by the action using the given method.

For example, take the following form:

<form action="/find.cgi" method=get>
 <input type=text name=t>
 <input type=search name=q>
 <input type=submit>
</form>

If the user types in "cats" in the first field and "fur" in the second, and then hits the submit button, then the user agent will load /find.cgi?t=cats&q=fur.

On the other hand, consider this form:

<form action="/find.cgi" method=post enctype="multipart/form-data">
 <input type=text name=t>
 <input type=search name=q>
 <input type=submit>
</form>

Given the same user input, the result on submission is quite different: the user agent instead does an HTTP POST to the given URL, with as the entity body something like the following text:

------kYFrd4jNJEgCervE
Content-Disposition: form-data; name="t"

cats
------kYFrd4jNJEgCervE
Content-Disposition: form-data; name="q"

fur
------kYFrd4jNJEgCervE--
4.10.22.2 Implicit submission

A form element's default button is the first submit button in tree order whose form owner is that form element.

If the user agent supports letting the user submit a form implicitly (for example, on some platforms hitting the "enter" key while a text field is focused implicitly submits the form), then doing so for a form whose default button has a defined activation behavior must cause the user agent to run synthetic click activation steps on that default button.

Consequently, if the default button is disabled, the form is not submitted when such an implicit submission mechanism is used. (A button has no activation behavior when disabled.)

There are pages on the Web that are only usable if there is a way to implicitly submit forms, so user agents are strongly encouraged to support this.

If the form has no submit button, then the implicit submission mechanism must do nothing if the form has more than one field that blocks implicit submission, and must submit the form element from the form element itself otherwise.

For the purpose of the previous paragraph, an element is a field that blocks implicit submission of a form element if it is an input element whose form owner is that form element and whose type attribute is in one of the following states: Text, Search, URL, Telephone, E-mail, Password, Date and Time, Date, Month, Week, Time, Number

4.10.22.3 Form submission algorithm

When a form element form is submitted from an element submitter (typically a button), optionally with a submitted from submit() method flag set, the user agent must run the following steps:

  1. Let form document be the form's Document.

  2. If form document has no associated browsing context or its active sandboxing flag set has its sandboxed forms browsing context flag set, then abort these steps without doing anything.

  3. Let form browsing context be the browsing context of form document.

  4. If the submitted from submit() method flag is not set, and the submitter element's no-validate state is false, then interactively validate the constraints of form and examine the result: if the result is negative (the constraint validation concluded that there were invalid fields and probably informed the user of this) then fire a simple event named invalid at the form element and then abort these steps.

  5. If the submitted from submit() method flag is not set, then fire a simple event that bubbles and is cancelable named submit, at form. If the event's default action is prevented (i.e. if the event is canceled) then abort these steps. Otherwise, continue (effectively the default action is to perform the submission).

  6. Let form data set be the result of constructing the form data set for form in the context of submitter.

  7. Let action be the submitter element's action.

  8. If action is the empty string, let action be the document's address of the form document.

  9. Resolve the URL action, relative to the submitter element. If this fails, abort these steps.

  10. Let action be the resulting absolute URL.

  11. Let action components be the resulting parsed URL.

  12. Let scheme be the scheme of the resulting parsed URL.

  13. Let enctype be the submitter element's enctype.

  14. Let method be the submitter element's method.

  15. Let target be the submitter element's target.

  16. If the user indicated a specific browsing context to use when submitting the form, then let target browsing context be that browsing context. Otherwise, apply the rules for choosing a browsing context given a browsing context name using target as the name and form browsing context as the context in which the algorithm is executed, and let target browsing context be the resulting browsing context.

  17. If target browsing context was created in the previous step, or, alternatively, if the form document has not yet completely loaded and the submitted from submit() method flag is set, then let replace be true. Otherwise, let it be false.

  18. If the value of method is dialog then jump to the submit dialog steps.

    Otherwise, select the appropriate row in the table below based on the value of scheme as given by the first cell of each row. Then, select the appropriate cell on that row based on the value of method as given in the first cell of each column. Then, jump to the steps named in that cell and defined below the table.

    GET POST
    http Mutate action URL Submit as entity body
    https Mutate action URL Submit as entity body
    ftp Get action URL Get action URL
    javascript Get action URL Get action URL
    data Get action URL Post to data:
    mailto Mail with headers Mail as body

    If scheme is not one of those listed in this table, then the behavior is not defined by this specification. User agents should, in the absence of another specification defining this, act in a manner analogous to that defined in this specification for similar schemes.

    Each form element has a planned navigation, which is either null or a task; when the form is first created, its planned navigation must be set to null. In the behaviours described below, when the user agent is required to plan to navigate to a particular resource destination, it must run the following steps:

    1. If the form has a non-null planned navigation, remove it from its task queue.

    2. Let the form's planned navigation be a new task that consists of running the following steps:

      1. Let the form's planned navigation be null.

      2. Navigate target browsing context to the particular resource destination. If replace is true, then target browsing context must be navigated with replacement enabled.

      For the purposes of this task, target browsing context and replace are the variables that were set up when the overall form submission algorithm was run, with their values as they stood when this planned navigation was queued.

    3. Queue the task that is the form's new planned navigation.

      The task source for this task is the DOM manipulation task source.

    The behaviors are as follows:

    Mutate action URL

    Let query be the result of encoding the form data set using the application/x-www-form-urlencoded encoding algorithm, interpreted as a US-ASCII string.

    Set parsed action's query component to query.

    Let destination be a new URL formed by applying the URL serializer algorithm to parsed action.

    Plan to navigate to destination.

    Submit as entity body

    Let entity body be the result of encoding the form data set using the appropriate form encoding algorithm.

    Let MIME type be determined as follows:

    If enctype is application/x-www-form-urlencoded
    Let MIME type be "application/x-www-form-urlencoded".
    If enctype is multipart/form-data
    Let MIME type be the concatenation of the string "multipart/form-data;", a U+0020 SPACE character, the string "boundary=", and the multipart/form-data boundary string generated by the multipart/form-data encoding algorithm.
    If enctype is text/plain
    Let MIME type be "text/plain".

    Otherwise, plan to navigate to action using the HTTP method given by method and with entity body as the entity body, of type MIME type.

    Get action URL

    Plan to navigate to action.

    The form data set is discarded.

    Post to data:

    Let data be the result of encoding the form data set using the appropriate form encoding algorithm.

    If action contains the string "%%%%" (four U+0025 PERCENT SIGN characters), then percent encode all bytes in data that, if interpreted as US-ASCII, are not characters in the URL default encode set, and then, treating the result as a US-ASCII string, UTF-8 percent encode all the U+0025 PERCENT SIGN characters in the resulting string and replace the first occurrence of "%%%%" in action with the resulting doubly-escaped string. [URL]

    Otherwise, if action contains the string "%%" (two U+0025 PERCENT SIGN characters in a row, but not four), then UTF-8 percent encode all characters in data that, if interpreted as US-ASCII, are not characters in the URL default encode set, and then, treating the result as a US-ASCII string, replace the first occurrence of "%%" in action with the resulting escaped string. [URL]

    Plan to navigate to the potentially modified action (which will be a data: URL).

    Mail with headers

    Let headers be the resulting encoding the form data set using the application/x-www-form-urlencoded encoding algorithm, interpreted as a US-ASCII string.

    Replace occurrences of "+" (U+002B) characters in headers with the string "%20".

    Let destination consist of all the characters from the first character in action to the character immediately before the first "?" (U+003F) character, if any, or the end of the string if there are none.

    Append a single "?" (U+003F) character to destination.

    Append headers to destination.

    Plan to navigate to destination.

    Mail as body

    Let body be the resulting of encoding the form data set using the appropriate form encoding algorithm and then percent encoding all the bytes in the resulting byte string that, when interpreted as US-ASCII, are not characters in the URL default encode set. [URL]

    Let destination have the same value as action.

    If destination does not contain a "?" (U+003F) character, append a single "?" (U+003F) character to destination. Otherwise, append a single U+0026 AMPERSAND character (&).

    Append the string "body=" to destination.

    Append body, interpreted as a US-ASCII string, to destination.

    Plan to navigate to destination.

    Submit dialog

    Let subject be the nearest ancestor dialog element of form, if any.

    If there isn't one, or if it does not have an open attribute, do nothing. Otherwise, proceed as follows:

    If submitter is an input element whose type attribute is in the Image Button state, then let result be the string formed by concatenating the selected coordinate's x-component, expressed as a base-ten number using ASCII digits, a "," (U+002C) character, and the selected coordinate's y-component, expressed in the same way as the x-component.

    Otherwise, if submitter has a value, then let result be that value.

    Otherwise, there is no result.

    Then, close the dialog subject. If there is a result, let that be the return value.

    The appropriate form encoding algorithm is determined as follows:

    If enctype is application/x-www-form-urlencoded
    Use the application/x-www-form-urlencoded encoding algorithm.
    If enctype is multipart/form-data
    Use the multipart/form-data encoding algorithm.
    If enctype is text/plain
    Use the text/plain encoding algorithm.
4.10.22.4 Constructing the form data set

The algorithm to construct the form data set for a form form optionally in the context of a submitter submitter is as follows. If not specified otherwise, submitter is null.

  1. Let controls be a list of all the submittable elements whose form owner is form, in tree order.

  2. Let the form data set be a list of name-value-type tuples, initially empty.

  3. Loop: For each element field in controls, in tree order, run the following substeps:

    1. If any of the following conditions are met, then skip these substeps for this element:

      • The field element has a datalist element ancestor.
      • The field element is disabled.
      • The field element is a button but it is not submitter.
      • The field element is an input element whose type attribute is in the Checkbox state and whose checkedness is false.
      • The field element is an input element whose type attribute is in the Radio Button state and whose checkedness is false.
      • The field element is not an input element whose type attribute is in the Image Button state, and either the field element does not have a name attribute specified, or its name attribute's value is the empty string.
      • The field element is an object element that is not using a plugin.

      Otherwise, process field as follows:

    2. Let type be the value of the type IDL attribute of field.

    3. If the field element is an input element whose type attribute is in the Image Button state, then run these further nested substeps:

      1. If the field element has a name attribute specified and its value is not the empty string, let name be that value followed by a single "." (U+002E) character. Otherwise, let name be the empty string.

      2. Let namex be the string consisting of the concatenation of name and a single U+0078 LATIN SMALL LETTER X character (x).

      3. Let namey be the string consisting of the concatenation of name and a single U+0079 LATIN SMALL LETTER Y character (y).

      4. The field element is submitter, and before this algorithm was invoked the user indicated a coordinate. Let x be the x-component of the coordinate selected by the user, and let y be the y-component of the coordinate selected by the user.

      5. Append an entry to the form data set with the name namex, the value x, and the type type.

      6. Append an entry to the form data set with the name namey and the value y, and the type type.

      7. Skip the remaining substeps for this element: if there are any more elements in controls, return to the top of the loop step, otherwise, jump to the end step below.

    4. Let name be the value of the field element's name attribute.

    5. If the field element is a select element, then for each option element in the select element's list of options whose selectedness is true and that is not disabled, append an entry to the form data set with the name as the name, the value of the option element as the value, and type as the type.

    6. Otherwise, if the field element is an input element whose type attribute is in the Checkbox state or the Radio Button state, then run these further nested substeps:

      1. If the field element has a value attribute specified, then let value be the value of that attribute; otherwise, let value be the string "on".

      2. Append an entry to the form data set with name as the name, value as the value, and type as the type.

    7. Otherwise, if the field element is an input element whose type attribute is in the File Upload state, then for each file selected in the input element, append an entry to the form data set with the name as the name, the file (consisting of the name, the type, and the body) as the value, and type as the type. If there are no selected files, then append an entry to the form data set with the name as the name, the empty string as the value, and application/octet-stream as the type.

    8. Otherwise, if the field element is an object element: try to obtain a form submission value from the plugin, and if that is successful, append an entry to the form data set with name as the name, the returned form submission value as the value, and the string "object" as the type.

    9. Otherwise, append an entry to the form data set with name as the name, the value of the field element as the value, and type as the type.

    10. If the element has a dirname attribute, and that attribute's value is not the empty string, then run these substeps:

      1. Let dirname be the value of the element's dirname attribute.

      2. Let dir be the string "ltr" if the directionality of the element is 'ltr', and "rtl" otherwise (i.e. when the directionality of the element is 'rtl').

      3. Append an entry to the form data set with dirname as the name, dir as the value, and the string "direction" as the type.

      An element can only have a dirname attribute if it is a textarea element or an input element whose type attribute is in either the Text state or the Search state.

  4. End: For the name of each entry in the form data set, and for the value of each entry in the form data set whose type is not "file" or "textarea", replace every occurrence of a "CR" (U+000D) character not followed by a "LF" (U+000A) character, and every occurrence of a "LF" (U+000A) character not preceded by a "CR" (U+000D) character, by a two-character string consisting of a U+000D CARRIAGE RETURN "CRLF" (U+000A) character pair.

    In the case of the value of textarea elements, this newline normalization is already performed during the conversion of the control's raw value into the control's value (which also performs any necessary line wrapping). In the case of input elements type attributes in the File Upload state, the value is not normalized.

  5. Return the form data set.

4.10.22.5 Selecting a form submission encoding

If the user agent is to pick an encoding for a form, optionally with an allow non-ASCII-compatible encodings flag set, it must run the following substeps:

  1. Let input be the value of the form element's accept-charset attribute.

  2. Let candidate encoding labels be the result of splitting input on spaces.

  3. Let candidate encodings be an empty list of character encodings.

  4. For each token in candidate encoding labels in turn (in the order in which they were found in input), get an encoding for the token and, if this does not result in failure, append the encoding to candidate encodings.

  5. If the allow non-ASCII-compatible encodings flag is not set, remove any encodings that are not ASCII-compatible character encodings from candidate encodings.

  6. If candidate encodings is empty, return UTF-8 and abort these steps.

  7. Each character encoding in candidate encodings can represent a finite number of characters. (For example, UTF-8 can represent all 1.1 million or so Unicode code points, while Windows-1252 can only represent 256.)

    For each encoding in candidate encodings, determine how many of the characters in the names and values of the entries in the form data set the encoding can represent (without ignoring duplicates). Let max be the highest such count. (For UTF-8, max would equal the number of characters in the names and values of the entries in the form data set.)

    Return the first encoding in candidate encodings that can encode max characters in the names and values of the entries in the form data set.

4.10.22.6 URL-encoded form data

This form data set encoding is in many ways an aberrant monstrosity, the result of many years of implementation accidents and compromises leading to a set of requirements necessary for interoperability, but in no way representing good design practices. In particular, readers are cautioned to pay close attention to the twisted details involving repeated (and in some cases nested) conversions between character encodings and byte sequences.

The application/x-www-form-urlencoded encoding algorithm is as follows:

  1. Let result be the empty string.

  2. If the form element has an accept-charset attribute, let the selected character encoding be the result of picking an encoding for the form.

    Otherwise, if the form element has no accept-charset attribute, but the document's character encoding is an ASCII-compatible character encoding, then that is the selected character encoding.

    Otherwise, let the selected character encoding be UTF-8.

  3. Let charset be the name of the selected character encoding.

  4. For each entry in the form data set, perform these substeps:

    1. If the entry's name is "_charset_" and its type is "hidden", replace its value with charset.

    2. If the entry's type is "file", replace its value with the file's name only.

    3. For each character in the entry's name and value that cannot be expressed using the selected character encoding, replace the character by a string consisting of a U+0026 AMPERSAND character (&), a "#" (U+0023) character, one or more ASCII digits representing the Unicode code point of the character in base ten, and finally a ";" (U+003B) character.

    4. Encode the entry's name and value using the encoder for the selected character encoding. The entry's name and value are now byte strings.

    5. For each byte in the entry's name and value, apply the appropriate subsubsteps from the following list:

      If the byte is 0x20 (U+0020 SPACE if interpreted as ASCII)
      Replace the byte with a single 0x2B byte ("+" (U+002B) character if interpreted as ASCII).
      If the byte is in the range 0x2A, 0x2D, 0x2E, 0x30 to 0x39, 0x41 to 0x5A, 0x5F, 0x61 to 0x7A

      Leave the byte as is.

      Otherwise
      1. Let s be a string consisting of a U+0025 PERCENT SIGN character (%) followed by uppercase ASCII hex digits representing the hexadecimal value of the byte in question (zero-padded if necessary).

      2. Encode the string s as US-ASCII, so that it is now a byte string.

      3. Replace the byte in question in the name or value being processed by the bytes in s, preserving their relative order.

    6. Interpret the entry's name and value as Unicode strings encoded in US-ASCII. (All of the bytes in the string will be in the range 0x00 to 0x7F; the high bit will be zero throughout.) The entry's name and value are now Unicode strings again.

    7. If the entry's name is "isindex", its type is "text", and this is the first entry in the form data set, then append the value to result and skip the rest of the substeps for this entry, moving on to the next entry, if any, or the next step in the overall algorithm otherwise.

    8. If this is not the first entry, append a single U+0026 AMPERSAND character (&) to result.

    9. Append the entry's name to result.

    10. Append a single "=" (U+003D) character to result.

    11. Append the entry's value to result.

  5. Encode result as US-ASCII and return the resulting byte stream.

To decode application/x-www-form-urlencoded payloads, the following algorithm should be used. This algorithm uses as inputs the payload itself, payload, consisting of a Unicode string using only characters in the range U+0000 to U+007F; a default character encoding encoding; and optionally an isindex flag indicating that the payload is to be processed as if it had been generated for a form containing an isindex control. The output of this algorithm is a sorted list of name-value pairs. If the isindex flag is set and the first control really was an isindex control, then the first name-value pair will have as its name the empty string.

Which default character encoding to use can only be determined on a case-by-case basis, but generally the best character encoding to use as a default is the one that was used to encode the page on which the form used to create the payload was itself found. In the absence of a better default, UTF-8 is suggested.

The isindex flag is for legacy use only. Forms in conforming HTML documents will not generate payloads that need to be decoded with this flag set.

  1. Let strings be the result of strictly splitting the string payload on U+0026 AMPERSAND characters (&).

  2. If the isindex flag is set and the first string in strings does not contain a "=" (U+003D) character, insert a "=" (U+003D) character at the start of the first string in strings.

  3. Let pairs be an empty list of name-value pairs.

  4. For each string string in strings, run these substeps:

    1. If string contains a "=" (U+003D) character, then let name be the substring of string from the start of string up to but excluding its first "=" (U+003D) character, and let value be the substring from the first character, if any, after the first "=" (U+003D) character up to the end of string. If the first "=" (U+003D) character is the first character, then name will be the empty string. If it is the last character, then value will be the empty string.

      Otherwise, string contains no "=" (U+003D) characters. Let name have the value of string and let value be the empty string.

    2. Replace any "+" (U+002B) characters in name and value with U+0020 SPACE characters.

    3. Replace any escape in name and value with the character represented by the escape. This replacement must not be recursive.

      An escape is a "%" (U+0025) character followed by two ASCII hex digits.

      The character represented by an escape is the Unicode character whose code point is equal to the value of the two characters after the "%" (U+0025) character, interpreted as a hexadecimal number (in the range 0..255).

      So for instance the string "A%2BC" would become "A+C". Similarly, the string "100%25AA%21" becomes the string "100%AA!".

    4. Convert the name and value strings to their byte representation in ISO-8859-1 (i.e. convert the Unicode string to a byte string, mapping code points to byte values directly).

    5. Add a pair consisting of name and value to pairs.

  5. If any of the name-value pairs in pairs have a name component consisting of the string "_charset_" encoded in US-ASCII, and the value component of the first such pair, when decoded as US-ASCII, is the name of a supported character encoding, then let encoding be that character encoding (replacing the default passed to the algorithm).

  6. Convert the name and value components of each name-value pair in pairs to Unicode by interpreting the bytes according to the encoding encoding.

  7. Return pairs.

Parameters on the application/x-www-form-urlencoded MIME type are ignored. In particular, this MIME type does not support the charset parameter.

4.10.22.7 Multipart form data

The multipart/form-data encoding algorithm is as follows:

  1. Let result be the empty string.

  2. If the algorithm was invoked with an explicit character encoding, let the selected character encoding be that encoding. (This algorithm is used by other specifications, which provide an explicit character encoding to avoid the dependency on the form element described in the next paragraph.)

    Otherwise, if the form element has an accept-charset attribute, let the selected character encoding be the result of picking an encoding for the form.

    Otherwise, if the form element has no accept-charset attribute, but the document's character encoding is an ASCII-compatible character encoding, then that is the selected character encoding.

    Otherwise, let the selected character encoding be UTF-8.

  3. Let charset be the name of the selected character encoding.

  4. For each entry in the form data set, perform these substeps:

    1. If the entry's name is "_charset_" and its type is "hidden", replace its value with charset.

    2. For each character in the entry's name and value that cannot be expressed using the selected character encoding, replace the character by a string consisting of a U+0026 AMPERSAND character (&), a "#" (U+0023) character, one or more ASCII digits representing the Unicode code point of the character in base ten, and finally a ";" (U+003B) character.

  5. Encode the (now mutated) form data set using the rules described by RFC 2388, Returning Values from Forms: multipart/form-data, and return the resulting byte stream. [RFC2388]

    Each entry in the form data set is a field, the name of the entry is the field name and the value of the entry is the field value.

    The order of parts must be the same as the order of fields in the form data set. Multiple entries with the same name must be treated as distinct fields.

    In particular, this means that multiple files submitted as part of a single <input type=file multiple> element will result in each file having its own field; the "sets of files" feature ("multipart/mixed") of RFC 2388 is not used.

    The parts of the generated multipart/form-data resource that correspond to non-file fields must not have a Content-Type header specified. Their names and values must be encoded using the character encoding selected above (field names in particular do not get converted to a 7-bit safe encoding as suggested in RFC 2388).

    File names included in the generated multipart/form-data resource (as part of file fields) must use the character encoding selected above, though the precise name may be approximated if necessary (e.g. newlines could be removed from file names, quotes could be changed to "%22", and characters not expressible in the selected character encoding could be replaced by other characters). User agents must not use the RFC 2231 encoding suggested by RFC 2388.

    The boundary used by the user agent in generating the return value of this algorithm is the multipart/form-data boundary string. (This value is used to generate the MIME type of the form submission payload generated by this algorithm.)

For details on how to interpret multipart/form-data payloads, see RFC 2388. [RFC2388]

4.10.22.8 Plain text form data

The text/plain encoding algorithm is as follows:

  1. Let result be the empty string.

  2. If the form element has an accept-charset attribute, let the selected character encoding be the result of picking an encoding for the form, with the allow non-ASCII-compatible encodings flag unset.

    Otherwise, if the form element has no accept-charset attribute, then that is the selected character encoding.

  3. Let charset be the name of the selected character encoding.

  4. If the entry's name is "_charset_" and its type is "hidden", replace its value with charset.

  5. If the entry's type is "file", replace its value with the file's name only.

  6. For each entry in the form data set, perform these substeps:

    1. Append the entry's name to result.

    2. Append a single "=" (U+003D) character to result.

    3. Append the entry's value to result.

    4. Append a "CR" (U+000D) "LF" (U+000A) character pair to result.

  7. Encode result using the encoder for the selected character encoding and return the resulting byte stream.

Payloads using the text/plain format are intended to be human readable. They are not reliably interpretable by computer, as the format is ambiguous (for example, there is no way to distinguish a literal newline in a value from the newline at the end of the value).

4.10.23 Resetting a form

When a form element form is reset, the user agent must fire a simple event named reset, that bubbles and is cancelable, at form, and then, if that event is not canceled, must invoke the reset algorithm of each resettable element whose form owner is form.

Each resettable element defines its own reset algorithm. Changes made to form controls as part of these algorithms do not count as changes caused by the user (and thus, e.g., do not cause input events to fire).

4.11 Interactive elements

4.11.1 The details element

Categories:
Flow content.
Sectioning root.
Interactive content.
Palpable content.
Contexts in which this element can be used:
Where flow content is expected.
Content model:
One summary element followed by flow content.
Content attributes:
Global attributes
open - Whether the details are visible
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
Any role that supports aria-expanded.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLDetailsElement : HTMLElement {
           attribute boolean open;
};

The details element represents a disclosure widget from which the user can obtain additional information or controls.

The details element is not appropriate for footnotes. Please see the section on footnotes for details on how to mark up footnotes.

The first summary element child of the element, if any, represents the summary or legend of the details. If there is no child summary element, the user agent should provide its own legend (e.g. "Details").

The rest of the element's contents represents the additional information or controls.

The open content attribute is a boolean attribute. If present, it indicates that both the summary and the additional information is to be shown to the user. If the attribute is absent, only the summary is to be shown.

When the element is created, if the attribute is absent, the additional information should be hidden; if the attribute is present, that information should be shown. Subsequently, if the attribute is removed, then the information should be hidden; if the attribute is added, the information should be shown.

The user agent should allow the user to request that the additional information be shown or hidden. To honor a request for the details to be shown, the user agent must set the open attribute on the element to the value open. To honor a request for the information to be hidden, the user agent must remove the open attribute from the element.

Whenever the open attribute is added to or removed from a details element, the user agent must queue a task that runs the following steps, which are known as the details notification task steps, for this details element:

  1. If another task has been queued to run the details notification task steps for this details element, then abort these steps.

    When the open attribute is toggled several times in succession, these steps essentially get coalesced so that only one event is fired.

  2. Fire a simple event named toggle at the details element.

The task source for this task must be the DOM manipulation task source.

The open IDL attribute must reflect the open content attribute.

The following example shows the details element being used to hide technical details in a progress report.

<section class="progress window">
 <h1>Copying "Really Achieving Your Childhood Dreams"</h1>
 <details>
  <summary>Copying... <progress max="375505392" value="97543282"></progress> 25%</summary>
  <dl>
   <dt>Transfer rate:</dt> <dd>452KB/s</dd>
   <dt>Local filename:</dt> <dd>/home/rpausch/raycd.m4v</dd>
   <dt>Remote filename:</dt> <dd>/var/www/lectures/raycd.m4v</dd>
   <dt>Duration:</dt> <dd>01:16:27</dd>
   <dt>Color profile:</dt> <dd>SD (6-1-6)</dd>
   <dt>Dimensions:</dt> <dd>320×240</dd>
  </dl>
 </details>
</section>

The following shows how a details element can be used to hide some controls by default:

<details>
 <summary><label for=fn>Name & Extension:</label></summary>
 <p><input type=text id=fn name=fn value="Pillar Magazine.pdf">
 <p><label><input type=checkbox name=ext checked> Hide extension</label>
</details>

One could use this in conjunction with other details in a list to allow the user to collapse a set of fields down to a small set of headings, with the ability to open each one.

In these examples, the summary really just summarises what the controls can change, and not the actual values, which is less than ideal.

Because the open attribute is added and removed automatically as the user interacts with the control, it can be used in CSS to style the element differently based on its state. Here, a stylesheet is used to animate the color of the summary when the element is opened or closed:

<style>
 details > summary { transition: color 1s; color: black; }
 details[open] > summary { color: red; }
</style>
<details>
 <summary>Automated Status: Operational</summary>
 <p>Velocity: 12m/s</p>
 <p>Direction: North</p>
</details>

4.11.2 The summary element

Categories:
None.
Contexts in which this element can be used:
As the first child of a details element.
Content model:
Either: phrasing content.
Or: one element of heading content.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
button.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
Uses HTMLElement.

The summary element represents a summary, caption, or legend for the rest of the contents of the summary element's parent details element, if any.

4.11.3 The menu element

Categories:
Flow content.
If the element's type attribute is in the toolbar state: Palpable content.
Contexts in which this element can be used:
Where flow content is expected.
If the element's type attribute is in the popup menu state: as the child of a menu element whose type attribute is in the popup menu state.
Content model:
If the element's type attribute is in the toolbar state: either zero or more li and script-supporting elements, or, flow content.
If the element's type attribute is in the popup menu state: in any order, zero or more menuitem elements, zero or more hr elements, zero or more menu elements whose type attributes are in the popup menu state, and zero or more script-supporting elements.
Content attributes:
Global attributes
type - Type of menu
label - User-visible label
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
menu (default - do not set), directory, list, listbox, menubar, tablist, tabpanel or tree.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLMenuElement : HTMLElement {
           attribute DOMString type;
           attribute DOMString label;
};

The menu element represents a list of commands.

The type attribute is an enumerated attribute indicating the kind of menu being declared. The attribute has two states. The popup keyword maps to the popup menu state, in which the element is declaring a context menu or the menu for a menu button. The toolbar keyword maps to the toolbar state, in which the element is declaring a toolbar. The attribute may also be omitted. The missing value default is the popup menu state if the parent element is a menu element whose type attribute is in the popup menu state; otherwise, it is the toolbar state.

If a menu element's type attribute is in the popup menu state, then the element represents the commands of a popup menu, and the user can only examine and interact with the commands if that popup menu is activated through some other element, either via the contextmenu attribute or the button element's menu attribute.

If a menu element's type attribute is in the toolbar state, then the element represents a toolbar consisting of its contents, in the form of either an unordered list of items (represented by li elements), each of which represents a command that the user can perform or activate, or, if the element has no li element children, flow content describing available commands.

The label attribute gives the label of the menu. It is used by user agents to display nested menus in the UI: a context menu containing another menu would use the nested menu's label attribute for the submenu's menu label. The label attribute must only be specified on menu elements whose parent element is a menu element whose type attribute is in the popup menu state.


A menu is a currently relevant menu element if it is the child of a currently relevant menu element, or if it is the designated pop-up menu of a button element that is not inert, does not have a hidden attribute, and is not the descendant of an element with a hidden attribute.


A pop-up menu consists of a list of zero or more menu items, which can be any of:

To construct and show a menu for a particular menu element and with a particular element as a subject, the user agent must run the following steps:

  1. Let the menu be an empty list of the type described above.

  2. Run the menu builder steps for the menu element using the menu prepared in the previous list as the output.

    The menu builder steps for a menu element using a specific menu as output are as follows: For each child node of the menu in tree order, run the appropriate steps from the following list:

    If the child is a menuitem element that defines a command
    Append the command to the menu, respecting its facets. If the menuitem element has a default attribute, mark the command as being a default command.
    If the child is an hr element
    Append a separator to the menu.
    If the child is a menu element with no label attribute
    Append a separator to the menu, then run the menu builder steps using this child menu element for the same menu, then append another separator to the menu.
    If the child is a menu element with a label attribute
    Create a new submenu as an empty list of the type described above, and construct it by running the menu builder steps for the child menu element using the new submenu as the output. Then, append the submenu to the menu, using the value of the child menu element's label attribute as the label of the submenu.
    Otherwise
    Ignore the child node.
  3. Remove any submenu with no label, or whose label is the empty string, in the menu or any submenus.

  4. Remove any menu item with no label, or whose label is the empty string, in the menu or any submenus.

  5. Collapse all sequences of two or more adjacent separators in the menu or any submenus to a single separator.

  6. Remove all separators at the start or end of the menu and any submenus.

  7. Display the menu to the user, and let the algorithm that invoked this one continue.

    If the user selects a menu item that corresponds to an element that still represents a command when the user selects it, then the UA must invoke that command's Action. If the command's Action is defined as firing a click event, either directly or via the run synthetic click activation steps algorithm, then the relatedTarget attribute of that click event must be initialised to the subject passed to this construct and show a menu algorithm.

    Pop-up menus must not, while being shown, reflect changes in the DOM. The menu is constructed from the DOM before being shown, and is then immutable.


The type IDL attribute must reflect the content attribute of the same name, limited to only known values.

The label IDL attribute must reflect the content attribute of the same name.

In this example, the menu element is used to describe a toolbar with three menu buttons on it, each of which has a dropdown menu with a series of options:

<menu> 
 <li>
  <button type=menu value="File" menu="filemenu">
  <menu id="filemenu" type="popup">
   <menuitem onclick="fnew()" label="New...">
   <menuitem onclick="fopen()" label="Open...">
   <menuitem onclick="fsave()" label="Save">
   <menuitem onclick="fsaveas()" label="Save as...">
  </menu>
 </li>
 <li>
  <button type=menu value="Edit" menu="editmenu">
  <menu id="editmenu" type="popup">
   <menuitem onclick="ecopy()" label="Copy">
   <menuitem onclick="ecut()" label="Cut">
   <menuitem onclick="epaste()" label="Paste">
  </menu>
 </li>
 <li>
  <button type=menu value="Help" menu="helpmenu">
  <menu id="helpmenu" type="popup">
   <menuitem onclick="location='help.html'" label="Help">
   <menuitem onclick="location='about.html'" label="About">
  </menu>
 </li>
</menu>

In a supporting user agent, this might look like this (assuming the user has just activated the second button):

A toolbar with three buttons, labeled 'File', 'Edit', and 'Help'; where if you select the 'Edit' button you get a drop-down menu with three more options, 'Copy', 'Cut', and 'Paste'.

4.11.4 The menuitem element

Categories:
None.
Contexts in which this element can be used:
As a child of a menu element whose type attribute is in the popup menu state.
Content model:
Empty.
Content attributes:
Global attributes
type - Type of command
label - User-visible label
icon - Icon for the command
disabled Whether the command or control is disabled
checked Whether the command or control is checked
radiogroup Name of group of commands to treat as a radio button group
default - Mark the command as being a default command
command - Command definition
Also, the title attribute has special semantics on this element.
Tag omission in text/html:
No end tag.
Allowed ARIA role attribute values:
menuitem (default - do not set).
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLMenuItemElement : HTMLElement {
           attribute DOMString type;
           attribute DOMString label;
           attribute DOMString icon;
           attribute boolean disabled;
           attribute boolean checked;
           attribute DOMString radiogroup;
           attribute boolean default;
  readonly attribute HTMLElement? command;
};

The menuitem element represents a command that the user can invoke from a popup menu (either a context menu or the menu of a menu button).

A menuitem element that uses one or more of the type, label, icon, disabled, checked, and radiogroup attributes defines a new command.

A menuitem element that uses the command attribute defines a command by reference to another one. This allows authors to define a command once, and set its state (e.g. whether it is active or disabled) in one place, and have all references to that command in the user interface change at the same time.

If the command attribute is specified, the element is in the indirect command mode. If it is not specified, it is in the explicit command mode. When the element is in the indirect command mode, the element must not have any of the following attributes specified: type, label, icon, disabled, checked, radiogroup.


The type attribute indicates the kind of command: either a normal command with an associated action, or a state or option that can be toggled, or a selection of one item from a list of items.

The attribute is an enumerated attribute with three keywords and states. The "command" keyword maps to the Command state, the "checkbox" keyword maps to the Checkbox state, and the "radio" keyword maps to the Radio state. The missing value default is the Command state.

The Command state

The element represents a normal command with an associated action.

The Checkbox state

The element represents a state or option that can be toggled.

The Radio state

The element represents a selection of one item from a list of items.

The label attribute gives the name of the command, as shown to the user. The label attribute must be specified if the element is in the explicit command mode. If the attribute is specified, it must have a value that is not the empty string.

The icon attribute gives a picture that represents the command. If the attribute is specified, the attribute's value must contain a valid non-empty URL potentially surrounded by spaces. To obtain the absolute URL of the icon when the attribute's value is not the empty string, the attribute's value must be resolved relative to the element. When the attribute is absent, or its value is the empty string, or resolving its value fails, there is no icon.

The disabled attribute is a boolean attribute that, if present, indicates that the command is not available in the current state.

The distinction between disabled and hidden is subtle. A command would be disabled if, in the same context, it could be enabled if only certain aspects of the situation were changed. A command would be marked as hidden if, in that situation, the command will never be enabled. For example, in the context menu for a water faucet, the command "open" might be disabled if the faucet is already open, but the command "eat" would be marked hidden since the faucet could never be eaten.

The checked attribute is a boolean attribute that, if present, indicates that the command is selected. The attribute must be omitted unless the type attribute is in either the Checkbox state or the Radio state.

The radiogroup attribute gives the name of the group of commands that will be toggled when the command itself is toggled, for commands whose type attribute has the value "radio". The scope of the name is the child list of the parent element. The attribute must be omitted unless the type attribute is in the Radio state. When specified, the attribute's value must be a non-empty string.


If a menuitem element slave has a command attribute, and there is an element in slave's home subtree whose ID has a value equal to the value of slave's command attribute, and the first such element in tree order, hereafter master, itself defines a command and either is not a menuitem element or does not itself have a command attribute, then the master command of slave is master.

A menuitem element with a command attribute must have a master command.

This effectively defines the syntax of the attribute's value as being the ID of another element that defines a command.


The title attribute gives a hint describing the command, which might be shown to the user to help him.

The default attribute indicates, if present, that the command is the one that would have been invoked if the user had directly activated the menu's subject instead of using the menu. The default attribute is a boolean attribute.

In this trivial example, a submit button is given a context menu that has two options, one to reset the form, and one to submit the form. The submit command is marked as being the default.

<form action="dosearch.pl">
 <p><label>Enter search terms: <input type="text" name="terms"></label></p>
 <p><input type=submit contextmenu=formmenu id="submitbutton"></p>
 <p hidden><input type=reset id="resetbutton"></p>
 <menu type=popup id=formmenu>
  <menuitem command="submitbutton" default>
  <menuitem command="resetbutton">
 </menu>
</form>

The type IDL attribute must reflect the content attribute of the same name, limited to only known values.

The label, icon, disabled, checked, and radiogroup, and default IDL attributes must reflect the respective content attributes of the same name.

The command IDL attribute must return the master command, if any, or null otherwise.


If the element's Disabled State is false (enabled) then the element's activation behavior depends on the element's type and command attributes, as follows:

If the element has a master command set by its command attribute

The user agent must run synthetic click activation steps on the element's master command.

If the type attribute is in the Checkbox state

If the element has a checked attribute, the UA must remove that attribute. Otherwise, the UA must add a checked attribute, with the literal value checked.

If the type attribute is in the Radio state

If the element has a parent, then the UA must walk the list of child nodes of that parent element, and for each node that is a menuitem element, if that element has a radiogroup attribute whose value exactly matches the current element's (treating missing radiogroup attributes as if they were the empty string), and has a checked attribute, must remove that attribute.

Then, the element's checked attribute must be set to the literal value checked.

Otherwise

The element's activation behavior is to do nothing.

Firing a synthetic click event at the element does not cause any of the actions described above to happen.

If the element's Disabled State is true (disabled) then the element has no activation behavior.

The menuitem element is not rendered except as part of a popup menu.

Here is an example of a pop-up menu button with three options that let the user toggle between left, center, and right alignment. One could imagine such a toolbar as part of a text editor. The menu also has a separator followed by another menu item labeled "Publish", though that menu item is disabled.

<button type=menu menu=editmenu>Commands...</button>
<menu type="popup" id="editmenu">
 <menuitem type="radio" radiogroup="alignment" checked="checked"
          label="Left" icon="icons/alL.png" onclick="setAlign('left')">
 <menuitem type="radio" radiogroup="alignment"
          label="Center" icon="icons/alC.png" onclick="setAlign('center')">
 <menuitem type="radio" radiogroup="alignment"
          label="Right" icon="icons/alR.png" onclick="setAlign('right')">
 <hr>
 <menuitem type="command" disabled
          label="Publish" icon="icons/pub.png" onclick="publish()">
</menu>

4.11.5 Context menus

4.11.5.1 Declaring a context menu

The contextmenu attribute gives the element's context menu. The value must be the ID of a menu element in the same home subtree whose type attribute is in the popup menu state.

When a user requests a context menu for an element (for example by using a pointing device or keyboard key to make the request) and the element has a contextmenu attribute, the user agent will first fire a contextmenu event at the element, and then, if that event is not canceled, a show event at the menu element.

Here is an example of a context menu for an input control:

<form name="npc">
 <label>Character name: <input name=char type=text contextmenu=namemenu required></label>
 <menu type=popup id=namemenu>
  <menuitem label="Pick random name" onclick="document.forms.npc.elements.char.value = getRandomName()">
  <menuitem label="Prefill other fields based on name" onclick="prefillFields(document.forms.npc.elements.char.value)">
 </menu>
</form>

This adds two items to the control's context menu, one called "Pick random name", and one called "Prefill other fields based on name". They invoke scripts that are not shown in the example above.

4.11.5.2 Processing model

Each element has an assigned context menu, which can be null. If an element A has a contextmenu attribute, and there is an element with the ID given by A's contextmenu attribute's value in A's home subtree, and the first such element in tree order is a menu element whose type attribute is in the popup menu state, then A's assigned context menu is that element. Otherwise, if A has a parent element, then A's assigned context menu is the assigned context menu of its parent element. Otherwise, A's assigned context menu is null.

When an element's context menu is requested (e.g. by the user right-clicking the element, or pressing a context menu key), the user agent must apply the appropriate rules from the following list:

If the user requested a context menu using a pointing device

The user agent must fire a trusted event with the name contextmenu, that bubbles and is cancelable, and that uses the MouseEvent interface, at the element for which the menu was requested. The context information of the event must be initialised to the same values as the last MouseEvent user interaction event that was fired as part of the gesture that was interpreted as a request for the context menu.

Otherwise

The user agent must fire a synthetic mouse event named contextmenu that bubbles and is cancelable at the element for which the menu was requested.

Typically, therefore, the firing of the contextmenu event will be the default action of a mouseup or keyup event. The exact sequence of events is UA-dependent, as it will vary based on platform conventions.

The default action of the contextmenu event depends on whether or not the element for which the menu was requested has a non-null assigned context menu when the event dispatch has completed, as follows.

If the assigned context menu of the element for which the menu was requested is null, the default action must be for the user agent to show its default context menu, if it has one.

Otherwise, let subject be the element for which the menu was requested, and let menu be the assigned context menu of target immediately after the contextmenu event's dispatch has completed. The user agent must fire a trusted event with the name show at menu, using the RelatedEvent interface, with the relatedTarget attribute initialised to subject. The event must be cancelable.

If this event (the show event) is not canceled, then the user agent must construct and show the menu for menu with subject as the subject.

The user agent may also provide access to its default context menu, if any, with the context menu shown. For example, it could merge the menu items from the two menus together, or provide the page's context menu as a submenu of the default menu. In general, user agents are encouraged to de-emphasise their own contextual menu items, so as to give the author's context menu the appearance of legitimacy — to allow documents to feel like "applications" rather than "mere Web pages".

User agents may provide means for bypassing the context menu processing model, ensuring that the user can always access the UA's default context menus. For example, the user agent could handle right-clicks that have the Shift key depressed in such a way that it does not fire the contextmenu event and instead always shows the default context menu.


The contextMenu IDL attribute must reflect the contextmenu content attribute.

In this example, an image of cats is given a context menu with four possible commands:

<img src="cats.jpeg" alt="Cats" contextmenu=catsmenu>
<menu type="popup" id="catsmenu">
 <menuitem label="Pet the kittens" onclick="kittens.pet()">
 <menuitem label="Cuddle with the kittens" onclick="kittens.cuddle()">
 <menu label="Feed the kittens">
  <menuitem label="Fish" onclick="kittens.feed(fish)">
  <menuitem label="Chicken" onclick="kittens.feed(chicken)">
 </menu>
</menu>

When a user of a mouse-operated visual Web browser right-clicks on the image, the browser might pop up a context menu like this:

A context menu, shown over a picture of cats, with four lines: the first two offering the menu items described in the markup above ('Pet the kittens' and 'Cuddle with the kittens'), the third giving a submenu labeled 'Feed the kittens', and the fourth, after a horizontal splitter, consisting of only a downwards-pointing disclosure triangle.

When the user clicks the disclosure triangle, such a user agent would expand the context menu in place, to show the browser's own commands:

This would result in the same basic interface, but with a longer menu; the disclosure triangle having been replaced by items such as 'View Image', 'Copy Image', 'Copy Image Location', and so forth.

4.11.5.3 The RelatedEvent interfaces
[Constructor(DOMString type, optional RelatedEventInit eventInitDict)]
interface RelatedEvent : Event {
  readonly attribute EventTarget? relatedTarget;
};

dictionary RelatedEventInit : EventInit {
  EventTarget? relatedTarget;
};
event . relatedTarget

Returns the other event target involved in this event. For example, when a show event fires on a menu element, the other event target involved in the event would be the element for which the menu is being shown.

The relatedTarget attribute must return the value it was initialised to. When the object is created, this attribute must be initialised to null. It represents the other event target that is related to the event.

4.11.6 Commands

4.11.6.1 Facets

A command is the abstraction behind menu items, buttons, and links. Once a command is defined, other parts of the interface can refer to the same command, allowing many access points to a single feature to share facets such as the Disabled State.

Commands are defined to have the following facets:

Type
The kind of command: "command", meaning it is a normal command; "radio", meaning that triggering the command will, amongst other things, set the Checked State to true (and probably uncheck some other commands); or "checkbox", meaning that triggering the command will, amongst other things, toggle the value of the Checked State.
ID
The name of the command, for referring to the command from the markup or from script. If a command has no ID, it is an anonymous command.
Label
The name of the command as seen by the user.
Hint
A helpful or descriptive string that can be shown to the user.
Icon
An absolute URL identifying a graphical image that represents the action. A command might not have an Icon.
Access Key
A key combination selected by the user agent that triggers the command. A command might not have an Access Key.
Hidden State
Whether the command is hidden or not (basically, whether it should be shown in menus).
Disabled State
Whether the command is relevant and can be triggered or not.
Checked State
Whether the command is checked or not.
Action
The actual effect that triggering the command will have. This could be a scripted event handler, a URL to which to navigate, or a form submission.

These facets are exposed on elements using the command API:

element . commandType

Exposes the Type facet of the command.

element . id

Exposes the ID facet of the command.

element . commandLabel

Exposes the Label facet of the command.

element . title

Exposes the Hint facet of the command.

element . commandIcon

Exposes the Icon facet of the command.

element . accessKeyLabel

Exposes the Access Key facet of the command.

element . commandHidden

Exposes the Hidden State facet of the command.

element . commandDisabled

Exposes the Disabled State facet of the command.

element . commandChecked

Exposes the Checked State facet of the command.

element . click()

Triggers the Action of the command.

The commandType attribute must return a string whose value is either "command", "radio", or "checkbox", depending on whether the Type of the command defined by the element is "command", "radio", or "checkbox" respectively. If the element does not define a command, it must return null.

The commandLabel attribute must return the command's Label, or null if the element does not define a command or does not specify a Label.

The commandIcon attribute must return the absolute URL of the command's Icon. If the element does not specify an icon, or if the element does not define a command, then the attribute must return null.

The commandHidden attribute must return true if the command's Hidden State is that the command is hidden, and false if the command is not hidden. If the element does not define a command, the attribute must return null.

The commandDisabled attribute must return true if the command's Disabled State is that the command is disabled, and false if the command is not disabled. This attribute is not affected by the command's Hidden State. If the element does not define a command, the attribute must return null.

The commandChecked attribute must return true if the command's Checked State is that the command is checked, and false if it is that the command is not checked. If the element does not define a command, the attribute must return null.

The ID facet is exposed by the id IDL attribute, the Hint facet is exposed by the title IDL attribute, and the AccessKey facet is exposed by the accessKeyLabel IDL attribute.


document . commands

Returns an HTMLCollection of the elements in the Document that define commands and have IDs.

The commands attribute of the document's Document interface must return an HTMLCollection rooted at the Document node, whose filter matches only elements that define commands and have IDs.


User agents may expose the commands that match the following criteria:

User agents are encouraged to do this especially for commands that have Access Keys, as a way to advertise those keys to the user.

For example, such commands could be listed in the user agent's menu bar.

4.11.6.2 Using the a element to define a command

An a element with an href attribute defines a command.

The Type of the command is "command".

The ID of the command is the value of the id attribute of the element, if the attribute is present and not empty. Otherwise the command is an anonymous command.

The Label of the command is the string given by the element's textContent IDL attribute.

The Hint of the command is the value of the title attribute of the element. If the attribute is not present, the Hint is the empty string.

The Icon of the command is the absolute URL obtained from resolving the value of the src attribute of the first img element descendant of the element in tree order, relative to that element, if there is such an element and resolving its attribute is successful. Otherwise, there is no Icon for the command.

The AccessKey of the command is the element's assigned access key, if any.

The Hidden State of the command is true (hidden) if the element has a hidden attribute, and false otherwise.

The Disabled State facet of the command is true if the element or one of its ancestors is inert, and false otherwise.

The Checked State of the command is always false. (The command is never checked.)

The Action of the command, if the element has a defined activation behavior, is to run synthetic click activation steps on the element. Otherwise, it is just to fire a click event at the element.

4.11.6.3 Using the button element to define a command

A button element always defines a command.

The Type, ID, Label, Hint, Icon, Access Key, Hidden State, Checked State, and Action facets of the command are determined as for a elements (see the previous section).

The Disabled State of the command is true if the element or one of its ancestors is inert, or if the element's disabled state is set, and false otherwise.

4.11.6.4 Using the input element to define a command

An input element whose type attribute is in one of the Submit Button, Reset Button, Image Button, Button, Radio Button, or Checkbox states defines a command.

The Type of the command is "radio" if the type attribute is in the Radio Button state, "checkbox" if the type attribute is in the Checkbox state, and "command" otherwise.

The ID of the command is the value of the id attribute of the element, if the attribute is present and not empty. Otherwise the command is an anonymous command.

The Label of the command depends on the Type of the command:

If the Type is "command", then it is the string given by the value attribute, if any, and a UA-dependent, locale-dependent value that the UA uses to label the button itself if the attribute is absent.

Otherwise, the Type is "radio" or "checkbox". If the element is a labeled control, the textContent of the first label element in tree order whose labeled control is the element in question is the Label (in DOM terms, this is the string given by element.labels[0].textContent). Otherwise, the value of the value attribute, if present, is the Label. Otherwise, the Label is the empty string.

The Hint of the command is the value of the title attribute of the input element. If the attribute is not present, the Hint is the empty string.

If the element's type attribute is in the Image Button state, and the element has a src attribute, and that attribute's value can be successfully resolved relative to the element, then the Icon of the command is the absolute URL obtained from resolving that attribute that way. Otherwise, there is no Icon for the command.

The AccessKey of the command is the element's assigned access key, if any.

The Hidden State of the command is true (hidden) if the element has a hidden attribute, and false otherwise.

The Disabled State of the command is true if the element or one of its ancestors is inert, or if the element's disabled state is set, and false otherwise.

The Checked State of the command is true if the command is of Type "radio" or "checkbox" and the element is checked attribute, and false otherwise.

The Action of the command, if the element has a defined activation behavior, is to run synthetic click activation steps on the element. Otherwise, it is just to fire a click event at the element.

4.11.6.5 Using the option element to define a command

An option element with an ancestor select element and either no value attribute or a value attribute that is not the empty string defines a command.

The Type of the command is "radio" if the option's nearest ancestor select element has no multiple attribute, and "checkbox" if it does.

The ID of the command is the value of the id attribute of the element, if the attribute is present and not empty. Otherwise the command is an anonymous command.

The Label of the command is the value of the option element's label attribute, if there is one, or else the value of option element's textContent IDL attribute, with leading and trailing whitespace stripped, and with any sequences of two or more space characters replaced by a single U+0020 SPACE character.

The Hint of the command is the string given by the element's title attribute, if any, and the empty string if the attribute is absent.

There is no Icon for the command.

The AccessKey of the command is the element's assigned access key, if any.

The Hidden State of the command is true (hidden) if the element has a hidden attribute, and false otherwise.

The Disabled State of the command is true if the element is disabled, or if its nearest ancestor select element is disabled, or if it or one of its ancestors is inert, and false otherwise.

The Checked State of the command is true (checked) if the element's selectedness is true, and false otherwise.

The Action of the command depends on its Type. If the command is of Type "radio" then it must pick the option element. Otherwise, it must toggle the option element.

4.11.6.6 Using the menuitem element to define a command

A menuitem element that does not have a command attribute defines a command.

The Type of the command is "radio" if the menuitem's type attribute is "radio", "checkbox" if the attribute's value is "checkbox", and "command" otherwise.

The ID of the command is the value of the id attribute of the element, if the attribute is present and not empty. Otherwise the command is an anonymous command.

The Label of the command is the value of the element's label attribute, if there is one, or the empty string if it doesn't.

The Hint of the command is the string given by the element's title attribute, if any, and the empty string if the attribute is absent.

The Icon for the command is the absolute URL obtained from resolving the value of the element's icon attribute, relative to the element, if it has such an attribute and resolving it is successful. Otherwise, there is no Icon for the command.

The AccessKey of the command is the element's assigned access key, if any.

The Hidden State of the command is true (hidden) if the element has a hidden attribute, and false otherwise.

The Disabled State of the command is true if the element or one of its ancestors is inert, or if the element has a disabled attribute, and false otherwise.

The Checked State of the command is true (checked) if the element has a checked attribute, and false otherwise.

The Action of the command, if the element has a defined activation behavior, is to run synthetic click activation steps on the element. Otherwise, it is just to fire a click event at the element.

4.11.6.7 Using the command attribute on menuitem elements to define a command indirectly

A menuitem element with a master command defines a command.

The Type of the command is the Type of the master command.

The ID of the command is the value of the id attribute of the element, if the attribute is present and not empty. Otherwise the command is an anonymous command.

The Label of the command is the Label of the master command.

If the element has a title attribute, then the Hint of the command is the value of that title attribute. Otherwise, the Hint of the command is the Hint of the master command.

The Icon of the command is the Icon of the master command.

The AccessKey of the command is the element's assigned access key, if any.

The Hidden State of the command is the Hidden State of the master command.

The Disabled State of the command is the Disabled State of the master command.

The Checked State of the command is the Checked State of the master command.

The Action of the command is to invoke the Action of the master command.

4.11.6.8 Using the accesskey attribute on a label element to define a command

A label element that has an assigned access key and a labeled control and whose labeled control defines a command, itself defines a command.

The Type of the command is "command".

The ID of the command is the value of the id attribute of the element, if the attribute is present and not empty. Otherwise the command is an anonymous command.

The Label of the command is the string given by the element's textContent IDL attribute.

The Hint of the command is the value of the title attribute of the element.

There is no Icon for the command.

The AccessKey of the command is the element's assigned access key.

The Hidden State, Disabled State, and Action facets of the command are the same as the respective facets of the element's labeled control.

The Checked State of the command is always false. (The command is never checked.)

4.11.6.9 Using the accesskey attribute on a legend element to define a command

A legend element that has an assigned access key and is a child of a fieldset element that has a descendant that is not a descendant of the legend element and is neither a label element nor a legend element but that defines a command, itself defines a command.

The Type of the command is "command".

The ID of the command is the value of the id attribute of the element, if the attribute is present and not empty. Otherwise the command is an anonymous command.

The Label of the command is the string given by the element's textContent IDL attribute.

The Hint of the command is the value of the title attribute of the element.

There is no Icon for the command.

The AccessKey of the command is the element's assigned access key.

The Hidden State, Disabled State, and Action facets of the command are the same as the respective facets of the first element in tree order that is a descendant of the parent of the legend element that defines a command but is not a descendant of the legend element and is neither a label nor a legend element.

The Checked State of the command is always false. (The command is never checked.)

4.11.6.10 Using the accesskey attribute to define a command on other elements

An element that has an assigned access key defines a command.

If one of the earlier sections that define elements that define commands define that this element defines a command, then that section applies to this element, and this section does not. Otherwise, this section applies to that element.

The Type of the command is "command".

The ID of the command is the value of the id attribute of the element, if the attribute is present and not empty. Otherwise the command is an anonymous command.

The Label of the command depends on the element. If the element is a labeled control, the textContent of the first label element in tree order whose labeled control is the element in question is the Label (in DOM terms, this is the string given by element.labels[0].textContent). Otherwise, the Label is the textContent of the element itself.

The Hint of the command is the value of the title attribute of the element. If the attribute is not present, the Hint is the empty string.

There is no Icon for the command.

The AccessKey of the command is the element's assigned access key.

The Hidden State of the command is true (hidden) if the element has a hidden attribute, and false otherwise.

The Disabled State of the command is true if the element or one of its ancestors is inert, and false otherwise.

The Checked State of the command is always false. (The command is never checked.)

The Action of the command is to run the following steps:

  1. If the element is focusable, run the focusing steps for the element.
  2. If the element has a defined activation behavior, run synthetic click activation steps on the element.
  3. Otherwise, if the element does not have a defined activation behavior, fire a click event at the element.

4.11.7 The dialog element

Categories:
Flow content.
Sectioning root.
Contexts in which this element can be used:
Where flow content is expected.
Content model:
Flow content.
Content attributes:
Global attributes
open - Whether the dialog box is showing
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
dialog (default - do not set), alert, alertdialog, application, log, marquee or status.
Allowed ARIA state and property attributes:
Global aria-* attributes
Any aria-* attributes applicable to the allowed roles.
DOM interface:
interface HTMLDialogElement : HTMLElement {
           attribute boolean open;
           attribute DOMString returnValue;
  void show(optional (MouseEvent or Element) anchor);
  void showModal(optional (MouseEvent or Element) anchor);
  void close(optional DOMString returnValue);
};

The dialog element represents a part of an application that a user interacts with to perform a task, for example a dialog box, inspector, or window.

The open attribute is a boolean attribute. When specified, it indicates that the dialog element is active and that the user can interact with it.

A dialog element without an open attribute specified should not be shown to the user. This requirement may be implemented indirectly through the style layer. For example, user agents that support the suggested default rendering implement this requirement using the CSS rules described in the rendering section.

The tabindex attribute must not be specified on dialog elements.

dialog . show( [ anchor ] )

Displays the dialog element.

The argument, if provided, provides an anchor point to which the element will be fixed.

dialog . showModal( [ anchor ] )

Displays the dialog element and makes it the top-most modal dialog.

The argument, if provided, provides an anchor point to which the element will be fixed.

This method honors the autofocus attribute.

dialog . close( [ result ] )

Closes the dialog element.

The argument, if provided, provides a return value.

dialog . returnValue [ = result ]

Returns the dialog's return value.

Can be set, to update the return value.

When the show() method is invoked, the user agent must run the following steps:

  1. If the element already has an open attribute, then abort these steps.

  2. Add an open attribute to the dialog element, whose value is the empty string.

  3. If the show() method was invoked with an argument, set up the position of the dialog element, using that argument as the anchor. Otherwise, set the dialog to the normal alignment mode.

  4. Run the dialog focusing steps for the dialog element.


Each Document has a stack of dialog elements known as the pending dialog stack. When a Document is created, this stack must be initialised to be empty.

When an element is added to the pending dialog stack, it must also be added to the top layer layer. When an element is removed from the pending dialog stack, it must be removed from the top layer. [FULLSCREEN]

When the showModal() method is invoked, the user agent must run the following steps:

  1. Let subject be the dialog element on which the method was invoked.

  2. If subject already has an open attribute, then throw an InvalidStateError exception and abort these steps.

  3. If subject is not in a Document, then throw an InvalidStateError exception and abort these steps.

  4. Add an open attribute to subject, whose value is the empty string.

  5. If the showModal() method was invoked with an argument, set up the position of subject, using that argument as the anchor. Otherwise, set the dialog to the centered alignment mode.

  6. Let subject's Document be blocked by the modal dialog subject.

  7. Push subject onto subject's Document's pending dialog stack.

  8. Let control be the first element in tree order that has an autofocus attribute specified and whose nearest ancestor dialog element is subject, if any.

    If there isn't one, then let control be the first element in tree order that is focusable and whose nearest ancestor dialog element is subject, if any.

    If there isn't one of those either but subject itself is focusable, then let control be subject. (This is unusual.)

  9. If there is no control, then abort these steps.

  10. Run the focusing steps for control.

If at any time a dialog element is removed from a Document, then if that dialog is in that Document's pending dialog stack, the following steps must be run:

  1. Let subject be that dialog element and document be the Document from which it is being removed.

  2. Remove subject from document's pending dialog stack.

  3. If document's pending dialog stack is not empty, then let document be blocked by the modal dialog that is at the top of document's pending dialog stack. Otherwise, let document be no longer blocked by a modal dialog at all.

When the close() method is invoked, the user agent must close the dialog that the method was invoked on. If the method was invoked with an argument, that argument must be used as the return value; otherwise, there is no return value.

When a dialog element subject is to be closed, optionally with a return value result, the user agent must run the following steps:

  1. If subject does not have an open attribute, then abort these steps.

  2. Remove subject's open attribute.

  3. If the argument result was provided, then set the returnValue attribute to the value of result.

  4. If subject is in its Document's pending dialog stack, then run these substeps:

    1. Remove subject from that pending dialog stack.

    2. If that pending dialog stack is not empty, then let subject's Document be blocked by the modal dialog that is at the top of the pending dialog stack. Otherwise, let document be no longer blocked by a modal dialog at all.

  5. Queue a task to fire a simple event named close at subject.

The returnValue IDL attribute, on getting, must return the last value to which it was set. On setting, it must be set to the new value. When the element is created, it must be set to the empty string.


Canceling dialogs: When a Document's pending dialog stack is not empty, user agents may provide a user interface that, upon activation, queues a task to fire a simple event named cancel that is cancelable at the top dialog element on the Document's pending dialog stack. The default action of this event must be to check if that element has an open attribute, and if it does, close the dialog with no return value.

An example of such a UI mechanism would be the user pressing the "Escape" key.


All dialog elements are always in one of three modes: normal alignment, centered alignment, and magic alignment. When a dialog element is created, it must be placed in the normal alignment mode. In this mode, normal CSS requirements apply to the element. The centered alignment mode is only used for dialog elements that are in the top layer. [FULLSCREEN] [CSS]

When an element subject is placed in centered alignment mode, and when it is in that mode and has new rendering boxes created, the user agent must set up the element such that its top static position, for the purposes of calculating the used value of the 'top' property, is the value that would place the element's top margin edge as far from the top of the viewport as the element's bottom margin edge from the bottom of the viewport, if the element's height is less than the height of the viewport, and otherwise is the value that would place the element's top margin edge at the top of the viewport.

If there is a dialog element with centered alignment and that is being rendered when its browsing context changes viewport width (as measured in CSS pixels), then the user agent must recreate the element's boxes, recalculating its top static position as in the previous paragraph.

This top static position of a dialog element with centered alignment must remain the element's top static position until its boxes are recreated. (The element's static position is only used in calculating the used value of the 'top' property in certain situations; it's not used, for instance, to position the element if its 'position' property is set to 'static'.)

When a user agent is to set up the position of an element subject using an anchor anchor, it must run the following steps:

  1. If anchor is a MouseEvent object, then run these substeps:

    1. If anchor's target element does not have a rendered box, or is in a different document than subject, then let subject be in the centered alignment mode, and abort the set up the position steps.

    2. Let anchor element be an anonymous element rendered as a box with zero height and width (so its margin and border boxes both just form a point), positioned so that its top and left are at the coordinate identified by the event, and whose properties all compute to their initial values.

    Otherwise, let anchor element be anchor.

  2. Put subject in the magic alignment mode, aligned to anchor element.

While an element A has magic alignment, aligned to an element B, the following requirements apply:

The trivial example of an element that does not have a rendered box is one whose 'display' property computes to 'none'. However, there are many other cases; e.g. table columns do not have boxes (their properties merely affect other boxes).

If an element to which another element is anchored changes rendering, the anchored element will be be repositioned accordingly. (In other words, the requirements above are live, they are not just calculated once per anchored element.)

The 'absolute-anchored' keyword is not a keyword that can be specified in CSS; the 'position' property can only compute to this value if the dialog element is positioned via the APIs described above.

User agents in visual interactive media should allow the user to pan the viewport to access all parts of a dialog element's border box, even if the element is larger than the viewport and the viewport would otherwise not have a scroll mechanism (e.g. because the viewport's 'overflow' property is set to 'hidden').


The open IDL attribute must reflect the open content attribute.

4.11.7.1 Anchor points

This section will eventually be moved to a CSS specification; it is specified here only on an interim basis until an editor can be found to own this.

'anchor-point'
Value: none | <position>
Initial: none
Applies to: all elements
Inherited: no
Percentages: refer to width or height of box; see prose
Media: visual
Computed value: The specified value, but with any lengths replaced by their corresponding absolute length
Animatable: no
Canonical order: per grammar

The 'anchor-point' property specifies a point to which dialog boxes are to be aligned.

If the value is a <position>, the anchor point is the point given by the value, which must be interpreted relative to the element's first rendered box's margin box. Percentages must be calculated relative to the element's first rendered box's margin box (specifically, its width for the horizontal position and its height for the vertical position). [CSSVALUES] [CSS]

If the value is the keyword 'none', then no explicit anchor point is defined. The user agent will pick an anchor point automatically if necessary (as described in the definition of the open() method above).

4.12 Scripting

Scripts allow authors to add interactivity to their documents.

Authors are encouraged to use declarative alternatives to scripting where possible, as declarative mechanisms are often more maintainable, and many users disable scripting.

For example, instead of using script to show or hide a section to show more details, the details element could be used.

Authors are also encouraged to make their applications degrade gracefully in the absence of scripting support.

For example, if an author provides a link in a table header to dynamically resort the table, the link could also be made to function without scripts by requesting the sorted table from the server.

4.12.1 The script element

Categories:
Metadata content.
Flow content.
Phrasing content.
Script-supporting element.
Contexts in which this element can be used:
Where metadata content is expected.
Where phrasing content is expected.
Where script-supporting elements are expected.
Content model:
If there is no src attribute, depends on the value of the type attribute, but must match script content restrictions.
If there is a src attribute, the element must be either empty or contain only script documentation that also matches script content restrictions.
Content attributes:
Global attributes
src - Address of the resource
type - Type of embedded resource
charset - Character encoding of the external script resource
async - Execute script asynchronously
defer - Defer script execution
crossorigin - How the element handles crossorigin requests
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes
DOM interface:
interface HTMLScriptElement : HTMLElement {
           attribute DOMString src;
           attribute DOMString type;
           attribute DOMString charset;
           attribute boolean async;
           attribute boolean defer;
           attribute DOMString crossOrigin;
           attribute DOMString text;
};

The script element allows authors to include dynamic script and data blocks in their documents. The element does not represent content for the user.

When used to include dynamic scripts, the scripts may either be embedded inline or may be imported from an external file using the src attribute. If the language is not that described by "text/javascript", then the type attribute must be present, as described below. Whatever language is used, the contents of the script element must conform with the requirements of that language's specification.

When used to include data blocks (as opposed to scripts), the data must be embedded inline, the format of the data must be given using the type attribute, the src attribute must not be specified, and the contents of the script element must conform to the requirements defined for the format used.

The type attribute gives the language of the script or format of the data. If the attribute is present, its value must be a valid MIME type. The charset parameter must not be specified. The default, which is used if the attribute is absent, is "text/javascript".

The src attribute, if specified, gives the address of the external script resource to use. The value of the attribute must be a valid non-empty URL potentially surrounded by spaces identifying a script resource of the type given by the type attribute, if the attribute is present, or of the type "text/javascript", if the attribute is absent. A resource is a script resource of a given type if that type identifies a scripting language and the resource conforms with the requirements of that language's specification.

The charset attribute gives the character encoding of the external script resource. The attribute must not be specified if the src attribute is not present. If the attribute is set, its value must be an ASCII case-insensitive match for one of the labels of an encoding, and must specify the same encoding as the charset parameter of the Content-Type metadata of the external file, if any. [ENCODING]

The async and defer attributes are boolean attributes that indicate how the script should be executed. The defer and async attributes must not be specified if the src attribute is not present.

There are three possible modes that can be selected using these attributes. If the async attribute is present, then the script will be executed asynchronously, as soon as it is available. If the async attribute is not present but the defer attribute is present, then the script is executed when the page has finished parsing. If neither attribute is present, then the script is fetched and executed immediately, before the user agent continues parsing the page.

The exact processing details for these attributes are, for mostly historical reasons, somewhat non-trivial, involving a number of aspects of HTML. The implementation requirements are therefore by necessity scattered throughout the specification. The algorithms below (in this section) describe the core of this processing, but these algorithms reference and are referenced by the parsing rules for script start and end tags in HTML, in foreign content, and in XML, the rules for the document.write() method, the handling of scripting, etc.

The defer attribute may be specified even if the async attribute is specified, to cause legacy Web browsers that only support defer (and not async) to fall back to the defer behavior instead of the synchronous blocking behavior that is the default.

The crossorigin attribute is a CORS settings attribute. It controls, for scripts that are obtained from other origins, whether error information will be exposed.

Changing the src, type, charset, async, defer, and crossorigin attributes dynamically has no direct effect; these attribute are only used at specific times described below.

A script element has several associated pieces of state.

The first is a flag indicating whether or not the script block has been "already started". Initially, script elements must have this flag unset (script blocks, when created, are not "already started"). The cloning steps for script elements must set the "already started" flag on the copy if it is set on the element being cloned.

The second is a flag indicating whether the element was "parser-inserted". Initially, script elements must have this flag unset. It is set by the HTML parser and the XML parser on script elements they insert and affects the processing of those elements.

The third is a flag indicating whether the element will "force-async". Initially, script elements must have this flag set. It is unset by the HTML parser and the XML parser on script elements they insert. In addition, whenever a script element whose "force-async" flag is set has a async content attribute added, the element's "force-async" flag must be unset.

The fourth is a flag indicating whether or not the script block is "ready to be parser-executed". Initially, script elements must have this flag unset (script blocks, when created, are not "ready to be parser-executed"). This flag is used only for elements that are also "parser-inserted", to let the parser know when to execute the script.

The last few pieces of state are the script block's type, the script block's character encoding, and the script block's fallback character encoding. They are determined when the script is prepared, based on the attributes on the element at that time, and the Document of the script element.

When a script element that is not marked as being "parser-inserted" experiences one of the events listed in the following list, the user agent must synchronously prepare the script element:

To prepare a script, the user agent must act as follows:

  1. If the script element is marked as having "already started", then the user agent must abort these steps at this point. The script is not executed.

  2. If the element has its "parser-inserted" flag set, then set was-parser-inserted to true and unset the element's "parser-inserted" flag. Otherwise, set was-parser-inserted to false.

    This is done so that if parser-inserted script elements fail to run when the parser tries to run them, e.g. because they are empty or specify an unsupported scripting language, another script can later mutate them and cause them to run again.

  3. If was-parser-inserted is true and the element does not have an async attribute, then set the element's "force-async" flag to true.

    This is done so that if a parser-inserted script element fails to run when the parser tries to run it, but it is later executed after a script dynamically updates it, it will execute asynchronously even if the async attribute isn't set.

  4. If the element has no src attribute, and its child nodes, if any, consist only of comment nodes and empty Text nodes, then the user agent must abort these steps at this point. The script is not executed.

  5. If the element is not in a Document, then the user agent must abort these steps at this point. The script is not executed.

  6. If either:

    • the script element has a type attribute and its value is the empty string, or
    • the script element has no type attribute but it has a language attribute and that attribute's value is the empty string, or
    • the script element has neither a type attribute nor a language attribute, then

    ...let the script block's type for this script element be "text/javascript".

    Otherwise, if the script element has a type attribute, let the script block's type for this script element be the value of that attribute with any leading or trailing sequences of space characters removed.

    Otherwise, the element has a non-empty language attribute; let the script block's type for this script element be the concatenation of the string "text/" followed by the value of the language attribute.

    The language attribute is never conforming, and is always ignored if there is a type attribute present.

  7. If the user agent does not support the scripting language given by the script block's type for this script element, then the user agent must abort these steps at this point. The script is not executed.

  8. If was-parser-inserted is true, then flag the element as "parser-inserted" again, and set the element's "force-async" flag to false.

  9. The user agent must set the element's "already started" flag.

    The state of the element at this moment is later used to determine the script source.

  10. If the element is flagged as "parser-inserted", but the element's Document is not the Document of the parser that created the element, then abort these steps.

  11. If scripting is disabled for the script element, then the user agent must abort these steps at this point. The script is not executed.

    The definition of scripting is disabled means that, amongst others, the following scripts will not execute: scripts in XMLHttpRequest's responseXML documents, scripts in DOMParser-created documents, scripts in documents created by XSLTProcessor's transformToDocument feature, and scripts that are first inserted by a script into a Document that was created using the createDocument() API. [XHR] [DOMPARSING] [DOM]

  12. If the script element has an event attribute and a for attribute, then run these substeps:

    1. Let for be the value of the for attribute.

    2. Let event be the value of the event attribute.

    3. Strip leading and trailing whitespace from event and for.

    4. If for is not an ASCII case-insensitive match for the string "window", then the user agent must abort these steps at this point. The script is not executed.

    5. If event is not an ASCII case-insensitive match for either the string "onload" or the string "onload()", then the user agent must abort these steps at this point. The script is not executed.

  13. If the script element has a charset attribute, then let the script block's character encoding for this script element be the result of getting an encoding from the value of the charset attribute.

    Otherwise, let the script block's fallback character encoding for this script element be the same as the encoding of the document itself.

    Only one of these two pieces of state is set.

  14. If the element has a src content attribute, run these substeps:

    1. Let src be the value of the element's src attribute.

    2. If src is the empty string, queue a task to fire a simple event named error at the element, and abort these steps.

    3. Resolve src relative to the element.

    4. If the previous step failed, queue a task to fire a simple event named error at the element, and abort these steps.

    5. Do a potentially CORS-enabled fetch of the resulting absolute URL, with the mode being the current state of the element's crossorigin content attribute, the origin being the origin of the script element's Document, and the default origin behaviour set to taint.

      The resource obtained in this fashion can be either CORS-same-origin or CORS-cross-origin. This only affects how error reporting happens.

      For performance reasons, user agents may start fetching the script (as defined above) as soon as the src attribute is set, instead, in the hope that the element will be inserted into the document (and that the crossorigin attribute won't change value in the meantime). Either way, once the element is inserted into the document, the load must have started as described in this step. If the UA performs such prefetching, but the element is never inserted in the document, or the src attribute is dynamically changed, or the crossorigin attribute is dynamically changed, then the user agent will not execute the script so obtained, and the fetching process will have been effectively wasted.

  15. Then, the first of the following options that describes the situation must be followed:

    If the element has a src attribute, and the element has a defer attribute, and the element has been flagged as "parser-inserted", and the element does not have an async attribute

    The element must be added to the end of the list of scripts that will execute when the document has finished parsing associated with the Document of the parser that created the element.

    The task that the networking task source places on the task queue once the fetching algorithm has completed must set the element's "ready to be parser-executed" flag. The parser will handle executing the script.

    If the element has a src attribute, and the element has been flagged as "parser-inserted", and the element does not have an async attribute

    The element is the pending parsing-blocking script of the Document of the parser that created the element. (There can only be one such script per Document at a time.)

    The task that the networking task source places on the task queue once the fetching algorithm has completed must set the element's "ready to be parser-executed" flag. The parser will handle executing the script.

    If the element does not have a src attribute, and the element has been flagged as "parser-inserted", and either the parser that created the script is an XML parser or it's an HTML parser whose script nesting level is not greater than one, and the Document of the HTML parser or XML parser that created the script element has a style sheet that is blocking scripts

    The element is the pending parsing-blocking script of the Document of the parser that created the element. (There can only be one such script per Document at a time.)

    Set the element's "ready to be parser-executed" flag. The parser will handle executing the script.

    If the element has a src attribute, does not have an async attribute, and does not have the "force-async" flag set

    The element must be added to the end of the list of scripts that will execute in order as soon as possible associated with the Document of the script element at the time the prepare a script algorithm started.

    The task that the networking task source places on the task queue once the fetching algorithm has completed must run the following steps:

    1. If the element is not now the first element in the list of scripts that will execute in order as soon as possible to which it was added above, then mark the element as ready but abort these steps without executing the script yet.

    2. Execution: Execute the script block corresponding to the first script element in this list of scripts that will execute in order as soon as possible.

    3. Remove the first element from this list of scripts that will execute in order as soon as possible.

    4. If this list of scripts that will execute in order as soon as possible is still not empty and the first entry has already been marked as ready, then jump back to the step labeled execution.

    If the element has a src attribute

    The element must be added to the set of scripts that will execute as soon as possible of the Document of the script element at the time the prepare a script algorithm started.

    The task that the networking task source places on the task queue once the fetching algorithm has completed must execute the script block and then remove the element from the set of scripts that will execute as soon as possible.

    Otherwise
    The user agent must immediately execute the script block, even if other scripts are already executing.

Fetching an external script must delay the load event of the element's document until the task that is queued by the networking task source once the resource has been fetched (defined above) has been run.

The pending parsing-blocking script of a Document is used by the Document's parser(s).

If a script element that blocks a parser gets moved to another Document before it would normally have stopped blocking that parser, it nonetheless continues blocking that parser until the condition that causes it to be blocking the parser no longer applies (e.g. if the script is a pending parsing-blocking script because there was a style sheet that is blocking scripts when it was parsed, but then the script is moved to another Document before the style sheet loads, the script still blocks the parser until the style sheets are all loaded, at which time the script executes and the parser is unblocked).

When the user agent is required to execute a script block, it must run the following steps:

  1. If the element is flagged as "parser-inserted", but the element's Document is not the Document of the parser that created the element, then abort these steps.

  2. Jump to the appropriate set of steps from the list below:

    If the load resulted in an error (for example a DNS error, or an HTTP 404 error)

    Executing the script block must just consist of firing a simple event named error at the element.

    If the load was successful

    Executing the script block must consist of running the following steps. For the purposes of these steps, the script is considered to be from an external file if, while the prepare a script algorithm above was running for this script, the script element had a src attribute specified.

    1. Initialise the script block's source as follows:

      If the script is from an external file and the script block's type is a text-based language

      The contents of that file, interpreted as a Unicode string, are the script source.

      To obtain the Unicode string, the user agent run the following steps:

      1. If the resource's Content Type metadata, if any, specifies a character encoding, and the user agent supports that encoding, then let character encoding be that encoding, and jump to the bottom step in this series of steps.

      2. If the algorithm above set the script block's character encoding, then let character encoding be that encoding, and jump to the bottom step in this series of steps.

      3. Let character encoding be the script block's fallback character encoding.

      4. If the specification for the script block's type gives specific rules for decoding files in that format to Unicode, follow them, using character encoding as the character encoding specified by higher-level protocols, if necessary.

        Otherwise, decode the file to Unicode, using character encoding as the fallback encoding.

        The decode algorithm overrides character encoding if the file contains a BOM.

      If the script is from an external file and the script block's type is an XML-based language

      The external file is the script source. When it is later executed, it must be interpreted in a manner consistent with the specification defining the language given by the script block's type.

      If the script is inline and the script block's type is a text-based language

      The value of the text IDL attribute at the time the element's "already started" flag was last set is the script source.

      If the script is inline and the script block's type is an XML-based language

      The child nodes of the script element at the time the element's "already started" flag was last set are the script source.

    2. Fire a simple event named beforescriptexecute that bubbles and is cancelable at the script element.

      If the event is canceled, then abort these steps.

    3. If the script is from an external file, then increment the ignore-destructive-writes counter of the script element's Document. Let neutralised doc be that Document.

    4. Let old script element be the value to which the script element's Document's currentScript object was most recently initialized.

    5. Initialise the script element's Document's currentScript object to the script element.

    6. Create a script, using the script block's source, the URL from which the script was obtained, the script block's type as the scripting language, and the script settings object of the script element's Document's Window object.

      If the script came from a resource that was fetched in the steps above, and the resource was CORS-cross-origin, then pass the muted errors flag to the create a script algorithm as well.

      This is where the script is compiled and actually executed.

    7. Initialise the script element's Document's currentScript object to old script element.

    8. Decrement the ignore-destructive-writes counter of neutralised doc, if it was incremented in the earlier step.

    9. Fire a simple event named afterscriptexecute that bubbles (but is not cancelable) at the script element.

    10. If the script is from an external file, fire a simple event named load at the script element.

      Otherwise, the script is internal; queue a task to fire a simple event named load at the script element.

The IDL attributes src, type, charset, defer, each must reflect the respective content attributes of the same name.

The crossOrigin IDL attribute must reflect the crossorigin content attribute, limited to only known values.

The async IDL attribute controls whether the element will execute asynchronously or not. If the element's "force-async" flag is set, then, on getting, the async IDL attribute must return true, and on setting, the "force-async" flag must first be unset, and then the content attribute must be removed if the IDL attribute's new value is false, and must be set to the empty string if the IDL attribute's new value is true. If the element's "force-async" flag is not set, the IDL attribute must reflect the async content attribute.

script . text [ = value ]

Returns the contents of the element, ignoring child nodes that aren't Text nodes.

Can be set, to replace the element's children with the given value.

The IDL attribute text must return a concatenation of the contents of all the Text nodes that are children of the script element (ignoring any other nodes such as comments or elements), in tree order. On setting, it must act the same way as the textContent IDL attribute.

When inserted using the document.write() method, script elements execute (typically synchronously), but when inserted using innerHTML and outerHTML attributes, they do not execute at all.

In this example, two script elements are used. One embeds an external script, and the other includes some data.

<script src="game-engine.js"></script>
<script type="text/x-game-map">
........U.........e
o............A....e
.....A.....AAA....e
.A..AAA...AAAAA...e
</script>

The data in this case might be used by the script to generate the map of a video game. The data doesn't have to be used that way, though; maybe the map data is actually embedded in other parts of the page's markup, and the data block here is just used by the site's search engine to help users who are looking for particular features in their game maps.

The following sample shows how a script element can be used to define a function that is then used by other parts of the document. It also shows how a script element can be used to invoke script while the document is being parsed, in this case to initialise the form's output.

<script>
 function calculate(form) {
   var price = 52000;
   if (form.elements.brakes.checked)
     price += 1000;
   if (form.elements.radio.checked)
     price += 2500;
   if (form.elements.turbo.checked)
     price += 5000;
   if (form.elements.sticker.checked)
     price += 250;
   form.elements.result.value = price;
 }
</script>
<form name="pricecalc" onsubmit="return false" onchange="calculate(this)">
 <fieldset>
  <legend>Work out the price of your car</legend>
  <p>Base cost: £52000.</p>
  <p>Select additional options:</p>
  <ul>
   <li><label><input type=checkbox name=brakes> Ceramic brakes (£1000)</label></li>
   <li><label><input type=checkbox name=radio> Satellite radio (£2500)</label></li>
   <li><label><input type=checkbox name=turbo> Turbo charger (£5000)</label></li>
   <li><label><input type=checkbox name=sticker> "XZ" sticker (£250)</label></li>
  </ul>
  <p>Total: £<output name=result></output></p>
 </fieldset>
 <script>
  calculate(document.forms.pricecalc);
 </script>
</form>
4.12.1.1 Scripting languages

A user agent is said to support the scripting language if each component of the script block's type is an ASCII case-insensitive match for the corresponding component in the MIME type string of a scripting language that the user agent implements.

The following lists the MIME type strings that user agents must recognize, and the languages to which they refer:

"application/ecmascript"
"application/javascript"
"application/x-ecmascript"
"application/x-javascript"
"text/ecmascript"
"text/javascript"
"text/javascript1.0"
"text/javascript1.1"
"text/javascript1.2"
"text/javascript1.3"
"text/javascript1.4"
"text/javascript1.5"
"text/jscript"
"text/livescript"
"text/x-ecmascript"
"text/x-javascript"
JavaScript. [ECMA262]

User agents may support other MIME types for other languages, but must not support other MIME types for the languages in the list above. User agents are not required to support the languages listed above.

The following MIME types (with or without parameters) must not be interpreted as scripting languages:

These types are explicitly listed here because they are poorly-defined types that are nonetheless likely to be used as formats for data blocks, and it would be problematic if they were suddenly to be interpreted as script by a user agent.

When examining types to determine if they represent supported languages, user agents must not ignore MIME parameters. Types are to be compared including all parameters.

For example, types that include the charset parameter will not be recognised as referencing any of the scripting languages listed above.

4.12.1.2 Restrictions for contents of script elements

The easiest and safest way to avoid the rather strange restrictions described in this section is to always escape "<!--" as "<\!--", "<script" as "<\script", and "</script" as "<\/script" when these sequences appear in literals in scripts (e.g. in strings, regular expressions, or comments), and to avoid writing code that uses such constructs in expressions. Doing so avoids the pitfalls that the restrictions in this section are prone to triggering: namely, that, for historical reasons, parsing of script blocks in HTML is a strange and exotic practice that acts unintuitively in the face of these sequences.

The textContent of a script element must match the script production in the following ABNF, the character set for which is Unicode. [ABNF]

script        = outer *( comment-open inner comment-close outer )

outer         = < any string that doesn't contain a substring that matches not-in-outer >
not-in-outer  = comment-open
inner         = < any string that doesn't contain a substring that matches not-in-inner >
not-in-inner  = comment-close / script-open

comment-open  = "<!--"
comment-close = "-->"
script-open   = "<" s c r i p t tag-end

s             =  %x0053 ; U+0053 LATIN CAPITAL LETTER S
s             =/ %x0073 ; U+0073 LATIN SMALL LETTER S
c             =  %x0043 ; U+0043 LATIN CAPITAL LETTER C
c             =/ %x0063 ; U+0063 LATIN SMALL LETTER C
r             =  %x0052 ; U+0052 LATIN CAPITAL LETTER R
r             =/ %x0072 ; U+0072 LATIN SMALL LETTER R
i             =  %x0049 ; U+0049 LATIN CAPITAL LETTER I
i             =/ %x0069 ; U+0069 LATIN SMALL LETTER I
p             =  %x0050 ; U+0050 LATIN CAPITAL LETTER P
p             =/ %x0070 ; U+0070 LATIN SMALL LETTER P
t             =  %x0054 ; U+0054 LATIN CAPITAL LETTER T
t             =/ %x0074 ; U+0074 LATIN SMALL LETTER T

tag-end       =  %x0009 ; "tab" (U+0009)
tag-end       =/ %x000A ; "LF" (U+000A)
tag-end       =/ %x000C ; "FF" (U+000C)
tag-end       =/ %x0020 ; U+0020 SPACE
tag-end       =/ %x002F ; "/" (U+002F)
tag-end       =/ %x003E ; ">" (U+003E)

When a script element contains script documentation, there are further restrictions on the contents of the element, as described in the section below.

The following script illustrates this issue. Suppose you have a script that contains a string, as in:

var example = 'Consider this string: <!-- <script>';
console.log(example);

If one were to put this string directly in a script block, it would violate the restrictions above:

<script>
  var example = 'Consider this string: <!-- <script>';
  console.log(example);
</script>

The bigger problem, though, and the reason why it would violate those restrictions, is that actually the script would get parsed weirdly: the script block above is not terminated. That is, what looks like a "</script>" end tag in this snippet is actually still part of the script block. The script doesn't execute (since it's not terminated); if it somehow were to execute, as it might if the markup looked as follows, it would fail because the script (highlighted here) is not valid JavaScript:

<script>
  var example = 'Consider this string: <!-- <script>';
  console.log(example);
</script>
<!-- despite appearances, this is actually part of the script still! -->
<script>
 ... // this is the same script block still...
</script>

What is going on here is that for legacy reasons, "<!--" and "<script" strings in script elements in HTML need to be balanced in order for the parser to consider closing the block.

By escaping the problematic strings as mentioned at the top of this section, the problem is avoided entirely:

<script>
  var example = 'Consider this string: <\!-- <\script>';
  console.log(example);
</script>
<!-- this is just a comment between script blocks -->
<script>
 ... // this is a new script block
</script>

It is possible for these sequences to naturally occur in script expressions, as in the following examples:

if (x<!--y) { ... }
if ( player<script ) { ... }

In such cases the characters cannot be escaped, but the expressions can be rewritten so that the sequences don't occur, as in:

if (x < !--y) { ... }
if (!--y > x) { ... }
if (!(--y) > x) { ... }
if (player < script) { ... }
if (script > player) { ... }

Doing this also avoids a different pitfall as well: for related historical reasons, the string "<!--" in JavaScript is actually treated as a line comment start, just like "//".

4.12.1.3 Inline documentation for external scripts

If a script element's src attribute is specified, then the contents of the script element, if any, must be such that the value of the text IDL attribute, which is derived from the element's contents, matches the documentation production in the following ABNF, the character set for which is Unicode. [ABNF]

documentation = *( *( space / tab / comment ) [ line-comment ] newline )
comment       = slash star *( not-star / star not-slash ) 1*star slash
line-comment  = slash slash *not-newline

; characters
tab           = %x0009 ; "tab" (U+0009)
newline       = %x000A ; "LF" (U+000A)
space         = %x0020 ; U+0020 SPACE
star          = %x002A ; "*" (U+002A)
slash         = %x002F ; "/" (U+002F)
not-newline   = %x0000-0009 / %x000B-10FFFF
                ; a Unicode character other than "LF" (U+000A)
not-star      = %x0000-0029 / %x002B-10FFFF
                ; a Unicode character other than "*" (U+002A)
not-slash     = %x0000-002E / %x0030-10FFFF
                ; a Unicode character other than "/" (U+002F)

This corresponds to putting the contents of the element in JavaScript comments.

This requirement is in addition to the earlier restrictions on the syntax of contents of script elements.

This allows authors to include documentation, such as license information or API information, inside their documents while still referring to external script files. The syntax is constrained so that authors don't accidentally include what looks like valid script while also providing a src attribute.

<script src="cool-effects.js">
 // create new instances using:
 //    var e = new Effect();
 // start the effect using .play, stop using .stop:
 //    e.play();
 //    e.stop();
</script>
4.12.1.4 Interaction of script elements and XSLT

This section is non-normative.

This specification does not define how XSLT interacts with the script element. However, in the absence of another specification actually defining this, here are some guidelines for implementors, based on existing implementations:

The main distinction between the first two cases and the last case is that the first two operate on Documents and the last operates on a fragment.

4.12.2 The noscript element

Categories:
Metadata content.
Flow content.
Phrasing content.
Contexts in which this element can be used:
In a head element of an HTML document, if there are no ancestor noscript elements.
Where phrasing content is expected in HTML documents, if there are no ancestor noscript elements.
Content model:
When scripting is disabled, in a head element: in any order, zero or more link elements, zero or more style elements, and zero or more meta elements.
When scripting is disabled, not in a head element: transparent, but there must be no noscript element descendants.
Otherwise: text that conforms to the requirements given in the prose.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes
DOM interface:
Uses HTMLElement.

The noscript element represents nothing if scripting is enabled, and represents its children if scripting is disabled. It is used to present different markup to user agents that support scripting and those that don't support scripting, by affecting how the document is parsed.

When used in HTML documents, the allowed content model is as follows:

In a head element, if scripting is disabled for the noscript element

The noscript element must contain only link, style, and meta elements.

In a head element, if scripting is enabled for the noscript element

The noscript element must contain only text, except that invoking the HTML fragment parsing algorithm with the noscript element as the context element and the text contents as the input must result in a list of nodes that consists only of link, style, and meta elements that would be conforming if they were children of the noscript element, and no parse errors.

Outside of head elements, if scripting is disabled for the noscript element

The noscript element's content model is transparent, with the additional restriction that a noscript element must not have a noscript element as an ancestor (that is, noscript can't be nested).

Outside of head elements, if scripting is enabled for the noscript element

The noscript element must contain only text, except that the text must be such that running the following algorithm results in a conforming document with no noscript elements and no script elements, and such that no step in the algorithm throws an exception or causes an HTML parser to flag a parse error:

  1. Remove every script element from the document.
  2. Make a list of every noscript element in the document. For every noscript element in that list, perform the following steps:
    1. Let s be the concatenation of all the Text node children of the noscript element.
    2. Set the outerHTML attribute of the noscript element to the value of s. (This, as a side-effect, causes the noscript element to be removed from the document.) [DOMPARSING]

All these contortions are required because, for historical reasons, the noscript element is handled differently by the HTML parser based on whether scripting was enabled or not when the parser was invoked.

The noscript element must not be used in XML documents.

The noscript element is only effective in the HTML syntax, it has no effect in the XHTML syntax. This is because the way it works is by essentially "turning off" the parser when scripts are enabled, so that the contents of the element are treated as pure text and not as real elements. XML does not define a mechanism by which to do this.

The noscript element has no other requirements. In particular, children of the noscript element are not exempt from form submission, scripting, and so forth, even when scripting is enabled for the element.

In the following example, a noscript element is used to provide fallback for a script.

<form action="calcSquare.php">
 <p>
  <label for=x>Number</label>:
  <input id="x" name="x" type="number">
 </p>
 <script>
  var x = document.getElementById('x');
  var output = document.createElement('p');
  output.textContent = 'Type a number; it will be squared right then!';
  x.form.appendChild(output);
  x.form.onsubmit = function () { return false; }
  x.oninput = function () {
    var v = x.valueAsNumber;
    output.textContent = v + ' squared is ' + v * v;
  };
 </script>
 <noscript>
  <input type=submit value="Calculate Square">
 </noscript>
</form>

When script is disabled, a button appears to do the calculation on the server side. When script is enabled, the value is computed on-the-fly instead.

The noscript element is a blunt instrument. Sometimes, scripts might be enabled, but for some reason the page's script might fail. For this reason, it's generally better to avoid using noscript, and to instead design the script to change the page from being a scriptless page to a scripted page on the fly, as in the next example:

<form action="calcSquare.php">
 <p>
  <label for=x>Number</label>:
  <input id="x" name="x" type="number">
 </p>
 <input id="submit" type=submit value="Calculate Square">
 <script>
  var x = document.getElementById('x');
  var output = document.createElement('p');
  output.textContent = 'Type a number; it will be squared right then!';
  x.form.appendChild(output);
  x.form.onsubmit = function () { return false; }
  x.oninput = function () {
    var v = x.valueAsNumber;
    output.textContent = v + ' squared is ' + v * v;
  };
  var submit = document.getElementById('submit');
  submit.parentNode.removeChild(submit);
 </script>
</form>

The above technique is also useful in XHTML, since noscript is not supported in the XHTML syntax.

4.12.3 The template element

Categories:
Metadata content.
Flow content.
Phrasing content.
Script-supporting element.
Contexts in which this element can be used:
Where metadata content is expected.
Where phrasing content is expected.
Where script-supporting elements are expected.
As a child of a colgroup element that doesn't have a span attribute.
Content model:
Either: Metadata content.
Or: Flow content.
Or: The content model of ol and ul elements.
Or: The content model of dl elements.
Or: The content model of figure elements.
Or: The content model of ruby elements.
Or: The content model of object elements.
Or: The content model of video and audio elements.
Or: The content model of table elements.
Or: The content model of colgroup elements.
Or: The content model of thead, tbody, and tfoot elements.
Or: The content model of tr elements.
Or: The content model of fieldset elements.
Or: The content model of select elements.
Or: The content model of details elements.
Or: The content model of menu elements whose type attribute is in the popup menu state.
Content attributes:
Global attributes
Tag omission in text/html:
Neither tag is omissible
Allowed ARIA role attribute values:
None
Allowed ARIA state and property attributes:
Global aria-* attributes
DOM interface:
interface HTMLTemplateElement : HTMLElement {
  readonly attribute DocumentFragment content;
};

The template element is used to declare fragments of HTML that can be cloned and inserted in the document by script.

Templates provide a method for declaring inert DOM subtrees and manipulating them to instantiate document fragments with identical contents.

When web pages dynamically alter the contents of their documents (e.g. in response to user interaction or new data arriving from the server), it is common that they require fragments of HTML which may require further modification before use, such as the insertion of values appropriate for the usage context.

The template element allows for the declaration of document fragments which are unused by the document when loaded, but are parsed as HTML and are available at runtime for use by the web page.

In a rendering, the template element represents nothing.

template . content

Returns the contents of the template, which are stored in a DocumentFragment associated with a different Document so as to avoid the template contents interfering with the main Document. (For example, this avoids form controls from being submitted, scripts from executing, and so forth.)

Each template element has an associated DocumentFragment object that is its template contents. When a template element is created, the user agent must run the following steps to establish the template contents:

  1. Let doc be the template element's ownerDocument's appropriate template contents owner document.

  2. Create a DocumentFragment object whose ownerDocument is doc.

  3. Set the template element's template contents to the newly created DocumentFragment object.

A Document doc's appropriate template contents owner document is the Document returned by the following algorithm:

  1. If doc is not a Document created by this algorithm, run these substeps:

    1. If doc does not yet have an associated inert template document then run these substeps:

      1. Let new doc be a new Document (that does not have a browsing context). This is "a Document created by this algorithm" for the purposes of the step above.

      2. If doc is an HTML document, mark new doc as an HTML document also.

      3. Let doc's associated inert template document be new doc.

    2. Set doc to doc's associated inert template document.

    Each Document not created by this algorithm thus gets a single Document to act as its proxy for owning the template contents of all its template elements, so that they aren't in a browsing context and thus remain inert (e.g. scripts do not run). Meanwhile, template elements inside Document objects that are created by this algorithm just reuse the same Document owner for their contents.

  2. Return doc.

When a template element changes ownerDocument, the user agent must run the following steps:

  1. Let doc be the template element's new ownerDocument's appropriate template contents owner document.

  2. Adopt the template element's template contents (a DocumentFragment object) into doc.

The content IDL attribute must return the template element's template contents.


The cloning steps for a template element node being cloned to a copy copy must run the following steps:

  1. If the clone children flag is not set in the calling clone algorithm, abort these steps.

  2. Let copied contents be the result of cloning all the children of node's template contents, with ownerDocument set to copy's template contents's ownerDocument, and with the clone children flag set.

  3. Append copied contents to copy's template contents.

In this example, a script populates a table with data from a data structure, using a template to provide the element structure instead of manually generating the structure from markup.

<!DOCTYPE html>
<title>Cat data</title>
<script>
 // Data is hard-coded here, but could come from the server
 var data = [
   { name: 'Pillar', color: 'Ticked Tabby', sex: 'Female (neutered)', legs: 3 },
   { name: 'Hedral', color: 'Tuxedo', sex: 'Male (neutered)', legs: 4 },
 ];
</script>
<table>
 <thead>
  <tr>
   <th>Name <th>Color <th>Sex <th>Legs
 <tbody>
  <template id="row">
   <tr><td><td><td><td>
  </template>
</table>
<script>
 var template = document.querySelector('#row');
 for (var i = 0; i < data.length; i += 1) {
   var cat = data[i];
   var clone = template.content.cloneNode(true);
   var cells = clone.querySelectorAll('td');
   cells[0].textContent = cat.name;
   cells[1].textContent = cat.color;
   cells[2].textContent = cat.sex;
   cells[3].textContent = cat.legs;
   template.parentNode.appendChild(clone);
 }
</script>
4.12.3.1 Interaction of template elements with XSLT and XPath

This section is non-normative.

This specification does not define how XSLT and XPath interact with the template element. However, in the absence of another specification actually defining this, here are some guidelines for implementors, which are intended to be consistent with other processing described in this specification:

4.12.4 The canvas element

Categories:
Flow content.
Phrasing content.
Embedded content.
Palpable content.
Contexts in which this element can be used:
Where embedded content is expected.
Content model:
Transparent.
Content attributes:
Global attributes
width
height
DOM interface:
typedef (CanvasRenderingContext2D or WebGLRenderingContext) RenderingContext;

interface HTMLCanvasElement : HTMLElement {
           attribute unsigned long width;
           attribute unsigned long height;

  RenderingContext? getContext(DOMString contextId, any... arguments);
  boolean probablySupportsContext(DOMString contextId, any... arguments);

  void setContext(RenderingContext context);
  CanvasProxy transferControlToProxy();

  DOMString toDataURL(optional DOMString type, any... arguments);
  void toBlob(FileCallback? _callback, optional DOMString type, any... arguments);
};

The canvas element provides scripts with a resolution-dependent bitmap canvas, which can be used for rendering graphs, game graphics, art, or other visual images on the fly.

Authors should not use the canvas element in a document when a more suitable element is available. For example, it is inappropriate to use a canvas element to render a page heading: if the desired presentation of the heading is graphically intense, it should be marked up using appropriate elements (typically h1) and then styled using CSS and supporting technologies such as Web Components.

When authors use the canvas element, they must also provide content that, when presented to the user, conveys essentially the same function or purpose as the canvas' bitmap. This content may be placed as content of the canvas element. The contents of the canvas element, if any, are the element's fallback content.


In interactive visual media, if scripting is enabled for the canvas element, and if support for canvas elements has been enabled, the canvas element represents embedded content consisting of a dynamically created image, the element's bitmap.

In non-interactive, static, visual media, if the canvas element has been previously associated with a rendering context (e.g. if the page was viewed in an interactive visual medium and is now being printed, or if some script that ran during the page layout process painted on the element), then the canvas element represents embedded content with the element's current bitmap and size. Otherwise, the element represents its fallback content instead.

In non-visual media, and in visual media if scripting is disabled for the canvas element or if support for canvas elements has been disabled, the canvas element represents its fallback content instead.

When a canvas element represents embedded content, the user can still focus descendants of the canvas element (in the fallback content). When an element is focused, it is the target of keyboard interaction events (even though the element itself is not visible). This allows authors to make an interactive canvas keyboard-accessible: authors should have a one-to-one mapping of interactive regions to focusable elements in the fallback content. (Focus has no effect on mouse interaction events.) [DOMEVENTS]


The canvas element has two attributes to control the size of the element's bitmap: width and height. These attributes, when specified, must have values that are valid non-negative integers. The rules for parsing non-negative integers must be used to obtain their numeric values. If an attribute is missing, or if parsing its value returns an error, then the default value must be used instead. The width attribute defaults to 300, and the height attribute defaults to 150.

The intrinsic dimensions of the canvas element when it represents embedded content are equal to the dimensions of the element's bitmap.

The user agent must use a square pixel density consisting of one pixel of image data per coordinate space unit for the bitmaps of a canvas and its rendering contexts.

A canvas element can be sized arbitrarily by a style sheet, its bitmap is then subject to the 'object-fit' CSS property. [CSSIMAGES]


The bitmaps of canvas elements, as well as some of the bitmaps of rendering contexts, such as those described in the HTML Canvas 2D Context specification [CANVAS2D], have an origin-clean flag, which can be set to true or false. Initially, when the canvas element is created, its bitmap's origin-clean flag must be set to true.

A canvas bitmap can also have a hit region list, as described in the CanvasRenderingContext2D section below.

A canvas element can have a rendering context bound to it. Initially, it does not have a bound rendering context. To keep track of whether it has a rendering context or not, and what kind of rendering context it is, a canvas also has a canvas context mode, which is initially none but can be changed to either direct-2d, direct-webgl, indirect, or proxied by algorithms defined in this specification.

When its canvas context mode is none, a canvas element has no rendering context, and its bitmap must be fully transparent black with an intrinsic width equal to the numeric value of the element's width attribute and an intrinsic height equal to the numeric value of the element's height attribute, those values being interpreted in CSS pixels, and being updated as the attributes are set, changed, or removed.

When a canvas element represents embedded content, it provides a paint source whose width is the element's intrinsic width, whose height is the element's intrinsic height, and whose appearance is the element's bitmap.

Whenever the width and height content attributes are set, removed, changed, or redundantly set to the value they already have, if the canvas context mode is direct-2d, the user agent must set bitmap dimensions to the numeric values of the width and height content attributes.

The width and height IDL attributes must reflect the respective content attributes of the same name, with the same defaults.


context = canvas . getContext(contextId [, ... ] )

Returns an object that exposes an API for drawing on the canvas. The first argument specifies the desired API, either "2d" or "webgl". Subsequent arguments are handled by that API.

The list of defined contexts is given on the WHATWG Wiki CanvasContexts page. [WHATWGWIKI]

Example contexts are the "2d" [CANVAS2D] and the "webgl" context [WEBGL].

Returns null if the given context ID is not supported or if the canvas has already been initialized with some other (incompatible) context type (e.g. trying to get a "2d" context after getting a "webgl" context).

Throws an InvalidStateError exception if the setContext() or transferControlToProxy() methods have been used.

supported = canvas . probablySupportsContext(contextId [, ... ] )

Returns false if calling getContext() with the same arguments would definitely return null, and true otherwise.

This return value is not a guarantee that getContext() will or will not return an object, as conditions (e.g. availability of system resources) can vary over time.

Throws an InvalidStateError exception if the setContext() or transferControlToProxy() methods have been used.

canvas . setContext(context)

Sets the canvas' rendering context to the given object.

Throws an InvalidStateError exception if the getContext() or transferControlToProxy() methods have been used.

There are two ways for a canvas element to acquire a rendering context: the canvas element can provide one via the getContext() method, and one can be assigned to it via the setContext() method. In addition, the whole issue of a rendering context can be taken out of the canvas element's hands and passed to a CanvasProxy object, which itself can then be assigned a rendering context using its setContext() method.

These three methods are mutually exclusive; calling any of the three makes the other two start throwing InvalidStateError exceptions when called.

Each rendering context has a context bitmap mode, which is one of fixed, unbound, or bound. Initially, rendering contexts must be in the unbound mode.


The getContext(contextId, arguments...) method of the canvas element, when invoked, must run the steps in the cell of the following table whose column header describes the canvas element's canvas context mode and whose row header describes the method's first argument.

none direct-2d direct-webgl indirect proxied
"2d" Set the canvas element's context mode to direct-2d, obtain a CanvasRenderingContext2D object as defined in the HTML Canvas 2D Context specification [CANVAS2D], set the obtained CanvasRenderingContext2D object's context bitmap mode to fixed, and return the CanvasRenderingContext2D object Return the same object as was return the last time the method was invoked with this same argument. Return null. Throw an InvalidStateError exception. Throw an InvalidStateError exception.
"webgl", if the user agent supports the WebGL feature in its current configuration Follow the instructions given in the WebGL specification's Context Creation section to obtain either a WebGLRenderingContext or null; if the returned value is null, then return null and abort these steps, otherwise, set the canvas element's context mode to direct-webgl, set the new WebGLRenderingContext object's context bitmap mode to fixed, and return the WebGLRenderingContext object‡ [WEBGL] Return null. Return the same object as was return the last time the method was invoked with this same argument. Throw an InvalidStateError exception. Throw an InvalidStateError exception.
A vendor-specific extension* Behave as defined for the extension. Behave as defined for the extension. Behave as defined for the extension. Throw an InvalidStateError exception. Throw an InvalidStateError exception.
An unsupported value† Return null. Return null. Return null. Throw an InvalidStateError exception. Throw an InvalidStateError exception.

* Vendors may define experimental contexts using the syntax vendorname-context, for example, moz-3d.

† For example, the "webgl" value in the case of a user agent having exhausted the graphics hardware's abilities and having no software fallback implementation.

‡ The second (and subsequent) argument(s) to the method, if any, are ignored in all cases except this one. See the WebGL specification for details.


The probablySupportsContext(contextId, arguments...) method of the canvas element, when invoked, must return false if calling getContext() on the same object and with the same arguments would definitely return null at this time, and true otherwise.


The setContext(context) method of the canvas element, when invoked, must run the following steps:

  1. If the canvas element's canvas context mode is neither none nor indirect, throw an InvalidStateError exception and abort these steps.

  2. If context's context bitmap mode is fixed, then throw an InvalidStateError exception and abort these steps.

  3. If context's context bitmap mode is bound, then run context's unbinding steps and set its context's context bitmap mode to unbound.

  4. Run context's binding steps to bind it to this canvas element.

  5. Set the canvas element's context mode to indirect and the context's context bitmap mode to bound.


url = canvas . toDataURL( [ type, ... ] )

Returns a data: URL for the image in the canvas.

The first argument, if provided, controls the type of the image to be returned (e.g. PNG or JPEG). The default is image/png; that type is also used if the given type isn't supported. The other arguments are specific to the type, and control the way that the image is generated, as given in the table below.

When trying to use types other than "image/png", authors can check if the image was really returned in the requested format by checking to see if the returned string starts with one of the exact strings "data:image/png," or "data:image/png;". If it does, the image is PNG, and thus the requested type was not supported. (The one exception to this is if the canvas has either no height or no width, in which case the result might simply be "data:,".)

canvas . toBlob(callback [, type, ... ] )

Creates a Blob object representing a file containing the image in the canvas, and invokes a callback with a handle to that object.

The second argument, if provided, controls the type of the image to be returned (e.g. PNG or JPEG). The default is image/png; that type is also used if the given type isn't supported. The other arguments are specific to the type, and control the way that the image is generated, as given in the table below.

The toDataURL() method must run the following steps:

  1. If the canvas element's bitmap's origin-clean flag is set to false, throw a SecurityError exception and abort these steps.

  2. If the canvas element's bitmap has no pixels (i.e. either its horizontal dimension or its vertical dimension is zero) then return the string "data:," and abort these steps. (This is the shortest data: URL; it represents the empty string in a text/plain resource.)

  3. Let file be a serialization of the canvas element's bitmap as a file, using the method's arguments (if any) as the arguments.

  4. Return a data: URL representing file. [RFC2397]

The toBlob() method must run the following steps:

  1. If the canvas element's bitmap's origin-clean flag is set to false, throw a SecurityError exception and abort these steps.

  2. Let callback be the first argument.

  3. Let arguments be the second and subsequent arguments to the method, if any.

  4. If the canvas element's bitmap has no pixels (i.e. either its horizontal dimension or its vertical dimension is zero) then let result be null.

    Otherwise, let result be a Blob object representing a serialization of the canvas element's bitmap as a file, using arguments. [FILEAPI]

  5. Return, but continue running these steps asynchronously.

  6. If callback is null, abort these steps.

  7. Queue a task to invoke the FileCallback callback with result as its argument. The task source for this task is the canvas blob serialization task source.

4.12.4.1 Proxying canvases to workers

Since DOM nodes cannot be accessed across worker boundaries, a proxy object is needed to enable workers to render to canvas elements in Documents.

[Exposed=Window,Worker]
interface CanvasProxy {
  void setContext(RenderingContext context);
};
// CanvasProxy implements Transferable;
canvasProxy = canvas . transferControlToProxy()

Returns a CanvasProxy object that can be used to transfer control for this canvas over to another document (e.g. an iframe from another origin) or to a worker.

Throws an InvalidStateError exception if the getContext() or setContext() methods have been used.

canvasProxy . setContext(context)

Sets the CanvasProxy object's canvas element's rendering context to the given object.

Throws an InvalidStateError exception if the CanvasProxy has been transfered.


The transferControlToProxy() method of the canvas element, when invoked, must run the following steps:

  1. If the canvas element's canvas context mode is not none, throw an InvalidStateError exception and abort these steps.

  2. Set the canvas element's context mode to proxied.

  3. Return a CanvasProxy object bound to this canvas element.

A CanvasProxy object can be neutered (like any Transferable object), meaning it can no longer be transferred, and can be disabled, meaning it can no longer be bound to rendering contexts. When first created, a CanvasProxy object must be neither.

A CanvasProxy is created with a link to a canvas element. A CanvasProxy object that has not been disabled must have a strong reference to its canvas element.

The setContext(context) method of CanvasProxy objects, when invoked, must run the following steps:

  1. If the CanvasProxy object has been disabled, throw an InvalidStateError exception and abort these steps.

  2. If the CanvasProxy object has not been neutered, then neuter it.

  3. If context's context bitmap mode is fixed, then throw an InvalidStateError exception and abort these steps.

  4. If context's context bitmap mode is bound, then run context's unbinding steps and set its context's context bitmap mode to unbound.

  5. Run context's binding steps to bind it to this CanvasProxy object's canvas element.

  6. Set the context's context bitmap mode to bound.

To transfer a CanvasProxy object old to a new owner owner, a user agent must create a new CanvasProxy object linked to the same canvas element as old, thus obtaining new, must neuter and disable the old object, and must finally return new.

Here is a clock implemented on a worker. First, the main page:

<!DOCTYPE HTML>
<title>Clock</title>
<canvas></canvas> 
<script>
  var canvas = document.getElementsByTagName('canvas')[0];
  var proxy = canvas.transferControlToProxy();
  var worker = new Worker('clock.js');
  worker.postMessage(proxy, [proxy]);
</script>

Second, the worker:

onmessage = function (event) {
  var context = new CanvasRenderingContext2D();
  event.data.setContext(context); // event.data is the CanvasProxy object
  setInterval(function () {
    context.clearRect(0, 0, context.width, context.height);
    context.fillText(new Date(), 0, 100);
    context.commit();
  }, 1000);
};
4.12.4.2 Color spaces and color correction

The canvas APIs must perform color correction at only two points: when rendering images with their own gamma correction and color space information onto a bitmap, to convert the image to the color space used by the bitmaps (e.g. using the 2D Context's drawImage() method with an HTMLImageElement object), and when rendering the actual canvas bitmap to the output device.

Thus, in the 2D context, colors used to draw shapes onto the canvas will exactly match colors obtained through the getImageData() method.

The toDataURL() method must not include color space information in the resources they return. Where the output format allows it, the color of pixels in resources created by toDataURL() must match those returned by the getImageData() method.

In user agents that support CSS, the color space used by a canvas element must match the color space used for processing any colors for that element in CSS.

The gamma correction and color space information of images must be handled in such a way that an image rendered directly using an img element would use the same colors as one painted on a canvas element that is then itself rendered. Furthermore, the rendering of images that have no color correction information (such as those returned by the toDataURL() method) must be rendered with no color correction.

Thus, in the 2D context, calling the drawImage() method to render the output of the toDataURL() method to the canvas, given the appropriate dimensions, has no visible effect.

4.12.4.3 Serializing bitmaps to a file

When a user agent is to create a serialization of the bitmap as a file, optionally with some given arguments, and optionally with a native flag set, it must create an image file in the format given by the first value of arguments, or, if there are no arguments, in the PNG format. [PNG]

If the native flag is set, or if the bitmap has one pixel per coordinate space unit, then the image file must have the same pixel data (before compression, if applicable) as the bitmap, and if the file format used supports encoding resolution metadata, the resolution of that bitmap (device pixels per coordinate space units being interpreted as image pixels per CSS pixel) must be given as well.

Otherwise, the image file's pixel data must be the bitmap's pixel data scaled to one image pixel per coordinate space unit, and if the file format used supports encoding resolution metadata, the resolution must be given as 96dpi (one image pixel per CSS pixel).

If arguments is not empty, the first value must be interpreted as a MIME type giving the format to use. If the type has any parameters, it must be treated as not supported.

For example, the value "image/png" would mean to generate a PNG image, the value "image/jpeg" would mean to generate a JPEG image, and the value "image/svg+xml" would mean to generate an SVG image (which would require that the user agent track how the bitmap was generated, an unlikely, though potentially awesome, feature).

User agents must support PNG ("image/png"). User agents may support other types. If the user agent does not support the requested type, it must create the file using the PNG format. [PNG]

User agents must convert the provided type to ASCII lowercase before establishing if they support that type.

For image types that do not support an alpha channel, the serialised image must be the bitmap image composited onto a solid black background using the source-over operator.

If the first argument in arguments gives a type corresponding to one of the types given in the first column of the following table, and the user agent supports that type, then the subsequent arguments, if any, must be treated as described in the second cell of that row.

Arguments for serialization methods
Type Other arguments Reference
image/jpeg The second argument, if it is a number in the range 0.0 to 1.0 inclusive, must be treated as the desired quality level. If it is not a number or is outside that range, the user agent must use its default value, as if the argument had been omitted. [JPEG]

For the purposes of these rules, an argument is considered to be a number if it is converted to an IDL double value by the rules for handling arguments of type any in the Web IDL specification. [WEBIDL]

Other arguments must be ignored and must not cause the user agent to throw an exception. A future version of this specification will probably define other parameters to be passed to these methods to allow authors to more carefully control compression settings, image metadata, etc.

4.12.4.4 Security with canvas elements

This section is non-normative.

Information leakage can occur if scripts from one origin can access information (e.g. read pixels) from images from another origin (one that isn't the same).

To mitigate this, bitmaps used with canvas elements are defined to have a flag indicating whether they are origin-clean. All bitmaps start with their origin-clean set to true. The flag is set to false when cross-origin images or fonts are used.

The toDataURL(), toBlob(), and getImageData() methods check the flag and will throw a SecurityError exception rather than leak cross-origin data.

The flag can be reset in certain situations; for example, when a CanvasRenderingContext2D is bound to a new canvas, the bitmap is cleared and its flag reset.

4.13 Common idioms without dedicated elements

4.13.1 Subheadings, subtitles, alternative titles and taglines

HTML does not have a dedicated mechanism for marking up subheadings, alternative titles or taglines. Here are the suggested alternatives.

h1h6 elements must not be used to markup subheadings, subtitles, alternative titles and taglines unless intended to be the heading for a new section or subsection.

In the following example the title and subtitles of a web page are grouped using a header element. As the author does not want the subtitles to be included the table of contents and they are not intended to signify the start of a new section, they are marked up using p elements. A sample CSS styled rendering of the title and subtitles is provided below the code example.

   <header>
   <h1>HTML 5.1 Nightly</h1>
   <p>A vocabulary and associated APIs for HTML and XHTML</p>
   <p>Editor's Draft 9 May 2013</p>
   </header>
   

Title:'HTML 5.1 Nightly' in a mid blue Sans Serif font. 
   Subtitle 1:'A vocabulary and associated APIs for HTML and XHTML' on a new line, same style smaller font size. 
   Subtitle 2:'Editor's Draft 9 May 2013' on a new line, same style and size as subtitle 1.

In the following example the subtitle of a book is on the same line as the title separated by a colon. A sample CSS styled rendering of the title and subtitle is provided below the code example.

<h1>The Lord of the Rings: The Two Towers</h1>

Title and subtitle:'The Lord of the Rings: The Two Towers' in a gold coloured Gothic style Serif font on a black background.

In the following example part of an album title is included in a span element, allowing it to be styled differently from the rest of the title. A br element is used to place the album title on a new line. A sample CSS styled rendering of the heading is provided below the code example.

   <h1>Ramones <br>
   <span>Hey! Ho! Let's Go</span> 
   </h1>

 Line 1:'Ramones' displayed in a large bold angular hand writing style font with a spray can paint effect. Line 2:'Hey! Ho! Let's Go' displayed in a smaller, standard sans serif style font.

In the following example the title and tagline for a news article are grouped using a header element. The title is marked up using a h2 element and the tagline is in a p element. A sample CSS styled rendering of the title and tagline is provided below the code example.

   <header>
   <h2>3D films set for popularity slide </h2>
   <p>First drop in 3D box office projected for this year despite hotly tipped summer blockbusters,
    according to Fitch Ratings report</p>
   </header>
   

 Title:'3D films set for popularity slide' in a large, bold, dark blue Serif font style. Paragraph: 'First drop in 3D box office projected for this year despite...' in a smaller, dark grey, Sans Serif font style.

In this last example the title and taglines for a news magazine are grouped using a header element. The title is marked up using a h1 element and the taglines are each in a p element. A sample CSS styled rendering of the title and taglines is provided below the code example.

   <header>
   <p>Magazine of the Decade</p>
   <h1>THE MONTH</h1>
   <p>The Best of UK and Foreign Media</p>
   </header>
   

Tagline above the heading:'Magazine of the Decade'. Tagline below the heading 'The Best of UK and Foreign Media' both in a small,all caps, sans-serif font style. Heading:'The Month' in a large, Serif font style. All text is black against a red background.

4.13.2 Bread crumb navigation

This specification does not provide a machine-readable way of describing bread-crumb navigation menus. Authors are encouraged to markup bread-crumb navigation as a list. The nav element can be used to mark the list containing links as being a navigation block.

In the following example, the current page can be reached via the path indicated. The path is indicated using the right arrow symbol "→". A text label is provided to give the user context. The links are structured as a list, which provides users with an indication of item number.

   <nav>
   <h2>You are here:</h2>
   <ul id="navlist">
   <li><a href="/">Main</a> →</li> 
   <li><a href="/products/">Products</a> →</li> 
   <li><a href="/products/dishwashers/">Dishwashers</a> →</li> 
   <li><a>Second hand</a></li> 
   </ul>
   </nav>   
   

The breadcrumb code example could be styled as a horizonatal list using CSS:

The heading and the links are displayed on one line.

The use of the right angle bracket symbol ">" to indicate path direction is discouraged as its meaning, in the context used, is not clearly conveyed to all users.

4.13.3 Tag clouds

This specification does not define any markup specifically for marking up lists of keywords that apply to a group of pages (also known as tag clouds). In general, authors are encouraged to either mark up such lists using ul elements with explicit inline counts that are then hidden and turned into a presentational effect using a style sheet, or to use SVG.

Here, three tags are included in a short tag cloud:

<style>
@media screen, print, handheld, tv {
  /* should be ignored by non-visual browsers */
  .tag-cloud > li > span { display: none; }
  .tag-cloud > li { display: inline; }
  .tag-cloud-1 { font-size: 0.7em; }
  .tag-cloud-2 { font-size: 0.9em; }
  .tag-cloud-3 { font-size: 1.1em; }
  .tag-cloud-4 { font-size: 1.3em; }
  .tag-cloud-5 { font-size: 1.5em; }
}
</style>
...
<ul class="tag-cloud">
 <li class="tag-cloud-4"><a title="28 instances" href="/t/apple">apple</a> <span>(popular)</span>
 <li class="tag-cloud-2"><a title="6 instances"  href="/t/kiwi">kiwi</a> <span>(rare)</span>
 <li class="tag-cloud-5"><a title="41 instances" href="/t/pear">pear</a> <span>(very popular)</span>
</ul>

The actual frequency of each tag is given using the title attribute. A CSS style sheet is provided to convert the markup into a cloud of differently-sized words, but for user agents that do not support CSS or are not visual, the markup contains annotations like "(popular)" or "(rare)" to categorise the various tags by frequency, thus enabling all users to benefit from the information.

The ul element is used (rather than ol) because the order is not particularly important: while the list is in fact ordered alphabetically, it would convey the same information if ordered by, say, the length of the tag.

The tag rel-keyword is not used on these a elements because they do not represent tags that apply to the page itself; they are just part of an index listing the tags themselves.

4.13.4 Conversations

This specification does not define a specific element for marking up conversations, meeting minutes, chat transcripts, dialogues in screenplays, instant message logs, and other situations where different players take turns in discourse.

Instead, authors are encouraged to mark up conversations using p elements and punctuation. Authors who need to mark the speaker for styling purposes are encouraged to use span or b. Paragraphs with their text wrapped in the i element can be used for marking up stage directions.

This example demonstrates this using an extract from Abbot and Costello's famous sketch, Who's on first:

<p> Costello: Look, you gotta first baseman?
<p> Abbott: Certainly.
<p> Costello: Who's playing first?
<p> Abbott: That's right.
<p> Costello becomes exasperated.
<p> Costello: When you pay off the first baseman every month, who gets the money?
<p> Abbott: Every dollar of it.

The following extract shows how an IM conversation log could be marked up, using the data element to provide Unix timestamps for each line. Note that the timestamps are provided in a format that the time element does not support, so the data element is used instead (namely, Unix time_t timestamps). Had the author wished to mark up the data using one of the date and time formats supported by the time element, that element could have been used instead of data. This could be advantageous as it would allow data analysis tools to detect the timestamps unambiguously, without coordination with the page author.

<p> <data value="1319898155">14:22</data> <b>egof</b> I'm not that nerdy, I've only seen 30% of the star trek episodes
<p> <data value="1319898192">14:23</data> <b>kaj</b> if you know what percentage of the star trek episodes you have seen, you are inarguably nerdy
<p> <data value="1319898200">14:23</data> <b>egof</b> it's unarguably
<p> <data value="1319898228">14:23</data> <i>* kaj blinks</i>
<p> <data value="1319898260">14:24</data> <b>kaj</b> you are not helping your case

HTML does not have a good way to mark up graphs, so descriptions of interactive conversations from games are more difficult to mark up. This example shows one possible convention using dl elements to list the possible responses at each point in the conversation. Another option to consider is describing the conversation in the form of a DOT file, and outputting the result as an SVG image to place in the document. [DOT]

<p> Next, you meet a fisherman. You can say one of several greetings:
<dl>
 <dt> "Hello there!"
 <dd>
  <p> He responds with "Hello, how may I help you?"; you can respond with:
  <dl>
   <dt> "I would like to buy a fish."
   <dd> <p> He sells you a fish and the conversation finishes.
   <dt> "Can I borrow your boat?"
   <dd>
    <p> He is surprised and asks "What are you offering in return?".
    <dl>
     <dt> "Five gold." (if you have enough)
     <dt> "Ten gold." (if you have enough)
     <dt> "Fifteen gold." (if you have enough)
     <dd> <p> He lends you his boat. The conversation ends.
     <dt> "A fish." (if you have one)
     <dt> "A newspaper." (if you have one)
     <dt> "A pebble." (if you have one)
     <dd> <p> "No thanks", he replies. Your conversation options
     at this point are the same as they were after asking to borrow
     his boat, minus any options you've suggested before.
    </dl>
   </dd>
  </dl>
 </dd>
 <dt> "Vote for me in the next election!"
 <dd> <p> He turns away. The conversation finishes.
 <dt> "Sir, are you aware that your fish are running away?"
 <dd>
  <p> He looks at you skeptically and says "Fish cannot run, sir".
  <dl>
   <dt> "You got me!"
   <dd> <p> The fisherman sighs and the conversation ends.
   <dt> "Only kidding."
   <dd> <p> "Good one!" he retorts. Your conversation options at this
   point are the same as those following "Hello there!" above.
   <dt> "Oh, then what are they doing?"
   <dd> <p> He looks at his fish, giving you an opportunity to steal
   his boat, which you do. The conversation ends.
  </dl>
 </dd>
</dl>

In some games, conversations are simpler: each character merely has a fixed set of lines that they say. In this example, a game FAQ/walkthrough lists some of the known possible responses for each character:

<section>
 <h1>Dialogue</h1>
 <p><small>Some characters repeat their lines in order each time you interact
 with them, others randomly pick from amongst their lines. Those who respond in
 order have numbered entries in the lists below.</small>
 <h2>The Shopkeeper</h2>
 <ul>
  <li>How may I help you?
  <li>Fresh apples!
  <li>A loaf of bread for madam?
 </ul>
 <h2>The pilot</h2>
 <p>Before the accident:
 <ul>
  </li>I'm about to fly out, sorry!
  </li>Sorry, I'm just waiting for flight clearance and then I'll be off!
 </ul>
 <p>After the accident:
 <ol>
  <li>I'm about to fly out, sorry!
  <li>Ok, I'm not leaving right now, my plane is being cleaned.
  <li>Ok, it's not being cleaned, it needs a minor repair first.
  <li>Ok, ok, stop bothering me! Truth is, I had a crash.
 </ol>
 <h2>Clan Leader</h2>
 <p>During the first clan meeting:
 <ul>
  <li>Hey, have you seen my daughter? I bet she's up to something nefarious again...
  <li>Nice weather we're having today, eh?
  <li>The name is Bailey, Jeff Bailey. How can I help you today?
  <li>A glass of water? Fresh from the well!
 </ul>
 <p>After the earthquake:
 <ol>
  <li>Everyone is safe in the shelter, we just have to put out the fire!
  <li>I'll go and tell the fire brigade, you keep hosing it down!
 </ol>
</section>

4.13.5 Footnotes

HTML does not have a dedicated mechanism for marking up footnotes. Here are the suggested alternatives.


For annotations, the a element should be used, pointing to an element later in the document. The convention is that the contents of the link be a number in square brackets.

In this example, a footnote in the dialogue links to a paragraph below the dialogue. The paragraph then reciprocally links back to the dialogue, allowing the user to return to the location of the footnote.

<p> Announcer: Number 16: The <i>hand</i>.
<p> Interviewer: Good evening. I have with me in the studio tonight
Mr Norman St John Polevaulter, who for the past few years has been
contradicting people. Mr Polevaulter, why <em>do</em> you
contradict people?
<p> Norman: I don't. <sup><a href="#fn1" id="r1">[1]</a></sup>
<p> Interviewer: You told me you did!
...
<section>
 <p id="fn1"><a href="#r1">[1]</a> This is, naturally, a lie,
 but paradoxically if it were true he could not say so without
 contradicting the interviewer and thus making it false.</p>
</section>

For side notes, longer annotations that apply to entire sections of the text rather than just specific words or sentences, the aside element should be used.

In this example, a sidebar is given after a dialogue, giving it some context.

<p> <span class="speaker">Customer</span>: I will not buy this record, it is scratched.
<p> <span class="speaker">Shopkeeper</span>: I'm sorry?
<p> <span class="speaker">Customer</span>: I will not buy this record, it is scratched.
<p> <span class="speaker">Shopkeeper</span>: No no no, this's'a tobacconist's.
<aside role="note">
 <p>In 1970, the British Empire lay in ruins, and foreign
 nationalists frequented the streets — many of them Hungarians
 (not the streets — the foreign nationals). Sadly, Alexander
 Yalt has been publishing incompetently-written phrase books.
</aside>

In the example above an ARIA role="note", permitted for use on aside, has been added to override the default semantics of the aside element, as the use of the element in this context, more closely matches the note role.


For figures or tables, footnotes can be included in the relevant figcaption or caption element, or in surrounding prose.

In this example, a table has cells with footnotes that are given in prose. A figure element is used to give a single legend to the combination of the table and its footnotes.

<figure>
 <figcaption>Table 1. Alternative activities for knights.</figcaption>
 <table>
  <tr>
   <th> Activity
   <th> Location
   <th> Cost
  <tr>
   <td> Dance
   <td> Wherever possible
   <td> £0<sup><a href="#fn1">1</a></sup>
  <tr>
   <td> Routines, chorus scenes<sup><a href="#fn2">2</a></sup>
   <td> Undisclosed
   <td> Undisclosed
  <tr>
   <td> Dining<sup><a href="#fn3">3</a></sup>
   <td> Camelot
   <td> Cost of ham, jam, and spam<sup><a href="#fn4">4</a></sup>
 </table>
 <p id="fn1">1. Assumed.</p>
 <p id="fn2">2. Footwork impeccable.</p>
 <p id="fn3">3. Quality described as "well".</p>
 <p id="fn4">4. A lot.</p>
</figure>

4.14 Disabled elements

An element is said to be actually disabled if it falls into one of the following categories:

This definition is used to determine what elements can be focused and which elements match the :disabled pseudo-class.

4.15 Matching HTML elements using selectors

4.15.1 Case-sensitivity

The Selectors specification leaves the case-sensitivity of element names, attribute names, and attribute values to be defined by the host language. [SELECTORS]

The Selectors specification defines that ID and class selectors, when matched against elements in documents that are in quirks mode, will be work in an ASCII case-insensitive.

When comparing a CSS element type selector to the names of HTML elements in HTML documents, the CSS element type selector must first be converted to ASCII lowercase. The same selector when compared to other elements must be compared according to its original case. In both cases, the comparison is case-sensitive.

When comparing the name part of a CSS attribute selector to the names of namespace-less attributes on HTML elements in HTML documents, the name part of the CSS attribute selector must first be converted to ASCII lowercase. The same selector when compared to other attributes must be compared according to its original case. In both cases, the comparison is case-sensitive.

Everything else (attribute values on HTML elements, IDs and classes in no-quirks mode and limited-quirks mode, and element names, attribute names, and attribute values in XML documents) must be treated as case-sensitive for the purposes of selector matching.

4.15.2 Pseudo-classes

There are a number of dynamic selectors that can be used with HTML. This section defines when these selectors match HTML elements. [SELECTORS] [CSSUI]

:link
:visited

All a elements that have an href attribute, all area elements that have an href attribute, and all link elements that have an href attribute, must match one of :link and :visited.

Other specifications might apply more specific rules regarding how these elements are to match these pseudo-classes, to mitigate some privacy concerns that apply with straightforward implementations of this requirement.

:active

The :active pseudo-class is defined to match an element while an element is being activated by the user. For the purposes of defining the :active pseudo-class only, an HTML user agent must consider an element as being activated if it is:

  • An element falling into one of the following categories between the time the user begins to indicate an intent to trigger the element's activation behavior and either the time the user stops indicating an intent to trigger the element's activation behavior, or the time the element's activation behavior has finished running, which ever comes first:

    For example, if the user is using a keyboard to push a button element by pressing the space bar, the element would match this pseudo-class in between the time that the element received the keydown event and the time the element received the keyup event.

  • An element that the user indicates using a pointing device while that pointing device is in the "down" state (e.g. for a mouse, between the time the mouse button is pressed and the time it is depressed).

  • An element that has a descendant that is currently matching the :active pseudo-class.

:hover

The :hover pseudo-class is defined to match an element while the user designates an element with a pointing device. For the purposes of defining the :hover pseudo-class only, an HTML user agent must consider an element as being one that the user designates if it is:

  • An element that the user indicates using a pointing device.

  • An element that has a descendant that the user indicates using a pointing device.

  • An element that is the labeled control of a label element that is currently matching :hover.

Consider in particular a fragment such as:

<p> <label for=c> <input id=a> </label> <span id=b> <input id=c> </span> </p>

If the user designates the element with ID "a" with their pointing device, then the p element (and all its ancestors not shown in the snippet above), the label element, the element with ID "a", and the element with ID "c" will match the :hover pseudo-class. The element with ID "a" matches it from condition 1, the label and p elements match it because of condition 2 (one of their descendants is designated), and the element with ID "c" matches it through condition 3 (its label element matches :hover). However, the element with ID "b" does not match :hover: its descendant is not designated, even though it matches :hover.

:enabled

The :enabled pseudo-class must match any element falling into one of the following categories:

:disabled

The :disabled pseudo-class must match any element that is actually disabled.

:checked

The :checked pseudo-class must match any element falling into one of the following categories:

:indeterminate

The :indeterminate pseudo-class must match any element falling into one of the following categories:

:default

The :default pseudo-class must match any element falling into one of the following categories:

:valid

The :valid pseudo-class must match any element falling into one of the following categories:

:invalid

The :invalid pseudo-class must match any element falling into one of the following categories:

:in-range

The :in-range pseudo-class must match all elements that are candidates for constraint validation, have range limitations, and that are neither suffering from an underflow nor suffering from an overflow.

:out-of-range

The :out-of-range pseudo-class must match all elements that are candidates for constraint validation, have range limitations, and that are either suffering from an underflow or suffering from an overflow.

:required

The :required pseudo-class must match any element falling into one of the following categories:

:optional

The :optional pseudo-class must match any element falling into one of the following categories:

:read-only
:read-write

The :read-write pseudo-class must match any element falling into one of the following categories, which for the purposes of Selectors are thus considered user-alterable: [SELECTORS]

The :read-only pseudo-class must match all other HTML elements.

:dir(ltr)

The :dir(ltr) pseudo-class must match all elements whose directionality is 'ltr'.

:dir(rtl)

The :dir(rtl) pseudo-class must match all elements whose directionality is 'rtl'.

Another section of this specification defines the target element used with the :target pseudo-class.

This specification does not define when an element matches the :focus or :lang() dynamic pseudo-classes, as those are all defined in sufficient detail in a language-agnostic fashion in the Selectors specification. [SELECTORS]

5 User interaction

5.1 The hidden attribute

All HTML elements may have the hidden content attribute set. The hidden attribute is a boolean attribute. When specified on an element, it indicates that the element is not yet, or is no longer, directly relevant to the page's current state, or that it is being used to declare content to be reused by other parts of the page as opposed to being directly accessed by the user. User agents should not render elements that have the hidden attribute specified. This requirement may be implemented indirectly through the style layer. For example, an HTML+CSS user agent could implement these requirements using the rules suggested in the Rendering section.

Because this attribute is typically implemented using CSS, it's also possible to override it using CSS. For instance, a rule that applies 'display: block' to all elements will cancel the effects of the hidden attribute. Authors therefore have to take care when writing their style sheets to make sure that the attribute is still styled as expected.

In the following skeletal example, the attribute is used to hide the Web game's main screen until the user logs in:

  <h1>The Example Game</h1>
  <section id="login">
   <h2>Login</h2>
   <form>
    ...
    <!-- calls login() once the user's credentials have been checked -->
   </form>
   <script>
    function login() {
      // switch screens
      document.getElementById('login').hidden = true;
      document.getElementById('game').hidden = false;
    }
   </script>
  </section>
  <section id="game" hidden>
   ...
  </section>

The hidden attribute must not be used to hide content that could legitimately be shown in another presentation. For example, it is incorrect to use hidden to hide panels in a tabbed dialog, because the tabbed interface is merely a kind of overflow presentation — one could equally well just show all the form controls in one big page with a scrollbar. It is similarly incorrect to use this attribute to hide content just from one presentation — if something is marked hidden, it is hidden from all presentations, including, for instance, printers.

Elements that are not themselves hidden must not hyperlink to elements that are hidden. The for attributes of label and output elements that are not themselves hidden must similarly not refer to elements that are hidden. In both cases, such references would cause user confusion.

Elements and scripts may, however, refer to elements that are hidden in other contexts.

For example, it would be incorrect to use the href attribute to link to a section marked with the hidden attribute. If the content is not applicable or relevant, then there is no reason to link to it.

It would be fine, however, to use the ARIA aria-describedby attribute to refer to descriptions that are themselves hidden. While hiding the descriptions implies that they are not useful alone, they could be written in such a way that they are useful in the specific context of being referenced from the images that they describe.

Similarly, a canvas element with the hidden attribute could be used by a scripted graphics engine as an off-screen buffer, and a form control could refer to a hidden form element using its form attribute.

Accessibility APIs are encouraged to provide a way to expose structured content while marking it as hidden in the default view. Such content should not be perceivable to users in the normal document flow in any modality, whether using Assistive Technology (AT) or mainstream User Agents.

When such features are available, User Agents may use them to expose the full semantics of hidden elements to AT when appropriate, if such content is referenced indirectly by an ID reference or valid hash-name reference. This allows ATs to access the structure of these hidden elements upon user request, while keeping the content hidden in all presentations of the normal document flow. Authors who wish to prevent user-initiated viewing of a hidden element should not reference the element with such a mechanism.

Because some User Agents have flattened hidden content when exposing such content to AT, authors should not reference hidden content which would lose essential meaning when flattened.

For example, it would be incorrect to use the href attribute to link to a section marked with the hidden attribute. If the content is not applicable or relevant, then there is no reason to link to it.

It would be fine, however, to use the ARIA aria-describedby attribute to refer to descriptions that are themselves hidden. While hiding the descriptions implies that they are not useful alone, they could be written in such a way that they are useful in the specific context of being referenced from the images that they describe.

Similarly, a canvas element with the hidden attribute could be used by a scripted graphics engine as an off-screen buffer, and a form control could refer to a hidden form element using its form attribute.

Elements in a section hidden by the hidden attribute are still active, e.g. scripts and form controls in such sections still execute and submit respectively. Only their presentation to the user changes.

The hidden IDL attribute must reflect the content attribute of the same name.

5.2 Inert subtrees

A node (in particular elements and text nodes) can be marked as inert. When a node is inert, then the user agent must act as if the node was absent for the purposes of targeting user interaction events, may ignore the node for the purposes of text search user interfaces (commonly known as "find in page"), and may prevent the user from selecting text in that node. User agents should allow the user to override the restrictions on search and text selection, however.

For example, consider a page that consists of just a single inert paragraph positioned in the middle of a body. If a user moves their pointing device from the body over to the inert paragraph and clicks on the paragraph, no mouseover event would be fired, and the mousemove and click events would be fired on the body element rather than the paragraph.

When a node is inert, it generally cannot be focused. Inert nodes that are commands will also get disabled.

While a browsing context container is marked as inert, its nested browsing context's active document, and all nodes in that Document, must be marked as inert.

An entire Document can be marked as blocked by a modal dialog subject. While a Document is so marked, every node that is in the Document, with the exception of the subject element and its descendants, must be marked inert. (The elements excepted by this paragraph can additionally be marked inert through other means; being part of a modal dialog does not "protect" a node from being marked inert.)

Only one element at a time can mark a Document as being blocked by a modal dialog. When a new dialog is made to block a Document, the previous element, if any, stops blocking the Document.

The dialog element's showModal() method makes use of this mechanism.

5.3 Activation

Certain elements in HTML have an activation behavior, which means that the user can activate them. This triggers a sequence of events dependent on the activation mechanism, and normally culminating in a click event, as described below.

The user agent should allow the user to manually trigger elements that have an activation behavior, for instance using keyboard or voice input, or through mouse clicks. When the user triggers an element with a defined activation behavior in a manner other than clicking it, the default action of the interaction event must be to run synthetic click activation steps on the element.

Each element has a click in progress flag, initially set to false.

When a user agent is to run synthetic click activation steps on an element, the user agent must run the following steps:

  1. If the element's click in progress flag is set to true, then abort these steps.

  2. Set the click in progress flag on the element to true.

  3. Run pre-click activation steps on the element.

  4. Fire a click event at the element. If the run synthetic click activation steps algorithm was invoked because the click() method was invoked, then the isTrusted attribute must be initialised to false.

  5. If this click event is not canceled, run post-click activation steps on the element.

    If the event is canceled, the user agent must run canceled activation steps on the element instead.

  6. Set the click in progress flag on the element to false.

When a pointing device is clicked, the user agent must run authentic click activation steps instead of firing the click event. When a user agent is to run authentic click activation steps for a given event event, it must follow these steps:

  1. Let target be the element designated by the user (the target of event).

  2. If target is a canvas element, run the canvas MouseEvent rerouting steps. If this changes event's target, then let target be the new target.

  3. Set the click in progress flag on target to true.

  4. Let e be the nearest activatable element of target (defined below), if any.

  5. If there is an element e, run pre-click activation steps on it.

  6. Dispatch event (the required click event) at target.

    If there is an element e and the click event is not canceled, run post-click activation steps on element e.

    If there is an element e and the event is canceled, run canceled activation steps on element e.

  7. Set the click in progress flag on target to false.

The algorithms above don't run for arbitrary synthetic events dispatched by author script. The click() method can be used to make the run synthetic click activation steps algorithm happen programmatically.

Click-focusing behavior (e.g. the focusing of a text field when user clicks in one) typically happens before the click, when the mouse button is first depressed, and is therefore not discussed here.

Given an element target, the nearest activatable element is the element returned by the following algorithm:

  1. If target has a defined activation behavior, then return target and abort these steps.

  2. If target has a parent element, then set target to that parent element and return to the first step.

  3. Otherwise, there is no nearest activatable element.

When a user agent is to run pre-click activation steps on an element, it must run the pre-click activation steps defined for that element, if any.

When a user agent is to run canceled activation steps on an element, it must run the canceled activation steps defined for that element, if any.

When a user agent is to run post-click activation steps on an element, it must run the activation behavior defined for that element, if any. Activation behaviors can refer to the click event that was fired by the steps above leading up to this point.

element . click()

Acts as if the element was clicked.

The click() method must run the following steps:

  1. If the element is a form control that is disabled, abort these steps.

  2. Run synthetic click activation steps on the element.

5.4 Focus

5.4.1 Introduction

This section is non-normative.

An HTML user interface typically consists of multiple interactive widgets, such as form controls, scrollable regions, links, dialog boxes, browser tabs, and so forth. These widgets form a hierarchy, with some (e.g. browser tabs, dialog boxes) containing others (e.g. links, form controls).

When interacting with an interface using a keyboard, key input is channeled from the system, through the hierarchy of interactive widgets, to an active widget, which is said to be focused.

Consider an HTML application running in a browser tab running in a graphical environment. Suppose this application had a page with some text fields and links, and was currently showing a modal dialog, which itself had a text field and a button.

The hierarchy of focusable widgets, in this scenario, would include the browser window, which would have, amongst its children, the browser tab containing the HTML application. The tab itself would have as its children the various links and text fields, as well as the dialog. The dialog itself would have as its children the text field and the button.

If the widget with focus in this example was the text field in the dialog box, then key input would be channeled from the graphical system to ① the Web browser, then to ② the tab, then to ③ the dialog, and finally to ④ the text field.

Keyboard events are always targetted at this focused element.

5.4.2 Data model

The term focusable area is used to refer to regions of the interface that can become the target of keyboard input. Focusable areas can be elements, parts of elements, or other regions managed by the user agent.

Each focusable area has a DOM anchor, which is a Node object that represents the position of the focusable area in the DOM. (When the focusable area is itself a Node, it is its own DOM anchor.) The DOM anchor is used in some APIs as a substitute for the focusable area when there is no other DOM object to represent the focusable area.

The following table describes what objects can be focusable areas. The cells in the left column describe objects that can be focusable areas; the cells in the right column describe the DOM anchors for those elements. (The cells that span both columns are non-normative examples.)

Focusable area DOM anchor
Examples
Elements that have their tabindex focus flag set, that are not actually disabled, that are not expressly inert, and that are either being rendered or being used as relevant canvas fallback content. The element itself.

iframe, <input type=text>, sometimes <a href=""> (depending on platform conventions).

The shapes of area elements in an image map associated with an img element that is being rendered and is not expressly inert. The img element.

In the following example, the area element creates two shapes, one on each image. The DOM anchor of the first shape is the first img element, and the DOM anchor of the second shape is the second img element.

<map id=wallmap><area alt="Enter Door" coords="10,10,100,200" href="door.html"></map>
...
<img src="images/innerwall.jpeg" alt="There is a white wall here, with a door." usemap="#wallmap">
...
<img src="images/outerwall.jpeg" alt="There is a red wall here, with a door." usemap="#wallmap">
The user-agent provided subwidgets of elements that are being rendered and are not actually disabled or expressly inert. The element for which the focusable area is a subwidget.

The controls in the user interface that is exposed to the user for a video element, the up and down buttons in a spin-control version of <input type=number>, the two range control widgets in a <input type=range multiple>, the part of a details element's rendering that enabled the element to be opened or closed using keyboard input.

The scrollable regions of elements that are being rendered are not expressly inert. The element for which the box that the scrollable region scrolls was created.

The CSS 'overflow' property's 'scroll' value typically creates a scrollable region.

The viewport of a Document that is in a browsing context and is not inert. The Document for which the viewport was created.

The contents of an iframe.

Any other element or part of an element, especially to aid with accessibility or to better match platform conventions. The element.

A user agent could make all list item bullets focusable, so that a user can more easily navigate lists.

Similarly, a user agent could make all elements with title attributes focusable, so that their advisory information can be accessed.

A browsing context container (e.g. an iframe) is a focusable area, but key events routed to a browsing context container get immediately routed to the nested browsing context's active document. Similarly, in sequential focus navigation a browsing context container essentially acts merely as a placeholder for its nested browsing context's active document.

Each focusable area belongs to a control group. Each control group has an owner. Control group owners are control group owner objects. The following are control group owner objects:

Each control group owner object owns one control group (though that group might be empty).

If the DOM anchor of a focusable area is a control group owner object, then that focusable area belongs to that control group owner object's control group. Otherwise, the focusable area belongs to its DOM anchor's nearest ancestor control group owner object.

Thus, a viewport always belongs to the control group of the Document for which the viewport was created, an input control belongs to the control group of its nearest ancestor dialog or Document, and an image map's shapes belong to the nearest ancestor dialog or Document of the img elements (not the area elements — this means one area element might create multiple shapes in different control groups).

An element is expressly inert if it is inert but it is not a control group owner object and its nearest ancestor control group owner object is not inert.

One focusable area in each non-empty control group is designated the focused area of the control group. Which control is so designated changes over time, based on algorithms in this specification. If a control group is empty, it has no focused area.

Each control group owner object can also act as the manager of a dialog group.

Each dialog element that has an open attribute specified and that is being rendered (i.e. that is a control group owner object) and is not expressly inert belongs to the dialog group whose manager is the dialog element's nearest ancestor control group owner object.

A dialog is expressly inert if it is inert but its nearest ancestor control group owner object is not.

If no dialog element has a particular control group owner object as its nearest ancestor control group owner object, then that control group owner object has no dialog group.

Each dialog group can have a dialog designated as the focused dialog of the dialog group. Which dialog is so designated changes over time, based on algorithms in this specification.


Focusable areas in control groups are ordered relative to the tree order of their DOM anchors. Focusable areas with the same DOM anchor in a control group are ordered relative to their CSS box's relative positions in a pre-order, depth-first traversal of the box tree. [CSS]

Elements in dialog groups are ordered in tree order.


The currently focused area of a top-level browsing context at any particular time is the focusable area or dialog returned by this algorithm:

  1. Let candidate be the Document of the top-level browsing context.

  2. If candidate has a dialog group with a designated focused dialog of the dialog group, then let candidate be the designated focused dialog of the dialog group, and redo this step.

    Otherwise, if candidate has a non-empty control group, and the designated focused area of the control group is a browsing context container, then let candidate be the active document of that browsing context container's nested browsing context, and redo this step.

    Otherwise, if candidate has a non-empty control group, let candidate be the designated focused area of the control group.

  3. Return candidate.

An element that is the DOM anchor of a focusable area is said to gain focus when that focusable area becomes the currently focused area of a top-level browsing context. When an element is the DOM anchor of a focusable area of the currently focused area of a top-level browsing context, it is focused.

The focus chain of a focusable area or control group owner object subject is the ordered list constructed as follows:

  1. Let current object be subject.

  2. Let output be an empty list.

  3. Loop: Append current object to output.

  4. If current object is an area element's shape, append that area element to output.

    Otherwise, if current object is a focusable area whose DOM anchor is an element that is not current object itself, append that DOM anchor element to output.

  5. If current object is a dialog object in a dialog group, let current object be that dialog group's manager, and return to the step labeled loop.

    Otherwise, if current object is a focusable area, let current object be that focusable area's control group's owner, and return to the step labeled loop.

    Otherwise, if current object is a Document in a nested browsing context, let current object be its browsing context container, and return to the step labeled loop.

  6. Return output.

    The chain starts with subject and (if subject is or can be the currently focused area of a top-level browsing context) continues up the focus hierarchy up to the Document of the top-level browsing context.

5.4.3 The tabindex attribute

The tabindex content attribute allows authors to indicate that an element is supposed to be focusable, and whether it is supposed to be reachable using sequential focus navigation and, if so, what is to be the relative order of the element for the purposes of sequential focus navigation. The name "tab index" comes from the common use of the "tab" key to navigate through the focusable elements. The term "tabbing" refers to moving forward through the focusable elements that can be reached using sequential focus navigation.

When the attribute is omitted, the user agent applies defaults. (There is no way to make an element that is being rendered be not focusable at all without disabling it or making it inert.)

The tabindex attribute, if specified, must have a value that is a valid integer. Positive numbers specify the relative position of the element's focusable areas in the sequential focus navigation order, and negative numbers indicate that the control is to be unreachable by sequential focus navigation.

Each element can have a tabindex focus flag set, as defined below. This flag is a factor that contributes towards determining whether an element is a focusable area, as described in the previous section.

If the tabindex attribute is specified on an element, it must be parsed using the rules for parsing integers. The attribute's values, or lack thereof, must be interpreted as follows:

If the attribute is omitted or parsing the value returns an error

The user agent should follow platform conventions to determine if the element's tabindex focus flag is set and, if so, whether the element and any focusable areas that have the element as their DOM anchor can be reached using sequential focus navigation, and if so, what their relative position in the sequential focus navigation order is to be.

Modulo platform conventions, it is suggested that for the following elements, the tabindex focus flag be set:

One valid reason to ignore the platform conventions and always allow an element to be focused (by setting its tabindex focus flag) would be if the user's only mechanism for activating an element is through a keyboard action that triggers the focused element.

If the value is a negative integer

The user agent must set the element's tabindex focus flag, but should omit the element from the sequential focus navigation order.

One valid reason to ignore the requirement that sequential focus navigation not allow the author to lead to the element would be if the user's only mechanism for moving the focus is sequential focus navigation. For instance, a keyboard-only user would be unable to click on a text field with a negative tabindex, so that user's user agent would be well justified in allowing the user to tab to the control regardless.

If the value is a zero

The user agent must set the element's tabindex focus flag, should allow the element and any focusable areas that have the element as their DOM anchor to be reached using sequential focus navigation, following platform conventions to determine the element's relative position in the sequential focus navigation order.

If the value is greater than zero

The user agent must set the element's tabindex focus flag, should allow the element and any focusable areas that have the element as their DOM anchor to be reached using sequential focus navigation, and should place the element — referenced as candidate below — and the aforementioned focusable areas in the sequential focus navigation order so that, relative to other focusable areas in the sequential focus navigation order, they are:

An element that has its tabindex focus flag set but does not otherwise have an activation behavior defined has an activation behavior that does nothing.

This means that an element that is only focusable because of its tabindex attribute will fire a click event in response to a non-mouse activation (e.g. hitting the "enter" key while the element is focused).

An element with the tabindex attribute specified is interactive content.

The tabIndex IDL attribute must reflect the value of the tabindex content attribute. Its default value is 0 for elements that are focusable and −1 for elements that are not focusable.

5.4.4 Processing model

The focusing steps for an object new focus target that is either a focusable area, or an element that is not a focusable area, or a browsing context, are as follows:

  1. If new focus target is neither a dialog element that has an open attribute specified and that is being rendered (i.e. that is a control group owner object), nor a focusable area, then run the first matching set of steps from the following list:

    If new focus target is an area element with one or more shapes that are focusable areas

    Let new focus target be the shape corresponding to the first img element in tree order that uses the image map to which the area element belongs.

    If new focus target is an element with one or more scrollable regions that are focusable areas

    Let new focus target be the element's first scrollable region, according to a pre-order, depth-first traversal of the box tree. [CSS]

    If new focus target is the body element of its Document
    If new focus target is the root element of its Document and that Document has no body element

    Let new focus target be the Document's viewport.

    If new focus target is a browsing context

    Let new focus target be the browsing context's active document.

    Otherwise

    Abort the focusing steps.

  2. If new focus target is a control group owner object that is not a focusable area, but does have a dialog group, and that dialog group has a designated focused dialog, then let new focus target be the focused dialog of the dialog group, and redo this step.

    Otherwise, if new focus target is a control group owner object that is not a focusable area, and its control group is not empty, then designate new focus target as the focused area of the control group, and redo this step.

    Otherwise, if new focus target is a browsing context container, then let new focus target be the nested browsing context's active document, and redo this step.

    A dialog element can be both a control group owner object and a focusable area, if it has both an open attribute specified and a tabindex attribute specified and is being rendered.

  3. If new focus target is a focusable area and its DOM anchor is inert, then abort these steps.

  4. If new focus target is the currently focused area of a top-level browsing context, then abort these steps.

  5. Let old chain be the focus chain of the currently focused area of the top-level browsing context in which new focus target finds itself.

  6. Let new chain be the focus chain of new focus target.

  7. Run the focus update steps with old chain, new chain, and new focus target respectively.

User agents must synchronously run the focusing steps for a focusable area, dialog, or browsing context candidate whenever the user attempts to move the focus to candidate.

The unfocusing steps for an object old focus target that is either a focusable area or an element that is not a focusable area are as follows:

  1. If old focus target is inert, then abort these steps.

  2. If old focus target is an area element and one of its shapes is the currently focused area of a top-level browsing context, or, if old focus target is an element with one or more scrollable regions, and one of them is the currently focused area of a top-level browsing context, then let old focus target be that currently focused area of a top-level browsing context.

  3. Let old chain be the focus chain of the currently focused area of a top-level browsing context.

  4. If old focus target is not one of the entries in old chain, then abort these steps.

  5. If old focus target is a dialog in a dialog group, and the dialog group manager has a non-empty control group, then let new focus target be the designated focused area of that focus group.

    Otherwise, if old focus target is a focusable area, then let new focus target be the first focusable area of its control group (if the control group owner is a Document, this will always be a viewport).

    Otherwise, let new focus target be null.

  6. If new focus target is not null, then run the focusing steps for new focus target.

When the currently focused area of a top-level browsing context is somehow unfocused without another element being explicitly focused in its stead, the user agent must synchronously run the unfocusing steps for that object.

The unfocusing steps do not always result in the focus changing, even when applied to the currently focused area of a top-level browsing context. For example, if the currently focused area of a top-level browsing context is a viewport, then it will usually keep its focus regardless until another focusable area is explicitly focused with the focusing steps.


When a focusable area is added to an empty control group, it must be designated the focused area of the control group.

When a dialog group is formed, if the dialog group manager has an empty control group, the first non-inert dialog in the dialog group, if any, or else the first dialog in the dialog group regardless of inertness, must be designated the focused dialog of the dialog group.

Focus fixup rule one: When the designated focused area of a control group is removed from that control group in some way (e.g. it stops being a focusable area, it is removed from the DOM, it becomes expressly inert, etc), and the control group is still not empty: designate the first non-inert focused area in that control group to be the new focused area of the control group, if any; if they are all inert, then designate the first focused area in that control group to be the new focused area of the control group regardless of inertness. If such a removal instead results in the control group being empty, then there is simply no longer a focused area of the control group.

For example, this might happen because an element is removed from its Document, or has a hidden attribute added. It might also happen to an input element when the element gets disabled.

Focus fixup rule two: When a dialog group has no designed focused dialog of the dialog group, and its dialog group manager's control group changes from being non-empty to being empty, the first non-inert dialog in the dialog group, if any, or else the first dialog in the dialog group regardless of inertness, must be designated the focused dialog of the dialog group.

Focus fixup rule three: When the designated focused dialog of a dialog group is removed from that dialog group in some way (e.g. it stops being rendered, it loses its open attribute, it becomes expressly inert, etc), and there is still a dialog group (because the dialog in question was not the last dialog in that dialog group): if the dialog group's manager's control group is non-empty, let there be no designated focused dialog of the dialog group any more; otherwise (in the case that the control group is empty), designate the first non-inert dialog in the dialog group to be the focused dialog of the dialog group, or, if they are all inert, designate the first dialog in the dialog group to be the focused dialog of the dialog group regardless of inertness.

When the currently focused area of a top-level browsing context was a focusable area but stops being a focusable area, or when it was a dialog in a dialog group and stops being part of that dialog group, or when it starts being inert, the user agent must run the following steps:

  1. Let old focus target be whatever the currently focused area of the top-level browsing context was immediately before this algorithm became applicable (e.g. before the element was disabled, or the dialog was closed, or whatever caused this algorithm to run).

  2. Let old chain be the focus chain of the currently focused area of the top-level browsing context at the same time.

  3. Make sure that the changes implied by the focus fixup rules one, two, and three above are applied.

  4. Let new focus target be the currently focused area of a top-level browsing context.

  5. If old focus target and new focus target are the same, abort these steps.

  6. Let new chain be the focus chain of new focus target.

  7. Run the focus update steps with old chain, new chain, and new focus target respectively.


The focus update steps, given an old chain, a new chain, and a new focus target respectively, are as follows:

  1. If the last entry in old chain and the last entry in new chain are the same, pop the last entry from old chain and the last entry from new chain and redo this step.

  2. For each entry entry in old chain, in order, run these substeps:

    1. If entry is an input element, and the change event applies to the element, and the element does not have a defined activation behavior, and the user has changed the element's value or its list of selected files while the control was focused without committing that change, then fire a simple event that bubbles named change at the element.

    2. If entry is an element, let blur event target be entry.

      If entry is a Document object, let blur event target be that Document object's Window object.

      Otherwise, let blur event target be null.

    3. If entry is the last entry in old chain, and entry is an Element, and the last entry in new chain is also an Element, then let related blur target be the last entry in new chain. Otherwise, let related blur target be null.

    4. If blur event target is not null, fire a focus event named blur at blur event target, with related blur target as the related target.

      In some cases, e.g. if entry is an area element's shape, a scrollable region, or a viewport, no event is fired.

  3. Apply any relevant platform-specific conventions for focusing new focus target. (For example, some platforms select the contents of a text field when that field is focused.)

  4. For each entry entry in new chain, in reverse order, run these substeps:

    1. If entry is a dialog element: Let entry be the designated focused dialog of its dialog group.

    2. If entry is a focusable area: Designate entry as the focused area of the control group. If its control group's owner is also a dialog group manager, then let there be no designated focused dialog in that dialog group.

      It is possible for entry to be both a dialog element and a focusable area, in which case it is its own control group owner.

    3. If entry is an element, let focus event target be entry.

      If entry is a Document object, let focus event target be that Document object's Window object.

      Otherwise, let focus event target be null.

    4. If entry is the last entry in new chain, and entry is an Element, and the last entry in old chain is also an Element, then let related focus target be the last entry in old chain. Otherwise, let related focus target be null.

    5. If focus event target is not null, fire a focus event named focus at focus event target, with related focus target as the related target.

      In some cases, e.g. if entry is an area element's shape, a scrollable region, or a viewport, no event is fired.

When a user agent is required to fire a focus event named e at an element t and with a given related target r, the user agent must create a trusted FocusEvent object, initialise it to have the given name e, to not bubble, to not be cancelable, and to have the relatedTarget attribute initialised to r, and must then dispatch the newly created FocusEvent object at the specified target element t.


When a key event is to be routed in a top-level browsing context, the user agent must run the following steps:

  1. Let target area be the currently focused area of the top-level browsing context.

  2. If target area is a focusable area, let target node be target area's DOM anchor. Otherwise, target area is a dialog; let target node be target area.

  3. If target node is a Document that has a body element, then let target node be the body element of that Document.

    Otherwise, if target node is a Document that has a root element, then let target node be the root element of that Document.

  4. If target node is not inert, fire the event at target node.

    It is possible for the currently focused area of a top-level browsing context to be inert, for example if a modal dialog is shown, and then that dialog element is made inert. It is likely to be the result of a logic error in the application, though.

  5. If the event was not canceled, then let target area handle the key event. This might include running synthetic click activation steps for target node.

5.4.5 Sequential focus navigation

Each control group has a sequential focus navigation order, which orders some or all of the focusable areas in the control group relative to each other. The order in the sequential focus navigation order does not have to be related to the order in the control group itself. If a focusable area is omitted from the sequential focus navigation order of its control group, then it is unreachable via sequential focus navigation.

When the user requests that focus move from the currently focused area of a top-level browsing context to the next or previous focusable area (e.g. as the default action of pressing the tab key), or when the user requests that focus sequentially move to a top-level browsing context in the first place (e.g. from the browser's location bar), the user agent must use the following algorithm:

  1. Let starting point be the currently focused area of a top-level browsing context, if the user requested to move focus sequentially from there, or else the top-level browsing context itself, if the user instead requested to move focus from outside the top-level browsing context.

  2. Let direction be forward if the user requested the next control, and backward if the user requested the previous control.

    Typically, pressing tab requests the next control, and pressing shift+tab requests the previous control.

  3. Loop: Let selection mechanism be sequential if the starting point is a browsing context or if starting point is in its control group's sequential focus navigation order.

    Otherwise, starting point is not in its control group's sequential focus navigation order; let selection mechanism be DOM.

  4. Let candidate be the result of running the sequential navigation search algorithm with starting point, direction, and selection mechanism as the arguments.

  5. If candidate is not null, then run the focusing steps for candidate and abort these steps.

  6. Otherwise, if starting point is the top-level browsing context, or a focusable area in the top-level browsing context, the user agent should transfer focus to its own controls appropriately (if any), honouring direction, and then abort these steps.

    For example, if direction is backward, then the last focusable control before the browser's rendering area would be the control to focus.

    If the user agent has no focusable controls — a kiosk-mode browser, for instance — then the user agent may instead restart these steps with the starting point being the top-level browsing context itself.

  7. Otherwise, starting point is a focusable area in a nested browsing context. Let starting point be that nested browsing context's browsing context container, and return to the step labeled loop.

The sequential navigation search algorithm consists of the following steps. This algorithm takes three arguments: starting point, direction, and selection mechanism.

  1. Pick the appropriate cell from the following table, and follow the instructions in that cell.

    The appropriate cell is the one that is from the column whose header describes direction and from the first row whose header describes starting point and selection mechanism.

    direction is forward direction is backward
    starting point is a browsing context Let candidate be the first suitable sequentially focusable area in starting point's active document's primary control group, if any; or else null Let candidate be the last suitable sequentially focusable area in starting point's active document's primary control group, if any; or else null
    selection mechanism is DOM Let candidate be the first suitable sequentially focusable area in the home control group following starting point, if any; or else null Let candidate be the last suitable sequentially focusable area in the home control group preceding starting point, if any; or else null
    selection mechanism is sequential Let candidate be the first suitable sequentially focusable area in the home sequential focus navigation order following starting point, if any; or else null Let candidate be the last suitable sequentially focusable area in the home sequential focus navigation order preceding starting point, if any; or else null

    A suitable sequentially focusable area is a focusable area whose DOM anchor is not inert and that is in its control group's sequential focus navigation order.

    The primary control group of a control group owner object X is the control group of X if X has no dialog group or if its dialog group has no designated focused dialog of the dialog group, otherwise, it is the primary control group of X's dialog group's designated focused dialog of the dialog group.

    The home control group is the control group to which starting point belongs.

    The home sequential focus navigation order is the sequential focus navigation order to which starting point belongs.

    The home sequential focus navigation order is the home control group's sequential focus navigation order, but is only used when the starting point is in that sequential focus navigation order (when it's not, selection mechanism will be DOM).

  2. If candidate is a browsing context container, then let new candidate be the result of running the sequential navigation search algorithm with candidate's nested browsing context as the first argument, direction as the second, and sequential as the third.

    If new candidate is null, then let starting point be candidate, and return to the top of this algorithm. Otherwise, let candidate be new candidate.

  3. Return candidate.

5.4.6 Focus management APIs

document . activeElement

Returns the deepest element in the document through which or to which key events are being routed. This is, roughly speaking, the focused element in the document.

For the purposes of this API, when a child browsing context is focused, its browsing context container is focused in the parent browsing context. For example, if the user moves the focus to a text field in an iframe, the iframe is the element returned by the activeElement API in the iframe's Document.

document . hasFocus()

Returns true if key events are being routed through or to the document; otherwise, returns false. Roughly speaking, this corresponds to the document, or a documented nested inside this one, being focused.

window . focus()

Moves the focus to the window's browsing context container, if any.

element . focus()

Moves the focus to the element.

If the element is the body element, moves the focus to the viewport instead.

element . blur()

Moves the focus to the viewport. Use of this method is discouraged; if you want to focus the viewport, call the focus() method on the body element.

Do not use this method to hide the focus ring. Do not use any other method that hides the focus ring from keyboard users, in particular do not use a CSS rule to override the 'outline' property. Removal of the focus ring leads to serious accessibility issues for users who navigate and interact with interactive content using the keyboard.

The activeElement attribute on Document objects must return the value returned by the following steps:

  1. Let candidate be the Document on which the method was invoked.

  2. If candidate has a dialog group with a designated focused dialog of the dialog group, then let candidate be the designated focused dialog of the dialog group, and redo this step.

  3. If candidate has a non-empty control group, let candidate be the designated focused area of the control group.

  4. If candidate is a focusable area, let candidate be candidate's DOM anchor.

  5. If candidate is a Document that has a body element, then let candidate be the body element of that Document.

    Otherwise, if candidate is a Document that has a root element, then let candidate be the root element of that Document.

    Otherwise, if candidate is a Document, then let candidate be null.

  6. Return candidate.

The hasFocus() method on Document objects must return the value returned by the following steps:

  1. Let target be the Document on which the method was invoked.

  2. Let candidate be the Document of the top-level browsing context.

  3. If candidate is target, return true and abort these steps.

  4. If candidate has a dialog group with a designated focused dialog of the dialog group, then let candidate be the designated focused dialog of the dialog group, and redo this step.

    Otherwise, if candidate has a non-empty control group, and the designated focused area of the control group is a browsing context container, and the active document of that browsing context container's nested browsing context is target, then return true and abort these steps.

    Otherwise, if candidate has a non-empty control group, and the designated focused area of the control group is a browsing context container, then let candidate be the active document of that browsing context container's nested browsing context, and redo this step.

    Otherwise, return false and abort these steps.

The focus() method on the Window object, when invoked, must run the focusing steps with the Window object's browsing context. Additionally, if this browsing context is a top-level browsing context, user agents are encouraged to trigger some sort of notification to indicate to the user that the page is attempting to gain focus.

The blur() method on the Window object, when invoked, provides a hint to the user agent that the script believes the user probably is not currently interested in the contents of the browsing context of the Window object on which the method was invoked, but that the contents might become interesting again in the future.

User agents are encouraged to ignore calls to this blur() method entirely.

Historically, the focus() and blur() methods actually affected the system-level focus of the system widget (e.g. tab or window) that contained the browsing context, but hostile sites widely abuse this behavior to the user's detriment.

The focus() method on elements, when invoked, must run the following algorithm:

  1. If the element is marked as locked for focus, then abort these steps.

  2. Mark the element as locked for focus.

  3. Run the focusing steps for the element.

  4. Unmark the element as locked for focus.

The blur() method, when invoked, should run the unfocusing steps for the element on which the method was called. User agents may selectively or uniformly ignore calls to this method for usability reasons.

For example, if the blur() method is unwisely being used to remove the focus ring for aesthetics reasons, the page would become unusable by keyboard users. Ignoring calls to this method would thus allow keyboard users to interact with the page.

5.5 Assigning keyboard shortcuts

5.5.1 Introduction

This section is non-normative.

Each element that can be activated or focused can be assigned a single key combination to activate it, using the accesskey attribute.

The exact shortcut is determined by the user agent, based on information about the user's keyboard, what keyboard shortcuts already exist on the platform, and what other shortcuts have been specified on the page, using the information provided in the accesskey attribute as a guide.

In order to ensure that a relevant keyboard shortcut is available on a wide variety of input devices, the author can provide a number of alternatives in the accesskey attribute.

Each alternative consists of a single character, such as a letter or digit.

User agents can provide users with a list of the keyboard shortcuts, but authors are encouraged to do so also. The accessKeyLabel IDL attribute returns a string representing the actual key combination assigned by the user agent.

In this example, an author has provided a button that can be invoked using a shortcut key. To support full keyboards, the author has provided "C" as a possible key. To support devices equipped only with numeric keypads, the author has provided "1" as another possibly key.

<input type=button value=Collect onclick="collect()"
       accesskey="C 1" id=c>

To tell the user what the shortcut key is, the author has this script here opted to explicitly add the key combination to the button's label:

function addShortcutKeyLabel(button) {
  if (button.accessKeyLabel != '')
    button.value += ' (' + button.accessKeyLabel + ')';
}
addShortcutKeyLabel(document.getElementById('c'));

Browsers on different platforms will show different labels, even for the same key combination, based on the convention prevalent on that platform. For example, if the key combination is the Control key, the Shift key, and the letter C, a Windows browser might display "Ctrl+Shift+C", whereas a Mac browser might display "^⇧C", while an Emacs browser might just display "C-C". Similarly, if the key combination is the Alt key and the Escape key, Windows might use "Alt+Esc", Mac might use "⌥⎋", and an Emacs browser might use "M-ESC" or "ESC ESC".

In general, therefore, it is unwise to attempt to parse the value returned from the accessKeyLabel IDL attribute.

5.5.2 The accesskey attribute

All HTML elements may have the accesskey content attribute set. The accesskey attribute's value is used by the user agent as a guide for creating a keyboard shortcut that activates or focuses the element.

If specified, the value must be an ordered set of unique space-separated tokens that are case-sensitive, each of which must be exactly one Unicode code point in length.

In the following example, a variety of links are given with access keys so that keyboard users familiar with the site can more quickly navigate to the relevant pages:

<nav>
 <p>
  <a title="Consortium Activities" accesskey="A" href="/Consortium/activities">Activities</a> |
  <a title="Technical Reports and Recommendations" accesskey="T" href="/TR/">Technical Reports</a> |
  <a title="Alphabetical Site Index" accesskey="S" href="/Consortium/siteindex">Site Index</a> |
  <a title="About This Site" accesskey="B" href="/Consortium/">About Consortium</a> |
  <a title="Contact Consortium" accesskey="C" href="/Consortium/contact">Contact</a>
 </p>
</nav>

In the following example, the search field is given two possible access keys, "s" and "0" (in that order). A user agent on a device with a full keyboard might pick Ctrl+Alt+S as the shortcut key, while a user agent on a small device with just a numeric keypad might pick just the plain unadorned key 0:

<form action="/search">
 <label>Search: <input type="search" name="q" accesskey="s 0"></label>
 <input type="submit">
</form>

In the following example, a button has possible access keys described. A script then tries to update the button's label to advertise the key combination the user agent selected.

<input type=submit accesskey="N @ 1" value="Compose">
...
<script>
 function labelButton(button) {
   if (button.accessKeyLabel)
     button.value += ' (' + button.accessKeyLabel + ')';
 }
 var inputs = document.getElementsByTagName('input');
 for (var i = 0; i < inputs.length; i += 1) {
   if (inputs[i].type == "submit")
     labelButton(inputs[i]);
 }
</script>

On one user agent, the button's label might become "Compose (⌘N)". On another, it might become "Compose (Alt+⇧+1)". If the user agent doesn't assign a key, it will be just "Compose". The exact string depends on what the assigned access key is, and on how the user agent represents that key combination.

5.5.3 Processing model

An element's assigned access key is a key combination derived from the element's accesskey content attribute. Initially, an element must not have an assigned access key.

Whenever an element's accesskey attribute is set, changed, or removed, the user agent must update the element's assigned access key by running the following steps:

  1. If the element has no accesskey attribute, then skip to the fallback step below.

  2. Otherwise, split the attribute's value on spaces, and let keys be the resulting tokens.

  3. For each value in keys in turn, in the order the tokens appeared in the attribute's value, run the following substeps:

    1. If the value is not a string exactly one Unicode code point in length, then skip the remainder of these steps for this value.

    2. If the value does not correspond to a key on the system's keyboard, then skip the remainder of these steps for this value.

    3. If the user agent can find a mix of zero or more modifier keys that, combined with the key that corresponds to the value given in the attribute, can be used as the access key, then the user agent may assign that combination of keys as the element's assigned access key and abort these steps. (This is a fingerprinting vector.)

  4. Fallback: Optionally, the user agent may assign a key combination of its choosing as the element's assigned access key and then abort these steps.

  5. If this step is reached, the element has no assigned access key.

Once a user agent has selected and assigned an access key for an element, the user agent should not change the element's assigned access key unless the accesskey content attribute is changed or the element is moved to another Document.

When the user presses the key combination corresponding to the assigned access key for an element, if the element defines a command, the command's Hidden State facet is false (visible), the command's Disabled State facet is also false (enabled), the element is in a Document that has an associated browsing context, and neither the element nor any of its ancestors has a hidden attribute specified, then the user agent must trigger the Action of the command.

User agents might expose elements that have an accesskey attribute in other ways as well, e.g. in a menu displayed in response to a specific key combination.


The accessKey IDL attribute must reflect the accesskey content attribute.

The accessKeyLabel IDL attribute must return a string that represents the element's assigned access key, if any. If the element does not have one, then the IDL attribute must return the empty string.

5.6 Editing

5.6.1 Making document regions editable: The contenteditable content attribute

The contenteditable attribute is an enumerated attribute whose keywords are the empty string, true, and false. The empty string and the true keyword map to the true state. The false keyword maps to the false state. In addition, there is a third state, the inherit state, which is the missing value default (and the invalid value default).

The true state indicates that the element is editable. The inherit state indicates that the element is editable if its parent is. The false state indicates that the element is not editable.

element . contentEditable [ = value ]

Returns "true", "false", or "inherit", based on the state of the contenteditable attribute.

Can be set, to change that state.

Throws a SyntaxError exception if the new value isn't one of those strings.

element . isContentEditable

Returns true if the element is editable; otherwise, returns false.

The contentEditable IDL attribute, on getting, must return the string "true" if the content attribute is set to the true state, "false" if the content attribute is set to the false state, and "inherit" otherwise. On setting, if the new value is an ASCII case-insensitive match for the string "inherit" then the content attribute must be removed, if the new value is an ASCII case-insensitive match for the string "true" then the content attribute must be set to the string "true", if the new value is an ASCII case-insensitive match for the string "false" then the content attribute must be set to the string "false", and otherwise the attribute setter must throw a SyntaxError exception.

The isContentEditable IDL attribute, on getting, must return true if the element is either an editing host or editable, and false otherwise.

5.6.2 Making entire documents editable: The designMode IDL attribute

Documents have a designMode, which can be either enabled or disabled.

document . designMode [ = value ]

Returns "on" if the document is editable, and "off" if it isn't.

Can be set, to change the document's current state. This focuses the document and resets the selection in that document.

The designMode IDL attribute on the Document object takes two values, "on" and "off". On setting, the new value must be compared in an ASCII case-insensitive manner to these two values; if it matches the "on" value, then designMode must be enabled, and if it matches the "off" value, then designMode must be disabled. Other values must be ignored.

On getting, if designMode is enabled, the IDL attribute must return the value "on"; otherwise it is disabled, and the attribute must return the value "off".

The last state set must persist until the document is destroyed or the state is changed. Initially, documents must have their designMode disabled.

When the designMode changes from being disabled to being enabled, the user agent must synchronously reset the document's active range's start and end boundary points to be at the start of the Document and then run the focusing steps for the root element of the Document, if any.

5.6.3 Best practices for in-page editors

Authors are encouraged to set the 'white-space' property on editing hosts and on markup that was originally created through these editing mechanisms to the value 'pre-wrap'. Default HTML whitespace handling is not well suited to WYSIWYG editing, and line wrapping will not work correctly in some corner cases if 'white-space' is left at its default value.

As an example of problems that occur if the default 'normal' value is used instead, consider the case of the user typing "yellow␣␣ball", with two spaces (here represented by "␣") between the words. With the editing rules in place for the default value of 'white-space' ('normal'), the resulting markup will either consist of "yellow&nbsp; ball" or "yellow &nbsp;ball"; i.e., there will be a non-breaking space between the two words in addition to the regular space. This is necessary because the 'normal' value for 'white-space' requires adjacent regular spaces to be collapsed together.

In the former case, "yellow⍽" might wrap to the next line ("⍽" being used here to represent a non-breaking space) even though "yellow" alone might fit at the end of the line; in the latter case, "⍽ball", if wrapped to the start of the line, would have visible indentation from the non-breaking space.

When 'white-space' is set to 'pre-wrap', however, the editing rules will instead simply put two regular spaces between the words, and should the two words be split at the end of a line, the spaces would be neatly removed from the rendering.

5.6.4 Editing APIs

The definition of the terms active range, editing host, and editable, the user interface requirements of elements that are editing hosts or editable, the execCommand(), queryCommandEnabled(), queryCommandIndeterm(), queryCommandState(), queryCommandSupported(), and queryCommandValue() methods, text selections, and the delete the selection algorithm are defined in the HTML Editing APIs specification. The interaction of editing and the undo/redo features in user agents is defined by the UndoManager and DOM Transaction specification. [EDITING] [UNDO]

5.6.5 Spelling and grammar checking

User agents can support the checking of spelling and grammar of editable text, either in form controls (such as the value of textarea elements), or in elements in an editing host (e.g. using contenteditable).

For each element, user agents must establish a default behavior, either through defaults or through preferences expressed by the user. There are three possible default behaviors for each element:

true-by-default
The element will be checked for spelling and grammar if its contents are editable.
false-by-default
The element will never be checked for spelling and grammar.
inherit-by-default
The element's default behavior is the same as its parent element's. Elements that have no parent element cannot have this as their default behavior.

The spellcheck attribute is an enumerated attribute whose keywords are the empty string, true and false. The empty string and the true keyword map to the true state. The false keyword maps to the false state. In addition, there is a third state, the default state, which is the missing value default (and the invalid value default).

The true state indicates that the element is to have its spelling and grammar checked. The default state indicates that the element is to act according to a default behavior, possibly based on the parent element's own spellcheck state, as defined below. The false state indicates that the element is not to be checked.


element . spellcheck [ = value ]

Returns true if the element is to have its spelling and grammar checked; otherwise, returns false.

Can be set, to override the default and set the spellcheck content attribute.

element . forceSpellCheck()

Forces the user agent to report spelling and grammar errors on the element (if checking is enabled), even if the user has never focused the element. (If the method is not invoked, user agents can hide errors in text that wasn't just entered by the user.)

The spellcheck IDL attribute, on getting, must return true if the element's spellcheck content attribute is in the true state, or if the element's spellcheck content attribute is in the default state and the element's default behavior is true-by-default, or if the element's spellcheck content attribute is in the default state and the element's default behavior is inherit-by-default and the element's parent element's spellcheck IDL attribute would return true; otherwise, if none of those conditions applies, then the attribute must instead return false.

The spellcheck IDL attribute is not affected by user preferences that override the spellcheck content attribute, and therefore might not reflect the actual spellchecking state.

On setting, if the new value is true, then the element's spellcheck content attribute must be set to the literal string "true", otherwise it must be set to the literal string "false".


User agents must only consider the following pieces of text as checkable for the purposes of this feature:

For text that is part of a Text node, the element with which the text is associated is the element that is the immediate parent of the first character of the word, sentence, or other piece of text. For text in attributes, it is the attribute's element. For the values of input and textarea elements, it is the element itself.

To determine if a word, sentence, or other piece of text in an applicable element (as defined above) is to have spelling- and grammar-checking enabled, the UA must use the following algorithm:

  1. If the user has disabled the checking for this text, then the checking is disabled.
  2. Otherwise, if the user has forced the checking for this text to always be enabled, then the checking is enabled.
  3. Otherwise, if the element with which the text is associated has a spellcheck content attribute, then: if that attribute is in the true state, then checking is enabled; otherwise, if that attribute is in the false state, then checking is disabled.
  4. Otherwise, if there is an ancestor element with a spellcheck content attribute that is not in the default state, then: if the nearest such ancestor's spellcheck content attribute is in the true state, then checking is enabled; otherwise, checking is disabled.
  5. Otherwise, if the element's default behavior is true-by-default, then checking is enabled.
  6. Otherwise, if the element's default behavior is false-by-default, then checking is disabled.
  7. Otherwise, if the element's parent element has its checking enabled, then checking is enabled.
  8. Otherwise, checking is disabled.

If the checking is enabled for a word/sentence/text, the user agent should indicate spelling and grammar errors in that text. User agents should take into account the other semantics given in the document when suggesting spelling and grammar corrections. User agents may use the language of the element to determine what spelling and grammar rules to use, or may use the user's preferred language settings. UAs should use input element attributes such as pattern to ensure that the resulting value is valid, where possible.

If checking is disabled, the user agent should not indicate spelling or grammar errors for that text.

Even when checking is enabled, user agents may opt to not report spelling or grammar errors in text that the user agent deems the user has no interest in having checked (e.g. text that was already present when the page was loaded, or that the user did not type, or text in controls that the user has not focused, or in parts of e-mail addresses that the user agent is not confident were misspelt). The forceSpellCheck() method, when invoked on an element, must override this behavior, forcing the user agent to consider all spelling and grammar errors in text in that element for which checking is enabled to be of interest to the user.

The element with ID "a" in the following example would be the one used to determine if the word "Hello" is checked for spelling errors. In this example, it would not be.

<div contenteditable="true">
 <span spellcheck="false" id="a">Hell</span><em>o!</em>
</div>

The element with ID "b" in the following example would have checking enabled (the leading space character in the attribute's value on the input element causes the attribute to be ignored, so the ancestor's value is used instead, regardless of the default).

<p spellcheck="true">
 <label>Name: <input spellcheck=" false" id="b"></label>
</p>

This specification does not define the user interface for spelling and grammar checkers. A user agent could offer on-demand checking, could perform continuous checking while the checking is enabled, or could use other interfaces.

5.7 Drag and drop

This section defines an event-based drag-and-drop mechanism.

This specification does not define exactly what a drag-and-drop operation actually is.

On a visual medium with a pointing device, a drag operation could be the default action of a mousedown event that is followed by a series of mousemove events, and the drop could be triggered by the mouse being released.

When using an input modality other than a pointing device, users would probably have to explicitly indicate their intention to perform a drag-and-drop operation, stating what they wish to drag and where they wish to drop it, respectively.

However it is implemented, drag-and-drop operations must have a starting point (e.g. where the mouse was clicked, or the start of the selection or element that was selected for the drag), may have any number of intermediate steps (elements that the mouse moves over during a drag, or elements that the user picks as possible drop points as he cycles through possibilities), and must either have an end point (the element above which the mouse button was released, or the element that was finally selected), or be canceled. The end point must be the last element selected as a possible drop point before the drop occurs (so if the operation is not canceled, there must be at least one element in the middle step).

5.7.1 Introduction

This section is non-normative.

To make an element draggable is simple: give the element a draggable attribute, and set an event listener for dragstart that stores the data being dragged.

The event handler typically needs to check that it's not a text selection that is being dragged, and then needs to store data into the DataTransfer object and set the allowed effects (copy, move, link, or some combination).

For example:

<p>What fruits do you like?</p>
<ol ondragstart="dragStartHandler(event)">
 <li draggable="true" data-value="fruit-apple">Apples</li>
 <li draggable="true" data-value="fruit-orange">Oranges</li>
 <li draggable="true" data-value="fruit-pear">Pears</li>
</ol>
<script>
  var internalDNDType = 'text/x-example'; // set this to something specific to your site
  function dragStartHandler(event) {
    if (event.target instanceof HTMLLIElement) {
      // use the element's data-value="" attribute as the value to be moving:
      event.dataTransfer.setData(internalDNDType, event.target.dataset.value);
      event.dataTransfer.effectAllowed = 'move'; // only allow moves
    } else {
      event.preventDefault(); // don't allow selection to be dragged
    }
  }
</script>

To accept a drop, the drop target has to have a dropzone attribute and listen to the drop event.

The value of the dropzone attribute specifies what kind of data to accept (e.g. "string:text/plain" to accept any text strings, or "file:image/png" to accept a PNG image file) and what kind of feedback to give (e.g. "move" to indicate that the data will be moved).

Instead of using the dropzone attribute, a drop target can handle the dragenter event (to report whether or not the drop target is to accept the drop) and the dragover event (to specify what feedback is to be shown to the user).

The drop event allows the actual drop to be performed. This event needs to be canceled, so that the dropEffect attribute's value can be used by the source (otherwise it's reset).

For example:

<p>Drop your favorite fruits below:</p>
<ol dropzone="move string:text/x-example" ondrop="dropHandler(event)">
 <!-- don't forget to change the "text/x-example" type to something
 specific to your site -->
</ol>
<script>
  var internalDNDType = 'text/x-example'; // set this to something specific to your site
  function dropHandler(event) {
    var li = document.createElement('li');
    var data = event.dataTransfer.getData(internalDNDType);
    if (data == 'fruit-apple') {
      li.textContent = 'Apples';
    } else if (data == 'fruit-orange') {
      li.textContent = 'Oranges';
    } else if (data == 'fruit-pear') {
      li.textContent = 'Pears';
    } else {
      li.textContent = 'Unknown Fruit';
    }
    event.target.appendChild(li);
  }
</script>

To remove the original element (the one that was dragged) from the display, the dragend event can be used.

For our example here, that means updating the original markup to handle that event:

<p>What fruits do you like?</p>
<ol ondragstart="dragStartHandler(event)" ondragend="dragEndHandler(event)">
 ...as before...
</ol>
<script>
  function dragStartHandler(event) {
    // ...as before...
  }
  function dragEndHandler(event) {
    if (event.dataTransfer.dropEffect == 'move') {
      // remove the dragged element
      event.target.parentNode.removeChild(event.target);
    }
  }
</script>

5.7.2 The drag data store

The data that underlies a drag-and-drop operation, known as the drag data store, consists of the following information:

When a drag data store is created, it must be initialised such that its drag data store item list is empty, it has no drag data store default feedback, it has no drag data store bitmap and drag data store hot spot coordinate, its drag data store mode is protected mode, and its drag data store allowed effects state is the string "uninitialized".

5.7.3 The DataTransfer interface

DataTransfer objects are used to expose the drag data store that underlies a drag-and-drop operation.

interface DataTransfer {
           attribute DOMString dropEffect;
           attribute DOMString effectAllowed;

  readonly attribute DataTransferItemList items;

  void setDragImage(Element image, long x, long y);

  /* old interface */
  readonly attribute DOMString[] types;
  DOMString getData(DOMString format);
  void setData(DOMString format, DOMString data);
  void clearData(optional DOMString format);
  readonly attribute FileList files;
};
dataTransfer . dropEffect [ = value ]

Returns the kind of operation that is currently selected. If the kind of operation isn't one of those that is allowed by the effectAllowed attribute, then the operation will fail.

Can be set, to change the selected operation.

The possible values are "none", "copy", "link", and "move".

dataTransfer . effectAllowed [ = value ]

Returns the kinds of operations that are to be allowed.

Can be set (during the dragstart event), to change the allowed operations.

The possible values are "none", "copy", "copyLink", "copyMove", "link", "linkMove", "move", "all", and "uninitialized",

dataTransfer . items

Returns a DataTransferItemList object, with the drag data.

dataTransfer . setDragImage(element, x, y)

Uses the given element to update the drag feedback, replacing any previously specified feedback.

dataTransfer . types

Returns an array listing the formats that were set in the dragstart event. In addition, if any files are being dragged, then one of the types will be the string "Files".

data = dataTransfer . getData(format)

Returns the specified data. If there is no such data, returns the empty string.

dataTransfer . setData(format, data)

Adds the specified data.

dataTransfer . clearData( [ format ] )

Removes the data of the specified formats. Removes all data if the argument is omitted.

dataTransfer . files

Returns a FileList of the files being dragged, if any.

DataTransfer objects are used during the drag-and-drop events, and are only valid while those events are being fired.

A DataTransfer object is associated with a drag data store while it is valid.

The dropEffect attribute controls the drag-and-drop feedback that the user is given during a drag-and-drop operation. When the DataTransfer object is created, the dropEffect attribute is set to a string value. On getting, it must return its current value. On setting, if the new value is one of "none", "copy", "link", or "move", then the attribute's current value must be set to the new value. Other values must be ignored.

The effectAllowed attribute is used in the drag-and-drop processing model to initialise the dropEffect attribute during the dragenter and dragover events. When the DataTransfer object is created, the effectAllowed attribute is set to a string value. On getting, it must return its current value. On setting, if drag data store's mode is the read/write mode and the new value is one of "none", "copy", "copyLink", "copyMove", "link", "linkMove", "move", "all", or "uninitialized", then the attribute's current value must be set to the new value. Otherwise it must be left unchanged.

The items attribute must return a DataTransferItemList object associated with the DataTransfer object. The same object must be returned each time.

The setDragImage(element, x, y) method must run the following steps:

  1. If the DataTransfer object is no longer associated with a drag data store, abort these steps. Nothing happens.

  2. If the drag data store's mode is not the read/write mode, abort these steps. Nothing happens.

  3. If the element argument is an img element, then set the drag data store bitmap to the element's image (at its intrinsic size); otherwise, set the drag data store bitmap to an image generated from the given element (the exact mechanism for doing so is not currently specified).

  4. Set the drag data store hot spot coordinate to the given x, y coordinate.

The types attribute must return a live read only array giving the strings that the following steps would produce. The same object must be returned each time.

  1. Start with an empty list L.

  2. If the DataTransfer object is no longer associated with a drag data store, the array is empty. Abort these steps; return the empty list L.

  3. For each item in the drag data store item list whose kind is Plain Unicode string, add an entry to the list L consisting of the item's type string.

  4. If there are any items in the drag data store item list whose kind is File, then add an entry to the list L consisting of the string "Files". (This value can be distinguished from the other values because it is not lowercase.)

  5. The strings produced by these steps are those in the list L.

The getData(format) method must run the following steps:

  1. If the DataTransfer object is no longer associated with a drag data store, return the empty string and abort these steps.

  2. If the drag data store's mode is the protected mode, return the empty string and abort these steps.

  3. Let format be the first argument, converted to ASCII lowercase.

  4. Let convert-to-URL be false.

  5. If format equals "text", change it to "text/plain".

  6. If format equals "url", change it to "text/uri-list" and set convert-to-URL to true.

  7. If there is no item in the drag data store item list whose kind is Plain Unicode string and whose type string is equal to format, return the empty string and abort these steps.

  8. Let result be the data of the item in the drag data store item list whose kind is Plain Unicode string and whose type string is equal to format.

  9. If convert-to-URL is true, then parse result as appropriate for text/uri-list data, and then set result to the first URL from the list, if any, or the empty string otherwise. [RFC2483]

  10. Return result.

The setData(format, data) method must run the following steps:

  1. If the DataTransfer object is no longer associated with a drag data store, abort these steps. Nothing happens.

  2. If the drag data store's mode is not the read/write mode, abort these steps. Nothing happens.

  3. Let format be the first argument, converted to ASCII lowercase.

  4. If format equals "text", change it to "text/plain".

    If format equals "url", change it to "text/uri-list".

  5. Remove the item in the drag data store item list whose kind is Plain Unicode string and whose type string is equal to format, if there is one.

  6. Add an item to the drag data store item list whose kind is Plain Unicode string, whose type string is equal to format, and whose data is the string given by the method's second argument.

The clearData() method must run the following steps:

  1. If the DataTransfer object is no longer associated with a drag data store, abort these steps. Nothing happens.

  2. If the drag data store's mode is not the read/write mode, abort these steps. Nothing happens.

  3. If the method was called with no arguments, remove each item in the drag data store item list whose kind is Plain Unicode string, and abort these steps.

  4. Let format be the first argument, converted to ASCII lowercase.

  5. If format equals "text", change it to "text/plain".

    If format equals "url", change it to "text/uri-list".

  6. Remove the item in the drag data store item list whose kind is Plain Unicode string and whose type string is equal to format, if there is one.

The clearData() method does not affect whether any files were included in the drag, so the types attribute's list might still not be empty after calling clearData() (it would still contain the "Files" string if any files were included in the drag).

The files attribute must return a live FileList sequence consisting of File objects representing the files found by the following steps. The same object must be returned each time. Furthermore, for a given FileList object and a given underlying file, the same File object must be used each time.

  1. Start with an empty list L.

  2. If the DataTransfer object is no longer associated with a drag data store, the FileList is empty. Abort these steps; return the empty list L.

  3. If the drag data store's mode is the protected mode, abort these steps; return the empty list L.

  4. For each item in the drag data store item list whose kind is File , add the item's data (the file, in particular its name and contents, as well as its type) to the list L.

  5. The files found by these steps are those in the list L.

This version of the API does not expose the types of the files during the drag.

5.7.3.1 The DataTransferItemList interface

Each DataTransfer object is associated with a DataTransferItemList object.

interface DataTransferItemList {
  readonly attribute unsigned long length;
  getter DataTransferItem (unsigned long index);
  DataTransferItem? add(DOMString data, DOMString type);
  DataTransferItem? add(File data);
  void remove(unsigned long index);
  void clear();
};
items . length

Returns the number of items in the drag data store.

items[index]

Returns the DataTransferItem object representing the indexth entry in the drag data store.

items . remove(index)

Removes the indexth entry in the drag data store.

items . clear()

Removes all the entries in the drag data store.

items . add(data)
items . add(data, type)

Adds a new entry for the given data to the drag data store. If the data is plain text then a type string has to be provided also.

While the DataTransferItemList object's DataTransfer object is associated with a drag data store, the DataTransferItemList object's mode is the same as the drag data store mode. When the DataTransferItemList object's DataTransfer object is not associated with a drag data store, the DataTransferItemList object's mode is the disabled mode. The drag data store referenced in this section (which is used only when the DataTransferItemList object is not in the disabled mode) is the drag data store with which the DataTransferItemList object's DataTransfer object is associated.

The length attribute must return zero if the object is in the disabled mode; otherwise it must return the number of items in the drag data store item list.

When a DataTransferItemList object is not in the disabled mode, its supported property indices are the numbers in the range 0 .. n-1, where n is the number of items in the drag data store item list.

To determine the value of an indexed property i of a DataTransferItemList object, the user agent must return a DataTransferItem object representing the ith item in the drag data store. The same object must be returned each time a particular item is obtained from this DataTransferItemList object. The DataTransferItem object must be associated with the same DataTransfer object as the DataTransferItemList object when it is first created.

The add() method must run the following steps:

  1. If the DataTransferItemList object is not in the read/write mode, return null and abort these steps.

  2. Jump to the appropriate set of steps from the following list:

    If the first argument to the method is a string

    If there is already an item in the drag data store item list whose kind is Plain Unicode string and whose type string is equal to the value of the method's second argument, converted to ASCII lowercase, then throw a NotSupportedError exception and abort these steps.

    Otherwise, add an item to the drag data store item list whose kind is Plain Unicode string, whose type string is equal to the value of the method's second argument, converted to ASCII lowercase, and whose data is the string given by the method's first argument.

    If the first argument to the method is a File

    Add an item to the drag data store item list whose kind is File, whose type string is the type of the File, converted to ASCII lowercase, and whose data is the same as the File's data.

  3. Determine the value of the indexed property corresponding to the newly added item, and return that value (a newly created DataTransferItem object).

The remove() method, when invoked with the argument i, must run these steps:

  1. If the DataTransferItemList object is not in the read/write mode, throw an InvalidStateError exception and abort these steps.

  2. Remove the ith item from the drag data store.

The clear method, if the DataTransferItemList object is in the read/write mode, must remove all the items from the drag data store. Otherwise, it must do nothing.

5.7.3.2 The DataTransferItem interface

Each DataTransferItem object is associated with a DataTransfer object.

interface DataTransferItem {
  readonly attribute DOMString kind;
  readonly attribute DOMString type;
  void getAsString(FunctionStringCallback? _callback);
  File? getAsFile();
};

callback FunctionStringCallback = void (DOMString data);
item . kind

Returns the drag data item kind, one of: "string", "file".

item . type

Returns the drag data item type string.

item . getAsString(callback)

Invokes the callback with the string data as the argument, if the drag data item kind is Plain Unicode string.

file = item . getAsFile()

Returns a File object, if the drag data item kind is File.

While the DataTransferItem object's DataTransfer object is associated with a drag data store and that drag data store's drag data store item list still contains the item that the DataTransferItem object represents, the DataTransferItem object's mode is the same as the drag data store mode. When the DataTransferItem object's DataTransfer object is not associated with a drag data store, or if the item that the DataTransferItem object represents has been removed from the relevant drag data store item list, the DataTransferItem object's mode is the disabled mode. The drag data store referenced in this section (which is used only when the DataTransferItem object is not in the disabled mode) is the drag data store with which the DataTransferItem object's DataTransfer object is associated.

The kind attribute must return the empty string if the DataTransferItem object is in the disabled mode; otherwise it must return the string given in the cell from the second column of the following table from the row whose cell in the first column contains the drag data item kind of the item represented by the DataTransferItem object:

Kind String
Plain Unicode string "string"
File "file"

The type attribute must return the empty string if the DataTransferItem object is in the disabled mode; otherwise it must return the drag data item type string of the item represented by the DataTransferItem object.

The getAsString(callback) method must run the following steps:

  1. If the callback is null, abort these steps.

  2. If the DataTransferItem object is not in the read/write mode or the read-only mode, abort these steps. The callback is never invoked.

  3. If the drag data item kind is not Plain Unicode string, abort these steps. The callback is never invoked.

  4. Otherwise, queue a task to invoke callback, passing the actual data of the item represented by the DataTransferItem object as the argument.

The getAsFile() method must run the following steps:

  1. If the DataTransferItem object is not in the read/write mode or the read-only mode, return null and abort these steps.

  2. If the drag data item kind is not File, then return null and abort these steps.

  3. Return a new File object representing the actual data of the item represented by the DataTransferItem object.

5.7.4 The DragEvent interface

The drag-and-drop processing model involves several events. They all use the DragEvent interface.

[Constructor(DOMString type, optional DragEventInit eventInitDict)]
interface DragEvent : MouseEvent {
  readonly attribute DataTransfer? dataTransfer;
};

dictionary DragEventInit : MouseEventInit {
  DataTransfer? dataTransfer;
};
event . dataTransfer

Returns the DataTransfer object for the event.

Although, for consistency with other event interfaces, the DragEvent interface has a constructor, it is not particularly useful. In particular, there's no way to create a useful DataTransfer object from script, as DataTransfer objects have a processing and security model that is coordinated by the browser during drag-and-drops.

The dataTransfer attribute of the DragEvent interface must return the value it was initialised to. When the object is created, this attribute must be initialised to null. It represents the context information for the event.

When a user agent is required to fire a DND event named e at an element, using a particular drag data store, and optionally with a specific related target, the user agent must run the following steps:

  1. If no specific related target was provided, set related target to null.

  2. If e is dragstart, set the drag data store mode to the read/write mode.

    If e is drop, set the drag data store mode to the read-only mode.

  3. Let dataTransfer be a newly created DataTransfer object associated with the given drag data store.

  4. Set the effectAllowed attribute to the drag data store's drag data store allowed effects state.

  5. Set the dropEffect attribute to "none" if e is dragstart, drag, dragexit, or dragleave; to the value corresponding to the current drag operation if e is drop or dragend; and to a value based on the effectAllowed attribute's value and the drag-and-drop source, as given by the following table, otherwise (i.e. if e is dragenter or dragover):

    effectAllowed dropEffect
    "none" "none"
    "copy" "copy"
    "copyLink" "copy", or, if appropriate, "link"
    "copyMove" "copy", or, if appropriate, "move"
    "all" "copy", or, if appropriate, either "link" or "move"
    "link" "link"
    "linkMove" "link", or, if appropriate, "move"
    "move" "move"
    "uninitialized" when what is being dragged is a selection from a text field "move", or, if appropriate, either "copy" or "link"
    "uninitialized" when what is being dragged is a selection "copy", or, if appropriate, either "link" or "move"
    "uninitialized" when what is being dragged is an a element with an href attribute "link", or, if appropriate, either "copy" or "move"
    Any other case "copy", or, if appropriate, either "link" or "move"

    Where the table above provides possibly appropriate alternatives, user agents may instead use the listed alternative values if platform conventions dictate that the user has requested those alternate effects.

    For example, Windows platform conventions are such that dragging while holding the "alt" key indicates a preference for linking the data, rather than moving or copying it. Therefore, on a Windows system, if "link" is an option according to the table above while the "alt" key is depressed, the user agent could select that instead of "copy" or "move".

  6. Create a trusted DragEvent object and initialise it to have the given name e, to bubble, to be cancelable unless e is dragexit, dragleave, or dragend, and to have the detail attribute initialised to zero, the mouse and key attributes initialised according to the state of the input devices as they would be for user interaction events, the relatedTarget attribute initialised to related target, and the dataTransfer attribute initialised to dataTransfer, the DataTransfer object created above.

    If there is no relevant pointing device, the object must have its screenX, screenY, clientX, clientY, and button attributes set to 0.

  7. Dispatch the newly created DragEvent object at the specified target element.

  8. Set the drag data store allowed effects state to the current value of dataTransfer's effectAllowed attribute. (It can only have changed value if e is dragstart.)

  9. Set the drag data store mode back to the protected mode if it was changed in the first step.

  10. Break the association between dataTransfer and the drag data store.

5.7.5 Drag-and-drop processing model

When the user attempts to begin a drag operation, the user agent must run the following steps. User agents must act as if these steps were run even if the drag actually started in another document or application and the user agent was not aware that the drag was occurring until it intersected with a document under the user agent's purview.

  1. Determine what is being dragged, as follows:

    If the drag operation was invoked on a selection, then it is the selection that is being dragged.

    Otherwise, if the drag operation was invoked on a Document, it is the first element, going up the ancestor chain, starting at the node that the user tried to drag, that has the IDL attribute draggable set to true. If there is no such element, then nothing is being dragged; abort these steps, the drag-and-drop operation is never started.

    Otherwise, the drag operation was invoked outside the user agent's purview. What is being dragged is defined by the document or application where the drag was started.

    img elements and a elements with an href attribute have their draggable attribute set to true by default.

  2. Create a drag data store. All the DND events fired subsequently by the steps in this section must use this drag data store.

  3. Establish which DOM node is the source node, as follows:

    If it is a selection that is being dragged, then the source node is the Text node that the user started the drag on (typically the Text node that the user originally clicked). If the user did not specify a particular node, for example if the user just told the user agent to begin a drag of "the selection", then the source node is the first Text node containing a part of the selection.

    Otherwise, if it is an element that is being dragged, then the source node is the element that is being dragged.

    Otherwise, the source node is part of another document or application. When this specification requires that an event be dispatched at the source node in this case, the user agent must instead follow the platform-specific conventions relevant to that situation.

    Multiple events are fired on the source node during the course of the drag-and-drop operation.

  4. Determine the list of dragged nodes, as follows:

    If it is a selection that is being dragged, then the list of dragged nodes contains, in tree order, every node that is partially or completely included in the selection (including all their ancestors).

    Otherwise, the list of dragged nodes contains only the source node, if any.

  5. If it is a selection that is being dragged, then add an item to the drag data store item list, with its properties set as follows:

    The drag data item type string
    "text/plain"
    The drag data item kind
    Plain Unicode string
    The actual data
    The text of the selection

    Otherwise, if any files are being dragged, then add one item per file to the drag data store item list, with their properties set as follows:

    The drag data item type string
    The MIME type of the file, if known, or "application/octet-stream" otherwise.
    The drag data item kind
    File
    The actual data
    The file's contents and name.

    Dragging files can currently only happen from outside a browsing context, for example from a file system manager application.

    If the drag initiated outside of the application, the user agent must add items to the drag data store item list as appropriate for the data being dragged, honoring platform conventions where appropriate; however, if the platform conventions do not use MIME types to label dragged data, the user agent must make a best-effort attempt to map the types to MIME types, and, in any case, all the drag data item type strings must be converted to ASCII lowercase.

    User agents may also add one or more items representing the selection or dragged element(s) in other forms, e.g. as HTML.

  6. If the list of dragged nodes is not empty, then extract the microdata from those nodes into a JSON form, and add one item to the drag data store item list, with its properties set as follows:

    The drag data item type string
    application/microdata+json
    The drag data item kind
    Plain Unicode string
    The actual data
    The resulting JSON string.
  7. Run the following substeps:

    1. Let urls be an empty list of absolute URLs.

    2. For each node in the list of dragged nodes:

      If the node is an a element with an href attribute
      Add to urls the result of resolving the element's href content attribute relative to the element.
      If the node is an img element with a src attribute
      Add to urls the result of resolving the element's src content attribute relative to the element.
    3. If urls is still empty, abort these substeps.

    4. Let url string be the result of concatenating the strings in urls, in the order they were added, separated by a U+000D CARRIAGE RETURN U+000A LINE FEED character pair (CRLF).

    5. Add one item to the drag data store item list, with its properties set as follows:

      The drag data item type string
      text/uri-list
      The drag data item kind
      Plain Unicode string
      The actual data
      url string
  8. Update the drag data store default feedback as appropriate for the user agent (if the user is dragging the selection, then the selection would likely be the basis for this feedback; if the user is dragging an element, then that element's rendering would be used; if the drag began outside the user agent, then the platform conventions for determining the drag feedback should be used).

  9. Fire a DND event named dragstart at the source node.

    If the event is canceled, then the drag-and-drop operation should not occur; abort these steps.

    Since events with no event listeners registered are, almost by definition, never canceled, drag-and-drop is always available to the user if the author does not specifically prevent it.

  10. Initiate the drag-and-drop operation in a manner consistent with platform conventions, and as described below.

    The drag-and-drop feedback must be generated from the first of the following sources that is available:

    1. The drag data store bitmap, if any. In this case, the drag data store hot spot coordinate should be used as hints for where to put the cursor relative to the resulting image. The values are expressed as distances in CSS pixels from the left side and from the top side of the image respectively. [CSS]
    2. The drag data store default feedback.

From the moment that the user agent is to initiate the drag-and-drop operation, until the end of the drag-and-drop operation, device input events (e.g. mouse and keyboard events) must be suppressed.

During the drag operation, the element directly indicated by the user as the drop target is called the immediate user selection. (Only elements can be selected by the user; other nodes must not be made available as drop targets.) However, the immediate user selection is not necessarily the current target element, which is the element currently selected for the drop part of the drag-and-drop operation.

The immediate user selection changes as the user selects different elements (either by pointing at them with a pointing device, or by selecting them in some other way). The current target element changes when the immediate user selection changes, based on the results of event listeners in the document, as described below.

Both the current target element and the immediate user selection can be null, which means no target element is selected. They can also both be elements in other (DOM-based) documents, or other (non-Web) programs altogether. (For example, a user could drag text to a word-processor.) The current target element is initially null.

In addition, there is also a current drag operation, which can take on the values "none", "copy", "link", and "move". Initially, it has the value "none". It is updated by the user agent as described in the steps below.

User agents must, as soon as the drag operation is initiated and every 350ms (±200ms) thereafter for as long as the drag operation is ongoing, queue a task to perform the following steps in sequence:

  1. If the user agent is still performing the previous iteration of the sequence (if any) when the next iteration becomes due, abort these steps for this iteration (effectively "skipping missed frames" of the drag-and-drop operation).

  2. Fire a DND event named drag at the source node. If this event is canceled, the user agent must set the current drag operation to "none" (no drag operation).

  3. If the drag event was not canceled and the user has not ended the drag-and-drop operation, check the state of the drag-and-drop operation, as follows:

    1. If the user is indicating a different immediate user selection than during the last iteration (or if this is the first iteration), and if this immediate user selection is not the same as the current target element, then fire a DND event named dragexit at the current target element, and then update the current target element as follows:

      If the new immediate user selection is null

      Set the current target element to null also.

      If the new immediate user selection is in a non-DOM document or application

      Set the current target element to the immediate user selection.

      Otherwise

      Fire a DND event named dragenter at the immediate user selection.

      If the event is canceled, then set the current target element to the immediate user selection.

      Otherwise, run the appropriate step from the following list:

      If the immediate user selection is a text field (e.g. textarea, or an input element whose type attribute is in the Text state) or an editing host or editable element, and the drag data store item list has an item with the drag data item type string "text/plain" and the drag data item kind Plain Unicode string

      Set the current target element to the immediate user selection anyway.

      If the immediate user selection is an element with a dropzone attribute that matches the drag data store

      Set the current target element to the immediate user selection anyway.

      If the immediate user selection is an element that itself has an ancestor element with a dropzone attribute that matches the drag data store

      Let new target be the nearest (deepest) such ancestor element.

      If the immediate user selection is new target, then leave the current target element unchanged.

      Otherwise, fire a DND event named dragenter at new target, with the current current target element as the specific related target. Then, set the current target element to new target, regardless of whether that event was canceled or not.

      If the immediate user selection is the body element

      Leave the current target element unchanged.

      Otherwise

      Fire a DND event named dragenter at the body element, if there is one, or at the Document object, if not. Then, set the current target element to the body element, regardless of whether that event was canceled or not.

    2. If the previous step caused the current target element to change, and if the previous target element was not null or a part of a non-DOM document, then fire a DND event named dragleave at the previous target element, with the new current target element as the specific related target.

    3. If the current target element is a DOM element, then fire a DND event named dragover at this current target element.

      If the dragover event is not canceled, run the appropriate step from the following list:

      If the current target element is a text field (e.g. textarea, or an input element whose type attribute is in the Text state) or an editing host or editable element, and the drag data store item list has an item with the drag data item type string "text/plain" and the drag data item kind Plain Unicode string

      Set the current drag operation to either "copy" or "move", as appropriate given the platform conventions.

      If the current target element is an element with a dropzone attribute that matches the drag data store and specifies an operation

      Set the current drag operation to the operation specified by the dropzone attribute of the current target element.

      If the current target element is an element with a dropzone attribute that matches the drag data store and does not specify an operation

      Set the current drag operation to "copy".

      Otherwise

      Reset the current drag operation to "none".

      Otherwise (if the dragover event is canceled), set the current drag operation based on the values of the effectAllowed and dropEffect attributes of the DragEvent object's dataTransfer object as they stood after the event dispatch finished, as per the following table:

      effectAllowed dropEffect Drag operation
      "uninitialized", "copy", "copyLink", "copyMove", or "all" "copy" "copy"
      "uninitialized", "link", "copyLink", "linkMove", or "all" "link" "link"
      "uninitialized", "move", "copyMove", "linkMove", or "all" "move" "move"
      Any other case "none"
    4. Otherwise, if the current target element is not a DOM element, use platform-specific mechanisms to determine what drag operation is being performed (none, copy, link, or move), and set the current drag operation accordingly.

    5. Update the drag feedback (e.g. the mouse cursor) to match the current drag operation, as follows:

      Drag operation Feedback
      "copy" Data will be copied if dropped here.
      "link" Data will be linked if dropped here.
      "move" Data will be moved if dropped here.
      "none" No operation allowed, dropping here will cancel the drag-and-drop operation.
  4. Otherwise, if the user ended the drag-and-drop operation (e.g. by releasing the mouse button in a mouse-driven drag-and-drop interface), or if the drag event was canceled, then this will be the last iteration. Run the following steps, then stop the drag-and-drop operation:

    1. If the current drag operation is "none" (no drag operation), or, if the user ended the drag-and-drop operation by canceling it (e.g. by hitting the Escape key), or if the current target element is null, then the drag operation failed. Run these substeps:

      1. Let dropped be false.

      2. If the current target element is a DOM element, fire a DND event named dragleave at it; otherwise, if it is not null, use platform-specific conventions for drag cancellation.

      3. Set the current drag operation to "none".

      Otherwise, the drag operation might be a success; run these substeps:

      1. Let dropped be true.

      2. If the current target element is a DOM element, fire a DND event named drop at it; otherwise, use platform-specific conventions for indicating a drop.

      3. If the event is canceled, set the current drag operation to the value of the dropEffect attribute of the DragEvent object's dataTransfer object as it stood after the event dispatch finished.

        Otherwise, the event is not canceled; perform the event's default action, which depends on the exact target as follows:

        If the current target element is a text field (e.g. textarea, or an input element whose type attribute is in the Text state) or an editing host or editable element, and the drag data store item list has an item with the drag data item type string "text/plain" and the drag data item kind Plain Unicode string

        Insert the actual data of the first item in the drag data store item list to have a drag data item type string of "text/plain" and a drag data item kind that is Plain Unicode string into the text field or editing host or editable element in a manner consistent with platform-specific conventions (e.g. inserting it at the current mouse cursor position, or inserting it at the end of the field).

        Otherwise

        Reset the current drag operation to "none".

    2. Fire a DND event named dragend at the source node.

    3. Run the appropriate steps from the following list as the default action of the dragend event:

      If dropped is true, the current target element is a text field (see below), the current drag operation is "move", and the source of the drag-and-drop operation is a selection in the DOM that is entirely contained within an editing host

      Delete the selection.

      If dropped is true, the current target element is a text field (see below), the current drag operation is "move", and the source of the drag-and-drop operation is a selection in a text field

      The user agent should delete the dragged selection from the relevant text field.

      If dropped is false or if the current drag operation is "none"

      The drag was canceled. If the platform conventions dictate that this be represented to the user (e.g. by animating the dragged selection going back to the source of the drag-and-drop operation), then do so.

      Otherwise

      The event has no default action.

      For the purposes of this step, a text field is a textarea element or an input element whose type attribute is in one of the Text, Search, Tel, URL, E-mail, Password, or Number states.

User agents are encouraged to consider how to react to drags near the edge of scrollable regions. For example, if a user drags a link to the bottom of the viewport on a long page, it might make sense to scroll the page so that the user can drop the link lower on the page.

This model is independent of which Document object the nodes involved are from; the events are fired as described above and the rest of the processing model runs as described above, irrespective of how many documents are involved in the operation.

5.7.6 Events summary

This section is non-normative.

The following events are involved in the drag-and-drop model.

Event Name Target Cancelable? Drag data store mode dropEffect Default Action
dragstart Source node ✓ Cancelable Read/write mode "none" Initiate the drag-and-drop operation
drag Source node ✓ Cancelable Protected mode "none" Continue the drag-and-drop operation
dragenter Immediate user selection or the body element ✓ Cancelable Protected mode Based on effectAllowed value Reject immediate user selection as potential target element
dragexit Previous target element Protected mode "none" None
dragleave Previous target element Protected mode "none" None
dragover Current target element ✓ Cancelable Protected mode Based on effectAllowed value Reset the current drag operation to "none"
drop Current target element ✓ Cancelable Read-only mode Current drag operation Varies
dragend Source node Protected mode Current drag operation Varies

Not shown in the above table: all these events bubble, and the effectAllowed attribute always has the value it had after the dragstart event, defaulting to "uninitialized" in the dragstart event.

5.7.7 The draggable attribute

All HTML elements may have the draggable content attribute set. The draggable attribute is an enumerated attribute. It has three states. The first state is true and it has the keyword true. The second state is false and it has the keyword false. The third state is auto; it has no keywords but it is the missing value default.

The true state means the element is draggable; the false state means that it is not. The auto state uses the default behavior of the user agent.

An element with a draggable attribute should also have a title attribute that names the element for the purpose of non-visual interactions.

element . draggable [ = value ]

Returns true if the element is draggable; otherwise, returns false.

Can be set, to override the default and set the draggable content attribute.

The draggable IDL attribute, whose value depends on the content attribute's in the way described below, controls whether or not the element is draggable. Generally, only text selections are draggable, but elements whose draggable IDL attribute is true become draggable as well.

If an element's draggable content attribute has the state true, the draggable IDL attribute must return true.

Otherwise, if the element's draggable content attribute has the state false, the draggable IDL attribute must return false.

Otherwise, the element's draggable content attribute has the state auto. If the element is an img element, an object element that represents an image, or an a element with an href content attribute, the draggable IDL attribute must return true; otherwise, the draggable IDL attribute must return false.

If the draggable IDL attribute is set to the value false, the draggable content attribute must be set to the literal value false. If the draggable IDL attribute is set to the value true, the draggable content attribute must be set to the literal value true.

5.7.8 The dropzone attribute

All HTML elements may have the dropzone content attribute set. When specified, its value must be an unordered set of unique space-separated tokens that are ASCII case-insensitive. The allowed values are the following:

copy

Indicates that dropping an accepted item on the element will result in a copy of the dragged data.

move

Indicates that dropping an accepted item on the element will result in the dragged data being moved to the new location.

link

Indicates that dropping an accepted item on the element will result in a link to the original data.

Any keyword with eight characters or more, beginning with the an ASCII case-insensitive match for the string "string:"

Indicates that items with the drag data item kind Plain Unicode string and the drag data item type string set to a value that matches the remainder of the keyword are accepted.

Any keyword with six characters or more, beginning with an ASCII case-insensitive match for the string "file:"

Indicates that items with the drag data item kind File and the drag data item type string set to a value that matches the remainder of the keyword are accepted.

The dropzone content attribute's values must not have more than one of the three feedback values (copy, move, and link) specified. If none are specified, the copy value is implied.

An element with a dropzone attribute should also have a title attribute that names the element for the purpose of non-visual interactions.

A dropzone attribute matches a drag data store if the dropzone processing steps result in a match.

A dropzone attribute specifies an operation if the dropzone processing steps result in a specified operation. The specified operation is as given by those steps.

The dropzone processing steps are as follows. They either result in a match or not, and separate from this result either in a specified operation or not, as defined below.

  1. Let value be the value of the dropzone attribute.

  2. Let keywords be the result of splitting value on spaces.

  3. Let matched be false.

  4. Let operation be unspecified.

  5. For each value in keywords, if any, in the order that they were found in value, run the following steps.

    1. Let keyword be the keyword.

    2. If keyword is one of "copy", "move", or "link", then: run the following substeps:

      1. If operation is still unspecified, then let operation be the string given by keyword.

      2. Skip to the step labeled end of keyword below.

    3. If keyword does not contain a ":" (U+003A) character, or if the first such character in keyword is either the first character or the last character in the string, then skip to the step labeled end of keyword below.

    4. Let kind code be the substring of keyword from the first character in the string to the last character in the string that is before the first ":" (U+003A) character in the string, converted to ASCII lowercase.

    5. Jump to the appropriate step from the list below, based on the value of kind code:

      If kind code is the string "string"

      Let kind be Plain Unicode string.

      If kind code is the string "file"

      Let kind be File.

      Otherwise

      Skip to the step labeled end of keyword below.

    6. Let type be the substring of keyword from the first character after the first ":" (U+003A) character in the string, to the last character in the string, converted to ASCII lowercase.

    7. If there exist any items in the drag data store item list whose drag data item kind is the kind given in kind and whose drag data item type string is type, then let matched be true.

    8. End of keyword: Go on to the next keyword, if any, or the next step in the overall algorithm, if there are no more.

  6. The algorithm results in a match if matched is true, and does not otherwise.

    The algorithm results in a specified operation if operation is not unspecified. The specified operation, if one is specified, is the one given by operation.

The dropzone IDL attribute must reflect the content attribute of the same name.

In this example, a div element is made into a drop target for image files using the dropzone attribute. Images dropped into the target are then displayed.

<div dropzone="copy file:image/png file:image/gif file:image/jpeg" ondrop="receive(event, this)">
 <p>Drop an image here to have it displayed.</p>
</div>
<script>
 function receive(event, element) {
   var data = event.dataTransfer.items;
   for (var i = 0; i < data.length; i += 1) {
     if ((data[i].kind == 'file') && (data[i].type.match('^image/'))) {
       var img = new Image();
       img.src = window.createObjectURL(data[i].getAsFile());
       element.appendChild(img);
     }
   }
 }
</script>

5.7.9 Security risks in the drag-and-drop model

User agents must not make the data added to the DataTransfer object during the dragstart event available to scripts until the drop event, because otherwise, if a user were to drag sensitive information from one document to a second document, crossing a hostile third document in the process, the hostile document could intercept the data.

For the same reason, user agents must consider a drop to be successful only if the user specifically ended the drag operation — if any scripts end the drag operation, it must be considered unsuccessful (canceled) and the drop event must not be fired.

User agents should take care to not start drag-and-drop operations in response to script actions. For example, in a mouse-and-window environment, if a script moves a window while the user has his mouse button depressed, the UA would not consider that to start a drag. This is important because otherwise UAs could cause data to be dragged from sensitive sources and dropped into hostile documents without the user's consent.

User agents should filter potentially active (scripted) content (e.g. HTML) when it is dragged and when it is dropped, using a whitelist of known-safe features. Similarly, relative URLs should be turned into absolute URLs to avoid references changing in unexpected ways. This specification does not specify how this is performed.

Consider a hostile page providing some content and getting the user to select and drag and drop (or indeed, copy and paste) that content to a victim page's contenteditable region. If the browser does not ensure that only safe content is dragged, potentially unsafe content such as scripts and event handlers in the selection, once dropped (or pasted) into the victim site, get the privileges of the victim site. This would thus enable a cross-site scripting attack.

6 Loading Web pages

This section describes features that apply most directly to Web browsers. Having said that, except where specified otherwise, the requirements defined in this section do apply to all user agents, whether they are Web browsers or not.

6.1 Browsing contexts

A browsing context is an environment in which Document objects are presented to the user.

A tab or window in a Web browser typically contains a browsing context, as does an iframe or frames in a frameset.

Each browsing context has a corresponding WindowProxy object.

A browsing context has a session history, which lists the Document objects that that browsing context has presented, is presenting, or will present. At any time, one Document in each browsing context is designated the active document. A Document's browsing context is that browsing context whose session history contains the Document, if any. (A Document created using an API such as createDocument() has no browsing context.)

Each Document in a browsing context is associated with a Window object. A browsing context's WindowProxy object forwards everything to the browsing context's active document's Window object.

In general, there is a 1-to-1 mapping from the Window object to the Document object. There are two exceptions. First, a Window can be reused for the presentation of a second Document in the same browsing context, such that the mapping is then 1-to-2. This occurs when a browsing context is navigated from the initial about:blank Document to another, with replacement enabled. Second, a Document can end up being reused for several Window objects when the document.open() method is used, such that the mapping is then many-to-1.

A Document does not necessarily have a browsing context associated with it. In particular, data mining tools are likely to never instantiate browsing contexts.


A browsing context can have a creator browsing context, the browsing context that was responsible for its creation. If a browsing context has a parent browsing context, then that is its creator browsing context. Otherwise, if the browsing context has an opener browsing context, then that is its creator browsing context. Otherwise, the browsing context has no creator browsing context.

If a browsing context A has a creator browsing context, then the Document that was the active document of that creator browsing context at the time A was created is the creator Document.

When a browsing context is first created, it must be created with a single Document in its session history, whose address is about:blank, which is marked as being an HTML document, whose character encoding is UTF-8, and which is both ready for post-load tasks and completely loaded immediately, along with a new Window object that the Document is associated with. The Document must have a single child html node, which itself has two empty child nodes: a head element, and a body element. As soon as this Document is created, the user agent must implement the sandboxing for it. If the browsing context has a creator Document, then the browsing context's Document's referrer must be set to the address of that creator Document at the time of the browsing context's creation.

If the browsing context is created specifically to be immediately navigated, then that initial navigation will have replacement enabled.

The origin and effective script origin of the about:blank Document are set when the Document is created. If the new browsing context has a creator browsing context, then the origin of the about:blank Document is an alias to the origin of the creator Document and the effective script origin of the about:blank Document is initially an alias to the effective script origin of the creator Document. Otherwise, the origin of the about:blank Document is a globally unique identifier assigned when the new browsing context is created and the effective script origin of the about:blank Document is initially an alias to its origin.

6.1.1 Nested browsing contexts

Certain elements (for example, iframe elements) can instantiate further browsing contexts. These are called nested browsing contexts. If a browsing context P has a Document D with an element E that nests another browsing context C inside it, then C is said to be nested through D, and E is said to be the browsing context container of C. If the browsing context container element E is in the Document D, then P is said to be the parent browsing context of C and C is said to be a child browsing context of P. Otherwise, the nested browsing context C has no parent browsing context.

A browsing context A is said to be an ancestor of a browsing context B if there exists a browsing context A' that is a child browsing context of A and that is itself an ancestor of B, or if the browsing context A is the parent browsing context of B.

A browsing context that is not a nested browsing context has no parent browsing context, and is the top-level browsing context of all the browsing contexts for which it is an ancestor browsing context.

The transitive closure of parent browsing contexts for a nested browsing context gives the list of ancestor browsing contexts.

The list of the descendant browsing contexts of a Document d is the (ordered) list returned by the following algorithm:

  1. Let list be an empty list.

  2. For each child browsing context of d that is nested through an element that is in the Document d, in the tree order of the elements nesting those browsing contexts, run these substeps:

    1. Append that child browsing context to the list list.

    2. Append the list of the descendant browsing contexts of the active document of that child browsing context to the list list.

  3. Return the constructed list.

A Document is said to be fully active when it is the active document of its browsing context, and either its browsing context is a top-level browsing context, or it has a parent browsing context and the Document through which it is nested is itself fully active.

Because they are nested through an element, child browsing contexts are always tied to a specific Document in their parent browsing context. User agents must not allow the user to interact with child browsing contexts of elements that are in Documents that are not themselves fully active.

A nested browsing context can have a seamless browsing context flag set, if it is embedded through an iframe element with a seamless attribute.

A nested browsing context can be put into a delaying load events mode. This is used when it is navigated, to delay the load event of the browsing context container before the new Document is created.

The document family of a browsing context consists of the union of all the Document objects in that browsing context's session history and the document families of all those Document objects. The document family of a Document object consists of the union of all the document families of the browsing contexts that are nested through the Document object.

window . top

Returns the WindowProxy for the top-level browsing context.

window . parent

Returns the WindowProxy for the parent browsing context.

window . frameElement

Returns the Element for the browsing context container.

Returns null if there isn't one.

Throws a SecurityError exception in cross-origin situations.

The top IDL attribute on the Window object of a Document in a browsing context b must return the WindowProxy object of its top-level browsing context (which would be its own WindowProxy object if it was a top-level browsing context itself), if it has one, or its own WindowProxy object otherwise (e.g. if it was a detached nested browsing context).

The parent IDL attribute on the Window object of a Document in a browsing context b must return the WindowProxy object of the parent browsing context, if there is one (i.e. if b is a child browsing context), or the WindowProxy object of the browsing context b itself, otherwise (i.e. if it is a top-level browsing context or a detached nested browsing context).

The frameElement IDL attribute on the Window object of a Document d, on getting, must run the following algorithm:

  1. If d is not a Document in a nested browsing context, return null and abort these steps.

  2. If the browsing context container's Document does not have the same effective script origin as the effective script origin specified by the entry settings object, then throw a SecurityError exception and abort these steps.

  3. Return the browsing context container for b.

6.1.2 Auxiliary browsing contexts

It is possible to create new browsing contexts that are related to a top-level browsing context without being nested through an element. Such browsing contexts are called auxiliary browsing contexts. Auxiliary browsing contexts are always top-level browsing contexts.

An auxiliary browsing context has an opener browsing context, which is the browsing context from which the auxiliary browsing context was created.

The opener IDL attribute on the Window object, on getting, must return the WindowProxy object of the browsing context from which the current browsing context was created (its opener browsing context), if there is one, if it is still available, and if the current browsing context has not disowned its opener; otherwise, it must return null. On setting, if the new value is null then the current browsing context must disown its opener; if the new value is anything else then the user agent must call the [[DefineOwnProperty]] internal method of the Window object, passing the property name "opener" as the property key, and the Property Descriptor { [[Value]]: value, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: true } as the property descriptor, where value is the new value.

6.1.3 Secondary browsing contexts

User agents may support secondary browsing contexts, which are browsing contexts that form part of the user agent's interface, apart from the main content area.

6.1.4 Security

A browsing context A is familiar with a second browsing context B if one of the following conditions is true:


A browsing context A is allowed to navigate a second browsing context B if the following algorithm terminates positively:

  1. If A is not the same browsing context as B, and A is not one of the ancestor browsing contexts of B, and B is not a top-level browsing context, and A's active document's active sandboxing flag set has its sandboxed navigation browsing context flag set, then abort these steps negatively.

  2. Otherwise, if B is a top-level browsing context, and is one of the ancestor browsing contexts of A, and A's Document's active sandboxing flag set has its sandboxed top-level navigation browsing context flag set, then abort these steps negatively.

  3. Otherwise, if B is a top-level browsing context, and is neither A nor one of the ancestor browsing contexts of A, and A's Document's active sandboxing flag set has its sandboxed navigation browsing context flag set, and A is not the one permitted sandboxed navigator of B, then abort these steps negatively.

  4. Otherwise, terminate positively!


An element has a browsing context scope origin if its Document's browsing context is a top-level browsing context or if all of its Document's ancestor browsing contexts all have active documents whose origin are the same origin as the element's Document's origin. If an element has a browsing context scope origin, then its value is the origin of the element's Document.

6.1.5 Groupings of browsing contexts

Each browsing context is defined as having a list of one or more directly reachable browsing contexts. These are:

The transitive closure of all the browsing contexts that are directly reachable browsing contexts forms a unit of related browsing contexts.

Each unit of related browsing contexts is then further divided into the smallest number of groups such that every member of each group has an active document with an effective script origin that, through appropriate manipulation of the document.domain attribute, could be made to be the same as other members of the group, but could not be made the same as members of any other group. Each such group is a unit of related similar-origin browsing contexts.

There is also at most one event loop per unit of related similar-origin browsing contexts (though several units of related similar-origin browsing contexts can have a shared event loop).

6.1.6 Browsing context names

Browsing contexts can have a browsing context name. By default, a browsing context has no name (its name is not set).

A valid browsing context name is any string with at least one character that does not start with a U+005F LOW LINE character. (Names starting with an underscore are reserved for special keywords.)

A valid browsing context name or keyword is any string that is either a valid browsing context name or that is an ASCII case-insensitive match for one of: _blank, _self, _parent, or _top.

These values have different meanings based on whether the page is sandboxed or not, as summarised in the following (non-normative) table. In this table, "current" means the browsing context that the link or script is in, "parent" means the parent browsing context of the one the link or script is in, "master" means the nearest ancestor browsing context of the one the link or script is in that is not itself in a seamless iframe, "top" means the top-level browsing context of the one the link or script is in, "new" means a new top-level browsing context or auxiliary browsing context is to be created, subject to various user preferences and user agent policies, "none" means that nothing will happen, and "maybe new" means the same as "new" if the "allow-popups" keyword is also specified on the sandbox attribute (or if the user overrode the sandboxing), and the same as "none" otherwise.

Keyword Ordinary effect Effect in an iframe with...
seamless="" sandbox="" sandbox="" seamless="" sandbox="allow-top-navigation" sandbox="allow-top-navigation" seamless=""
none specified, for links and form submissions current master current master current master
empty string current master current master current master
_blank new new maybe new maybe new maybe new maybe new
_self current current current current current current
_parent if there isn't a parent current current current current current current
_parent if parent is also top parent/top parent/top none none parent/top parent/top
_parent if there is one and it's not top parent parent none none none none
_top if top is current current current current current current current
_top if top is not current top top none none top top
name that doesn't exist new new maybe new maybe new maybe new maybe new
name that exists and is a descendant specified descendant specified descendant specified descendant specified descendant specified descendant specified descendant
name that exists and is current current current current current current current
name that exists and is an ancestor that is top specified ancestor specified ancestor none none specified ancestor/top specified ancestor/top
name that exists and is an ancestor that is not top specified ancestor specified ancestor none none none none
other name that exists with common top specified specified none none none none
name that exists with different top, if familiar and one permitted sandboxed navigator specified specified specified specified specified specified
name that exists with different top, if familiar but not one permitted sandboxed navigator specified specified none none none none
name that exists with different top, not familiar new new maybe new maybe new maybe new maybe new

Most of the restrictions on sandboxed browsing contexts are applied by other algorithms, e.g. the navigation algorithm, not the rules for choosing a browsing context given a browsing context name given below.


An algorithm is allowed to show a popup if any of the following conditions is true:


The rules for choosing a browsing context given a browsing context name are as follows. The rules assume that they are being applied in the context of a browsing context, as part of the execution of a task.

  1. If the given browsing context name is the empty string or _self, then the chosen browsing context must be the current one.

    If the given browsing context name is _self, then this is an explicit self-navigation override, which overrides the behavior of the seamless browsing context flag set by the seamless attribute on iframe elements.

  2. If the given browsing context name is _parent, then the chosen browsing context must be the parent browsing context of the current one, unless there isn't one, in which case the chosen browsing context must be the current browsing context.

  3. If the given browsing context name is _top, then the chosen browsing context must be the top-level browsing context of the current one, if there is one, or else the current browsing context.

  4. If the given browsing context name is not _blank and there exists a browsing context whose name is the same as the given browsing context name, and the current browsing context is familiar with that browsing context, and the user agent determines that the two browsing contexts are related enough that it is ok if they reach each other, then that browsing context must be the chosen one. If there are multiple matching browsing contexts, the user agent should select one in some arbitrary consistent manner, such as the most recently opened, most recently focused, or more closely related.

    If the browsing context is chosen by this step to be the current browsing context, then this is also an explicit self-navigation override.

  5. Otherwise, a new browsing context is being requested, and what happens depends on the user agent's configuration and abilities — it is determined by the rules given for the first applicable option from the following list:

    There is no chosen browsing context. The user agent may inform the user that a popup has been blocked.

    If the current browsing context's active document's active sandboxing flag set has the sandboxed auxiliary navigation browsing context flag set.

    Typically, there is no chosen browsing context.

    The user agent may offer to create a new top-level browsing context or reuse an existing top-level browsing context. If the user picks one of those options, then the designated browsing context must be the chosen one (the browsing context's name isn't set to the given browsing context name). The default behaviour (if the user agent doesn't offer the option to the user, or if the user declines to allow a browsing context to be used) must be that there must not be a chosen browsing context.

    If this case occurs, it means that an author has explicitly sandboxed the document that is trying to open a link.

    If the user agent has been configured such that in this instance it will create a new browsing context, and the browsing context is being requested as part of following a hyperlink whose link types include the noreferrer keyword

    A new top-level browsing context must be created. If the given browsing context name is not _blank, then the new top-level browsing context's name must be the given browsing context name (otherwise, it has no name). The chosen browsing context must be this new browsing context. The creation of such a browsing context is a new start for session storage.

    If it is immediately navigated, then the navigation will be done with replacement enabled.

    If the user agent has been configured such that in this instance it will create a new browsing context, and the noreferrer keyword doesn't apply

    A new auxiliary browsing context must be created, with the opener browsing context being the current one. If the given browsing context name is not _blank, then the new auxiliary browsing context's name must be the given browsing context name (otherwise, it has no name). The chosen browsing context must be this new browsing context.

    If it is immediately navigated, then the navigation will be done with replacement enabled.

    If the user agent has been configured such that in this instance it will reuse the current browsing context

    The chosen browsing context is the current browsing context.

    If the user agent has been configured such that in this instance it will not find a browsing context

    There must not be a chosen browsing context.

    User agent implementors are encouraged to provide a way for users to configure the user agent to always reuse the current browsing context.

    If the current browsing context's active document's active sandboxing flag set has the sandboxed navigation browsing context flag set and the chosen browsing context picked above, if any, is a new browsing context (whether top-level or auxiliary), then all the flags that are set in the current browsing context's active document's active sandboxing flag set when the new browsing context is created must be set in the new browsing context's popup sandboxing flag set, and the current browsing context must be set as the new browsing context's one permitted sandboxed navigator.

6.2 The Window object

[PrimaryGlobal]
/*sealed*/ interface Window : EventTarget {
  // the current browsing context
  [Unforgeable] readonly attribute WindowProxy window;
  [Replaceable] readonly attribute WindowProxy self;
  [Unforgeable] readonly attribute Document document;
           attribute DOMString name; 
  [PutForwards=href, Unforgeable] readonly attribute Location location;
  readonly attribute History history;
  [Replaceable] readonly attribute BarProp locationbar;
  [Replaceable] readonly attribute BarProp menubar;
  [Replaceable] readonly attribute BarProp personalbar;
  [Replaceable] readonly attribute BarProp scrollbars;
  [Replaceable] readonly attribute BarProp statusbar;
  [Replaceable] readonly attribute BarProp toolbar;
           attribute DOMString status;
  void close();
  readonly attribute boolean closed;
  void stop();
  void focus();
  void blur();

  // other browsing contexts
  [Replaceable] readonly attribute WindowProxy frames;
  [Replaceable] readonly attribute unsigned long length;
  [Unforgeable] readonly attribute WindowProxy top;
           attribute any opener;
  readonly attribute WindowProxy parent;
  readonly attribute Element? frameElement;
  WindowProxy open(optional DOMString url = "about:blank", optional DOMString target = "_blank", optional DOMString features = "", optional boolean replace = false);
  getter WindowProxy (unsigned long index);
  getter object (DOMString name);

  // the user agent
  readonly attribute Navigator navigator; 
  [Replaceable] readonly attribute External external;
  readonly attribute ApplicationCache applicationCache;

  // user prompts
  void alert();
  void alert(DOMString message);
  boolean confirm(optional DOMString message = "");
  DOMString? prompt(optional DOMString message = "", optional DOMString default = "");
  void print();
  any showModalDialog(DOMString url, optional any argument);


};
Window implements GlobalEventHandlers;
Window implements WindowEventHandlers;
window . window
window . frames
window . self

These attributes all return window.

window . document

Returns the Document associated with window.

document . defaultView

Returns the Window object of the active document.

The window, frames, and self IDL attributes must all return the Window object's browsing context's WindowProxy object.

The document IDL attribute must return the Window object's newest Document object.

The defaultView IDL attribute of the Document interface must return the Document's browsing context's WindowProxy object, if there is one, or null otherwise.


For historical reasons, Window objects must also have a writable, configurable, non-enumerable property named HTMLDocument whose value is the Document interface object.

6.2.1 Security

This section describes a security model that is underdefined, imperfect, and does not match implementations. Work is ongoing to attempt to resolve this, but in the meantime, please do not rely on this section for precision. Implementors are urged to send their feedback on how cross-origin cross-global access to Window and Location objects should work. See bug 20701.

User agents must throw a SecurityError exception whenever any properties of a Window object are accessed when the incumbent settings object specifies an effective script origin that is not the same as the Window object's Document's effective script origin, with the following exceptions:

When the incumbent settings object specifies an effective script origin that is different than a Window object's Document's effective script origin, the user agent must act as if any changes to that Window object's properties, getters, setters, etc, were not present, and as if all the properties of that Window object had their [[Enumerable]] attribute set to false.

For members that return objects (including function objects), each distinct effective script origin that is not the same as the Window object's Document's effective script origin must be provided with a separate set of objects. These objects must have the prototype chain appropriate for the script for which the objects are created (not those that would be appropriate for scripts whose global object, as specified by their settings object, is the Window object in question).

For instance, if two frames containing Documents from different origins access the same Window object's postMessage() method, they will get distinct objects that are not equal.

6.2.2 APIs for creating and navigating browsing contexts by name

window = window . open( [ url [, target [, features [, replace ] ] ] ] )

Opens a window to show url (defaults to about:blank), and returns it. The target argument gives the name of the new window. If a window exists with that name already, it is reused. The replace attribute, if true, means that whatever page is currently open in that window will be removed from the window's session history. The features argument is ignored.

window . name [ = value ]

Returns the name of the window.

Can be set, to change the name.

window . close()

Closes the window.

window . closed

Returns true if the window has been closed, false otherwise.

window . stop()

Cancels the document load.

The open() method on Window objects provides a mechanism for navigating an existing browsing context or opening and navigating an auxiliary browsing context.

The method has four arguments, though they are all optional.

The first argument, url, must be a valid non-empty URL for a page to load in the browsing context. If the first argument is the empty string, then the url argument must be interpreted as "about:blank". Otherwise, the argument must be resolved to an absolute URL (or an error), relative to the API base URL specified by the entry settings object when the method was invoked.

The second argument, target, specifies the name of the browsing context that is to be navigated. It must be a valid browsing context name or keyword.

The third argument, features, has no defined effect and is mentioned for historical reasons only. User agents may interpret this argument as instructions to set the size and position of the browsing context, but are encouraged to instead ignore the argument entirely.

The fourth argument, replace, specifies whether or not the new page will replace the page currently loaded in the browsing context, when target identifies an existing browsing context (as opposed to leaving the current page in the browsing context's session history).

When the method is invoked, the user agent must first select a browsing context to navigate by applying the rules for choosing a browsing context given a browsing context name using the target argument as the name and the browsing context of the script as the context in which the algorithm is executed, unless the user has indicated a preference, in which case the browsing context to navigate may instead be the one indicated by the user.

For example, suppose there is a user agent that supports control-clicking a link to open it in a new tab. If a user clicks in that user agent on an element whose onclick handler uses the window.open() API to open a page in an iframe, but, while doing so, holds the control key down, the user agent could override the selection of the target browsing context to instead target a new tab.

If applying the rules for choosing a browsing context given a browsing context name using the target argument would result in there not being a chosen browsing context, then throw an InvalidAccessError exception and abort these steps.

Otherwise, if url is not "about:blank", the user agent must navigate the selected browsing context to the absolute URL obtained from resolving url earlier, with exceptions enabled. If the replace is true or if the browsing context was just created as part of the rules for choosing a browsing context given a browsing context name, then replacement must be enabled also. The navigation must be done with the responsible browsing context specified by the incumbent settings object as the source browsing context. If the resolve a URL algorithm failed, then the user agent may either instead navigate to an inline error page, with exceptions enabled and using the same replacement behavior and source browsing context behavior as described earlier in this paragraph; or treat the url as "about:blank", acting as described in the next paragraph.

If url is "about:blank", and the browsing context was just created as part of the rules for choosing a browsing context given a browsing context name, then the user agent must instead queue a task to fire a simple event named load at the selected browsing context's Window object, but with its target set to the selected browsing context's Window object's Document object (and the currentTarget set to the Window object).

The method must return the WindowProxy object of the browsing context that was navigated, or null if no browsing context was navigated.


The name attribute of the Window object must, on getting, return the current name of the browsing context, if one is set, or the empty string otherwise; and, on setting, set the name of the browsing context to the new value.

The name gets reset when the browsing context is navigated to another domain.


The close() method on Window objects should, if all the following conditions are met, close the browsing context A:

A browsing context is script-closable if it is an auxiliary browsing context that was created by a script (as opposed to by an action of the user), or if it is a top-level browsing context whose session history contains only one Document.

The closed attribute on Window objects must return true if the Window object's browsing context has been discarded, and false otherwise.

The stop() method on Window objects should, if there is an existing attempt to navigate the browsing context and that attempt is not currently running the unload a document algorithm, cancel that navigation; then, it must abort the active document of the browsing context of the Window object on which it was invoked.

6.2.3 Accessing other browsing contexts

window . length

Returns the number of child browsing contexts.

window[index]

Returns the indicated child browsing context.

The length IDL attribute on the Window interface must return the number of child browsing contexts that are nested through elements that are in the Document that is the active document of that Window object, if that Window's browsing context shares the same event loop as the responsible document specified by the entry settings object accessing the IDL attribute; otherwise, it must return zero.

The supported property indices on the Window object at any instant are the numbers in the range 0 .. n-1, where n is the number returned by the length IDL attribute. If n is zero then there are no supported property indices.

To determine the value of an indexed property index of a Window object, the user agent must return the WindowProxy object of the indexth child browsing context of the Document that is nested through an element that is in the Document, sorted in the order that the elements nesting those browsing contexts were most recently inserted into the Document, the WindowProxy object of the most recently inserted browsing context container's nested browsing context being last.

These properties are the dynamic nested browsing context properties.

6.2.4 Named access on the Window object

window[name]

Returns the indicated element or collection of elements.

As a general rule, relying on this will lead to brittle code. Which IDs end up mapping to this API can vary over time, as new features are added to the Web platform, for example. Instead of this, use document.getElementById() or document.querySelector().

The Window interface supports named properties. The supported property names at any moment consist of the following, in tree order, ignoring later duplicates:

To determine the value of a named property name when the Window object is indexed for property retrieval, the user agent must return the value obtained using the following steps:

  1. Let objects be the list of named objects with the name name in the active document.

    There will be at least one such object, by definition.

  2. If objects contains a nested browsing context, then return the WindowProxy object of the nested browsing context corresponding to the first browsing context container in tree order whose browsing context is in objects, and abort these steps.

  3. Otherwise, if objects has only one element, return that element and abort these steps.

  4. Otherwise return an HTMLCollection rooted at the Document node, whose filter matches only named objects with the name name. (By definition, these will all be elements.)

Named objects with the name name, for the purposes of the above algorithm, are those that are either:

6.2.5 Garbage collection and browsing contexts

A browsing context has a strong reference to each of its Documents and its WindowProxy object, and the user agent itself has a strong reference to its top-level browsing contexts.

A Document has a strong reference to its Window object.

A Window object has a strong reference to its Document object through its document attribute. Thus, references from other scripts to either of those objects will keep both alive. Similarly, both Document and Window objects have implied strong references to the WindowProxy object.

Each script has a strong reference to its settings object, and each script settings object has strong references to its global object, responsible browsing context, and responsible document.

When a browsing context is to discard a Document, the user agent must run the following steps:

  1. Set the Document's salvageable state to false.

  2. Run any unloading document cleanup steps for the Document that are defined by this specification and other applicable specifications.

  3. Abort the Document.

  4. Remove any tasks associated with the Document in any task source, without running those tasks.

  5. Discard all the child browsing contexts of the Document.

  6. Lose the strong reference from the Document's browsing context to the Document.

Whenever a Document object is discarded, it is also removed from the list of the worker's Documents of each worker whose list contains that Document.

When a browsing context is discarded, the strong reference from the user agent itself to the browsing context must be severed, and all the Document objects for all the entries in the browsing context's session history must be discarded as well.

User agents may discard top-level browsing contexts at any time (typically, in response to user requests, e.g. when a user force-closes a window containing one or more top-level browsing contexts). Other browsing contexts must be discarded once their WindowProxy object is eligible for garbage collection.

6.2.6 Closing browsing contexts

When the user agent is required to close a browsing context, it must run the following steps:

  1. Let specified browsing context be the browsing context being closed.

  2. Prompt to unload the active document of the specified browsing context. If the user refused to allow the document to be unloaded, then abort these steps.

  3. Unload the active document of the specified browsing context with the recycle parameter set to false.

  4. Remove the specified browsing context from the user interface (e.g. close or hide its tab in a tabbed browser).

  5. Discard the specified browsing context.

User agents should offer users the ability to arbitrarily close any top-level browsing context.

6.2.7 Browser interface elements

To allow Web pages to integrate with Web browsers, certain Web browser interface elements are exposed in a limited way to scripts in Web pages.

Each interface element is represented by a BarProp object:

interface BarProp {
           attribute boolean visible;
};
window . locationbar . visible

Returns true if the location bar is visible; otherwise, returns false.

window . menubar . visible

Returns true if the menu bar is visible; otherwise, returns false.

window . personalbar . visible

Returns true if the personal bar is visible; otherwise, returns false.

window . scrollbars . visible

Returns true if the scroll bars are visible; otherwise, returns false.

window . statusbar . visible

Returns true if the status bar is visible; otherwise, returns false.

window . toolbar . visible

Returns true if the toolbar is visible; otherwise, returns false.

The visible attribute, on getting, must return either true or a value determined by the user agent to most accurately represent the visibility state of the user interface element that the object represents, as described below. On setting, the new value must be discarded.

The following BarProp objects exist for each Document object in a browsing context. Some of the user interface elements represented by these objects might have no equivalent in some user agents; for those user agents, except when otherwise specified, the object must act as if it was present and visible (i.e. its visible attribute must return true).

The location bar BarProp object
Represents the user interface element that contains a control that displays the URL of the active document, or some similar interface concept.
The menu bar BarProp object
Represents the user interface element that contains a list of commands in menu form, or some similar interface concept.
The personal bar BarProp object
Represents the user interface element that contains links to the user's favorite pages, or some similar interface concept.
The scrollbar BarProp object
Represents the user interface element that contains a scrolling mechanism, or some similar interface concept.
The status bar BarProp object
Represents a user interface element found immediately below or after the document, as appropriate for the user's media, which typically provides information about ongoing network activity or information about elements that the user's pointing device is current indicating. If the user agent has no such user interface element, then the object may act as if the corresponding user interface element was absent (i.e. its visible attribute may return false).
The toolbar BarProp object
Represents the user interface element found immediately above or before the document, as appropriate for the user's media, which typically provides session history traversal controls (back and forward buttons, reload buttons, etc). If the user agent has no such user interface element, then the object may act as if the corresponding user interface element was absent (i.e. its visible attribute may return false).

The locationbar attribute must return the location bar BarProp object.

The menubar attribute must return the menu bar BarProp object.

The personalbar attribute must return the personal bar BarProp object.

The scrollbars attribute must return the scrollbar BarProp object.

The statusbar attribute must return the status bar BarProp object.

The toolbar attribute must return the toolbar BarProp object.


For historical reasons, the status attribute on the Window object must, on getting, return the last string it was set to, and on setting, must set itself to the new value. When the Window object is created, the attribute must be set to the empty string. It does not do anything else.

6.2.8 The WindowProxy object

As mentioned earlier, each browsing context has a WindowProxy object. This object is unusual in that all operations that would be performed on it must be performed on the Window object of the browsing context's active document instead. It is thus indistinguishable from that Window object in every way until the browsing context is navigated.

There is no WindowProxy interface object.

The WindowProxy object allows scripts to act as if each browsing context had a single Window object, while still keeping separate Window objects for each Document.

In the following example, the variable x is set to the WindowProxy object returned by the window accessor on the global object. All of the expressions following the assignment return true, because in every respect, the WindowProxy object acts like the underlying Window object.

var x = window;
x instanceof Window; // true
x === this; // true

6.3 Origin

Origins are the fundamental currency of the Web's security model. Two actors in the Web platform that share an origin are assumed to trust each other and to have the same authority. Actors with differing origins are considered potentially hostile versus each other, and are isolated from each other to varying degrees.

For example, if Example Bank's Web site, hosted at bank.example.com, tries to examine the DOM of Example Charity's Web site, hosted at charity.example.org, a SecurityError exception will be raised.


The origin of a resource and the effective script origin of a resource are both either opaque identifiers or tuples consisting of a scheme component, a host component, a port component, and optionally extra data.

The extra data could include the certificate of the site when using encrypted connections, to ensure that if the site's secure certificate changes, the origin is considered to change as well.

An origin or effective script origin can be defined as an alias to another origin or effective script origin. The value of the origin or effective script origin is then the value of the origin or effective script origin to which it is an alias.

These characteristics are defined as follows:

For URLs

The origin and effective script origin of the URL are the origin defined in The Web Origin Concept. [ORIGIN]

For Document objects
If a Document's active sandboxing flag set has its sandboxed origin browsing context flag set

The origin is a globally unique identifier assigned when the Document is created.

The effective script origin is initially an alias to the origin of the Document.

If a Document was served over the network and has an address that uses a URL scheme with a server-based naming authority

The origin is an alias to the origin of the Document's address.

The effective script origin is initially an alias to the origin of the Document.

If a Document was generated from a data: URL found in another Document or in a script

The origin is an alias to the origin specified by the incumbent settings object when the navigate algorithm was invoked, or, if no script was involved, of the Document of the element that initiated the navigation to that URL.

The effective script origin is initially an alias to the effective script origin of that same script settings object or Document.

If a Document is the initial "about:blank" document

The origin and effective script origin of the Document are those it was assigned when its browsing context was created.

If a Document was created as part of the processing for javascript: URLs

The origin is an alias to the origin of the active document of the browsing context being navigated when the navigate algorithm was invoked.

The effective script origin is initially an alias to the effective script origin of that same Document.

If a Document is an iframe srcdoc document

The origin of the Document is an alias to the origin of the Document's browsing context's browsing context container's Document.

The effective script origin is initially an alias to the effective script origin of the Document's browsing context's browsing context container's Document.

If a Document was obtained in some other manner (e.g. a data: URL typed in by the user or that was returned as the location of an HTTP redirect (or equivalent in other protocols), a Document created using the createDocument() API, etc)

The default behavior as defined in the DOM standard applies. [DOM].

The origin is a globally unique identifier assigned when the Document is created, and the effective script origin is initially an alias to the origin of the Document.

The effective script origin of a Document can be manipulated using the document.domain IDL attribute.

For images of img elements
If the image data is CORS-cross-origin
The origin is a globally unique identifier assigned when the image is created.
If the image data is CORS-same-origin
The origin is an alias to the origin of the img element's Document.

Images do not have an effective script origin.

For audio and video elements
If the media data is CORS-cross-origin
The origin is a globally unique identifier assigned when the media data is fetched.
If the media data is CORS-same-origin
The origin is an alias to the origin of the media element's Document.

Media elements do not have an effective script origin.

For fonts

The origin of a downloadable Web font is an alias to the origin of the absolute URL used to obtain the font (after any redirects). [CSSFONTS] [CSSFONTLOAD]

The origin of a locally installed system font is an alias to the origin of the Document in which that font is being used.

Fonts do not have an effective script origin.

Other specifications can override the above definitions by themselves specifying the origin of a particular URL, Document, image, media element, or font.


The Unicode serialization of an origin is the string obtained by applying the following algorithm to the given origin:

  1. If the origin in question is not a scheme/host/port tuple, then return the literal string "null" and abort these steps.

  2. Otherwise, let result be the scheme part of the origin tuple.

  3. Append the string "://" to result.

  4. Apply the domain label to Unicode algorithm to each component of the host part of the origin tuple, and append the results — each component, in the same order, separated by "." (U+002E) characters — to result. [URL]

  5. If the port part of the origin tuple gives a port that is different from the default port for the protocol given by the scheme part of the origin tuple, then append a ":" (U+003A) character and the given port, in base ten, to result.

  6. Return result.

The ASCII serialization of an origin is the string obtained by applying the following algorithm to the given origin:

  1. If the origin in question is not a scheme/host/port tuple, then return the literal string "null" and abort these steps.

  2. Otherwise, let result be the scheme part of the origin tuple.

  3. Append the string "://" to result.

  4. Apply the domain label to ASCII algorithm to each component of the host part of the origin tuple, and append the results — each component, in the same order, separated by "." (U+002E) characters — to result. [URL]

    If the ToASCII algorithm used by the domain label to ASCII algorithm fails to convert one of the components of the string, e.g. because it is too long or because it contains invalid characters, then throw a SecurityError exception and abort these steps. [RFC3490]

  5. If the port part of the origin tuple gives a port that is different from the default port for the protocol given by the scheme part of the origin tuple, then append a ":" (U+003A) character and the given port, in base ten, to result.

  6. Return result.

Two origins are said to be the same origin if the following algorithm returns true:

  1. Let A be the first origin being compared, and B be the second origin being compared.

  2. If A and B are both opaque identifiers, and their value is equal, then return true.

  3. Otherwise, if either A or B or both are opaque identifiers, return false.

  4. If A and B have scheme components that are not identical, return false.

  5. If A and B have host components that are not identical, return false.

  6. If A and B have port components that are not identical, return false.

  7. If either A or B have additional data, but that data is not identical for both, return false.

  8. Return true.

6.3.1 Relaxing the same-origin restriction

document . domain [ = domain ]

Returns the current domain used for security checks.

Can be set to a value that removes subdomains, to change the effective script origin to allow pages on other subdomains of the same domain (if they do the same thing) to access each other. (Can't be set in sandboxed iframes.)

The domain attribute on Document objects must be initialised to the document's domain, if it has one, and the empty string otherwise. If the document's domain starts with a "[" (U+005B) character and ends with a "]" (U+005D) character, it is an IPv6 address; these square brackets must be omitted when initializing the attribute's value.

On getting, the attribute must return its current value, unless the Document has no browsing context, in which case it must return the empty string.

On setting, the user agent must run the following algorithm:

  1. If the Document has no browsing context, throw a SecurityError exception and abort these steps.

  2. If the Document's active sandboxing flag set has its sandboxed document.domain browsing context flag set, throw a SecurityError exception and abort these steps.

  3. If the new value is an IPv4 or IPv6 address, let new value be the new value.

    Otherwise, strictly split the new value on "." (U+002E) characters, apply the domain label to ASCII algorithm to each returned token, and let new value be the result of concatenating the results of applying that algorithm to each token, in the same order, separated by "." (U+002E) characters. [URL]

    If the ToASCII algorithm used by the domain label to ASCII algorithm fails to convert one of the components of the string, e.g. because it is too long or because it contains invalid characters, then throw a SecurityError exception and abort these steps. [RFC3490]

  4. If new value is not exactly equal to the current value of the document.domain attribute, then run these substeps:

    1. If the current value is an IPv4 or IPv6 address, throw a SecurityError exception and abort these steps.

    2. If new value, prefixed by a "." (U+002E), does not exactly match the end of the current value, throw a SecurityError exception and abort these steps.

      If the new value is an IPv4 or IPv6 address, it cannot match the new value in this way and thus an exception will be thrown here.

    3. If new value matches a suffix in the Public Suffix List, or, if new value, prefixed by a "." (U+002E), matches the end of a suffix in the Public Suffix List, then throw a SecurityError exception and abort these steps. [PSL]

      Suffixes must be compared in an ASCII case-insensitive manner, after applying the domain label to ASCII algorithm to their individual components, . [URL]

  5. Release the storage mutex.

  6. Set the attribute's value to new value.

  7. If the effective script origin of the Document is an alias, set it to the value of the effective script origin (essentially de-aliasing the effective script origin).

  8. If new value is not the empty string, then run these substeps:

    1. Set the host part of the effective script origin tuple of the Document to new value.

    2. Set the port part of the effective script origin tuple of the Document to "manual override" (a value that, for the purposes of comparing origins, is identical to "manual override" but not identical to any other value).

The domain of a Document is the host part of the document's origin, if the value of that origin is a scheme/host/port tuple. If it isn't, then the document does not have a domain.

The domain attribute is used to enable pages on different hosts of a domain to access each others' DOMs.

Do not use the document.domain attribute when using shared hosting. If an untrusted third party is able to host an HTTP server at the same IP address but on a different port, then the same-origin protection that normally protects two different sites on the same host will fail, as the ports are ignored when comparing origins after the document.domain attribute has been used.

6.4 Sandboxing

A sandboxing flag set is a set of zero or more of the following flags, which are used to restrict the abilities that potentially untrusted resources have:

The sandboxed navigation browsing context flag

This flag prevents content from navigating browsing contexts other than the sandboxed browsing context itself (or browsing contexts further nested inside it), auxiliary browsing contexts (which are protected by the sandboxed auxiliary navigation browsing context flag defined next), and the top-level browsing context (which is protected by the sandboxed top-level navigation browsing context flag defined below).

If the sandboxed auxiliary navigation browsing context flag is not set, then in certain cases the restrictions nonetheless allow popups (new top-level browsing contexts) to be opened. These browsing contexts always have one permitted sandboxed navigator, set when the browsing context is created, which allows the browsing context that created them to actually navigate them. (Otherwise, the sandboxed navigation browsing context flag would prevent them from being navigated even if they were opened.)

The sandboxed auxiliary navigation browsing context flag

This flag prevents content from creating new auxiliary browsing contexts, e.g. using the target attribute, the window.open() method, or the showModalDialog() method.

The sandboxed top-level navigation browsing context flag

This flag prevents content from navigating their top-level browsing context and prevents content from closing their top-level browsing context.

When the sandboxed top-level navigation browsing context flag is not set, content can navigate its top-level browsing context, but other browsing contexts are still protected by the sandboxed navigation browsing context flag and possibly the sandboxed auxiliary navigation browsing context flag.

The sandboxed plugins browsing context flag

This flag prevents content from instantiating plugins, whether using the embed element, the object element, the applet element, or through navigation of a nested browsing context, unless those plugins can be secured.

The sandboxed seamless iframes flag

This flag prevents content from using the seamless attribute on descendant iframe elements.

This prevents a page inserted using the allow-same-origin keyword from using a CSS-selector-based method of probing the DOM of other pages on the same site (in particular, pages that contain user-sensitive information).

The sandboxed origin browsing context flag

This flag forces content into a unique origin, thus preventing it from accessing other content from the same origin.

This flag also prevents script from reading from or writing to the document.cookie IDL attribute, and blocks access to localStorage. [WEBSTORAGE]

The sandboxed forms browsing context flag

This flag blocks form submission.

The sandboxed pointer lock browsing context flag

This flag disables the Pointer Lock API. [POINTERLOCK]

The sandboxed scripts browsing context flag

This flag blocks script execution.

The sandboxed automatic features browsing context flag

This flag blocks features that trigger automatically, such as automatically playing a video or automatically focusing a form control.

The sandboxed fullscreen browsing context flag

This flag prevents content from using the requestFullscreen() method.

The sandboxed document.domain browsing context flag

This flag prevents content from using the document.domain feature to change the effective script origin.

When the user agent is to parse a sandboxing directive, given a string input, a sandboxing flag set output, and optionally an allow fullscreen flag, it must run the following steps:

  1. Split input on spaces, to obtain tokens.

  2. Let output be empty.

  3. Add the following flags to output:


Every top-level browsing context has a popup sandboxing flag set, which is a sandboxing flag set. When a browsing context is created, its popup sandboxing flag set must be empty. It is populated by the rules for choosing a browsing context given a browsing context name.

Every nested browsing context has an iframe sandboxing flag set, which is a sandboxing flag set. Which flags in a nested browsing context's iframe sandboxing flag set are set at any particular time is determined by the iframe element's sandbox attribute.

Every Document has an active sandboxing flag set, which is a sandboxing flag set. When the Document is created, its active sandboxing flag set must be empty. It is populated by the navigation algorithm.

Every resource that is obtained by the navigation algorithm has a forced sandboxing flag set, which is a sandboxing flag set. A resource by default has no flags set in its forced sandboxing flag set, but other specifications can define that certain flags are set.

In particular, the forced sandboxing flag set is used by the Content Security Policy specification. [CSP]


When a user agent is to implement the sandboxing for a Document, it must populate Document's active sandboxing flag set with the union of the flags that are present in the following sandboxing flag sets at the time the Document object is created:

6.5 Session history and navigation

6.5.1 The session history of browsing contexts

The sequence of Documents in a browsing context is its session history. Each browsing context, including nested browsing contexts, has a distinct session history. A browsing context's session history consists of a flat list of session history entries. Each session history entry consists, at a minimum, of a URL, and each entry may in addition have a state object, a title, a Document object, form data, a scroll position, and other information associated with it.

Each entry, when first created, has a Document. However, when a Document is not active, it's possible for it to be discarded to free resources. The URL and other data in a session history entry is then used to bring a new Document into being to take the place of the original, should the user agent find itself having to reactivate that Document.

Titles associated with session history entries need not have any relation with the current title of the Document. The title of a session history entry is intended to explain the state of the document at that point, so that the user can navigate the document's history.

URLs without associated state objects are added to the session history as the user (or script) navigates from page to page.


Each Document object in a browsing context's session history is associated with a unique History object which must all model the same underlying session history.

The history attribute of the Window interface must return the object implementing the History interface for that Window object's newest Document.


A state object is an object representing a user interface state.

Pages can add state objects to the session history. These are then returned to the script when the user (or script) goes back in the history, thus enabling authors to use the "navigation" metaphor even in one-page applications.

State objects are intended to be used for two main purposes: first, storing a preparsed description of the state in the URL so that in the simple case an author doesn't have to do the parsing (though one would still need the parsing for handling URLs passed around by users, so it's only a minor optimization), and second, so that the author can store state that one wouldn't store in the URL because it only applies to the current Document instance and it would have to be reconstructed if a new Document were opened.

An example of the latter would be something like keeping track of the precise coordinate from which a pop-up div was made to animate, so that if the user goes back, it can be made to animate to the same location. Or alternatively, it could be used to keep a pointer into a cache of data that would be fetched from the server based on the information in the URL, so that when going back and forward, the information doesn't have to be fetched again.


At any point, one of the entries in the session history is the current entry. This is the entry representing the active document of the browsing context. Which entry is the current entry is changed by the algorithms defined in this specification, e.g. during session history traversal.

The current entry is usually an entry for the address of the Document. However, it can also be one of the entries for state objects added to the history by that document.

An entry with persisted user state is one that also has user-agent defined state. This specification does not specify what kind of state can be stored.

For example, some user agents might want to persist the scroll position, or the values of form controls.

User agents that persist the value of form controls are encouraged to also persist their directionality (the value of the element's dir attribute). This prevents values from being displayed incorrectly after a history traversal when the user had originally entered the values with an explicit, non-default directionality.

Entries that consist of state objects share the same Document as the entry for the page that was active when they were added.

Contiguous entries that differ just by fragment identifier also share the same Document.

All entries that share the same Document (and that are therefore merely different states of one particular document) are contiguous by definition.

Each Document in a browsing context can also have a latest entry. This is the entry or that Document that was most the recently traversed to. When a Document is created, it initially has no latest entry.

User agents may discard the Document objects of entries other than the current entry that are not referenced from any script, reloading the pages afresh when the user or script navigates back to such pages. This specification does not specify when user agents should discard Document objects and when they should cache them.

Entries that have had their Document objects discarded must, for the purposes of the algorithms given below, act as if they had not. When the user or script navigates back or forwards to a page which has no in-memory DOM objects, any other entries that shared the same Document object with it must share the new object as well.

6.5.2 The History interface

interface History {
  readonly attribute long length;
  readonly attribute any state;
  void go(optional long delta);
  void back();
  void forward();
  void pushState(any data, DOMString title, optional DOMString? url = null);
  void replaceState(any data, DOMString title, optional DOMString? url = null);
};
window . history . length

Returns the number of entries in the joint session history.

window . history . state

Returns the current state object.

window . history . go( [ delta ] )

Goes back or forward the specified number of steps in the joint session history.

A zero delta will reload the current page.

If the delta is out of range, does nothing.

window . history . back()

Goes back one step in the joint session history.

If there is no previous page, does nothing.

window . history . forward()

Goes forward one step in the joint session history.

If there is no next page, does nothing.

window . history . pushState(data, title [, url ] )

Pushes the given data onto the session history, with the given title, and, if provided and not null, the given URL.

window . history . replaceState(data, title [, url ] )

Updates the current entry in the session history to have the given data, title, and, if provided and not null, URL.

The joint session history of a top-level browsing context is the union of all the session histories of all browsing contexts of all the fully active Document objects that share that top-level browsing context, with all the entries that are current entries in their respective session histories removed except for the current entry of the joint session history.

The current entry of the joint session history is the entry that most recently became a current entry in its session history.

Entries in the joint session history are ordered chronologically by the time they were added to their respective session histories. Each entry has an index; the earliest entry has index 0, and the subsequent entries are numbered with consecutively increasing integers (1, 2, 3, etc).

Since each Document in a browsing context might have a different event loop, the actual state of the joint session history can be somewhat nebulous. For example, two sibling iframe elements could both traverse from one unique origin to another at the same time, so their precise order might not be well-defined; similarly, since they might only find out about each other later, they might disagree about the length of the joint session history.

All the getters and setters for attributes, and all the methods, defined on the History interface, when invoked on a History object associated with a Document that is not fully active, must throw a SecurityError exception instead of operating as described below.

The length attribute of the History interface must return the number of entries in the top-level browsing context's joint session history.

The actual entries are not accessible from script.

The state attribute of the History interface must return the last value it was set to by the user agent. Initially, its value must be null.

When the go(delta) method is invoked, if the argument to the method was omitted or has the value zero, the user agent must act as if the location.reload() method was called instead. Otherwise, the user agent must traverse the history by a delta whose value is the value of the method's argument.

When the back() method is invoked, the user agent must traverse the history by a delta −1.

When the forward()method is invoked, the user agent must traverse the history by a delta +1.


Each top-level browsing context has a session history traversal queue, initially empty, to which tasks can be added.

Each top-level browsing context, when created, must asynchronously begin running the following algorithm, known as the session history event loop for that top-level browsing context:

  1. Wait until this top-level browsing context's session history traversal queue is not empty.

  2. Pull the first task from this top-level browsing context's session history traversal queue, and execute it.

  3. Return to the first step of this algorithm.

The session history event loop helps coordinate cross-browsing-context transitions of the joint session history: since each browsing context might, at any particular time, have a different event loop (this can happen if the user agent has more than one event loop per unit of related browsing contexts), transitions would otherwise have to involve cross-event-loop synchronisation.


To traverse the history by a delta delta, the user agent must append a task to this top-level browsing context's session history traversal queue, the task consisting of running the following steps:

  1. Let delta be the argument to the method.

  2. If the index of the current entry of the joint session history plus delta is less than zero or greater than or equal to the number of items in the joint session history, then abort these steps.

  3. Let specified entry be the entry in the joint session history whose index is the sum of delta and the index of the current entry of the joint session history.

  4. Let specified browsing context be the browsing context of the specified entry.

  5. If the specified browsing context's active document's unload a document algorithm is currently running, abort these steps.

  6. Queue a task that consists of running the following substeps. The relevant event loop is that of the specified browsing context's active document. The task source for the queued task is the history traversal task source.

    1. If there is an ongoing attempt to navigate specified browsing context that has not yet matured (i.e. it has not passed the point of making its Document the active document), then cancel that attempt to navigate the browsing context.

    2. If the specified browsing context's active document is not the same Document as the Document of the specified entry, then run these substeps:

      1. Fully exit fullscreen.

      2. Prompt to unload the active document of the specified browsing context. If the user refused to allow the document to be unloaded, then abort these steps.

      3. Unload the active document of the specified browsing context with the recycle parameter set to false.

    3. Traverse the history of the specified browsing context to the specified entry.

When the user navigates through a browsing context, e.g. using a browser's back and forward buttons, the user agent must traverse the history by a delta equivalent to the action specified by the user.


The pushState(data, title, url) method adds a state object entry to the history.

The replaceState(data, title, url) method updates the state object, title, and optionally the URL of the current entry in the history.

When either of these methods is invoked, the user agent must run the following steps:

  1. Let cloned data be a structured clone of the specified data. If this throws an exception, then rethrow that exception and abort these steps.

  2. If the third argument is not null, run these substeps:

    1. Resolve the value of the third argument, relative to the API base URL specified by the entry settings object.
    2. If that fails, throw a SecurityError exception and abort these steps.
    3. Compare the resulting parsed URL to the result of applying the URL parser algorithm to the document's address. If any component of these two URLs differ other than the path, query, and fragment components, then throw a SecurityError exception and abort these steps.
    4. If the origin of the resulting absolute URL is not the same as the origin of the responsible document specified by the entry settings object, and either the path or query components of the two parsed URLs compared in the previous step differ, throw a SecurityError exception and abort these steps. (This prevents sandboxed content from spoofing other pages on the same origin.)
    5. Let new URL be the resulting absolute URL.

    For the purposes of the comparisons in the above substeps, the path and query components can only be the same if the scheme component of both parsed URLs are relative schemes.

  3. If the third argument is null, then let new URL be the URL of the current entry.

  4. If the method invoked was the pushState() method:

    1. Remove all the entries in the browsing context's session history after the current entry. If the current entry is the last entry in the session history, then no entries are removed.

      This doesn't necessarily have to affect the user agent's user interface.

    2. Remove any tasks queued by the history traversal task source that are associated with any Document objects in the top-level browsing context's document family.

    3. If appropriate, update the current entry to reflect any state that the user agent wishes to persist. The entry is then said to be an entry with persisted user state.

    4. Add a state object entry to the session history, after the current entry, with cloned data as the state object, the given title as the title, and new URL as the URL of the entry.

    5. Update the current entry to be this newly added entry.

    Otherwise, if the method invoked was the replaceState() method:

    1. Update the current entry in the session history so that cloned data is the entry's new state object, the given title is the new title, and new URL is the entry's new URL.

  5. If the current entry in the session history represents a non-GET request (e.g. it was the result of a POST submission) then update it to instead represent a GET request (or equivalent).

  6. Set the document's address to new URL.

    Since this is neither a navigation of the browsing context nor a history traversal, it does not cause a hashchange event to be fired.

  7. Set history.state to a structured clone of cloned data.

  8. Let the latest entry of the Document of the current entry be the current entry.

The title is purely advisory. User agents might use the title in the user interface.

User agents may limit the number of state objects added to the session history per page. If a page hits the UA-defined limit, user agents must remove the entry immediately after the first entry for that Document object in the session history after having added the new entry. (Thus the state history acts as a FIFO buffer for eviction, but as a LIFO buffer for navigation.)

Consider a game where the user can navigate along a line, such that the user is always at some coordinate, and such that the user can bookmark the page corresponding to a particular coordinate, to return to it later.

A static page implementing the x=5 position in such a game could look like the following:

<!DOCTYPE HTML>
<!-- this is http://example.com/line?x=5 -->
<title>Line Game - 5</title>
<p>You are at coordinate 5 on the line.</p>
<p>
 <a href="?x=6">Advance to 6</a> or
 <a href="?x=4">retreat to 4</a>?
</p>

The problem with such a system is that each time the user clicks, the whole page has to be reloaded. Here instead is another way of doing it, using script:

<!DOCTYPE HTML>
<!-- this starts off as http://example.com/line?x=5 -->
<title>Line Game - 5</title>
<p>You are at coordinate <span id="coord">5</span> on the line.</p>
<p>
 <a href="?x=6" onclick="go(1); return false;">Advance to 6</a> or
 <a href="?x=4" onclick="go(-1); return false;">retreat to 4</a>?
</p>
<script>
 var currentPage = 5; // prefilled by server
 function go(d) {
   setupPage(currentPage + d);
   history.pushState(currentPage, document.title, '?x=' + currentPage);
 }
 onpopstate = function(event) {
   setupPage(event.state);
 }
 function setupPage(page) {
   currentPage = page;
   document.title = 'Line Game - ' + currentPage;
   document.getElementById('coord').textContent = currentPage;
   document.links[0].href = '?x=' + (currentPage+1);
   document.links[0].textContent = 'Advance to ' + (currentPage+1);
   document.links[1].href = '?x=' + (currentPage-1);
   document.links[1].textContent = 'retreat to ' + (currentPage-1);
 }
</script>

In systems without script, this still works like the previous example. However, users that do have script support can now navigate much faster, since there is no network access for the same experience. Furthermore, contrary to the experience the user would have with just a naïve script-based approach, bookmarking and navigating the session history still work.

In the example above, the data argument to the pushState() method is the same information as would be sent to the server, but in a more convenient form, so that the script doesn't have to parse the URL each time the user navigates.

Applications might not use the same title for a session history entry as the value of the document's title element at that time. For example, here is a simple page that shows a block in the title element. Clearly, when navigating backwards to a previous state the user does not go back in time, and therefore it would be inappropriate to put the time in the session history title.

<!DOCTYPE HTML>
<TITLE>Line</TITLE>
<SCRIPT>
 setInterval(function () { document.title = 'Line - ' + new Date(); }, 1000);
 var i = 1;
 function inc() {
   set(i+1);
   history.pushState(i, 'Line - ' + i);
 }
 function set(newI) {
   i = newI;
   document.forms.F.I.value = newI;
 }
</SCRIPT>
<BODY ONPOPSTATE="set(event.state)">
<FORM NAME=F>
State: <OUTPUT NAME=I>1</OUTPUT> <INPUT VALUE="Increment" TYPE=BUTTON ONCLICK="inc()">
</FORM>

6.5.3 The Location interface

Each Document object in a browsing context's session history is associated with a unique instance of a Location object.

document . location [ = value ]
window . location [ = value ]

Returns a Location object with the current page's location.

Can be set, to navigate to another page.

The location attribute of the Document interface must return the Location object for that Document object, if it is in a browsing context, and null otherwise.

The location attribute of the Window interface must return the Location object for that Window object's Document.

Location objects provide a representation of the address of the active document of their Document's browsing context, and allow the current entry of the browsing context's session history to be changed, by adding or replacing entries in the history object.

[Unforgeable] interface Location {
  void assign(DOMString url);
  void replace(DOMString url);
  void reload();
};
Location implements URLUtils;
location . assign(url)

Navigates to the given page.

location . replace(url)

Removes the current page from the session history and navigates to the given page.

location . reload()

Reloads the current page.

The relevant Document is the Location object's associated Document object's browsing context's active document.

When the assign(url) method is invoked, the UA must resolve the argument, relative to the API base URL specified by the entry settings object, and if that is successful, must navigate the browsing context to the specified url, with exceptions enabled. If the browsing context's session history contains only one Document, and that was the about:blank Document created when the browsing context was created, then the navigation must be done with replacement enabled.

When the replace(url) method is invoked, the UA must resolve the argument, relative to the API base URL specified by the entry settings object, and if that is successful, navigate the browsing context to the specified url with replacement enabled and exceptions enabled.

Navigation for the assign() and replace() methods must be done with the responsible browsing context specified by the incumbent settings object as the source browsing context.

If the resolving step of the assign() and replace() methods is not successful, then the user agent must instead throw a SyntaxError exception.

When the reload() method is invoked, the user agent must run the appropriate steps from the following list:

If the currently executing task is the dispatch of a resize event in response to the user resizing the browsing context

Repaint the browsing context and abort these steps.

If the browsing context's active document is an iframe srcdoc document

Reprocess the iframe attributes of the browsing context's browsing context container.

If the browsing context's active document has its reload override flag set

Perform an overridden reload, with the browsing context being navigated as the responsible browsing context.

Otherwise

Navigate the browsing context to the document's address with replacement enabled and exceptions enabled. The source browsing context must be the browsing context being navigated. This is a reload-triggered navigation.

When a user requests that the active document of a browsing context be reloaded through a user interface element, the user agent should navigate the browsing context to the same resource as that Document, with replacement enabled. In the case of non-idempotent methods (e.g. HTTP POST), the user agent should prompt the user to confirm the operation first, since otherwise transactions (e.g. purchases or database modifications) could be repeated. User agents may allow the user to explicitly override any caches when reloading. If browsing context's active document's reload override flag is set, then the user agent may instead perform an overridden reload rather than the navigation described in this paragraph (with the browsing context being reloaded as the source browsing context).


The Location interface also supports the URLUtils interface. [URL]

When the object is created, and whenever the the address of the relevant Document changes, the user agent must invoke the object's URLUtils interface's set the input algorithm with the address of the relevant Document as the given value.

The object's URLUtils interface's get the base algorithm must return the API base URL specified by the entry settings object, if there is one, or null otherwise.

The object's URLUtils interface's query encoding is the document's character encoding.

When the object's URLUtils interface invokes its update steps with the string value, the user agent must run the following steps:

  1. If any of the following conditions are met, let mode be normal navigation; otherwise, let it be replace navigation:

  2. If mode is normal navigation, then act as if the assign() method had been called with value as its argument. Otherwise, act as if the replace() method had been called with value as its argument.

6.5.3.1 Security

This section describes a security model that is underdefined, imperfect, and does not match implementations. Work is ongoing to attempt to resolve this, but in the meantime, please do not rely on this section for precision. Implementors are urged to send their feedback on how cross-origin cross-global access to Window and Location objects should work. See bug 20701.

User agents must throw a SecurityError exception whenever any properties of a Location object are accessed when the entry settings object specifies an effective script origin that is not the same as the Location object's associated Document's browsing context's active document's effective script origin, with the following exceptions:

When the effective script origin specified by the entry settings object is different than a Location object's associated Document's effective script origin, the user agent must act as if any changes to that Location object's properties, getters, setters, etc, were not present, and as if all the properties of that Location object had their [[Enumerable]] attribute set to false.

For members that return objects (including function objects), each distinct effective script origin that is not the same origin as the Location object's Document's effective script origin must be provided with a separate set of objects. These objects must have the prototype chain appropriate for the script for which the objects are created (not those that would be appropriate for scripts whose settings object specifies a global object that is the Location object's Document's Window object).

6.5.4 Implementation notes for session history

This section is non-normative.

The History interface is not meant to place restrictions on how implementations represent the session history to the user.

For example, session history could be implemented in a tree-like manner, with each page having multiple "forward" pages. This specification doesn't define how the linear list of pages in the history object are derived from the actual session history as seen from the user's perspective.

Similarly, a page containing two iframes has a history object distinct from the iframes' history objects, despite the fact that typical Web browsers present the user with just one "Back" button, with a session history that interleaves the navigation of the two inner frames and the outer page.

Security: It is suggested that to avoid letting a page "hijack" the history navigation facilities of a UA by abusing pushState(), the UA provide the user with a way to jump back to the previous page (rather than just going back to the previous state). For example, the back button could have a drop down showing just the pages in the session history, and not showing any of the states. Similarly, an aural browser could have two "back" commands, one that goes back to the previous state, and one that jumps straight back to the previous page.

In addition, a user agent could ignore calls to pushState() that are invoked on a timer, or from event listeners that are not triggered in response to a clear user action, or that are invoked in rapid succession.

6.6 Browsing the Web

Certain actions cause the browsing context to navigate to a new resource. A user agent may provide various ways for the user to explicitly cause a browsing context to navigate, in addition to those defined in this specification.

For example, following a hyperlink, form submission, and the window.open() and location.assign() methods can all cause a browsing context to navigate.

A resource has a URL, but that might not be the only information necessary to identify it. For example, a form submission that uses HTTP POST would also have the HTTP method and payload. Similarly, an iframe srcdoc document needs to know the data it is to use.

Navigation always involves source browsing context, which is the browsing context which was responsible for starting the navigation.

When a browsing context is navigated to a new resource, the user agent must run the following steps:

  1. Release the storage mutex.

  2. If there is a preexisting attempt to navigate the browsing context, and the source browsing context is the same as the browsing context being navigated, and that attempt is currently running the unload a document algorithm, and the origin of the URL of the resource being loaded in that navigation is not the same origin as the origin of the URL of the resource being loaded in this navigation, then abort these steps without affecting the preexisting attempt to navigate the browsing context.

  3. If a task queued by the traverse the history by a delta algorithm is running the unload a document algorithm for the active document of the browsing context being navigated, then abort these steps without affecting the unload a document algorithm or the aforementioned history traversal task.

  4. If the prompt to unload a document algorithm is being run for the active document of the browsing context being navigated, then abort these steps without affecting the prompt to unload a document algorithm.

  5. Let gone async be false.

    The handle redirects step later in this algorithm can in certain cases jump back to the step labeled fragment identifiers. Since, between those two steps, this algorithm goes from operating synchronously in the context of the calling task to operating asynchronously independent of the event loop, some of the intervening steps need to be able to handle both being synchronous and being asynchronous. The gone async flag is thus used to make these steps aware of which mode they are operating in.

  6. If gone async is false, cancel any preexisting but not yet mature attempt to navigate the browsing context, including canceling any instances of the fetch algorithm started by those attempts. If one of those attempts has already created and initialised a new Document object, abort that Document also. (Navigation attempts that have matured already have session history entries, and are therefore handled during the update the session history with the new page algorithm, later.)

  7. If the new resource is to be handled using a mechanism that does not affect the browsing context, e.g. ignoring the navigation request altogether because the specified scheme is not one of the supported protocols, then abort these steps and proceed with that mechanism instead.

  8. If gone async is false, prompt to unload the Document object. If the user refused to allow the document to be unloaded, then abort these steps.

    If this instance of the navigation algorithm gets canceled while this step is running, the prompt to unload a document algorithm must nonetheless be run to completion.

  9. If gone async is false, abort the active document of the browsing context.

  10. If the new resource is to be handled by displaying some sort of inline content, e.g. an error message because the specified scheme is not one of the supported protocols, or an inline prompt to allow the user to select a registered handler for the given scheme, then display the inline content and abort these steps.

    In the case of a registered handler being used, the algorithm will be reinvoked with a new URL to handle the request.

  11. If the browsing context being navigated is a nested browsing context, then put it in the delaying load events mode.

    The user agent must take this nested browsing context out of the delaying load events mode when this navigation algorithm later matures, or when it terminates (whether due to having run all the steps, or being canceled, or being aborted), whichever happens first.

  12. This is the step that attempts to obtain the resource, if necessary. Jump to the first appropriate substep:

    If the resource has already been obtained (e.g. because it is being used to populate an object element's new child browsing context)

    Skip this step. The data is already available.

    If the new resource is a URL whose scheme is javascript

    Queue a task to run these "javascript: URL" steps, associated with the active document of the browsing context being navigated:

    1. If the origin of the source browsing context is not the same origin as the origin of the active document of the browsing context being navigated, then act as if the result of evaluating the script was the void value, and jump to the step labeled process results below.

    2. Apply the URL parser to the URL being navigated.

    3. Let parsed URL be the result of the URL parser.

    4. Let script source be the empty string.

    5. Append parsed URL's scheme data component to script source.

    6. If parsed URL's query component is not null, then first append a "?" (U+003F) character to script source, and then append parsed URL's query component to script source.

    7. If parsed URL's fragment component is not null, then first append a "#" (U+0023) character to script source, and then append parsed URL's fragment component to script source.

    8. Replace script source with the result of applying the percent decode algorithm to script source.

    9. Replace script source with the result of applying the UTF-8 decode algorithm to script source.

    10. Let address be the address of the active document of the browsing context being navigated.

    11. Create a script, using script source as the script source, address as the script source URL, JavaScript as the scripting language, and the script settings object of the Window object of the active document of the browsing context being navigated.

      Let result be the return value of the code entry-point of this script. If an exception was thrown, let result be void instead. (The result will be void also if scripting is disabled.)

    12. Process results: If the result of executing the script is void (there is no return value), then the result of obtaining the resource for the URL is equivalent to an HTTP resource with an HTTP 204 No Content response.

      Otherwise, the result of obtaining the resource for the URL is equivalent to an HTTP resource with a 200 OK response whose Content-Type metadata is text/html and whose response body is the return value converted to a string value.

      When it comes time to set the document's address in the navigation algorithm, use address as the override URL.

    The task source for this task is the DOM manipulation task source.

    So for example a javascript: URL in an href attribute of an a element would only be evaluated when the link was followed, while such a URL in the src attribute of an iframe element would be evaluated in the context of the iframe's own nested browsing context when the iframe is being set up; once evaluated, its return value (if it was not void) would replace that browsing context's document, thus also changing the Window object of that browsing context.

    If the new resource is to be fetched using HTTP GET or equivalent, and there are relevant application caches that are identified by a URL with the same origin as the URL in question, and that have this URL as one of their entries, excluding entries marked as foreign, and whose mode is fast, and the user agent is not in a mode where it will avoid using application caches

    Fetch the resource from the most appropriate application cache of those that match.

    For example, imagine an HTML page with an associated application cache displaying an image and a form, where the image is also used by several other application caches. If the user right-clicks on the image and chooses "View Image", then the user agent could decide to show the image from any of those caches, but it is likely that the most useful cache for the user would be the one that was used for the aforementioned HTML page. On the other hand, if the user submits the form, and the form does a POST submission, then the user agent will not use an application cache at all; the submission will be made to the network.

    Otherwise

    Fetch the new resource, with the manual redirect flag set.

    If the steps above invoked the fetch algorithm, the following requirements also apply:

    If the resource is being fetched using a method other than one equivalent to HTTP's GET, or, if the navigation algorithm was invoked as a result of the form submission algorithm, then the fetching algorithm must be invoked from the origin of the active document of the source browsing context, if any.

    Otherwise, if the browsing context being navigated is a child browsing context, then the fetching algorithm must be invoked from the browsing context scope origin of the browsing context container of the browsing context being navigated, if it has one.

  13. If gone async is false, return to whatever algorithm invoked the navigation steps and continue running these steps asynchronously.

  14. Let gone async be true.

  15. Wait for one or more bytes to be available or for the user agent to establish that the resource in question is empty. During this time, the user agent may allow the user to cancel this navigation attempt or start other navigation attempts.

  16. Fallback in prefer-online mode: If the resource was not fetched from an application cache, and was to be fetched using HTTP GET or equivalent, and there are relevant application caches that are identified by a URL with the same origin as the URL in question, and that have this URL as one of their entries, excluding entries marked as foreign, and whose mode is prefer-online, and the user didn't cancel the navigation attempt during the earlier step, and the navigation attempt failed (e.g. the server returned a 4xx or 5xx status code or equivalent, or there was a DNS error), then:

    Let candidate be the resource identified by the URL in question from the most appropriate application cache of those that match.

    If candidate is not marked as foreign, then the user agent must discard the failed load and instead continue along these steps using candidate as the resource. The user agent may indicate to the user that the original page load failed, and that the page used was a previously cached resource.

    This does not affect the address of the resource from which Request-URIs are obtained, as used to set the document's referrer in the initialise the Document object steps below; they still use the value as computed by the original fetch algorithm.

  17. Fallback for fallback entries: If the resource was not fetched from an application cache, and was to be fetched using HTTP GET or equivalent, and its URL matches the fallback namespace of one or more relevant application caches, and the most appropriate application cache of those that match does not have an entry in its online whitelist that has the same origin as the resource's URL and that is a prefix match for the resource's URL, and the user didn't cancel the navigation attempt during the earlier step, and the navigation attempt failed (e.g. the server returned a 4xx or 5xx status code or equivalent, or there was a DNS error), then:

    Let candidate be the fallback resource specified for the fallback namespace in question. If multiple application caches match, the user agent must use the fallback of the most appropriate application cache of those that match.

    If candidate is not marked as foreign, then the user agent must discard the failed load and instead continue along these steps using candidate as the resource. The document's address, if appropriate, will still be the originally requested URL, not the fallback URL, but the user agent may indicate to the user that the original page load failed, that the page used was a fallback resource, and what the URL of the fallback resource actually is.

    This does not affect the address of the resource from which Request-URIs are obtained, as used to set the document's referrer in the initialise the Document object steps below; they still use the value as computed by the original fetch algorithm.

  18. Resource handling: If the resource's out-of-band metadata (e.g. HTTP headers), not counting any type information (such as the Content-Type HTTP header), requires some sort of processing that will not affect the browsing context, then perform that processing and abort these steps.

    Such processing might be triggered by, amongst other things, the following:

    • HTTP status codes (e.g. 204 No Content or 205 Reset Content)
    • Network errors (e.g. the network interface being unavailable)
    • Cryptographic protocol failures (e.g. an incorrect TLS certificate)

    Responses with HTTP Content-Disposition headers specifying the attachment disposition type must be handled as a download.

    HTTP 401 responses that do not include a challenge recognised by the user agent must be processed as if they had no challenge, e.g. rendering the entity body as if the response had been 200 OK.

    User agents may show the entity body of an HTTP 401 response even when the response does include a recognised challenge, with the option to login being included in a non-modal fashion, to enable the information provided by the server to be used by the user before authenticating. Similarly, user agents should allow the user to authenticate (in a non-modal fashion) against authentication challenges included in other responses such as HTTP 200 OK responses, effectively allowing resources to present HTTP login forms without requiring their use.

  19. Let type be the sniffed type of the resource.

  20. If the user agent has been configured to process resources of the given type using some mechanism other than rendering the content in a browsing context, then skip this step. Otherwise, if the type is one of the following types, jump to the appropriate entry in the following list, and process the resource as described there:

    "text/html"
    Follow the steps given in the HTML document section, and then, once they have completed, abort this navigate algorithm.
    "application/xml"
    "text/xml"
    "image/svg+xml"
    "application/xhtml+xml"
    Any other type ending in "+xml" that is not an explicitly supported XML type
    Follow the steps given in the XML document section. If that section determines that the content is not to be displayed as a generic XML document, then proceed to the next step in this overall set of steps. Otherwise, once the steps given in the XML document section have completed, abort this navigate algorithm.
    "text/plain"
    Follow the steps given in the plain text file section, and then, once they have completed, abort this navigate algorithm.
    "multipart/x-mixed-replace"
    Follow the steps given in the multipart/x-mixed-replace section, and then, once they have completed, abort this navigate algorithm.
    A supported image, video, or audio type
    Follow the steps given in the media section, and then, once they have completed, abort this navigate algorithm.
    A type that will use an external application to render the content in the browsing context
    Follow the steps given in the plugin section, and then, once they have completed, abort this navigate algorithm.

    An explicitly supported XML type is one for which the user agent is configured to use an external application to render the content (either a plugin rendering directly in the browsing context, or a separate application), or one for which the user agent has dedicated processing rules (e.g. a Web browser with a built-in Atom feed viewer would be said to explicitly support the application/atom+xml MIME type), or one for which the user agent has a dedicated handler (e.g. one registered using registerContentHandler()).

    Setting the document's address: If there is no override URL, then any Document created by these steps must have its address set to the URL that was originally to be fetched, ignoring any other data that was used to obtain the resource (e.g. the entity body in the case of a POST submission is not part of the document's address, nor is the URL of the fallback resource in the case of the original load having failed and that URL having been found to match a fallback namespace). However, if there is an override URL, then any Document created by these steps must have its address set to that URL instead.

    An override URL is set when dereferencing a javascript: URL and when performing an overridden reload.

    Initializing a new Document object: when a Document is created as part of the above steps, the user agent will be required to additionally run the following algorithm after creating the new object:

    1. Create a new Window object, and associate it with the Document, with one exception: if the browsing context's only entry in its session history is the about:blank Document that was added when the browsing context was created, and navigation is occurring with replacement enabled, and that Document has the same origin as the new Document, then use the Window object of that Document instead, and change the document attribute of the Window object to point to the new Document.

    2. Set the document's referrer to the address of the resource from which Request-URIs are obtained as determined when the fetch algorithm obtained the resource, if that algorithm was used and determined such a value; otherwise, set it to the empty string.

    3. Implement the sandboxing for the Document.

    4. If the active sandboxing flag set of the Document's browsing context or any of its ancestor browsing contexts (if any) have the sandboxed fullscreen browsing context flag set, then skip this step.

      If the Document's browsing context has a browsing context container and either it is not an iframe element, or it does not have the allowfullscreen attribute specified, or its Document does not have the fullscreen enabled flag set, then also skip this step.

      Otherwise, set the Document's fullscreen enabled flag.

  21. Otherwise, the document's type is such that the resource will not affect the browsing context, e.g. because the resource is to be handed to an external application or because it is an unknown type that will be processed as a download. Process the resource appropriately.

When a resource is handled by passing its URL or data to an external software package separate from the user agent (e.g. handing a mailto: URL to a mail client, or a Word document to a word processor), user agents should attempt to mitigate the risk that this is an attempt to exploit the target software, e.g. by prompting the user to confirm that the source browsing context's active document's origin is to be allowed to invoke the specified software. In particular, if the navigate algorithm, when it was invoked, was not allowed to show a popup, the user agent should not invoke the external software package without prior user confirmation.

For example, there could be a vulnerability in the target software's URL handler which a hostile page would attempt to exploit by tricking a user into clicking a link.


Some of the sections below, to which the above algorithm defers in certain cases, require the user agent to update the session history with the new page. When a user agent is required to do this, it must queue a task (associated with the Document object of the current entry, not the new one) to run the following steps:

  1. Unload the Document object of the current entry, with the recycle parameter set to false.

    If this instance of the navigation algorithm is canceled while this step is running the unload a document algorithm, then the unload a document algorithm must be allowed to run to completion, but this instance of the navigation algorithm must not run beyond this step. (In particular, for instance, the cancelation of this algorithm does not abort any event dispatch or script execution occurring as part of unloading the document or its descendants.)

  2. If the navigation was initiated for entry update of an entry
    1. Replace the Document of the entry being updated, and any other entries that referenced the same document as that entry, with the new Document.

    2. Traverse the history to the new entry.

    This can only happen if the entry being updated is not the current entry, and can never happen with replacement enabled. (It happens when the user tried to traverse to a session history entry that no longer had a Document object.)

    Otherwise
    1. Remove all the entries in the browsing context's session history after the current entry. If the current entry is the last entry in the session history, then no entries are removed.

      This doesn't necessarily have to affect the user agent's user interface.

    2. Append a new entry at the end of the History object representing the new resource and its Document object and related state.

    3. Traverse the history to the new entry. If the navigation was initiated with replacement enabled, then the traversal must itself be initiated with replacement enabled.

  3. The navigation algorithm has now matured.

  4. Fragment identifier loop: Spin the event loop for a user-agent-defined amount of time, as desired by the user agent implementor. (This is intended to allow the user agent to optimise the user experience in the face of performance concerns.)

  5. If the Document object has no parser, or its parser has stopped parsing, or the user agent has reason to believe the user is no longer interested in scrolling to the fragment identifier, then abort these steps.

  6. Scroll to the fragment identifier given in the document's address. If this fails to find an indicated part of the document, then return to the fragment identifier loop step.

The task source for this task is the networking task source.

6.6.2 Page load processing model for HTML files

When an HTML document is to be loaded in a browsing context, the user agent must queue a task to create a Document object, mark it as being an HTML document, set its content type to "text/html", initialise the Document object, and finally create an HTML parser and associate it with the Document. Each task that the networking task source places on the task queue while the fetching algorithm runs must then fill the parser's input byte stream with the fetched bytes and cause the HTML parser to perform the appropriate processing of the input stream.

The input byte stream converts bytes into characters for use in the tokenizer. This process relies, in part, on character encoding information found in the real Content-Type metadata of the resource; the "sniffed type" is not used for this purpose.

When no more bytes are available, the user agent must queue a task for the parser to process the implied EOF character, which eventually causes a load event to be fired.

After creating the Document object, but before any script execution, certainly before the parser stops, the user agent must update the session history with the new page.

Application cache selection happens in the HTML parser.

The task source for the two tasks mentioned in this section must be the networking task source.

6.6.3 Page load processing model for XML files

When faced with displaying an XML file inline, user agents must follow the requirements defined in the XML and Namespaces in XML recommendations, RFC 3023, DOM, and other relevant specifications to create a Document object and a corresponding XML parser. [XML] [XMLNS] [RFC3023] [DOM]

At the time of writing, the XML specification community had not actually yet specified how XML and the DOM interact.

After the Document is created, the user agent must initialise the Document object.

The actual HTTP headers and other metadata, not the headers as mutated or implied by the algorithms given in this specification, are the ones that must be used when determining the character encoding according to the rules given in the above specifications. Once the character encoding is established, the document's character encoding must be set to that character encoding.

If the root element, as parsed according to the XML specifications cited above, is found to be an html element with an attribute manifest whose value is not the empty string, then, as soon as the element is inserted into the document, the user agent must resolve the value of that attribute relative to that element, and if that is successful, must apply the URL serializer algorithm to the resulting parsed URL with the exclude fragment flag set to obtain manifest URL, and then run the application cache selection algorithm with manifest URL as the manifest URL, passing in the newly-created Document. Otherwise, if the attribute is absent, its value is the empty string, or resolving its value fails, then as soon as the root element is inserted into the document, the user agent must run the application cache selection algorithm with no manifest, and passing in the Document.

Because the processing of the manifest attribute happens only once the root element is parsed, any URLs referenced by processing instructions before the root element (such as <?xml-stylesheet?> PIs) will be fetched from the network and cannot be cached.

User agents may examine the namespace of the root Element node of this Document object to perform namespace-based dispatch to alternative processing tools, e.g. determining that the content is actually a syndication feed and passing it to a feed handler. If such processing is to take place, abort the steps in this section, and jump to the next step (labeled non-document content) in the navigate steps above.

Otherwise, then, with the newly created Document, the user agent must update the session history with the new page. User agents may do this before the complete document has been parsed (thus achieving incremental rendering), and must do this before any scripts are to be executed.

Error messages from the parse process (e.g. XML namespace well-formedness errors) may be reported inline by mutating the Document.

6.6.4 Page load processing model for text files

When a plain text document is to be loaded in a browsing context, the user agent must queue a task to create a Document object, mark it as being an HTML document, set its content type to "text/plain", initialise the Document object, create an HTML parser, associate it with the Document, act as if the tokenizer had emitted a start tag token with the tag name "pre" followed by a single "LF" (U+000A) character, and switch the HTML parser's tokenizer to the PLAINTEXT state. Each task that the networking task source places on the task queue while the fetching algorithm runs must then fill the parser's input byte stream with the fetched bytes and cause the HTML parser to perform the appropriate processing of the input stream.

The rules for how to convert the bytes of the plain text document into actual characters, and the rules for actually rendering the text to the user, are defined in RFC 2046, RFC 3676, and subsequent versions thereof. [RFC2046] [RFC3676]

The document's character encoding must be set to the character encoding used to decode the document.

Upon creation of the Document object, the user agent must run the application cache selection algorithm with no manifest, and passing in the newly-created Document.

When no more bytes are available, the user agent must queue a task for the parser to process the implied EOF character, which eventually causes a load event to be fired.

After creating the Document object, but potentially before the page has finished parsing, the user agent must update the session history with the new page.

User agents may add content to the head element of the Document, e.g. linking to a style sheet or a binding, providing script, giving the document a title, etc.

In particular, if the user agent supports the Format=Flowed feature of RFC 3676 then the user agent would need to apply extra styling to cause the text to wrap correctly and to handle the quoting feature. This could be performed using, e.g., a binding or a CSS extension.

The task source for the two tasks mentioned in this section must be the networking task source.

6.6.5 Page load processing model for multipart/x-mixed-replace resources

When a resource with the type multipart/x-mixed-replace is to be loaded in a browsing context, the user agent must parse the resource using the rules for multipart types. [RFC2046]

For each body part obtained from the resource, the user agent must run a new instance of the navigate algorithm, starting from the resource handling step, using the new body part as the resource being navigated, with replacement enabled if a previous body part from the same resource resulted in a Document object being created and initialized, and otherwise using the same setup as the navigate attempt that caused this section to be invoked in the first place.

For the purposes of algorithms processing these body parts as if they were complete stand-alone resources, the user agent must act as if there were no more bytes for those resources whenever the boundary following the body part is reached.

Thus, load events (and for that matter unload events) do fire for each body part loaded.

6.6.6 Page load processing model for media

When an image, video, or audio resource is to be loaded in a browsing context, the user agent should create a Document object, mark it as being an HTML document, set its content type to the sniffed MIME type of the resource (type in the navigate algorithm), initialise the Document object, append an html element to the Document, append a head element and a body element to the html element, append an element host element for the media, as described below, to the body element, and set the appropriate attribute of the element host element, as described below, to the address of the image, video, or audio resource.

The element host element to create for the media is the element given in the table below in the second cell of the row whose first cell describes the media. The appropriate attribute to set is the one given by the third cell in that same row.

Type of media Element for the media Appropriate attribute
Image img src
Video video src
Audio audio src

Then, the user agent must act as if it had stopped parsing.

Upon creation of the Document object, the user agent must run the application cache selection algorithm with no manifest, and passing in the newly-created Document.

After creating the Document object, but potentially before the page has finished fully loading, the user agent must update the session history with the new page.

User agents may add content to the head element of the Document, or attributes to the element host element, e.g. to link to a style sheet or a binding, to provide a script, to give the document a title, to make the media autoplay, etc.

6.6.7 Page load processing model for content that uses plugins

When a resource that requires an external resource to be rendered is to be loaded in a browsing context, the user agent should create a Document object, mark it as being an HTML document and mark it as being a plugin document, set its content type to the sniffed MIME type of the resource (type in the navigate algorithm), initialise the Document object, append an html element to the Document, append a head element and a body element to the html element, append an embed to the body element, and set the src attribute of the embed element to the address of the resource.

The term plugin document is used by the Content Security Policy specification as part of the mechanism that ensures iframes can't be used to evade plugin-types directives. [CSP]

Then, the user agent must act as if it had stopped parsing.

Upon creation of the Document object, the user agent must run the application cache selection algorithm with no manifest, and passing in the newly-created Document.

After creating the Document object, but potentially before the page has finished fully loading, the user agent must update the session history with the new page.

User agents may add content to the head element of the Document, or attributes to the embed element, e.g. to link to a style sheet or a binding, or to give the document a title.

If the Document's active sandboxing flag set has its sandboxed plugins browsing context flag set, the synthesized embed element will fail to render the content if the relevant plugin cannot be secured.

6.6.8 Page load processing model for inline content that doesn't have a DOM

When the user agent is to display a user agent page inline in a browsing context, the user agent should create a Document object, mark it as being an HTML document, set its content type to "text/html", initialise the Document object, and then either associate that Document with a custom rendering that is not rendered using the normal Document rendering rules, or mutate that Document until it represents the content the user agent wants to render.

Once the page has been set up, the user agent must act as if it had stopped parsing.

Upon creation of the Document object, the user agent must run the application cache selection algorithm with no manifest, passing in the newly-created Document.

After creating the Document object, but potentially before the page has been completely set up, the user agent must update the session history with the new page.

6.6.9 Navigating to a fragment identifier

When a user agent is supposed to navigate to a fragment identifier, then the user agent must run the following steps:

  1. Remove all the entries in the browsing context's session history after the current entry. If the current entry is the last entry in the session history, then no entries are removed.

    This doesn't necessarily have to affect the user agent's user interface.

  2. Remove any tasks queued by the history traversal task source that are associated with any Document objects in the top-level browsing context's document family.

  3. Append a new entry at the end of the History object representing the new resource and its Document object and related state. Its URL must be set to the address to which the user agent was navigating. The title must be left unset.

  4. Traverse the history to the new entry, with the asynchronous events flag set. This will scroll to the fragment identifier given in what is now the document's address.

If the scrolling fails because the relevant ID has not yet been parsed, then the original navigation algorithm will take care of the scrolling instead, as the last few steps of its update the session history with the new page algorithm.


When the user agent is required to scroll to the fragment identifier and the indicated part of the document, if any, is being rendered, the user agent must either change the scrolling position of the document using the following algorithm, or perform some other action such that the indicated part of the document is brought to the user's attention. If there is no indicated part, or if the indicated part is not being rendered, then the user agent must do nothing. The aforementioned algorithm is as follows:

  1. Let target be the indicated part of the document, as defined below.

  2. If target is the top of the document, then scroll to the beginning of the document for the Document, and abort these steps. [CSSOMVIEW]

  3. Use the scroll an element into view algorithm to scroll target into view, with the align to top flag set. [CSSOMVIEW]

  4. If target is a focusable element, run the focusing steps for that element.

The indicated part of the document is the one that the fragment identifier, if any, identifies. The semantics of the fragment identifier in terms of mapping it to a specific DOM Node is defined by the specification that defines the MIME type used by the Document (for example, the processing of fragment identifiers for XML MIME types is the responsibility of RFC3023). [RFC3023]

For HTML documents (and HTML MIME types), the following processing model must be followed to determine what the indicated part of the document is.

  1. Apply the URL parser algorithm to the URL, and let fragid be the fragment component of the resulting parsed URL.

  2. If fragid is the empty string, then the indicated part of the document is the top of the document; stop the algorithm here.

  3. Let fragid bytes be the result of percent-decoding fragid.

  4. Let decoded fragid be the result of applying the UTF-8 decoder algorithm to fragid bytes. If the UTF-8 decoder emits a decoder error, abort the decoder and instead jump to the step labeled no decoded fragid.

  5. If there is an element in the DOM that has an ID exactly equal to decoded fragid, then the first such element in tree order is the indicated part of the document; stop the algorithm here.

  6. No decoded fragid: If there is an a element in the DOM that has a name attribute whose value is exactly equal to fragid (not decoded fragid), then the first such element in tree order is the indicated part of the document; stop the algorithm here.

  7. If fragid is an ASCII case-insensitive match for the string top, then the indicated part of the document is the top of the document; stop the algorithm here.

  8. Otherwise, there is no indicated part of the document.

For the purposes of the interaction of HTML with Selectors' :target pseudo-class, the target element is the indicated part of the document, if that is an element; otherwise there is no target element. [SELECTORS]

The task source for the task mentioned in this section must be the DOM manipulation task source.

6.6.10 History traversal

When a user agent is required to traverse the history to a specified entry, optionally with replacement enabled, and optionally with the asynchronous events flag set, the user agent must act as follows.

This algorithm is not just invoked when explicitly going back or forwards in the session history — it is also invoked in other situations, for example when navigating a browsing context, as part of updating the session history with the new page.

  1. If there is no longer a Document object for the entry in question, navigate the browsing context to the resource for that entry to perform an entry update of that entry, and abort these steps. The "navigate" algorithm reinvokes this "traverse" algorithm to complete the traversal, at which point there is a Document object and so this step gets skipped. The navigation must be done using the same source browsing context as was used the first time this entry was created. (This can never happen with replacement enabled.)

    If the resource was obtained usign a non-idempotent action, for example a POST form submission, or if the resource is no longer available, for example because the computer is now offline and the page wasn't cached, navigating to it again might not be possible. In this case, the navigation will result in a different page than previously; for example, it might be an error message explaining the problem or offering to resubmit the form.

  2. If the current entry's title was not set by the pushState() or replaceState() methods, then set its title to the value returned by the document.title IDL attribute.

  3. If appropriate, update the current entry in the browsing context's Document object's History object to reflect any state that the user agent wishes to persist. The entry is then said to be an entry with persisted user state.

  4. If the specified entry has a different Document object than the current entry, then run the following substeps:

    1. Remove any tasks queued by the history traversal task source that are associated with any Document objects in the top-level browsing context's document family.

    2. If the origin of the Document of the specified entry is not the same as the origin of the Document of the current entry, then run the following sub-sub-steps:

      1. The current browsing context name must be stored with all the entries in the history that are associated with Document objects with the same origin as the active document and that are contiguous with the current entry.

      2. If the browsing context is a top-level browsing context, but not an auxiliary browsing context, then the browsing context's browsing context name must be unset.

    3. Make the specified entry's Document object the active document of the browsing context.

    4. If the specified entry has a browsing context name stored with it, then run the following sub-sub-steps:

      1. Set the browsing context's browsing context name to the name stored with the specified entry.

      2. Clear any browsing context names stored with all entries in the history that are associated with Document objects with the same origin as the new active document and that are contiguous with the specified entry.

    5. If the specified entry's Document has any form controls whose autofill field name is "off", invoke the reset algorithm of each of those elements.

    6. If the current document readiness of the specified entry's Document is "complete", queue a task to run the following sub-sub-steps:

      1. If the Document's page showing flag is true, then abort this task (i.e. don't fire the event below).

      2. Set the Document's page showing flag to true.

      3. Run any session history document visibility change steps for Document that are defined by other applicable specifications.

        This is specifically intended for use by the Page Visibility specification. [PAGEVIS]

      4. Fire a trusted event with the name pageshow at the Window object of that Document, but with its target set to the Document object (and the currentTarget set to the Window object), using the PageTransitionEvent interface, with the persisted attribute initialised to true. This event must not bubble, must not be cancelable, and has no default action.

  5. Set the document's address to the URL of the specified entry.

  6. If the specified entry has a URL whose fragment identifier differs from that of the current entry's when compared in a case-sensitive manner, and the two share the same Document object, then let hash changed be true, and let old URL be the URL of the current entry and new URL be the URL of the specified entry. Otherwise, let hash changed be false.

  7. If the traversal was initiated with replacement enabled, remove the entry immediately before the specified entry in the session history.

  8. If the specified entry is not an entry with persisted user state, but its URL has a fragment identifier, scroll to the fragment identifier.

  9. If the entry is an entry with persisted user state, the user agent may update aspects of the document and its rendering, for instance the scroll position or values of form fields, that it had previously recorded.

    This can even include updating the dir attribute of textarea elements or input elements whose type attribute is in either the Text state or the Search state, if the persisted state includes the directionality of user input in such controls.

  10. If the entry is a state object entry, let state be a structured clone of that state object. Otherwise, let state be null.

  11. Set history.state to state.

  12. Let state changed be true if the Document of the specified entry has a latest entry, and that entry is not the specified entry; otherwise let it be false.

  13. Let the latest entry of the Document of the specified entry be the specified entry.

  14. If the asynchronous events flag is not set, then run the following steps synchronously. Otherwise, the asynchronous events flag is set; queue a task to run the following substeps.

    1. If state changed is true, fire a trusted event with the name popstate at the Window object of the Document, using the PopStateEvent interface, with the state attribute initialised to the value of state. This event must bubble but not be cancelable and has no default action.

    2. If hash changed is true, then fire a trusted event with the name hashchange at the browsing context's Window object, using the HashChangeEvent interface, with the oldURL attribute initialised to old URL and the newURL attribute initialised to new URL. This event must bubble but not be cancelable and has no default action.

  15. The current entry is now the specified entry.

The task source for the tasks mentioned above is the DOM manipulation task source.

6.6.10.1 The PopStateEvent interface
[Constructor(DOMString type, optional PopStateEventInit eventInitDict), Exposed=Window,Worker]
interface PopStateEvent : Event {
  readonly attribute any state;
};

dictionary PopStateEventInit : EventInit {
  any state;
};
event . state

Returns a copy of the information that was provided to pushState() or replaceState().

The state attribute must return the value it was initialised to. When the object is created, this attribute must be initialised to null. It represents the context information for the event, or null, if the state represented is the initial state of the Document.

6.6.10.2 The HashChangeEvent interface
[Constructor(DOMString type, optional HashChangeEventInit eventInitDict), Exposed=Window,Worker]
interface HashChangeEvent : Event {
  readonly attribute DOMString oldURL;
  readonly attribute DOMString newURL;
};

dictionary HashChangeEventInit : EventInit {
  DOMString oldURL;
  DOMString newURL;
};
event . oldURL

Returns the URL of the session history entry that was previously current.

event . newURL

Returns the URL of the session history entry that is now current.

The oldURL attribute must return the value it was initialised to. When the object is created, this attribute must be initialised to null. It represents context information for the event, specifically the URL of the session history entry that was traversed from.

The newURL attribute must return the value it was initialised to. When the object is created, this attribute must be initialised to null. It represents context information for the event, specifically the URL of the session history entry that was traversed to.

6.6.10.3 The PageTransitionEvent interface
[Constructor(DOMString type, optional PageTransitionEventInit eventInitDict), Exposed=Window,Worker]
interface PageTransitionEvent : Event {
  readonly attribute boolean persisted;
};

dictionary PageTransitionEventInit : EventInit {
  boolean persisted;
};
event . persisted

For the pageshow event, returns false if the page is newly being loaded (and the load event will fire). Otherwise, returns true.

For the pagehide event, returns false if the page is going away for the last time. Otherwise, returns true, meaning that (if nothing conspires to make the page unsalvageable) the page might be reused if the user navigates back to this page.

Things that can cause the page to be unsalvageable include:

The persisted attribute must return the value it was initialised to. When the object is created, this attribute must be initialised to false. It represents the context information for the event.

6.6.11 Unloading documents

A Document has a salvageable state, which must initially be true, a fired unload flag, which must initially be false, and a page showing flag, which must initially be false. The page showing flag is used to ensure that scripts receive pageshow and pagehide events in a consistent manner (e.g. that they never receive two pagehide events in a row without an intervening pageshow, or vice versa).

Event loops have a termination nesting level counter, which must initially be zero.

When a user agent is to prompt to unload a document, it must run the following steps.

  1. Increase the event loop's termination nesting level by one.

  2. Increase the Document's ignore-opens-during-unload counter by one.

  3. Let event be a new trusted BeforeUnloadEvent event object with the name beforeunload, which does not bubble but is cancelable.

  4. Dispatch: Dispatch event at the Document's Window object.

  5. Decrease the event loop's termination nesting level by one.

  6. Release the storage mutex.

  7. If any event listeners were triggered by the earlier dispatch step, then set the Document's salvageable state to false.

  8. If the returnValue attribute of the event object is not the empty string, or if the event was canceled, then the user agent should ask the user to confirm that they wish to unload the document.

    The prompt shown by the user agent may include the string of the returnValue attribute, or some leading subset thereof. (A user agent may want to truncate the string to 1024 characters for display, for instance.)

    The user agent must pause while waiting for the user's response.

    If the user did not confirm the page navigation, then the user agent refused to allow the document to be unloaded.

  9. If this algorithm was invoked by another instance of the "prompt to unload a document" algorithm (i.e. through the steps below that invoke this algorithm for all descendant browsing contexts), then jump to the step labeled end.

  10. Let descendants be the list of the descendant browsing contexts of the Document.

  11. If descendants is not an empty list, then for each browsing context b in descendants run the following substeps:

    1. Prompt to unload the active document of the browsing context b. If the user refused to allow the document to be unloaded, then the user implicitly also refused to allow this document to be unloaded; jump to the step labeled end.

    2. If the salvageable state of the active document of the browsing context b is false, then set the salvageable state of this document to false also.

  12. End: Decrease the Document's ignore-opens-during-unload counter by one.

When a user agent is to unload a document, it must run the following steps. These steps are passed an argument, recycle, which is either true or false, indicating whether the Document object is going to be re-used. (This is set by the document.open() method.)

  1. Increase the event loop's termination nesting level by one.

  2. Increase the Document's ignore-opens-during-unload counter by one.

  3. If the Document's page showing flag is false, then jump to the step labeled unload event below (i.e. skip firing the pagehide event and don't rerun the unloading document visibility change steps).

  4. Set the Document's page showing flag to false.

  5. Fire a trusted event with the name pagehide at the Window object of the Document, but with its target set to the Document object (and the currentTarget set to the Window object), using the PageTransitionEvent interface, with the persisted attribute initialized to true if the Document object's salvageable state is true, and false otherwise. This event must not bubble, must not be cancelable, and has no default action.

  6. Run any unloading document visibility change steps for Document that are defined by other applicable specifications.

    This is specifically intended for use by the Page Visibility specification. [PAGEVIS]

  7. Unload event: If the Document's fired unload flag is false, fire a simple event named unload at the Document's Window object, with target override set to the Document object.

  8. Decrease the event loop's termination nesting level by one.

  9. Release the storage mutex.

  10. If any event listeners were triggered by the earlier unload event step, then set the Document object's salvageable state to false and set the Document's fired unload flag to true.

  11. Run any unloading document cleanup steps for Document that are defined by this specification and other applicable specifications.

  12. If this algorithm was invoked by another instance of the "unload a document" algorithm (i.e. by the steps below that invoke this algorithm for all descendant browsing contexts), then jump to the step labeled end.

  13. Let descendants be the list of the descendant browsing contexts of the Document.

  14. If descendants is not an empty list, then for each browsing context b in descendants run the following substeps:

    1. Unload the active document of the browsing context b with the recycle parameter set to false.

    2. If the salvageable state of the active document of the browsing context b is false, then set the salvageable state of this document to false also.

  15. If both the Document's salvageable state and recycle are false, then the Document's browsing context must discard the Document.

  16. End: Decrease the Document's ignore-opens-during-unload counter by one.

This specification defines the following unloading document cleanup steps. Other specifications can define more.

  1. Make disappear any WebSocket objects that were created by the WebSocket() constructor from the Document's Window object.

    If this affected any WebSocket objects, then set Document's salvageable state to false.

  2. If the Document's salvageable state is false, forcibly close any EventSource objects that whose constructor was invoked from the Document's Window object.

  3. If the Document's salvageable state is false, empty the Document's Window's list of active timers.

6.6.11.1 The BeforeUnloadEvent interface
interface BeforeUnloadEvent : Event {
           attribute DOMString returnValue;
};
event . returnValue [ = value ]

Returns the current return value of the event (the message to show the user).

Can be set, to update the message.

There are no BeforeUnloadEvent-specific initialization methods.

The returnValue attribute represents the message to show the user. When the event is created, the attribute must be set to the empty string. On getting, it must return the last value it was set to. On setting, the attribute must be set to the new value.

6.6.12 Aborting a document load

If a Document is aborted, the user agent must run the following steps:

  1. Abort the active documents of every child browsing context. If this results in any of those Document objects having their salvageable state set to false, then set this Document's salvageable state to false also.

  2. Cancel any instances of the fetch algorithm in the context of this Document, discarding any tasks queued for them, and discarding any further data received from the network for them. If this resulted in any instances of the fetch algorithm being canceled or any queued tasks or any network data getting discarded, then set the Document's salvageable state to false.

  3. If the Document has an active parser, then abort that parser and set the Document's salvageable state to false.

User agents may allow users to explicitly invoke the abort a document algorithm for a Document. If the user does so, then, if that Document is an active document, the user agent should queue a task to fire a simple event named abort at that Document's Window object before invoking the abort algorithm.

6.7 Offline Web applications

6.7.1 Introduction

This section is non-normative.

In order to enable users to continue interacting with Web applications and documents even when their network connection is unavailable — for instance, because they are traveling outside of their ISP's coverage area — authors can provide a manifest which lists the files that are needed for the Web application to work offline and which causes the user's browser to keep a copy of the files for use offline.

To illustrate this, consider a simple clock applet consisting of an HTML page "clock.html", a CSS style sheet "clock.css", and a JavaScript script "clock.js".

Before adding the manifest, these three files might look like this:

EXAMPLE offline/clock/clock1.html
EXAMPLE offline/clock/clock1.css
EXAMPLE offline/clock/clock1.js

If the user tries to open the "clock.html" page while offline, though, the user agent (unless it happens to have it still in the local cache) will fail with an error.

The author can instead provide a manifest of the three files, say "clock.appcache":

EXAMPLE offline/clock/clock2.appcache

With a small change to the HTML file, the manifest (served as text/cache-manifest) is linked to the application:

EXAMPLE offline/clock/clock2.html

Now, if the user goes to the page, the browser will cache the files and make them available even when the user is offline.

Authors are encouraged to include the main page in the manifest also, but in practice the page that referenced the manifest is automatically cached even if it isn't explicitly mentioned.

With the exception of "no-store" directive, HTTP cache headers and restrictions on caching pages served over TLS (encrypted, using https:) are overridden by manifests. Thus, pages will not expire from an application cache before the user agent has updated it, and even applications served over TLS can be made to work offline.

View this example online.

6.7.1.1 Supporting offline caching for legacy applications

This section is non-normative.

The application cache feature works best if the application logic is separate from the application and user data, with the logic (markup, scripts, style sheets, images, etc) listed in the manifest and stored in the application cache, with a finite number of static HTML pages for the application, and with the application and user data stored in Web Storage or a client-side Indexed Database, updated dynamically using Web Sockets, XMLHttpRequest, server-sent events, or some other similar mechanism.

This model results in a fast experience for the user: the application immediately loads, and fresh data is obtained as fast as the network will allow it (possibly while stale data shows).

Legacy applications, however, tend to be designed so that the user data and the logic are mixed together in the HTML, with each operation resulting in a new HTML page from the server.

For example, consider a news application. The typical architecture of such an application, when not using the application cache feature, is that the user fetches the main page, and the server returns a dynamically-generated page with the current headlines and the user interface logic mixed together.

A news application designed for the application cache feature, however, would instead have the main page just consist of the logic, and would then have the main page fetch the data separately from the server, e.g. using XMLHttpRequest.

The mixed-content model does not work well with the application cache feature: since the content is cached, it would result in the user always seeing the stale data from the previous time the cache was updated.

While there is no way to make the legacy model work as fast as the separated model, it can at least be retrofitted for offline use using the prefer-online application cache mode. To do so, list all the static resources used by the HTML page you want to have work offline in an application cache manifest, use the manifest attribute to select that manifest from the HTML file, and then add the following line at the bottom of the manifest:

SETTINGS:
prefer-online
NETWORK:
*

This causes the application cache to only be used for master entries when the user is offline, and causes the application cache to be used as an atomic HTTP cache (essentially pinning resources listed in the manifest), while allowing all resources not listed in the manifest to be accessed normally when the user is online.

6.7.1.2 Event summary

This section is non-normative.

When the user visits a page that declares a manifest, the browser will try to update the cache. It does this by fetching a copy of the manifest and, if the manifest has changed since the user agent last saw it, redownloading all the resources it mentions and caching them anew.

As this is going on, a number of events get fired on the ApplicationCache object to keep the script updated as to the state of the cache update, so that the user can be notified appropriately. The events are as follows:

Event name Interface Fired when... Next events
checking Event The user agent is checking for an update, or attempting to download the manifest for the first time. This is always the first event in the sequence. noupdate, downloading, obsolete, error
noupdate Event The manifest hadn't changed. Last event in sequence.
downloading Event The user agent has found an update and is fetching it, or is downloading the resources listed by the manifest for the first time. progress, error, cached, updateready
progress ProgressEvent The user agent is downloading resources listed by the manifest. The event object's total attribute returns the total number of files to be downloaded. The event object's loaded attribute returns the number of files processed so far. progress, error, cached, updateready
cached Event The resources listed in the manifest have been downloaded, and the application is now cached. Last event in sequence.
updateready Event The resources listed in the manifest have been newly redownloaded, and the script can use swapCache() to switch to the new cache. Last event in sequence.
obsolete Event The manifest was found to have become a 404 or 410 page, so the application cache is being deleted. Last event in sequence.
error Event The manifest was a 404 or 410 page, so the attempt to cache the application has been aborted. Last event in sequence.
The manifest hadn't changed, but the page referencing the manifest failed to download properly.
A fatal error occurred while fetching the resources listed in the manifest.
The manifest changed while the update was being run. The user agent will try fetching the files again momentarily.

These events are cancelable; their default action is for the user agent to show download progress information. If the page shows its own update UI, canceling the events will prevent the user agent from showing redundant progress information.

6.7.2 Application caches

An application cache is a set of cached resources consisting of:

Each application cache has a completeness flag, which is either complete or incomplete.


An application cache group is a group of application caches, identified by the absolute URL of a resource manifest which is used to populate the caches in the group.

An application cache is newer than another if it was created after the other (in other words, application caches in an application cache group have a chronological order).

Only the newest application cache in an application cache group can have its completeness flag set to incomplete; the others are always all complete.

Each application cache group has an update status, which is one of the following: idle, checking, downloading.

A relevant application cache is an application cache that is the newest in its group to be complete.

Each application cache group has a list of pending master entries. Each entry in this list consists of a resource and a corresponding Document object. It is used during the application cache download process to ensure that new master entries are cached even if the application cache download process was already running for their application cache group when they were loaded.

An application cache group can be marked as obsolete, meaning that it must be ignored when looking at what application cache groups exist.


A cache host is a Document or a SharedWorkerGlobalScope object. A cache host can be associated with an application cache. [WEBWORKERS]

A Document initially is not associated with an application cache, but can become associated with one early during the page load process, when steps in the parser and in the navigation sections cause cache selection to occur.

A SharedWorkerGlobalScope can be associated with an application cache when it is created. [WEBWORKERS]

Each cache host has an associated ApplicationCache object.


Multiple application caches in different application cache groups can contain the same resource, e.g. if the manifests all reference that resource. If the user agent is to select an application cache from a list of relevant application caches that contain a resource, the user agent must use the application cache that the user most likely wants to see the resource from, taking into account the following:


A URL matches a fallback namespace if there exists a relevant application cache whose manifest's URL has the same origin as the URL in question, and that has a fallback namespace that is a prefix match for the URL being examined. If multiple fallback namespaces match the same URL, the longest one is the one that matches. A URL looking for a fallback namespace can match more than one application cache at a time, but only matches one namespace in each cache.

If a manifest http://example.com/app1/manifest declares that http://example.com/resources/images is a fallback namespace, and the user navigates to HTTP://EXAMPLE.COM:80/resources/images/cat.png, then the user agent will decide that the application cache identified by http://example.com/app1/manifest contains a namespace with a match for that URL.

6.7.3 The cache manifest syntax

6.7.3.1 Some sample manifests

This section is non-normative.

This example manifest requires two images and a style sheet to be cached and whitelists a CGI script.

CACHE MANIFEST
# the above line is required

# this is a comment
# there can be as many of these anywhere in the file
# they are all ignored
  # comments can have spaces before them
  # but must be alone on the line

# blank lines are ignored too

# these are files that need to be cached they can either be listed
# first, or a "CACHE:" header could be put before them, as is done
# lower down.
images/sound-icon.png
images/background.png
# note that each file has to be put on its own line

# here is a file for the online whitelist -- it isn't cached, and
# references to this file will bypass the cache, always hitting the
# network (or trying to, if the user is offline).
NETWORK:
comm.cgi

# here is another set of files to cache, this time just the CSS file.
CACHE:
style/default.css

It could equally well be written as follows:

CACHE MANIFEST
NETWORK:
comm.cgi
CACHE:
style/default.css
images/sound-icon.png
images/background.png

Offline application cache manifests can use absolute paths or even absolute URLs:

CACHE MANIFEST

/main/home
/main/app.js
/settings/home
/settings/app.js
http://img.example.com/logo.png
http://img.example.com/check.png
http://img.example.com/cross.png

The following manifest defines a catch-all error page that is displayed for any page on the site while the user is offline. It also specifies that the online whitelist wildcard flag is open, meaning that accesses to resources on other sites will not be blocked. (Resources on the same site are already not blocked because of the catch-all fallback namespace.)

So long as all pages on the site reference this manifest, they will get cached locally as they are fetched, so that subsequent hits to the same page will load the page immediately from the cache. Until the manifest is changed, those pages will not be fetched from the server again. When the manifest changes, then all the files will be redownloaded.

Subresources, such as style sheets, images, etc, would only be cached using the regular HTTP caching semantics, however.

CACHE MANIFEST
FALLBACK:
/ /offline.html
NETWORK:
*
6.7.3.2 Writing cache manifests

Manifests must be served using the text/cache-manifest MIME type. All resources served using the text/cache-manifest MIME type must follow the syntax of application cache manifests, as described in this section.

An application cache manifest is a text file, whose text is encoded using UTF-8. Data in application cache manifests is line-based. Newlines must be represented by "LF" (U+000A) characters, "CR" (U+000D) characters, or "CR" (U+000D) "LF" (U+000A) pairs. [ENCODING]

This is a willful violation of RFC 2046, which requires all text/* types to only allow CRLF line breaks. This requirement, however, is outdated; the use of CR, LF, and CRLF line breaks is commonly supported and indeed sometimes CRLF is not supported by text editors. [RFC2046]

The first line of an application cache manifest must consist of the string "CACHE", a single U+0020 SPACE character, the string "MANIFEST", and either a U+0020 SPACE character, a "tab" (U+0009) character, a "LF" (U+000A) character, or a "CR" (U+000D) character. The first line may optionally be preceded by a "BOM" (U+FEFF) character. If any other text is found on the first line, it is ignored.

Subsequent lines, if any, must all be one of the following:

A blank line

Blank lines must consist of zero or more U+0020 SPACE and "tab" (U+0009) characters only.

A comment

Comment lines must consist of zero or more U+0020 SPACE and "tab" (U+0009) characters, followed by a single "#" (U+0023) character, followed by zero or more characters other than "LF" (U+000A) and "CR" (U+000D) characters.

Comments must be on a line on their own. If they were to be included on a line with a URL, the "#" would be mistaken for part of a fragment identifier.

A section header

Section headers change the current section. There are four possible section headers:

CACHE:
Switches to the explicit section.
FALLBACK:
Switches to the fallback section.
NETWORK:
Switches to the online whitelist section.
SETTINGS:
Switches to the settings section.

Section header lines must consist of zero or more U+0020 SPACE and "tab" (U+0009) characters, followed by one of the names above (including the ":)" (U+003A) character followed by zero or more U+0020 SPACE and "tab" (U+0009) characters.

Ironically, by default, the current section is the explicit section.

Data for the current section

The format that data lines must take depends on the current section.

When the current section is the explicit section, data lines must consist of zero or more U+0020 SPACE and "tab" (U+0009) characters, a valid URL identifying a resource other than the manifest itself, and then zero or more U+0020 SPACE and "tab" (U+0009) characters.

When the current section is the fallback section, data lines must consist of zero or more U+0020 SPACE and "tab" (U+0009) characters, a valid URL identifying a resource other than the manifest itself, one or more U+0020 SPACE and "tab" (U+0009) characters, another valid URL identifying a resource other than the manifest itself, and then zero or more U+0020 SPACE and "tab" (U+0009) characters.

When the current section is the online whitelist section, data lines must consist of zero or more U+0020 SPACE and "tab" (U+0009) characters, either a single "*" (U+002A) character or a valid URL identifying a resource other than the manifest itself, and then zero or more U+0020 SPACE and "tab" (U+0009) characters.

When the current section is the settings section, data lines must consist of zero or more U+0020 SPACE and "tab" (U+0009) characters, a setting, and then zero or more U+0020 SPACE and "tab" (U+0009) characters.

Currently only one setting is defined:

The cache mode setting
This consists of the string "prefer-online". It sets the cache mode to prefer-online. (The cache mode defaults to fast.)

Within a settings section, each setting must occur no more than once.

Manifests may contain sections more than once. Sections may be empty.

URLs that are to be fallback pages associated with fallback namespaces, and those namespaces themselves, must be given in fallback sections, with the namespace being the first URL of the data line, and the corresponding fallback page being the second URL. All the other pages to be cached must be listed in explicit sections.

Fallback namespaces and fallback entries must have the same origin as the manifest itself.

A fallback namespace must not be listed more than once.

Namespaces that the user agent is to put into the online whitelist must all be specified in online whitelist sections. (This is needed for any URL that the page is intending to use to communicate back to the server.) To specify that all URLs are automatically whitelisted in this way, a "*" (U+002A) character may be specified as one of the URLs.

Authors should not include namespaces in the online whitelist for which another namespace in the online whitelist is a prefix match.

Relative URLs must be given relative to the manifest's own URL. All URLs in the manifest must have the same scheme as the manifest itself (either explicitly or implicitly, through the use of relative URLs). [URL]

URLs in manifests must not have fragment identifiers (i.e. the U+0023 NUMBER SIGN character isn't allowed in URLs in manifests).

Fallback namespaces and namespaces in the online whitelist are matched by prefix match.

6.7.3.3 Parsing cache manifests

When a user agent is to parse a manifest, it means that the user agent must run the following steps:

  1. UTF-8 decode the byte stream corresponding with the manifest to be parsed.

    The UTF-8 decode algorithm strips a leading BOM, if any.

  2. Let base URL be the absolute URL representing the manifest.

  3. Apply the URL parser steps to the base URL, so that the components from its parsed URL can be used by the subseqent steps of this algorithm.

  4. Let explicit URLs be an initially empty list of absolute URLs for explicit entries.

  5. Let fallback URLs be an initially empty mapping of fallback namespaces to absolute URLs for fallback entries.

  6. Let online whitelist namespaces be an initially empty list of absolute URLs for an online whitelist.

  7. Let online whitelist wildcard flag be blocking.

  8. Let cache mode flag be fast.

  9. Let input be the decoded text of the manifest's byte stream.

  10. Let position be a pointer into input, initially pointing at the first character.

  11. If the characters starting from position are "CACHE", followed by a U+0020 SPACE character, followed by "MANIFEST", then advance position to the next character after those. Otherwise, this isn't a cache manifest; abort this algorithm with a failure while checking for the magic signature.

  12. If the character at position is neither a U+0020 SPACE character, a "tab" (U+0009) character, "LF" (U+000A) character, nor a "CR" (U+000D) character, then this isn't a cache manifest; abort this algorithm with a failure while checking for the magic signature.

  13. This is a cache manifest. The algorithm cannot fail beyond this point (though bogus lines can get ignored).

  14. Collect a sequence of characters that are not "LF" (U+000A) or "CR" (U+000D) characters, and ignore those characters. (Extra text on the first line, after the signature, is ignored.)

  15. Let mode be "explicit".

  16. Start of line: If position is past the end of input, then jump to the last step. Otherwise, collect a sequence of characters that are "LF" (U+000A), "CR" (U+000D), U+0020 SPACE, or "tab" (U+0009) characters.

  17. Now, collect a sequence of characters that are not "LF" (U+000A) or "CR" (U+000D) characters, and let the result be line.

  18. Drop any trailing U+0020 SPACE and "tab" (U+0009) characters at the end of line.

  19. If line is the empty string, then jump back to the step labeled start of line.

  20. If the first character in line is a "#" (U+0023) character, then jump back to the step labeled start of line.

  21. If line equals "CACHE:" (the word "CACHE" followed by a ":)" (U+003A) character, then set mode to "explicit" and jump back to the step labeled start of line.

  22. If line equals "FALLBACK:" (the word "FALLBACK" followed by a ":)" (U+003A) character, then set mode to "fallback" and jump back to the step labeled start of line.

  23. If line equals "NETWORK:" (the word "NETWORK" followed by a ":)" (U+003A) character, then set mode to "online whitelist" and jump back to the step labeled start of line.

  24. If line equals "SETTINGS:" (the word "SETTINGS" followed by a ":)" (U+003A) character, then set mode to "settings" and jump back to the step labeled start of line.

  25. If line ends with a ":" (U+003A) character, then set mode to "unknown" and jump back to the step labeled start of line.

  26. This is either a data line or it is syntactically incorrect.

  27. Let position be a pointer into line, initially pointing at the start of the string.

  28. Let tokens be a list of strings, initially empty.

  29. While position doesn't point past the end of line:

    1. Let current token be an empty string.

    2. While position doesn't point past the end of line and the character at position is neither a U+0020 SPACE nor a "tab" (U+0009) character, add the character at position to current token and advance position to the next character in input.

    3. Add current token to the tokens list.

    4. While position doesn't point past the end of line and the character at position is either a U+0020 SPACE or a "tab" (U+0009) character, advance position to the next character in input.

  30. Process tokens as follows:

    If mode is "explicit"

    Resolve the first item in tokens, relative to base URL, with the URL character encoding set to UTF-8; ignore the rest.

    If this fails, then jump back to the step labeled start of line.

    If the resulting parsed URL has a different scheme component than base URL (the manifest's URL), then jump back to the step labeled start of line.

    Let new URL be the result of applying the URL serializer algorithm to the resulting parsed URL, with the exclude fragment flag set.

    Add new URL to the explicit URLs.

    If mode is "fallback"

    Let part one be the first token in tokens, and let part two be the second token in tokens.

    Resolve part one and part two, relative to base URL, with the URL character encoding set to UTF-8.

    If either fails, then jump back to the step labeled start of line.

    If the absolute URL corresponding to either part one or part two does not have the same origin as the manifest's URL, then jump back to the step labeled start of line.

    Let part one be the result of applying the URL serializer algorithm to the first resulting parsed URL, with the exclude fragment flag set.

    Let part two be the result of applying the URL serializer algorithm to the second resulting parsed URL, with the exclude fragment flag set.

    If part one is already in the fallback URLs mapping as a fallback namespace, then jump back to the step labeled start of line.

    Otherwise, add part one to the fallback URLs mapping as a fallback namespace, mapped to part two as the fallback entry.

    If mode is "online whitelist"

    If the first item in tokens is a "*" (U+002A) character, then set online whitelist wildcard flag to open and jump back to the step labeled start of line.

    Otherwise, resolve the first item in tokens, relative to base URL, with the URL character encoding set to UTF-8; ignore the rest.

    If this fails, then jump back to the step labeled start of line.

    If the resulting parsed URL has a different scheme component than base URL (the manifest's URL), then jump back to the step labeled start of line.

    Let new URL be the result of applying the URL serializer algorithm to the resulting parsed URL, with the exclude fragment flag set.

    Add new URL to the online whitelist namespaces.

    If mode is "settings"

    If tokens contains a single token, and that token is a case-sensitive match for the string "prefer-online", then set cache mode flag to prefer-online and jump back to the step labeled start of line.

    Otherwise, the line is an unsupported setting: do nothing; the line is ignored.

    If mode is "unknown"

    Do nothing. The line is ignored.

  31. Jump back to the step labeled start of line. (That step jumps to the next, and last, step when the end of the file is reached.)

  32. Return the explicit URLs list, the fallback URLs mapping, the online whitelist namespaces, the online whitelist wildcard flag, and the cache mode flag.

The resource that declares the manifest (with the manifest attribute) will always get taken from the cache, whether it is listed in the cache or not, even if it is listed in an online whitelist namespace.

If a resource is listed in the explicit section or as a fallback entry in the fallback section, the resource will always be taken from the cache, regardless of any other matching entries in the fallback namespaces or online whitelist namespaces.

When a fallback namespace and an online whitelist namespace overlap, the online whitelist namespace has priority.

The online whitelist wildcard flag is applied last, only for URLs that match neither the online whitelist namespace nor the fallback namespace and that are not listed in the explicit section.

6.7.4 Downloading or updating an application cache

When the user agent is required (by other parts of this specification) to start the application cache download process for an absolute URL purported to identify a manifest, or for an application cache group, potentially given a particular cache host, and potentially given a master resource, the user agent must run the steps below. These steps are always run asynchronously, in parallel with the event loop tasks.

Some of these steps have requirements that only apply if the user agent shows caching progress. Support for this is optional. Caching progress UI could consist of a progress bar or message panel in the user agent's interface, or an overlay, or something else. Certain events fired during the application cache download process allow the script to override the display of such an interface. (Such events are delayed until after the load event has fired.) The goal of this is to allow Web applications to provide more seamless update mechanisms, hiding from the user the mechanics of the application cache mechanism. User agents may display user interfaces independent of this, but are encouraged to not show prominent update progress notifications for applications that cancel the relevant events.

The application cache download process steps are as follows:

  1. Optionally, wait until the permission to start the application cache download process has been obtained from the user and until the user agent is confident that the network is available. This could include doing nothing until the user explicitly opts-in to caching the site, or could involve prompting the user for permission. The algorithm might never get past this point. (This step is particularly intended to be used by user agents running on severely space-constrained devices or in highly privacy-sensitive environments).

  2. Atomically, so as to avoid race conditions, perform the following substeps:

    1. Pick the appropriate substeps:

      If these steps were invoked with an absolute URL purported to identify a manifest

      Let manifest URL be that absolute URL.

      If there is no application cache group identified by manifest URL, then create a new application cache group identified by manifest URL. Initially, it has no application caches. One will be created later in this algorithm.

      If these steps were invoked with an application cache group

      Let manifest URL be the absolute URL of the manifest used to identify the application cache group to be updated.

      If that application cache group is obsolete, then abort this instance of the application cache download process. This can happen if another instance of this algorithm found the manifest to be 404 or 410 while this algorithm was waiting in the first step above.

    2. Let cache group be the application cache group identified by manifest URL.

    3. If these steps were invoked with a master resource, then add the resource, along with the resource's Document, to cache group's list of pending master entries.

    4. If these steps were invoked with a cache host, and the status of cache group is checking or downloading, then queue a post-load task to fire a simple event named checking that is cancelable at the ApplicationCache singleton of that cache host. The default action of this event must be, if the user agent shows caching progress, the display of some sort of user interface indicating to the user that the user agent is checking to see if it can download the application.

    5. If these steps were invoked with a cache host, and the status of cache group is downloading, then also queue a post-load task to fire a simple event named downloading that is cancelable at the ApplicationCache singleton of that cache host. The default action of this event must be, if the user agent shows caching progress, the display of some sort of user interface indicating to the user the application is being downloaded.

    6. If the status of the cache group is either checking or downloading, then abort this instance of the application cache download process, as an update is already in progress.

    7. Set the status of cache group to checking.

    8. For each cache host associated with an application cache in cache group, queue a post-load task to fire a simple event that is cancelable named checking at the ApplicationCache singleton of the cache host. The default action of these events must be, if the user agent shows caching progress, the display of some sort of user interface indicating to the user that the user agent is checking for the availability of updates.

    The remainder of the steps run asynchronously.

    If cache group already has an application cache in it, then this is an upgrade attempt. Otherwise, this is a cache attempt.

  3. If this is a cache attempt, then this algorithm was invoked with a cache host; queue a post-load task to fire a simple event named checking that is cancelable at the ApplicationCache singleton of that cache host. The default action of this event must be, if the user agent shows caching progress, the display of some sort of user interface indicating to the user that the user agent is checking for the availability of updates.

  4. Fetching the manifest: Fetch the resource from manifest URL with the synchronous flag set, and let manifest be that resource. HTTP caching semantics should be honored for this request.

    Parse manifest according to the rules for parsing manifests, obtaining a list of explicit entries, fallback entries and the fallback namespaces that map to them, entries for the online whitelist, and values for the online whitelist wildcard flag and the cache mode flag.

    The MIME type of the resource is ignored — it is assumed to be text/cache-manifest. In the future, if new manifest formats are supported, the different types will probably be distinguished on the basis of the file signatures (for the current format, that is the "CACHE MANIFEST" string at the top of the file).

  5. If fetching the manifest fails due to a 404 or 410 response or equivalent, then run these substeps:

    1. Mark cache group as obsolete. This cache group no longer exists for any purpose other than the processing of Document objects already associated with an application cache in the cache group.

    2. Let task list be an empty list of tasks.

    3. For each cache host associated with an application cache in cache group, create a task to fire a simple event named obsolete that is cancelable at the ApplicationCache singleton of the cache host, and append it to task list. The default action of these events must be, if the user agent shows caching progress, the display of some sort of user interface indicating to the user that the application is no longer available for offline use.

    4. For each entry in cache group's list of pending master entries, create a task to fire a simple event that is cancelable named error (not obsolete!) at the ApplicationCache singleton of the Document for this entry, if there still is one, and append it to task list. The default action of this event must be, if the user agent shows caching progress, the display of some sort of user interface indicating to the user that the user agent failed to save the application for offline use.

    5. If cache group has an application cache whose completeness flag is incomplete, then discard that application cache.

    6. If appropriate, remove any user interface indicating that an update for this cache is in progress.

    7. Let the status of cache group be idle.

    8. For each task in task list, queue that task as a post-load task.

    9. Abort the application cache download process.

  6. Otherwise, if fetching the manifest fails in some other way (e.g. the server returns another 4xx or 5xx response or equivalent, or there is a DNS error, or the connection times out, or the user cancels the download, or the parser for manifests fails when checking the magic signature), or if the server returned a redirect, then run the cache failure steps. [HTTP]

  7. If this is an upgrade attempt and the newly downloaded manifest is byte-for-byte identical to the manifest found in the newest application cache in cache group, or the server reported it as "304 Not Modified" or equivalent, then run these substeps:

    1. Let cache be the newest application cache in cache group.

    2. Let task list be an empty list of tasks.

    3. For each entry in cache group's list of pending master entries, wait for the resource for this entry to have either completely downloaded or failed.

      If the download failed (e.g. the server returns a 4xx or 5xx response or equivalent, or there is a DNS error, the connection times out, or the user cancels the download), or if the resource is labeled with the "no-store" cache directive, then create a task to fire a simple event that is cancelable named error at the ApplicationCache singleton of the Document for this entry, if there still is one, and append it to task list. The default action of this event must be, if the user agent shows caching progress, the display of some sort of user interface indicating to the user that the user agent failed to save the application for offline use.

      Otherwise, associate the Document for this entry with cache; store the resource for this entry in cache, if it isn't already there, and categorise its entry as a master entry. If applying the URL parser algorithm to the resource's URL results in a parsed URL that has a non-null fragment component, the URL used for the entry in cache must instead be the absolute URL obtained from applying the URL serializer algorithm to the parsed URL with the exclude fragment flag set (application caches never include fragment identifiers).

    4. For each cache host associated with an application cache in cache group, create a task to fire a simple event that is cancelable named noupdate at the ApplicationCache singleton of the cache host, and append it to task list. The default action of these events must be, if the user agent shows caching progress, the display of some sort of user interface indicating to the user that the application is up to date.

    5. Empty cache group's list of pending master entries.

    6. If appropriate, remove any user interface indicating that an update for this cache is in progress.

    7. Let the status of cache group be idle.

    8. For each task in task list, queue that task as a post-load task.

    9. Abort the application cache download process.

  8. Let new cache be a newly created application cache in cache group. Set its completeness flag to incomplete.

  9. For each entry in cache group's list of pending master entries, associate the Document for this entry with new cache.

  10. Set the status of cache group to downloading.

  11. For each cache host associated with an application cache in cache group, queue a post-load task to fire a simple event that is cancelable named downloading at the ApplicationCache singleton of the cache host. The default action of these events must be, if the user agent shows caching progress, the display of some sort of user interface indicating to the user that a new version is being downloaded.

  12. Let file list be an empty list of URLs with flags.

  13. Add all the URLs in the list of explicit entries obtained by parsing manifest to file list, each flagged with "explicit entry".

  14. Add all the URLs in the list of fallback entries obtained by parsing manifest to file list, each flagged with "fallback entry".

  15. If this is an upgrade attempt, then add all the URLs of master entries in the newest application cache in cache group whose completeness flag is complete to file list, each flagged with "master entry".

  16. If any URL is in file list more than once, then merge the entries into one entry for that URL, that entry having all the flags that the original entries had.

  17. For each URL in file list, run the following steps. These steps may be run in parallel for two or more of the URLs at a time. If, while running these steps, the ApplicationCache object's abort() method sends a signal to this instance of the application cache download process algorithm, then run the cache failure steps instead.

    1. If the resource URL being processed was flagged as neither an "explicit entry" nor or a "fallback entry", then the user agent may skip this URL.

      This is intended to allow user agents to expire resources not listed in the manifest from the cache. Generally, implementors are urged to use an approach that expires lesser-used resources first.

    2. For each cache host associated with an application cache in cache group, queue a post-load task to fire a trusted event with the name progress, which does not bubble, which is cancelable, and which uses the ProgressEvent interface, at the ApplicationCache singleton of the cache host. The lengthComputable attribute must be set to true, the total attribute must be set to the number of files in file list, and the loaded attribute must be set to the number of files in file list that have been either downloaded or skipped so far. The default action of these events must be, if the user agent shows caching progress, the display of some sort of user interface indicating to the user that a file is being downloaded in preparation for updating the application. [XHR]

    3. Fetch the resource, from the origin of the URL manifest URL, with the synchronous flag set and the manual redirect flag set. If this is an upgrade attempt, then use the newest application cache in cache group as an HTTP cache, and honor HTTP caching semantics (such as expiration, ETags, and so forth) with respect to that cache. User agents may also have other caches in place that are also honored.

      If the resource in question is already being downloaded for other reasons then the existing download process can sometimes be used for the purposes of this step, as defined by the fetching algorithm.

      An example of a resource that might already be being downloaded is a large image on a Web page that is being seen for the first time. The image would get downloaded to satisfy the img element on the page, as well as being listed in the cache manifest. According to the rules for fetching that image only need be downloaded once, and it can be used both for the cache and for the rendered Web page.

    4. If the previous step fails (e.g. the server returns a 4xx or 5xx response or equivalent, or there is a DNS error, or the connection times out, or the user cancels the download), or if the server returned a redirect, or if the resource is labeled with the "no-store" cache directive, then run the first appropriate step from the following list: [HTTP]

      If the URL being processed was flagged as an "explicit entry" or a "fallback entry"

      If these steps are being run in parallel for any other URLs in file list, then abort these steps for those other URLs. Run the cache failure steps.

      Redirects are fatal because they are either indicative of a network problem (e.g. a captive portal); or would allow resources to be added to the cache under URLs that differ from any URL that the networking model will allow access to, leaving orphan entries; or would allow resources to be stored under URLs different than their true URLs. All of these situations are bad.

      If the error was a 404 or 410 HTTP response or equivalent
      If the resource was labeled with the "no-store" cache directive

      Skip this resource. It is dropped from the cache.

      Otherwise

      Copy the resource and its metadata from the newest application cache in cache group whose completeness flag is complete, and act as if that was the fetched resource, ignoring the resource obtained from the network.

      User agents may warn the user of these errors as an aid to development.

      These rules make errors for resources listed in the manifest fatal, while making it possible for other resources to be removed from caches when they are removed from the server, without errors, and making non-manifest resources survive server-side errors.

      Except for the "no-store" directive, HTTP caching rules that would cause a file to be expired or otherwise not cached are ignored for the purposes of the application cache download process.

    5. Otherwise, the fetching succeeded. Store the resource in the new cache.

      If the user agent is not able to store the resource (e.g. because of quota restrictions), the user agent may prompt the user or try to resolve the problem in some other manner (e.g. automatically pruning content in other caches). If the problem cannot be resolved, the user agent must run the cache failure steps.

    6. If the URL being processed was flagged as an "explicit entry" in file list, then categorise the entry as an explicit entry.

    7. If the URL being processed was flagged as a "fallback entry" in file list, then categorise the entry as a fallback entry.

    8. If the URL being processed was flagged as an "master entry" in file list, then categorise the entry as a master entry.

    9. As an optimization, if the resource is an HTML or XML file whose root element is an html element with a manifest attribute whose value doesn't match the manifest URL of the application cache being processed, then the user agent should mark the entry as being foreign.

  18. For each cache host associated with an application cache in cache group, queue a post-load task to fire a trusted event with the name progress, which does not bubble, which is cancelable, and which uses the ProgressEvent interface, at the ApplicationCache singleton of the cache host. The lengthComputable attribute must be set to true, the total and the loaded attributes must be set to the number of files in file list. The default action of these events must be, if the user agent shows caching progress, the display of some sort of user interface indicating to the user that all the files have been downloaded. [XHR]

  19. Store the list of fallback namespaces, and the URLs of the fallback entries that they map to, in new cache.

  20. Store the URLs that form the new online whitelist in new cache.

  21. Store the value of the new online whitelist wildcard flag in new cache.

  22. Store the value of the new cache mode flag in new cache.

  23. For each entry in cache group's list of pending master entries, wait for the resource for this entry to have either completely downloaded or failed.

    If the download failed (e.g. the server returns a 4xx or 5xx response or equivalent, or there is a DNS error, the connection times out, or the user cancels the download), or if the resource is labeled with the "no-store" cache directive, then run these substeps:

    1. Unassociate the Document for this entry from new cache.

    2. Queue a post-load task to fire a simple event that is cancelable named error at the ApplicationCache singleton of the Document for this entry, if there still is one. The default action of this event must be, if the user agent shows caching progress, the display of some sort of user interface indicating to the user that the user agent failed to save the application for offline use.

    3. If this is a cache attempt and this entry is the last entry in cache group's list of pending master entries, then run these further substeps:

      1. Discard cache group and its only application cache, new cache.

      2. If appropriate, remove any user interface indicating that an update for this cache is in progress.

      3. Abort the application cache download process.

    4. Otherwise, remove this entry from cache group's list of pending master entries.

    Otherwise, store the resource for this entry in new cache, if it isn't already there, and categorise its entry as a master entry.

  24. Fetch the resource from manifest URL again, with the synchronous flag set, and let second manifest be that resource. HTTP caching semantics should again be honored for this request.

    Since caching can be honored, authors are encouraged to avoid setting the cache headers on the manifest in such a way that the user agent would simply not contact the network for this second request; otherwise, the user agent would not notice if the cache had changed during the cache update process.

  25. If the previous step failed for any reason, or if the fetching attempt involved a redirect, or if second manifest and manifest are not byte-for-byte identical, then schedule a rerun of the entire algorithm with the same parameters after a short delay, and run the cache failure steps.

  26. Otherwise, store manifest in new cache, if it's not there already, and categorise its entry as the manifest.

  27. Set the completeness flag of new cache to complete.

  28. Let task list be an empty list of tasks.

  29. If this is a cache attempt, then for each cache host associated with an application cache in cache group, create a task to fire a simple event that is cancelable named cached at the ApplicationCache singleton of the cache host, and append it to task list. The default action of these events must be, if the user agent shows caching progress, the display of some sort of user interface indicating to the user that the application has been cached and that they can now use it offline.

    Otherwise, it is an upgrade attempt. For each cache host associated with an application cache in cache group, create a task to fire a simple event that is cancelable named updateready at the ApplicationCache singleton of the cache host, and append it to task list. The default action of these events must be, if the user agent shows caching progress, the display of some sort of user interface indicating to the user that a new version is available and that they can activate it by reloading the page.

  30. If appropriate, remove any user interface indicating that an update for this cache is in progress.

  31. Set the update status of cache group to idle.

  32. For each task in task list, queue that task as a post-load task.

The cache failure steps are as follows:

  1. Let task list be an empty list of tasks.

  2. For each entry in cache group's list of pending master entries, run the following further substeps. These steps may be run in parallel for two or more entries at a time.

    1. Wait for the resource for this entry to have either completely downloaded or failed.

    2. Unassociate the Document for this entry from its application cache, if it has one.

    3. Create a task to fire a simple event that is cancelable named error at the ApplicationCache singleton of the Document for this entry, if there still is one, and append it to task list. The default action of these events must be, if the user agent shows caching progress, the display of some sort of user interface indicating to the user that the user agent failed to save the application for offline use.

  3. For each cache host still associated with an application cache in cache group, create a task to fire a simple event that is cancelable named error at the ApplicationCache singleton of the cache host, and append it to task list. The default action of these events must be, if the user agent shows caching progress, the display of some sort of user interface indicating to the user that the user agent failed to save the application for offline use.

  4. Empty cache group's list of pending master entries.

  5. If cache group has an application cache whose completeness flag is incomplete, then discard that application cache.

  6. If appropriate, remove any user interface indicating that an update for this cache is in progress.

  7. Let the status of cache group be idle.

  8. If this was a cache attempt, discard cache group altogether.

  9. For each task in task list, queue that task as a post-load task.

  10. Abort the application cache download process.

Attempts to fetch resources as part of the application cache download process may be done with cache-defeating semantics, to avoid problems with stale or inconsistent intermediary caches.


User agents may invoke the application cache download process, in the background, for any application cache group, at any time (with no cache host). This allows user agents to keep caches primed and to update caches even before the user visits a site.


Each Document has a list of pending application cache download process tasks that is used to delay events fired by the algorithm above until the document's load event has fired. When the Document is created, the list must be empty.

When the steps above say to queue a post-load task task, where task is a task that dispatches an event on a target ApplicationCache object target, the user agent must run the appropriate steps from the following list:

If target's Document is ready for post-load tasks

Queue the task task.

Otherwise

Add task to target's Document's list of pending application cache download process tasks.

The task source for these tasks is the networking task source.

6.7.5 The application cache selection algorithm

When the application cache selection algorithm algorithm is invoked with a Document document and optionally a manifest URL manifest URL, the user agent must run the first applicable set of steps from the following list:

If there is a manifest URL, and document was loaded from an application cache, and the URL of the manifest of that cache's application cache group is not the same as manifest URL

Mark the entry for the resource from which document was taken in the application cache from which it was loaded as foreign.

Restart the current navigation from the top of the navigation algorithm, undoing any changes that were made as part of the initial load (changes can be avoided by ensuring that the step to update the session history with the new page is only ever completed after this application cache selection algorithm is run, though this is not required).

The navigation will not result in the same resource being loaded, because "foreign" entries are never picked during navigation.

User agents may notify the user of the inconsistency between the cache manifest and the document's own metadata, to aid in application development.

If document was loaded from an application cache, and that application cache still exists (it is not now obsolete)

Associate document with the application cache from which it was loaded. Invoke, in the background, the application cache download process for that application cache's application cache group, with document as the cache host.

If document was loaded using HTTP GET or equivalent, and, there is a manifest URL, and manifest URL has the same origin as document

Invoke, in the background, the application cache download process for manifest URL, with document as the cache host and with the resource from which document was parsed as the master resource.

If there are relevant application caches that are identified by a URL with the same origin as the URL of document, and that have this URL as one of their entries, excluding entries marked as foreign, then the user agent should use the most appropriate application cache of those that match as an HTTP cache for any subresource loads. User agents may also have other caches in place that are also honored.

Otherwise

The Document is not associated with any application cache.

If there was a manifest URL, the user agent may report to the user that it was ignored, to aid in application development.

6.7.6 Changes to the networking model

When a cache host is associated with an application cache whose completeness flag is complete, any and all loads for resources related to that cache host other than those for child browsing contexts must go through the following steps instead of immediately invoking the mechanisms appropriate to that resource's scheme:

  1. If the resource is not to be fetched using the HTTP GET mechanism or equivalent, or if applying the URL parser algorithm to both its URL and the application cache's manifest's URL results in two parsed URLs with different scheme components, then fetch the resource normally and abort these steps.

  2. If the resource's URL is a master entry, the manifest, an explicit entry, or a fallback entry in the application cache, then get the resource from the cache (instead of fetching it), and abort these steps.

  3. If there is an entry in the application cache's online whitelist that has the same origin as the resource's URL and that is a prefix match for the resource's URL, then fetch the resource normally and abort these steps.

  4. If the resource's URL has the same origin as the manifest's URL, and there is a fallback namespace f in the application cache that is a prefix match for the resource's URL, then:

    Fetch the resource normally. If this results in a redirect to a resource with another origin (indicative of a captive portal), or a 4xx or 5xx status code or equivalent, or if there were network errors (but not if the user canceled the download), then instead get, from the cache, the resource of the fallback entry corresponding to the fallback namespace f. Abort these steps.

  5. If the application cache's online whitelist wildcard flag is open, then fetch the resource normally and abort these steps.

  6. Fail the resource load as if there had been a generic network error.

The above algorithm ensures that so long as the online whitelist wildcard flag is blocking, resources that are not present in the manifest will always fail to load (at least, after the application cache has been primed the first time), making the testing of offline applications simpler.

6.7.7 Expiring application caches

As a general rule, user agents should not expire application caches, except on request from the user, or after having been left unused for an extended period of time.

Application caches and cookies have similar implications with respect to privacy (e.g. if the site can identify the user when providing the cache, it can store data in the cache that can be used for cookie resurrection). Implementors are therefore encouraged to expose application caches in a manner related to HTTP cookies, allowing caches to be expunged together with cookies and other origin-specific data.

For example, a user agent could have a "delete site-specific data" feature that clears all cookies, application caches, local storage, databases, etc, from an origin all at once.

6.7.8 Disk space

User agents should consider applying constraints on disk usage of application caches, and care should be taken to ensure that the restrictions cannot be easily worked around using subdomains.

User agents should allow users to see how much space each domain is using, and may offer the user the ability to delete specific application caches.

For predictability, quotas should be based on the uncompressed size of data stored.

How quotas are presented to the user is not defined by this specification. User agents are encouraged to provide features such as allowing a user to indicate that certain sites are trusted to use more than the default quota, e.g. by asynchronously presenting a user interface while a cache is being updated, or by having an explicit whitelist in the user agent's configuration interface.

6.7.9 Application cache API

[Exposed=Window,SharedWorker]
interface ApplicationCache : EventTarget {

  // update status
  const unsigned short UNCACHED = 0;
  const unsigned short IDLE = 1;
  const unsigned short CHECKING = 2;
  const unsigned short DOWNLOADING = 3;
  const unsigned short UPDATEREADY = 4;
  const unsigned short OBSOLETE = 5;
  readonly attribute unsigned short status;

  // updates
  void update();
  void abort();
  void swapCache();

  // events
           attribute EventHandler onchecking;
           attribute EventHandler onerror;
           attribute EventHandler onnoupdate;
           attribute EventHandler ondownloading;
           attribute EventHandler onprogress;
           attribute EventHandler onupdateready;
           attribute EventHandler oncached;
           attribute EventHandler onobsolete;
};
cache = window . applicationCache

(In a window.) Returns the ApplicationCache object that applies to the active document of that Window.

cache = self . applicationCache

(In a shared worker.) Returns the ApplicationCache object that applies to the current shared worker.

cache . status

Returns the current status of the application cache, as given by the constants defined below.

cache . update()

Invokes the application cache download process.

Throws an InvalidStateError exception if there is no application cache to update.

Calling this method is not usually necessary, as user agents will generally take care of updating application caches automatically.

The method can be useful in situations such as long-lived applications. For example, a Web mail application might stay open in a browser tab for weeks at a time. Such an application could want to test for updates each day.

cache . abort()

Cancels the application cache download process.

This method is intended to be used by Web application showing their own caching progress UI, in case the user wants to stop the update (e.g. because bandwidth is limited).

cache . swapCache()

Switches to the most recent application cache, if there is a newer one. If there isn't, throws an InvalidStateError exception.

This does not cause previously-loaded resources to be reloaded; for example, images do not suddenly get reloaded and style sheets and scripts do not get reparsed or reevaluated. The only change is that subsequent requests for cached resources will obtain the newer copies.

The updateready event will fire before this method can be called. Once it fires, the Web application can, at its leisure, call this method to switch the underlying cache to the one with the more recent updates. To make proper use of this, applications have to be able to bring the new features into play; for example, reloading scripts to enable new features.

An easier alternative to swapCache() is just to reload the entire page at a time suitable for the user, using location.reload().

There is a one-to-one mapping from cache hosts to ApplicationCache objects. The applicationCache attribute on Window objects must return the ApplicationCache object associated with the Window object's active document. The applicationCache attribute on SharedWorkerGlobalScope objects must return the ApplicationCache object associated with the worker.

A Window or SharedWorkerGlobalScope object has an associated ApplicationCache object even if that cache host has no actual application cache.


The status attribute, on getting, must return the current state of the application cache that the ApplicationCache object's cache host is associated with, if any. This must be the appropriate value from the following list:

UNCACHED (numeric value 0)

The ApplicationCache object's cache host is not associated with an application cache at this time.

IDLE (numeric value 1)

The ApplicationCache object's cache host is associated with an application cache whose application cache group's update status is idle, and that application cache is the newest cache in its application cache group, and the application cache group is not marked as obsolete.

CHECKING (numeric value 2)

The ApplicationCache object's cache host is associated with an application cache whose application cache group's update status is checking.

DOWNLOADING (numeric value 3)

The ApplicationCache object's cache host is associated with an application cache whose application cache group's update status is downloading.

UPDATEREADY (numeric value 4)

The ApplicationCache object's cache host is associated with an application cache whose application cache group's update status is idle, and whose application cache group is not marked as obsolete, but that application cache is not the newest cache in its group.

OBSOLETE (numeric value 5)

The ApplicationCache object's cache host is associated with an application cache whose application cache group is marked as obsolete.


If the update() method is invoked, the user agent must invoke the application cache download process, in the background, for the application cache group of the application cache with which the ApplicationCache object's cache host is associated, but without giving that cache host to the algorithm. If there is no such application cache, or if its application cache group is marked as obsolete, then the method must throw an InvalidStateError exception instead.

If the abort() method is invoked, the user agent must send a signal to the current application cache download process for the application cache group of the application cache with which the ApplicationCache object's cache host is associated, if any. If there is no such application cache, or it does not have a current application cache download process, then do nothing.

If the swapCache() method is invoked, the user agent must run the following steps:

  1. Check that ApplicationCache object's cache host is associated with an application cache. If it is not, then throw an InvalidStateError exception and abort these steps.

  2. Let cache be the application cache with which the ApplicationCache object's cache host is associated. (By definition, this is the same as the one that was found in the previous step.)

  3. If cache's application cache group is marked as obsolete, then unassociate the ApplicationCache object's cache host from cache and abort these steps. (Resources will now load from the network instead of the cache.)

  4. Check that there is an application cache in the same application cache group as cache whose completeness flag is complete and that is newer than cache. If there is not, then throw an InvalidStateError exception and abort these steps.

  5. Let new cache be the newest application cache in the same application cache group as cache whose completeness flag is complete.

  6. Unassociate the ApplicationCache object's cache host from cache and instead associate it with new cache.

The following are the event handlers (and their corresponding event handler event types) that must be supported, as event handler IDL attributes, by all objects implementing the ApplicationCache interface:

Event handler Event handler event type
onchecking checking
onerror error
onnoupdate noupdate
ondownloading downloading
onprogress progress
onupdateready updateready
oncached cached
onobsolete obsolete

6.7.10 Browser state

[NoInterfaceObject, Exposed=Window,Worker]
interface NavigatorOnLine {
  readonly attribute boolean onLine;
};
window . navigator . onLine

Returns false if the user agent is definitely offline (disconnected from the network). Returns true if the user agent might be online.

The events online and offline are fired when the value of this attribute changes.

The navigator.onLine attribute must return false if the user agent will not contact the network when the user follows links or when a script requests a remote page (or knows that such an attempt would fail), and must return true otherwise.

When the value that would be returned by the navigator.onLine attribute of a Window or WorkerGlobalScope changes from true to false, the user agent must queue a task to fire a simple event named offline at the Window or WorkerGlobalScope object.

On the other hand, when the value that would be returned by the navigator.onLine attribute of a Window or WorkerGlobalScope changes from false to true, the user agent must queue a task to fire a simple event named online at the Window or WorkerGlobalScope object.

The task source for these tasks is the networking task source.

This attribute is inherently unreliable. A computer can be connected to a network without having Internet access.

In this example, an indicator is updated as the browser goes online and offline.

<!DOCTYPE HTML>
<html>
 <head>
  <title>Online status</title>
  <script>
   function updateIndicator() {
     document.getElementById('indicator').textContent = navigator.onLine ? 'online' : 'offline';
   }
  </script>
 </head>
 <body onload="updateIndicator()" ononline="updateIndicator()" onoffline="updateIndicator()">
  <p>The network is: <span id="indicator">(state unknown)</span>
 </body>
</html>

7 Web application APIs

7.1 Scripting

7.1.1 Introduction

Various mechanisms can cause author-provided executable code to run in the context of a document. These mechanisms include, but are probably not limited to:

7.1.2 Enabling and disabling scripting

Scripting is enabled in a browsing context when all of the following conditions are true:

Scripting is disabled in a browsing context when any of the above conditions are false (i.e. when scripting is not enabled).


Scripting is enabled for a node if the Document object of the node (the node itself, if it is itself a Document object) has an associated browsing context, and scripting is enabled in that browsing context.

Scripting is disabled for a node if there is no such browsing context, or if scripting is disabled in that browsing context.

7.1.3 Processing model

7.1.3.1 Definitions

This specification describes three kinds of JavaScript global environments: the document environment, the dedicated worker environment, and the shared worker environment. The dedicated worker environment and the shared worker environment are both types of worker environments.

Except where otherwise specified, a JavaScript global environment is a document environment.


A script has:

A code entry-point

A code entry-point represents a block of executable code that the script exposes to other scripts and to the user agent. Typically, the code corresponding to the code entry-point is executed immediately after the script is parsed, but for event handlers, it is called each time the handler is invoked.

In JavaScript script blocks, this corresponds to the execution context of the global code.

Optionally, a muted errors flag

A flag which, if set, means that error information will not be provided for errors in this script (used to mute errors for cross-origin scripts, since that can leak private information).

A settings object

A script settings object, various settings that are shared with other scripts in the same context.


A script settings object specifies algorithms for obtaining the following:

A script execution environment for each language supported by the user agent

The characteristics of the script execution environment depend on the language, and are not defined by this specification.

In JavaScript, the script execution environment consists of the interpreter, the stack of execution contexts, the global code and function code and the Function objects resulting, and so forth.

A global object

An object that provides the APIs that can be called by the code in scripts that use this settings object.

This is typically a Window object or a WorkerGlobalScope object. When a global object is an empty object, it can't do anything that interacts with the environment.

If the global object is a Window object, then, in JavaScript, the ThisBinding of the global execution context for this script must be the Window object's WindowProxy object, rather than the global object. [ECMA262]

This is a willful violation of the JavaScript specification current at the time of writing (ECMAScript edition 5, as defined in section 10.4.1.1 Initial Global Execution Context, step 3). The JavaScript specification requires that the this keyword in the global scope return the global object, but this is not compatible with the security design prevalent in implementations as specified herein. [ECMA262]

A responsible browsing context

A browsing context that is assigned responsibility for actions taken by the scripts that use this script settings object.

When a script creates and navigates a new top-level browsing context, the opener attribute of the new browsing context's Window object will be set to the responsible browsing context's WindowProxy object.

A responsible document

A Document that is assigned responsibility for actions taken by the scripts that use this script settings object.

For example, the address of the responsible document is used to set the address of the Document after it has been reset using document.open().

A responsible event loop

An event loop that is used when it would not be immediately clear what event loop to use.

An API referrer source

Either a Document (specifically, the responsible document), or a URL, which is used by some APIs to determine what value to use for the Referer (sic) header in calls to the fetching algorithm.

An API URL character encoding

A character encoding used to encode URLs by APIs called by scripts that use this script settings object.

An API base URL

An absolute URL used by APIs called by scripts that use this script settings object to resolve relative URLs.

An origin and an effective script origin

An instrument used in security checks.

The relevant settings object for a global object o is the script settings object whose global object is o. (There is always a 1:1 mapping of global objects to script settings objects.)

The relevant settings object for a script s is the settings object of s.

7.1.3.2 Script settings for browsing contexts

Whenever a new Window object is created, it must also create a script settings object whose algorithms are defined as follows:

The script execution environments

When the script settings object is created, for each language supported by the user agent, create an appropriate execution environment as defined by the relevant specification.

When a script execution environment is needed, return the appropriate one from those created when the script settings object was created.

The global object

Return the Window object itself.

The responsible browsing context

Return the browsing context with which the Window object is associated.

The responsible document

Return the Document with which the Window is currently associated.

The responsible event loop

Return the event loop that is associated with the unit of related similar-origin browsing contexts to which the Window object's browsing context belongs.

The API referrer source

Return the Document with which the Window is currently associated.

The API URL character encoding

Return the current character encoding of the Document with which the Window is currently associated.

The API base URL

Return the current base URL of the Document with which the Window is currently associated.

The origin

Return the origin of the Document with which the Window is currently associated.

The effective script origin

Return the effective script origin of the Document with which the Window is currently associated.

7.1.3.3 Calling scripts

Each unit of related similar-origin browsing contexts has a stack of script settings objects, which must be initially empty. When a new script settings object is pushed onto this stack, the specified script settings object is to be added to the stack; when the script settings object on this stack that was most recently pushed onto it is to be popped from the stack, it must be removed. Entries on this stack can be labeled as candidate entry settings objects.

When a user agent is to jump to a code entry-point for a script s, the user agent must run the following steps:

  1. Let context be the settings object of s.

  2. Prepare to run a callback with context as the script settings object. If this returns "do not run" then abort these steps.

  3. Make the appropriate script execution environment specified by context execute the s's code entry-point.

  4. Clean up after running a callback.

The steps to prepare to run a callback with a script settings object o are as follows. They return either "run" or "do not run".

  1. If the global object specified by o is a Window object whose Document object is not fully active, then return "do not run" and abort these steps.

  2. If scripting is disabled for the responsible browsing context specified by o, then return "do not run" and abort these steps.

  3. Push o onto the stack of script settings objects, and label it as a candidate entry settings object.

  4. Return "run".

The steps to clean up after running a callback are as follows:

  1. Pop the current incumbent settings object from the stack of script settings objects.

  2. If the stack of script settings objects is now empty, run the global script clean-up jobs. (These cannot run scripts.)

  3. If the stack of script settings objects is now empty, perform a microtask checkpoint. (If this runs scripts, these algorithms will be invoked reentrantly.)

These algorithms are not invoked by one script directly calling another, but they can be invoked reentrantly in an indirect manner, e.g. if a script dispatches an event which has event listeners registered.

When a JavaScript SourceElements production is to be evaluated, the settings object of the script corresponding to that SourceElements must be pushed onto the stack of script settings objects before the evaluation begins, and popped when the evaluation ends (regardless of whether it's an abrupt completion or not).

The entry settings object is the most-recently added script settings object in the stack of script settings objects that is labeled as a candidate entry settings object. If the stack is empty, or has no entries labeled as such, then there is no entry settings object. It is used to obtain, amongst other things, the API base URL to resolve relative URLs used in scripts running in that unit of related similar-origin browsing contexts.

The incumbent settings object is the script settings object in the stack of script settings objects that was most-recently added (i.e. the last one on the stack). If the stack is empty, then there is no incumbent settings object. It is used in some security checks.

The Web IDL specification also uses these algorithms. [WEBIDL]


Each unit of related similar-origin browsing contexts has a global script clean-up jobs list, which must initially be empty. A global script clean-up job cannot run scripts, and cannot be sensitive to the order in which other clean-up jobs are executed. The File API uses this to release blob: URLs. [FILEAPI]

When the user agent is to run the global script clean-up jobs, the user agent must perform each of the jobs in the global script clean-up jobs list and then empty the list.

7.1.3.4 Creating scripts

When the specification says that a script is to be created, given some script source, a script source URL, its scripting language, a script settings object, and optionally a muted errors flag, the user agent must run the following steps:

  1. Let script be a new script that this algorithm will subsequently initialize.

  2. If scripting is disabled for browsing context passed to this algorithm, then abort these steps, as if the script source described a program that did nothing but return void.

  3. Obtain the appropriate script execution environment for the given scripting language from the script settings object provided.

  4. Parse/compile/initialise the source of the script using the script execution environment, as appropriate for the scripting language, and thus obtain script's code entry-point.

  5. Let script's settings object be the script settings object provided.

  6. If the muted errors flag was set, then set script's muted errors flag.

  7. If all the steps above succeeded (in particular, if the script was compiled successfully), Jump to script's code entry-point.

    Otherwise, report the error for script, with the problematic position (line number and column number), using the global object specified by the script settings object as the target. If the error is still not handled after this, then the error may be reported to the user.

7.1.3.5 Killing scripts

User agents may impose resource limitations on scripts, for example CPU quotas, memory limits, total execution time limits, or bandwidth limitations. When a script exceeds a limit, the user agent may either throw a QuotaExceededError exception, abort the script without an exception, prompt the user, or throttle script execution.

For example, the following script never terminates. A user agent could, after waiting for a few seconds, prompt the user to either terminate the script or let it continue.

<script>
 while (true) { /* loop */ }
</script>

User agents are encouraged to allow users to disable scripting whenever the user is prompted either by a script (e.g. using the window.alert() API) or because of a script's actions (e.g. because it has exceeded a time limit).

If scripting is disabled while a script is executing, the script should be terminated immediately.

User agents may allow users to specifically disable scripts just for the purposes of closing a browsing context.

For example, the prompt mentioned in the example above could also offer the user with a mechanism to just close the page entirely, without running any unload event handlers.

7.1.3.6 Runtime script errors

When the user agent is required to report an error for a particular script script with a particular position line:col, using a particular target target, it must run these steps, after which the error is either handled or not handled:

  1. If target is in error reporting mode, then abort these steps; the error is not handled.

  2. Let target be in error reporting mode.

  3. Let message be a user-agent-defined string describing the error in a helpful manner. (This is a fingerprinting vector.)

  4. Let error object be the object that represents the error: in the case of an uncaught exception, that would be the object that was thrown; in the case of a JavaScript error that would be an Error object. If there is no corresponding object, then the null value must be used instead.

  5. Let location be an absolute URL that corresponds to the resource from which script was obtained.

    The resource containing the script will typically be the file from which the Document was parsed, e.g. for inline script elements or event handler content attributes; or the JavaScript file that the script was in, for external scripts. Even for dynamically-generated scripts, user agents are strongly encouraged to attempt to keep track of the original source of a script. For example, if an external script uses the document.write() API to insert an inline script element during parsing, the URL of the resource containing the script would ideally be reported as being the external script, and the line number might ideally be reported as the line with the document.write() call or where the string passed to that call was first constructed. Naturally, implementing this can be somewhat non-trivial.

    User agents are similarly encouraged to keep careful track of the original line numbers, even in the face of document.write() calls mutating the document as it is parsed, or event handler content attributes spanning multiple lines.

  6. If script has muted errors, then set message to "Script error.", set location to the empty string, set line and col to 0, and set error object to null.

  7. Let event be a new trusted ErrorEvent object that does not bubble but is cancelable, and which has the event name error.

  8. Initialise event's message attribute to message.

  9. Initialise event's filename attribute to location.

  10. Initialise event's lineno attribute to line.

  11. Initialise event's colno attribute to col.

  12. Initialise event's error attribute to error object.

  13. Dispatch event at target.

  14. Let target no longer be in error reporting mode.

  15. If event was canceled, then the error is handled. Otherwise, the error is not handled.

7.1.3.6.1 Runtime script errors in documents

Whenever an uncaught runtime script error occurs in one of the scripts associated with a Document, the user agent must report the error for the relevant script, with the problematic position (line number and column number) in the resource containing the script, using the global object specified by the script's settings object as the target. If the error is still not handled after this, then the error may be reported to the user.

7.1.3.6.2 The ErrorEvent interface
[Constructor(DOMString type, optional ErrorEventInit eventInitDict), Exposed=Window,Worker]
interface ErrorEvent : Event {
  readonly attribute DOMString message;
  readonly attribute DOMString filename;
  readonly attribute unsigned long lineno;
  readonly attribute unsigned long colno;
  readonly attribute any error;
};

dictionary ErrorEventInit : EventInit {
  DOMString message;
  DOMString filename;
  unsigned long lineno;
  unsigned long colno;
  any error;
};

The message attribute must return the value it was initialised to. When the object is created, this attribute must be initialised to the empty string. It represents the error message.

The filename attribute must return the value it was initialised to. When the object is created, this attribute must be initialised to the empty string. It represents the absolute URL of the script in which the error originally occurred.

The lineno attribute must return the value it was initialised to. When the object is created, this attribute must be initialised to zero. It represents the line number where the error occurred in the script.

The colno attribute must return the value it was initialised to. When the object is created, this attribute must be initialised to zero. It represents the column number where the error occurred in the script.

The error attribute must return the value it was initialised to. When the object is created, this attribute must be initialised to null. Where appropriate, it is set to the object representing the error (e.g. the exception object in the case of an uncaught DOM exception).

7.1.4 Event loops

7.1.4.1 Definitions

To coordinate events, user interaction, scripts, rendering, networking, and so forth, user agents must use event loops as described in this section. There are two kinds of event loops: those for browsing contexts, and those for workers.

There must be at least one browsing context event loop per user agent, and at most one per unit of related similar-origin browsing contexts.

When there is more than one event loop for a unit of related browsing contexts, complications arise when a browsing context in that group is navigated such that it switches from one unit of related similar-origin browsing contexts to another. This specification does not currently describe how to handle these complications.

A browsing context event loop always has at least one browsing context. If such an event loop's browsing contexts all go away, then the event loop goes away as well. A browsing context always has an event loop coordinating its activities.

Worker event loops are simpler: each worker has one event loop, and the worker processing model manages the event loop's lifetime.


An event loop has one or more task queues. A task queue is an ordered list of tasks, which are algorithms that are responsible for such work as:

Events

Asynchronously dispatching an Event object at a particular EventTarget object is often done by a dedicated task.

Not all events are dispatched using the task queue, many are dispatched synchronously during other tasks.

Parsing

The HTML parser tokenizing one or more bytes, and then processing any resulting tokens, is typically a task.

Callbacks

Calling a callback asynchronously is often done by a dedicated task.

Using a resource

When an algorithm fetches a resource, if the fetching occurs asynchronously then the processing of the resource once some or all of the resource is available is performed by a task.

Reacting to DOM manipulation

Some elements have tasks that trigger in response to DOM manipulation, e.g. when that element is inserted into the document.

Each task in a browsing context event loop is associated with a Document; if the task was queued in the context of an element, then it is the element's Document; if the task was queued in the context of a browsing context, then it is the browsing context's active document at the time the task was queued; if the task was queued by or for a script then the document is the responsible document specified by the script's settings object.

A task is intended for a specific event loop: the event loop that is handling tasks for the task's associated Document or worker.

When a user agent is to queue a task, it must add the given task to one of the task queues of the relevant event loop.

Each task is defined as coming from a specific task source. All the tasks from one particular task source and destined to a particular event loop (e.g. the callbacks generated by timers of a Document, the events fired for mouse movements over that Document, the tasks queued for the parser of that Document) must always be added to the same task queue, but tasks from different task sources may be placed in different task queues.

For example, a user agent could have one task queue for mouse and key events (the user interaction task source), and another for everything else. The user agent could then give keyboard and mouse events preference over other tasks three quarters of the time, keeping the interface responsive but not starving other task queues, and never processing events from any one task source out of order.

Each event loop has a currently running task. Initially, this is null. It is used to handle reentrancy. Each event loop also has a performing a microtask checkpoint flag, which must initially be false. It is used to prevent reentrant invocation of the perform a microtask checkpoint algorithm.


A user agent may have one storage mutex. This mutex is used to control access to shared state like cookies. At any one point, the storage mutex is either free, or owned by a particular event loop or instance of the fetching algorithm.

If a user agent does not implement a storage mutex, it is exempt from implementing the requirements that require it to acquire or release it.

User agent implementors have to make a choice between two evils. On the one hand, not implementing the storage mutex means that there is a risk of data corruption: a site could, for instance, try to read a cookie, increment its value, then write it back out, using the new value of the cookie as a unique identifier for the session; if the site does this twice in two different browser windows at the same time, it might end up using the same "unique" identifier for both sessions, with potentially disastrous effects. On the other hand, implementing the storage mutex has potentially serious performance implications: whenever a site uses Web Storage or cookies, all other sites that try to use Web Storage or cookies are blocked until the first site finishes.

So far, all browsers faced with this decision have opted to not implement the storage mutex.

Whenever a script calls into a plugin, and whenever a plugin calls into a script, the user agent must release the storage mutex.

7.1.4.2 Processing model

An event loop must continually run through the following steps for as long as it exists:

  1. Select the oldest task on one of the event loop's task queues, if any, ignoring, in the case of a browsing context event loop, tasks whose associated Documents are not fully active. The user agent may pick any task queue.

  2. Set the event loop's currently running task to the task selected in the previous step.

  3. Run: Run the selected task.

  4. Set the event loop's currently running task back to null.

  5. If the storage mutex is now owned by the event loop, release it so that it is once again free.

  6. If a task was run in the run step above, remove that task from its task queue.

  7. Perform a microtask checkpoint.

  8. Update the rendering: If this event loop is a browsing context event loop (as opposed to a worker event loop), then, if necessary, update the rendering or user interface of any Document or browsing context to reflect the current state.

  9. If this is a worker event loop (i.e. one running for a WorkerGlobalScope), but there are no tasks in the event loop's task queues and the WorkerGlobalScope object's closing flag is true, then destroy the event loop, aborting these steps, resuming the run a worker steps described in the Web Workers section below.

  10. Return to the first step of the event loop.


Each event loop has a microtask queue. A microtask is a task that is originally to be queued on the microtask queue rather than a task queue. There are two kinds of microtasks: solitary callback microtasks, and compound microtasks.

This specification only has solitary callback microtasks. Specifications that use compound microtasks have to take extra care to wrap callbacks to handle spinning the event loop.

When an algorithm requires a microtask to be queued, it must be appended to the relevant event loop's microtask queue; the task source of such a microtask is the microtask task source.

It is possible for a microtask to be moved to a regular task queue, if, during its initial execution, it spins the event loop. In that case, the microtask task source is the task source used. Normally, the task source of a microtask is irrelevant.

When a user agent is to perform a microtask checkpoint, if the performing a microtask checkpoint flag is false, then the user agent must run the following steps:

  1. Let the performing a microtask checkpoint flag be true.

  2. Microtask queue handling: If the event loop's microtask queue is empty, jump to the done step below.

  3. Select the oldest microtask on the event loop's microtask queue.

  4. Set the event loop's currently running task to the task selected in the previous step.

  5. Run: Run the selected task.

    This might involve invoking scripted callbacks, which eventually calls the clean up after running a callback steps, which call this perform a microtask checkpoint algorithm again, which is why we use the performing a microtask checkpoint flag to avoid reentrancy.

  6. Set the event loop's currently running task back to null.

  7. If the storage mutex is now owned by the event loop, release it so that it is once again free.

  8. Remove the microtask run in the step above from the microtask queue, and return to the microtask queue handling step.

  9. Done: Let the performing a microtask checkpoint flag be false.

If, while a compound microtask is running, the user agent is required to execute a compound microtask subtask to run a series of steps, the user agent must run the following steps:

  1. Let parent be the event loop's currently running task (the currently running compound microtask).

  2. Let subtask be a new task that consists of running the given series of steps. The task source of such a microtask is the microtask task source. This is a compound microtask subtask.

  3. Set the event loop's currently running task to subtask.

  4. Run subtask.

  5. Set the event loop's currently running task back to parent.


When an asynchronously-running algorithm is to await a stable state, the user agent must queue a microtask that first runs the algorithm's synchronous section, and then resumes running the asynchronous algorithm (if appropriate), as described in the algorithm's steps.

Steps in synchronous sections are marked with ⌛.


When an algorithm says to spin the event loop until a condition goal is met, the user agent must run the following steps:

  1. Let task be the event loop's currently running task.

    This might be a microtask, in which case it is a solitary callback microtask. It could also be a compound microtask subtask, or a regular task that is not a microtask. It will not be a compound microtask.

  2. Let task source be task's task source.

  3. Let old stack of script settings objects be a copy of the stack of script settings objects.

  4. Empty the stack of script settings objects.

  5. Run the global script clean-up jobs.

  6. Perform a microtask checkpoint.

  7. Stop task, allowing whatever algorithm that invoked it to resume, but continue these steps asynchronously.

    This causes one of the following algorithms to continue: the event loop's main set of steps, the perform a microtask checkpoint algorithm, or the execute a compound microtask subtask algorithm to continue.

  8. Wait until the condition goal is met.

  9. Queue a task to continue running these steps, using the task source task source. Wait until this new task runs before continuing these steps.

  10. Replace the stack of script settings objects with the old stack of script settings objects.

  11. Return to the caller.


Some of the algorithms in this specification, for historical reasons, require the user agent to pause while running a task until a condition goal is met. This means running the following steps:

  1. If necessary, update the rendering or user interface of any Document or browsing context to reflect the current state.

  2. Wait until the condition goal is met. While a user agent has a paused task, the corresponding event loop must not run further tasks, and any script in the currently running task must block. User agents should remain responsive to user input while paused, however, albeit in a reduced capacity since the event loop will not be doing anything.


When a user agent is to obtain the storage mutex as part of running a task, it must run through the following steps:

  1. If the storage mutex is already owned by this task's event loop, then abort these steps.

  2. Otherwise, pause until the storage mutex can be taken by the event loop.

  3. Take ownership of the storage mutex.

7.1.4.3 Generic task sources

The following task sources are used by a number of mostly unrelated features in this and other specifications.

The DOM manipulation task source

This task source is used for features that react to DOM manipulations, such as things that happen asynchronously when an element is inserted into the document.

The user interaction task source

This task source is used for features that react to user interaction, for example keyboard or mouse input.

Asynchronous events sent in response to user input (e.g. click events) must be fired using tasks queued with the user interaction task source. [DOMEVENTS]

The networking task source

This task source is used for features that trigger in response to network activity.

The history traversal task source

This task source is used to queue calls to history.back() and similar APIs.

7.1.5 Events

7.1.5.1 Event handlers

Many objects can have event handlers specified. These act as non-capture event listeners for the object on which they are specified. [DOM]

An event handler has a name, which always starts with "on" and is followed by the name of the event for which it is intended.

An event handler can either have the value null, or be set to a callback object, or be set to an internal raw uncompiled handler. The EventHandler callback function type describes how this is exposed to scripts. Initially, event handlers must be set to null.

Event handlers are exposed in one of two ways.

The first way, common to all event handlers, is as an event handler IDL attribute.

The second way is as an event handler content attribute. Event handlers on HTML elements and some of the event handlers on Window objects are exposed in this way.


An event handler IDL attribute is an IDL attribute for a specific event handler. The name of the IDL attribute is the same as the name of the event handler.

Event handler IDL attributes, on setting, must set the corresponding event handler to their new value, and on getting, must return the result of getting the current value of the event handler in question (this can throw an exception, in which case the getting propagates it to the caller, it does not catch it).

If an event handler IDL attribute exposes an event handler of an object that doesn't exist, it must always return null on getting and must do nothing on setting.

This can happen in particular for event handler IDL attribute on body elements that do not have corresponding Window objects.

Certain event handler IDL attributes have additional requirements, in particular the onmessage attribute of MessagePort objects.


An event handler content attribute is a content attribute for a specific event handler. The name of the content attribute is the same as the name of the event handler.

Event handler content attributes, when specified, must contain valid JavaScript code which, when parsed, would match the FunctionBody production after automatic semicolon insertion. [ECMA262]

When an event handler content attribute is set, the user agent must set the corresponding event handler to an internal raw uncompiled handler consisting of the attribute's new value and the script location where the attribute was set to this value

When an event handler content attribute is removed, the user agent must set the corresponding event handler to null.


When an event handler H of an element or object T implementing the EventTarget interface is first set to a non-null value, the user agent must append an event listener to the list of event listeners associated with T with type set to the event handler event type corresponding to H, capture set to false, and listener set to the event handler processing algorithm defined below. [DOM]

The listener is emphatically not the event handler itself. Every event handler ends up registering the same listener, the algorithm defined below, which takes care of invoking the right callback, and processing the callback's return value.

This only happens the first time the event handler's value is set. Since listeners are called in the order they were registered, the order of event listeners for a particular event type will always be first the event listeners registered with addEventListener() before the first time the event handler was set to a non-null value, then the callback to which it is currently set, if any, and finally the event listeners registered with addEventListener() after the first time the event handler was set to a non-null value.

This example demonstrates the order in which event listeners are invoked. If the button in this example is clicked by the user, the page will show four alerts, with the text "ONE", "TWO", "THREE", and "FOUR" respectively.

<button id="test">Start Demo</button>
<script>
 var button = document.getElementById('test');
 button.addEventListener('click', function () { alert('ONE') }, false);
 button.setAttribute('onclick', "alert('NOT CALLED')"); // event handler listener is registered here
 button.addEventListener('click', function () { alert('THREE') }, false);
 button.onclick = function () { alert('TWO'); };
 button.addEventListener('click', function () { alert('FOUR') }, false);
</script>

The interfaces implemented by the event object do not influence whether an event handler is triggered or not.

The event handler processing algorithm for an event handler H and an Event object E is as follows:

  1. Let callback be the result of getting the current value of the event handler H.

  2. If callback is null, then abort these steps.

  3. Process the Event object E as follows:

    If E is an ErrorEvent object and the event handler IDL attribute's type is OnErrorEventHandler

    Invoke callback with five arguments, the first one having the value of E's message attribute, the second having the value of E's filename attribute, the third having the value of E's lineno attribute, the fourth having the value of E's colno attribute, the fifth having the value of E's error attribute, and with the callback this value set to E's currentTarget. Let return value be the callback's return value. [WEBIDL]

    Otherwise

    Invoke callback with one argument, the value of which is the Event object E, with the callback this value set to E's currentTarget. Let return value be the callback's return value. [WEBIDL]

    In this step, invoke means to run the jump to a code entry-point algorithm.

  4. Process return value as follows:

    If the event type is mouseover
    If the event type is error and E is an ErrorEvent object

    If return value is a Web IDL boolean true value, then cancel the event.

    If the event type is beforeunload

    The event handler IDL attribute's type is OnBeforeUnloadEventHandler, and the return value will therefore have been coerced into either the value null or a DOMString.

    If the return value is null, then cancel the event.

    Otherwise, If the Event object E is a BeforeUnloadEvent object, and the Event object E's returnValue attribute's value is the empty string, then set the returnValue attribute's value to return value.

    Otherwise

    If return value is a Web IDL boolean false value, then cancel the event.


The EventHandler callback function type represents a callback used for event handlers. It is represented in Web IDL as follows:

[TreatNonCallableAsNull]
callback EventHandlerNonNull = any (Event event);
typedef EventHandlerNonNull? EventHandler;

In JavaScript, any Function object implements this interface.

For example, the following document fragment:

<body onload="alert(this)" onclick="alert(this)">

...leads to an alert saying "[object Window]" when the document is loaded, and an alert saying "[object HTMLBodyElement]" whenever the user clicks something in the page.

The return value of the function affects whether the event is canceled or not: as described above, if the return value is false, the event is canceled (except for mouseover events, where the return value has to be true to cancel the event). With beforeunload events, the value is instead used to determine the message to show the user.

For historical reasons, the onerror handler has different arguments:

[TreatNonCallableAsNull]
callback OnErrorEventHandlerNonNull = any ((Event or DOMString) event, optional DOMString source, optional unsigned long lineno, optional unsigned long column, optional any error);
typedef OnErrorEventHandlerNonNull? OnErrorEventHandler;

Similarly, the onbeforeunload handler has a different return value:

[TreatNonCallableAsNull]
callback OnBeforeUnloadEventHandlerNonNull = DOMString? (Event event);
typedef OnBeforeUnloadEventHandlerNonNull? OnBeforeUnloadEventHandler;

An internal raw uncompiled handler is a tuple with the following information:

When the user agent is to get the current value of the event handler H, it must run these steps:

  1. If H's value is an internal raw uncompiled handler, run these substeps:

    1. If H is an element's event handler, then let element be the element, and document be the element's Document.

      Otherwise, H is a Window object's event handler: let element be null, and let document be the Document most recently associated with that Window object.

    2. If document is not in a browsing context, or if scripting is enabled for document's browsing context, then return null and abort the algorithm for getting the current value of the event handler.

    3. Let body be the uncompiled script body in the internal raw uncompiled handler.

    4. Let location be the location where the script body originated, as given by the internal raw uncompiled handler.

    5. If element is not null and element has a form owner, let form owner be that form owner. Otherwise, let form owner be null.

    6. Let script settings be the script settings object created for the Window object with which document is currently associated.

    7. Obtain the script execution environment for JavaScript from script settings.

    8. If body is not parsable as FunctionBody or if parsing detects an early error, then follow these substeps:

      1. Set H's value to null.

      2. Report the error for the appropriate script and with the appropriate position (line number and column number) given by location, using the global object specified by script settings as the target. If the error is still not handled after this, then the error may be reported to the user.

      3. Jump to the step labeled end below.

      FunctionBody is defined in ECMAScript edition 5 section 13 Function Definition. Early error is defined in ECMAScript edition 5 section 16 Errors. [ECMA262]

    9. If body begins with a Directive Prologue that contains a Use Strict Directive then let strict be true, otherwise let strict be false.

      The terms "Directive Prologue" and "Use Strict Directive" are defined in ECMAScript edition 5 section 14.1 Directive Prologues and the Use Strict Directive. [ECMA262]

    10. Using the script execution environment obtained above, create a function object (as defined in ECMAScript edition 5 section 13.2 Creating Function Objects), with:

      Parameter list FormalParameterList
      If H is an onerror event handler of a Window object
      Let the function have five arguments, named event, source, lineno, colno, and error.
      Otherwise
      Let the function have a single argument called event.
      Function body FunctionBody
      The result of parsing body above.
      Lexical Environment Scope
      1. If H is an element's event handler, then let Scope be the result of NewObjectEnvironment(document, the global environment).

        Otherwise, H is a Window object's event handler: let Scope be the global environment.

      2. If form owner is not null, let Scope be the result of NewObjectEnvironment(form owner, Scope).

      3. If element is not null, let Scope be the result of NewObjectEnvironment(element, Scope).

      NewObjectEnvironment() is defined in ECMAScript edition 5 section 10.2.2.3 NewObjectEnvironment (O, E). [ECMA262]

      Boolean flag Strict
      The value of strict.

      Let function be this new function.

    11. Let script be a new script.

    12. Let script's code entry-point be function.

    13. Let script's settings object be script settings.

    14. Set H to function.

  2. End: Return H's value.

7.1.5.2 Event handlers on elements, Document objects, and Window objects

The following are the event handlers (and their corresponding event handler event types) that must be supported by all HTML elements, as both event handler content attributes and event handler IDL attributes; and that must be supported by all Document and Window objects, as event handler IDL attributes:

Event handler Event handler event type
onabort abort
onautocomplete autocomplete
onautocompleteerror autocompleteerror
oncancel cancel
oncanplay canplay
oncanplaythrough canplaythrough
onchange change
onclick click
onclose close
oncontextmenu contextmenu
oncuechange cuechange
ondblclick dblclick
ondrag drag
ondragend dragend
ondragenter dragenter
ondragexit dragexit
ondragleave dragleave
ondragover dragover
ondragstart dragstart
ondrop drop
ondurationchange durationchange
onemptied emptied
onended ended
oninput input
oninvalid invalid
onkeydown keydown
onkeypress keypress
onkeyup keyup
onloadeddata loadeddata
onloadedmetadata loadedmetadata
onloadstart loadstart
onmousedown mousedown
onmouseenter mouseenter
onmouseleave mouseleave
onmousemove mousemove
onmouseout mouseout
onmouseover mouseover
onmouseup mouseup
onmousewheel mousewheel
onpause pause
onplay play
onplaying playing
onprogress progress
onratechange ratechange
onreset reset
onseeked seeked
onseeking seeking
onselect select
onshow show
onsort sort
onstalled stalled
onsubmit submit
onsuspend suspend
ontimeupdate timeupdate
ontoggle toggle
onvolumechange volumechange
onwaiting waiting

The following are the event handlers (and their corresponding event handler event types) that must be supported by all HTML elements other than body and frameset elements, as both event handler content attributes and event handler IDL attributes; that must be supported by all Document objects, as event handler IDL attributes; and that must be supported by all Window objects, as event handler IDL attributes on the Window objects themselves, and with corresponding event handler content attributes and event handler IDL attributes exposed on all body and frameset elements that are owned by that Window object's Documents:

Event handler Event handler event type
onblur blur
onerror error
onfocus focus
onload load
onresize resize
onscroll scroll

The following are the event handlers (and their corresponding event handler event types) that must be supported by Window objects, as event handler IDL attributes on the Window objects themselves, and with corresponding event handler content attributes and event handler IDL attributes exposed on all body and frameset elements that are owned by that Window object's Documents:

Event handler Event handler event type
onafterprint afterprint
onbeforeprint beforeprint
onbeforeunload beforeunload
onhashchange hashchange
onlanguagechange languagechange
onmessage message
onoffline offline
ononline online
onpagehide pagehide
onpageshow pageshow
onpopstate popstate
onstorage storage
onunload unload

The following are the event handlers (and their corresponding event handler event types) that must be supported on Document objects as event handler IDL attributes:

Event handler Event handler event type
onreadystatechange readystatechange
7.1.5.2.1 IDL definitions
[NoInterfaceObject]
interface GlobalEventHandlers {
           attribute EventHandler onabort;
           attribute EventHandler onautocomplete;
           attribute EventHandler onautocompleteerror;
           attribute EventHandler onblur;
           attribute EventHandler oncancel;
           attribute EventHandler oncanplay;
           attribute EventHandler oncanplaythrough;
           attribute EventHandler onchange;
           attribute EventHandler onclick;
           attribute EventHandler onclose;
           attribute EventHandler oncontextmenu;
           attribute EventHandler oncuechange;
           attribute EventHandler ondblclick;
           attribute EventHandler ondrag;
           attribute EventHandler ondragend;
           attribute EventHandler ondragenter;
           attribute EventHandler ondragexit;
           attribute EventHandler ondragleave;
           attribute EventHandler ondragover;
           attribute EventHandler ondragstart;
           attribute EventHandler ondrop;
           attribute EventHandler ondurationchange;
           attribute EventHandler onemptied;
           attribute EventHandler onended;
           attribute OnErrorEventHandler onerror;
           attribute EventHandler onfocus;
           attribute EventHandler oninput;
           attribute EventHandler oninvalid;
           attribute EventHandler onkeydown;
           attribute EventHandler onkeypress;
           attribute EventHandler onkeyup;
           attribute EventHandler onload;
           attribute EventHandler onloadeddata;
           attribute EventHandler onloadedmetadata;
           attribute EventHandler onloadstart;
           attribute EventHandler onmousedown;
  [LenientThis] attribute EventHandler onmouseenter;
  [LenientThis] attribute EventHandler onmouseleave;
           attribute EventHandler onmousemove;
           attribute EventHandler onmouseout;
           attribute EventHandler onmouseover;
           attribute EventHandler onmouseup;
           attribute EventHandler onmousewheel;
           attribute EventHandler onpause;
           attribute EventHandler onplay;
           attribute EventHandler onplaying;
           attribute EventHandler onprogress;
           attribute EventHandler onratechange;
           attribute EventHandler onreset;
           attribute EventHandler onresize;
           attribute EventHandler onscroll;
           attribute EventHandler onseeked;
           attribute EventHandler onseeking;
           attribute EventHandler onselect;
           attribute EventHandler onshow;
           attribute EventHandler onsort;
           attribute EventHandler onstalled;
           attribute EventHandler onsubmit;
           attribute EventHandler onsuspend;
           attribute EventHandler ontimeupdate;
           attribute EventHandler ontoggle;
           attribute EventHandler onvolumechange;
           attribute EventHandler onwaiting;
};

[NoInterfaceObject]
interface WindowEventHandlers {
           attribute EventHandler onafterprint;
           attribute EventHandler onbeforeprint;
           attribute OnBeforeUnloadEventHandler onbeforeunload;
           attribute EventHandler onhashchange;
           attribute EventHandler onlanguagechange;
           attribute EventHandler onmessage;
           attribute EventHandler onoffline;
           attribute EventHandler ononline;
           attribute EventHandler onpagehide;
           attribute EventHandler onpageshow;
           attribute EventHandler onpopstate;
           attribute EventHandler onstorage;
           attribute EventHandler onunload;
};
7.1.5.3 Event firing

Certain operations and methods are defined as firing events on elements. For example, the click() method on the HTMLElement interface is defined as firing a click event on the element. [DOMEVENTS]

Firing a simple event named e means that a trusted event with the name e, which does not bubble (except where otherwise stated) and is not cancelable (except where otherwise stated), and which uses the Event interface, must be created and dispatched at the given target.

Firing a synthetic mouse event named e means that an event with the name e, which is trusted (except where otherwise stated), does not bubble (except where otherwise stated), is not cancelable (except where otherwise stated), and which uses the MouseEvent interface, must be created and dispatched at the given target. The event object must have its screenX, screenY, clientX, clientY, and button attributes initialised to 0, its ctrlKey, shiftKey, altKey, and metaKey attributes initialised according to the current state of the key input device, if any (false for any keys that are not available), its detail attribute initialised to 1, and its relatedTarget attribute initialised to null (except where otherwise stated). The getModifierState() method on the object must return values appropriately describing the state of the key input device at the time the event is created.

Firing a click event means firing a synthetic mouse event named click, which bubbles and is cancelable.

The default action of these events is to do nothing except where otherwise stated.

7.1.5.4 Events and the Window object

When an event is dispatched at a DOM node in a Document in a browsing context, if the event is not a load event, the user agent must act as if, for the purposes of event dispatching, the Window object is the parent of the Document object. [DOM]

7.2 Base64 utility methods

The atob() and btoa() methods allow authors to transform content to and from the base64 encoding.

[NoInterfaceObject, Exposed=Window,Worker]
interface WindowBase64 {
  DOMString btoa(DOMString btoa);
  DOMString atob(DOMString atob);
};
Window implements WindowBase64;

In these APIs, for mnemonic purposes, the "b" can be considered to stand for "binary", and the "a" for "ASCII". In practice, though, for primarily historical reasons, both the input and output of these functions are Unicode strings.

result = window . btoa( data )

Takes the input data, in the form of a Unicode string containing only characters in the range U+0000 to U+00FF, each representing a binary byte with values 0x00 to 0xFF respectively, and converts it to its base64 representation, which it returns.

Throws an InvalidCharacterError exception if the input string contains any out-of-range characters.

result = window . atob( data )

Takes the input data, in the form of a Unicode string containing base64-encoded binary data, decodes it, and returns a string consisting of characters in the range U+0000 to U+00FF, each representing a binary byte with values 0x00 to 0xFF respectively, corresponding to that binary data.

Throws an InvalidCharacterError exception if the input string is not valid base64 data.

The WindowBase64 interface adds to the Window interface and the WorkerGlobalScope interface (part of Web workers).

The btoa() method must throw an InvalidCharacterError exception if the method's first argument contains any character whose code point is greater than U+00FF. Otherwise, the user agent must convert that argument to a sequence of octets whose nth octet is the eight-bit representation of the code point of the nth character of the argument, and then must apply the base64 algorithm to that sequence of octets, and return the result. [RFC4648]

The atob() method must run the following steps to parse the string passed in the method's first argument:

  1. Let input be the string being parsed.

  2. Let position be a pointer into input, initially pointing at the start of the string.

  3. Remove all space characters from input.

  4. If the length of input divides by 4 leaving no remainder, then: if input ends with one or two "=" (U+003D) characters, remove them from input.

  5. If the length of input divides by 4 leaving a remainder of 1, throw an InvalidCharacterError exception and abort these steps.

  6. If input contains a character that is not in the following list of characters and character ranges, throw an InvalidCharacterError exception and abort these steps:

  7. Let output be a string, initially empty.

  8. Let buffer be a buffer that can have bits appended to it, initially empty.

  9. While position does not point past the end of input, run these substeps:

    1. Find the character pointed to by position in the first column of the following table. Let n be the number given in the second cell of the same row.

      Character Number
      A0
      B1
      C2
      D3
      E4
      F5
      G6
      H7
      I8
      J9
      K10
      L11
      M12
      N13
      O14
      P15
      Q16
      R17
      S18
      T19
      U20
      V21
      W22
      X23
      Y24
      Z25
      a26
      b27
      c28
      d29
      e30
      f31
      g32
      h33
      i34
      j35
      k36
      l37
      m38
      n39
      o40
      p41
      q42
      r43
      s44
      t45
      u46
      v47
      w48
      x49
      y50
      z51
      052
      153
      254
      355
      456
      557
      658
      759
      860
      961
      +62
      /63
    2. Append to buffer the six bits corresponding to number, most significant bit first.

    3. If buffer has accumulated 24 bits, interpret them as three 8-bit big-endian numbers. Append the three characters with code points equal to those numbers to output, in the same order, and then empty buffer.

    4. Advance position by one character.

  10. If buffer is not empty, it contains either 12 or 18 bits. If it contains 12 bits, discard the last four and interpret the remaining eight as an 8-bit big-endian number. If it contains 18 bits, discard the last two and interpret the remaining 16 as two 8-bit big-endian numbers. Append the one or two characters with code points equal to those one or two numbers to output, in the same order.

    The discarded bits mean that, for instance, atob("YQ") and atob("YR") both return "a".

  11. Return output.

7.3 Dynamic markup insertion

APIs for dynamically inserting markup into the document interact with the parser, and thus their behavior varies depending on whether they are used with HTML documents (and the HTML parser) or XHTML in XML documents (and the XML parser).

7.3.1 Opening the input stream

The open() method comes in several variants with different numbers of arguments.

document = document . open( [ type [, replace ] ] )

Causes the Document to be replaced in-place, as if it was a new Document object, but reusing the previous object, which is then returned.

If the type argument is omitted or has the value "text/html", then the resulting Document has an HTML parser associated with it, which can be given data to parse using document.write(). Otherwise, all content passed to document.write() will be parsed as plain text.

If the replace argument is present and has the value "replace", the existing entries in the session history for the Document object are removed.

The method has no effect if the Document is still being parsed.

Throws an InvalidStateError exception if the Document is an XML document.

window = document . open( url, name, features [, replace ] )

Works like the window.open() method.

Document objects have an ignore-opens-during-unload counter, which is used to prevent scripts from invoking the document.open() method (directly or indirectly) while the document is being unloaded. Initially, the counter must be set to zero.

When called with two arguments, the document.open() method must act as follows:

  1. If the Document object is not flagged as an HTML document, throw an InvalidStateError exception and abort these steps.

  2. If the Document object is not an active document, then abort these steps.

  3. Let type be the value of the first argument.

  4. If the second argument is an ASCII case-insensitive match for the value "replace", then let replace be true.

    Otherwise, if the browsing context's session history contains only one Document, and that was the about:blank Document created when the browsing context was created, and that Document has never had the unload a document algorithm invoked on it (e.g. by a previous call to document.open()), then let replace be true.

    Otherwise, let replace be false.

  5. If the Document has an active parser whose script nesting level is greater than zero, then the method does nothing. Abort these steps and return the Document object on which the method was invoked.

    This basically causes document.open() to be ignored when it's called in an inline script found during parsing, while still letting it have an effect when called asynchronously.

  6. Similarly, if the Document's ignore-opens-during-unload counter is greater than zero, then the method does nothing. Abort these steps and return the Document object on which the method was invoked.

    This basically causes document.open() to be ignored when it's called from a beforeunload pagehide, or unload event handler while the Document is being unloaded.

  7. Release the storage mutex.

  8. Set the Document's salvageable state to false.

  9. Prompt to unload the Document object. If the user refused to allow the document to be unloaded, then abort these steps and return the Document object on which the method was invoked.

  10. Unload the Document object, with the recycle parameter set to true.

  11. Abort the Document.

  12. Unregister all event listeners registered on the Document node and its descendants.

  13. Remove any tasks associated with the Document in any task source.

  14. Remove all child nodes of the document, without firing any mutation events.

  15. Replace the Document's singleton objects with new instances of those objects. (This includes in particular the Window, Location, History, ApplicationCache, and Navigator, objects, the various BarProp objects, the two Storage objects, the various HTMLCollection objects, and objects defined by other specifications, like Selection and the document's UndoManager. It also includes all the Web IDL prototypes in the JavaScript binding, including the Document object's prototype.)

    The new Window object has a new script settings object.

  16. Change the document's character encoding to UTF-8.

  17. If the Document is ready for post-load tasks, then set the Document object's reload override flag and set the Document's reload override buffer to the empty string.

  18. Set the Document's salvageable state back to true.

  19. Change the document's address to the address of the responsible document specified by the entry settings object.

  20. If the Document's iframe load in progress flag is set, set the Document's mute iframe load flag.

  21. Create a new HTML parser and associate it with the document. This is a script-created parser (meaning that it can be closed by the document.open() and document.close() methods, and that the tokenizer will wait for an explicit call to document.close() before emitting an end-of-file token). The encoding confidence is irrelevant.

  22. Set the current document readiness of the document to "loading".

  23. If type is an ASCII case-insensitive match for the string "replace", then, for historical reasons, set it to the string "text/html".

    Otherwise:

    If the type string contains a ";" (U+003B) character, remove the first such character and all characters from it up to the end of the string.

    Strip leading and trailing whitespace from type.

  24. If type is not now an ASCII case-insensitive match for the string "text/html", then act as if the tokenizer had emitted a start tag token with the tag name "pre" followed by a single "LF" (U+000A) character, then switch the HTML parser's tokenizer to the PLAINTEXT state.

  25. Remove all the entries in the browsing context's session history after the current entry. If the current entry is the last entry in the session history, then no entries are removed.

    This doesn't necessarily have to affect the user agent's user interface.

  26. Remove any tasks queued by the history traversal task source that are associated with any Document objects in the top-level browsing context's document family.

  27. Remove any earlier entries that share the same Document.
  28. If replace is false, then add a new entry, just before the last entry, and associate with the new entry the text that was parsed by the previous parser associated with the Document object, as well as the state of the document at the start of these steps. This allows the user to step backwards in the session history to see the page before it was blown away by the document.open() call. This new entry does not have a Document object, so a new one will be created if the session history is traversed to that entry.

  29. Finally, set the insertion point to point at just before the end of the input stream (which at this point will be empty).

  30. Return the Document on which the method was invoked.

The document.open() method does not affect whether a Document is ready for post-load tasks or completely loaded.

When called with four arguments, the open() method on the Document object must call the open() method on the Window object of the Document object, with the same arguments as the original call to the open() method, and return whatever that method returned. If the Document object has no Window object, then the method must throw an InvalidAccessError exception.

7.3.2 Closing the input stream

document . close()

Closes the input stream that was opened by the document.open() method.

Throws an InvalidStateError exception if the Document is an XML document.

The close() method must run the following steps:

  1. If the Document object is not flagged as an HTML document, throw an InvalidStateError exception and abort these steps.

  2. If there is no script-created parser associated with the document, then abort these steps.

  3. Insert an explicit "EOF" character at the end of the parser's input stream.

  4. If there is a pending parsing-blocking script, then abort these steps.

  5. Run the tokenizer, processing resulting tokens as they are emitted, and stopping when the tokenizer reaches the explicit "EOF" character or spins the event loop.

7.3.3 document.write()

document . write(text...)

In general, adds the given string(s) to the Document's input stream.

This method has very idiosyncratic behavior. In some cases, this method can affect the state of the HTML parser while the parser is running, resulting in a DOM that does not correspond to the source of the document (e.g. if the string written is the string "<plaintext>" or "<!--"). In other cases, the call can clear the current page first, as if document.open() had been called. In yet more cases, the method is simply ignored, or throws an exception. To make matters worse, the exact behavior of this method can in some cases be dependent on network latency, which can lead to failures that are very hard to debug. For all these reasons, use of this method is strongly discouraged.

This method throws an InvalidStateError exception when invoked on XML documents.

Document objects have an ignore-destructive-writes counter, which is used in conjunction with the processing of script elements to prevent external scripts from being able to use document.write() to blow away the document by implicitly calling document.open(). Initially, the counter must be set to zero.

The document.write(...) method must act as follows:

  1. If the method was invoked on an XML document, throw an InvalidStateError exception and abort these steps.

  2. If the Document object is not an active document, then abort these steps.

  3. If the insertion point is undefined and either the Document's ignore-opens-during-unload counter is greater than zero or the Document's ignore-destructive-writes counter is greater than zero, abort these steps.

  4. If the insertion point is undefined, call the open() method on the document object (with no arguments). If the user refused to allow the document to be unloaded, then abort these steps. Otherwise, the insertion point will point at just before the end of the (empty) input stream.

  5. Insert the string consisting of the concatenation of all the arguments to the method into the input stream just before the insertion point.

  6. If the Document object's reload override flag is set, then append the string consisting of the concatenation of all the arguments to the method to the Document's reload override buffer.

  7. If there is no pending parsing-blocking script, have the HTML parser process the characters that were inserted, one at a time, processing resulting tokens as they are emitted, and stopping when the tokenizer reaches the insertion point or when the processing of the tokenizer is aborted by the tree construction stage (this can happen if a script end tag token is emitted by the tokenizer).

    If the document.write() method was called from script executing inline (i.e. executing because the parser parsed a set of script tags), then this is a reentrant invocation of the parser.

  8. Finally, return from the method.

7.3.4 document.writeln()

document . writeln(text...)

Adds the given string(s) to the Document's input stream, followed by a newline character. If necessary, calls the open() method implicitly first.

This method throws an InvalidStateError exception when invoked on XML documents.

The document.writeln(...) method, when invoked, must act as if the document.write() method had been invoked with the same argument(s), plus an extra argument consisting of a string containing a single line feed character (U+000A).

7.4 Timers

The setTimeout() and setInterval() methods allow authors to schedule timer-based callbacks.

[NoInterfaceObject, Exposed=Window,Worker]
interface WindowTimers {
  long setTimeout(Function handler, optional long timeout = 0, any... arguments);
  long setTimeout(DOMString handler, optional long timeout = 0, any... arguments);
  void clearTimeout(optional long handle = 0);
  long setInterval(Function handler, optional long timeout = 0, any... arguments);
  long setInterval(DOMString handler, optional long timeout = 0, any... arguments);
  void clearInterval(optional long handle = 0);
};
Window implements WindowTimers;
handle = window . setTimeout( handler [, timeout [, arguments... ] ] )

Schedules a timeout to run handler after timeout milliseconds. Any arguments are passed straight through to the handler.

handle = window . setTimeout( code [, timeout ] )

Schedules a timeout to compile and run code after timeout milliseconds.

window . clearTimeout( handle )

Cancels the timeout set with setTimeout() identified by handle.

handle = window . setInterval( handler [, timeout [, arguments... ] ] )

Schedules a timeout to run handler every timeout milliseconds. Any arguments are passed straight through to the handler.

handle = window . setInterval( code [, timeout ] )

Schedules a timeout to compile and run code every timeout milliseconds.

window . clearInterval( handle )

Cancels the timeout set with setInterval() identified by handle.

Timers can be nested; after five such nested timers, however, the interval is forced to be at least four milliseconds.

This API does not guarantee that timers will run exactly on schedule. Delays due to CPU load, other tasks, etc, are to be expected.

The WindowTimers interface adds to the Window interface and the WorkerGlobalScope interface (part of Web workers).

Each object that implements the WindowTimers interface has a list of active timers. Each entry in this lists is identified by a number, which must be unique within the list for the lifetime of the object that implements the WindowTimers interface.


The setTimeout() method must return the value returned by the timer initialization steps, passing them the method's arguments, the object on which the method for which the algorithm is running is implemented (a Window or WorkerGlobalScope object) as the method context, and the repeat flag set to false.

The setInterval() method must return the value returned by the timer initialization steps, passing them the method's arguments, the object on which the method for which the algorithm is running is implemented (a Window or WorkerGlobalScope object) as the method context, and the repeat flag set to true.

The clearTimeout() and clearInterval() methods must clear the entry identified as handle from the list of active timers of the WindowTimers object on which the method was invoked, if any, where handle is the argument passed to the method. (If handle does not identify an entry in the list of active timers of the WindowTimers object on which the method was invoked, the method does nothing.)


The timer initialization steps, which are invoked with some method arguments, a method context, a repeat flag which can be true or false, and optionally (and only if the repeat flag is true) a previous handle, are as follows:

  1. Let method context proxy be method context if that is a WorkerGlobalScope object, or else the WindowProxy that corresponds to method context.

  2. If previous handle was provided, let handle be previous handle; otherwise, let handle be a user-agent-defined integer that is greater than zero that will identify the timeout to be set by this call in the list of active timers.

  3. If previous handle was not provided, add an entry to the list of active timers for handle.

  4. Let task be a task that runs the following substeps:

    1. If the entry for handle in the list of active timers has been cleared, then abort this task's substeps.

    2. Run the appropriate set of steps from the following list:

      If the first method argument is a Function

      Call the Function. Use the third and subsequent method arguments (if any) as the arguments for invoking the Function. Use method context proxy as the thisArg for invoking the Function. [ECMA262]

      Otherwise
      1. Let script source be the first method argument.

      2. Let script language be JavaScript.

      3. Let settings object be method context's script settings object.

      4. Create a script using script source as the script source, the URL where script source can be found, scripting language as the scripting language, and settings object as the script settings object.

    3. If the repeat flag is true, then call timer initialization steps again, passing them the same method arguments, the same method context, with the repeat flag still set to true, and with the previous handle set to handler.

  5. Let timeout be the second method argument.

  6. If the currently running task is a task that was created by this algorithm, then let nesting level be the task's timer nesting level. Otherwise, let nesting level be zero.

  7. If nesting level is greater than 5, and timeout is less than 4, then increase timeout to 4.

  8. Increment nesting level by one.

  9. Let task's timer nesting level be nesting level.

  10. Return handle, and then continue running this algorithm asynchronously.

  11. If method context is a Window object, wait until the Document associated with method context has been fully active for a further timeout milliseconds (not necessarily consecutively).

    Otherwise, method context is a WorkerGlobalScope object; wait until timeout milliseconds have passed with the worker not suspended (not necessarily consecutively).

  12. Wait until any invocations of this algorithm that had the same method context, that started before this one, and whose timeout is equal to or less than this one's, have completed.

    Argument conversion as defined by Web IDL (for example, invoking toString() methods on objects passed as the first argument) happens in the algorithms defined in Web IDL, before this algorithm is invoked.

    So for example, the following rather silly code will result in the log containing "ONE TWO ":

    var log = '';
    function logger(s) { log += s + ' '; }
    
    setTimeout({ toString: function () {
      setTimeout("logger('ONE')", 100);
      return "logger('TWO')";
    } }, 100);
  13. Optionally, wait a further user-agent defined length of time.

    This is intended to allow user agents to pad timeouts as needed to optimise the power usage of the device. For example, some processors have a low-power mode where the granularity of timers is reduced; on such platforms, user agents can slow timers down to fit this schedule instead of requiring the processor to use the more accurate mode with its associated higher power usage.

  14. Queue the task task.

    Once the task has been processed, if the repeat flag is false, it is safe to remove the entry for handle from the list of active timers (there is no way for the entry's existence to be detected past this point, so it does not technically matter one way or the other).

The task source for these tasks is the timer task source.

To run tasks of several milliseconds back to back without any delay, while still yielding back to the browser to avoid starving the user interface (and to avoid the browser killing the script for hogging the CPU), simply queue the next timer before performing work:

function doExpensiveWork() {
  var done = false;
  // ...
  // this part of the function takes up to five milliseconds
  // set done to true if we're done
  // ...
  return done;
}

function rescheduleWork() {
  var handle = setTimeout(rescheduleWork, 0); // preschedule next iteration
  if (doExpensiveWork())
    clearTimeout(handle); // clear the timeout if we don't need it
}

function scheduleWork() {
  setTimeout(rescheduleWork, 0);
}

scheduleWork(); // queues a task to do lots of work

7.5 User prompts

7.5.1 Simple dialogs

window . alert(message)

Displays a modal alert with the given message, and waits for the user to dismiss it.

A call to the navigator.yieldForStorageUpdates() method is implied when this method is invoked.

result = window . confirm(message)

Displays a modal OK/Cancel prompt with the given message, waits for the user to dismiss it, and returns true if the user clicks OK and false if the user clicks Cancel.

A call to the navigator.yieldForStorageUpdates() method is implied when this method is invoked.

result = window . prompt(message [, default] )

Displays a modal text field prompt with the given message, waits for the user to dismiss it, and returns the value that the user entered. If the user cancels the prompt, then returns null instead. If the second argument is present, then the given value is used as a default.

A call to the navigator.yieldForStorageUpdates() method is implied when this method is invoked.

Logic that depends on tasks or microtasks, such as media elements loading their media data, are stalled when these methods are invoked.

The alert(message) method, when invoked, must run the following steps:

  1. If the event loop's termination nesting level is non-zero, optionally abort these steps.

  2. Release the storage mutex.

  3. Optionally, abort these steps. (For example, the user agent might give the user the option to ignore all alerts, and would thus abort at this step whenever the method was invoked.)

  4. If the method was invoked with no arguments, then let message be the empty string; otherwise, let message be the method's first argument.

  5. Show the given message to the user.

  6. Optionally, pause while waiting for the user to acknowledge the message.

The confirm(message) method, when invoked, must run the following steps:

  1. If the event loop's termination nesting level is non-zero, optionally abort these steps, returning false.

  2. Release the storage mutex.

  3. Optionally, return false and abort these steps. (For example, the user agent might give the user the option to ignore all prompts, and would thus abort at this step whenever the method was invoked.)

  4. Show the given message to the user, and ask the user to respond with a positive or negative response.

  5. Pause until the user responds either positively or negatively.

  6. If the user responded positively, return true; otherwise, the user responded negatively: return false.

The prompt(message, default) method, when invoked, must run the following steps:

  1. If the event loop's termination nesting level is non-zero, optionally abort these steps, returning null.

  2. Release the storage mutex.

  3. Optionally, return null and abort these steps. (For example, the user agent might give the user the option to ignore all prompts, and would thus abort at this step whenever the method was invoked.)

  4. Show the given message to the user, and ask the user to either respond with a string value or abort. The response must be defaulted to the value given by default.

  5. Pause while waiting for the user's response.

  6. If the user aborts, then return null; otherwise, return the string that the user responded with.

7.5.2 Printing

window . print()

Prompts the user to print the page.

A call to the navigator.yieldForStorageUpdates() method is implied when this method is invoked.

When the print() method is invoked, if the Document is ready for post-load tasks, then the user agent must synchronously run the printing steps. Otherwise, the user agent must only set the print when loaded flag on the Document.

User agents should also run the printing steps whenever the user asks for the opportunity to obtain a physical form (e.g. printed copy), or the representation of a physical form (e.g. PDF copy), of a document.

The printing steps are as follows:

  1. The user agent may display a message to the user or abort these steps (or both).

    For instance, a kiosk browser could silently ignore any invocations of the print() method.

    For instance, a browser on a mobile device could detect that there are no printers in the vicinity and display a message saying so before continuing to offer a "save to PDF" option.

  2. The user agent must fire a simple event named beforeprint at the Window object of the Document that is being printed, as well as any nested browsing contexts in it.

    The beforeprint event can be used to annotate the printed copy, for instance adding the time at which the document was printed.

  3. The user agent must release the storage mutex.

  4. The user agent should offer the user the opportunity to obtain a physical form (or the representation of a physical form) of the document. The user agent may wait for the user to either accept or decline before returning; if so, the user agent must pause while the method is waiting. Even if the user agent doesn't wait at this point, the user agent must use the state of the relevant documents as they are at this point in the algorithm if and when it eventually creates the alternate form.

  5. The user agent must fire a simple event named afterprint at the Window object of the Document that is being printed, as well as any nested browsing contexts in it.

    The afterprint event can be used to revert annotations added in the earlier event, as well as showing post-printing UI. For instance, if a page is walking the user through the steps of applying for a home loan, the script could automatically advance to the next step after having printed a form or other.

7.5.3 Dialogs implemented using separate documents

result = window . showModalDialog(url [, argument] )

Prompts the user with the given page, waits for that page to close, and returns the return value.

A call to the navigator.yieldForStorageUpdates() method is implied when this method is invoked.

The showModalDialog(url, argument) method, when invoked, must cause the user agent to run the following steps:

  1. Resolve url relative to the API base URL specified by the entry settings object.

    If this fails, then throw a SyntaxError exception and abort these steps.

  2. If the event loop's termination nesting level is non-zero, optionally abort these steps, returning the empty string.

  3. Release the storage mutex.

  4. If the user agent is configured such that this invocation of showModalDialog() is somehow disabled, then return the empty string and abort these steps.

    User agents are expected to disable this method in certain cases to avoid user annoyance (e.g. as part of their popup blocker feature). For instance, a user agent could require that a site be white-listed before enabling this method, or the user agent could be configured to only allow one modal dialog at a time.

  5. If the active sandboxing flag set of the active document of the responsible browsing context specified by the incumbent settings object has its sandboxed auxiliary navigation browsing context flag set, then return the empty string and abort these steps.

  6. Let incumbent origin be the effective script origin specified by the incumbent settings object at the time the showModalDialog() method was called.

  7. Let the list of background browsing contexts be a list of all the browsing contexts that:

    ...as well as any browsing contexts that are nested inside any of the browsing contexts matching those conditions.

  8. Disable the user interface for all the browsing contexts in the list of background browsing contexts. This should prevent the user from navigating those browsing contexts, causing events to be sent to those browsing context, or editing any content in those browsing contexts. However, it does not prevent those browsing contexts from receiving events from sources other than the user, from running scripts, from running animations, and so forth.

  9. Create a new auxiliary browsing context, with the opener browsing context being the browsing context of the Window object on which the showModalDialog() method was called. The new auxiliary browsing context has no name.

    This browsing context's Documents' Window objects all implement the WindowModal interface.

  10. Set all the flags in the new browsing context's popup sandboxing flag set that are set in the active sandboxing flag set of the active document of the responsible browsing context specified by the incumbent settings object. The responsible browsing context specified by the incumbent settings object must be set as the new browsing context's one permitted sandboxed navigator.

  11. Let the dialog arguments of the new browsing context be set to the value of argument, or the undefined value if the argument was omitted.

  12. Let the dialog arguments' origin be incumbent origin.

  13. Let the return value of the new browsing context be the undefined value.

  14. Let the return value origin be incumbent origin.

  15. Navigate the new browsing context to the absolute URL that resulted from resolving url earlier, with replacement enabled, and with the responsible browsing context specified by the incumbent settings object as the source browsing context.

  16. Spin the event loop until the new browsing context is closed. The user agent must allow the user to indicate that the browsing context is to be closed.

  17. Reenable the user interface for all the browsing contexts in the list of background browsing contexts.

  18. If the auxiliary browsing context's return value origin at the time the browsing context was closed was the same as incumbent origin, then let return value be the auxiliary browsing context's return value as it stood when the browsing context was closed.

    Otherwise, let return value be undefined.

  19. Return return value.

The Window objects of Documents hosted by browsing contexts created by the above algorithm must also implement the WindowModal interface.

When this happens, the members of the WindowModal interface, in JavaScript environments, appear to actually be part of the Window interface (e.g. they are on the same prototype chain as the window.alert() method).

[NoInterfaceObject]
interface WindowModal {
  readonly attribute any dialogArguments;
           attribute any returnValue;
};
window . dialogArguments

Returns the argument argument that was passed to the showModalDialog() method.

window . returnValue [ = value ]

Returns the current return value for the window.

Can be set, to change the value that will be returned by the showModalDialog() method.

Such browsing contexts have associated dialog arguments, which are stored along with the dialog arguments' origin. These values are set by the showModalDialog() method in the algorithm above, when the browsing context is created, based on the arguments provided to the method.

The dialogArguments IDL attribute, on getting, must check whether its browsing context's active document's effective script origin is the same as the dialog arguments' origin. If it is, then the browsing context's dialog arguments must be returned unchanged. Otherwise, the IDL attribute must return undefined.

These browsing contexts also have an associated return value and return value origin. As with the previous two values, these values are set by the showModalDialog() method in the algorithm above, when the browsing context is created.

The returnValue IDL attribute, on getting, must check whether its browsing context's active document's effective script origin is the same as the current return value origin. If it is, then the browsing context's return value must be returned unchanged. Otherwise, the IDL attribute must return undefined. On setting, the attribute must set the return value to the given new value, and the return value origin to the browsing context's active document's effective script origin.

The window.close() method can be used to close the browsing context.

7.6 System state and capabilities

7.6.1 The Navigator object

The navigator attribute of the Window interface must return an instance of the Navigator interface, which represents the identity and state of the user agent (the client), and allows Web pages to register themselves as potential protocol and content handlers:

interface Navigator {
  // objects implementing this interface also implement the interfaces given below
};
Navigator implements NavigatorID;
Navigator implements NavigatorLanguage;
Navigator implements NavigatorOnLine;
Navigator implements NavigatorContentUtils;
Navigator implements NavigatorStorageUtils;
Navigator implements NavigatorPlugins;

These interfaces are defined separately so that other specifications can re-use parts of the Navigator interface.

7.6.1.1 Client identification
[NoInterfaceObject, Exposed=Window,Worker]
interface NavigatorID {
  readonly attribute DOMString appCodeName; // constant "Mozilla"
  readonly attribute DOMString appName;
  readonly attribute DOMString appVersion;
  readonly attribute DOMString platform;
  readonly attribute DOMString product; // constant "Gecko"
  boolean taintEnabled(); // constant false
  readonly attribute DOMString userAgent;
};

In certain cases, despite the best efforts of the entire industry, Web browsers have bugs and limitations that Web authors are forced to work around.

This section defines a collection of attributes that can be used to determine, from script, the kind of user agent in use, in order to work around these issues.

Client detection should always be limited to detecting known current versions; future versions and unknown versions should always be assumed to be fully compliant.

window . navigator . appCodeName

Returns the string "Mozilla".

window . navigator . appName

Returns the name of the browser.

window . navigator . appVersion

Returns the version of the browser.

window . navigator . platform

Returns the name of the platform.

window . navigator . product

Returns the string "Gecko".

window . navigator . taintEnabled()

Returns false.

window . navigator . userAgent

Returns the complete User-Agent header.

appCodeName

Must return the string "Mozilla".

appName

Must return either the string "Netscape" or the full name of the browser, e.g. "Mellblom Browsernator".

appVersion

Must return either the string "4.0" or a string representing the version of the browser in detail, e.g. "1.0 (VMS; en-US) Mellblomenator/9000".

platform

Must return either the empty string or a string representing the platform on which the browser is executing, e.g. "MacIntel", "Win32", "FreeBSD i386", "WebTV OS".

product

Must return the string "Gecko".

taintEnabled()

Must return false.

userAgent

Must return the string used for the value of the "User-Agent" header in HTTP requests, or the empty string if no such header is ever sent.

Any information in this API that varies from user to user can be used to profile the user. In fact, if enough such information is available, a user can actually be uniquely identified. For this reason, user agent implementors are strongly urged to include as little information in this API as possible. (This is a fingerprinting vector.)

7.6.1.2 Language preferences
[NoInterfaceObject, Exposed=Window,Worker]
interface NavigatorLanguage {
  readonly attribute DOMString? language;
  readonly attribute DOMString[] languages;
};
window . navigator . language

Returns a language tag representing the user's preferred language.

window . navigator . languages

Returns an array of language tags representing the user's preferred languages, with the most preferred language first.

The most preferred language is the one returned by navigator.language.

A languagechange event is fired at the Window or WorkerGlobalScope object when the user agent's understanding of what the user's preferred languages are changes.

language

Must return a valid BCP 47 language tag representing either a plausible language or the user's most preferred language. [BCP47]

languages

Must return a read only array of valid BCP 47 language tags representing either one or more plausible languages, or the user's preferred languages, ordered by preference with the most preferred language first. The same object must be returned until the user agent needs to return different values, or values in a different order. [BCP47]

Whenever the user agent needs to make the navigator.languages attribute of a Window or WorkerGlobalScope object return a new set of language tags, the user agent must queue a task to fire a simple event named languagechange at the Window or WorkerGlobalScope object and wait until that task begins to be executed before actually returning a new value.

The task source for this task is the DOM manipulation task source.

To determine a plausible language, the user agent should bear in mind the following:

To avoid introducing any more fingerprinting vectors, user agents should use the same list for the APIs defined in this function as for the HTTP Accept-Language header. (This is a fingerprinting vector.)

7.6.1.3 Custom scheme and content handlers
[NoInterfaceObject]
interface NavigatorContentUtils {
  // content handler registration
  void registerProtocolHandler(DOMString scheme, DOMString url, DOMString title);
  void registerContentHandler(DOMString mimeType, DOMString url, DOMString title);
  DOMString isProtocolHandlerRegistered(DOMString scheme, DOMString url);
  DOMString isContentHandlerRegistered(DOMString mimeType, DOMString url);
  void unregisterProtocolHandler(DOMString scheme, DOMString url);
  void unregisterContentHandler(DOMString mimeType, DOMString url);
};

The registerProtocolHandler() method allows Web sites to register themselves as possible handlers for particular schemes. For example, an online telephone messaging service could register itself as a handler of the sms: scheme, so that if the user clicks on such a link, he is given the opportunity to use that Web site. Analogously, the registerContentHandler() method allows Web sites to register themselves as possible handlers for content in a particular MIME type. For example, the same online telephone messaging service could register itself as a handler for text/vcard files, so that if the user has no native application capable of handling vCards, his Web browser can instead suggest he use that site to view contact information stored on vCards that he opens. [RFC5724] [RFC6350]

window . navigator . registerProtocolHandler(scheme, url, title)
window . navigator . registerContentHandler(mimeType, url, title)

Registers a handler for the given scheme or content type, at the given URL, with the given title.

The string "%s" in the URL is used as a placeholder for where to put the URL of the content to be handled.

Throws a SecurityError exception if the user agent blocks the registration (this might happen if trying to register as a handler for "http", for instance).

Throws a SyntaxError exception if the "%s" string is missing in the URL.

User agents may, within the constraints described in this section, do whatever they like when the methods are called. A UA could, for instance, prompt the user and offer the user the opportunity to add the site to a shortlist of handlers, or make the handlers his default, or cancel the request. UAs could provide such a UI through modal UI or through a non-modal transient notification interface. UAs could also simply silently collect the information, providing it only when relevant to the user.

User agents should keep track of which sites have registered handlers (even if the user has declined such registrations) so that the user is not repeatedly prompted with the same request.

The arguments to the methods have the following meanings and corresponding implementation requirements. The requirements that involve throwing exceptions must be processed in the order given below, stopping at the first exception thrown. (So the exceptions for the first argument take precedence over the exceptions for the second argument.)

scheme (registerProtocolHandler() only)

A scheme, such as mailto or web+auth. The scheme must be compared in an ASCII case-insensitive manner by user agents for the purposes of comparing with the scheme part of URLs that they consider against the list of registered handlers.

The scheme value, if it contains a colon (as in "mailto:"), will never match anything, since schemes don't contain colons.

If the registerProtocolHandler() method is invoked with a scheme that is neither a whitelisted scheme nor a scheme whose value starts with the substring "web+" and otherwise contains only lowercase ASCII letters, and whose length is at least five characters (including the "web+" prefix), the user agent must throw a SecurityError exception.

The following schemes are the whitelisted schemes:

  • bitcoin
  • geo
  • im
  • irc
  • ircs
  • magnet
  • mailto
  • mms
  • news
  • nntp
  • sip
  • sms
  • smsto
  • ssh
  • tel
  • urn
  • webcal
  • wtai
  • xmpp

This list can be changed. If there are schemes that should be added, please send feedback.

This list excludes any schemes that could reasonably be expected to be supported inline, e.g. in an iframe, such as http or (more theoretically) gopher. If those were supported, they could potentially be used in man-in-the-middle attacks, by replacing pages that have frames with such content with content under the control of the protocol handler. If the user agent has native support for the schemes, this could further be used for cookie-theft attacks.

mimeType (registerContentHandler() only)

A MIME type, such as model/vnd.flatland.3dml or application/vnd.google-earth.kml+xml. The MIME type must be compared in an ASCII case-insensitive manner by user agents for the purposes of comparing with MIME types of documents that they consider against the list of registered handlers.

User agents must compare the given values only to the MIME type/subtype parts of content types, not to the complete type including parameters. Thus, if mimeType values passed to this method include characters such as commas or whitespace, or include MIME parameters, then the handler being registered will never be used.

The type is compared to the MIME type used by the user agent after the sniffing algorithms have been applied.

If the registerContentHandler() method is invoked with a MIME type that is in the type blacklist or that the user agent has deemed a privileged type, the user agent must throw a SecurityError exception.

The following MIME types are in the type blacklist:

This list can be changed. If there are MIME types that should be added, please send feedback.

url

A string used to build the URL of the page that will handle the requests.

User agents must throw a SyntaxError exception if the url argument passed to one of these methods does not contain the exact literal string "%s".

User agents must throw a SyntaxError exception if resolving the url argument relative to the API base URL specified by the entry settings object is not successful.

The resulting absolute URL would by definition not be a valid URL as it would include the string "%s" which is not a valid component in a URL.

User agents must throw a SecurityError exception if the resulting absolute URL has an origin that differs from the origin specified by the entry settings object.

This is forcibly the case if the %s placeholder is in the scheme, host, or port parts of the URL.

The resulting absolute URL is the proto-URL. It identifies the handler for the purposes of the methods described below.

When the user agent uses this handler, it must replace the first occurrence of the exact literal string "%s" in the url argument with an escaped version of the absolute URL of the content in question (as defined below), then resolve the resulting URL, relative to the API base URL specified by the entry settings object at the time the registerContentHandler() or registerProtocolHandler() methods were invoked, and then navigate an appropriate browsing context to the resulting URL using the GET method (or equivalent for non-HTTP URLs).

To get the escaped version of the absolute URL of the content in question, the user agent must replace every character in that absolute URL that is not a character in the URL default encode set with the result of UTF-8 percent encoding that character.

If the user had visited a site at http://example.com/ that made the following call:

navigator.registerContentHandler('application/x-soup', 'soup?url=%s', 'SoupWeb™')

...and then, much later, while visiting http://www.example.net/, clicked on a link such as:

<a href="chickenkïwi.soup">Download our Chicken Kïwi soup!</a>

...then, assuming this chickenkïwi.soup file was served with the MIME type application/x-soup, the UA might navigate to the following URL:

http://example.com/soup?url=http://www.example.net/chickenk%C3%AFwi.soup

This site could then fetch the chickenkïwi.soup file and do whatever it is that it does with soup (synthesise it and ship it to the user, or whatever).

title

A descriptive title of the handler, which the UA might use to remind the user what the site in question is.

This section does not define how the pages registered by these methods are used, beyond the requirements on how to process the url value (see above). To some extent, the processing model for navigating across documents defines some cases where these methods are relevant, but in general UAs may use this information wherever they would otherwise consider handing content to native plugins or helper applications.

UAs must not use registered content handlers to handle content that was returned as part of a non-GET transaction (or rather, as part of any non-idempotent transaction), as the remote site would not be able to fetch the same data.


In addition to the registration methods, there are also methods for determining if particular handlers have been registered, and for unregistering handlers.

state = window . navigator . isProtocolHandlerRegistered(scheme, url)
state = window . navigator . isContentHandlerRegistered(mimeType, url)

Returns one of the following strings describing the state of the handler given by the arguments:

new
Indicates that no attempt has been made to register the given handler (or that the handler has been unregistered). It would be appropriate to promote the availability of the handler or to just automatically register the handler.
registered
Indicates that the given handler has been registered or that the site is blocked from registering the handler. Trying to register the handler again would have no effect.
declined
Indicates that the given handler has been offered but was rejected. Trying to register the handler again may prompt the user again.
state = window . navigator . unregisterProtocolHandler(scheme, url)
state = window . navigator . unregisterContentHandler(mimeType, url)

Unregisters the handler given by the arguments.

The isProtocolHandlerRegistered() method must return the handler state string that most closely describes the current state of the handler described by the two arguments to the method, where the first argument gives the scheme and the second gives the string used to build the URL of the page that will handle the requests. (This is a fingerprinting vector.)

The first argument must be compared to the schemes for which custom protocol handlers are registered in an ASCII case-insensitive manner to find the relevant handlers.

The second argument must be preprocessed as described below, and if that is successful, must then be matched against the proto-URLs of the relevant handlers to find the described handler.


The isContentHandlerRegistered() method must return the handler state string that most closely describes the current state of the handler described by the two arguments to the method, where the first argument gives the MIME type and the second gives the string used to build the URL of the page that will handle the requests. (This is a fingerprinting vector.)

The first argument must be compared to the MIME types for which custom content handlers are registered in an ASCII case-insensitive manner to find the relevant handlers.

The second argument must be preprocessed as described below, and if that is successful, must then be matched against the proto-URLs of the relevant handlers to find the described handler.


The handler state strings are the following strings. Each string describes several situations, as given by the following list.

new
The described handler has never been registered for the given scheme or type.
The described handler was once registered for the given scheme or type, but the site has since unregistered it. If the handler were to be reregistered, the user would be notified accordingly.
The described handler was once registered for the given scheme or type, but the site has since unregistered it, but the user has indicated that the site is to be blocked from registering the type again, so the user agent would ignore further registration attempts.
registered
An attempt was made to register the described handler for the given scheme or type, but the user has not yet been notified, and the user agent would ignore further registration attempts. (Maybe the user agent batches registration requests to display them when the user requests to be notified about them, and the user has not yet requested that the user agent notify it of the previous registration attempt.)
The described handler is registered for the given scheme or type (maybe, or maybe not, as the default handler).
The described handler is permanently blocked from being (re)registered. (Maybe the user marked the registration attempt as spam, or blocked the site for other reasons.)
declined
An attempt was made to register the described handler for the given scheme or type, but the user has not yet been notified; however, the user might be notified if another registration attempt were to be made. (Maybe the last registration attempt was made while the page was in the background and the user closed the page without looking at it, and the user agent requires confirmation for this registration attempt.)
An attempt was made to register the described handler for the given scheme or type, but the user has not yet responded.
An attempt was made to register the described handler for the given scheme or type, but the user declined the offer. The user has not indicated that the handler is to be permanently blocked, however, so another attempt to register the described handler might result in the user being prompted again.
The described handler was once registered for the given scheme or type, but the user has since removed it. The user has not indicated that the handler is to be permanently blocked, however, so another attempt to register the described handler might result in the user being prompted again.

The unregisterProtocolHandler() method must unregister the handler described by the two arguments to the method, where the first argument gives the scheme and the second gives the string used to build the URL of the page that will handle the requests.

The first argument must be compared to the schemes for which custom protocol handlers are registered in an ASCII case-insensitive manner to find the relevant handlers.

The second argument must be preprocessed as described below, and if that is successful, must then be matched against the proto-URLs of the relevant handlers to find the described handler.


The unregisterContentHandler() method must unregister the handler described by the two arguments to the method, where the first argument gives the MIME type and the second gives the string used to build the URL of the page that will handle the requests.

The first argument must be compared to the MIME types for which custom content handlers are registered in an ASCII case-insensitive manner to find the relevant handlers.

The second argument must be preprocessed as described below, and if that is successful, must then be matched against the proto-URLs of the relevant handlers to find the described handler.


The second argument of the four methods described above must be preprocessed as follows:

  1. If the string does not contain the substring "%s", abort these steps. There's no matching handler.

  2. Resolve the string relative to the API base URL specified by the entry settings object.

  3. If this fails, then throw a SyntaxError exception, aborting the method.

  4. If the resulting absolute URL's origin is not the same origin as the origin specified by the entry settings object, throw a SecurityError exception, aborting the method.

  5. Return the resulting absolute URL as the result of preprocessing the argument.

7.6.1.3.1 Security and privacy

These mechanisms can introduce a number of concerns, in particular privacy concerns.

Hijacking all Web usage. User agents should not allow schemes that are key to its normal operation, such as http or https, to be rerouted through third-party sites. This would allow a user's activities to be trivially tracked, and would allow user information, even in secure connections, to be collected.

Hijacking defaults. User agents are strongly urged to not automatically change any defaults, as this could lead the user to send data to remote hosts that the user is not expecting. New handlers registering themselves should never automatically cause those sites to be used.

Registration spamming. User agents should consider the possibility that a site will attempt to register a large number of handlers, possibly from multiple domains (e.g. by redirecting through a series of pages each on a different domain, and each registering a handler for video/mpeg — analogous practices abusing other Web browser features have been used by pornography Web sites for many years). User agents should gracefully handle such hostile attempts, protecting the user.

Misleading titles. User agents should not rely wholly on the title argument to the methods when presenting the registered handlers to the user, since sites could easily lie. For example, a site hostile.example.net could claim that it was registering the "Cuddly Bear Happy Content Handler". User agents should therefore use the handler's domain in any UI along with any title.

Hostile handler metadata. User agents should protect against typical attacks against strings embedded in their interface, for example ensuring that markup or escape characters in such strings are not executed, that null bytes are properly handled, that over-long strings do not cause crashes or buffer overruns, and so forth.

Leaking Intranet URLs. The mechanism described in this section can result in secret Intranet URLs being leaked, in the following manner:

  1. The user registers a third-party content handler as the default handler for a content type.
  2. The user then browses his corporate Intranet site and accesses a document that uses that content type.
  3. The user agent contacts the third party and hands the third party the URL to the Intranet content.

No actual confidential file data is leaked in this manner, but the URLs themselves could contain confidential information. For example, the URL could be http://www.corp.example.com/upcoming-aquisitions/the-sample-company.egf, which might tell the third party that Example Corporation is intending to merge with The Sample Company. Implementors might wish to consider allowing administrators to disable this feature for certain subdomains, content types, or schemes.

Leaking secure URLs. User agents should not send HTTPS URLs to third-party sites registered as content handlers without the user's informed consent, for the same reason that user agents sometimes avoid sending Referer (sic) HTTP headers from secure sites to third-party sites.

Leaking credentials. User agents must never send username or password information in the URLs that are escaped and included sent to the handler sites. User agents may even avoid attempting to pass to Web-based handlers the URLs of resources that are known to require authentication to access, as such sites would be unable to access the resources in question without prompting the user for credentials themselves (a practice that would require the user to know whether to trust the third-party handler, a decision many users are unable to make or even understand).

Interface interference. User agents should be prepared to handle intentionally long arguments to the methods. For example, if the user interface exposed consists of an "accept" button and a "deny" button, with the "accept" binding containing the name of the handler, it's important that a long name not cause the "deny" button to be pushed off the screen.

Fingerprinting users. Since a site can detect if it has attempted to register a particular handler or not, whether or not the user responds, the mechanism can be used to store data. User agents are therefore strongly urged to treat registrations in the same manner as cookies: clearing cookies for a site should also clear all registrations for that site, and disabling cookies for a site should also disable registrations.

7.6.1.3.2 Sample user interface

This section is non-normative.

A simple implementation of this feature for a desktop Web browser might work as follows.

The registerContentHandler() method could display a modal dialog box:

The modal dialog box could have the title 'Content Handler Registration', and could say 'This Web page: Kittens at work http://kittens.example.org/ ...would like permission to handle files of type: application/x-meowmeow using the following Web-based application: Kittens-at-work displayer http://kittens.example.org/?show=%s Do you trust the administrators of the "kittens.example.org" domain?' with two buttons, 'Trust kittens.example.org' and 'Cancel'.

In this dialog box, "Kittens at work" is the title of the page that invoked the method, "http://kittens.example.org/" is the URL of that page, "application/x-meowmeow" is the string that was passed to the registerContentHandler() method as its first argument (mimeType), "http://kittens.example.org/?show=%s" was the second argument (url), and "Kittens-at-work displayer" was the third argument (title).

If the user clicks the Cancel button, then nothing further happens. If the user clicks the "Trust" button, then the handler is remembered.

When the user then attempts to fetch a URL that uses the "application/x-meowmeow" MIME type, then it might display a dialog as follows:

The dialog box could have the title 'Unknown File Type' and could say 'You have attempted to access:' followed by a URL, followed by a prompt such as 'How would you like FerretBrowser to handle this resource?' with three radio buttons, one saying 'Contact the FerretBrowser plugin registry to see if there is an official way to handle this resource.', one saying 'Pass this URL to a local application' with an application selector, and one saying 'Pass this URL to the "Kittens-at-work displayer" application at "kittens.example.org"', with a checkbox labeled 'Always do this for resources using the "application/x-meowmeow" type in future.', and with two buttons, 'Ok' and 'Cancel'.

In this dialog, the third option is the one that was primed by the site registering itself earlier.

If the user does select that option, then the browser, in accordance with the requirements described in the previous two sections, will redirect the user to "http://kittens.example.org/?show=data%3Aapplication/x-meowmeow;base64,S2l0dGVucyBhcmUgdGhlIGN1dGVzdCE%253D".

The registerProtocolHandler() method would work equivalently, but for schemes instead of unknown content types.

7.6.1.4 Manually releasing the storage mutex
[NoInterfaceObject]
interface NavigatorStorageUtils {
  readonly attribute boolean cookieEnabled;
  void yieldForStorageUpdates();
};
window . navigator . cookieEnabled

Returns false if setting a cookie will be ignored, and true otherwise.

window . navigator . yieldForStorageUpdates()

If a script uses the document.cookie API, or the localStorage API, the browser will block other scripts from accessing cookies or storage until the first script finishes. [WEBSTORAGE]

Calling the navigator.yieldForStorageUpdates() method tells the user agent to unblock any other scripts that may be blocked, even though the script hasn't returned.

Values of cookies and items in the Storage objects of localStorage attributes can change after calling this method, whence its name. [WEBSTORAGE]

The cookieEnabled attribute must return true if the user agent attempts to handle cookies according to the cookie specification, and false if it ignores cookie change requests. [COOKIES]

The yieldForStorageUpdates() method, when invoked, must, if the storage mutex is owned by the event loop of the task that resulted in the method being called, release the storage mutex so that it is once again free. Otherwise, it must do nothing.

7.6.1.5 Plugins
[NoInterfaceObject]
interface NavigatorPlugins {
  readonly attribute PluginArray plugins;
  readonly attribute MimeTypeArray mimeTypes;
  readonly attribute boolean javaEnabled;
};

interface PluginArray {
  void refresh(optional boolean reload = false);
  readonly attribute unsigned long length;
  getter Plugin? item(unsigned long index);
  getter Plugin? namedItem(DOMString name);
};

interface MimeTypeArray {
  readonly attribute unsigned long length;
  getter MimeType? item(unsigned long index);
  getter MimeType? namedItem(DOMString name);
};

interface Plugin {
  readonly attribute DOMString name;
  readonly attribute DOMString description;
  readonly attribute DOMString filename;
  readonly attribute unsigned long length;
  getter MimeType? item(unsigned long index);
  getter MimeType? namedItem(DOMString name);
};

interface MimeType {
  readonly attribute DOMString type;
  readonly attribute DOMString description;
  readonly attribute DOMString suffixes; // comma-separated
  readonly attribute Plugin enabledPlugin;
};
window . navigator . plugins . refresh( [ refresh ] )

Updates the lists of supported plugins and MIME types for this page, and reloads the page if the lists have changed.

window . navigator . plugins . length

Returns the number of plugins, represented by Plugin objects, that the user agent reports.

plugin = window . navigator . plugins . item(index)
window . navigator . plugins[index]

Returns the specified Plugin object.

plugin = window . navigator . plugins . item(name)
window . navigator . plugins[name]

Returns the Plugin object for the plugin with the given name.

window . navigator . mimeTypes . length

Returns the number of MIME types, represented by MimeType objects, supported by the plugins that the user agent reports.

mimeType = window . navigator . mimeTypes . item(index)
window . navigator . mimeTypes[index]

Returns the specified MimeType object.

mimeType = window . navigator . mimeTypes . item(name)
window . navigator . mimeTypes[name]

Returns the MimeType object for the given MIME type.

plugin . name

Returns the plugin's name.

plugin . description

Returns the plugin's description.

plugin . filename

Returns the plugin library's filename, if applicable on the current platform.

plugin . length

Returns the number of MIME types, represented by MimeType objects, supported by the plugin.

mimeType = plugin . item(index)
plugin[index]

Returns the specified MimeType object.

mimeType = plugin . item(name)
plugin[name]

Returns the MimeType object for the given MIME type.

mimeType . type

Returns the MIME type.

mimeType . description

Returns the MIME type's description.

mimeType . suffixes

Returns the MIME type's typical file extensions, in a comma-separated list.

mimeType . enabledPlugin

Returns the Plugin object that implements this MIME type.

window . navigator . javaEnabled

Returns true if there's a plugin that supports the MIME type "application/x-java-vm".

The navigator.plugins attribute must return a PluginArray object. The same object must be returned each time.

The navigator.mimeTypes attribute must return a MimeTypeArray object. The same object must be returned each time.


A PluginArray object represents none, some, or all of the plugins supported by the user agent, each of which is represented by a Plugin object. Each of these Plugin objects may be hidden plugins. A hidden plugin can't be enumerated, but can still be inspected by using its name.

The fewer plugins are represented by the PluginArray object, and of those, the more that are hidden, the more the user's privacy will be protected. Each exposed plugin increases the number of bits that can be derived for fingerprinting. Hiding a plugin helps, but unless it is an extremely rare plugin, it is likely that a site attempting to derive the list of plugins can still determine whether the plugin is supported or not by probing for it by name (the names of popular plugins are widely known). Therefore not exposing a plugin at all is preferred. Unfortunately, many legacy sites use this feature to determine, for example, which plugin to use to play video. Not exposing any plugins at all might therefore not be entirely plausible.

The PluginArray objects created by a user agent must not be live. The set of plugins represented by the objects must not change once an object is created, except when it is updated by the refresh() method.

Each plugin represented by a PluginArray can support a number of MIME types. For each such plugin, the user agent must pick one or more of these MIME types to be those that are explicitly supported.

The explicitly supported MIME types of a plugin are those that are exposed through the Plugin and MimeTypeArray interfaces. As with plugins themselves, any variation between users regarding what is exposed allows sites to fingerprint users. User agents are therefore encouraged to expose the same MIME types for all users of a plugin, regardless of the actual types supported... at least, within the constraints imposed by compatibility with legacy content.

The supported property indices of a PluginArray object are the numbers from zero to the number of non-hidden plugins represented by the object, if any. (This is a fingerprinting vector.)

The length attribute must return the number of non-hidden plugins represented by the object. (This is a fingerprinting vector.)

The item() method of a PluginArray object must return null if the argument is not one of the object's supported property indices, and otherwise must return the result of running the following steps, using the method's argument as index:

  1. Let list be the Plugin objects representing the non-hidden plugins represented by the PluginArray object.

  2. Sort list alphabetically by the name of each Plugin.

  3. Return the indexth entry in list.

It is important for privacy that the order of plugins not leak additional information, e.g. the order in which plugins were installed.

The supported property names of a PluginArray object are the values of the name attributes of all the Plugin objects represented by the PluginArray object. The properties exposed in this way must be unenumerable. (This is a fingerprinting vector.)

The namedItem() method of a PluginArray object must return null if the argument is not one of the object's supported property names, and otherwise must return the Plugin object, of those represented by the PluginArray object, that has a name equal to the method's argument.

The refresh() method of the PluginArray object of a Navigator object, when invoked, must check to see if any plugins have been installed or reconfigured since the user agent created the PluginArray object. If so, and the method's argument is true, then the user agent must act as if the location.reload() method was called instead. Otherwise, the user agent must update the PluginArray object and MimeTypeArray object created for attributes of that Navigator object, and the Plugin and MimeType objects created for those PluginArray and MimeTypeArray objects, using the same Plugin objects for cases where the name is the same, and the same MimeType objects for cases where the type is the same, and creating new objects for cases where there were no matching objects immediately prior to the refresh() call. Old Plugin and MimeType objects must continue to return the same values that they had prior to the update, though naturally now the data is stale and may appear inconsistent (for example, an old MimeType entry might list as its enabledPlugin a Plugin object that no longer lists that MimeType as a supported MimeType).


A MimeTypeArray object represents the MIME types explicitly supported by plugins supported by the user agent, each of which is represented by a MimeType object.

The MimeTypeArray objects created by a user agent must not be live. The set of MIME types represented by the objects must not change once an object is created, except when it is updated by the PluginArray object's refresh() method.

The supported property indices of a MimeTypeArray object are the numbers from zero to the number of MIME types explicitly supported by non-hidden plugins represented by the corresponding PluginArray object, if any. (This is a fingerprinting vector.)

The length attribute must return the number of MIME types explicitly supported by non-hidden plugins represented by the corresponding PluginArray object, if any. (This is a fingerprinting vector.)

The item() method of a MimeTypeArray object must return null if the argument is not one of the object's supported property indices, and otherwise must return the result of running the following steps, using the method's argument as index:

  1. Let list be the MimeType objects representing the MIME types explicitly supported by non-hidden plugins represented by the corresponding PluginArray object, if any.

  2. Sort list alphabetically by the type of each MimeType.

  3. Return the indexth entry in list.

It is important for privacy that the order of MIME types not leak additional information, e.g. the order in which plugins were installed.

The supported property names of a MimeTypeArray object are the values of the type attributes of all the MimeType objects represented by the MimeTypeArray object. The properties exposed in this way must be unenumerable. (This is a fingerprinting vector.)

The namedItem() method of a MimeTypeArray object must return null if the argument is not one of the object's supported property names, and otherwise must return the MimeType object that has a type equal to the method's argument.


A Plugin object represents a plugin. It has several attributes to provide details about the plugin, and can be enumerated to obtain the list of MIME types that it explicitly supports.

The Plugin objects created by a user agent must not be live. The set of MIME types represented by the objects, and the values of the objects' attributes, must not change once an object is created, except when updated by the PluginArray object's refresh() method.

The reported MIME types for a Plugin object are the MIME types explicitly supported by the corresponding plugin when this object was last created or updated by PluginArray.refresh(), whichever happened most recently.

The supported property indices of a Plugin object are the numbers from zero to the number of reported MIME types. (This is a fingerprinting vector.)

The length attribute must return the number of reported MIME types. (This is a fingerprinting vector.)

The item() method of a Plugin object must return null if the argument is not one of the object's supported property indices, and otherwise must return the result of running the following steps, using the method's argument as index:

  1. Let list be the MimeType objects representing the reported MIME types.

  2. Sort list alphabetically by the type of each MimeType.

  3. Return the indexth entry in list.

It is important for privacy that the order of MIME types not leak additional information, e.g. the order in which plugins were installed.

The supported property names of a Plugin object are the values of the type attributes of the MimeType objects representing the reported MIME types. The properties exposed in this way must be unenumerable. (This is a fingerprinting vector.)

The namedItem() method of a Plugin object must return null if the argument is not one of the object's supported property names, and otherwise must return the MimeType object that has a type equal to the method's argument.

The name attribute must return the plugin's name.

The description and filename attributes must return user-agent-defined (or, in all likelihood, plugin-defined) strings. In each case, the same string must be returned each time, except that the strings returned may change when the PluginArray.refresh() method updates the object.

If the values returned by the description or filename attributes vary between versions of a plugin, they can be used both as a fingerprinting vector and, even more importantly, as a trivial way to determine what security vulnerabilities a plugin (and thus a browser) may have. It is thus highly recommended that the description attribute just return the same value as the name attribute, and that the filename attribute return the empty string. (This is a fingerprinting vector.)


A MimeType object represents a MIME type that is, or was, explicitly supported by a plugin.

The MimeType objects created by a user agent must not be live. The values of the objects' attributes must not change once an object is created, except when updated by the PluginArray object's refresh() method.

The type attribute must return the valid MIME type with no parameters describing the MIME type.

The description and suffixes attributes must return user-agent-defined (or, in all likelihood, plugin-defined) strings. In each case, the same string must be returned each time, except that the strings returned may change when the PluginArray.refresh() method updates the object.

If the values returned by the description or suffxies attributes vary between versions of a plugin, they can be used both as a fingerprinting vector and, even more importantly, as a trivial way to determine what security vulnerabilities a plugin (and thus a browser) may have. It is thus highly recommended that the description attribute just return the same value as the type attribute, and that the suffixes attribute return the empty string. (This is a fingerprinting vector.)

Commas in the suffixes attribute are interpreted as separating subsequent filename extensions, as in "htm,html".

The enabledPlugin attribute must return the Plugin object that represents the plugin that explicitly supported the MIME type that this MimeType object represents when this object was last created or updated by PluginArray.refresh(), whichever happened most recently.


The navigator.javaEnabled attribute must return true if the user agent supports a plugin that supports the MIME type "application/x-java-vm"; otherwise it must return false. (This is a fingerprinting vector.)

7.6.2 The External interface

The external attribute of the Window interface must return an instance of the External interface. The same object must be returned each time.

interface External {
  void AddSearchProvider(DOMString engineURL);
  unsigned long IsSearchProviderInstalled(DOMString engineURL);
};

For historical reasons, members on this interface are capitalized.

window . external . AddSearchProvider( url )

Adds the search engine described by the OpenSearch description document at url. [OPENSEARCH]

The OpenSearch description document has to be on the same server as the script that calls this method.

installed = window . external . IsSearchProviderInstalled( url )

Returns a value based on comparing url to the URLs of the results pages of the installed search engines.

0
None of the installed search engines match url.
1
One or more installed search engines match url, but none are the user's default search engine.
2
The user's default search engine matches url.

The url is compared to the URLs of the results pages of the installed search engines using a prefix match. Only results pages on the same domain as the script that calls this method are checked.

Another way of exposing search engines using OpenSearch description documents is using a link element with the search link type.

The AddSearchProvider() method, when invoked, must run the following steps:

  1. Optionally, abort these steps. User agents may implement the method as a stub method that never does anything, or may arbitrarily ignore invocations with particular arguments for security, privacy, or usability reasons.

  2. Resolve the value of the method's first argument relative to the API base URL specified by the entry settings object.

  3. If this fails, abort these steps.

  4. Process the resulting absolute URL as the URL to an OpenSearch description document. [OPENSEARCH]

The IsSearchProviderInstalled() method, when invoked, must run the following steps: (This is a fingerprinting vector.)

  1. Optionally, return 0 and abort these steps. User agents may implement the method as a stub method that never returns a non-zero value, or may arbitrarily ignore invocations with particular arguments for security, privacy, or usability reasons.

  2. If the origin specified by the entry settings object is an opaque identifier (i.e. it has no host component), then return 0 and abort these steps.

  3. Let host1 be the host component of the origin specified by the entry settings object.

  4. Resolve the scriptURL argument relative to the API base URL specified by the entry settings object.

  5. If this fails, return 0 and abort these steps.

  6. Let host2 be the host component of the resulting parsed URL.

  7. If the longest suffix in the Public Suffix List that matches the end of host1 is different than the longest suffix in the Public Suffix List that matches the end of host2, then return 0 and abort these steps. [PSL]

    If the next domain component of host1 and host2 after their common suffix are not the same, then return 0 and abort these steps.

  8. Let search engines be the list of search engines known by the user agent and made available to the user by the user agent for which the resulting absolute URL is a prefix match of the search engine's URL, if any. For search engines registered using OpenSearch description documents, the URL of the search engine corresponds to the URL given in a Url element whose rel attribute is "results" (the default). [OPENSEARCH]

  9. If search engines is empty, return 0 and abort these steps.

  10. If the user's default search engine (as determined by the user agent) is one of the search engines in search engines, then return 2 and abort these steps.

  11. Return 1.

7.7 Images

[Exposed=Window,Worker]
interface ImageBitmap {
  readonly attribute unsigned long width;
  readonly attribute unsigned long height;
};

typedef (HTMLImageElement or
         HTMLVideoElement or
         HTMLCanvasElement or
         Blob or
         ImageData or
         CanvasRenderingContext2D or
         ImageBitmap) ImageBitmapSource;

[NoInterfaceObject, Exposed=Window,Worker]
interface ImageBitmapFactories {
  Promise createImageBitmap(ImageBitmapSource image, optional long sx, long sy, long sw, long sh);
};
Window implements ImageBitmapFactories;
WorkerGlobalScope implements ImageBitmapFactories;

An ImageBitmap object represents a bitmap image that can be painted to a canvas without undue latency.

The exact judgement of what is undue latency of this is left up to the implementer, but in general if making use of the bitmap requires network I/O, or even local disk I/O, then the latency is probably undue; whereas if it only requires a blocking read from a GPU or system RAM, the latency is probably acceptable.

promise = Window . createImageBitmap(image [, sx, sy, sw, sh ] )

Takes image, which can be an img element, video, or canvas element, a Blob object, an ImageData object, a CanvasRenderingContext2D object, or another ImageBitmap object, and returns a Promise that is resolved when a new ImageBitmap is created.

If no ImageBitmap object can be constructed, for example because the provided image data is not actually an image, then the promise is rejected instead.

If sx, sy, sw, and sh arguments are provided, the source image is cropped to the given pixels, with any pixels missing in the original replaced by transparent black. These coordinates are in the source image's pixel coordinate space, not in CSS pixels.

Throws an InvalidStateError exception if the source image is not in a valid state (e.g. an img element that hasn't finished loading, or a CanvasRenderingContext2D object whose bitmap data has zero length along one or both dimensions, or an ImageData object whose data is data attribute has been neutered). Throws a SecurityError exception if the script is not allowed to access the image data of the source image (e.g. a video that is CORS-cross-origin, or a canvas being drawn on by a script in a worker from another origin).

imageBitmap . width

Returns the intrinsic width of the image, in CSS pixels.

imageBitmap . height

Returns the intrinsic height of the image, in CSS pixels.

An ImageBitmap object always has associated bitmap data, with a width and a height. However, it is possible for this data to be corrupted. If an ImageBitmap object's media data can be decoded without errors, it is said to be fully decodable.

An ImageBitmap object can be obtained from a variety of different objects, using the createImageBitmap() method. When invoked, the method must act as follows:

If image is an img element
  1. If either the sw or sh arguments are specified but zero, throw an IndexSizeError exception and abort these steps.

  2. If the img element is not completely available, then throw an InvalidStateError exception and abort these steps.

  3. If the origin of the img element's image is not the same origin as the origin specified by the entry settings object, then throw a SecurityError exception and abort these steps.

  4. If the img element's media data is not a bitmap (e.g. it's a vector graphic), then throw an InvalidStateError exception and abort these steps.

  5. Create a new ImageBitmap object.

  6. Let the ImageBitmap object's bitmap data be a copy of the img element's media data, cropped to the source rectangle. If this is an animated image, the ImageBitmap object's bitmap data must only be taken from the default image of the animation (the one that the format defines is to be used when animation is not supported or is disabled), or, if there is no such image, the first frame of the animation.

  7. Return a new Promise, but continue running these steps asynchronously.

  8. Fulfill the Promise's associated resolver, with the new ImageBitmap object as the value.

If image is a video element
  1. If either the sw or sh arguments are specified but zero, throw an IndexSizeError exception and abort these steps.

  2. If the video element's networkState attribute is NETWORK_EMPTY, then throw an InvalidStateError exception and abort these steps.

  3. If the origin of the video element is not the same origin as the origin specified by the entry settings object, then throw a SecurityError exception and abort these steps.

  4. If the video element's readyState attribute is either HAVE_NOTHING or HAVE_METADATA, then throw an InvalidStateError exception and abort these steps.

  5. Create a new ImageBitmap object.

  6. Let the ImageBitmap object's bitmap data be a copy of the frame at the current playback position, at the media resource's intrinsic width and intrinsic height (i.e. after any aspect-ratio correction has been applied), cropped to the source rectangle.

  7. Return a new Promise, but continue running these steps asynchronously.

  8. Fulfill the Promise's associated resolver, with the new ImageBitmap object as the value.

If image is a canvas element
  1. If either the sw or sh arguments are specified but zero, throw an IndexSizeError exception and abort these steps.

  2. If the canvas element's bitmap data does not have its origin-clean flag set, then throw an InvalidStateError exception and abort these steps.

  3. If the canvas element's bitmap has either a horizontal dimension or a vertical dimension equal to zero, then throw an InvalidStateError exception and abort these steps.

  4. Create a new ImageBitmap object.

  5. Let the ImageBitmap object's bitmap data be a copy of the canvas element's bitmap data, cropped to the source rectangle.

  6. Return a new Promise, but continue running these steps asynchronously.

  7. Fulfill the Promise's associated resolver, with the new ImageBitmap object as the value.

If image is a Blob object
  1. If either the sw or sh arguments are specified but zero, throw an IndexSizeError exception and abort these steps.

  2. If the Blob object has been disabled through the close() method, then throw an InvalidStateError exception and abort these steps.

  3. Return a new Promise, but continue running these steps asynchronously.

  4. Read the Blob object's data. If an error occurs during reading of the object, then reject the Promise's associated resolver, with null as the value, and abort these steps.

  5. Apply the image sniffing rules to determine the file format of the image data, with MIME type of the Blob (as given by the Blob object's type attribute) giving the official type.

  6. If the image data is not in a supported file format (e.g. it's not actually an image at all), or if the image data is corrupted in some fatal way such that the image dimensions cannot be obtained, then reject the Promise's associated resolver, with null as the value, and abort these steps.

  7. Create a new ImageBitmap object.

  8. Let the ImageBitmap object's bitmap data be the image data read from the Blob object, cropped to the source rectangle. If this is an animated image, the ImageBitmap object's bitmap data must only be taken from the default image of the animation (the one that the format defines is to be used when animation is not supported or is disabled), or, if there is no such image, the first frame of the animation.

  9. Fulfill the Promise's associated resolver, with the new ImageBitmap object as the value.

If image is an ImageData object
  1. If either the sw or sh arguments are specified but zero, throw an IndexSizeError exception and abort these steps.

  2. If the image object's data attribute has been neutered, throw an InvalidStateError exception and abort these steps.

  3. Create a new ImageBitmap object.

  4. Let the ImageBitmap object's bitmap data be the image data given by the ImageData object, cropped to the source rectangle.

  5. Return a new Promise, but continue running these steps asynchronously.

  6. Fulfill the Promise's associated resolver, with the new ImageBitmap object as the value.

If image is a CanvasRenderingContext2D object
  1. If either the sw or sh arguments are specified but zero, throw an IndexSizeError exception and abort these steps.

  2. If the CanvasRenderingContext2D object's scratch bitmap does not have its origin-clean flag set, then throw an InvalidStateError exception and abort these steps.

  3. If the CanvasRenderingContext2D object's scratch bitmap has either a horizontal dimension or a vertical dimension equal to zero, then throw an InvalidStateError exception and abort these steps.

  4. Create a new ImageBitmap object.

  5. Let the ImageBitmap object's bitmap data be a copy of the CanvasRenderingContext2D object's scratch bitmap, cropped to the source rectangle.

  6. Return a new Promise, but continue running these steps asynchronously.

  7. Fulfill the Promise's associated resolver, with the new ImageBitmap object as the value.

If image is an ImageBitmap object
  1. If either the sw or sh arguments are specified but zero, throw an IndexSizeError exception and abort these steps.

  2. Create a new ImageBitmap object.

  3. Let the ImageBitmap object's bitmap data be a copy of the image argument's bitmap data, cropped to the source rectangle.

  4. Return a new Promise, but continue running these steps asynchronously.

  5. Fulfill the Promise's associated resolver, with the new ImageBitmap object as the value.

When the steps above require that the user agent crop bitmap data to the source rectangle, the user agent must run the following steps:

  1. Let input be the image data being cropped.

  2. If the sx, sy, sw, and sh arguments are omitted, return input.

  3. Place input on an infinite transparent black grid plane, positioned so that it's top left corner is at the origin of the plane, with the x-coordinate increasing to the right, and the y-coordinate increasing down, and with each pixel in the input image data occupying a cell on the plane's grid.

  4. Let output be the rectangle on the plane denoted by the rectangle whose corners are the four points (sx, sy), (sx+sw, sy), (sx+sw, sy+sh), (sx, sy+sh).

    If either sw or sh are negative, then the top-left corner of this rectangle will be to the left or above the (sx, sy) point. If any of the pixels on this rectangle are outside the area where the input bitmap was placed, then they will be transparent black in output.

  5. Return output.

The width attribute must return the ImageBitmap object's width, in CSS pixels.

The height attribute must return the ImageBitmap object's height, in CSS pixels.

Using this API, a sprite sheet can be precut and prepared:

var sprites = {};
function loadMySprites() {
  var image = new Image();
  image.src = 'mysprites.png';
  var resolver;
  var promise = new Promise(function (arg) { resolver = arg });
  image.onload = function () {
    resolver.resolve(Promise.every(
      createImageBitmap(image,  0,  0, 40, 40).then(function (image) { sprites.woman = image }),
      createImageBitmap(image, 40,  0, 40, 40).then(function (image) { sprites.man   = image }),
      createImageBitmap(image, 80,  0, 40, 40).then(function (image) { sprites.tree  = image }),
      createImageBitmap(image,  0, 40, 40, 40).then(function (image) { sprites.hut   = image }),
      createImageBitmap(image, 40, 40, 40, 40).then(function (image) { sprites.apple = image }),
      createImageBitmap(image, 80, 40, 40, 40).then(function (image) { sprites.snake = image }),
    ));
  };
  return promise;
}

function runDemo() {
  var canvas = document.querySelector('canvas#demo');
  var context = canvas.getContext('2d');
  context.drawImage(sprites.tree, 30, 10);
  context.drawImage(sprites.snake, 70, 10);
}

loadMySprites().then(runDemo);

8 The HTML syntax

This section only describes the rules for resources labeled with an HTML MIME type. Rules for XML resources are discussed in the section below entitled "The XHTML syntax".

8.1 Writing HTML documents

This section only applies to documents, authoring tools, and markup generators. In particular, it does not apply to conformance checkers; conformance checkers must use the requirements given in the next section ("parsing HTML documents").

Documents must consist of the following parts, in the given order:

  1. Optionally, a single "BOM" (U+FEFF) character.
  2. Any number of comments and space characters.
  3. A DOCTYPE.
  4. Any number of comments and space characters.
  5. The root element, in the form of an html element.
  6. Any number of comments and space characters.

The various types of content mentioned above are described in the next few sections.

In addition, there are some restrictions on how character encoding declarations are to be serialized, as discussed in the section on that topic.

Space characters before the root html element, and space characters at the start of the html element and before the head element, will be dropped when the document is parsed; space characters after the root html element will be parsed as if they were at the end of the body element. Thus, space characters around the root element do not round-trip.

It is suggested that newlines be inserted after the DOCTYPE, after any comments that are before the root element, after the html element's start tag (if it is not omitted), and after any comments that are inside the html element but before the head element.

Many strings in the HTML syntax (e.g. the names of elements and their attributes) are case-insensitive, but only for uppercase ASCII letters and lowercase ASCII letters. For convenience, in this section this is just referred to as "case-insensitive".

8.1.1 The DOCTYPE

A DOCTYPE is a required preamble.

DOCTYPEs are required for legacy reasons. When omitted, browsers tend to use a different rendering mode that is incompatible with some specifications. Including the DOCTYPE in a document ensures that the browser makes a best-effort attempt at following the relevant specifications.

A DOCTYPE must consist of the following components, in this order:

  1. A string that is an ASCII case-insensitive match for the string "<!DOCTYPE".
  2. One or more space characters.
  3. A string that is an ASCII case-insensitive match for the string "html".
  4. Optionally, a DOCTYPE legacy string or an obsolete permitted DOCTYPE string (defined below).
  5. Zero or more space characters.
  6. A ">" (U+003E) character.

In other words, <!DOCTYPE html>, case-insensitively.


For the purposes of HTML generators that cannot output HTML markup with the short DOCTYPE "<!DOCTYPE html>", a DOCTYPE legacy string may be inserted into the DOCTYPE (in the position defined above). This string must consist of:

  1. One or more space characters.
  2. A string that is an ASCII case-insensitive match for the string "SYSTEM".
  3. One or more space characters.
  4. A U+0022 QUOTATION MARK or U+0027 APOSTROPHE character (the quote mark).
  5. The literal string "about:legacy-compat".
  6. A matching U+0022 QUOTATION MARK or U+0027 APOSTROPHE character (i.e. the same character as in the earlier step labeled quote mark).

In other words, <!DOCTYPE html SYSTEM "about:legacy-compat"> or <!DOCTYPE html SYSTEM 'about:legacy-compat'>, case-insensitively except for the part in single or double quotes.

The DOCTYPE legacy string should not be used unless the document is generated from a system that cannot output the shorter string.


To help authors transition from HTML4 and XHTML1, an obsolete permitted DOCTYPE string can be inserted into the DOCTYPE (in the position defined above). This string must consist of:

  1. One or more space characters.
  2. A string that is an ASCII case-insensitive match for the string "PUBLIC".
  3. One or more space characters.
  4. A U+0022 QUOTATION MARK or U+0027 APOSTROPHE character (the first quote mark).
  5. The string from one of the cells in the first column of the table below. The row to which this cell belongs is the selected row.
  6. A matching U+0022 QUOTATION MARK or U+0027 APOSTROPHE character (i.e. the same character as in the earlier step labeled first quote mark).
  7. If a system identifier is used,
    1. One or more space characters.
    2. A U+0022 QUOTATION MARK or U+0027 APOSTROPHE character (the third quote mark).
    3. The string from the cell in the second column of the selected row.
    4. A matching U+0022 QUOTATION MARK or U+0027 APOSTROPHE character (i.e. the same character as in the earlier step labeled third quote mark).
Allowed values for public and system identifiers in an obsolete permitted DOCTYPE string.
Public identifier System identifier System identifier optional?
-//W3C//DTD HTML 4.0//EN http://www.w3.org/TR/REC-html40/strict.dtd Yes
-//W3C//DTD HTML 4.01//EN http://www.w3.org/TR/html4/strict.dtd Yes
-//W3C//DTD XHTML 1.0 Strict//EN http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd No
-//W3C//DTD XHTML 1.1//EN http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd No

A DOCTYPE containing an obsolete permitted DOCTYPE string is an obsolete permitted DOCTYPE. Authors should not use obsolete permitted DOCTYPEs, as they are unnecessarily long.

8.1.2 Elements

There are five different kinds of elements: void elements, raw text elements, escapable raw text elements, foreign elements, and normal elements.

Void elements
area, base, br, col, embed, hr, img, input, keygen, link, menuitem, meta, param, source, track, wbr
Raw text elements
script, style
escapable raw text elements
textarea, title
Foreign elements
Elements from the MathML namespace and the SVG namespace.
Normal elements
All other allowed HTML elements are normal elements.

Tags are used to delimit the start and end of elements in the markup. Raw text, escapable raw text, and normal elements have a start tag to indicate where they begin, and an end tag to indicate where they end. The start and end tags of certain normal elements can be omitted, as described below in the section on optional tags. Those that cannot be omitted must not be omitted. Void elements only have a start tag; end tags must not be specified for void elements. Foreign elements must either have a start tag and an end tag, or a start tag that is marked as self-closing, in which case they must not have an end tag.

The contents of the element must be placed between just after the start tag (which might be implied, in certain cases) and just before the end tag (which again, might be implied in certain cases). The exact allowed contents of each individual element depend on the content model of that element, as described earlier in this specification. Elements must not contain content that their content model disallows. In addition to the restrictions placed on the contents by those content models, however, the five types of elements have additional syntactic requirements.

Void elements can't have any contents (since there's no end tag, no content can be put between the start tag and the end tag).

Raw text elements can have text, though it has restrictions described below.

Escapable raw text elements can have text and character references, but the text must not contain an ambiguous ampersand. There are also further restrictions described below.

Foreign elements whose start tag is marked as self-closing can't have any contents (since, again, as there's no end tag, no content can be put between the start tag and the end tag). Foreign elements whose start tag is not marked as self-closing can have text, character references, CDATA sections, other elements, and comments, but the text must not contain the character "<" (U+003C) or an ambiguous ampersand.

The HTML syntax does not support namespace declarations, even in foreign elements.

For instance, consider the following HTML fragment:

<p>
 <svg>
  <metadata>
   <!-- this is invalid -->
   <cdr:license xmlns:cdr="http://www.example.com/cdr/metadata" name="MIT"/>
  </metadata>
 </svg>
</p>

The innermost element, cdr:license, is actually in the SVG namespace, as the "xmlns:cdr" attribute has no effect (unlike in XML). In fact, as the comment in the fragment above says, the fragment is actually non-conforming. This is because the SVG specification does not define any elements called "cdr:license" in the SVG namespace.

Normal elements can have text, character references, other elements, and comments, but the text must not contain the character "<" (U+003C) or an ambiguous ampersand. Some normal elements also have yet more restrictions on what content they are allowed to hold, beyond the restrictions imposed by the content model and those described in this paragraph. Those restrictions are described below.

Tags contain a tag name, giving the element's name. HTML elements all have names that only use alphanumeric ASCII characters. In the HTML syntax, tag names, even those for foreign elements, may be written with any mix of lower- and uppercase letters that, when converted to all-lowercase, matches the element's tag name; tag names are case-insensitive.

8.1.2.1 Start tags

Start tags must have the following format:

  1. The first character of a start tag must be a "<" (U+003C) character.
  2. The next few characters of a start tag must be the element's tag name.
  3. If there are to be any attributes in the next step, there must first be one or more space characters.
  4. Then, the start tag may have a number of attributes, the syntax for which is described below. Attributes must be separated from each other by one or more space characters.
  5. After the attributes, or after the tag name if there are no attributes, there may be one or more space characters. (Some attributes are required to be followed by a space. See the attributes section below.)
  6. Then, if the element is one of the void elements, or if the element is a foreign element, then there may be a single "/" (U+002F) character. This character has no effect on void elements, but on foreign elements it marks the start tag as self-closing.
  7. Finally, start tags must be closed by a ">" (U+003E) character.
8.1.2.2 End tags

End tags must have the following format:

  1. The first character of an end tag must be a "<" (U+003C) character.
  2. The second character of an end tag must be a "/" (U+002F) character.
  3. The next few characters of an end tag must be the element's tag name.
  4. After the tag name, there may be one or more space characters.
  5. Finally, end tags must be closed by a ">" (U+003E) character.
8.1.2.3 Attributes

Attributes for an element are expressed inside the element's start tag.

Attributes have a name and a value. Attribute names must consist of one or more characters other than the space characters, U+0000 NULL, U+0022 QUOTATION MARK ("), U+0027 APOSTROPHE ('), ">" (U+003E), "/" (U+002F), and "=" (U+003D) characters, the control characters, and any characters that are not defined by Unicode. In the HTML syntax, attribute names, even those for foreign elements, may be written with any mix of lower- and uppercase letters that are an ASCII case-insensitive match for the attribute's name.

Attribute values are a mixture of text and character references, except with the additional restriction that the text cannot contain an ambiguous ampersand.

Attributes can be specified in four different ways:

Empty attribute syntax

Just the attribute name. The value is implicitly the empty string.

In the following example, the disabled attribute is given with the empty attribute syntax:

<input disabled>

If an attribute using the empty attribute syntax is to be followed by another attribute, then there must be a space character separating the two.

Unquoted attribute value syntax

The attribute name, followed by zero or more space characters, followed by a single U+003D EQUALS SIGN character, followed by zero or more space characters, followed by the attribute value, which, in addition to the requirements given above for attribute values, must not contain any literal space characters, any U+0022 QUOTATION MARK characters ("), U+0027 APOSTROPHE characters ('), "=" (U+003D) characters, "<" (U+003C) characters, ">" (U+003E) characters, or U+0060 GRAVE ACCENT characters (`), and must not be the empty string.

In the following example, the value attribute is given with the unquoted attribute value syntax:

<input value=yes>

If an attribute using the unquoted attribute syntax is to be followed by another attribute or by the optional "/" (U+002F) character allowed in step 6 of the start tag syntax above, then there must be a space character separating the two.

Single-quoted attribute value syntax

The attribute name, followed by zero or more space characters, followed by a single U+003D EQUALS SIGN character, followed by zero or more space characters, followed by a single "'" (U+0027) character, followed by the attribute value, which, in addition to the requirements given above for attribute values, must not contain any literal "'" (U+0027) characters, and finally followed by a second single "'" (U+0027) character.

In the following example, the type attribute is given with the single-quoted attribute value syntax:

<input type='checkbox'>

If an attribute using the single-quoted attribute syntax is to be followed by another attribute, then there must be a space character separating the two.

Double-quoted attribute value syntax

The attribute name, followed by zero or more space characters, followed by a single U+003D EQUALS SIGN character, followed by zero or more space characters, followed by a single """ (U+0022) character, followed by the attribute value, which, in addition to the requirements given above for attribute values, must not contain any literal U+0022 QUOTATION MARK characters ("), and finally followed by a second single """ (U+0022) character.

In the following example, the name attribute is given with the double-quoted attribute value syntax:

<input name="be evil">

If an attribute using the double-quoted attribute syntax is to be followed by another attribute, then there must be a space character separating the two.

There must never be two or more attributes on the same start tag whose names are an ASCII case-insensitive match for each other.


When a foreign element has one of the namespaced attributes given by the local name and namespace of the first and second cells of a row from the following table, it must be written using the name given by the third cell from the same row.

Local name Namespace Attribute name
actuate XLink namespace xlink:actuate
arcrole XLink namespace xlink:arcrole
href XLink namespace xlink:href
role XLink namespace xlink:role
show XLink namespace xlink:show
title XLink namespace xlink:title
type XLink namespace xlink:type
base XML namespace xml:base
lang XML namespace xml:lang
space XML namespace xml:space
xmlns XMLNS namespace xmlns
xlink XMLNS namespace xmlns:xlink

No other namespaced attribute can be expressed in the HTML syntax.

Whether the attributes in the table above are conforming or not is defined by other specifications (e.g. the SVG and MathML specifications); this section only describes the syntax rules if the attributes are serialised using the HTML syntax.

8.1.2.4 Optional tags

Certain tags can be omitted.

Omitting an element's start tag in the situations described below does not mean the element is not present; it is implied, but it is still there. For example, an HTML document always has a root html element, even if the string <html> doesn't appear anywhere in the markup.

An html element's start tag may be omitted if the first thing inside the html element is not a comment.

For example, in the following case it's ok to remove the "<html>" tag:

<!DOCTYPE HTML>
<html>
  <head>
    <title>Hello</title>
  </head>
  <body>
    <p>Welcome to this example.</p>
  </body>
</html>

Doing so would make the document look like this:

<!DOCTYPE HTML>

  <head>
    <title>Hello</title>
  </head>
  <body>
    <p>Welcome to this example.</p>
  </body>
</html>

This has the exact same DOM. In particular, note that white space around the root element is ignored by the parser. The following example would also have the exact same DOM:

<!DOCTYPE HTML><head>
    <title>Hello</title>
  </head>
  <body>
    <p>Welcome to this example.</p>
  </body>
</html>

However, in the following example, removing the start tag moves the comment to before the html element:

<!DOCTYPE HTML>
<html>
  <!-- where is this comment in the DOM? -->
  <head>
    <title>Hello</title>
  </head>
  <body>
    <p>Welcome to this example.</p>
  </body>
</html>

With the tag removed, the document actually turns into the same as this:

<!DOCTYPE HTML>
<!-- where is this comment in the DOM? -->
<html>
  <head>
    <title>Hello</title>
  </head>
  <body>
    <p>Welcome to this example.</p>
  </body>
</html>

This is why the tag can only be removed if it is not followed by a comment: removing the tag when there is a comment there changes the document's resulting parse tree. Of course, if the position of the comment does not matter, then the tag can be omitted, as if the comment had been moved to before the start tag in the first place.

An html element's end tag may be omitted if the html element is not immediately followed by a comment.

A head element's start tag may be omitted if the element is empty, or if the first thing inside the head element is an element.

A head element's end tag may be omitted if the head element is not immediately followed by a space character or a comment.

A body element's start tag may be omitted if the element is empty, or if the first thing inside the body element is not a space character or a comment, except if the first thing inside the body element is a meta, link, script, style, or template element.

A body element's end tag may be omitted if the body element is not immediately followed by a comment.

Note that in the example above, the head element start and end tags, and the body element start tag, can't be omitted, because they are surrounded by white space:

<!DOCTYPE HTML>
<html>
  <head>
    <title>Hello</title>
  </head>
  <body>
    <p>Welcome to this example.</p>
  </body>
</html>

(The body and html element end tags could be omitted without trouble; any spaces after those get parsed into the body element anyway.)

Usually, however, white space isn't an issue. If we first remove the white space we don't care about:

<!DOCTYPE HTML><html><head><title>Hello</title></head><body><p>Welcome to this example.</p></body></html>

Then we can omit a number of tags without affecting the DOM:

<!DOCTYPE HTML><title>Hello</title><p>Welcome to this example.</p>

At that point, we can also add some white space back:

<!DOCTYPE HTML>
<title>Hello</title>
<p>Welcome to this example.</p>

This would be equivalent to this document, with the omitted tags shown in their parser-implied positions; the only white space text node that results from this is the newline at the end of the head element:

<!DOCTYPE HTML>
<html><head><title>Hello</title>
</head><body><p>Welcome to this example.</p></body></html>

An li element's end tag may be omitted if the li element is immediately followed by another li element or if there is no more content in the parent element.

We can thus simplify the earlier example further:

<!DOCTYPE HTML><title>Hello</title><p>Welcome to this example.</p>

A dt element's end tag may be omitted if the dt element is immediately followed by another dt element or a dd element.

A dd element's end tag may be omitted if the dd element is immediately followed by another dd element or a dt element, or if there is no more content in the parent element.

A p element's end tag may be omitted if the p element is immediately followed by an address, article, aside, blockquote, div, dl, fieldset, footer, form, h1, h2, h3, h4, h5, h6, header, hgroup, hr, main, menu, nav, ol, p, pre, section, table, or ul, element, or if there is no more content in the parent element and the parent element is not an a element.

An rb element's end tag may be omitted if the rb element is immediately followed by an rb, rt, rtc or rp element, or if there is no more content in the parent element.

An rt element's end tag may be omitted if the rt element is immediately followed by an rb, rt, rtc or rp element, or if there is no more content in the parent element.

An rtc element's end tag may be omitted if the rtc element is immediately followed by an rb, rtc or rp element, or if there is no more content in the parent element.

An rp element's end tag may be omitted if the rp element is immediately followed by an rb, rt, rtc or rp element, or if there is no more content in the parent element.

An optgroup element's end tag may be omitted if the optgroup element is immediately followed by another optgroup element, or if there is no more content in the parent element.

An option element's end tag may be omitted if the option element is immediately followed by another option element, or if it is immediately followed by an optgroup element, or if there is no more content in the parent element.

A colgroup element's start tag may be omitted if the first thing inside the colgroup element is a col element, and if the element is not immediately preceded by another colgroup element whose end tag has been omitted. (It can't be omitted if the element is empty.)

A colgroup element's end tag may be omitted if the colgroup element is not immediately followed by a space character or a comment.

A caption element's end tag may be omitted if the caption element is not immediately followed by a space character or a comment.

A thead element's end tag may be omitted if the thead element is immediately followed by a tbody or tfoot element.

A tbody element's start tag may be omitted if the first thing inside the tbody element is a tr element, and if the element is not immediately preceded by a tbody, thead, or tfoot element whose end tag has been omitted. (It can't be omitted if the element is empty.)

A tbody element's end tag may be omitted if the tbody element is immediately followed by a tbody or tfoot element, or if there is no more content in the parent element.

A tfoot element's end tag may be omitted if the tfoot element is immediately followed by a tbody element, or if there is no more content in the parent element.

A tr element's end tag may be omitted if the tr element is immediately followed by another tr element, or if there is no more content in the parent element.

A td element's end tag may be omitted if the td element is immediately followed by a td or th element, or if there is no more content in the parent element.

A th element's end tag may be omitted if the th element is immediately followed by a td or th element, or if there is no more content in the parent element.

The ability to omit all these table-related tags makes table markup much terser.

Take this example:

<table>
 <caption>37547 TEE Electric Powered Rail Car Train Functions (Abbreviated)</caption>
 <colgroup><col><col><col></colgroup>
 <thead>
  <tr>
   <th>Function</th>
   <th>Control Unit</th>
   <th>Central Station</th>
  </tr>
 </thead>
 <tbody>
  <tr>
   <td>Headlights</td>
   <td>✔</td>
   <td>✔</td>
  </tr>
  <tr>
   <td>Interior Lights</td>
   <td>✔</td>
   <td>✔</td>
  </tr>
  <tr>
   <td>Electric locomotive operating sounds</td>
   <td>✔</td>
   <td>✔</td>
  </tr>
  <tr>
   <td>Engineer's cab lighting</td>
   <td></td>
   <td>✔</td>
  </tr>
  <tr>
   <td>Station Announcements - Swiss</td>
   <td></td>
   <td>✔</td>
  </tr>
 </tbody>
</table>

The exact same table, modulo some white space differences, could be marked up as follows:

<table>
 <caption>37547 TEE Electric Powered Rail Car Train Functions (Abbreviated)
 <colgroup><col><col><col>
 <thead>
  <tr>
   <th>Function
   <th>Control Unit
   <th>Central Station
 <tbody>
  <tr>
   <td>Headlights
   <td>✔
   <td>✔
  <tr>
   <td>Interior Lights
   <td>✔
   <td>✔
  <tr>
   <td>Electric locomotive operating sounds
   <td>✔
   <td>✔
  <tr>
   <td>Engineer's cab lighting
   <td>
   <td>✔
  <tr>
   <td>Station Announcements - Swiss
   <td>
   <td>✔
</table>

Since the cells take up much less room this way, this can be made even terser by having each row on one line:

<table>
 <caption>37547 TEE Electric Powered Rail Car Train Functions (Abbreviated)
 <colgroup><col><col><col>
 <thead>
  <tr> <th>Function                              <th>Control Unit     <th>Central Station
 <tbody>
  <tr> <td>Headlights                            <td>✔                <td>✔
  <tr> <td>Interior Lights                       <td>✔                <td>✔
  <tr> <td>Electric locomotive operating sounds  <td>✔                <td>✔
  <tr> <td>Engineer's cab lighting               <td>                 <td>✔
  <tr> <td>Station Announcements - Swiss         <td>                 <td>✔
</table>

The only differences between these tables, at the DOM level, is with the precise position of the (in any case semantically-neutral) white space.

However, a start tag must never be omitted if it has any attributes.

Returning to the earlier example with all the white space removed and then all the optional tags removed:

<!DOCTYPE HTML><title>Hello</title><p>Welcome to this example.

If the body element in this example had to have a class attribute and the html element had to have a lang attribute, the markup would have to become:

<!DOCTYPE HTML><html lang="en"><title>Hello</title><body class="demo"><p>Welcome to this example.

This section assumes that the document is conforming, in particular, that there are no content model violations. Omitting tags in the fashion described in this section in a document that does not conform to the content models described in this specification is likely to result in unexpected DOM differences (this is, in part, what the content models are designed to avoid).

8.1.2.5 Restrictions on content models

For historical reasons, certain elements have extra restrictions beyond even the restrictions given by their content model.

A table element must not contain tr elements, even though these elements are technically allowed inside table elements according to the content models described in this specification. (If a tr element is put inside a table in the markup, it will in fact imply a tbody start tag before it.)

A single newline may be placed immediately after the start tag of pre and textarea elements. This does not affect the processing of the element. The otherwise optional newline must be included if the element's contents themselves start with a newline (because otherwise the leading newline in the contents would be treated like the optional newline, and ignored).

The following two pre blocks are equivalent:

<pre>Hello</pre>
<pre>
Hello</pre>
8.1.2.6 Restrictions on the contents of raw text and escapable raw text elements

The text in raw text and escapable raw text elements must not contain any occurrences of the string "</" (U+003C LESS-THAN SIGN, U+002F SOLIDUS) followed by characters that case-insensitively match the tag name of the element followed by one of "tab" (U+0009), "LF" (U+000A), "FF" (U+000C), "CR" (U+000D), U+0020 SPACE, ">" (U+003E), or "/" (U+002F).

8.1.3 Text

Text is allowed inside elements, attribute values, and comments. Extra constraints are placed on what is and what is not allowed in text based on where the text is to be put, as described in the other sections.

8.1.3.1 Newlines

Newlines in HTML may be represented either as "CR" (U+000D) characters, "LF" (U+000A) characters, or pairs of "CR" (U+000D), "LF" (U+000A) characters in that order.

Where character references are allowed, a character reference of a "LF" (U+000A) character (but not a "CR" (U+000D) character) also represents a newline.

8.1.4 Character references

In certain cases described in other sections, text may be mixed with character references. These can be used to escape characters that couldn't otherwise legally be included in text.

Character references must start with a U+0026 AMPERSAND character (&). Following this, there are three possible kinds of character references:

Named character references
The ampersand must be followed by one of the names given in the named character references section, using the same case. The name must be one that is terminated by a ";" (U+003B) character.
Decimal numeric character reference
The ampersand must be followed by a "#" (U+0023) character, followed by one or more ASCII digits, representing a base-ten integer that corresponds to a Unicode code point that is allowed according to the definition below. The digits must then be followed by a ";" (U+003B) character.
Hexadecimal numeric character reference
The ampersand must be followed by a "#" (U+0023) character, which must be followed by either a "x" (U+0078) character or a "X" (U+0058) character, which must then be followed by one or more ASCII hex digits, representing a hexadecimal integer that corresponds to a Unicode code point that is allowed according to the definition below. The digits must then be followed by a ";" (U+003B) character.

The numeric character reference forms described above are allowed to reference any Unicode code point other than U+0000, U+000D, permanently undefined Unicode characters (noncharacters), surrogates (U+D800–U+DFFF), and control characters other than space characters.

An ambiguous ampersand is a U+0026 AMPERSAND character (&) that is followed by one or more alphanumeric ASCII characters, followed by a ";" (U+003B) character, where these characters do not match any of the names given in the named character references section.

8.1.5 CDATA sections

CDATA sections must consist of the following components, in this order:

  1. The string "<![CDATA[".
  2. Optionally, text, with the additional restriction that the text must not contain the string "]]>".
  3. The string "]]>".

CDATA sections can only be used in foreign content (MathML or SVG). In this example, a CDATA section is used to escape the contents of an ms element:

<p>You can add a string to a number, but this stringifies the number:</p>
<math>
 <ms><![CDATA[x<y]]></ms>
 <mo>+</mo>
 <mn>3</mn>
 <mo>=</mo>
 <ms><![CDATA[x<y3]]></ms>
</math>

8.1.6 Comments

Comments must start with the four character sequence U+003C LESS-THAN SIGN, U+0021 EXCLAMATION MARK, U+002D HYPHEN-MINUS, U+002D HYPHEN-MINUS (<!--). Following this sequence, the comment may have text, with the additional restriction that the text must not start with a single ">" (U+003E) character, nor start with a U+002D HYPHEN-MINUS character (-) followed by a ">" (U+003E) character, nor contain two consecutive U+002D HYPHEN-MINUS characters (--), nor end with a U+002D HYPHEN-MINUS character (-). Finally, the comment must be ended by the three character sequence U+002D HYPHEN-MINUS, U+002D HYPHEN-MINUS, U+003E GREATER-THAN SIGN (-->).

8.2 Parsing HTML documents

This section only applies to user agents, data mining tools, and conformance checkers.

The rules for parsing XML documents into DOM trees are covered by the next section, entitled "The XHTML syntax".

User agents must use the parsing rules described in this section to generate the DOM trees from text/html resources. Together, these rules define what is referred to as the HTML parser.

While the HTML syntax described in this specification bears a close resemblance to SGML and XML, it is a separate language with its own parsing rules.

Some earlier versions of HTML (in particular from HTML2 to HTML4) were based on SGML and used SGML parsing rules. However, few (if any) web browsers ever implemented true SGML parsing for HTML documents; the only user agents to strictly handle HTML as an SGML application have historically been validators. The resulting confusion — with validators claiming documents to have one representation while widely deployed Web browsers interoperably implemented a different representation — has wasted decades of productivity. This version of HTML thus returns to a non-SGML basis.

Authors interested in using SGML tools in their authoring pipeline are encouraged to use XML tools and the XML serialization of HTML.

This specification defines the parsing rules for HTML documents, whether they are syntactically correct or not. Certain points in the parsing algorithm are said to be parse errors. The error handling for parse errors is well-defined (that's the processing rules described throughout this specification), but user agents, while parsing an HTML document, may abort the parser at the first parse error that they encounter for which they do not wish to apply the rules described in this specification.

Conformance checkers must report at least one parse error condition to the user if one or more parse error conditions exist in the document and must not report parse error conditions if none exist in the document. Conformance checkers may report more than one parse error condition if more than one parse error condition exists in the document.

Parse errors are only errors with the syntax of HTML. In addition to checking for parse errors, conformance checkers will also verify that the document obeys all the other conformance requirements described in this specification.

For the purposes of conformance checkers, if a resource is determined to be in the HTML syntax, then it is an HTML document.

As stated in the terminology section, references to element types that do not explicitly specify a namespace always refer to elements in the HTML namespace. For example, if the spec talks about "a menuitem element", then that is an element with the local name "menuitem", the namespace "http://www.w3.org/1999/xhtml", and the interface HTMLMenuItemElement. Where possible, references to such elements are hyperlinked to their definition.

8.2.1 Overview of the parsing model

The input to the HTML parsing process consists of a stream of Unicode code points, which is passed through a tokenization stage followed by a tree construction stage. The output is a Document object.

Implementations that do not support scripting do not have to actually create a DOM Document object, but the DOM tree in such cases is still used as the model for the rest of the specification.

In the common case, the data handled by the tokenization stage comes from the network, but it can also come from script running in the user agent, e.g. using the document.write() API.

There is only one set of states for the tokenizer stage and the tree construction stage, but the tree construction stage is reentrant, meaning that while the tree construction stage is handling one token, the tokenizer might be resumed, causing further tokens to be emitted and processed before the first token's processing is complete.

In the following example, the tree construction stage will be called upon to handle a "p" start tag token while handling the "script" end tag token:

...
<script>
 document.write('<p>');
</script>
...

To handle these cases, parsers have a script nesting level, which must be initially set to zero, and a parser pause flag, which must be initially set to false.

8.2.2 The input byte stream

The stream of Unicode code points that comprises the input to the tokenization stage will be initially seen by the user agent as a stream of bytes (typically coming over the network or from the local file system). The bytes encode the actual characters according to a particular character encoding, which the user agent uses to decode the bytes into characters.

For XML documents, the algorithm user agents are required to use to determine the character encoding is given by the XML specification. This section does not apply to XML documents. [XML]

Usually, the encoding sniffing algorithm defined below is used to determine the character encoding.

Given a character encoding, the bytes in the input byte stream must be converted to Unicode code points for the tokenizer's input stream, as described by the rules for that encoding's decoder.

Bytes or sequences of bytes in the original byte stream that did not conform to the Encoding standard (e.g. invalid UTF-8 byte sequences in a UTF-8 input byte stream) are errors that conformance checkers are expected to report. [ENCODING]

Leading Byte Order Marks (BOMs) are not stripped by the decoder algorithms, they are stripped by the algorithm below.

The decoder algorithms describe how to handle invalid input; for security reasons, it is imperative that those rules be followed precisely. Differences in how invalid byte sequences are handled can result in, amongst other problems, script injection vulnerabilities ("XSS").

When the HTML parser is decoding an input byte stream, it uses a character encoding and a confidence. The confidence is either tentative, certain, or irrelevant. The encoding used, and whether the confidence in that encoding is tentative or certain, is used during the parsing to determine whether to change the encoding. If no encoding is necessary, e.g. because the parser is operating on a Unicode stream and doesn't have to use a character encoding at all, then the confidence is irrelevant.

Some algorithms feed the parser by directly adding characters to the input stream rather than adding bytes to the input byte stream.

8.2.2.1 Parsing with a known character encoding

When the HTML parser is to operate on an input byte stream that has a known definite encoding, then the character encoding is that encoding and the confidence is certain.

8.2.2.2 Determining the character encoding

In some cases, it might be impractical to unambiguously determine the encoding before parsing the document. Because of this, this specification provides for a two-pass mechanism with an optional pre-scan. Implementations are allowed, as described below, to apply a simplified parsing algorithm to whatever bytes they have available before beginning to parse the document. Then, the real parser is started, using a tentative encoding derived from this pre-parse and other out-of-band metadata. If, while the document is being loaded, the user agent discovers a character encoding declaration that conflicts with this information, then the parser can get reinvoked to perform a parse of the document with the real encoding.

User agents must use the following algorithm, called the encoding sniffing algorithm, to determine the character encoding to use when decoding a document in the first pass. This algorithm takes as input any out-of-band metadata available to the user agent (e.g. the Content-Type metadata of the document) and all the bytes available so far, and returns a character encoding and a confidence that is either tentative or certain.

  1. If the user has explicitly instructed the user agent to override the document's character encoding with a specific encoding, optionally return that encoding with the confidence certain and abort these steps.

    Typically, user agents remember such user requests across sessions, and in some cases apply them to documents in iframes as well.

  2. The user agent may wait for more bytes of the resource to be available, either in this step or at any later step in this algorithm. For instance, a user agent might wait 500ms or 1024 bytes, whichever came first. In general preparsing the source to find the encoding improves performance, as it reduces the need to throw away the data structures used when parsing upon finding the encoding information. However, if the user agent delays too long to obtain data to determine the encoding, then the cost of the delay could outweigh any performance improvements from the preparse.

    The authoring conformance requirements for character encoding declarations limit them to only appearing in the first 1024 bytes. User agents are therefore encouraged to use the prescan algorithm below (as invoked by these steps) on the first 1024 bytes, but not to stall beyond that.

  3. For each of the rows in the following table, starting with the first one and going down, if there are as many or more bytes available than the number of bytes in the first column, and the first bytes of the file match the bytes given in the first column, then return the encoding given in the cell in the second column of that row, with the confidence certain, and abort these steps:

    Bytes in Hexadecimal Encoding
    FE FF Big-endian UTF-16
    FF FE Little-endian UTF-16
    EF BB BF UTF-8

    This step looks for Unicode Byte Order Marks (BOMs).

    That this step happens before the next one honoring the HTTP Content-Type header is a willful violation of the HTTP specification, motivated by a desire to be maximally compatible with legacy content. [HTTP]

  4. If the transport layer specifies a character encoding, and it is supported, return that encoding with the confidence certain, and abort these steps.

  5. Optionally prescan the byte stream to determine its encoding. The end condition is that the user agent decides that scanning further bytes would not be efficient. User agents are encouraged to only prescan the first 1024 bytes. User agents may decide that scanning any bytes is not efficient, in which case these substeps are entirely skipped.

    The aforementioned algorithm either aborts unsuccessfully or returns a character encoding. If it returns a character encoding, then this algorithm must be aborted, returning the same encoding, with confidence tentative.

  6. If the HTML parser for which this algorithm is being run is associated with a Document that is itself in a nested browsing context, run these substeps:

    1. Let new document be the Document with which the HTML parser is associated.

    2. Let parent document be the Document through which new document is nested (the active document of the parent browsing context of new document).

    3. If parent document's origin is not the same origin as new document's origin, then abort these substeps.

    4. If parent document's character encoding is not an ASCII-compatible character encoding, then abort these substeps.

    5. Return parent document's character encoding, with the confidence tentative, and abort the encoding sniffing algorithm's steps.

  7. Otherwise, if the user agent has information on the likely encoding for this page, e.g. based on the encoding of the page when it was last visited, then return that encoding, with the confidence tentative, and abort these steps.

  8. The user agent may attempt to autodetect the character encoding from applying frequency analysis or other algorithms to the data stream. Such algorithms may use information about the resource other than the resource's contents, including the address of the resource. If autodetection succeeds in determining a character encoding, and that encoding is a supported encoding, then return that encoding, with the confidence tentative, and abort these steps. [UNIVCHARDET]

    The UTF-8 encoding has a highly detectable bit pattern. Documents that contain bytes with values greater than 0x7F which match the UTF-8 pattern are very likely to be UTF-8, while documents with byte sequences that do not match it are very likely not. User-agents are therefore encouraged to search for this common encoding. [PPUTF8] [UTF8DET]

  9. Otherwise, return an implementation-defined or user-specified default character encoding, with the confidence tentative.

    In controlled environments or in environments where the encoding of documents can be prescribed (for example, for user agents intended for dedicated use in new networks), the comprehensive UTF-8 encoding is suggested.

    In other environments, the default encoding is typically dependent on the user's locale (an approximation of the languages, and thus often encodings, of the pages that the user is likely to frequent). The following table gives suggested defaults based on the user's locale, for compatibility with legacy content. Locales are identified by BCP 47 language tags. [BCP47] [ENCODING]

    Locale language Suggested default encoding
    ar Arabic windows-1256
    ba Bashkir windows-1251
    be Belarusian windows-1251
    bg Bulgarian windows-1251
    cs Czech windows-1250
    el Greek ISO-8859-7
    et Estonian windows-1257
    fa Persian windows-1256
    he Hebrew windows-1255
    hr Croatian windows-1250
    hu Hungarian ISO-8859-2
    ja Japanese Shift_JIS
    kk Kazakh windows-1251
    ko Korean euc-kr
    ku Kurdish windows-1254
    ky Kyrgyz windows-1251
    lt Lithuanian windows-1257
    lv Latvian windows-1257
    mk Macedonian windows-1251
    pl Polish ISO-8859-2
    ru Russian windows-1251
    sah Yakut windows-1251
    sk Slovak windows-1250
    sl Slovenian ISO-8859-2
    sr Serbian windows-1251
    tg Tajik windows-1251
    th Thai windows-874
    tr Turkish windows-1254
    tt Tatar windows-1251
    uk Ukrainian windows-1251
    vi Vietnamese windows-1258
    zh-CN Chinese (People's Republic of China) GB18030
    zh-TW Chinese (Taiwan) Big5
    All other locales windows-1252

    The contents of this table are derived from the intersection of Windows, Chrome, and Firefox defaults.

The document's character encoding must immediately be set to the value returned from this algorithm, at the same time as the user agent uses the returned value to select the decoder to use for the input byte stream.


When an algorithm requires a user agent to prescan a byte stream to determine its encoding, given some defined end condition, then it must run the following steps. These steps either abort unsuccessfully or return a character encoding. If at any point during these steps (including during instances of the get an attribute algorithm invoked by this one) the user agent either runs out of bytes (meaning the position pointer created in the first step below goes beyond the end of the byte stream obtained so far) or reaches its end condition, then abort the prescan a byte stream to determine its encoding algorithm unsuccessfully.

  1. Let position be a pointer to a byte in the input byte stream, initially pointing at the first byte.

  2. Loop: If position points to:

    A sequence of bytes starting with: 0x3C 0x21 0x2D 0x2D (ASCII '<!--')

    Advance the position pointer so that it points at the first 0x3E byte which is preceded by two 0x2D bytes (i.e. at the end of an ASCII '-->' sequence) and comes after the 0x3C byte that was found. (The two 0x2D bytes can be the same as the those in the '<!--' sequence.)

    A sequence of bytes starting with: 0x3C, 0x4D or 0x6D, 0x45 or 0x65, 0x54 or 0x74, 0x41 or 0x61, and one of 0x09, 0x0A, 0x0C, 0x0D, 0x20, 0x2F (case-insensitive ASCII '<meta' followed by a space or slash)
    1. Advance the position pointer so that it points at the next 0x09, 0x0A, 0x0C, 0x0D, 0x20, or 0x2F byte (the one in sequence of characters matched above).

    2. Let attribute list be an empty list of strings.

    3. Let got pragma be false.

    4. Let need pragma be null.

    5. Let charset be the null value (which, for the purposes of this algorithm, is distinct from an unrecognised encoding or the empty string).

    6. Attributes: Get an attribute and its value. If no attribute was sniffed, then jump to the processing step below.

    7. If the attribute's name is already in attribute list, then return to the step labeled attributes.

    8. Add the attribute's name to attribute list.

    9. Run the appropriate step from the following list, if one applies:

      If the attribute's name is "http-equiv"

      If the attribute's value is "content-type", then set got pragma to true.

      If the attribute's name is "content"

      Apply the algorithm for extracting a character encoding from a meta element, giving the attribute's value as the string to parse. If a character encoding is returned, and if charset is still set to null, let charset be the encoding returned, and set need pragma to true.

      If the attribute's name is "charset"

      Let charset be the result of getting an encoding from the attribute's value, and set need pragma to false.

    10. Return to the step labeled attributes.

    11. Processing: If need pragma is null, then jump to the step below labeled next byte.

    12. If need pragma is true but got pragma is false, then jump to the step below labeled next byte.

    13. If charset is a UTF-16 encoding, change the value of charset to UTF-8.

    14. If charset is the x-user-defined encoding, change the value of charset to Windows-1252. [ENCODING]

    15. If charset is not a supported character encoding, then jump to the step below labeled next byte.

    16. Abort the prescan a byte stream to determine its encoding algorithm, returning the encoding given by charset.

    A sequence of bytes starting with a 0x3C byte (ASCII <), optionally a 0x2F byte (ASCII /), and finally a byte in the range 0x41-0x5A or 0x61-0x7A (an ASCII letter)
    1. Advance the position pointer so that it points at the next 0x09 (ASCII TAB), 0x0A (ASCII LF), 0x0C (ASCII FF), 0x0D (ASCII CR), 0x20 (ASCII space), or 0x3E (ASCII >) byte.

    2. Repeatedly get an attribute until no further attributes can be found, then jump to the step below labeled next byte.

    A sequence of bytes starting with: 0x3C 0x21 (ASCII '<!')
    A sequence of bytes starting with: 0x3C 0x2F (ASCII '</')
    A sequence of bytes starting with: 0x3C 0x3F (ASCII '<?')

    Advance the position pointer so that it points at the first 0x3E byte (ASCII >) that comes after the 0x3C byte that was found.

    Any other byte

    Do nothing with that byte.

  3. Next byte: Move position so it points at the next byte in the input byte stream, and return to the step above labeled loop.

When the prescan a byte stream to determine its encoding algorithm says to get an attribute, it means doing this:

  1. If the byte at position is one of 0x09 (ASCII TAB), 0x0A (ASCII LF), 0x0C (ASCII FF), 0x0D (ASCII CR), 0x20 (ASCII space), or 0x2F (ASCII /) then advance position to the next byte and redo this step.

  2. If the byte at position is 0x3E (ASCII >), then abort the get an attribute algorithm. There isn't one.

  3. Otherwise, the byte at position is the start of the attribute name. Let attribute name and attribute value be the empty string.

  4. Process the byte at position as follows:

    If it is 0x3D (ASCII =), and the attribute name is longer than the empty string
    Advance position to the next byte and jump to the step below labeled value.
    If it is 0x09 (ASCII TAB), 0x0A (ASCII LF), 0x0C (ASCII FF), 0x0D (ASCII CR), or 0x20 (ASCII space)
    Jump to the step below labeled spaces.
    If it is 0x2F (ASCII /) or 0x3E (ASCII >)
    Abort the get an attribute algorithm. The attribute's name is the value of attribute name, its value is the empty string.
    If it is in the range 0x41 (ASCII A) to 0x5A (ASCII Z)
    Append the Unicode character with code point b+0x20 to attribute name (where b is the value of the byte at position). (This converts the input to lowercase.)
    Anything else
    Append the Unicode character with the same code point as the value of the byte at position to attribute name. (It doesn't actually matter how bytes outside the ASCII range are handled here, since only ASCII characters can contribute to the detection of a character encoding.)
  5. Advance position to the next byte and return to the previous step.

  6. Spaces: If the byte at position is one of 0x09 (ASCII TAB), 0x0A (ASCII LF), 0x0C (ASCII FF), 0x0D (ASCII CR), or 0x20 (ASCII space) then advance position to the next byte, then, repeat this step.

  7. If the byte at position is not 0x3D (ASCII =), abort the get an attribute algorithm. The attribute's name is the value of attribute name, its value is the empty string.

  8. Advance position past the 0x3D (ASCII =) byte.

  9. Value: If the byte at position is one of 0x09 (ASCII TAB), 0x0A (ASCII LF), 0x0C (ASCII FF), 0x0D (ASCII CR), or 0x20 (ASCII space) then advance position to the next byte, then, repeat this step.

  10. Process the byte at position as follows:

    If it is 0x22 (ASCII ") or 0x27 (ASCII ')
    1. Let b be the value of the byte at position.
    2. Quote loop: Advance position to the next byte.
    3. If the value of the byte at position is the value of b, then advance position to the next byte and abort the "get an attribute" algorithm. The attribute's name is the value of attribute name, and its value is the value of attribute value.
    4. Otherwise, if the value of the byte at position is in the range 0x41 (ASCII A) to 0x5A (ASCII Z), then append a Unicode character to attribute value whose code point is 0x20 more than the value of the byte at position.
    5. Otherwise, append a Unicode character to attribute value whose code point is the same as the value of the byte at position.
    6. Return to the step above labeled quote loop.
    If it is 0x3E (ASCII >)
    Abort the get an attribute algorithm. The attribute's name is the value of attribute name, its value is the empty string.
    If it is in the range 0x41 (ASCII A) to 0x5A (ASCII Z)
    Append the Unicode character with code point b+0x20 to attribute value (where b is the value of the byte at position). Advance position to the next byte.
    Anything else
    Append the Unicode character with the same code point as the value of the byte at position to attribute value. Advance position to the next byte.
  11. Process the byte at position as follows:

    If it is 0x09 (ASCII TAB), 0x0A (ASCII LF), 0x0C (ASCII FF), 0x0D (ASCII CR), 0x20 (ASCII space), or 0x3E (ASCII >)
    Abort the get an attribute algorithm. The attribute's name is the value of attribute name and its value is the value of attribute value.
    If it is in the range 0x41 (ASCII A) to 0x5A (ASCII Z)
    Append the Unicode character with code point b+0x20 to attribute value (where b is the value of the byte at position).
    Anything else
    Append the Unicode character with the same code point as the value of the byte at position to attribute value.
  12. Advance position to the next byte and return to the previous step.

For the sake of interoperability, user agents should not use a pre-scan algorithm that returns different results than the one described above. (But, if you do, please at least let us know, so that we can improve this algorithm and benefit everyone...)

8.2.2.3 Character encodings

User agents must support the encodings defined in the Encoding standard [ENCODING]. User agents should not support other encodings.

User agents must not support the CESU-8, UTF-7, BOCU-1 and SCSU encodings. [CESU8] [UTF7] [BOCU1] [SCSU]

Support for encodings based on EBCDIC is especially discouraged. This encoding is rarely used for publicly-facing Web content. Support for UTF-32 is also especially discouraged. This encoding is rarely used, and frequently implemented incorrectly.

This specification does not make any attempt to support EBCDIC-based encodings and UTF-32 in its algorithms; support and use of these encodings can thus lead to unexpected behavior in implementations of this specification.

8.2.2.4 Changing the encoding while parsing

When the parser requires the user agent to change the encoding, it must run the following steps. This might happen if the encoding sniffing algorithm described above failed to find a character encoding, or if it found a character encoding that was not the actual encoding of the file.

  1. If the encoding that is already being used to interpret the input stream is a UTF-16 encoding, then set the confidence to certain and abort these steps. The new encoding is ignored; if it was anything but the same encoding, then it would be clearly incorrect.

  2. If the new encoding is a UTF-16 encoding, change it to UTF-8.

  3. If the new encoding is the x-user-defined encoding, change it to Windows-1252. [ENCODING]

  4. If the new encoding is identical or equivalent to the encoding that is already being used to interpret the input stream, then set the confidence to certain and abort these steps. This happens when the encoding information found in the file matches what the encoding sniffing algorithm determined to be the encoding, and in the second pass through the parser if the first pass found that the encoding sniffing algorithm described in the earlier section failed to find the right encoding.

  5. If all the bytes up to the last byte converted by the current decoder have the same Unicode interpretations in both the current encoding and the new encoding, and if the user agent supports changing the converter on the fly, then the user agent may change to the new converter for the encoding on the fly. Set the document's character encoding and the encoding used to convert the input stream to the new encoding, set the confidence to certain, and abort these steps.

  6. Otherwise, navigate to the document again, with replacement enabled, and using the same source browsing context, but this time skip the encoding sniffing algorithm and instead just set the encoding to the new encoding and the confidence to certain. Whenever possible, this should be done without actually contacting the network layer (the bytes should be re-parsed from memory), even if, e.g., the document is marked as not being cacheable. If this is not possible and contacting the network layer would involve repeating a request that uses a method other than HTTP GET (or equivalent for non-HTTP URLs), then instead set the confidence to certain and ignore the new encoding. The resource will be misinterpreted. User agents may notify the user of the situation, to aid in application development.

This algorithm is only invoked when a new encoding is found declared on a meta element.

8.2.2.5 Preprocessing the input stream

The input stream consists of the characters pushed into it as the input byte stream is decoded or from the various APIs that directly manipulate the input stream.

One leading U+FEFF BYTE ORDER MARK character must be ignored if any are present in the input stream.

The requirement to strip a U+FEFF BYTE ORDER MARK character regardless of whether that character was used to determine the byte order is a willful violation of Unicode, motivated by a desire to increase the resilience of user agents in the face of naïve transcoders.

Any occurrences of any characters in the ranges U+0001 to U+0008, U+000E to U+001F, U+007F to U+009F, U+FDD0 to U+FDEF, and characters U+000B, U+FFFE, U+FFFF, U+1FFFE, U+1FFFF, U+2FFFE, U+2FFFF, U+3FFFE, U+3FFFF, U+4FFFE, U+4FFFF, U+5FFFE, U+5FFFF, U+6FFFE, U+6FFFF, U+7FFFE, U+7FFFF, U+8FFFE, U+8FFFF, U+9FFFE, U+9FFFF, U+AFFFE, U+AFFFF, U+BFFFE, U+BFFFF, U+CFFFE, U+CFFFF, U+DFFFE, U+DFFFF, U+EFFFE, U+EFFFF, U+FFFFE, U+FFFFF, U+10FFFE, and U+10FFFF are parse errors. These are all control characters or permanently undefined Unicode characters (noncharacters).

Any character that is a not a Unicode character, i.e. any isolated surrogate, is a parse error. (These can only find their way into the input stream via script APIs such as document.write().)

"CR" (U+000D) characters and "LF" (U+000A) characters are treated specially. All CR characters must be converted to LF characters, and any LF characters that immediately follow a CR character must be ignored. Thus, newlines in HTML DOMs are represented by LF characters, and there are never any CR characters in the input to the tokenization stage.

The next input character is the first character in the input stream that has not yet been consumed or explicitly ignored by the requirements in this section. Initially, the next input character is the first character in the input. The current input character is the last character to have been consumed.

The insertion point is the position (just before a character or just before the end of the input stream) where content inserted using document.write() is actually inserted. The insertion point is relative to the position of the character immediately after it, it is not an absolute offset into the input stream. Initially, the insertion point is undefined.

The "EOF" character in the tables below is a conceptual character representing the end of the input stream. If the parser is a script-created parser, then the end of the input stream is reached when an explicit "EOF" character (inserted by the document.close() method) is consumed. Otherwise, the "EOF" character is not a real character in the stream, but rather the lack of any further characters.

The handling of U+0000 NULL characters varies based on where the characters are found. In general, they are ignored except where doing so could plausibly introduce an attack vector. This handling is, by necessity, spread across both the tokenization stage and the tree construction stage.

8.2.3 Parse state

8.2.3.1 The insertion mode

The insertion mode is a state variable that controls the primary operation of the tree construction stage.

Initially, the insertion mode is "initial". It can change to "before html", "before head", "in head", "in head noscript", "after head", "in body", "text", "in table", "in table text", "in caption", "in column group", "in table body", "in row", "in cell", "in select", "in select in table", "in template", "after body", "in frameset", "after frameset", "after after body", and "after after frameset" during the course of the parsing, as described in the tree construction stage. The insertion mode affects how tokens are processed and whether CDATA sections are supported.

Several of these modes, namely "in head", "in body", "in table", and "in select", are special, in that the other modes defer to them at various times. When the algorithm below says that the user agent is to do something "using the rules for the m insertion mode", where m is one of these modes, the user agent must use the rules described under the m insertion mode's section, but must leave the insertion mode unchanged unless the rules in m themselves switch the insertion mode to a new value.

When the insertion mode is switched to "text" or "in table text", the original insertion mode is also set. This is the insertion mode to which the tree construction stage will return.

Similarly, to parse nested template elements, a stack of template insertion modes is used. It is initially empty. The current template insertion mode is the insertion mode that was most recently added to the stack of template insertion modes. The algorithms in the sections below will push insertion modes onto this stack, meaning that the specified insertion mode is to be added to the stack, and pop insertion modes from the stack, which means that the most recently added insertion mode must be removed from the stack.


When the steps below require the UA to reset the insertion mode appropriately, it means the UA must follow these steps:

  1. Let last be false.

  2. Let node be the last node in the stack of open elements.

  3. Loop: If node is the first node in the stack of open elements, then set last to true, and, if the parser was originally created as part of the HTML fragment parsing algorithm (fragment case), set node to the context element.

  4. If node is a select element, run these substeps:

    1. If last is true, jump to the step below labeled done.

    2. Let ancestor be node.

    3. Loop: If ancestor is the first node in the stack of open elements, jump to the step below labeled done.

    4. Let ancestor be the node before ancestor in the stack of open elements.

    5. If ancestor is a template node, jump to the step below labeled done.

    6. If ancestor is a table node, switch the insertion mode to "in select in table" and abort these steps.

    7. Jump back to the step labeled loop.

    8. Done: Switch the insertion mode to "in select" and abort these steps.

  5. If node is a td or th element and last is false, then switch the insertion mode to "in cell" and abort these steps.

  6. If node is a tr element, then switch the insertion mode to "in row" and abort these steps.

  7. If node is a tbody, thead, or tfoot element, then switch the insertion mode to "in table body" and abort these steps.

  8. If node is a caption element, then switch the insertion mode to "in caption" and abort these steps.

  9. If node is a colgroup element, then switch the insertion mode to "in column group" and abort these steps.

  10. If node is a table element, then switch the insertion mode to "in table" and abort these steps.

  11. If node is a template element, then switch the insertion mode to the current template insertion mode and abort these steps.

  12. If node is a head element and last is true, then switch the insertion mode to "in body" ("in body"! not "in head"!) and abort these steps. (fragment case)
  13. If node is a head element and last is false, then switch the insertion mode to "in head" and abort these steps.

  14. If node is a body element, then switch the insertion mode to "in body" and abort these steps.

  15. If node is a frameset element, then switch the insertion mode to "in frameset" and abort these steps. (fragment case)

  16. If node is an html element, run these substeps:

    1. If the head element pointer is null, switch the insertion mode to "before head" and abort these steps. (fragment case)

    2. Otherwise, the head element pointer is not null, switch the insertion mode to "after head" and abort these steps.

  17. If last is true, then switch the insertion mode to "in body" and abort these steps. (fragment case)

  18. Let node now be the node before node in the stack of open elements.

  19. Return to the step labeled loop.

8.2.3.2 The stack of open elements

Initially, the stack of open elements is empty. The stack grows downwards; the topmost node on the stack is the first one added to the stack, and the bottommost node of the stack is the most recently added node in the stack (notwithstanding when the stack is manipulated in a random access fashion as part of the handling for misnested tags).

The "before html" insertion mode creates the html root element node, which is then added to the stack.

In the fragment case, the stack of open elements is initialised to contain an html element that is created as part of that algorithm. (The fragment case skips the "before html" insertion mode.)

The html node, however it is created, is the topmost node of the stack. It only gets popped off the stack when the parser finishes.

The current node is the bottommost node in this stack of open elements.

The adjusted current node is the context element if the stack of open elements has only one element in it and the parser was created by the HTML fragment parsing algorithm; otherwise, the adjusted current node is the current node.

Elements in the stack of open elements fall into the following categories:

Special

The following elements have varying levels of special parsing rules: HTML's address, applet, area, article, aside, base, basefont, bgsound, blockquote, body, br, button, caption, center, col, colgroup, dd, details, dir, div, dl, dt, embed, fieldset, figcaption, figure, footer, form, frame, frameset, h1, h2, h3, h4, h5, h6, head, header, hgroup, hr, html, iframe, img, input, isindex, li, link, listing, main, marquee, menu, menuitem, meta, nav, noembed, noframes, noscript, object, ol, p, param, plaintext, pre, script, section, select, source, style, summary, table, tbody, td, template, textarea, tfoot, th, thead, title, tr, track, ul, wbr, and xmp; MathML's mi, mo, mn, ms, mtext, and annotation-xml; and SVG's foreignObject, desc, and title.

Formatting

The following HTML elements are those that end up in the list of active formatting elements: a, b, big, code, em, font, i, nobr, s, small, strike, strong, tt, and u.

Ordinary

All other elements found while parsing an HTML document.

The stack of open elements is said to have an element target node in a specific scope consisting of a list of element types list when the following algorithm terminates in a match state:

  1. Initialise node to be the current node (the bottommost node of the stack).

  2. If node is the target node, terminate in a match state.

  3. Otherwise, if node is one of the element types in list, terminate in a failure state.

  4. Otherwise, set node to the previous entry in the stack of open elements and return to step 2. (This will never fail, since the loop will always terminate in the previous step if the top of the stack — an html element — is reached.)

The stack of open elements is said to have a particular element in scope when it has that element in the specific scope consisting of the following element types:

The stack of open elements is said to have a particular element in list item scope when it has that element in the specific scope consisting of the following element types:

The stack of open elements is said to have a particular element in button scope when it has that element in the specific scope consisting of the following element types:

The stack of open elements is said to have a particular element in table scope when it has that element in the specific scope consisting of the following element types:

The stack of open elements is said to have a particular element in select scope when it has that element in the specific scope consisting of all element types except the following:

Nothing happens if at any time any of the elements in the stack of open elements are moved to a new location in, or removed from, the Document tree. In particular, the stack is not changed in this situation. This can cause, amongst other strange effects, content to be appended to nodes that are no longer in the DOM.

In some cases (namely, when closing misnested formatting elements), the stack is manipulated in a random-access fashion.

8.2.3.3 The list of active formatting elements

Initially, the list of active formatting elements is empty. It is used to handle mis-nested formatting element tags.

The list contains elements in the formatting category, and scope markers. The scope markers are inserted when entering applet elements, buttons, object elements, marquees, table cells, and table captions, and are used to prevent formatting from "leaking" into applet elements, buttons, object elements, marquees, and tables.

The scope markers are unrelated to the concept of an element being in scope.

In addition, each element in the list of active formatting elements is associated with the token for which it was created, so that further elements can be created for that token if necessary.

When the steps below require the UA to push onto the list of active formatting elements an element element, the UA must perform the following steps:

  1. If there are already three elements in the list of active formatting elements after the last list marker, if any, or anywhere in the list if there are no list markers, that have the same tag name, namespace, and attributes as element, then remove the earliest such element from the list of active formatting elements. For these purposes, the attributes must be compared as they were when the elements were created by the parser; two elements have the same attributes if all their parsed attributes can be paired such that the two attributes in each pair have identical names, namespaces, and values (the order of the attributes does not matter).

    This is the Noah's Ark clause. But with three per family instead of two.

  2. Add element to the list of active formatting elements.

When the steps below require the UA to reconstruct the active formatting elements, the UA must perform the following steps:

  1. If there are no entries in the list of active formatting elements, then there is nothing to reconstruct; stop this algorithm.

  2. If the last (most recently added) entry in the list of active formatting elements is a marker, or if it is an element that is in the stack of open elements, then there is nothing to reconstruct; stop this algorithm.

  3. Let entry be the last (most recently added) element in the list of active formatting elements.

  4. Rewind: If there are no entries before entry in the list of active formatting elements, then jump to the step labeled create.

  5. Let entry be the entry one earlier than entry in the list of active formatting elements.

  6. If entry is neither a marker nor an element that is also in the stack of open elements, go to the step labeled rewind.

  7. Advance: Let entry be the element one later than entry in the list of active formatting elements.

  8. Create: Insert an HTML element for the token for which the element entry was created, to obtain new element.

  9. Replace the entry for entry in the list with an entry for new element.

  10. If the entry for new element in the list of active formatting elements is not the last entry in the list, return to the step labeled advance.

This has the effect of reopening all the formatting elements that were opened in the current body, cell, or caption (whichever is youngest) that haven't been explicitly closed.

The way this specification is written, the list of active formatting elements always consists of elements in chronological order with the least recently added element first and the most recently added element last (except for while steps 8 to 11 of the above algorithm are being executed, of course).

When the steps below require the UA to clear the list of active formatting elements up to the last marker, the UA must perform the following steps:

  1. Let entry be the last (most recently added) entry in the list of active formatting elements.

  2. Remove entry from the list of active formatting elements.

  3. If entry was a marker, then stop the algorithm at this point. The list has been cleared up to the last marker.

  4. Go to step 1.

8.2.3.4 The element pointers

Initially, the head element pointer and the form element pointer are both null.

Once a head element has been parsed (whether implicitly or explicitly) the head element pointer gets set to point to this node.

The form element pointer points to the last form element that was opened and whose end tag has not yet been seen. It is used to make form controls associate with forms in the face of dramatically bad markup, for historical reasons. It is ignored inside template elements.

8.2.3.5 Other parsing state flags

The scripting flag is set to "enabled" if scripting was enabled for the Document with which the parser is associated when the parser was created, and "disabled" otherwise.

The scripting flag can be enabled even when the parser was originally created for the HTML fragment parsing algorithm, even though script elements don't execute in that case.

The frameset-ok flag is set to "ok" when the parser is created. It is set to "not ok" after certain tokens are seen.

8.2.4 Tokenization

Implementations must act as if they used the following state machine to tokenise HTML. The state machine must start in the data state. Most states consume a single character, which may have various side-effects, and either switches the state machine to a new state to reconsume the same character, or switches it to a new state to consume the next character, or stays in the same state to consume the next character. Some states have more complicated behavior and can consume several characters before switching to another state. In some cases, the tokenizer state is also changed by the tree construction stage.

The exact behavior of certain states depends on the insertion mode and the stack of open elements. Certain states also use a temporary buffer to track progress.

The output of the tokenization step is a series of zero or more of the following tokens: DOCTYPE, start tag, end tag, comment, character, end-of-file. DOCTYPE tokens have a name, a public identifier, a system identifier, and a force-quirks flag. When a DOCTYPE token is created, its name, public identifier, and system identifier must be marked as missing (which is a distinct state from the empty string), and the force-quirks flag must be set to off (its other state is on). Start and end tag tokens have a tag name, a self-closing flag, and a list of attributes, each of which has a name and a value. When a start or end tag token is created, its self-closing flag must be unset (its other state is that it be set), and its attributes list must be empty. Comment and character tokens have data.

When a token is emitted, it must immediately be handled by the tree construction stage. The tree construction stage can affect the state of the tokenization stage, and can insert additional characters into the stream. (For example, the script element can result in scripts executing and using the dynamic markup insertion APIs to insert characters into the stream being tokenized.)

Creating a token and emitting it are distinct actions. It is possible for a token to be created but implicitly abandoned (never emitted), e.g. if the file ends unexpectedly while processing the characters that are being parsed into a start tag token.

When a start tag token is emitted with its self-closing flag set, if the flag is not acknowledged when it is processed by the tree construction stage, that is a parse error.

When an end tag token is emitted with attributes, that is a parse error.

When an end tag token is emitted with its self-closing flag set, that is a parse error.

An appropriate end tag token is an end tag token whose tag name matches the tag name of the last start tag to have been emitted from this tokenizer, if any. If no start tag has been emitted from this tokenizer, then no end tag token is appropriate.

Before each step of the tokenizer, the user agent must first check the parser pause flag. If it is true, then the tokenizer must abort the processing of any nested invocations of the tokenizer, yielding control back to the caller.

The tokenizer state machine consists of the states defined in the following subsections.

8.2.4.1 Data state

Consume the next input character:

U+0026 AMPERSAND (&)
Switch to the character reference in data state.
"<" (U+003C)
Switch to the tag open state.
U+0000 NULL
Parse error. Emit the current input character as a character token.
EOF
Emit an end-of-file token.
Anything else
Emit the current input character as a character token.
8.2.4.2 Character reference in data state

Switch to the data state.

Attempt to consume a character reference, with no additional allowed character.

If nothing is returned, emit a U+0026 AMPERSAND character (&) token.

Otherwise, emit the character tokens that were returned.

8.2.4.3 RCDATA state

Consume the next input character:

U+0026 AMPERSAND (&)
Switch to the character reference in RCDATA state.
"<" (U+003C)
Switch to the RCDATA less-than sign state.
U+0000 NULL
Parse error. Emit a U+FFFD REPLACEMENT CHARACTER character token.
EOF
Emit an end-of-file token.
Anything else
Emit the current input character as a character token.
8.2.4.4 Character reference in RCDATA state

Switch to the RCDATA state.

Attempt to consume a character reference, with no additional allowed character.

If nothing is returned, emit a U+0026 AMPERSAND character (&) token.

Otherwise, emit the character tokens that were returned.

8.2.4.5 RAWTEXT state

Consume the next input character:

"<" (U+003C)
Switch to the RAWTEXT less-than sign state.
U+0000 NULL
Parse error. Emit a U+FFFD REPLACEMENT CHARACTER character token.
EOF
Emit an end-of-file token.
Anything else
Emit the current input character as a character token.
8.2.4.6 Script data state

Consume the next input character:

"<" (U+003C)
Switch to the script data less-than sign state.
U+0000 NULL
Parse error. Emit a U+FFFD REPLACEMENT CHARACTER character token.
EOF
Emit an end-of-file token.
Anything else
Emit the current input character as a character token.
8.2.4.7 PLAINTEXT state

Consume the next input character:

U+0000 NULL
Parse error. Emit a U+FFFD REPLACEMENT CHARACTER character token.
EOF
Emit an end-of-file token.
Anything else
Emit the current input character as a character token.
8.2.4.8 Tag open state

Consume the next input character:

"!" (U+0021)
Switch to the markup declaration open state.
"/" (U+002F)
Switch to the end tag open state.
Uppercase ASCII letter
Create a new start tag token, set its tag name to the lowercase version of the current input character (add 0x0020 to the character's code point), then switch to the tag name state. (Don't emit the token yet; further details will be filled in before it is emitted.)
Lowercase ASCII letter
Create a new start tag token, set its tag name to the current input character, then switch to the tag name state. (Don't emit the token yet; further details will be filled in before it is emitted.)
"?" (U+003F)
Parse error. Switch to the bogus comment state.
Anything else
Parse error. Switch to the data state. Emit a U+003C LESS-THAN SIGN character token. Reconsume the current input character.
8.2.4.9 End tag open state

Consume the next input character:

Uppercase ASCII letter
Create a new end tag token, set its tag name to the lowercase version of the current input character (add 0x0020 to the character's code point), then switch to the tag name state. (Don't emit the token yet; further details will be filled in before it is emitted.)
Lowercase ASCII letter
Create a new end tag token, set its tag name to the current input character, then switch to the tag name state. (Don't emit the token yet; further details will be filled in before it is emitted.)
">" (U+003E)
Parse error. Switch to the data state.
EOF
Parse error. Switch to the data state. Emit a U+003C LESS-THAN SIGN character token and a U+002F SOLIDUS character token. Reconsume the EOF character.
Anything else
Parse error. Switch to the bogus comment state.
8.2.4.10 Tag name state

Consume the next input character:

"tab" (U+0009)
"LF" (U+000A)
"FF" (U+000C)
U+0020 SPACE
Switch to the before attribute name state.
"/" (U+002F)
Switch to the self-closing start tag state.
">" (U+003E)
Switch to the data state. Emit the current tag token.
Uppercase ASCII letter
Append the lowercase version of the current input character (add 0x0020 to the character's code point) to the current tag token's tag name.
U+0000 NULL
Parse error. Append a U+FFFD REPLACEMENT CHARACTER character to the current tag token's tag name.
EOF
Parse error. Switch to the data state. Reconsume the EOF character.
Anything else
Append the current input character to the current tag token's tag name.
8.2.4.11 RCDATA less-than sign state

Consume the next input character:

"/" (U+002F)
Set the temporary buffer to the empty string. Switch to the RCDATA end tag open state.
Anything else
Switch to the RCDATA state. Emit a U+003C LESS-THAN SIGN character token. Reconsume the current input character.
8.2.4.12 RCDATA end tag open state

Consume the next input character:

Uppercase ASCII letter
Create a new end tag token, and set its tag name to the lowercase version of the current input character (add 0x0020 to the character's code point). Append the current input character to the temporary buffer. Finally, switch to the RCDATA end tag name state. (Don't emit the token yet; further details will be filled in before it is emitted.)
Lowercase ASCII letter
Create a new end tag token, and set its tag name to the current input character. Append the current input character to the temporary buffer. Finally, switch to the RCDATA end tag name state. (Don't emit the token yet; further details will be filled in before it is emitted.)
Anything else
Switch to the RCDATA state. Emit a U+003C LESS-THAN SIGN character token and a U+002F SOLIDUS character token. Reconsume the current input character.
8.2.4.13 RCDATA end tag name state

Consume the next input character:

"tab" (U+0009)
"LF" (U+000A)
"FF" (U+000C)
U+0020 SPACE
If the current end tag token is an appropriate end tag token, then switch to the before attribute name state. Otherwise, treat it as per the "anything else" entry below.
"/" (U+002F)
If the current end tag token is an appropriate end tag token, then switch to the self-closing start tag state. Otherwise, treat it as per the "anything else" entry below.
">" (U+003E)
If the current end tag token is an appropriate end tag token, then switch to the data state and emit the current tag token. Otherwise, treat it as per the "anything else" entry below.
Uppercase ASCII letter
Append the lowercase version of the current input character (add 0x0020 to the character's code point) to the current tag token's tag name. Append the current input character to the temporary buffer.
Lowercase ASCII letter
Append the current input character to the current tag token's tag name. Append the current input character to the temporary buffer.
Anything else
Switch to the RCDATA state. Emit a U+003C LESS-THAN SIGN character token, a U+002F SOLIDUS character token, and a character token for each of the characters in the temporary buffer (in the order they were added to the buffer). Reconsume the current input character.
8.2.4.14 RAWTEXT less-than sign state

Consume the next input character:

"/" (U+002F)
Set the temporary buffer to the empty string. Switch to the RAWTEXT end tag open state.
Anything else
Switch to the RAWTEXT state. Emit a U+003C LESS-THAN SIGN character token. Reconsume the current input character.
8.2.4.15 RAWTEXT end tag open state

Consume the next input character:

Uppercase ASCII letter
Create a new end tag token, and set its tag name to the lowercase version of the current input character (add 0x0020 to the character's code point). Append the current input character to the temporary buffer. Finally, switch to the RAWTEXT end tag name state. (Don't emit the token yet; further details will be filled in before it is emitted.)
Lowercase ASCII letter
Create a new end tag token, and set its tag name to the current input character. Append the current input character to the temporary buffer. Finally, switch to the RAWTEXT end tag name state. (Don't emit the token yet; further details will be filled in before it is emitted.)
Anything else
Switch to the RAWTEXT state. Emit a U+003C LESS-THAN SIGN character token and a U+002F SOLIDUS character token. Reconsume the current input character.
8.2.4.16 RAWTEXT end tag name state

Consume the next input character:

"tab" (U+0009)
"LF" (U+000A)
"FF" (U+000C)
U+0020 SPACE
If the current end tag token is an appropriate end tag token, then switch to the before attribute name state. Otherwise, treat it as per the "anything else" entry below.
"/" (U+002F)
If the current end tag token is an appropriate end tag token, then switch to the self-closing start tag state. Otherwise, treat it as per the "anything else" entry below.
">" (U+003E)
If the current end tag token is an appropriate end tag token, then switch to the data state and emit the current tag token. Otherwise, treat it as per the "anything else" entry below.
Uppercase ASCII letter
Append the lowercase version of the current input character (add 0x0020 to the character's code point) to the current tag token's tag name. Append the current input character to the temporary buffer.
Lowercase ASCII letter
Append the current input character to the current tag token's tag name. Append the current input character to the temporary buffer.
Anything else
Switch to the RAWTEXT state. Emit a U+003C LESS-THAN SIGN character token, a U+002F SOLIDUS character token, and a character token for each of the characters in the temporary buffer (in the order they were added to the buffer). Reconsume the current input character.
8.2.4.17 Script data less-than sign state

Consume the next input character:

"/" (U+002F)
Set the temporary buffer to the empty string. Switch to the script data end tag open state.
"!" (U+0021)
Switch to the script data escape start state. Emit a U+003C LESS-THAN SIGN character token and a U+0021 EXCLAMATION MARK character token.
Anything else
Switch to the script data state. Emit a U+003C LESS-THAN SIGN character token. Reconsume the current input character.
8.2.4.18 Script data end tag open state

Consume the next input character:

Uppercase ASCII letter
Create a new end tag token, and set its tag name to the lowercase version of the current input character (add 0x0020 to the character's code point). Append the current input character to the temporary buffer. Finally, switch to the script data end tag name state. (Don't emit the token yet; further details will be filled in before it is emitted.)
Lowercase ASCII letter
Create a new end tag token, and set its tag name to the current input character. Append the current input character to the temporary buffer. Finally, switch to the script data end tag name state. (Don't emit the token yet; further details will be filled in before it is emitted.)
Anything else
Switch to the script data state. Emit a U+003C LESS-THAN SIGN character token and a U+002F SOLIDUS character token. Reconsume the current input character.
8.2.4.19 Script data end tag name state

Consume the next input character:

"tab" (U+0009)
"LF" (U+000A)
"FF" (U+000C)
U+0020 SPACE
If the current end tag token is an appropriate end tag token, then switch to the before attribute name state. Otherwise, treat it as per the "anything else" entry below.
"/" (U+002F)
If the current end tag token is an appropriate end tag token, then switch to the self-closing start tag state. Otherwise, treat it as per the "anything else" entry below.
">" (U+003E)
If the current end tag token is an appropriate end tag token, then switch to the data state and emit the current tag token. Otherwise, treat it as per the "anything else" entry below.
Uppercase ASCII letter
Append the lowercase version of the current input character (add 0x0020 to the character's code point) to the current tag token's tag name. Append the current input character to the temporary buffer.
Lowercase ASCII letter
Append the current input character to the current tag token's tag name. Append the current input character to the temporary buffer.
Anything else
Switch to the script data state. Emit a U+003C LESS-THAN SIGN character token, a U+002F SOLIDUS character token, and a character token for each of the characters in the temporary buffer (in the order they were added to the buffer). Reconsume the current input character.
8.2.4.20 Script data escape start state

Consume the next input character:

"-" (U+002D)
Switch to the script data escape start dash state. Emit a U+002D HYPHEN-MINUS character token.
Anything else
Switch to the script data state. Reconsume the current input character.
8.2.4.21 Script data escape start dash state

Consume the next input character:

"-" (U+002D)
Switch to the script data escaped dash dash state. Emit a U+002D HYPHEN-MINUS character token.
Anything else
Switch to the script data state. Reconsume the current input character.
8.2.4.22 Script data escaped state

Consume the next input character:

"-" (U+002D)
Switch to the script data escaped dash state. Emit a U+002D HYPHEN-MINUS character token.
"<" (U+003C)
Switch to the script data escaped less-than sign state.
U+0000 NULL
Parse error. Emit a U+FFFD REPLACEMENT CHARACTER character token.
EOF
Switch to the data state. Parse error. Reconsume the EOF character.
Anything else
Emit the current input character as a character token.
8.2.4.23 Script data escaped dash state

Consume the next input character:

"-" (U+002D)
Switch to the script data escaped dash dash state. Emit a U+002D HYPHEN-MINUS character token.
"<" (U+003C)
Switch to the script data escaped less-than sign state.
U+0000 NULL
Parse error. Switch to the script data escaped state. Emit a U+FFFD REPLACEMENT CHARACTER character token.
EOF
Parse error. Switch to the data state. Reconsume the EOF character.
Anything else
Switch to the script data escaped state. Emit the current input character as a character token.
8.2.4.24 Script data escaped dash dash state

Consume the next input character:

"-" (U+002D)
Emit a U+002D HYPHEN-MINUS character token.
"<" (U+003C)
Switch to the script data escaped less-than sign state.
">" (U+003E)
Switch to the script data state. Emit a U+003E GREATER-THAN SIGN character token.
U+0000 NULL
Parse error. Switch to the script data escaped state. Emit a U+FFFD REPLACEMENT CHARACTER character token.
EOF
Parse error. Switch to the data state. Reconsume the EOF character.
Anything else
Switch to the script data escaped state. Emit the current input character as a character token.
8.2.4.25 Script data escaped less-than sign state

Consume the next input character:

"/" (U+002F)
Set the temporary buffer to the empty string. Switch to the script data escaped end tag open state.
Uppercase ASCII letter
Set the temporary buffer to the empty string. Append the lowercase version of the current input character (add 0x0020 to the character's code point) to the temporary buffer. Switch to the script data double escape start state. Emit a U+003C LESS-THAN SIGN character token and the current input character as a character token.
Lowercase ASCII letter
Set the temporary buffer to the empty string. Append the current input character to the temporary buffer. Switch to the script data double escape start state. Emit a U+003C LESS-THAN SIGN character token and the current input character as a character token.
Anything else
Switch to the script data escaped state. Emit a U+003C LESS-THAN SIGN character token. Reconsume the current input character.
8.2.4.26 Script data escaped end tag open state

Consume the next input character:

Uppercase ASCII letter
Create a new end tag token, and set its tag name to the lowercase version of the current input character (add 0x0020 to the character's code point). Append the current input character to the temporary buffer. Finally, switch to the script data escaped end tag name state. (Don't emit the token yet; further details will be filled in before it is emitted.)
Lowercase ASCII letter
Create a new end tag token, and set its tag name to the current input character. Append the current input character to the temporary buffer. Finally, switch to the script data escaped end tag name state. (Don't emit the token yet; further details will be filled in before it is emitted.)
Anything else
Switch to the script data escaped state. Emit a U+003C LESS-THAN SIGN character token and a U+002F SOLIDUS character token. Reconsume the current input character.
8.2.4.27 Script data escaped end tag name state

Consume the next input character:

"tab" (U+0009)
"LF" (U+000A)
"FF" (U+000C)
U+0020 SPACE
If the current end tag token is an appropriate end tag token, then switch to the before attribute name state. Otherwise, treat it as per the "anything else" entry below.
"/" (U+002F)
If the current end tag token is an appropriate end tag token, then switch to the self-closing start tag state. Otherwise, treat it as per the "anything else" entry below.
">" (U+003E)
If the current end tag token is an appropriate end tag token, then switch to the data state and emit the current tag token. Otherwise, treat it as per the "anything else" entry below.
Uppercase ASCII letter
Append the lowercase version of the current input character (add 0x0020 to the character's code point) to the current tag token's tag name. Append the current input character to the temporary buffer.
Lowercase ASCII letter
Append the current input character to the current tag token's tag name. Append the current input character to the temporary buffer.
Anything else
Switch to the script data escaped state. Emit a U+003C LESS-THAN SIGN character token, a U+002F SOLIDUS character token, and a character token for each of the characters in the temporary buffer (in the order they were added to the buffer). Reconsume the current input character.
8.2.4.28 Script data double escape start state

Consume the next input character:

"tab" (U+0009)
"LF" (U+000A)
"FF" (U+000C)
U+0020 SPACE
"/" (U+002F)
">" (U+003E)
If the temporary buffer is the string "script", then switch to the script data double escaped state. Otherwise, switch to the script data escaped state. Emit the current input character as a character token.
Uppercase ASCII letter
Append the lowercase version of the current input character (add 0x0020 to the character's code point) to the temporary buffer. Emit the current input character as a character token.
Lowercase ASCII letter
Append the current input character to the temporary buffer. Emit the current input character as a character token.
Anything else
Switch to the script data escaped state. Reconsume the current input character.
8.2.4.29 Script data double escaped state

Consume the next input character:

"-" (U+002D)
Switch to the script data double escaped dash state. Emit a U+002D HYPHEN-MINUS character token.
"<" (U+003C)
Switch to the script data double escaped less-than sign state. Emit a U+003C LESS-THAN SIGN character token.
U+0000 NULL
Parse error. Emit a U+FFFD REPLACEMENT CHARACTER character token.
EOF
Parse error. Switch to the data state. Reconsume the EOF character.
Anything else
Emit the current input character as a character token.
8.2.4.30 Script data double escaped dash state

Consume the next input character:

"-" (U+002D)
Switch to the script data double escaped dash dash state. Emit a U+002D HYPHEN-MINUS character token.
"<" (U+003C)
Switch to the script data double escaped less-than sign state. Emit a U+003C LESS-THAN SIGN character token.
U+0000 NULL
Parse error. Switch to the script data double escaped state. Emit a U+FFFD REPLACEMENT CHARACTER character token.
EOF
Parse error. Switch to the data state. Reconsume the EOF character.
Anything else
Switch to the script data double escaped state. Emit the current input character as a character token.
8.2.4.31 Script data double escaped dash dash state

Consume the next input character:

"-" (U+002D)
Emit a U+002D HYPHEN-MINUS character token.
"<" (U+003C)
Switch to the script data double escaped less-than sign state. Emit a U+003C LESS-THAN SIGN character token.
">" (U+003E)
Switch to the script data state. Emit a U+003E GREATER-THAN SIGN character token.
U+0000 NULL
Parse error. Switch to the script data double escaped state. Emit a U+FFFD REPLACEMENT CHARACTER character token.
EOF
Parse error. Switch to the data state. Reconsume the EOF character.
Anything else
Switch to the script data double escaped state. Emit the current input character as a character token.
8.2.4.32 Script data double escaped less-than sign state

Consume the next input character:

"/" (U+002F)
Set the temporary buffer to the empty string. Switch to the script data double escape end state. Emit a U+002F SOLIDUS character token.
Anything else
Switch to the script data double escaped state. Reconsume the current input character.
8.2.4.33 Script data double escape end state

Consume the next input character:

"tab" (U+0009)
"LF" (U+000A)
"FF" (U+000C)
U+0020 SPACE
"/" (U+002F)
">" (U+003E)
If the temporary buffer is the string "script", then switch to the script data escaped state. Otherwise, switch to the script data double escaped state. Emit the current input character as a character token.
Uppercase ASCII letter
Append the lowercase version of the current input character (add 0x0020 to the character's code point) to the temporary buffer. Emit the current input character as a character token.
Lowercase ASCII letter
Append the current input character to the temporary buffer. Emit the current input character as a character token.
Anything else
Switch to the script data double escaped state. Reconsume the current input character.
8.2.4.34 Before attribute name state

Consume the next input character:

"tab" (U+0009)
"LF" (U+000A)
"FF" (U+000C)
U+0020 SPACE
Ignore the character.
"/" (U+002F)
Switch to the self-closing start tag state.
">" (U+003E)
Switch to the data state. Emit the current tag token.
Uppercase ASCII letter
Start a new attribute in the current tag token. Set that attribute's name to the lowercase version of the current input character (add 0x0020 to the character's code point), and its value to the empty string. Switch to the attribute name state.
U+0000 NULL
Parse error. Start a new attribute in the current tag token. Set that attribute's name to a U+FFFD REPLACEMENT CHARACTER character, and its value to the empty string. Switch to the attribute name state.
U+0022 QUOTATION MARK (")
"'" (U+0027)
"<" (U+003C)
"=" (U+003D)
Parse error. Treat it as per the "anything else" entry below.
EOF
Parse error. Switch to the data state. Reconsume the EOF character.
Anything else
Start a new attribute in the current tag token. Set that attribute's name to the current input character, and its value to the empty string. Switch to the attribute name state.
8.2.4.35 Attribute name state

Consume the next input character:

"tab" (U+0009)
"LF" (U+000A)
"FF" (U+000C)
U+0020 SPACE
Switch to the after attribute name state.
"/" (U+002F)
Switch to the self-closing start tag state.
"=" (U+003D)
Switch to the before attribute value state.
">" (U+003E)
Switch to the data state. Emit the current tag token.
Uppercase ASCII letter
Append the lowercase version of the current input character (add 0x0020 to the character's code point) to the current attribute's name.
U+0000 NULL
Parse error. Append a U+FFFD REPLACEMENT CHARACTER character to the current attribute's name.
U+0022 QUOTATION MARK (")
"'" (U+0027)
"<" (U+003C)
Parse error. Treat it as per the "anything else" entry below.
EOF
Parse error. Switch to the data state. Reconsume the EOF character.
Anything else
Append the current input character to the current attribute's name.

When the user agent leaves the attribute name state (and before emitting the tag token, if appropriate), the complete attribute's name must be compared to the other attributes on the same token; if there is already an attribute on the token with the exact same name, then this is a parse error and the new attribute must be removed from the token.

If an attribute is so removed from a token, it, and the value that gets associated with it, if any, are never subsequently used by the parser, and are therefore effectively discarded. Removing the attribute in this way does not change its status as the "current attribute" for the purposes of the tokenizer, however.

8.2.4.36 After attribute name state

Consume the next input character:

"tab" (U+0009)
"LF" (U+000A)
"FF" (U+000C)
U+0020 SPACE
Ignore the character.
"/" (U+002F)
Switch to the self-closing start tag state.
"=" (U+003D)
Switch to the before attribute value state.
">" (U+003E)
Switch to the data state. Emit the current tag token.
Uppercase ASCII letter
Start a new attribute in the current tag token. Set that attribute's name to the lowercase version of the current input character (add 0x0020 to the character's code point), and its value to the empty string. Switch to the attribute name state.
U+0000 NULL
Parse error. Start a new attribute in the current tag token. Set that attribute's name to a U+FFFD REPLACEMENT CHARACTER character, and its value to the empty string. Switch to the attribute name state.
U+0022 QUOTATION MARK (")
"'" (U+0027)
"<" (U+003C)
Parse error. Treat it as per the "anything else" entry below.
EOF
Parse error. Switch to the data state. Reconsume the EOF character.
Anything else
Start a new attribute in the current tag token. Set that attribute's name to the current input character, and its value to the empty string. Switch to the attribute name state.
8.2.4.37 Before attribute value state

Consume the next input character:

"tab" (U+0009)
"LF" (U+000A)
"FF" (U+000C)
U+0020 SPACE
Ignore the character.
U+0022 QUOTATION MARK (")
Switch to the attribute value (double-quoted) state.
U+0026 AMPERSAND (&)
Switch to the attribute value (unquoted) state. Reconsume the current input character.
"'" (U+0027)
Switch to the attribute value (single-quoted) state.
U+0000 NULL
Parse error. Append a U+FFFD REPLACEMENT CHARACTER character to the current attribute's value. Switch to the attribute value (unquoted) state.
">" (U+003E)
Parse error. Switch to the data state. Emit the current tag token.
"<" (U+003C)
"=" (U+003D)
"`" (U+0060)
Parse error. Treat it as per the "anything else" entry below.
EOF
Parse error. Switch to the data state. Reconsume the EOF character.
Anything else
Append the current input character to the current attribute's value. Switch to the attribute value (unquoted) state.
8.2.4.38 Attribute value (double-quoted) state

Consume the next input character:

U+0022 QUOTATION MARK (")
Switch to the after attribute value (quoted) state.
U+0026 AMPERSAND (&)
Switch to the character reference in attribute value state, with the additional allowed character being U+0022 QUOTATION MARK (").
U+0000 NULL
Parse error. Append a U+FFFD REPLACEMENT CHARACTER character to the current attribute's value.
EOF
Parse error. Switch to the data state. Reconsume the EOF character.
Anything else
Append the current input character to the current attribute's value.
8.2.4.39 Attribute value (single-quoted) state

Consume the next input character:

"'" (U+0027)
Switch to the after attribute value (quoted) state.
U+0026 AMPERSAND (&)
Switch to the character reference in attribute value state, with the additional allowed character being "'" (U+0027).
U+0000 NULL
Parse error. Append a U+FFFD REPLACEMENT CHARACTER character to the current attribute's value.
EOF
Parse error. Switch to the data state. Reconsume the EOF character.
Anything else
Append the current input character to the current attribute's value.
8.2.4.40 Attribute value (unquoted) state

Consume the next input character:

"tab" (U+0009)
"LF" (U+000A)
"FF" (U+000C)
U+0020 SPACE
Switch to the before attribute name state.
U+0026 AMPERSAND (&)
Switch to the character reference in attribute value state, with the additional allowed character being ">" (U+003E).
">" (U+003E)
Switch to the data state. Emit the current tag token.
U+0000 NULL
Parse error. Append a U+FFFD REPLACEMENT CHARACTER character to the current attribute's value.
U+0022 QUOTATION MARK (")
"'" (U+0027)
"<" (U+003C)
"=" (U+003D)
"`" (U+0060)
Parse error. Treat it as per the "anything else" entry below.
EOF
Parse error. Switch to the data state. Reconsume the EOF character.
Anything else
Append the current input character to the current attribute's value.
8.2.4.41 Character reference in attribute value state

Attempt to consume a character reference.

If nothing is returned, append a U+0026 AMPERSAND character (&) to the current attribute's value.

Otherwise, append the returned character tokens to the current attribute's value.

Finally, switch back to the attribute value state that switched into this state.

8.2.4.42 After attribute value (quoted) state

Consume the next input character:

"tab" (U+0009)
"LF" (U+000A)
"FF" (U+000C)
U+0020 SPACE
Switch to the before attribute name state.
"/" (U+002F)
Switch to the self-closing start tag state.
">" (U+003E)
Switch to the data state. Emit the current tag token.
EOF
Parse error. Switch to the data state. Reconsume the EOF character.
Anything else
Parse error. Switch to the before attribute name state. Reconsume the character.
8.2.4.43 Self-closing start tag state

Consume the next input character:

">" (U+003E)
Set the self-closing flag of the current tag token. Switch to the data state. Emit the current tag token.
EOF
Parse error. Switch to the data state. Reconsume the EOF character.
Anything else
Parse error. Switch to the before attribute name state. Reconsume the character.
8.2.4.44 Bogus comment state

Consume every character up to and including the first ">" (U+003E) character or the end of the file (EOF), whichever comes first. Emit a comment token whose data is the concatenation of all the characters starting from and including the character that caused the state machine to switch into the bogus comment state, up to and including the character immediately before the last consumed character (i.e. up to the character just before the U+003E or EOF character), but with any U+0000 NULL characters replaced by U+FFFD REPLACEMENT CHARACTER characters. (If the comment was started by the end of the file (EOF), the token is empty. Similarly, the token is empty if it was generated by the string "<!>".)

Switch to the data state.

If the end of the file was reached, reconsume the EOF character.

8.2.4.45 Markup declaration open state

If the next two characters are both "-" (U+002D) characters, consume those two characters, create a comment token whose data is the empty string, and switch to the comment start state.

Otherwise, if the next seven characters are an ASCII case-insensitive match for the word "DOCTYPE", then consume those characters and switch to the DOCTYPE state.

Otherwise, if there is an adjusted current node and it is not an element in the HTML namespace and the next seven characters are a case-sensitive match for the string "[CDATA[" (the five uppercase letters "CDATA" with a U+005B LEFT SQUARE BRACKET character before and after), then consume those characters and switch to the CDATA section state.

Otherwise, this is a parse error. Switch to the bogus comment state. The next character that is consumed, if any, is the first character that will be in the comment.

8.2.4.46 Comment start state

Consume the next input character:

"-" (U+002D)
Switch to the comment start dash state.
U+0000 NULL
Parse error. Append a U+FFFD REPLACEMENT CHARACTER character to the comment token's data. Switch to the comment state.
">" (U+003E)
Parse error. Switch to the data state. Emit the comment token.
EOF
Parse error. Switch to the data state. Emit the comment token. Reconsume the EOF character.
Anything else
Append the current input character to the comment token's data. Switch to the comment state.
8.2.4.47 Comment start dash state

Consume the next input character:

"-" (U+002D)
Switch to the comment end state
U+0000 NULL
Parse error. Append a "-" (U+002D) character and a U+FFFD REPLACEMENT CHARACTER character to the comment token's data. Switch to the comment state.
">" (U+003E)
Parse error. Switch to the data state. Emit the comment token.
EOF
Parse error. Switch to the data state. Emit the comment token. Reconsume the EOF character.
Anything else
Append a "-" (U+002D) character and the current input character to the comment token's data. Switch to the comment state.
8.2.4.48 Comment state

Consume the next input character:

"-" (U+002D)
Switch to the comment end dash state
U+0000 NULL
Parse error. Append a U+FFFD REPLACEMENT CHARACTER character to the comment token's data.
EOF
Parse error. Switch to the data state. Emit the comment token. Reconsume the EOF character.
Anything else
Append the current input character to the comment token's data.
8.2.4.49 Comment end dash state

Consume the next input character:

"-" (U+002D)
Switch to the comment end state
U+0000 NULL
Parse error. Append a "-" (U+002D) character and a U+FFFD REPLACEMENT CHARACTER character to the comment token's data. Switch to the comment state.
EOF
Parse error. Switch to the data state. Emit the comment token. Reconsume the EOF character.
Anything else
Append a "-" (U+002D) character and the current input character to the comment token's data. Switch to the comment state.
8.2.4.50 Comment end state

Consume the next input character:

">" (U+003E)
Switch to the data state. Emit the comment token.
U+0000 NULL
Parse error. Append two "-" (U+002D) characters and a U+FFFD REPLACEMENT CHARACTER character to the comment token's data. Switch to the comment state.
"!" (U+0021)
Parse error. Switch to the comment end bang state.
"-" (U+002D)
Parse error. Append a "-" (U+002D) character to the comment token's data.
EOF
Parse error. Switch to the data state. Emit the comment token. Reconsume the EOF character.
Anything else
Parse error. Append two "-" (U+002D) characters and the current input character to the comment token's data. Switch to the comment state.
8.2.4.51 Comment end bang state

Consume the next input character:

"-" (U+002D)
Append two "-" (U+002D) characters and a "!" (U+0021) character to the comment token's data. Switch to the comment end dash state.
">" (U+003E)
Switch to the data state. Emit the comment token.
U+0000 NULL
Parse error. Append two "-" (U+002D) characters, a "!" (U+0021) character, and a U+FFFD REPLACEMENT CHARACTER character to the comment token's data. Switch to the comment state.
EOF
Parse error. Switch to the data state. Emit the comment token. Reconsume the EOF character.
Anything else
Append two "-" (U+002D) characters, a "!" (U+0021) character, and the current input character to the comment token's data. Switch to the comment state.
8.2.4.52 DOCTYPE state

Consume the next input character:

"tab" (U+0009)
"LF" (U+000A)
"FF" (U+000C)
U+0020 SPACE
Switch to the before DOCTYPE name state.
EOF
Parse error. Switch to the data state. Create a new DOCTYPE token. Set its force-quirks flag to on. Emit the token. Reconsume the EOF character.
Anything else
Parse error. Switch to the before DOCTYPE name state. Reconsume the character.
8.2.4.53 Before DOCTYPE name state

Consume the next input character:

"tab" (U+0009)
"LF" (U+000A)
"FF" (U+000C)
U+0020 SPACE
Ignore the character.
Uppercase ASCII letter
Create a new DOCTYPE token. Set the token's name to the lowercase version of the current input character (add 0x0020 to the character's code point). Switch to the DOCTYPE name state.
U+0000 NULL
Parse error. Create a new DOCTYPE token. Set the token's name to a U+FFFD REPLACEMENT CHARACTER character. Switch to the DOCTYPE name state.
">" (U+003E)
Parse error. Create a new DOCTYPE token. Set its force-quirks flag to on. Switch to the data state. Emit the token.
EOF
Parse error. Switch to the data state. Create a new DOCTYPE token. Set its force-quirks flag to on. Emit the token. Reconsume the EOF character.
Anything else
Create a new DOCTYPE token. Set the token's name to the current input character. Switch to the DOCTYPE name state.
8.2.4.54 DOCTYPE name state

Consume the next input character:

"tab" (U+0009)
"LF" (U+000A)
"FF" (U+000C)
U+0020 SPACE
Switch to the after DOCTYPE name state.
">" (U+003E)
Switch to the data state. Emit the current DOCTYPE token.
Uppercase ASCII letter
Append the lowercase version of the current input character (add 0x0020 to the character's code point) to the current DOCTYPE token's name.
U+0000 NULL
Parse error. Append a U+FFFD REPLACEMENT CHARACTER character to the current DOCTYPE token's name.
EOF
Parse error. Switch to the data state. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Reconsume the EOF character.
Anything else
Append the current input character to the current DOCTYPE token's name.
8.2.4.55 After DOCTYPE name state

Consume the next input character:

"tab" (U+0009)
"LF" (U+000A)
"FF" (U+000C)
U+0020 SPACE
Ignore the character.
">" (U+003E)
Switch to the data state. Emit the current DOCTYPE token.
EOF
Parse error. Switch to the data state. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Reconsume the EOF character.
Anything else

If the six characters starting from the current input character are an ASCII case-insensitive match for the word "PUBLIC", then consume those characters and switch to the after DOCTYPE public keyword state.

Otherwise, if the six characters starting from the current input character are an ASCII case-insensitive match for the word "SYSTEM", then consume those characters and switch to the after DOCTYPE system keyword state.

Otherwise, this is a parse error. Set the DOCTYPE token's force-quirks flag to on. Switch to the bogus DOCTYPE state.

8.2.4.56 After DOCTYPE public keyword state

Consume the next input character:

"tab" (U+0009)
"LF" (U+000A)
"FF" (U+000C)
U+0020 SPACE
Switch to the before DOCTYPE public identifier state.
U+0022 QUOTATION MARK (")
Parse error. Set the DOCTYPE token's public identifier to the empty string (not missing), then switch to the DOCTYPE public identifier (double-quoted) state.
"'" (U+0027)
Parse error. Set the DOCTYPE token's public identifier to the empty string (not missing), then switch to the DOCTYPE public identifier (single-quoted) state.
">" (U+003E)
Parse error. Set the DOCTYPE token's force-quirks flag to on. Switch to the data state. Emit that DOCTYPE token.
EOF
Parse error. Switch to the data state. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Reconsume the EOF character.
Anything else
Parse error. Set the DOCTYPE token's force-quirks flag to on. Switch to the bogus DOCTYPE state.
8.2.4.57 Before DOCTYPE public identifier state

Consume the next input character:

"tab" (U+0009)
"LF" (U+000A)
"FF" (U+000C)
U+0020 SPACE
Ignore the character.
U+0022 QUOTATION MARK (")
Set the DOCTYPE token's public identifier to the empty string (not missing), then switch to the DOCTYPE public identifier (double-quoted) state.
"'" (U+0027)
Set the DOCTYPE token's public identifier to the empty string (not missing), then switch to the DOCTYPE public identifier (single-quoted) state.
">" (U+003E)
Parse error. Set the DOCTYPE token's force-quirks flag to on. Switch to the data state. Emit that DOCTYPE token.
EOF
Parse error. Switch to the data state. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Reconsume the EOF character.
Anything else
Parse error. Set the DOCTYPE token's force-quirks flag to on. Switch to the bogus DOCTYPE state.
8.2.4.58 DOCTYPE public identifier (double-quoted) state

Consume the next input character:

U+0022 QUOTATION MARK (")
Switch to the after DOCTYPE public identifier state.
U+0000 NULL
Parse error. Append a U+FFFD REPLACEMENT CHARACTER character to the current DOCTYPE token's public identifier.
">" (U+003E)
Parse error. Set the DOCTYPE token's force-quirks flag to on. Switch to the data state. Emit that DOCTYPE token.
EOF
Parse error. Switch to the data state. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Reconsume the EOF character.
Anything else
Append the current input character to the current DOCTYPE token's public identifier.
8.2.4.59 DOCTYPE public identifier (single-quoted) state

Consume the next input character:

"'" (U+0027)
Switch to the after DOCTYPE public identifier state.
U+0000 NULL
Parse error. Append a U+FFFD REPLACEMENT CHARACTER character to the current DOCTYPE token's public identifier.
">" (U+003E)
Parse error. Set the DOCTYPE token's force-quirks flag to on. Switch to the data state. Emit that DOCTYPE token.
EOF
Parse error. Switch to the data state. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Reconsume the EOF character.
Anything else
Append the current input character to the current DOCTYPE token's public identifier.
8.2.4.60 After DOCTYPE public identifier state

Consume the next input character:

"tab" (U+0009)
"LF" (U+000A)
"FF" (U+000C)
U+0020 SPACE
Switch to the between DOCTYPE public and system identifiers state.
">" (U+003E)
Switch to the data state. Emit the current DOCTYPE token.
U+0022 QUOTATION MARK (")
Parse error. Set the DOCTYPE token's system identifier to the empty string (not missing), then switch to the DOCTYPE system identifier (double-quoted) state.
"'" (U+0027)
Parse error. Set the DOCTYPE token's system identifier to the empty string (not missing), then switch to the DOCTYPE system identifier (single-quoted) state.
EOF
Parse error. Switch to the data state. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Reconsume the EOF character.
Anything else
Parse error. Set the DOCTYPE token's force-quirks flag to on. Switch to the bogus DOCTYPE state.
8.2.4.61 Between DOCTYPE public and system identifiers state

Consume the next input character:

"tab" (U+0009)
"LF" (U+000A)
"FF" (U+000C)
U+0020 SPACE
Ignore the character.
">" (U+003E)
Switch to the data state. Emit the current DOCTYPE token.
U+0022 QUOTATION MARK (")
Set the DOCTYPE token's system identifier to the empty string (not missing), then switch to the DOCTYPE system identifier (double-quoted) state.
"'" (U+0027)
Set the DOCTYPE token's system identifier to the empty string (not missing), then switch to the DOCTYPE system identifier (single-quoted) state.
EOF
Parse error. Switch to the data state. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Reconsume the EOF character.
Anything else
Parse error. Set the DOCTYPE token's force-quirks flag to on. Switch to the bogus DOCTYPE state.
8.2.4.62 After DOCTYPE system keyword state

Consume the next input character:

"tab" (U+0009)
"LF" (U+000A)
"FF" (U+000C)
U+0020 SPACE
Switch to the before DOCTYPE system identifier state.
U+0022 QUOTATION MARK (")
Parse error. Set the DOCTYPE token's system identifier to the empty string (not missing), then switch to the DOCTYPE system identifier (double-quoted) state.
"'" (U+0027)
Parse error. Set the DOCTYPE token's system identifier to the empty string (not missing), then switch to the DOCTYPE system identifier (single-quoted) state.
">" (U+003E)
Parse error. Set the DOCTYPE token's force-quirks flag to on. Switch to the data state. Emit that DOCTYPE token.
EOF
Parse error. Switch to the data state. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Reconsume the EOF character.
Anything else
Parse error. Set the DOCTYPE token's force-quirks flag to on. Switch to the bogus DOCTYPE state.
8.2.4.63 Before DOCTYPE system identifier state

Consume the next input character:

"tab" (U+0009)
"LF" (U+000A)
"FF" (U+000C)
U+0020 SPACE
Ignore the character.
U+0022 QUOTATION MARK (")
Set the DOCTYPE token's system identifier to the empty string (not missing), then switch to the DOCTYPE system identifier (double-quoted) state.
"'" (U+0027)
Set the DOCTYPE token's system identifier to the empty string (not missing), then switch to the DOCTYPE system identifier (single-quoted) state.
">" (U+003E)
Parse error. Set the DOCTYPE token's force-quirks flag to on. Switch to the data state. Emit that DOCTYPE token.
EOF
Parse error. Switch to the data state. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Reconsume the EOF character.
Anything else
Parse error. Set the DOCTYPE token's force-quirks flag to on. Switch to the bogus DOCTYPE state.
8.2.4.64 DOCTYPE system identifier (double-quoted) state

Consume the next input character:

U+0022 QUOTATION MARK (")
Switch to the after DOCTYPE system identifier state.
U+0000 NULL
Parse error. Append a U+FFFD REPLACEMENT CHARACTER character to the current DOCTYPE token's system identifier.
">" (U+003E)
Parse error. Set the DOCTYPE token's force-quirks flag to on. Switch to the data state. Emit that DOCTYPE token.
EOF
Parse error. Switch to the data state. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Reconsume the EOF character.
Anything else
Append the current input character to the current DOCTYPE token's system identifier.
8.2.4.65 DOCTYPE system identifier (single-quoted) state

Consume the next input character:

"'" (U+0027)
Switch to the after DOCTYPE system identifier state.
U+0000 NULL
Parse error. Append a U+FFFD REPLACEMENT CHARACTER character to the current DOCTYPE token's system identifier.
">" (U+003E)
Parse error. Set the DOCTYPE token's force-quirks flag to on. Switch to the data state. Emit that DOCTYPE token.
EOF
Parse error. Switch to the data state. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Reconsume the EOF character.
Anything else
Append the current input character to the current DOCTYPE token's system identifier.
8.2.4.66 After DOCTYPE system identifier state

Consume the next input character:

"tab" (U+0009)
"LF" (U+000A)
"FF" (U+000C)
U+0020 SPACE
Ignore the character.
">" (U+003E)
Switch to the data state. Emit the current DOCTYPE token.
EOF
Parse error. Switch to the data state. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE token. Reconsume the EOF character.
Anything else
Parse error. Switch to the bogus DOCTYPE state. (This does not set the DOCTYPE token's force-quirks flag to on.)
8.2.4.67 Bogus DOCTYPE state

Consume the next input character:

">" (U+003E)
Switch to the data state. Emit the DOCTYPE token.
EOF
Switch to the data state. Emit the DOCTYPE token. Reconsume the EOF character.
Anything else
Ignore the character.
8.2.4.68 CDATA section state

Switch to the data state.

Consume every character up to the next occurrence of the three character sequence U+005D RIGHT SQUARE BRACKET U+005D RIGHT SQUARE BRACKET U+003E GREATER-THAN SIGN (]]>), or the end of the file (EOF), whichever comes first. Emit a series of character tokens consisting of all the characters consumed except the matching three character sequence at the end (if one was found before the end of the file).

If the end of the file was reached, reconsume the EOF character.

8.2.4.69 Tokenizing character references

This section defines how to consume a character reference, optionally with an additional allowed character, which, if specified where the algorithm is invoked, adds a character to the list of characters that cause there to not be a character reference.

This definition is used when parsing character references in text and in attributes.

The behavior depends on the identity of the next character (the one immediately after the U+0026 AMPERSAND character), as follows:

"tab" (U+0009)
"LF" (U+000A)
"FF" (U+000C)
U+0020 SPACE
U+003C LESS-THAN SIGN
U+0026 AMPERSAND
EOF
The additional allowed character, if there is one
Not a character reference. No characters are consumed, and nothing is returned. (This is not an error, either.)
"#" (U+0023)

Consume the U+0023 NUMBER SIGN.

The behavior further depends on the character after the U+0023 NUMBER SIGN:

U+0078 LATIN SMALL LETTER X
U+0058 LATIN CAPITAL LETTER X

Consume the X.

Follow the steps below, but using ASCII hex digits.

When it comes to interpreting the number, interpret it as a hexadecimal number.

Anything else

Follow the steps below, but using ASCII digits.

When it comes to interpreting the number, interpret it as a decimal number.

Consume as many characters as match the range of characters given above (ASCII hex digits or ASCII digits).

If no characters match the range, then don't consume any characters (and unconsume the U+0023 NUMBER SIGN character and, if appropriate, the X character). This is a parse error; nothing is returned.

Otherwise, if the next character is a U+003B SEMICOLON, consume that too. If it isn't, there is a parse error.

If one or more characters match the range, then take them all and interpret the string of characters as a number (either hexadecimal or decimal as appropriate).

If that number is one of the numbers in the first column of the following table, then this is a parse error. Find the row with that number in the first column, and return a character token for the Unicode character given in the second column of that row.

Number Unicode character
0x00 U+FFFD REPLACEMENT CHARACTER
0x80 U+20AC EURO SIGN (€)
0x82 U+201A SINGLE LOW-9 QUOTATION MARK (‚)
0x83 U+0192 LATIN SMALL LETTER F WITH HOOK (ƒ)
0x84 U+201E DOUBLE LOW-9 QUOTATION MARK („)
0x85 U+2026 HORIZONTAL ELLIPSIS (…)
0x86 U+2020 DAGGER (†)
0x87 U+2021 DOUBLE DAGGER (‡)
0x88 U+02C6 MODIFIER LETTER CIRCUMFLEX ACCENT (ˆ)
0x89 U+2030 PER MILLE SIGN (‰)
0x8A U+0160 LATIN CAPITAL LETTER S WITH CARON (Š)
0x8B U+2039 SINGLE LEFT-POINTING ANGLE QUOTATION MARK (‹)
0x8C U+0152 LATIN CAPITAL LIGATURE OE (Œ)
0x8E U+017D LATIN CAPITAL LETTER Z WITH CARON (Ž)
0x91 U+2018 LEFT SINGLE QUOTATION MARK (‘)
0x92 U+2019 RIGHT SINGLE QUOTATION MARK (’)
0x93 U+201C LEFT DOUBLE QUOTATION MARK (“)
0x94 U+201D RIGHT DOUBLE QUOTATION MARK (”)
0x95 U+2022 BULLET (•)
0x96 U+2013 EN DASH (–)
0x97 U+2014 EM DASH (—)
0x98 U+02DC SMALL TILDE (˜)
0x99 U+2122 TRADE MARK SIGN (™)
0x9A U+0161 LATIN SMALL LETTER S WITH CARON (š)
0x9B U+203A SINGLE RIGHT-POINTING ANGLE QUOTATION MARK (›)
0x9C U+0153 LATIN SMALL LIGATURE OE (œ)
0x9E U+017E LATIN SMALL LETTER Z WITH CARON (ž)
0x9F U+0178 LATIN CAPITAL LETTER Y WITH DIAERESIS (Ÿ)

Otherwise, if the number is in the range 0xD800 to 0xDFFF or is greater than 0x10FFFF, then this is a parse error. Return a U+FFFD REPLACEMENT CHARACTER character token.

Otherwise, return a character token for the Unicode character whose code point is that number. Additionally, if the number is in the range 0x0001 to 0x0008, 0x000D to 0x001F, 0x007F to 0x009F, 0xFDD0 to 0xFDEF, or is one of 0x000B, 0xFFFE, 0xFFFF, 0x1FFFE, 0x1FFFF, 0x2FFFE, 0x2FFFF, 0x3FFFE, 0x3FFFF, 0x4FFFE, 0x4FFFF, 0x5FFFE, 0x5FFFF, 0x6FFFE, 0x6FFFF, 0x7FFFE, 0x7FFFF, 0x8FFFE, 0x8FFFF, 0x9FFFE, 0x9FFFF, 0xAFFFE, 0xAFFFF, 0xBFFFE, 0xBFFFF, 0xCFFFE, 0xCFFFF, 0xDFFFE, 0xDFFFF, 0xEFFFE, 0xEFFFF, 0xFFFFE, 0xFFFFF, 0x10FFFE, or 0x10FFFF, then this is a parse error.

Anything else

Consume the maximum number of characters possible, with the consumed characters matching one of the identifiers in the first column of the named character references table (in a case-sensitive manner).

If no match can be made, then no characters are consumed, and nothing is returned. In this case, if the characters after the U+0026 AMPERSAND character (&) consist of a sequence of one or more alphanumeric ASCII characters followed by a U+003B SEMICOLON character (;), then this is a parse error.

If the character reference is being consumed as part of an attribute, and the last character matched is not a ";" (U+003B) character, and the next character is either a "=" (U+003D) character or an alphanumeric ASCII character, then, for historical reasons, all the characters that were matched after the U+0026 AMPERSAND character (&) must be unconsumed, and nothing is returned. However, if this next character is in fact a "=" (U+003D) character, then this is a parse error, because some legacy user agents will misinterpret the markup in those cases.

Otherwise, a character reference is parsed. If the last character matched is not a ";" (U+003B) character, there is a parse error.

Return one or two character tokens for the character(s) corresponding to the character reference name (as given by the second column of the named character references table).

If the markup contains (not in an attribute) the string I'm &notit; I tell you, the character reference is parsed as "not", as in, I'm ¬it; I tell you (and this is a parse error). But if the markup was I'm &notin; I tell you, the character reference would be parsed as "notin;", resulting in I'm ∉ I tell you (and no parse error).

8.2.5 Tree construction

The input to the tree construction stage is a sequence of tokens from the tokenization stage. The tree construction stage is associated with a DOM Document object when a parser is created. The "output" of this stage consists of dynamically modifying or extending that document's DOM tree.

This specification does not define when an interactive user agent has to render the Document so that it is available to the user, or when it has to begin accepting user input.


As each token is emitted from the tokenizer, the user agent must follow the appropriate steps from the following list, known as the tree construction dispatcher:

If there is no adjusted current node
If the adjusted current node is an element in the HTML namespace
If the adjusted current node is a MathML text integration point and the token is a start tag whose tag name is neither "mglyph" nor "malignmark"
If the adjusted current node is a MathML text integration point and the token is a character token
If the adjusted current node is an annotation-xml element in the MathML namespace and the token is a start tag whose tag name is "svg"
If the adjusted current node is an HTML integration point and the token is a start tag
If the adjusted current node is an HTML integration point and the token is a character token
If the token is an end-of-file token
Process the token according to the rules given in the section corresponding to the current insertion mode in HTML content.
Otherwise
Process the token according to the rules given in the section for parsing tokens in foreign content.

The next token is the token that is about to be processed by the tree construction dispatcher (even if the token is subsequently just ignored).

A node is a MathML text integration point if it is one of the following elements:

A node is an HTML integration point if it is one of the following elements:

Not all of the tag names mentioned below are conformant tag names in this specification; many are included to handle legacy content. They still form part of the algorithm that implementations are required to implement to claim conformance.

The algorithm described below places no limit on the depth of the DOM tree generated, or on the length of tag names, attribute names, attribute values, Text nodes, etc. While implementors are encouraged to avoid arbitrary limits, it is recognised that practical concerns will likely force user agents to impose nesting depth constraints.

8.2.5.1 Creating and inserting nodes

While the parser is processing a token, it can enable or disable foster parenting. This affects the following algorithm.

The appropriate place for inserting a node, optionally using a particular override target, is the position in an element returned by running the following steps:

  1. If there was an override target specified, then let target be the override target.

    Otherwise, let target be the current node.

  2. Determine the adjusted insertion location using the first matching steps from the following list:

    If foster parenting is enabled and target is a table, tbody, tfoot, thead, or tr element

    Foster parenting happens when content is misnested in tables.

    Run these substeps:

    1. Let last template be the last template element in the stack of open elements, if any.

    2. Let last table be the last table element in the stack of open elements, if any.

    3. If there is a last template and either there is no last table, or there is one, but last template is lower (more recently added) than last table in the stack of open elements, then: let adjusted insertion location be inside last template's template contents, after its last child (if any), and abort these substeps.

    4. If there is no last table, then let adjusted insertion location be inside the first element in the stack of open elements (the html element), after its last child (if any), and abort these substeps. (fragment case)

    5. If last table has a parent node, then let adjusted insertion location be inside last table's parent node, immediately before last table, and abort these substeps.

    6. Let previous element be the element immediately above last table in the stack of open elements.

    7. Let adjusted insertion location be inside previous element, after its last child (if any).

    These steps are involved in part because it's possible for elements, the table element in this case in particular, to have been moved by a script around in the DOM, or indeed removed from the DOM entirely, after the element was inserted by the parser.

    Otherwise

    Let adjusted insertion location be inside target, after its last child (if any).

  3. If the adjusted insertion location is inside a template element, let it instead be inside the template element's template contents, after its last child (if any).

  4. Return the adjusted insertion location.


When the steps below require the UA to create an element for a token in a particular given namespace and with a particular intended parent, the UA must run the following steps:

  1. Create a node implementing the interface appropriate for the element type corresponding to the tag name of the token in given namespace (as given in the specification that defines that element, e.g. for an a element in the HTML namespace, this specification defines it to be the HTMLAnchorElement interface), with the tag name being the name of that element, with the node being in the given namespace, and with the attributes on the node being those given in the given token.

    The interface appropriate for an element in the HTML namespace that is not defined in this specification (or other applicable specifications) is HTMLUnknownElement. Elements in other namespaces whose interface is not defined by that namespace's specification must use the interface Element.

    The ownerDocument of the newly created element must be the same as that of the intended parent.

  2. If the newly created element has an xmlns attribute in the XMLNS namespace whose value is not exactly the same as the element's namespace, that is a parse error. Similarly, if the newly created element has an xmlns:xlink attribute in the XMLNS namespace whose value is not the XLink Namespace, that is a parse error.

  3. If the newly created element is a resettable element, invoke its reset algorithm. (This initializes the element's value and checkedness based on the element's attributes.)

  4. If the element is a form-associated element, and the form element pointer is not null, and there is no template element on the stack of open elements, and the newly created element is either not reassociateable or doesn't have a form attribute, and the intended parent is in the same home subtree as the element pointed to by the form element pointer, associate the newly created element with the form element pointed to by the form element pointer, and suppress the running of the reset the form owner algorithm when the parser subsequently attempts to insert the element.

  5. Return the newly created element.


When the steps below require the user agent to insert a foreign element for a token in a given namespace, the user agent must run these steps:

  1. Let the adjusted insertion location be the appropriate place for inserting a node.

  2. Create an element for the token in the given namespace, with the intended parent being the element in which the adjusted insertion location finds itself.

  3. If it is possible to insert an element at the adjusted insertion location, then insert the newly created element at the adjusted insertion location.

    If the adjusted insertion location cannot accept more elements, e.g. because it's a Document that already has an element child, then the newly created element is dropped on the floor.

  4. Push the element onto the stack of open elements so that it is the new current node.

  5. Return the newly created element.

When the steps below require the user agent to insert an HTML element for a token, the user agent must insert a foreign element for the token, in the HTML namespace.


When the steps below require the user agent to adjust MathML attributes for a token, then, if the token has an attribute named definitionurl, change its name to definitionURL (note the case difference).

When the steps below require the user agent to adjust SVG attributes for a token, then, for each attribute on the token whose attribute name is one of the ones in the first column of the following table, change the attribute's name to the name given in the corresponding cell in the second column. (This fixes the case of SVG attributes that are not all lowercase.)

Attribute name on token Attribute name on element
attributename attributeName
attributetype attributeType
basefrequency baseFrequency
baseprofile baseProfile
calcmode calcMode
clippathunits clipPathUnits
diffuseconstant diffuseConstant
edgemode edgeMode
externalresourcesrequired externalResourcesRequired
filterunits filterUnits
glyphref glyphRef
gradienttransform gradientTransform
gradientunits gradientUnits
kernelmatrix kernelMatrix
kernelunitlength kernelUnitLength
keypoints keyPoints
keysplines keySplines
keytimes keyTimes
lengthadjust lengthAdjust
limitingconeangle limitingConeAngle
markerheight markerHeight
markerunits markerUnits
markerwidth markerWidth
maskcontentunits maskContentUnits
maskunits maskUnits
numoctaves numOctaves
pathlength pathLength
patterncontentunits patternContentUnits
patterntransform patternTransform
patternunits patternUnits
pointsatx pointsAtX
pointsaty pointsAtY
pointsatz pointsAtZ
preservealpha preserveAlpha
preserveaspectratio preserveAspectRatio
primitiveunits primitiveUnits
refx refX
refy refY
repeatcount repeatCount
repeatdur repeatDur
requiredextensions requiredExtensions
requiredfeatures requiredFeatures
specularconstant specularConstant
specularexponent specularExponent
spreadmethod spreadMethod
startoffset startOffset
stddeviation stdDeviation
stitchtiles stitchTiles
surfacescale surfaceScale
systemlanguage systemLanguage
tablevalues tableValues
targetx targetX
targety targetY
textlength textLength
viewbox viewBox
viewtarget viewTarget
xchannelselector xChannelSelector
ychannelselector yChannelSelector
zoomandpan zoomAndPan

When the steps below require the user agent to adjust foreign attributes for a token, then, if any of the attributes on the token match the strings given in the first column of the following table, let the attribute be a namespaced attribute, with the prefix being the string given in the corresponding cell in the second column, the local name being the string given in the corresponding cell in the third column, and the namespace being the namespace given in the corresponding cell in the fourth column. (This fixes the use of namespaced attributes, in particular lang attributes in the XML namespace.)

Attribute name Prefix Local name Namespace
xlink:actuate xlink actuate XLink namespace
xlink:arcrole xlink arcrole XLink namespace
xlink:href xlink href XLink namespace
xlink:role xlink role XLink namespace
xlink:show xlink show XLink namespace
xlink:title xlink title XLink namespace
xlink:type xlink type XLink namespace
xml:base xml base XML namespace
xml:lang xml lang XML namespace
xml:space xml space XML namespace
xmlns (none) xmlns XMLNS namespace
xmlns:xlink xmlns xlink XMLNS namespace

When the steps below require the user agent to insert a character while processing a token, the user agent must run the following steps:

  1. Let data be the characters passed to the algorithm, or, if no characters were explicitly specified, the character of the character token being processed.

  2. Let the adjusted insertion location be the appropriate place for inserting a node.

  3. If the adjusted insertion location is in a Document node, then abort these steps.

    The DOM will not let Document nodes have Text node children, so they are dropped on the floor.

  4. If there is a Text node immediately before the adjusted insertion location, then append data to that Text node's data.

    Otherwise, create a new Text node whose data is data and whose ownerDocument is the same as that of the element in which the adjusted insertion location finds itself, and insert the newly created node at the adjusted insertion location.

Here are some sample inputs to the parser and the corresponding number of Text nodes that they result in, assuming a user agent that executes scripts.

Input Number of Text nodes
A<script>
var script = document.getElementsByTagName('script')[0];
document.body.removeChild(script);
</script>B
One Text node in the document, containing "AB".
A<script>
var text = document.createTextNode('B');
document.body.appendChild(text);
</script>C
Three Text nodes; "A" before the script, the script's contents, and "BC" after the script (the parser appends to the Text node created by the script).
A<script>
var text = document.getElementsByTagName('script')[0].firstChild;
text.data = 'B';
document.body.appendChild(text);
</script>C
Two adjacent Text nodes in the document, containing "A" and "BC".
A<table>B<tr>C</tr>D</table>
One Text node before the table, containing "ABCD". (This is caused by foster parenting.)
A<table><tr> B</tr> C</table>
One Text node before the table, containing "A B C" (A-space-B-space-C). (This is caused by foster parenting.)
A<table><tr> B</tr> </em>C</table>
One Text node before the table, containing "A BC" (A-space-B-C), and one Text node inside the table (as a child of a tbody) with a single space character. (Space characters separated from non-space characters by non-character tokens are not affected by foster parenting, even if those other tokens then get ignored.)

When the steps below require the user agent to insert a comment while processing a comment token, optionally with an explicitly insertion position position, the user agent must run the following steps:

  1. Let data be the data given in the comment token being processed.

  2. If position was specified, then let the adjusted insertion location be position. Otherwise, let adjusted insertion location be the appropriate place for inserting a node.

  3. Create a Comment node whose data attribute is set to data and whose ownerDocument is the same as that of the node in which the adjusted insertion location finds itself.

  4. Insert the newly created node at the adjusted insertion location.


DOM mutation events must not fire for changes caused by the UA parsing the document. This includes the parsing of any content inserted using document.write() and document.writeln() calls. [DOMEVENTS]

However, mutation observers do fire, as required by the DOM specification.

8.2.5.2 Parsing elements that contain only text

The generic raw text element parsing algorithm and the generic RCDATA element parsing algorithm consist of the following steps. These algorithms are always invoked in response to a start tag token.

  1. Insert an HTML element for the token.

  2. If the algorithm that was invoked is the generic raw text element parsing algorithm, switch the tokenizer to the RAWTEXT state; otherwise the algorithm invoked was the generic RCDATA element parsing algorithm, switch the tokenizer to the RCDATA state.

  3. Let the original insertion mode be the current insertion mode.

  4. Then, switch the insertion mode to "text".

8.2.5.3 Closing elements that have implied end tags

When the steps below require the UA to generate implied end tags, then, while the current node is a dd element, a dt element, an li element, an option element, an optgroup element, a p element, an rb element, an rp element, an rt element, or an rtc element, the UA must pop the current node off the stack of open elements.

If a step requires the UA to generate implied end tags but lists an element to exclude from the process, then the UA must perform the above steps as if that element was not in the above list.

8.2.5.4 The rules for parsing tokens in HTML content
8.2.5.4.1 The "initial" insertion mode

When the user agent is to apply the rules for the "initial" insertion mode, the user agent must handle the token as follows:

A character token that is one of U+0009 CHARACTER TABULATION, "LF" (U+000A), "FF" (U+000C), "CR" (U+000D), or U+0020 SPACE

Ignore the token.

A comment token

Insert a comment as the last child of the Document object.

A DOCTYPE token

If the DOCTYPE token's name is not a case-sensitive match for the string "html", or the token's public identifier is not missing, or the token's system identifier is neither missing nor a case-sensitive match for the string "about:legacy-compat", and none of the sets of conditions in the following list are matched, then there is a parse error.

  • The DOCTYPE token's name is a case-sensitive match for the string "html", the token's public identifier is the case-sensitive string "-//W3C//DTD HTML 4.0//EN", and the token's system identifier is either missing or the case-sensitive string "http://www.w3.org/TR/REC-html40/strict.dtd".
  • The DOCTYPE token's name is a case-sensitive match for the string "html", the token's public identifier is the case-sensitive string "-//W3C//DTD HTML 4.01//EN", and the token's system identifier is either missing or the case-sensitive string "http://www.w3.org/TR/html4/strict.dtd".
  • The DOCTYPE token's name is a case-sensitive match for the string "html", the token's public identifier is the case-sensitive string "-//W3C//DTD XHTML 1.0 Strict//EN", and the token's system identifier is the case-sensitive string "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd".
  • The DOCTYPE token's name is a case-sensitive match for the string "html", the token's public identifier is the case-sensitive string "-//W3C//DTD XHTML 1.1//EN", and the token's system identifier is the case-sensitive string "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd".

Conformance checkers may, based on the values (including presence or lack thereof) of the DOCTYPE token's name, public identifier, or system identifier, switch to a conformance checking mode for another language (e.g. based on the DOCTYPE token a conformance checker could recognise that the document is an HTML4-era document, and defer to an HTML4 conformance checker.)

Append a DocumentType node to the Document node, with the name attribute set to the name given in the DOCTYPE token, or the empty string if the name was missing; the publicId attribute set to the public identifier given in the DOCTYPE token, or the empty string if the public identifier was missing; the systemId attribute set to the system identifier given in the DOCTYPE token, or the empty string if the system identifier was missing; and the other attributes specific to DocumentType objects set to null and empty lists as appropriate. Associate the DocumentType node with the Document object so that it is returned as the value of the doctype attribute of the Document object.

Then, if the document is not an iframe srcdoc document, and the DOCTYPE token matches one of the conditions in the following list, then set the Document to quirks mode:

  • The force-quirks flag is set to on.
  • The name is set to anything other than "html" (compared case-sensitively).
  • The public identifier is set to: "-//W3O//DTD W3 HTML Strict 3.0//EN//"
  • The public identifier is set to: "-/W3C/DTD HTML 4.0 Transitional/EN"
  • The public identifier is set to: "HTML"
  • The system identifier is set to: "http://www.ibm.com/data/dtd/v11/ibmxhtml1-transitional.dtd"
  • The public identifier starts with: "+//Silmaril//dtd html Pro v0r11 19970101//"
  • The public identifier starts with: "-//AS//DTD HTML 3.0 asWedit + extensions//"
  • The public identifier starts with: "-//AdvaSoft Ltd//DTD HTML 3.0 asWedit + extensions//"
  • The public identifier starts with: "-//IETF//DTD HTML 2.0 Level 1//"
  • The public identifier starts with: "-//IETF//DTD HTML 2.0 Level 2//"
  • The public identifier starts with: "-//IETF//DTD HTML 2.0 Strict Level 1//"
  • The public identifier starts with: "-//IETF//DTD HTML 2.0 Strict Level 2//"
  • The public identifier starts with: "-//IETF//DTD HTML 2.0 Strict//"
  • The public identifier starts with: "-//IETF//DTD HTML 2.0//"
  • The public identifier starts with: "-//IETF//DTD HTML 2.1E//"
  • The public identifier starts with: "-//IETF//DTD HTML 3.0//"
  • The public identifier starts with: "-//IETF//DTD HTML 3.2 Final//"
  • The public identifier starts with: "-//IETF//DTD HTML 3.2//"
  • The public identifier starts with: "-//IETF//DTD HTML 3//"
  • The public identifier starts with: "-//IETF//DTD HTML Level 0//"
  • The public identifier starts with: "-//IETF//DTD HTML Level 1//"
  • The public identifier starts with: "-//IETF//DTD HTML Level 2//"
  • The public identifier starts with: "-//IETF//DTD HTML Level 3//"
  • The public identifier starts with: "-//IETF//DTD HTML Strict Level 0//"
  • The public identifier starts with: "-//IETF//DTD HTML Strict Level 1//"
  • The public identifier starts with: "-//IETF//DTD HTML Strict Level 2//"
  • The public identifier starts with: "-//IETF//DTD HTML Strict Level 3//"
  • The public identifier starts with: "-//IETF//DTD HTML Strict//"
  • The public identifier starts with: "-//IETF//DTD HTML//"
  • The public identifier starts with: "-//Metrius//DTD Metrius Presentational//"
  • The public identifier starts with: "-//Microsoft//DTD Internet Explorer 2.0 HTML Strict//"
  • The public identifier starts with: "-//Microsoft//DTD Internet Explorer 2.0 HTML//"
  • The public identifier starts with: "-//Microsoft//DTD Internet Explorer 2.0 Tables//"
  • The public identifier starts with: "-//Microsoft//DTD Internet Explorer 3.0 HTML Strict//"
  • The public identifier starts with: "-//Microsoft//DTD Internet Explorer 3.0 HTML//"
  • The public identifier starts with: "-//Microsoft//DTD Internet Explorer 3.0 Tables//"
  • The public identifier starts with: "-//Netscape Comm. Corp.//DTD HTML//"
  • The public identifier starts with: "-//Netscape Comm. Corp.//DTD Strict HTML//"
  • The public identifier starts with: "-//O'Reilly and Associates//DTD HTML 2.0//"
  • The public identifier starts with: "-//O'Reilly and Associates//DTD HTML Extended 1.0//"
  • The public identifier starts with: "-//O'Reilly and Associates//DTD HTML Extended Relaxed 1.0//"
  • The public identifier starts with: "-//SQ//DTD HTML 2.0 HoTMetaL + extensions//"
  • The public identifier starts with: "-//SoftQuad Software//DTD HoTMetaL PRO 6.0::19990601::extensions to HTML 4.0//"
  • The public identifier starts with: "-//SoftQuad//DTD HoTMetaL PRO 4.0::19971010::extensions to HTML 4.0//"
  • The public identifier starts with: "-//Spyglass//DTD HTML 2.0 Extended//"
  • The public identifier starts with: "-//Sun Microsystems Corp.//DTD HotJava HTML//"
  • The public identifier starts with: "-//Sun Microsystems Corp.//DTD HotJava Strict HTML//"
  • The public identifier starts with: "-//W3C//DTD HTML 3 1995-03-24//"
  • The public identifier starts with: "-//W3C//DTD HTML 3.2 Draft//"
  • The public identifier starts with: "-//W3C//DTD HTML 3.2 Final//"
  • The public identifier starts with: "-//W3C//DTD HTML 3.2//"
  • The public identifier starts with: "-//W3C//DTD HTML 3.2S Draft//"
  • The public identifier starts with: "-//W3C//DTD HTML 4.0 Frameset//"
  • The public identifier starts with: "-//W3C//DTD HTML 4.0 Transitional//"
  • The public identifier starts with: "-//W3C//DTD HTML Experimental 19960712//"
  • The public identifier starts with: "-//W3C//DTD HTML Experimental 970421//"
  • The public identifier starts with: "-//W3C//DTD W3 HTML//"
  • The public identifier starts with: "-//W3O//DTD W3 HTML 3.0//"
  • The public identifier starts with: "-//WebTechs//DTD Mozilla HTML 2.0//"
  • The public identifier starts with: "-//WebTechs//DTD Mozilla HTML//"
  • The system identifier is missing and the public identifier starts with: "-//W3C//DTD HTML 4.01 Frameset//"
  • The system identifier is missing and the public identifier starts with: "-//W3C//DTD HTML 4.01 Transitional//"

Otherwise, if the document is not an iframe srcdoc document, and the DOCTYPE token matches one of the conditions in the following list, then set the Document to limited-quirks mode:

  • The public identifier starts with: "-//W3C//DTD XHTML 1.0 Frameset//"
  • The public identifier starts with: "-//W3C//DTD XHTML 1.0 Transitional//"
  • The system identifier is not missing and the public identifier starts with: "-//W3C//DTD HTML 4.01 Frameset//"
  • The system identifier is not missing and the public identifier starts with: "-//W3C//DTD HTML 4.01 Transitional//"

The system identifier and public identifier strings must be compared to the values given in the lists above in an ASCII case-insensitive manner. A system identifier whose value is the empty string is not considered missing for the purposes of the conditions above.

Then, switch the insertion mode to "before html".

Anything else

If the document is not an iframe srcdoc document, then this is a parse error; set the Document to quirks mode.

In any case, switch the insertion mode to "before html", then reprocess the token.

8.2.5.4.2 The "before html" insertion mode

When the user agent is to apply the rules for the "before html" insertion mode, the user agent must handle the token as follows:

A DOCTYPE token

Parse error. Ignore the token.

A comment token

Insert a comment as the last child of the Document object.

A character token that is one of U+0009 CHARACTER TABULATION, "LF" (U+000A), "FF" (U+000C), "CR" (U+000D), or U+0020 SPACE

Ignore the token.

A start tag whose tag name is "html"

Create an element for the token in the HTML namespace, with the Document as the intended parent. Append it to the Document object. Put this element in the stack of open elements.

If the Document is being loaded as part of navigation of a browsing context, then: if the newly created element has a manifest attribute whose value is not the empty string, then resolve the value of that attribute to an absolute URL, relative to the newly created element, and if that is successful, run the application cache selection algorithm with the result of applying the URL serializer algorithm to the resulting parsed URL with the exclude fragment flag set; otherwise, if there is no such attribute, or its value is the empty string, or resolving its value fails, run the application cache selection algorithm with no manifest. The algorithm must be passed the Document object.

Switch the insertion mode to "before head".

An end tag whose tag name is one of: "head", "body", "html", "br"

Act as described in the "anything else" entry below.

Any other end tag

Parse error. Ignore the token.

Anything else

Create an html element whose ownerDocument is the Document object. Append it to the Document object. Put this element in the stack of open elements.

If the Document is being loaded as part of navigation of a browsing context, then: run the application cache selection algorithm with no manifest, passing it the Document object.

Switch the insertion mode to "before head", then reprocess the token.

The root element can end up being removed from the Document object, e.g. by scripts; nothing in particular happens in such cases, content continues being appended to the nodes as described in the next section.

8.2.5.4.3 The "before head" insertion mode

When the user agent is to apply the rules for the "before head" insertion mode, the user agent must handle the token as follows:

A character token that is one of U+0009 CHARACTER TABULATION, "LF" (U+000A), "FF" (U+000C), "CR" (U+000D), or U+0020 SPACE

Ignore the token.

A comment token

Insert a comment.

A DOCTYPE token

Parse error. Ignore the token.

A start tag whose tag name is "html"

Process the token using the rules for the "in body" insertion mode.

A start tag whose tag name is "head"

Insert an HTML element for the token.

Set the head element pointer to the newly created head element.

Switch the insertion mode to "in head".

An end tag whose tag name is one of: "head", "body", "html", "br"

Act as described in the "anything else" entry below.

Any other end tag

Parse error. Ignore the token.

Anything else

Insert an HTML element for a "head" start tag token with no attributes.

Set the head element pointer to the newly created head element.

Switch the insertion mode to "in head".

Reprocess the current token.

8.2.5.4.4 The "in head" insertion mode

When the user agent is to apply the rules for the "in head" insertion mode, the user agent must handle the token as follows:

A character token that is one of U+0009 CHARACTER TABULATION, "LF" (U+000A), "FF" (U+000C), "CR" (U+000D), or U+0020 SPACE

Insert the character.

A comment token

Insert a comment.

A DOCTYPE token

Parse error. Ignore the token.

A start tag whose tag name is "html"

Process the token using the rules for the "in body" insertion mode.

A start tag whose tag name is one of: "base", "basefont", "bgsound", "link"

Insert an HTML element for the token. Immediately pop the current node off the stack of open elements.

Acknowledge the token's self-closing flag, if it is set.

A start tag whose tag name is "meta"

Insert an HTML element for the token. Immediately pop the current node off the stack of open elements.

Acknowledge the token's self-closing flag, if it is set.

If the element has a charset attribute, and getting an encoding from its value results in a supported ASCII-compatible character encoding or a UTF-16 encoding, and the confidence is currently tentative, then change the encoding to the resulting encoding.

Otherwise, if the element has an http-equiv attribute whose value is an ASCII case-insensitive match for the string "Content-Type", and the element has a content attribute, and applying the algorithm for extracting a character encoding from a meta element to that attribute's value returns a supported ASCII-compatible character encoding or a UTF-16 encoding, and the confidence is currently tentative, then change the encoding to the extracted encoding.

A start tag whose tag name is "title"

Follow the generic RCDATA element parsing algorithm.

A start tag whose tag name is "noscript", if the scripting flag is enabled
A start tag whose tag name is one of: "noframes", "style"

Follow the generic raw text element parsing algorithm.

A start tag whose tag name is "noscript", if the scripting flag is disabled

Insert an HTML element for the token.

Switch the insertion mode to "in head noscript".

A start tag whose tag name is "script"

Run these steps:

  1. Let the adjusted insertion location be the appropriate place for inserting a node.

  2. Create an element for the token in the HTML namespace, with the intended parent being the element in which the adjusted insertion location finds itself.

  3. Mark the element as being "parser-inserted" and unset the element's "force-async" flag.

    This ensures that, if the script is external, any document.write() calls in the script will execute in-line, instead of blowing the document away, as would happen in most other cases. It also prevents the script from executing until the end tag is seen.

  4. If the parser was originally created for the HTML fragment parsing algorithm, then mark the script element as "already started". (fragment case)

  5. Insert the newly created element at the adjusted insertion location.

  6. Push the element onto the stack of open elements so that it is the new current node.

  7. Switch the tokenizer to the script data state.

  8. Let the original insertion mode be the current insertion mode.

  9. Switch the insertion mode to "text".

An end tag whose tag name is "head"

Pop the current node (which will be the head element) off the stack of open elements.

Switch the insertion mode to "after head".

An end tag whose tag name is one of: "body", "html", "br"

Act as described in the "anything else" entry below.

A start tag whose tag name is "template"

Insert an HTML element for the token.

Insert a marker at the end of the list of active formatting elements.

Set the frameset-ok flag to "not ok".

Switch the insertion mode to "in template".

Push "in template" onto the stack of template insertion modes so that it is the new current template insertion mode.

An end tag whose tag name is "template"

If there is no template element on the stack of open elements, then this is a parse error; ignore the token.

Otherwise, run these steps:

  1. Generate implied end tags.

  2. If the current node is not a template element, then this is a parse error.

  3. Pop elements from the stack of open elements until a template element has been popped from the stack.

  4. Clear the list of active formatting elements up to the last marker.
  5. Pop the current template insertion mode off the stack of template insertion modes.

  6. Reset the insertion mode appropriately.

A start tag whose tag name is "head"
Any other end tag

Parse error. Ignore the token.

Anything else

Pop the current node (which will be the head element) off the stack of open elements.

Switch the insertion mode to "after head".

Reprocess the token.

8.2.5.4.5 The "in head noscript" insertion mode

When the user agent is to apply the rules for the "in head noscript" insertion mode, the user agent must handle the token as follows:

A DOCTYPE token

Parse error. Ignore the token.

A start tag whose tag name is "html"

Process the token using the rules for the "in body" insertion mode.

An end tag whose tag name is "noscript"

Pop the current node (which will be a noscript element) from the stack of open elements; the new current node will be a head element.

Switch the insertion mode to "in head".

A character token that is one of U+0009 CHARACTER TABULATION, "LF" (U+000A), "FF" (U+000C), "CR" (U+000D), or U+0020 SPACE
A comment token
A start tag whose tag name is one of: "basefont", "bgsound", "link", "meta", "noframes", "style"

Process the token using the rules for the "in head" insertion mode.

An end tag whose tag name is "br"

Act as described in the "anything else" entry below.

A start tag whose tag name is one of: "head", "noscript"
Any other end tag

Parse error. Ignore the token.

Anything else

Parse error.

Pop the current node (which will be a noscript element) from the stack of open elements; the new current node will be a head element.

Switch the insertion mode to "in head".

Reprocess the token.

8.2.5.4.6 The "after head" insertion mode

When the user agent is to apply the rules for the "after head" insertion mode, the user agent must handle the token as follows:

A character token that is one of U+0009 CHARACTER TABULATION, "LF" (U+000A), "FF" (U+000C), "CR" (U+000D), or U+0020 SPACE

Insert the character.

A comment token

Insert a comment.

A DOCTYPE token

Parse error. Ignore the token.

A start tag whose tag name is "html"

Process the token using the rules for the "in body" insertion mode.

A start tag whose tag name is "body"

Insert an HTML element for the token.

Set the frameset-ok flag to "not ok".

Switch the insertion mode to "in body".

A start tag whose tag name is "frameset"

Insert an HTML element for the token.

Switch the insertion mode to "in frameset".

A start tag whose tag name is one of: "base", "basefont", "bgsound", "link", "meta", "noframes", "script", "style", "template", "title"

Parse error.

Push the node pointed to by the head element pointer onto the stack of open elements.

Process the token using the rules for the "in head" insertion mode.

Remove the node pointed to by the head element pointer from the stack of open elements. (It might not be the current node at this point.)

The head element pointer cannot be null at this point.

An end tag whose tag name is "template"

Process the token using the rules for the "in head" insertion mode.

An end tag whose tag name is one of: "body", "html", "br"

Act as described in the "anything else" entry below.

A start tag whose tag name is "head"
Any other end tag

Parse error. Ignore the token.

Anything else

Insert an HTML element for a "body" start tag token with no attributes.

Switch the insertion mode to "in body".

Reprocess the current token.

8.2.5.4.7 The "in body" insertion mode

When the user agent is to apply the rules for the "in body" insertion mode, the user agent must handle the token as follows:

A character token that is U+0000 NULL

Parse error. Ignore the token.

A character token that is one of U+0009 CHARACTER TABULATION, "LF" (U+000A), "FF" (U+000C), "CR" (U+000D), or U+0020 SPACE

Reconstruct the active formatting elements, if any.

Insert the token's character.

Any other character token

Reconstruct the active formatting elements, if any.

Insert the token's character.

Set the frameset-ok flag to "not ok".

A comment token

Insert a comment.

A DOCTYPE token

Parse error. Ignore the token.

A start tag whose tag name is "html"

Parse error.

If there is a template element on the stack of open elements, then ignore the token.

Otherwise, for each attribute on the token, check to see if the attribute is already present on the top element of the stack of open elements. If it is not, add the attribute and its corresponding value to that element.

A start tag whose tag name is one of: "base", "basefont", "bgsound", "link", "meta", "noframes", "script", "style", "template", "title"
An end tag whose tag name is "template"

Process the token using the rules for the "in head" insertion mode.

A start tag whose tag name is "body"

Parse error.

If the second element on the stack of open elements is not a body element, if the stack of open elements has only one node on it, or if there is a template element on the stack of open elements, then ignore the token. (fragment case)

Otherwise, set the frameset-ok flag to "not ok"; then, for each attribute on the token, check to see if the attribute is already present on the body element (the second element) on the stack of open elements, and if it is not, add the attribute and its corresponding value to that element.

A start tag whose tag name is "frameset"

Parse error.

If the stack of open elements has only one node on it, or if the second element on the stack of open elements is not a body element, then ignore the token. (fragment case)

If the frameset-ok flag is set to "not ok", ignore the token.

Otherwise, run the following steps:

  1. Remove the second element on the stack of open elements from its parent node, if it has one.

  2. Pop all the nodes from the bottom of the stack of open elements, from the current node up to, but not including, the root html element.

  3. Insert an HTML element for the token.

  4. Switch the insertion mode to "in frameset".

An end-of-file token

If there is a node in the stack of open elements that is not either a dd element, a dt element, an li element, a p element, a tbody element, a td element, a tfoot element, a th element, a thead element, a tr element, the body element, or the html element, then this is a parse error.

If the stack of template insertion modes is not empty, then process the token using the rules for the "in template" insertion mode.

Otherwise, stop parsing.

An end tag whose tag name is "body"

If the stack of open elements does not have a body element in scope, this is a parse error; ignore the token.

Otherwise, if there is a node in the stack of open elements that is not either a dd element, a dt element, an li element, an optgroup element, an option element, a p element, an rb element, an rp element, an rt element, an rtc element, a tbody element, a td element, a tfoot element, a th element, a thead element, a tr element, the body element, or the html element, then this is a parse error.

Switch the insertion mode to "after body".

An end tag whose tag name is "html"

If the stack of open elements does not have a body element in scope, this is a parse error; ignore the token.

Otherwise, if there is a node in the stack of open elements that is not either a dd element, a dt element, an li element, an optgroup element, an option element, a p element, an rb element, an rp element, an rt element, an rtc element, a tbody element, a td element, a tfoot element, a th element, a thead element, a tr element, the body element, or the html element, then this is a parse error.

Switch the insertion mode to "after body".

Reprocess the token.

A start tag whose tag name is one of: "address", "article", "aside", "blockquote", "center", "details", "dialog", "dir", "div", "dl", "fieldset", "figcaption", "figure", "footer", "header", "hgroup", "main", "menu", "nav", "ol", "p", "section", "summary", "ul"

If the stack of open elements has a p element in button scope, then close a p element.

Insert an HTML element for the token.

A start tag whose tag name is one of: "h1", "h2", "h3", "h4", "h5", "h6"

If the stack of open elements has a p element in button scope, then close a p element.

If the current node is an HTML element whose tag name is one of "h1", "h2", "h3", "h4", "h5", or "h6", then this is a parse error; pop the current node off the stack of open elements.

Insert an HTML element for the token.

A start tag whose tag name is one of: "pre", "listing"

If the stack of open elements has a p element in button scope, then close a p element.

Insert an HTML element for the token.

If the next token is a "LF" (U+000A) character token, then ignore that token and move on to the next one. (Newlines at the start of pre blocks are ignored as an authoring convenience.)

Set the frameset-ok flag to "not ok".

A start tag whose tag name is "form"

If the form element pointer is not null, and there is no template element on the stack of open elements, then this is a parse error; ignore the token.

Otherwise:

If the stack of open elements has a p element in button scope, then close a p element.

Insert an HTML element for the token, and, if there is no template element on the stack of open elements, set the form element pointer to point to the element created.

A start tag whose tag name is "li"

Run these steps:

  1. Set the frameset-ok flag to "not ok".

  2. Initialise node to be the current node (the bottommost node of the stack).

  3. Loop: If node is an li element, then run these substeps:

    1. Generate implied end tags, except for li elements.

    2. If the current node is not an li element, then this is a parse error.

    3. Pop elements from the stack of open elements until an li element has been popped from the stack.

    4. Jump to the step labeled done below.

  4. If node is in the special category, but is not an address, div, or p element, then jump to the step labeled done below.

  5. Otherwise, set node to the previous entry in the stack of open elements and return to the step labeled loop.

  6. Done: If the stack of open elements has a p element in button scope, then close a p element.

  7. Finally, insert an HTML element for the token.

A start tag whose tag name is one of: "dd", "dt"

Run these steps:

  1. Set the frameset-ok flag to "not ok".

  2. Initialise node to be the current node (the bottommost node of the stack).

  3. Loop: If node is a dd element, then run these substeps:

    1. Generate implied end tags, except for dd elements.

    2. If the current node is not a dd element, then this is a parse error.

    3. Pop elements from the stack of open elements until a dd element has been popped from the stack.

    4. Jump to the step labeled done below.

  4. If node is a dt element, then run these substeps:

    1. Generate implied end tags, except for dt elements.

    2. If the current node is not a dt element, then this is a parse error.

    3. Pop elements from the stack of open elements until a dt element has been popped from the stack.

    4. Jump to the step labeled done below.

  5. If node is in the special category, but is not an address, div, or p element, then jump to the step labeled done below.

  6. Otherwise, set node to the previous entry in the stack of open elements and return to the step labeled loop.

  7. Done: If the stack of open elements has a p element in button scope, then close a p element.

  8. Finally, insert an HTML element for the token.

A start tag whose tag name is "plaintext"

If the stack of open elements has a p element in button scope, then close a p element.

Insert an HTML element for the token.

Switch the tokenizer to the PLAINTEXT state.

Once a start tag with the tag name "plaintext" has been seen, that will be the last token ever seen other than character tokens (and the end-of-file token), because there is no way to switch out of the PLAINTEXT state.

A start tag whose tag name is "button"
  1. If the stack of open elements has a button element in scope, then run these substeps:

    1. Parse error.

    2. Generate implied end tags.

    3. Pop elements from the stack of open elements until a button element has been popped from the stack.

  2. Reconstruct the active formatting elements, if any.

  3. Insert an HTML element for the token.

  4. Set the frameset-ok flag to "not ok".

An end tag whose tag name is one of: "address", "article", "aside", "blockquote", "button", "center", "details", "dialog", "dir", "div", "dl", "fieldset", "figcaption", "figure", "footer", "header", "hgroup", "listing", "main", "menu", "nav", "ol", "pre", "section", "summary", "ul"

If the stack of open elements does not have an element in scope that is an HTML element and with the same tag name as that of the token, then this is a parse error; ignore the token.

Otherwise, run these steps:

  1. Generate implied end tags.

  2. If the current node is not an HTML element with the same tag name as that of the token, then this is a parse error.

  3. Pop elements from the stack of open elements until an HTML element with the same tag name as the token has been popped from the stack.

An end tag whose tag name is "form"

If there is no template element on the stack of open elements, then run these substeps:

  1. Let node be the element that the form element pointer is set to, or null if it is not set to an element.

  2. Set the form element pointer to null. Otherwise, let node be null.

  3. If node is null or if the stack of open elements does not have node in scope, then this is a parse error; abort these steps and ignore the token.

  4. Generate implied end tags.

  5. If the current node is not node, then this is a parse error.

  6. Remove node from the stack of open elements.

If there is a template element on the stack of open elements, then run these substeps instead:

  1. If the stack of open elements does not have a form element in scope, then this is a parse error; abort these steps and ignore the token.

  2. Generate implied end tags.

  3. If the current node is not a form element, then this is a parse error.

  4. Pop elements from the stack of open elements until a form element has been popped from the stack.

An end tag whose tag name is "p"

If the stack of open elements does not have a p element in button scope, then this is a parse error; insert an HTML element for a "p" start tag token with no attributes.

Close a p element.

An end tag whose tag name is "li"

If the stack of open elements does not have an li element in list item scope, then this is a parse error; ignore the token.

Otherwise, run these steps:

  1. Generate implied end tags, except for li elements.

  2. If the current node is not an li element, then this is a parse error.

  3. Pop elements from the stack of open elements until an li element has been popped from the stack.

An end tag whose tag name is one of: "dd", "dt"

If the stack of open elements does not have an element in scope that is an HTML element and with the same tag name as that of the token, then this is a parse error; ignore the token.

Otherwise, run these steps:

  1. Generate implied end tags, except for HTML elements with the same tag name as the token.

  2. If the current node is not an HTML element with the same tag name as that of the token, then this is a parse error.

  3. Pop elements from the stack of open elements until an HTML element with the same tag name as the token has been popped from the stack.

An end tag whose tag name is one of: "h1", "h2", "h3", "h4", "h5", "h6"

If the stack of open elements does not have an element in scope that is an HTML element and whose tag name is one of "h1", "h2", "h3", "h4", "h5", or "h6", then this is a parse error; ignore the token.

Otherwise, run these steps:

  1. Generate implied end tags.

  2. If the current node is not an HTML element with the same tag name as that of the token, then this is a parse error.

  3. Pop elements from the stack of open elements until an HTML element whose tag name is one of "h1", "h2", "h3", "h4", "h5", or "h6" has been popped from the stack.

An end tag whose tag name is "sarcasm"

Take a deep breath, then act as described in the "any other end tag" entry below.

A start tag whose tag name is "a"

If the list of active formatting elements contains an a element between the end of the list and the last marker on the list (or the start of the list if there is no marker on the list), then this is a parse error; run the adoption agency algorithm for the tag name "a", then remove that element from the list of active formatting elements and the stack of open elements if the adoption agency algorithm didn't already remove it (it might not have if the element is not in table scope).

In the non-conforming stream <a href="a">a<table><a href="b">b</table>x, the first a element would be closed upon seeing the second one, and the "x" character would be inside a link to "b", not to "a". This is despite the fact that the outer a element is not in table scope (meaning that a regular </a> end tag at the start of the table wouldn't close the outer a element). The result is that the two a elements are indirectly nested inside each other — non-conforming markup will often result in non-conforming DOMs when parsed.

Reconstruct the active formatting elements, if any.

Insert an HTML element for the token. Push onto the list of active formatting elements that element.

A start tag whose tag name is one of: "b", "big", "code", "em", "font", "i", "s", "small", "strike", "strong", "tt", "u"

Reconstruct the active formatting elements, if any.

Insert an HTML element for the token. Push onto the list of active formatting elements that element.

A start tag whose tag name is "nobr"

Reconstruct the active formatting elements, if any.

If the stack of open elements has a nobr element in scope, then this is a parse error; run the adoption agency algorithm for the tag name "nobr", then once again reconstruct the active formatting elements, if any.

Insert an HTML element for the token. Push onto the list of active formatting elements that element.

An end tag whose tag name is one of: "a", "b", "big", "code", "em", "font", "i", "nobr", "s", "small", "strike", "strong", "tt", "u"

Run the adoption agency algorithm for the token's tag name.

A start tag whose tag name is one of: "applet", "marquee", "object"

Reconstruct the active formatting elements, if any.

Insert an HTML element for the token.

Insert a marker at the end of the list of active formatting elements.

Set the frameset-ok flag to "not ok".

An end tag token whose tag name is one of: "applet", "marquee", "object"

If the stack of open elements does not have an element in scope that is an HTML element and with the same tag name as that of the token, then this is a parse error; ignore the token.

Otherwise, run these steps:

  1. Generate implied end tags.

  2. If the current node is not an HTML element with the same tag name as that of the token, then this is a parse error.

  3. Pop elements from the stack of open elements until an HTML element with the same tag name as the token has been popped from the stack.

  4. Clear the list of active formatting elements up to the last marker.
A start tag whose tag name is "table"

If the Document is not set to quirks mode, and the stack of open elements has a p element in button scope, then close a p element.

Insert an HTML element for the token.

Set the frameset-ok flag to "not ok".

Switch the insertion mode to "in table".

An end tag whose tag name is "br"

Parse error. Drop the attributes from the token, and act as described in the next entry; i.e. act as if this was a "br" start tag token with no attributes, rather than the end tag token that it actually is.

A start tag whose tag name is one of: "area", "br", "embed", "img", "keygen", "wbr"

Reconstruct the active formatting elements, if any.

Insert an HTML element for the token. Immediately pop the current node off the stack of open elements.

Acknowledge the token's self-closing flag, if it is set.

Set the frameset-ok flag to "not ok".

A start tag whose tag name is "input"

Reconstruct the active formatting elements, if any.

Insert an HTML element for the token. Immediately pop the current node off the stack of open elements.

Acknowledge the token's self-closing flag, if it is set.

If the token does not have an attribute with the name "type", or if it does, but that attribute's value is not an ASCII case-insensitive match for the string "hidden", then: set the frameset-ok flag to "not ok".

A start tag whose tag name is one of: "menuitem", "param", "source", "track"

Insert an HTML element for the token. Immediately pop the current node off the stack of open elements.

Acknowledge the token's self-closing flag, if it is set.

A start tag whose tag name is "hr"

If the stack of open elements has a p element in button scope, then close a p element.

Insert an HTML element for the token. Immediately pop the current node off the stack of open elements.

Acknowledge the token's self-closing flag, if it is set.

Set the frameset-ok flag to "not ok".

A start tag whose tag name is "image"

Parse error. Change the token's tag name to "img" and reprocess it. (Don't ask.)

A start tag whose tag name is "isindex"

Parse error.

If there is no template element on the stack of open elements and the form element pointer is not null, then ignore the token.

Otherwise:

Acknowledge the token's self-closing flag, if it is set.

Set the frameset-ok flag to "not ok".

If the stack of open elements has a p element in button scope, then close a p element.

Insert an HTML element for a "form" start tag token with no attributes, and, if there is no template element on the stack of open elements, set the form element pointer to point to the element created.

If the token has an attribute called "action", set the action attribute on the resulting form element to the value of the "action" attribute of the token.

Insert an HTML element for an "hr" start tag token with no attributes. Immediately pop the current node off the stack of open elements.

Reconstruct the active formatting elements, if any.

Insert an HTML element for a "label" start tag token with no attributes.

Insert characters (see below for what they should say).

Insert an HTML element for an "input" start tag token with all the attributes from the "isindex" token except "name", "action", and "prompt", and with an attribute named "name" with the value "isindex". (This creates an input element with the name attribute set to the magic value "isindex".) Immediately pop the current node off the stack of open elements.

Insert more characters (see below for what they should say).

Pop the current node (which will be the label element created earlier) off the stack of open elements.

Insert an HTML element for an "hr" start tag token with no attributes. Immediately pop the current node off the stack of open elements.

Pop the current node (which will be the form element created earlier) off the stack of open elements, and, if there is no template element on the stack of open elements, set the form element pointer back to null.

Prompt: If the token has an attribute with the name "prompt", then the first stream of characters must be the same string as given in that attribute, and the second stream of characters must be empty. Otherwise, the two streams of character tokens together should, together with the input element, express the equivalent of "This is a searchable index. Enter search keywords: (input field)" in the user's preferred language.

A start tag whose tag name is "textarea"

Run these steps:

  1. Insert an HTML element for the token.

  2. If the next token is a "LF" (U+000A) character token, then ignore that token and move on to the next one. (Newlines at the start of textarea elements are ignored as an authoring convenience.)

  3. Switch the tokenizer to the RCDATA state.

  4. Let the original insertion mode be the current insertion mode.

  5. Set the frameset-ok flag to "not ok".

  6. Switch the insertion mode to "text".

A start tag whose tag name is "xmp"

If the stack of open elements has a p element in button scope, then close a p element.

Reconstruct the active formatting elements, if any.

Set the frameset-ok flag to "not ok".

Follow the generic raw text element parsing algorithm.

A start tag whose tag name is "iframe"

Set the frameset-ok flag to "not ok".

Follow the generic raw text element parsing algorithm.

A start tag whose tag name is "noembed"
A start tag whose tag name is "noscript", if the scripting flag is enabled

Follow the generic raw text element parsing algorithm.

A start tag whose tag name is "select"

Reconstruct the active formatting elements, if any.

Insert an HTML element for the token.

Set the frameset-ok flag to "not ok".

If the insertion mode is one of "in table", "in caption", "in table body", "in row", or "in cell", then switch the insertion mode to "in select in table". Otherwise, switch the insertion mode to "in select".

A start tag whose tag name is one of: "optgroup", "option"

If the current node is an option element, then pop the current node off the stack of open elements.

Reconstruct the active formatting elements, if any.

Insert an HTML element for the token.

A start tag whose tag name is one of: "rb", "rp", "rtc"

If the stack of open elements has a ruby element in scope, then generate implied end tags. If the current node is not then a ruby element, this is a parse error.

Insert an HTML element for the token.

A start tag whose tag name is "rt"

If the stack of open elements has a ruby element in scope, then generate implied end tags, except for rtc elements. If the current node is not then a ruby element or an rtc element, this is a parse error.

Insert an HTML element for the token.

A start tag whose tag name is "math"

Reconstruct the active formatting elements, if any.

Adjust MathML attributes for the token. (This fixes the case of MathML attributes that are not all lowercase.)

Adjust foreign attributes for the token. (This fixes the use of namespaced attributes, in particular XLink.)

Insert a foreign element for the token, in the MathML namespace.

If the token has its self-closing flag set, pop the current node off the stack of open elements and acknowledge the token's self-closing flag.

A start tag whose tag name is "svg"

Reconstruct the active formatting elements, if any.

Adjust SVG attributes for the token. (This fixes the case of SVG attributes that are not all lowercase.)

Adjust foreign attributes for the token. (This fixes the use of namespaced attributes, in particular XLink in SVG.)

Insert a foreign element for the token, in the SVG namespace.

If the token has its self-closing flag set, pop the current node off the stack of open elements and acknowledge the token's self-closing flag.

A start tag whose tag name is one of: "caption", "col", "colgroup", "frame", "head", "tbody", "td", "tfoot", "th", "thead", "tr"

Parse error. Ignore the token.

Any other start tag

Reconstruct the active formatting elements, if any.

Insert an HTML element for the token.

This element will be an ordinary element.

Any other end tag

Run these steps:

  1. Initialise node to be the current node (the bottommost node of the stack).

  2. Loop: If node is an HTML element with the same tag name as the token, then:

    1. Generate implied end tags, except for HTML elements with the same tag name as the token.

    2. If node is not the current node, then this is a parse error.

    3. Pop all the nodes from the current node up to node, including node, then stop these steps.

  3. Otherwise, if node is in the special category, then this is a parse error; ignore the token, and abort these steps.

  4. Set node to the previous entry in the stack of open elements.

  5. Return to the step labeled loop.

When the steps above say the user agent is to close a p element, it means that the user agent must run the following steps:

  1. Generate implied end tags, except for p elements.

  2. If the current node is not a p element, then this is a parse error.

  3. Pop elements from the stack of open elements until a p element has been popped from the stack.

The adoption agency algorithm, which takes as its only argument a tag name subject for which the algorithm is being run, consists of the following steps:

  1. If the current node is an HTML element whose tag name is subject, and the current node is not in the list of active formatting elements, then pop the current node off the stack of open elements, and abort these steps.

  2. Let outer loop counter be zero.

  3. Outer loop: If outer loop counter is greater than or equal to eight, then abort these steps.

  4. Increment outer loop counter by one.

  5. Let formatting element be the last element in the list of active formatting elements that:

    • is between the end of the list and the last scope marker in the list, if any, or the start of the list otherwise, and
    • has the tag name subject.

    If there is no such element, then abort these steps and instead act as described in the "any other end tag" entry above.

  6. If formatting element is not in the stack of open elements, then this is a parse error; remove the element from the list, and abort these steps.

  7. If formatting element is in the stack of open elements, but the element is not in scope, then this is a parse error; abort these steps.

  8. If formatting element is not the current node, this is a parse error. (But do not abort these steps.)

  9. Let furthest block be the topmost node in the stack of open elements that is lower in the stack than formatting element, and is an element in the special category. There might not be one.

  10. If there is no furthest block, then the UA must first pop all the nodes from the bottom of the stack of open elements, from the current node up to and including formatting element, then remove formatting element from the list of active formatting elements, and finally abort these steps.

  11. Let common ancestor be the element immediately above formatting element in the stack of open elements.

  12. Let a bookmark note the position of formatting element in the list of active formatting elements relative to the elements on either side of it in the list.

  13. Let node and last node be furthest block. Follow these steps:

    1. Let inner loop counter be zero.

    2. Inner loop: Increment inner loop counter by one.

    3. Let node be the element immediately above node in the stack of open elements, or if node is no longer in the stack of open elements (e.g. because it got removed by this algorithm), the element that was immediately above node in the stack of open elements before node was removed.

    4. If node is formatting element, then go to the next step in the overall algorithm.

    5. If inner loop counter is greater than three and node is in the list of active formatting elements, then remove node from the list of active formatting elements.

    6. If node is not in the list of active formatting elements, then remove node from the stack of open elements and then go back to the step labeled inner loop.

    7. Create an element for the token for which the element node was created, in the HTML namespace, with common ancestor as the intended parent; replace the entry for node in the list of active formatting elements with an entry for the new element, replace the entry for node in the stack of open elements with an entry for the new element, and let node be the new element.

    8. If last node is furthest block, then move the aforementioned bookmark to be immediately after the new node in the list of active formatting elements.

    9. Insert last node into node, first removing it from its previous parent node if any.

    10. Let last node be node.

    11. Return to the step labeled inner loop.

  14. Insert whatever last node ended up being in the previous step at the appropriate place for inserting a node, but using common ancestor as the override target.

  15. Create an element for the token for which formatting element was created, in the HTML namespace, with furthest block as the intended parent.

  16. Take all of the child nodes of furthest block and append them to the element created in the last step.

  17. Append that new element to furthest block.

  18. Remove formatting element from the list of active formatting elements, and insert the new element into the list of active formatting elements at the position of the aforementioned bookmark.

  19. Remove formatting element from the stack of open elements, and insert the new element into the stack of open elements immediately below the position of furthest block in that stack.

  20. Jump back to the step labeled outer loop.

This algorithm's name, the "adoption agency algorithm", comes from the way it causes elements to change parents, and is in contrast with other possible algorithms for dealing with misnested content, which included the "incest algorithm", the "secret affair algorithm", and the "Heisenberg algorithm".

8.2.5.4.8 The "text" insertion mode

When the user agent is to apply the rules for the "text" insertion mode, the user agent must handle the token as follows:

A character token

Insert the token's character.

This can never be a U+0000 NULL character; the tokenizer converts those to U+FFFD REPLACEMENT CHARACTER characters.

An end-of-file token

Parse error.

If the current node is a script element, mark the script element as "already started".

Pop the current node off the stack of open elements.

Switch the insertion mode to the original insertion mode and reprocess the token.

An end tag whose tag name is "script"

If the stack of script settings objects is empty, perform a microtask checkpoint.

Let script be the current node (which will be a script element).

Pop the current node off the stack of open elements.

Switch the insertion mode to the original insertion mode.

Let the old insertion point have the same value as the current insertion point. Let the insertion point be just before the next input character.

Increment the parser's script nesting level by one.

Prepare the script. This might cause some script to execute, which might cause new characters to be inserted into the tokenizer, and might cause the tokenizer to output more tokens, resulting in a reentrant invocation of the parser.

Decrement the parser's script nesting level by one. If the parser's script nesting level is zero, then set the parser pause flag to false.

Let the insertion point have the value of the old insertion point. (In other words, restore the insertion point to its previous value. This value might be the "undefined" value.)

At this stage, if there is a pending parsing-blocking script, then:

If the script nesting level is not zero:

Set the parser pause flag to true, and abort the processing of any nested invocations of the tokenizer, yielding control back to the caller. (Tokenization will resume when the caller returns to the "outer" tree construction stage.)

The tree construction stage of this particular parser is being called reentrantly, say from a call to document.write().

Otherwise:

Run these steps:

  1. Let the script be the pending parsing-blocking script. There is no longer a pending parsing-blocking script.

  2. Block the tokenizer for this instance of the HTML parser, such that the event loop will not run tasks that invoke the tokenizer.

  3. If the parser's Document has a style sheet that is blocking scripts or the script's "ready to be parser-executed" flag is not set: spin the event loop until the parser's Document has no style sheet that is blocking scripts and the script's "ready to be parser-executed" flag is set.

  4. If this parser has been aborted in the meantime, abort these steps.

    This could happen if, e.g., while the spin the event loop algorithm is running, the browsing context gets closed, or the document.open() method gets invoked on the Document.

  5. Unblock the tokenizer for this instance of the HTML parser, such that tasks that invoke the tokenizer can again be run.

  6. Let the insertion point be just before the next input character.

  7. Increment the parser's script nesting level by one (it should be zero before this step, so this sets it to one).

  8. Execute the script.

  9. Decrement the parser's script nesting level by one. If the parser's script nesting level is zero (which it always should be at this point), then set the parser pause flag to false.

  10. Let the insertion point be undefined again.

  11. If there is once again a pending parsing-blocking script, then repeat these steps from step 1.

Any other end tag

Pop the current node off the stack of open elements.

Switch the insertion mode to the original insertion mode.

8.2.5.4.9 The "in table" insertion mode

When the user agent is to apply the rules for the "in table" insertion mode, the user agent must handle the token as follows:

A character token, if the current node is table, tbody, tfoot, thead, or tr element

Let the pending table character tokens be an empty list of tokens.

Let the original insertion mode be the current insertion mode.

Switch the insertion mode to "in table text" and reprocess the token.

A comment token

Insert a comment.

A DOCTYPE token

Parse error. Ignore the token.

A start tag whose tag name is "caption"

Clear the stack back to a table context. (See below.)

Insert a marker at the end of the list of active formatting elements.

Insert an HTML element for the token, then switch the insertion mode to "in caption".

A start tag whose tag name is "colgroup"

Clear the stack back to a table context. (See below.)

Insert an HTML element for the token, then switch the insertion mode to "in column group".

A start tag whose tag name is "col"

Clear the stack back to a table context. (See below.)

Insert an HTML element for a "colgroup" start tag token with no attributes, then switch the insertion mode to "in column group".

Reprocess the current token.

A start tag whose tag name is one of: "tbody", "tfoot", "thead"

Clear the stack back to a table context. (See below.)

Insert an HTML element for the token, then switch the insertion mode to "in table body".

A start tag whose tag name is one of: "td", "th", "tr"

Clear the stack back to a table context. (See below.)

Insert an HTML element for a "tbody" start tag token with no attributes, then switch the insertion mode to "in table body".

Reprocess the current token.

A start tag whose tag name is "table"

Parse error.

If the stack of open elements does not have a table element in table scope, ignore the token.

Otherwise:

Pop elements from this stack until a table element has been popped from the stack.

Reset the insertion mode appropriately.

Reprocess the token.

An end tag whose tag name is "table"

If the stack of open elements does not have a table element in table scope, this is a parse error; ignore the token.

Otherwise:

Pop elements from this stack until a table element has been popped from the stack.

Reset the insertion mode appropriately.

An end tag whose tag name is one of: "body", "caption", "col", "colgroup", "html", "tbody", "td", "tfoot", "th", "thead", "tr"

Parse error. Ignore the token.

A start tag whose tag name is one of: "style", "script", "template"
An end tag whose tag name is "template"

Process the token using the rules for the "in head" insertion mode.

A start tag whose tag name is "input"

If the token does not have an attribute with the name "type", or if it does, but that attribute's value is not an ASCII case-insensitive match for the string "hidden", then: act as described in the "anything else" entry below.

Otherwise:

Parse error.

Insert an HTML element for the token.

Pop that input element off the stack of open elements.

Acknowledge the token's self-closing flag, if it is set.

A start tag whose tag name is "form"

Parse error.

If there is a template element on the stack of open elements, or if the form element pointer is not null, ignore the token.

Otherwise:

Insert an HTML element for the token, and set the form element pointer to point to the element created.

Pop that form element off the stack of open elements.

An end-of-file token

Process the token using the rules for the "in body" insertion mode.

Anything else

Parse error. Enable foster parenting, process the token using the rules for the "in body" insertion mode, and then disable foster parenting.

When the steps above require the UA to clear the stack back to a table context, it means that the UA must, while the current node is not a table, template, or html element, pop elements from the stack of open elements.

The current node being an html element after this process is a fragment case.

8.2.5.4.10 The "in table text" insertion mode

When the user agent is to apply the rules for the "in table text" insertion mode, the user agent must handle the token as follows:

A character token that is U+0000 NULL

Parse error. Ignore the token.

Any other character token

Append the character token to the pending table character tokens list.

Anything else

If any of the tokens in the pending table character tokens list are character tokens that are not space characters, then reprocess the character tokens in the pending table character tokens list using the rules given in the "anything else" entry in the "in table" insertion mode.

Otherwise, insert the characters given by the pending table character tokens list.

Switch the insertion mode to the original insertion mode and reprocess the token.

8.2.5.4.11 The "in caption" insertion mode

When the user agent is to apply the rules for the "in caption" insertion mode, the user agent must handle the token as follows:

An end tag whose tag name is "caption"

If the stack of open elements does not have a caption element in table scope, this is a parse error; ignore the token. (fragment case)

Otherwise:

Generate implied end tags.

Now, if the current node is not a caption element, then this is a parse error.

Pop elements from this stack until a caption element has been popped from the stack.

Clear the list of active formatting elements up to the last marker.

Switch the insertion mode to "in table".

A start tag whose tag name is one of: "caption", "col", "colgroup", "tbody", "td", "tfoot", "th", "thead", "tr"
An end tag whose tag name is "table"

If the stack of open elements does not have a caption element in table scope, this is a parse error; ignore the token. (fragment case)

Otherwise:

Generate implied end tags.

Now, if the current node is not a caption element, then this is a parse error.

Pop elements from this stack until a caption element has been popped from the stack.

Clear the list of active formatting elements up to the last marker.

Switch the insertion mode to "in table".

Reprocess the token.

An end tag whose tag name is one of: "body", "col", "colgroup", "html", "tbody", "td", "tfoot", "th", "thead", "tr"

Parse error. Ignore the token.

Anything else

Process the token using the rules for the "in body" insertion mode.

8.2.5.4.12 The "in column group" insertion mode

When the user agent is to apply the rules for the "in column group" insertion mode, the user agent must handle the token as follows:

A character token that is one of U+0009 CHARACTER TABULATION, "LF" (U+000A), "FF" (U+000C), "CR" (U+000D), or U+0020 SPACE

Insert the character.

A comment token

Insert a comment.

A DOCTYPE token

Parse error. Ignore the token.

A start tag whose tag name is "html"

Process the token using the rules for the "in body" insertion mode.

A start tag whose tag name is "col"

Insert an HTML element for the token. Immediately pop the current node off the stack of open elements.

Acknowledge the token's self-closing flag, if it is set.

An end tag whose tag name is "colgroup"

If the current node is not a colgroup element, then this is a parse error; ignore the token.

Otherwise, pop the current node from the stack of open elements. Switch the insertion mode to "in table".

An end tag whose tag name is "col"

Parse error. Ignore the token.

A start tag whose tag name is "template"
An end tag whose tag name is "template"

Process the token using the rules for the "in head" insertion mode.

An end-of-file token

Process the token using the rules for the "in body" insertion mode.

Anything else

If the current node is not a colgroup element, then this is a parse error; ignore the token.

Otherwise, pop the current node from the stack of open elements.

Switch the insertion mode to "in table".

Reprocess the token.

8.2.5.4.13 The "in table body" insertion mode

When the user agent is to apply the rules for the "in table body" insertion mode, the user agent must handle the token as follows:

A start tag whose tag name is "tr"

Clear the stack back to a table body context. (See below.)

Insert an HTML element for the token, then switch the insertion mode to "in row".

A start tag whose tag name is one of: "th", "td"

Parse error.

Clear the stack back to a table body context. (See below.)

Insert an HTML element for a "tr" start tag token with no attributes, then switch the insertion mode to "in row".

Reprocess the current token.

An end tag whose tag name is one of: "tbody", "tfoot", "thead"

If the stack of open elements does not have an element in table scope that is an HTML element and with the same tag name as the token, this is a parse error; ignore the token.

Otherwise:

Clear the stack back to a table body context. (See below.)

Pop the current node from the stack of open elements. Switch the insertion mode to "in table".

A start tag whose tag name is one of: "caption", "col", "colgroup", "tbody", "tfoot", "thead"
An end tag whose tag name is "table"

If the stack of open elements does not have a tbody, thead, or tfoot element in table scope, this is a parse error; ignore the token.

Otherwise:

Clear the stack back to a table body context. (See below.)

Pop the current node from the stack of open elements. Switch the insertion mode to "in table".

Reprocess the token.

An end tag whose tag name is one of: "body", "caption", "col", "colgroup", "html", "td", "th", "tr"

Parse error. Ignore the token.

Anything else

Process the token using the rules for the "in table" insertion mode.

When the steps above require the UA to clear the stack back to a table body context, it means that the UA must, while the current node is not a tbody, tfoot, thead, template, or html element, pop elements from the stack of open elements.

The current node being an html element after this process is a fragment case.

8.2.5.4.14 The "in row" insertion mode

When the user agent is to apply the rules for the "in row" insertion mode, the user agent must handle the token as follows:

A start tag whose tag name is one of: "th", "td"

Clear the stack back to a table row context. (See below.)

Insert an HTML element for the token, then switch the insertion mode to "in cell".

Insert a marker at the end of the list of active formatting elements.

An end tag whose tag name is "tr"

If the stack of open elements does not have a tr element in table scope, this is a parse error; ignore the token.

Otherwise:

Clear the stack back to a table row context. (See below.)

Pop the current node (which will be a tr element) from the stack of open elements. Switch the insertion mode to "in table body".

A start tag whose tag name is one of: "caption", "col", "colgroup", "tbody", "tfoot", "thead", "tr"
An end tag whose tag name is "table"

If the stack of open elements does not have a tr element in table scope, this is a parse error; ignore the token.

Otherwise:

Clear the stack back to a table row context. (See below.)

Pop the current node (which will be a tr element) from the stack of open elements. Switch the insertion mode to "in table body".

Reprocess the token.

An end tag whose tag name is one of: "tbody", "tfoot", "thead"

If the stack of open elements does not have an element in table scope that is an HTML element and with the same tag name as the token, this is a parse error; ignore the token.

If the stack of open elements does not have a tr element in table scope, ignore the token.

Otherwise:

Clear the stack back to a table row context. (See below.)

Pop the current node (which will be a tr element) from the stack of open elements. Switch the insertion mode to "in table body".

Reprocess the token.

An end tag whose tag name is one of: "body", "caption", "col", "colgroup", "html", "td", "th"

Parse error. Ignore the token.

Anything else

Process the token using the rules for the "in table" insertion mode.

When the steps above require the UA to clear the stack back to a table row context, it means that the UA must, while the current node is not a tr, template, or html element, pop elements from the stack of open elements.

The current node being an html element after this process is a fragment case.

8.2.5.4.15 The "in cell" insertion mode

When the user agent is to apply the rules for the "in cell" insertion mode, the user agent must handle the token as follows:

An end tag whose tag name is one of: "td", "th"

If the stack of open elements does not have an element in table scope that is an HTML element and with the same tag name as that of the token, then this is a parse error; ignore the token.

Otherwise:

Generate implied end tags.

Now, if the current node is not an HTML element with the same tag name as the token, then this is a parse error.

Pop elements from the stack of open elements stack until an HTML element with the same tag name as the token has been popped from the stack.

Clear the list of active formatting elements up to the last marker.

Switch the insertion mode to "in row".

A start tag whose tag name is one of: "caption", "col", "colgroup", "tbody", "td", "tfoot", "th", "thead", "tr"

If the stack of open elements does not have a td or th element in table scope, then this is a parse error; ignore the token. (fragment case)

Otherwise, close the cell (see below) and reprocess the token.

An end tag whose tag name is one of: "body", "caption", "col", "colgroup", "html"

Parse error. Ignore the token.

An end tag whose tag name is one of: "table", "tbody", "tfoot", "thead", "tr"

If the stack of open elements does not have an element in table scope that is an HTML element and with the same tag name as that of the token, then this is a parse error; ignore the token.

Otherwise, close the cell (see below) and reprocess the token.

Anything else

Process the token using the rules for the "in body" insertion mode.

Where the steps above say to close the cell, they mean to run the following algorithm:

  1. Generate implied end tags.

  2. If the current node is not now a td element or a th element, then this is a parse error.

  3. Pop elements from the stack of open elements stack until a td element or a th element has been popped from the stack.

  4. Clear the list of active formatting elements up to the last marker.

  5. Switch the insertion mode to "in row".

The stack of open elements cannot have both a td and a th element in table scope at the same time, nor can it have neither when the close the cell algorithm is invoked.

8.2.5.4.16 The "in select" insertion mode

When the user agent is to apply the rules for the "in select" insertion mode, the user agent must handle the token as follows:

A character token that is U+0000 NULL

Parse error. Ignore the token.

Any other character token

Insert the token's character.

A comment token

Insert a comment.

A DOCTYPE token

Parse error. Ignore the token.

A start tag whose tag name is "html"

Process the token using the rules for the "in body" insertion mode.

A start tag whose tag name is "option"

If the current node is an option element, pop that node from the stack of open elements.

Insert an HTML element for the token.

A start tag whose tag name is "optgroup"

If the current node is an option element, pop that node from the stack of open elements.

If the current node is an optgroup element, pop that node from the stack of open elements.

Insert an HTML element for the token.

An end tag whose tag name is "optgroup"

First, if the current node is an option element, and the node immediately before it in the stack of open elements is an optgroup element, then pop the current node from the stack of open elements.

If the current node is an optgroup element, then pop that node from the stack of open elements. Otherwise, this is a parse error; ignore the token.

An end tag whose tag name is "option"

If the current node is an option element, then pop that node from the stack of open elements. Otherwise, this is a parse error; ignore the token.

An end tag whose tag name is "select"

If the stack of open elements does not have a select element in select scope, this is a parse error; ignore the token. (fragment case)

Otherwise:

Pop elements from the stack of open elements until a select element has been popped from the stack.

Reset the insertion mode appropriately.

A start tag whose tag name is "select"

Parse error.

Pop elements from the stack of open elements until a select element has been popped from the stack.

Reset the insertion mode appropriately.

It just gets treated like an end tag.

A start tag whose tag name is one of: "input", "keygen", "textarea"

Parse error.

If the stack of open elements does not have a select element in select scope, ignore the token. (fragment case)

Pop elements from the stack of open elements until a select element has been popped from the stack.

Reset the insertion mode appropriately.

Reprocess the token.

A start tag whose tag name is one of: "script", "template"
An end tag whose tag name is "template"

Process the token using the rules for the "in head" insertion mode.

An end-of-file token

Process the token using the rules for the "in body" insertion mode.

Anything else

Parse error. Ignore the token.

8.2.5.4.17 The "in select in table" insertion mode

When the user agent is to apply the rules for the "in select in table" insertion mode, the user agent must handle the token as follows:

A start tag whose tag name is one of: "caption", "table", "tbody", "tfoot", "thead", "tr", "td", "th"

Parse error.

Pop elements from the stack of open elements until a select element has been popped from the stack.

Reset the insertion mode appropriately.

Reprocess the token.

An end tag whose tag name is one of: "caption", "table", "tbody", "tfoot", "thead", "tr", "td", "th"

Parse error.

If the stack of open elements does not have an element in table scope that is an HTML element and with the same tag name as that of the token, then ignore the token.

Otherwise:

Pop elements from the stack of open elements until a select element has been popped from the stack.

Reset the insertion mode appropriately.

Reprocess the token.

Anything else

Process the token using the rules for the "in select" insertion mode.

8.2.5.4.18 The "in template" insertion mode

When the user agent is to apply the rules for the "in template" insertion mode, the user agent must handle the token as follows:

A character token
A comment token
A DOCTYPE token

Process the token using the rules for the "in body" insertion mode.

A start tag whose tag name is one of: "base", "basefont", "bgsound", "link", "meta", "noframes", "script", "style", "template", "title"
An end tag whose tag name is "template"

Process the token using the rules for the "in head" insertion mode.

A start tag whose tag name is one of: "caption", "colgroup", "tbody", "tfoot", "thead"

Pop the current template insertion mode off the stack of template insertion modes.

Push "in table" onto the stack of template insertion modes so that it is the new current template insertion mode.

Switch the insertion mode to "in table", and reprocess the token.

A start tag whose tag name is "col"

Pop the current template insertion mode off the stack of template insertion modes.

Push "in column group" onto the stack of template insertion modes so that it is the new current template insertion mode.

Switch the insertion mode to "in column group", and reprocess the token.

A start tag whose tag name is "tr"

Pop the current template insertion mode off the stack of template insertion modes.

Push "in table body" onto the stack of template insertion modes so that it is the new current template insertion mode.

Switch the insertion mode to "in table body", and reprocess the token.

A start tag whose tag name is one of: "td", "th"

Pop the current template insertion mode off the stack of template insertion modes.

Push "in row" onto the stack of template insertion modes so that it is the new current template insertion mode.

Switch the insertion mode to "in row", and reprocess the token.

Any other start tag

Pop the current template insertion mode off the stack of template insertion modes.

Push "in body" onto the stack of template insertion modes so that it is the new current template insertion mode.

Switch the insertion mode to "in body", and reprocess the token.

Any other end tag

Parse error. Ignore the token.

An end-of-file token

If there is no template element on the stack of open elements, then stop parsing. (fragment case)

Otherwise, this is a parse error.

Pop elements from the stack of open elements until a template element has been popped from the stack.

Clear the list of active formatting elements up to the last marker.

Pop the current template insertion mode off the stack of template insertion modes.

Reset the insertion mode appropriately.

Reprocess the token.

8.2.5.4.19 The "after body" insertion mode

When the user agent is to apply the rules for the "after body" insertion mode, the user agent must handle the token as follows:

A character token that is one of U+0009 CHARACTER TABULATION, "LF" (U+000A), "FF" (U+000C), "CR" (U+000D), or U+0020 SPACE

Process the token using the rules for the "in body" insertion mode.

A comment token

Insert a comment as the last child of the first element in the stack of open elements (the html element).

A DOCTYPE token

Parse error. Ignore the token.

A start tag whose tag name is "html"

Process the token using the rules for the "in body" insertion mode.

An end tag whose tag name is "html"

If the parser was originally created as part of the HTML fragment parsing algorithm, this is a parse error; ignore the token. (fragment case)

Otherwise, switch the insertion mode to "after after body".

An end-of-file token

Stop parsing.

Anything else

Parse error. Switch the insertion mode to "in body" and reprocess the token.

8.2.5.4.20 The "in frameset" insertion mode

When the user agent is to apply the rules for the "in frameset" insertion mode, the user agent must handle the token as follows:

A character token that is one of U+0009 CHARACTER TABULATION, "LF" (U+000A), "FF" (U+000C), "CR" (U+000D), or U+0020 SPACE

Insert the character.

A comment token

Insert a comment.

A DOCTYPE token

Parse error. Ignore the token.

A start tag whose tag name is "html"

Process the token using the rules for the "in body" insertion mode.

A start tag whose tag name is "frameset"

Insert an HTML element for the token.

An end tag whose tag name is "frameset"

If the current node is the root html element, then this is a parse error; ignore the token. (fragment case)

Otherwise, pop the current node from the stack of open elements.

If the parser was not originally created as part of the HTML fragment parsing algorithm (fragment case), and the current node is no longer a frameset element, then switch the insertion mode to "after frameset".

A start tag whose tag name is "frame"

Insert an HTML element for the token. Immediately pop the current node off the stack of open elements.

Acknowledge the token's self-closing flag, if it is set.

A start tag whose tag name is "noframes"

Process the token using the rules for the "in head" insertion mode.

An end-of-file token

If the current node is not the root html element, then this is a parse error.

The current node can only be the root html element in the fragment case.

Stop parsing.

Anything else

Parse error. Ignore the token.

8.2.5.4.21 The "after frameset" insertion mode

When the user agent is to apply the rules for the "after frameset" insertion mode, the user agent must handle the token as follows:

A character token that is one of U+0009 CHARACTER TABULATION, "LF" (U+000A), "FF" (U+000C), "CR" (U+000D), or U+0020 SPACE

Insert the character.

A comment token

Insert a comment.

A DOCTYPE token

Parse error. Ignore the token.

A start tag whose tag name is "html"

Process the token using the rules for the "in body" insertion mode.

An end tag whose tag name is "html"

Switch the insertion mode to "after after frameset".

A start tag whose tag name is "noframes"

Process the token using the rules for the "in head" insertion mode.

An end-of-file token

Stop parsing.

Anything else

Parse error. Ignore the token.

8.2.5.4.22 The "after after body" insertion mode

When the user agent is to apply the rules for the "after after body" insertion mode, the user agent must handle the token as follows:

A comment token

Insert a comment as the last child of the Document object.

A DOCTYPE token
A character token that is one of U+0009 CHARACTER TABULATION, "LF" (U+000A), "FF" (U+000C), "CR" (U+000D), or U+0020 SPACE
A start tag whose tag name is "html"

Process the token using the rules for the "in body" insertion mode.

An end-of-file token

Stop parsing.

Anything else

Parse error. Switch the insertion mode to "in body" and reprocess the token.

8.2.5.4.23 The "after after frameset" insertion mode

When the user agent is to apply the rules for the "after after frameset" insertion mode, the user agent must handle the token as follows:

A comment token

Insert a comment as the last child of the Document object.

A DOCTYPE token
A character token that is one of U+0009 CHARACTER TABULATION, "LF" (U+000A), "FF" (U+000C), "CR" (U+000D), or U+0020 SPACE
A start tag whose tag name is "html"

Process the token using the rules for the "in body" insertion mode.

An end-of-file token

Stop parsing.

A start tag whose tag name is "noframes"

Process the token using the rules for the "in head" insertion mode.

Anything else

Parse error. Ignore the token.

8.2.5.5 The rules for parsing tokens in foreign content

When the user agent is to apply the rules for parsing tokens in foreign content, the user agent must handle the token as follows:

A character token that is U+0000 NULL

Parse error. Insert a U+FFFD REPLACEMENT CHARACTER character.

A character token that is one of U+0009 CHARACTER TABULATION, "LF" (U+000A), "FF" (U+000C), "CR" (U+000D), or U+0020 SPACE

Insert the token's character.

Any other character token

Insert the token's character.

Set the frameset-ok flag to "not ok".

A comment token

Insert a comment.

A DOCTYPE token

Parse error. Ignore the token.

A start tag whose tag name is one of: "b", "big", "blockquote", "body", "br", "center", "code", "dd", "div", "dl", "dt", "em", "embed", "h1", "h2", "h3", "h4", "h5", "h6", "head", "hr", "i", "img", "li", "listing", "main", "menu", "meta", "nobr", "ol", "p", "pre", "ruby", "s", "small", "span", "strong", "strike", "sub", "sup", "table", "tt", "u", "ul", "var"
A start tag whose tag name is "font", if the token has any attributes named "color", "face", or "size"

Parse error.

If the parser was originally created for the HTML fragment parsing algorithm, then act as described in the "any other start tag" entry below. (fragment case)

Otherwise:

Pop an element from the stack of open elements, and then keep popping more elements from the stack of open elements until the current node is a MathML text integration point, an HTML integration point, or an element in the HTML namespace.

Then, reprocess the token.

Any other start tag

If the adjusted current node is an element in the MathML namespace, adjust MathML attributes for the token. (This fixes the case of MathML attributes that are not all lowercase.)

If the adjusted current node is an element in the SVG namespace, and the token's tag name is one of the ones in the first column of the following table, change the tag name to the name given in the corresponding cell in the second column. (This fixes the case of SVG elements that are not all lowercase.)

Tag name Element name
altglyph altGlyph
altglyphdef altGlyphDef
altglyphitem altGlyphItem
animatecolor animateColor
animatemotion animateMotion
animatetransform animateTransform
clippath clipPath
feblend feBlend
fecolormatrix feColorMatrix
fecomponenttransfer feComponentTransfer
fecomposite feComposite
feconvolvematrix feConvolveMatrix
fediffuselighting feDiffuseLighting
fedisplacementmap feDisplacementMap
fedistantlight feDistantLight
fedropshadow feDropShadow
feflood feFlood
fefunca feFuncA
fefuncb feFuncB
fefuncg feFuncG
fefuncr feFuncR
fegaussianblur feGaussianBlur
feimage feImage
femerge feMerge
femergenode feMergeNode
femorphology feMorphology
feoffset feOffset
fepointlight fePointLight
fespecularlighting feSpecularLighting
fespotlight feSpotLight
fetile feTile
feturbulence feTurbulence
foreignobject foreignObject
glyphref glyphRef
lineargradient linearGradient
radialgradient radialGradient
textpath textPath

If the adjusted current node is an element in the SVG namespace, adjust SVG attributes for the token. (This fixes the case of SVG attributes that are not all lowercase.)

Adjust foreign attributes for the token. (This fixes the use of namespaced attributes, in particular XLink in SVG.)

Insert a foreign element for the token, in the same namespace as the adjusted current node.

If the token has its self-closing flag set, then run the appropriate steps from the following list:

If the token's tag name is "script"

Acknowledge the token's self-closing flag, and then act as described in the steps for a "script" end tag below.

Otherwise

Pop the current node off the stack of open elements and acknowledge the token's self-closing flag.

An end tag whose tag name is "script", if the current node is a script element in the SVG namespace

Pop the current node off the stack of open elements.

Let the old insertion point have the same value as the current insertion point. Let the insertion point be just before the next input character.

Increment the parser's script nesting level by one. Set the parser pause flag to true.

Process the script element according to the SVG rules, if the user agent supports SVG. [SVG]

Even if this causes new characters to be inserted into the tokenizer, the parser will not be executed reentrantly, since the parser pause flag is true.

Decrement the parser's script nesting level by one. If the parser's script nesting level is zero, then set the parser pause flag to false.

Let the insertion point have the value of the old insertion point. (In other words, restore the insertion point to its previous value. This value might be the "undefined" value.)

Any other end tag

Run these steps:

  1. Initialise node to be the current node (the bottommost node of the stack).

  2. If node's tag name, converted to ASCII lowercase, is not the same as the tag name of the token, then this is a parse error.

  3. Loop: If node is the topmost element in the stack of open elements, abort these steps. (fragment case)

  4. If node's tag name, converted to ASCII lowercase, is the same as the tag name of the token, pop elements from the stack of open elements until node has been popped from the stack, and then abort these steps.

  5. Set node to the previous entry in the stack of open elements.

  6. If node is not an element in the HTML namespace, return to the step labeled loop.

  7. Otherwise, process the token according to the rules given in the section corresponding to the current insertion mode in HTML content.

8.2.6 The end

Once the user agent stops parsing the document, the user agent must run the following steps:

  1. Set the current document readiness to "interactive" and the insertion point to undefined.

  2. Pop all the nodes off the stack of open elements.

  3. If the list of scripts that will execute when the document has finished parsing is not empty, run these substeps:

    1. Spin the event loop until the first script in the list of scripts that will execute when the document has finished parsing has its "ready to be parser-executed" flag set and the parser's Document has no style sheet that is blocking scripts.

    2. Execute the first script in the list of scripts that will execute when the document has finished parsing.

    3. Remove the first script element from the list of scripts that will execute when the document has finished parsing (i.e. shift out the first entry in the list).

    4. If the list of scripts that will execute when the document has finished parsing is still not empty, repeat these substeps again from substep 1.

  4. Queue a task to fire a simple event that bubbles named DOMContentLoaded at the Document.

  5. Spin the event loop until the set of scripts that will execute as soon as possible and the list of scripts that will execute in order as soon as possible are empty.

  6. Spin the event loop until there is nothing that delays the load event in the Document.

  7. Queue a task to run the following substeps:

    1. Set the current document readiness to "complete".

    2. Load event: If the Document is in a browsing context, fire a simple event named load at the Document's Window object, with target override set to the Document object.

  8. If the Document is in a browsing context, then queue a task to run the following substeps:

    1. If the Document's page showing flag is true, then abort this task (i.e. don't fire the event below).

    2. Set the Document's page showing flag to true.

    3. Fire a trusted event with the name pageshow at the Window object of the Document, but with its target set to the Document object (and the currentTarget set to the Window object), using the PageTransitionEvent interface, with the persisted attribute initialised to false. This event must not bubble, must not be cancelable, and has no default action.

  9. If the Document has any pending application cache download process tasks, then queue each such task in the order they were added to the list of pending application cache download process tasks, and then empty the list of pending application cache download process tasks. The task source for these tasks is the networking task source.

  10. If the Document's print when loaded flag is set, then run the printing steps.

  11. The Document is now ready for post-load tasks.

  12. Queue a task to mark the Document as completely loaded.

When the user agent is to abort a parser, it must run the following steps:

  1. Throw away any pending content in the input stream, and discard any future content that would have been added to it.

  2. Set the current document readiness to "interactive".

  3. Pop all the nodes off the stack of open elements.

  4. Set the current document readiness to "complete".

Except where otherwise specified, the task source for the tasks mentioned in this section is the DOM manipulation task source.

8.2.7 Coercing an HTML DOM into an infoset

When an application uses an HTML parser in conjunction with an XML pipeline, it is possible that the constructed DOM is not compatible with the XML tool chain in certain subtle ways. For example, an XML toolchain might not be able to represent attributes with the name xmlns, since they conflict with the Namespaces in XML syntax. There is also some data that the HTML parser generates that isn't included in the DOM itself. This section specifies some rules for handling these issues.

If the XML API being used doesn't support DOCTYPEs, the tool may drop DOCTYPEs altogether.

If the XML API doesn't support attributes in no namespace that are named "xmlns", attributes whose names start with "xmlns:", or attributes in the XMLNS namespace, then the tool may drop such attributes.

The tool may annotate the output with any namespace declarations required for proper operation.

If the XML API being used restricts the allowable characters in the local names of elements and attributes, then the tool may map all element and attribute local names that the API wouldn't support to a set of names that are allowed, by replacing any character that isn't supported with the uppercase letter U and the six digits of the character's Unicode code point when expressed in hexadecimal, using digits 0-9 and capital letters A-F as the symbols, in increasing numeric order.

For example, the element name foo<bar, which can be output by the HTML parser, though it is neither a legal HTML element name nor a well-formed XML element name, would be converted into fooU00003Cbar, which is a well-formed XML element name (though it's still not legal in HTML by any means).

As another example, consider the attribute xlink:href. Used on a MathML element, it becomes, after being adjusted, an attribute with a prefix "xlink" and a local name "href". However, used on an HTML element, it becomes an attribute with no prefix and the local name "xlink:href", which is not a valid NCName, and thus might not be accepted by an XML API. It could thus get converted, becoming "xlinkU00003Ahref".

The resulting names from this conversion conveniently can't clash with any attribute generated by the HTML parser, since those are all either lowercase or those listed in the adjust foreign attributes algorithm's table.

If the XML API restricts comments from having two consecutive U+002D HYPHEN-MINUS characters (--), the tool may insert a single U+0020 SPACE character between any such offending characters.

If the XML API restricts comments from ending in a "-" (U+002D) character, the tool may insert a single U+0020 SPACE character at the end of such comments.

If the XML API restricts allowed characters in character data, attribute values, or comments, the tool may replace any "FF" (U+000C) character with a U+0020 SPACE character, and any other literal non-XML character with a U+FFFD REPLACEMENT CHARACTER.

If the tool has no way to convey out-of-band information, then the tool may drop the following information:

The mutations allowed by this section apply after the HTML parser's rules have been applied. For example, a <a::> start tag will be closed by a </a::> end tag, and never by a </aU00003AU00003A> end tag, even if the user agent is using the rules above to then generate an actual element in the DOM with the name aU00003AU00003A for that start tag.

8.2.8 An introduction to error handling and strange cases in the parser

This section is non-normative.

This section examines some erroneous markup and discusses how the HTML parser handles these cases.

8.2.8.1 Misnested tags: <b><i></b></i>

This section is non-normative.

The most-often discussed example of erroneous markup is as follows:

<p>1<b>2<i>3</b>4</i>5</p>

The parsing of this markup is straightforward up to the "3". At this point, the DOM looks like this:

Here, the stack of open elements has five elements on it: html, body, p, b, and i. The list of active formatting elements just has two: b and i. The insertion mode is "in body".

Upon receiving the end tag token with the tag name "b", the "adoption agency algorithm" is invoked. This is a simple case, in that the formatting element is the b element, and there is no furthest block. Thus, the stack of open elements ends up with just three elements: html, body, and p, while the list of active formatting elements has just one: i. The DOM tree is unmodified at this point.

The next token is a character ("4"), triggers the reconstruction of the active formatting elements, in this case just the i element. A new i element is thus created for the "4" Text node. After the end tag token for the "i" is also received, and the "5" Text node is inserted, the DOM looks as follows:

8.2.8.2 Misnested tags: <b><p></b></p>

This section is non-normative.

A case similar to the previous one is the following:

<b>1<p>2</b>3</p>

Up to the "2" the parsing here is straightforward:

The interesting part is when the end tag token with the tag name "b" is parsed.

Before that token is seen, the stack of open elements has four elements on it: html, body, b, and p. The list of active formatting elements just has the one: b. The insertion mode is "in body".

Upon receiving the end tag token with the tag name "b", the "adoption agency algorithm" is invoked, as in the previous example. However, in this case, there is a furthest block, namely the p element. Thus, this time the adoption agency algorithm isn't skipped over.

The common ancestor is the body element. A conceptual "bookmark" marks the position of the b in the list of active formatting elements, but since that list has only one element in it, the bookmark won't have much effect.

As the algorithm progresses, node ends up set to the formatting element (b), and last node ends up set to the furthest block (p).

The last node gets appended (moved) to the common ancestor, so that the DOM looks like:

A new b element is created, and the children of the p element are moved to it:

Finally, the new b element is appended to the p element, so that the DOM looks like:

The b element is removed from the list of active formatting elements and the stack of open elements, so that when the "3" is parsed, it is appended to the p element:

8.2.8.3 Unexpected markup in tables

This section is non-normative.

Error handling in tables is, for historical reasons, especially strange. For example, consider the following markup:

<table><b><tr><td>aaa</td></tr>bbb</table>ccc

The highlighted b element start tag is not allowed directly inside a table like that, and the parser handles this case by placing the element before the table. (This is called foster parenting.) This can be seen by examining the DOM tree as it stands just after the table element's start tag has been seen:

...and then immediately after the b element start tag has been seen:

At this point, the stack of open elements has on it the elements html, body, table, and b (in that order, despite the resulting DOM tree); the list of active formatting elements just has the b element in it; and the insertion mode is "in table".

The tr start tag causes the b element to be popped off the stack and a tbody start tag to be implied; the tbody and tr elements are then handled in a rather straight-forward manner, taking the parser through the "in table body" and "in row" insertion modes, after which the DOM looks as follows:

Here, the stack of open elements has on it the elements html, body, table, tbody, and tr; the list of active formatting elements still has the b element in it; and the insertion mode is "in row".

The td element start tag token, after putting a td element on the tree, puts a marker on the list of active formatting elements (it also switches to the "in cell" insertion mode).

The marker means that when the "aaa" character tokens are seen, no b element is created to hold the resulting Text node:

The end tags are handled in a straight-forward manner; after handling them, the stack of open elements has on it the elements html, body, table, and tbody; the list of active formatting elements still has the b element in it (the marker having been removed by the "td" end tag token); and the insertion mode is "in table body".

Thus it is that the "bbb" character tokens are found. These trigger the "in table text" insertion mode to be used (with the original insertion mode set to "in table body"). The character tokens are collected, and when the next token (the table element end tag) is seen, they are processed as a group. Since they are not all spaces, they are handled as per the "anything else" rules in the "in table" insertion mode, which defer to the "in body" insertion mode but with foster parenting.

When the active formatting elements are reconstructed, a b element is created and foster parented, and then the "bbb" Text node is appended to it:

The stack of open elements has on it the elements html, body, table, tbody, and the new b (again, note that this doesn't match the resulting tree!); the list of active formatting elements has the new b element in it; and the insertion mode is still "in table body".

Had the character tokens been only space characters instead of "bbb", then those space characters would just be appended to the tbody element.

Finally, the table is closed by a "table" end tag. This pops all the nodes from the stack of open elements up to and including the table element, but it doesn't affect the list of active formatting elements, so the "ccc" character tokens after the table result in yet another b element being created, this time after the table:

8.2.8.4 Scripts that modify the page as it is being parsed

This section is non-normative.

Consider the following markup, which for this example we will assume is the document with URL http://example.com/inner, being rendered as the content of an iframe in another document with the URL http://example.com/outer:

<div id=a>
 <script>
  var div = document.getElementById('a');
  parent.document.body.appendChild(div);
 </script>
 <script>
  alert(document.URL);
 </script>
</div>
<script>
 alert(document.URL);
</script>

Up to the first "script" end tag, before the script is parsed, the result is relatively straightforward:

After the script is parsed, though, the div element and its child script element are gone:

They are, at this point, in the Document of the aforementioned outer browsing context. However, the stack of open elements still contains the div element.

Thus, when the second script element is parsed, it is inserted into the outer Document object.

Those parsed into different Documents than the one the parser was created for do not execute, so the first alert does not show.

Once the div element's end tag is parsed, the div element is popped off the stack, and so the next script element is in the inner Document:

This script does execute, resulting in an alert that says "http://example.com/inner".

8.2.8.5 The execution of scripts that are moving across multiple documents

This section is non-normative.

Elaborating on the example in the previous section, consider the case where the second script element is an external script (i.e. one with a src attribute). Since the element was not in the parser's Document when it was created, that external script is not even downloaded.

In a case where a script element with a src attribute is parsed normally into its parser's Document, but while the external script is being downloaded, the element is moved to another document, the script continues to download, but does not execute.

In general, moving script elements between Documents is considered a bad practice.

8.2.8.6 Unclosed formatting elements

This section is non-normative.

The following markup shows how nested formatting elements (such as b) get collected and continue to be applied even as the elements they are contained in are closed, but that excessive duplicates are thrown away.

<!DOCTYPE html>
<p><b class=x><b class=x><b><b class=x><b class=x><b>X
<p>X
<p><b><b class=x><b>X
<p></b></b></b></b></b></b>X

The resulting DOM tree is as follows:

Note how the second p element in the markup has no explicit b elements, but in the resulting DOM, up to three of each kind of formatting element (in this case three b elements with the class attribute, and two unadorned b elements) get reconstructed before the element's "X".

Also note how this means that in the final paragraph only six b end tags are needed to completely clear the list of formatting elements, even though nine b start tags have been seen up to this point.

8.3 Serializing HTML fragments

The following steps form the HTML fragment serialization algorithm. The algorithm takes as input a DOM Element, Document, or DocumentFragment referred to as the node, and either returns a string or throws an exception.

This algorithm serializes the children of the node being serialized, not the node itself.

  1. Let s be a string, and initialise it to the empty string.

  2. If the node is a template element, then let the node instead be the template element's template contents (a DocumentFragment node).

  3. For each child node of the node, in tree order, run the following steps:

    1. Let current node be the child node being processed.

    2. Append the appropriate string from the following list to s:

      If current node is an Element

      If current node is an element in the HTML namespace, the MathML namespace, or the SVG namespace, then let tagname be current node's local name. Otherwise, let tagname be current node's qualified name.

      Append a "<" (U+003C) character, followed by tagname.

      For HTML elements created by the HTML parser or Document.createElement(), tagname will be lowercase.

      For each attribute that the element has, append a U+0020 SPACE character, the attribute's serialised name as described below, a "=" (U+003D) character, a U+0022 QUOTATION MARK character ("), the attribute's value, escaped as described below in attribute mode, and a second U+0022 QUOTATION MARK character (").

      An attribute's serialised name for the purposes of the previous paragraph must be determined as follows:

      If the attribute has no namespace

      The attribute's serialised name is the attribute's local name.

      For attributes on HTML elements set by the HTML parser or by Element.setAttribute(), the local name will be lowercase.

      If the attribute is in the XML namespace

      The attribute's serialised name is the string "xml:" followed by the attribute's local name.

      If the attribute is in the XMLNS namespace and the attribute's local name is xmlns

      The attribute's serialised name is the string "xmlns".

      If the attribute is in the XMLNS namespace and the attribute's local name is not xmlns

      The attribute's serialised name is the string "xmlns:" followed by the attribute's local name.

      If the attribute is in the XLink namespace

      The attribute's serialised name is the string "xlink:" followed by the attribute's local name.

      If the attribute is in some other namespace

      The attribute's serialised name is the attribute's qualified name.

      While the exact order of attributes is UA-defined, and may depend on factors such as the order that the attributes were given in the original markup, the sort order must be stable, such that consecutive invocations of this algorithm serialise an element's attributes in the same order.

      Append a ">" (U+003E) character.

      If current node is an area, base, basefont, bgsound, br, col, embed, frame, hr, img, input, keygen, link, menuitem, meta, param, source, track or wbr element, then continue on to the next child node at this point.

      If current node is a pre, textarea, or listing element, and the first child node of the element, if any, is a Text node whose character data has as its first character a "LF" (U+000A) character, then append a "LF" (U+000A) character.

      Append the value of running the HTML fragment serialization algorithm on the current node element (thus recursing into this algorithm for that element), followed by a "<" (U+003C) character, a U+002F SOLIDUS character (/), tagname again, and finally a U+003E GREATER-THAN SIGN character (>).

      If current node is a Text node

      If the parent of current node is a style, script, xmp, iframe, noembed, noframes, or plaintext element, or if the parent of current node is a noscript element and scripting is enabled for the node, then append the value of current node's data IDL attribute literally.

      Otherwise, append the value of current node's data IDL attribute, escaped as described below.

      If current node is a Comment

      Append the literal string <!-- (U+003C LESS-THAN SIGN, U+0021 EXCLAMATION MARK, U+002D HYPHEN-MINUS, U+002D HYPHEN-MINUS), followed by the value of current node's data IDL attribute, followed by the literal string --> (U+002D HYPHEN-MINUS, U+002D HYPHEN-MINUS, U+003E GREATER-THAN SIGN).

      If current node is a ProcessingInstruction

      Append the literal string <? (U+003C LESS-THAN SIGN, U+003F QUESTION MARK), followed by the value of current node's target IDL attribute, followed by a single U+0020 SPACE character, followed by the value of current node's data IDL attribute, followed by a single ">" (U+003E) character.

      If current node is a DocumentType

      Append the literal string <!DOCTYPE (U+003C LESS-THAN SIGN, U+0021 EXCLAMATION MARK, U+0044 LATIN CAPITAL LETTER D, U+004F LATIN CAPITAL LETTER O, U+0043 LATIN CAPITAL LETTER C, U+0054 LATIN CAPITAL LETTER T, U+0059 LATIN CAPITAL LETTER Y, U+0050 LATIN CAPITAL LETTER P, U+0045 LATIN CAPITAL LETTER E), followed by a space (U+0020 SPACE), followed by the value of current node's name IDL attribute, followed by the literal string > (U+003E GREATER-THAN SIGN).

  4. The result of the algorithm is the string s.

It is possible that the output of this algorithm, if parsed with an HTML parser, will not return the original tree structure.

For instance, if a textarea element to which a Comment node has been appended is serialised and the output is then reparsed, the comment will end up being displayed in the text field. Similarly, if, as a result of DOM manipulation, an element contains a comment that contains the literal string "-->", then when the result of serializing the element is parsed, the comment will be truncated at that point and the rest of the comment will be interpreted as markup. More examples would be making a script element contain a Text node with the text string "</script>", or having a p element that contains a ul element (as the ul element's start tag would imply the end tag for the p).

This can enable cross-site scripting attacks. An example of this would be a page that lets the user enter some font family names that are then inserted into a CSS style block via the DOM and which then uses the innerHTML IDL attribute to get the HTML serialization of that style element: if the user enters "</style><script>attack</script>" as a font family name, innerHTML will return markup that, if parsed in a different context, would contain a script node, even though no script node existed in the original DOM.

Escaping a string (for the purposes of the algorithm above) consists of running the following steps:

  1. Replace any occurrence of the "&" character by the string "&amp;".

  2. Replace any occurrences of the U+00A0 NO-BREAK SPACE character by the string "&nbsp;".

  3. If the algorithm was invoked in the attribute mode, replace any occurrences of the """ character by the string "&quot;".

  4. If the algorithm was not invoked in the attribute mode, replace any occurrences of the "<" character by the string "&lt;", and any occurrences of the ">" character by the string "&gt;".

8.4 Parsing HTML fragments

The following steps form the HTML fragment parsing algorithm. The algorithm optionally takes as input an Element node, referred to as the context element, which gives the context for the parser, as well as input, a string to parse, and returns a list of zero or more nodes.

Parts marked fragment case in algorithms in the parser section are parts that only occur if the parser was created for the purposes of this algorithm (and with a context element). The algorithms have been annotated with such markings for informational purposes only; such markings have no normative weight. If it is possible for a condition described as a fragment case to occur even when the parser wasn't created for the purposes of handling this algorithm, then that is an error in the specification.

  1. Create a new Document node, and mark it as being an HTML document.

  2. If there is a context element, and the Document of the context element is in quirks mode, then let the Document be in quirks mode. Otherwise, if there is a context element, and the Document of the context element is in limited-quirks mode, then let the Document be in limited-quirks mode. Otherwise, leave the Document in no-quirks mode.

  3. Create a new HTML parser, and associate it with the just created Document node.

  4. If there is a context element, run these substeps:

    1. Set the state of the HTML parser's tokenization stage as follows:

      If it is a title or textarea element
      Switch the tokenizer to the RCDATA state.
      If it is a style, xmp, iframe, noembed, or noframes element
      Switch the tokenizer to the RAWTEXT state.
      If it is a script element
      Switch the tokenizer to the script data state.
      If it is a noscript element
      If the scripting flag is enabled, switch the tokenizer to the RAWTEXT state. Otherwise, leave the tokenizer in the data state.
      If it is a plaintext element
      Switch the tokenizer to the PLAINTEXT state.
      Otherwise
      Leave the tokenizer in the data state.

      For performance reasons, an implementation that does not report errors and that uses the actual state machine described in this specification directly could use the PLAINTEXT state instead of the RAWTEXT and script data states where those are mentioned in the list above. Except for rules regarding parse errors, they are equivalent, since there is no appropriate end tag token in the fragment case, yet they involve far fewer state transitions.

    2. Let root be a new html element with no attributes.

    3. Append the element root to the Document node created above.

    4. Set up the parser's stack of open elements so that it contains just the single element root.

    5. If the context element is a template element, push "in template" onto the stack of template insertion modes so that it is the new current template insertion mode.

    6. Reset the parser's insertion mode appropriately.

      The parser will reference the context element as part of that algorithm.

    7. Set the parser's form element pointer to the nearest node to the context element that is a form element (going straight up the ancestor chain, and including the element itself, if it is a form element), if any. (If there is no such form element, the form element pointer keeps its initial value, null.)

  5. Place the input into the input stream for the HTML parser just created. The encoding confidence is irrelevant.

  6. Start the parser and let it run until it has consumed all the characters just inserted into the input stream.

  7. If there is a context element, return the child nodes of root, in tree order.

    Otherwise, return the children of the Document object, in tree order.

8.5 Named character references

This table lists the character reference names that are supported by HTML, and the code points to which they refer. It is referenced by the previous sections.


Name Character(s) Glyph
Aacute; U+000C1 Á
Aacute U+000C1 Á
aacute; U+000E1 á
aacute U+000E1 á
Abreve; U+00102 Ă
abreve; U+00103 ă
ac; U+0223E
acd; U+0223F
acE; U+0223E U+00333 ∾̳
Acirc; U+000C2 Â
Acirc U+000C2 Â
acirc; U+000E2 â
acirc U+000E2 â
acute; U+000B4 ´
acute U+000B4 ´
Acy; U+00410 А
acy; U+00430 а
AElig; U+000C6 Æ
AElig U+000C6 Æ
aelig; U+000E6 æ
aelig U+000E6 æ
af; U+02061
Afr; U+1D504
afr; U+1D51E
Agrave; U+000C0 À
Agrave U+000C0 À
agrave; U+000E0 à
agrave U+000E0 à
alefsym; U+02135
aleph; U+02135
Alpha; U+00391 Α
alpha; U+003B1 α
Amacr; U+00100 Ā
amacr; U+00101 ā
amalg; U+02A3F ⨿
AMP; U+00026 &
AMP U+00026 &
amp; U+00026 &
amp U+00026 &
And; U+02A53
and; U+02227
andand; U+02A55
andd; U+02A5C
andslope; U+02A58
andv; U+02A5A
ang; U+02220
ange; U+029A4
angle; U+02220
angmsd; U+02221
angmsdaa; U+029A8
angmsdab; U+029A9
angmsdac; U+029AA
angmsdad; U+029AB
angmsdae; U+029AC
angmsdaf; U+029AD
angmsdag; U+029AE
angmsdah; U+029AF
angrt; U+0221F
angrtvb; U+022BE
angrtvbd; U+0299D
angsph; U+02222
angst; U+000C5 Å
angzarr; U+0237C
Aogon; U+00104 Ą
aogon; U+00105 ą
Aopf; U+1D538
aopf; U+1D552
ap; U+02248
apacir; U+02A6F
apE; U+02A70
ape; U+0224A
apid; U+0224B
apos; U+00027 '
ApplyFunction; U+02061
approx; U+02248
approxeq; U+0224A
Aring; U+000C5 Å
Aring U+000C5 Å
aring; U+000E5 å
aring U+000E5 å
Ascr; U+1D49C
ascr; U+1D4B6
Assign; U+02254
ast; U+0002A *
asymp; U+02248
asympeq; U+0224D
Atilde; U+000C3 Ã
Atilde U+000C3 Ã
atilde; U+000E3 ã
atilde U+000E3 ã
Auml; U+000C4 Ä
Auml U+000C4 Ä
auml; U+000E4 ä
auml U+000E4 ä
awconint; U+02233
awint; U+02A11
backcong; U+0224C
backepsilon; U+003F6 ϶
backprime; U+02035
backsim; U+0223D
backsimeq; U+022CD
Backslash; U+02216
Barv; U+02AE7
barvee; U+022BD
Barwed; U+02306
barwed; U+02305
barwedge; U+02305
bbrk; U+023B5
bbrktbrk; U+023B6
bcong; U+0224C
Bcy; U+00411 Б
bcy; U+00431 б
bdquo; U+0201E
becaus; U+02235
Because; U+02235
because; U+02235
bemptyv; U+029B0
bepsi; U+003F6 ϶
bernou; U+0212C
Bernoullis; U+0212C
Beta; U+00392 Β
beta; U+003B2 β
beth; U+02136
between; U+0226C
Bfr; U+1D505
bfr; U+1D51F
bigcap; U+022C2
bigcirc; U+025EF
bigcup; U+022C3
bigodot; U+02A00
bigoplus; U+02A01
bigotimes; U+02A02
bigsqcup; U+02A06
bigstar; U+02605
bigtriangledown; U+025BD
bigtriangleup; U+025B3
biguplus; U+02A04
bigvee; U+022C1
bigwedge; U+022C0
bkarow; U+0290D
blacklozenge; U+029EB
blacksquare; U+025AA
blacktriangle; U+025B4
blacktriangledown; U+025BE
blacktriangleleft; U+025C2
blacktriangleright; U+025B8
blank; U+02423
blk12; U+02592
blk14; U+02591
blk34; U+02593
block; U+02588
bne; U+0003D U+020E5 =⃥
bnequiv; U+02261 U+020E5 ≡⃥
bNot; U+02AED
bnot; U+02310
Bopf; U+1D539
bopf; U+1D553
bot; U+022A5
bottom; U+022A5
bowtie; U+022C8
boxbox; U+029C9
boxDL; U+02557
boxDl; U+02556
boxdL; U+02555
boxdl; U+02510
boxDR; U+02554
boxDr; U+02553
boxdR; U+02552
boxdr; U+0250C
boxH; U+02550
boxh; U+02500
boxHD; U+02566
boxHd; U+02564
boxhD; U+02565
boxhd; U+0252C
boxHU; U+02569
boxHu; U+02567
boxhU; U+02568
boxhu; U+02534
boxminus; U+0229F
boxplus; U+0229E
boxtimes; U+022A0
boxUL; U+0255D
boxUl; U+0255C
boxuL; U+0255B
boxul; U+02518
boxUR; U+0255A
boxUr; U+02559
boxuR; U+02558
boxur; U+02514
boxV; U+02551
boxv; U+02502
boxVH; U+0256C
boxVh; U+0256B
boxvH; U+0256A
boxvh; U+0253C
boxVL; U+02563
boxVl; U+02562
boxvL; U+02561
boxvl; U+02524
boxVR; U+02560
boxVr; U+0255F
boxvR; U+0255E
boxvr; U+0251C
bprime; U+02035
Breve; U+002D8 ˘
breve; U+002D8 ˘
brvbar; U+000A6 ¦
brvbar U+000A6 ¦
Bscr; U+0212C
bscr; U+1D4B7
bsemi; U+0204F
bsim; U+0223D
bsime; U+022CD
bsol; U+0005C \
bsolb; U+029C5
bsolhsub; U+027C8
bull; U+02022
bullet; U+02022
bump; U+0224E
bumpE; U+02AAE
bumpe; U+0224F
Bumpeq; U+0224E
bumpeq; U+0224F
Cacute; U+00106 Ć
cacute; U+00107 ć
Cap; U+022D2
cap; U+02229
capand; U+02A44
capbrcup; U+02A49
capcap; U+02A4B
capcup; U+02A47
capdot; U+02A40
CapitalDifferentialD; U+02145
caps; U+02229 U+0FE00 ∩︀
caret; U+02041
caron; U+002C7 ˇ
Cayleys; U+0212D
ccaps; U+02A4D
Ccaron; U+0010C Č
ccaron; U+0010D č
Ccedil; U+000C7 Ç
Ccedil U+000C7 Ç
ccedil; U+000E7 ç
ccedil U+000E7 ç
Ccirc; U+00108 Ĉ
ccirc; U+00109 ĉ
Cconint; U+02230
ccups; U+02A4C
ccupssm; U+02A50
Cdot; U+0010A Ċ
cdot; U+0010B ċ
cedil; U+000B8 ¸
cedil U+000B8 ¸
Cedilla; U+000B8 ¸
cemptyv; U+029B2
cent; U+000A2 ¢
cent U+000A2 ¢
CenterDot; U+000B7 ·
centerdot; U+000B7 ·
Cfr; U+0212D
cfr; U+1D520
CHcy; U+00427 Ч
chcy; U+00447 ч
check; U+02713
checkmark; U+02713
Chi; U+003A7 Χ
chi; U+003C7 χ
cir; U+025CB
circ; U+002C6 ˆ
circeq; U+02257
circlearrowleft; U+021BA
circlearrowright; U+021BB
circledast; U+0229B
circledcirc; U+0229A
circleddash; U+0229D
CircleDot; U+02299
circledR; U+000AE ®
circledS; U+024C8
CircleMinus; U+02296
CirclePlus; U+02295
CircleTimes; U+02297
cirE; U+029C3
cire; U+02257
cirfnint; U+02A10
cirmid; U+02AEF
cirscir; U+029C2
ClockwiseContourIntegral; U+02232
CloseCurlyDoubleQuote; U+0201D
CloseCurlyQuote; U+02019
clubs; U+02663
clubsuit; U+02663
Colon; U+02237
colon; U+0003A :
Colone; U+02A74
colone; U+02254
coloneq; U+02254
comma; U+0002C ,
commat; U+00040 @
comp; U+02201
compfn; U+02218
complement; U+02201
complexes; U+02102
cong; U+02245
congdot; U+02A6D
Congruent; U+02261
Conint; U+0222F
conint; U+0222E
ContourIntegral; U+0222E
Copf; U+02102
copf; U+1D554
coprod; U+02210
Coproduct; U+02210
COPY; U+000A9 ©
COPY U+000A9 ©
copy; U+000A9 ©
copy U+000A9 ©
copysr; U+02117
CounterClockwiseContourIntegral; U+02233
crarr; U+021B5
Cross; U+02A2F
cross; U+02717
Cscr; U+1D49E
cscr; U+1D4B8
csub; U+02ACF
csube; U+02AD1
csup; U+02AD0
csupe; U+02AD2
ctdot; U+022EF
cudarrl; U+02938
cudarrr; U+02935
cuepr; U+022DE
cuesc; U+022DF
cularr; U+021B6
cularrp; U+0293D
Cup; U+022D3
cup; U+0222A
cupbrcap; U+02A48
CupCap; U+0224D
cupcap; U+02A46
cupcup; U+02A4A
cupdot; U+0228D
cupor; U+02A45
cups; U+0222A U+0FE00 ∪︀
curarr; U+021B7
curarrm; U+0293C
curlyeqprec; U+022DE
curlyeqsucc; U+022DF
curlyvee; U+022CE
curlywedge; U+022CF
curren; U+000A4 ¤
curren U+000A4 ¤
curvearrowleft; U+021B6
curvearrowright; U+021B7
cuvee; U+022CE
cuwed; U+022CF
cwconint; U+02232
cwint; U+02231
cylcty; U+0232D
Dagger; U+02021
dagger; U+02020
daleth; U+02138
Darr; U+021A1
dArr; U+021D3
darr; U+02193
dash; U+02010
Dashv; U+02AE4
dashv; U+022A3
dbkarow; U+0290F
dblac; U+002DD ˝
Dcaron; U+0010E Ď
dcaron; U+0010F ď
Dcy; U+00414 Д
dcy; U+00434 д
DD; U+02145
dd; U+02146
ddagger; U+02021
ddarr; U+021CA
DDotrahd; U+02911
ddotseq; U+02A77
deg; U+000B0 °
deg U+000B0 °
Del; U+02207
Delta; U+00394 Δ
delta; U+003B4 δ
demptyv; U+029B1
dfisht; U+0297F ⥿
Dfr; U+1D507
dfr; U+1D521
dHar; U+02965
dharl; U+021C3
dharr; U+021C2
DiacriticalAcute; U+000B4 ´
DiacriticalDot; U+002D9 ˙
DiacriticalDoubleAcute; U+002DD ˝
DiacriticalGrave; U+00060 `
DiacriticalTilde; U+002DC ˜
diam; U+022C4
Diamond; U+022C4
diamond; U+022C4
diamondsuit; U+02666
diams; U+02666
die; U+000A8 ¨
DifferentialD; U+02146
digamma; U+003DD ϝ
disin; U+022F2
div; U+000F7 ÷
divide; U+000F7 ÷
divide U+000F7 ÷
divideontimes; U+022C7
divonx; U+022C7
DJcy; U+00402 Ђ
djcy; U+00452 ђ
dlcorn; U+0231E
dlcrop; U+0230D
dollar; U+00024 $
Dopf; U+1D53B
dopf; U+1D555
Dot; U+000A8 ¨
dot; U+002D9 ˙
DotDot; U+020DC ◌⃜
doteq; U+02250
doteqdot; U+02251
DotEqual; U+02250
dotminus; U+02238
dotplus; U+02214
dotsquare; U+022A1
doublebarwedge; U+02306
DoubleContourIntegral; U+0222F
DoubleDot; U+000A8 ¨
DoubleDownArrow; U+021D3
DoubleLeftArrow; U+021D0
DoubleLeftRightArrow; U+021D4
DoubleLeftTee; U+02AE4
DoubleLongLeftArrow; U+027F8
DoubleLongLeftRightArrow; U+027FA
DoubleLongRightArrow; U+027F9
DoubleRightArrow; U+021D2
DoubleRightTee; U+022A8
DoubleUpArrow; U+021D1
DoubleUpDownArrow; U+021D5
DoubleVerticalBar; U+02225
DownArrow; U+02193
Downarrow; U+021D3
downarrow; U+02193
DownArrowBar; U+02913
DownArrowUpArrow; U+021F5
DownBreve; U+00311 ◌̑
downdownarrows; U+021CA
downharpoonleft; U+021C3
downharpoonright; U+021C2
DownLeftRightVector; U+02950
DownLeftTeeVector; U+0295E
DownLeftVector; U+021BD
DownLeftVectorBar; U+02956
DownRightTeeVector; U+0295F
DownRightVector; U+021C1
DownRightVectorBar; U+02957
DownTee; U+022A4
DownTeeArrow; U+021A7
drbkarow; U+02910
drcorn; U+0231F
drcrop; U+0230C
Dscr; U+1D49F
dscr; U+1D4B9
DScy; U+00405 Ѕ
dscy; U+00455 ѕ
dsol; U+029F6
Dstrok; U+00110 Đ
dstrok; U+00111 đ
dtdot; U+022F1
dtri; U+025BF
dtrif; U+025BE
duarr; U+021F5
duhar; U+0296F
dwangle; U+029A6
DZcy; U+0040F Џ
dzcy; U+0045F џ
dzigrarr; U+027FF
Eacute; U+000C9 É
Eacute U+000C9 É
eacute; U+000E9 é
eacute U+000E9 é
easter; U+02A6E
Ecaron; U+0011A Ě
ecaron; U+0011B ě
ecir; U+02256
Ecirc; U+000CA Ê
Ecirc U+000CA Ê
ecirc; U+000EA ê
ecirc U+000EA ê
ecolon; U+02255
Ecy; U+0042D Э
ecy; U+0044D э
eDDot; U+02A77
Edot; U+00116 Ė
eDot; U+02251
edot; U+00117 ė
ee; U+02147
efDot; U+02252
Efr; U+1D508
efr; U+1D522
eg; U+02A9A
Egrave; U+000C8 È
Egrave U+000C8 È
egrave; U+000E8 è
egrave U+000E8 è
egs; U+02A96
egsdot; U+02A98
el; U+02A99
Element; U+02208
elinters; U+023E7
ell; U+02113
els; U+02A95
elsdot; U+02A97
Emacr; U+00112 Ē
emacr; U+00113 ē
empty; U+02205
emptyset; U+02205
EmptySmallSquare; U+025FB
emptyv; U+02205
EmptyVerySmallSquare; U+025AB
emsp; U+02003
emsp13; U+02004
emsp14; U+02005
ENG; U+0014A Ŋ
eng; U+0014B ŋ
ensp; U+02002
Eogon; U+00118 Ę
eogon; U+00119 ę
Eopf; U+1D53C
eopf; U+1D556
epar; U+022D5
eparsl; U+029E3
eplus; U+02A71
epsi; U+003B5 ε
Epsilon; U+00395 Ε
epsilon; U+003B5 ε
epsiv; U+003F5 ϵ
eqcirc; U+02256
eqcolon; U+02255
eqsim; U+02242
eqslantgtr; U+02A96
eqslantless; U+02A95
Equal; U+02A75
equals; U+0003D =
EqualTilde; U+02242
equest; U+0225F
Equilibrium; U+021CC
equiv; U+02261
equivDD; U+02A78
eqvparsl; U+029E5
erarr; U+02971
erDot; U+02253
Escr; U+02130
escr; U+0212F
esdot; U+02250
Esim; U+02A73
esim; U+02242
Eta; U+00397 Η
eta; U+003B7 η
ETH; U+000D0 Ð
ETH U+000D0 Ð
eth; U+000F0 ð
eth U+000F0 ð
Euml; U+000CB Ë
Euml U+000CB Ë
euml; U+000EB ë
euml U+000EB ë
euro; U+020AC
excl; U+00021 !
exist; U+02203
Exists; U+02203
expectation; U+02130
ExponentialE; U+02147
exponentiale; U+02147
fallingdotseq; U+02252
Fcy; U+00424 Ф
fcy; U+00444 ф
female; U+02640
ffilig; U+0FB03
fflig; U+0FB00
ffllig; U+0FB04
Ffr; U+1D509
ffr; U+1D523
filig; U+0FB01
FilledSmallSquare; U+025FC
FilledVerySmallSquare; U+025AA
fjlig; U+00066 U+0006A fj
flat; U+0266D
fllig; U+0FB02
fltns; U+025B1
fnof; U+00192 ƒ
Fopf; U+1D53D
fopf; U+1D557
ForAll; U+02200
forall; U+02200
fork; U+022D4
forkv; U+02AD9
Fouriertrf; U+02131
fpartint; U+02A0D
frac12; U+000BD ½
frac12 U+000BD ½
frac13; U+02153
frac14; U+000BC ¼
frac14 U+000BC ¼
frac15; U+02155
frac16; U+02159
frac18; U+0215B
frac23; U+02154
frac25; U+02156
frac34; U+000BE ¾
frac34 U+000BE ¾
frac35; U+02157
frac38; U+0215C
frac45; U+02158
frac56; U+0215A
frac58; U+0215D
frac78; U+0215E
frasl; U+02044
frown; U+02322
Fscr; U+02131
fscr; U+1D4BB
gacute; U+001F5 ǵ
Gamma; U+00393 Γ
gamma; U+003B3 γ
Gammad; U+003DC Ϝ
gammad; U+003DD ϝ
gap; U+02A86
Gbreve; U+0011E Ğ
gbreve; U+0011F ğ
Gcedil; U+00122 Ģ
Gcirc; U+0011C Ĝ
gcirc; U+0011D ĝ
Gcy; U+00413 Г
gcy; U+00433 г
Gdot; U+00120 Ġ
gdot; U+00121 ġ
gE; U+02267
ge; U+02265
gEl; U+02A8C
gel; U+022DB
geq; U+02265
geqq; U+02267
geqslant; U+02A7E
ges; U+02A7E
gescc; U+02AA9
gesdot; U+02A80
gesdoto; U+02A82
gesdotol; U+02A84
gesl; U+022DB U+0FE00 ⋛︀
gesles; U+02A94
Gfr; U+1D50A
gfr; U+1D524
Gg; U+022D9
gg; U+0226B
ggg; U+022D9
gimel; U+02137
GJcy; U+00403 Ѓ
gjcy; U+00453 ѓ
gl; U+02277
gla; U+02AA5
glE; U+02A92
glj; U+02AA4
gnap; U+02A8A
gnapprox; U+02A8A
gnE; U+02269
gne; U+02A88
gneq; U+02A88
gneqq; U+02269
gnsim; U+022E7
Gopf; U+1D53E
gopf; U+1D558
grave; U+00060 `
GreaterEqual; U+02265
GreaterEqualLess; U+022DB
GreaterFullEqual; U+02267
GreaterGreater; U+02AA2
GreaterLess; U+02277
GreaterSlantEqual; U+02A7E
GreaterTilde; U+02273
Gscr; U+1D4A2
gscr; U+0210A
gsim; U+02273
gsime; U+02A8E
gsiml; U+02A90
GT; U+0003E >
GT U+0003E >
Gt; U+0226B
gt; U+0003E >
gt U+0003E >
gtcc; U+02AA7
gtcir; U+02A7A
gtdot; U+022D7
gtlPar; U+02995
gtquest; U+02A7C
gtrapprox; U+02A86
gtrarr; U+02978
gtrdot; U+022D7
gtreqless; U+022DB
gtreqqless; U+02A8C
gtrless; U+02277
gtrsim; U+02273
gvertneqq; U+02269 U+0FE00 ≩︀
gvnE; U+02269 U+0FE00 ≩︀
Hacek; U+002C7 ˇ
hairsp; U+0200A
half; U+000BD ½
hamilt; U+0210B
HARDcy; U+0042A Ъ
hardcy; U+0044A ъ
hArr; U+021D4
harr; U+02194
harrcir; U+02948
harrw; U+021AD
Hat; U+0005E ^
hbar; U+0210F
Hcirc; U+00124 Ĥ
hcirc; U+00125 ĥ
hearts; U+02665
heartsuit; U+02665
hellip; U+02026
hercon; U+022B9
Hfr; U+0210C
hfr; U+1D525
HilbertSpace; U+0210B
hksearow; U+02925
hkswarow; U+02926
hoarr; U+021FF
homtht; U+0223B
hookleftarrow; U+021A9
hookrightarrow; U+021AA
Hopf; U+0210D
hopf; U+1D559
horbar; U+02015
HorizontalLine; U+02500
Hscr; U+0210B
hscr; U+1D4BD
hslash; U+0210F
Hstrok; U+00126 Ħ
hstrok; U+00127 ħ
HumpDownHump; U+0224E
HumpEqual; U+0224F
hybull; U+02043
hyphen; U+02010
Iacute; U+000CD Í
Iacute U+000CD Í
iacute; U+000ED í
iacute U+000ED í
ic; U+02063
Icirc; U+000CE Î
Icirc U+000CE Î
icirc; U+000EE î
icirc U+000EE î
Icy; U+00418 И
icy; U+00438 и
Idot; U+00130 İ
IEcy; U+00415 Е
iecy; U+00435 е
iexcl; U+000A1 ¡
iexcl U+000A1 ¡
iff; U+021D4
Ifr; U+02111
ifr; U+1D526
Igrave; U+000CC Ì
Igrave U+000CC Ì
igrave; U+000EC ì
igrave U+000EC ì
ii; U+02148
iiiint; U+02A0C
iiint; U+0222D
iinfin; U+029DC
iiota; U+02129
IJlig; U+00132 IJ
ijlig; U+00133 ij
Im; U+02111
Imacr; U+0012A Ī
imacr; U+0012B ī
image; U+02111
ImaginaryI; U+02148
imagline; U+02110
imagpart; U+02111
imath; U+00131 ı
imof; U+022B7
imped; U+001B5 Ƶ
Implies; U+021D2
in; U+02208
incare; U+02105
infin; U+0221E
infintie; U+029DD
inodot; U+00131 ı
Int; U+0222C
int; U+0222B
intcal; U+022BA
integers; U+02124
Integral; U+0222B
intercal; U+022BA
Intersection; U+022C2
intlarhk; U+02A17
intprod; U+02A3C
InvisibleComma; U+02063
InvisibleTimes; U+02062
IOcy; U+00401 Ё
iocy; U+00451 ё
Iogon; U+0012E Į
iogon; U+0012F į
Iopf; U+1D540
iopf; U+1D55A
Iota; U+00399 Ι
iota; U+003B9 ι
iprod; U+02A3C
iquest; U+000BF ¿
iquest U+000BF ¿
Iscr; U+02110
iscr; U+1D4BE
isin; U+02208
isindot; U+022F5
isinE; U+022F9
isins; U+022F4
isinsv; U+022F3
isinv; U+02208
it; U+02062
Itilde; U+00128 Ĩ
itilde; U+00129 ĩ
Iukcy; U+00406 І
iukcy; U+00456 і
Iuml; U+000CF Ï
Iuml U+000CF Ï
iuml; U+000EF ï
iuml U+000EF ï
Jcirc; U+00134 Ĵ
jcirc; U+00135 ĵ
Jcy; U+00419 Й
jcy; U+00439 й
Jfr; U+1D50D
jfr; U+1D527
jmath; U+00237 ȷ
Jopf; U+1D541
jopf; U+1D55B
Jscr; U+1D4A5
jscr; U+1D4BF
Jsercy; U+00408 Ј
jsercy; U+00458 ј
Jukcy; U+00404 Є
jukcy; U+00454 є
Kappa; U+0039A Κ
kappa; U+003BA κ
kappav; U+003F0 ϰ
Kcedil; U+00136 Ķ
kcedil; U+00137 ķ
Kcy; U+0041A К
kcy; U+0043A к
Kfr; U+1D50E
kfr; U+1D528
kgreen; U+00138 ĸ
KHcy; U+00425 Х
khcy; U+00445 х
KJcy; U+0040C Ќ
kjcy; U+0045C ќ
Kopf; U+1D542
kopf; U+1D55C
Kscr; U+1D4A6
kscr; U+1D4C0
lAarr; U+021DA
Lacute; U+00139 Ĺ
lacute; U+0013A ĺ
laemptyv; U+029B4
lagran; U+02112
Lambda; U+0039B Λ
lambda; U+003BB λ
Lang; U+027EA
lang; U+027E8
langd; U+02991
langle; U+027E8
lap; U+02A85
Laplacetrf; U+02112
laquo; U+000AB «
laquo U+000AB «
Larr; U+0219E
lArr; U+021D0
larr; U+02190
larrb; U+021E4
larrbfs; U+0291F
larrfs; U+0291D
larrhk; U+021A9
larrlp; U+021AB
larrpl; U+02939
larrsim; U+02973
larrtl; U+021A2
lat; U+02AAB
lAtail; U+0291B
latail; U+02919
late; U+02AAD
lates; U+02AAD U+0FE00 ⪭︀
lBarr; U+0290E
lbarr; U+0290C
lbbrk; U+02772
lbrace; U+0007B {
lbrack; U+0005B [
lbrke; U+0298B
lbrksld; U+0298F
lbrkslu; U+0298D
Lcaron; U+0013D Ľ
lcaron; U+0013E ľ
Lcedil; U+0013B Ļ
lcedil; U+0013C ļ
lceil; U+02308
lcub; U+0007B {
Lcy; U+0041B Л
lcy; U+0043B л
ldca; U+02936
ldquo; U+0201C
ldquor; U+0201E
ldrdhar; U+02967
ldrushar; U+0294B
ldsh; U+021B2
lE; U+02266
le; U+02264
LeftAngleBracket; U+027E8
LeftArrow; U+02190
Leftarrow; U+021D0
leftarrow; U+02190
LeftArrowBar; U+021E4
LeftArrowRightArrow; U+021C6
leftarrowtail; U+021A2
LeftCeiling; U+02308
LeftDoubleBracket; U+027E6
LeftDownTeeVector; U+02961
LeftDownVector; U+021C3
LeftDownVectorBar; U+02959
LeftFloor; U+0230A
leftharpoondown; U+021BD
leftharpoonup; U+021BC
leftleftarrows; U+021C7
LeftRightArrow; U+02194
Leftrightarrow; U+021D4
leftrightarrow; U+02194
leftrightarrows; U+021C6
leftrightharpoons; U+021CB
leftrightsquigarrow; U+021AD
LeftRightVector; U+0294E
LeftTee; U+022A3
LeftTeeArrow; U+021A4
LeftTeeVector; U+0295A
leftthreetimes; U+022CB
LeftTriangle; U+022B2
LeftTriangleBar; U+029CF
LeftTriangleEqual; U+022B4
LeftUpDownVector; U+02951
LeftUpTeeVector; U+02960
LeftUpVector; U+021BF
LeftUpVectorBar; U+02958
LeftVector; U+021BC
LeftVectorBar; U+02952
lEg; U+02A8B
leg; U+022DA
leq; U+02264
leqq; U+02266
leqslant; U+02A7D
les; U+02A7D
lescc; U+02AA8
lesdot; U+02A7F ⩿
lesdoto; U+02A81
lesdotor; U+02A83
lesg; U+022DA U+0FE00 ⋚︀
lesges; U+02A93
lessapprox; U+02A85
lessdot; U+022D6
lesseqgtr; U+022DA
lesseqqgtr; U+02A8B
LessEqualGreater; U+022DA
LessFullEqual; U+02266
LessGreater; U+02276
lessgtr; U+02276
LessLess; U+02AA1
lesssim; U+02272
LessSlantEqual; U+02A7D
LessTilde; U+02272
lfisht; U+0297C
lfloor; U+0230A
Lfr; U+1D50F
lfr; U+1D529
lg; U+02276
lgE; U+02A91
lHar; U+02962
lhard; U+021BD
lharu; U+021BC
lharul; U+0296A
lhblk; U+02584
LJcy; U+00409 Љ
ljcy; U+00459 љ
Ll; U+022D8
ll; U+0226A
llarr; U+021C7
llcorner; U+0231E
Lleftarrow; U+021DA
llhard; U+0296B
lltri; U+025FA
Lmidot; U+0013F Ŀ
lmidot; U+00140 ŀ
lmoust; U+023B0
lmoustache; U+023B0
lnap; U+02A89
lnapprox; U+02A89
lnE; U+02268
lne; U+02A87
lneq; U+02A87
lneqq; U+02268
lnsim; U+022E6
loang; U+027EC
loarr; U+021FD
lobrk; U+027E6
LongLeftArrow; U+027F5
Longleftarrow; U+027F8
longleftarrow; U+027F5
LongLeftRightArrow; U+027F7
Longleftrightarrow; U+027FA
longleftrightarrow; U+027F7
longmapsto; U+027FC
LongRightArrow; U+027F6
Longrightarrow; U+027F9
longrightarrow; U+027F6
looparrowleft; U+021AB
looparrowright; U+021AC
lopar; U+02985
Lopf; U+1D543
lopf; U+1D55D
loplus; U+02A2D
lotimes; U+02A34
lowast; U+02217
lowbar; U+0005F _
LowerLeftArrow; U+02199
LowerRightArrow; U+02198
loz; U+025CA
lozenge; U+025CA
lozf; U+029EB
lpar; U+00028 (
lparlt; U+02993
lrarr; U+021C6
lrcorner; U+0231F
lrhar; U+021CB
lrhard; U+0296D
lrm; U+0200E
lrtri; U+022BF
lsaquo; U+02039
Lscr; U+02112
lscr; U+1D4C1
Lsh; U+021B0
lsh; U+021B0
lsim; U+02272
lsime; U+02A8D
lsimg; U+02A8F
lsqb; U+0005B [
lsquo; U+02018
lsquor; U+0201A
Lstrok; U+00141 Ł
lstrok; U+00142 ł
LT; U+0003C <
LT U+0003C <
Lt; U+0226A
lt; U+0003C <
lt U+0003C <
ltcc; U+02AA6
ltcir; U+02A79
ltdot; U+022D6
lthree; U+022CB
ltimes; U+022C9
ltlarr; U+02976
ltquest; U+02A7B
ltri; U+025C3
ltrie; U+022B4
ltrif; U+025C2
ltrPar; U+02996
lurdshar; U+0294A
luruhar; U+02966
lvertneqq; U+02268 U+0FE00 ≨︀
lvnE; U+02268 U+0FE00 ≨︀
macr; U+000AF ¯
macr U+000AF ¯
male; U+02642
malt; U+02720
maltese; U+02720
Map; U+02905
map; U+021A6
mapsto; U+021A6
mapstodown; U+021A7
mapstoleft; U+021A4
mapstoup; U+021A5
marker; U+025AE
mcomma; U+02A29
Mcy; U+0041C М
mcy; U+0043C м
mdash; U+02014
mDDot; U+0223A
measuredangle; U+02221
MediumSpace; U+0205F
Mellintrf; U+02133
Mfr; U+1D510
mfr; U+1D52A
mho; U+02127
micro; U+000B5 µ
micro U+000B5 µ
mid; U+02223
midast; U+0002A *
midcir; U+02AF0
middot; U+000B7 ·
middot U+000B7 ·
minus; U+02212
minusb; U+0229F
minusd; U+02238
minusdu; U+02A2A
MinusPlus; U+02213
mlcp; U+02ADB
mldr; U+02026
mnplus; U+02213
models; U+022A7
Mopf; U+1D544
mopf; U+1D55E
mp; U+02213
Mscr; U+02133
mscr; U+1D4C2
mstpos; U+0223E
Mu; U+0039C Μ
mu; U+003BC μ
multimap; U+022B8
mumap; U+022B8
nabla; U+02207
Nacute; U+00143 Ń
nacute; U+00144 ń
nang; U+02220 U+020D2 ∠⃒
nap; U+02249
napE; U+02A70 U+00338 ⩰̸
napid; U+0224B U+00338 ≋̸
napos; U+00149 ʼn
napprox; U+02249
natur; U+0266E
natural; U+0266E
naturals; U+02115
nbsp; U+000A0  
nbsp U+000A0  
nbump; U+0224E U+00338 ≎̸
nbumpe; U+0224F U+00338 ≏̸
ncap; U+02A43
Ncaron; U+00147 Ň
ncaron; U+00148 ň
Ncedil; U+00145 Ņ
ncedil; U+00146 ņ
ncong; U+02247
ncongdot; U+02A6D U+00338 ⩭̸
ncup; U+02A42
Ncy; U+0041D Н
ncy; U+0043D н
ndash; U+02013
ne; U+02260
nearhk; U+02924
neArr; U+021D7
nearr; U+02197
nearrow; U+02197
nedot; U+02250 U+00338 ≐̸
NegativeMediumSpace; U+0200B
NegativeThickSpace; U+0200B
NegativeThinSpace; U+0200B
NegativeVeryThinSpace; U+0200B
nequiv; U+02262
nesear; U+02928
nesim; U+02242 U+00338 ≂̸
NestedGreaterGreater; U+0226B
NestedLessLess; U+0226A
NewLine; U+0000A
nexist; U+02204
nexists; U+02204
Nfr; U+1D511
nfr; U+1D52B
ngE; U+02267 U+00338 ≧̸
nge; U+02271
ngeq; U+02271
ngeqq; U+02267 U+00338 ≧̸
ngeqslant; U+02A7E U+00338 ⩾̸
nges; U+02A7E U+00338 ⩾̸
nGg; U+022D9 U+00338 ⋙̸
ngsim; U+02275
nGt; U+0226B U+020D2 ≫⃒
ngt; U+0226F
ngtr; U+0226F
nGtv; U+0226B U+00338 ≫̸
nhArr; U+021CE
nharr; U+021AE
nhpar; U+02AF2
ni; U+0220B
nis; U+022FC
nisd; U+022FA
niv; U+0220B
NJcy; U+0040A Њ
njcy; U+0045A њ
nlArr; U+021CD
nlarr; U+0219A
nldr; U+02025
nlE; U+02266 U+00338 ≦̸
nle; U+02270
nLeftarrow; U+021CD
nleftarrow; U+0219A
nLeftrightarrow; U+021CE
nleftrightarrow; U+021AE
nleq; U+02270
nleqq; U+02266 U+00338 ≦̸
nleqslant; U+02A7D U+00338 ⩽̸
nles; U+02A7D U+00338 ⩽̸
nless; U+0226E
nLl; U+022D8 U+00338 ⋘̸
nlsim; U+02274
nLt; U+0226A U+020D2 ≪⃒
nlt; U+0226E
nltri; U+022EA
nltrie; U+022EC
nLtv; U+0226A U+00338 ≪̸
nmid; U+02224
NoBreak; U+02060
NonBreakingSpace; U+000A0  
Nopf; U+02115
nopf; U+1D55F
Not; U+02AEC
not; U+000AC ¬
not U+000AC ¬
NotCongruent; U+02262
NotCupCap; U+0226D
NotDoubleVerticalBar; U+02226
NotElement; U+02209
NotEqual; U+02260
NotEqualTilde; U+02242 U+00338 ≂̸
NotExists; U+02204
NotGreater; U+0226F
NotGreaterEqual; U+02271
NotGreaterFullEqual; U+02267 U+00338 ≧̸
NotGreaterGreater; U+0226B U+00338 ≫̸
NotGreaterLess; U+02279
NotGreaterSlantEqual; U+02A7E U+00338 ⩾̸
NotGreaterTilde; U+02275
NotHumpDownHump; U+0224E U+00338 ≎̸
NotHumpEqual; U+0224F U+00338 ≏̸
notin; U+02209
notindot; U+022F5 U+00338 ⋵̸
notinE; U+022F9 U+00338 ⋹̸
notinva; U+02209
notinvb; U+022F7
notinvc; U+022F6
NotLeftTriangle; U+022EA
NotLeftTriangleBar; U+029CF U+00338 ⧏̸
NotLeftTriangleEqual; U+022EC
NotLess; U+0226E
NotLessEqual; U+02270
NotLessGreater; U+02278
NotLessLess; U+0226A U+00338 ≪̸
NotLessSlantEqual; U+02A7D U+00338 ⩽̸
NotLessTilde; U+02274
NotNestedGreaterGreater; U+02AA2 U+00338 ⪢̸
NotNestedLessLess; U+02AA1 U+00338 ⪡̸
notni; U+0220C
notniva; U+0220C
notnivb; U+022FE
notnivc; U+022FD
NotPrecedes; U+02280
NotPrecedesEqual; U+02AAF U+00338 ⪯̸
NotPrecedesSlantEqual; U+022E0
NotReverseElement; U+0220C
NotRightTriangle; U+022EB
NotRightTriangleBar; U+029D0 U+00338 ⧐̸
NotRightTriangleEqual; U+022ED
NotSquareSubset; U+0228F U+00338 ⊏̸
NotSquareSubsetEqual; U+022E2
NotSquareSuperset; U+02290 U+00338 ⊐̸
NotSquareSupersetEqual; U+022E3
NotSubset; U+02282 U+020D2 ⊂⃒
NotSubsetEqual; U+02288
NotSucceeds; U+02281
NotSucceedsEqual; U+02AB0 U+00338 ⪰̸
NotSucceedsSlantEqual; U+022E1
NotSucceedsTilde; U+0227F U+00338 ≿̸
NotSuperset; U+02283 U+020D2 ⊃⃒
NotSupersetEqual; U+02289
NotTilde; U+02241
NotTildeEqual; U+02244
NotTildeFullEqual; U+02247
NotTildeTilde; U+02249
NotVerticalBar; U+02224
npar; U+02226
nparallel; U+02226
nparsl; U+02AFD U+020E5 ⫽⃥
npart; U+02202 U+00338 ∂̸
npolint; U+02A14
npr; U+02280
nprcue; U+022E0
npre; U+02AAF U+00338 ⪯̸
nprec; U+02280
npreceq; U+02AAF U+00338 ⪯̸
nrArr; U+021CF
nrarr; U+0219B
nrarrc; U+02933 U+00338 ⤳̸
nrarrw; U+0219D U+00338 ↝̸
nRightarrow; U+021CF
nrightarrow; U+0219B
nrtri; U+022EB
nrtrie; U+022ED
nsc; U+02281
nsccue; U+022E1
nsce; U+02AB0 U+00338 ⪰̸
Nscr; U+1D4A9
nscr; U+1D4C3
nshortmid; U+02224
nshortparallel; U+02226
nsim; U+02241
nsime; U+02244
nsimeq; U+02244
nsmid; U+02224
nspar; U+02226
nsqsube; U+022E2
nsqsupe; U+022E3
nsub; U+02284
nsubE; U+02AC5 U+00338 ⫅̸
nsube; U+02288
nsubset; U+02282 U+020D2 ⊂⃒
nsubseteq; U+02288
nsubseteqq; U+02AC5 U+00338 ⫅̸
nsucc; U+02281
nsucceq; U+02AB0 U+00338 ⪰̸
nsup; U+02285
nsupE; U+02AC6 U+00338 ⫆̸
nsupe; U+02289
nsupset; U+02283 U+020D2 ⊃⃒
nsupseteq; U+02289
nsupseteqq; U+02AC6 U+00338 ⫆̸
ntgl; U+02279
Ntilde; U+000D1 Ñ
Ntilde U+000D1 Ñ
ntilde; U+000F1 ñ
ntilde U+000F1 ñ
ntlg; U+02278
ntriangleleft; U+022EA
ntrianglelefteq; U+022EC
ntriangleright; U+022EB
ntrianglerighteq; U+022ED
Nu; U+0039D Ν
nu; U+003BD ν
num; U+00023 #
numero; U+02116
numsp; U+02007
nvap; U+0224D U+020D2 ≍⃒
nVDash; U+022AF
nVdash; U+022AE
nvDash; U+022AD
nvdash; U+022AC
nvge; U+02265 U+020D2 ≥⃒
nvgt; U+0003E U+020D2 >⃒
nvHarr; U+02904
nvinfin; U+029DE
nvlArr; U+02902
nvle; U+02264 U+020D2 ≤⃒
nvlt; U+0003C U+020D2 <⃒
nvltrie; U+022B4 U+020D2 ⊴⃒
nvrArr; U+02903
nvrtrie; U+022B5 U+020D2 ⊵⃒
nvsim; U+0223C U+020D2 ∼⃒
nwarhk; U+02923
nwArr; U+021D6
nwarr; U+02196
nwarrow; U+02196
nwnear; U+02927
Oacute; U+000D3 Ó
Oacute U+000D3 Ó
oacute; U+000F3 ó
oacute U+000F3 ó
oast; U+0229B
ocir; U+0229A
Ocirc; U+000D4 Ô
Ocirc U+000D4 Ô
ocirc; U+000F4 ô
ocirc U+000F4 ô
Ocy; U+0041E О
ocy; U+0043E о
odash; U+0229D
Odblac; U+00150 Ő
odblac; U+00151 ő
odiv; U+02A38
odot; U+02299
odsold; U+029BC
OElig; U+00152 Œ
oelig; U+00153 œ
ofcir; U+029BF ⦿
Ofr; U+1D512
ofr; U+1D52C
ogon; U+002DB ˛
Ograve; U+000D2 Ò
Ograve U+000D2 Ò
ograve; U+000F2 ò
ograve U+000F2 ò
ogt; U+029C1
ohbar; U+029B5
ohm; U+003A9 Ω
oint; U+0222E
olarr; U+021BA
olcir; U+029BE
olcross; U+029BB
oline; U+0203E
olt; U+029C0
Omacr; U+0014C Ō
omacr; U+0014D ō
Omega; U+003A9 Ω
omega; U+003C9 ω
Omicron; U+0039F Ο
omicron; U+003BF ο
omid; U+029B6
ominus; U+02296
Oopf; U+1D546
oopf; U+1D560
opar; U+029B7
OpenCurlyDoubleQuote; U+0201C
OpenCurlyQuote; U+02018
operp; U+029B9
oplus; U+02295
Or; U+02A54
or; U+02228
orarr; U+021BB
ord; U+02A5D
order; U+02134
orderof; U+02134
ordf; U+000AA ª
ordf U+000AA ª
ordm; U+000BA º
ordm U+000BA º
origof; U+022B6
oror; U+02A56
orslope; U+02A57
orv; U+02A5B
oS; U+024C8
Oscr; U+1D4AA
oscr; U+02134
Oslash; U+000D8 Ø
Oslash U+000D8 Ø
oslash; U+000F8 ø
oslash U+000F8 ø
osol; U+02298
Otilde; U+000D5 Õ
Otilde U+000D5 Õ
otilde; U+000F5 õ
otilde U+000F5 õ
Otimes; U+02A37
otimes; U+02297
otimesas; U+02A36
Ouml; U+000D6 Ö
Ouml U+000D6 Ö
ouml; U+000F6 ö
ouml U+000F6 ö
ovbar; U+0233D
OverBar; U+0203E
OverBrace; U+023DE
OverBracket; U+023B4
OverParenthesis; U+023DC
par; U+02225
para; U+000B6
para U+000B6
parallel; U+02225
parsim; U+02AF3
parsl; U+02AFD
part; U+02202
PartialD; U+02202
Pcy; U+0041F П
pcy; U+0043F п
percnt; U+00025 %
period; U+0002E .
permil; U+02030
perp; U+022A5
pertenk; U+02031
Pfr; U+1D513
pfr; U+1D52D
Phi; U+003A6 Φ
phi; U+003C6 φ
phiv; U+003D5 ϕ
phmmat; U+02133
phone; U+0260E
Pi; U+003A0 Π
pi; U+003C0 π
pitchfork; U+022D4
piv; U+003D6 ϖ
planck; U+0210F
planckh; U+0210E
plankv; U+0210F
plus; U+0002B +
plusacir; U+02A23
plusb; U+0229E
pluscir; U+02A22
plusdo; U+02214
plusdu; U+02A25
pluse; U+02A72
PlusMinus; U+000B1 ±
plusmn; U+000B1 ±
plusmn U+000B1 ±
plussim; U+02A26
plustwo; U+02A27
pm; U+000B1 ±
Poincareplane; U+0210C
pointint; U+02A15
Popf; U+02119
popf; U+1D561
pound; U+000A3 £
pound U+000A3 £
Pr; U+02ABB
pr; U+0227A
prap; U+02AB7
prcue; U+0227C
prE; U+02AB3
pre; U+02AAF
prec; U+0227A
precapprox; U+02AB7
preccurlyeq; U+0227C
Precedes; U+0227A
PrecedesEqual; U+02AAF
PrecedesSlantEqual; U+0227C
PrecedesTilde; U+0227E
preceq; U+02AAF
precnapprox; U+02AB9
precneqq; U+02AB5
precnsim; U+022E8
precsim; U+0227E
Prime; U+02033
prime; U+02032
primes; U+02119
prnap; U+02AB9
prnE; U+02AB5
prnsim; U+022E8
prod; U+0220F
Product; U+0220F
profalar; U+0232E
profline; U+02312
profsurf; U+02313
prop; U+0221D
Proportion; U+02237
Proportional; U+0221D
propto; U+0221D
prsim; U+0227E
prurel; U+022B0
Pscr; U+1D4AB
pscr; U+1D4C5
Psi; U+003A8 Ψ
psi; U+003C8 ψ
puncsp; U+02008
Qfr; U+1D514
qfr; U+1D52E
qint; U+02A0C
Qopf; U+0211A
qopf; U+1D562
qprime; U+02057
Qscr; U+1D4AC
qscr; U+1D4C6
quaternions; U+0210D
quatint; U+02A16
quest; U+0003F ?
questeq; U+0225F
QUOT; U+00022 "
QUOT U+00022 "
quot; U+00022 "
quot U+00022 "
rAarr; U+021DB
race; U+0223D U+00331 ∽̱
Racute; U+00154 Ŕ
racute; U+00155 ŕ
radic; U+0221A
raemptyv; U+029B3
Rang; U+027EB
rang; U+027E9
rangd; U+02992
range; U+029A5
rangle; U+027E9
raquo; U+000BB »
raquo U+000BB »
Rarr; U+021A0
rArr; U+021D2
rarr; U+02192
rarrap; U+02975
rarrb; U+021E5
rarrbfs; U+02920
rarrc; U+02933
rarrfs; U+0291E
rarrhk; U+021AA
rarrlp; U+021AC
rarrpl; U+02945
rarrsim; U+02974
Rarrtl; U+02916
rarrtl; U+021A3
rarrw; U+0219D
rAtail; U+0291C
ratail; U+0291A
ratio; U+02236
rationals; U+0211A
RBarr; U+02910
rBarr; U+0290F
rbarr; U+0290D
rbbrk; U+02773
rbrace; U+0007D }
rbrack; U+0005D ]
rbrke; U+0298C
rbrksld; U+0298E
rbrkslu; U+02990
Rcaron; U+00158 Ř
rcaron; U+00159 ř
Rcedil; U+00156 Ŗ
rcedil; U+00157 ŗ
rceil; U+02309
rcub; U+0007D }
Rcy; U+00420 Р
rcy; U+00440 р
rdca; U+02937
rdldhar; U+02969
rdquo; U+0201D
rdquor; U+0201D
rdsh; U+021B3
Re; U+0211C
real; U+0211C
realine; U+0211B
realpart; U+0211C
reals; U+0211D
rect; U+025AD
REG; U+000AE ®
REG U+000AE ®
reg; U+000AE ®
reg U+000AE ®
ReverseElement; U+0220B
ReverseEquilibrium; U+021CB
ReverseUpEquilibrium; U+0296F
rfisht; U+0297D
rfloor; U+0230B
Rfr; U+0211C
rfr; U+1D52F
rHar; U+02964
rhard; U+021C1
rharu; U+021C0
rharul; U+0296C
Rho; U+003A1 Ρ
rho; U+003C1 ρ
rhov; U+003F1 ϱ
RightAngleBracket; U+027E9
RightArrow; U+02192
Rightarrow; U+021D2
rightarrow; U+02192
RightArrowBar; U+021E5
RightArrowLeftArrow; U+021C4
rightarrowtail; U+021A3
RightCeiling; U+02309
RightDoubleBracket; U+027E7
RightDownTeeVector; U+0295D
RightDownVector; U+021C2
RightDownVectorBar; U+02955
RightFloor; U+0230B
rightharpoondown; U+021C1
rightharpoonup; U+021C0
rightleftarrows; U+021C4
rightleftharpoons; U+021CC
rightrightarrows; U+021C9
rightsquigarrow; U+0219D
RightTee; U+022A2
RightTeeArrow; U+021A6
RightTeeVector; U+0295B
rightthreetimes; U+022CC
RightTriangle; U+022B3
RightTriangleBar; U+029D0
RightTriangleEqual; U+022B5
RightUpDownVector; U+0294F
RightUpTeeVector; U+0295C
RightUpVector; U+021BE
RightUpVectorBar; U+02954
RightVector; U+021C0
RightVectorBar; U+02953
ring; U+002DA ˚
risingdotseq; U+02253
rlarr; U+021C4
rlhar; U+021CC
rlm; U+0200F
rmoust; U+023B1
rmoustache; U+023B1
rnmid; U+02AEE
roang; U+027ED
roarr; U+021FE
robrk; U+027E7
ropar; U+02986
Ropf; U+0211D
ropf; U+1D563
roplus; U+02A2E
rotimes; U+02A35
RoundImplies; U+02970
rpar; U+00029 )
rpargt; U+02994
rppolint; U+02A12
rrarr; U+021C9
Rrightarrow; U+021DB
rsaquo; U+0203A
Rscr; U+0211B
rscr; U+1D4C7
Rsh; U+021B1
rsh; U+021B1
rsqb; U+0005D ]
rsquo; U+02019
rsquor; U+02019
rthree; U+022CC
rtimes; U+022CA
rtri; U+025B9
rtrie; U+022B5
rtrif; U+025B8
rtriltri; U+029CE
RuleDelayed; U+029F4
ruluhar; U+02968
rx; U+0211E
Sacute; U+0015A Ś
sacute; U+0015B ś
sbquo; U+0201A
Sc; U+02ABC
sc; U+0227B
scap; U+02AB8
Scaron; U+00160 Š
scaron; U+00161 š
sccue; U+0227D
scE; U+02AB4
sce; U+02AB0
Scedil; U+0015E Ş
scedil; U+0015F ş
Scirc; U+0015C Ŝ
scirc; U+0015D ŝ
scnap; U+02ABA
scnE; U+02AB6
scnsim; U+022E9
scpolint; U+02A13
scsim; U+0227F
Scy; U+00421 С
scy; U+00441 с
sdot; U+022C5
sdotb; U+022A1
sdote; U+02A66
searhk; U+02925
seArr; U+021D8
searr; U+02198
searrow; U+02198
sect; U+000A7 §
sect U+000A7 §
semi; U+0003B ;
seswar; U+02929
setminus; U+02216
setmn; U+02216
sext; U+02736
Sfr; U+1D516
sfr; U+1D530
sfrown; U+02322
sharp; U+0266F
SHCHcy; U+00429 Щ
shchcy; U+00449 щ
SHcy; U+00428 Ш
shcy; U+00448 ш
ShortDownArrow; U+02193
ShortLeftArrow; U+02190
shortmid; U+02223
shortparallel; U+02225
ShortRightArrow; U+02192
ShortUpArrow; U+02191
shy; U+000AD ­
shy U+000AD ­
Sigma; U+003A3 Σ
sigma; U+003C3 σ
sigmaf; U+003C2 ς
sigmav; U+003C2 ς
sim; U+0223C
simdot; U+02A6A
sime; U+02243
simeq; U+02243
simg; U+02A9E
simgE; U+02AA0
siml; U+02A9D
simlE; U+02A9F
simne; U+02246
simplus; U+02A24
simrarr; U+02972
slarr; U+02190
SmallCircle; U+02218
smallsetminus; U+02216
smashp; U+02A33
smeparsl; U+029E4
smid; U+02223
smile; U+02323
smt; U+02AAA
smte; U+02AAC
smtes; U+02AAC U+0FE00 ⪬︀
SOFTcy; U+0042C Ь
softcy; U+0044C ь
sol; U+0002F /
solb; U+029C4
solbar; U+0233F
Sopf; U+1D54A
sopf; U+1D564
spades; U+02660
spadesuit; U+02660
spar; U+02225
sqcap; U+02293
sqcaps; U+02293 U+0FE00 ⊓︀
sqcup; U+02294
sqcups; U+02294 U+0FE00 ⊔︀
Sqrt; U+0221A
sqsub; U+0228F
sqsube; U+02291
sqsubset; U+0228F
sqsubseteq; U+02291
sqsup; U+02290
sqsupe; U+02292
sqsupset; U+02290
sqsupseteq; U+02292
squ; U+025A1
Square; U+025A1
square; U+025A1
SquareIntersection; U+02293
SquareSubset; U+0228F
SquareSubsetEqual; U+02291
SquareSuperset; U+02290
SquareSupersetEqual; U+02292
SquareUnion; U+02294
squarf; U+025AA
squf; U+025AA
srarr; U+02192
Sscr; U+1D4AE
sscr; U+1D4C8
ssetmn; U+02216
ssmile; U+02323
sstarf; U+022C6
Star; U+022C6
star; U+02606
starf; U+02605
straightepsilon; U+003F5 ϵ
straightphi; U+003D5 ϕ
strns; U+000AF ¯
Sub; U+022D0
sub; U+02282
subdot; U+02ABD
subE; U+02AC5
sube; U+02286
subedot; U+02AC3
submult; U+02AC1
subnE; U+02ACB
subne; U+0228A
subplus; U+02ABF ⪿
subrarr; U+02979
Subset; U+022D0
subset; U+02282
subseteq; U+02286
subseteqq; U+02AC5
SubsetEqual; U+02286
subsetneq; U+0228A
subsetneqq; U+02ACB
subsim; U+02AC7
subsub; U+02AD5
subsup; U+02AD3
succ; U+0227B
succapprox; U+02AB8
succcurlyeq; U+0227D
Succeeds; U+0227B
SucceedsEqual; U+02AB0
SucceedsSlantEqual; U+0227D
SucceedsTilde; U+0227F
succeq; U+02AB0
succnapprox; U+02ABA
succneqq; U+02AB6
succnsim; U+022E9
succsim; U+0227F
SuchThat; U+0220B
Sum; U+02211
sum; U+02211
sung; U+0266A
Sup; U+022D1
sup; U+02283
sup1; U+000B9 ¹
sup1 U+000B9 ¹
sup2; U+000B2 ²
sup2 U+000B2 ²
sup3; U+000B3 ³
sup3 U+000B3 ³
supdot; U+02ABE
supdsub; U+02AD8
supE; U+02AC6
supe; U+02287
supedot; U+02AC4
Superset; U+02283
SupersetEqual; U+02287
suphsol; U+027C9
suphsub; U+02AD7
suplarr; U+0297B
supmult; U+02AC2
supnE; U+02ACC
supne; U+0228B
supplus; U+02AC0
Supset; U+022D1
supset; U+02283
supseteq; U+02287
supseteqq; U+02AC6
supsetneq; U+0228B
supsetneqq; U+02ACC
supsim; U+02AC8
supsub; U+02AD4
supsup; U+02AD6
swarhk; U+02926
swArr; U+021D9
swarr; U+02199
swarrow; U+02199
swnwar; U+0292A
szlig; U+000DF ß
szlig U+000DF ß
Tab; U+00009
target; U+02316
Tau; U+003A4 Τ
tau; U+003C4 τ
tbrk; U+023B4
Tcaron; U+00164 Ť
tcaron; U+00165 ť
Tcedil; U+00162 Ţ
tcedil; U+00163 ţ
Tcy; U+00422 Т
tcy; U+00442 т
tdot; U+020DB ◌⃛
telrec; U+02315
Tfr; U+1D517
tfr; U+1D531
there4; U+02234
Therefore; U+02234
therefore; U+02234
Theta; U+00398 Θ
theta; U+003B8 θ
thetasym; U+003D1 ϑ
thetav; U+003D1 ϑ
thickapprox; U+02248
thicksim; U+0223C
ThickSpace; U+0205F U+0200A   
thinsp; U+02009
ThinSpace; U+02009
thkap; U+02248
thksim; U+0223C
THORN; U+000DE Þ
THORN U+000DE Þ
thorn; U+000FE þ
thorn U+000FE þ
Tilde; U+0223C
tilde; U+002DC ˜
TildeEqual; U+02243
TildeFullEqual; U+02245
TildeTilde; U+02248
times; U+000D7 ×
times U+000D7 ×
timesb; U+022A0
timesbar; U+02A31
timesd; U+02A30
tint; U+0222D
toea; U+02928
top; U+022A4
topbot; U+02336
topcir; U+02AF1
Topf; U+1D54B
topf; U+1D565
topfork; U+02ADA
tosa; U+02929
tprime; U+02034
TRADE; U+02122
trade; U+02122
triangle; U+025B5
triangledown; U+025BF
triangleleft; U+025C3
trianglelefteq; U+022B4
triangleq; U+0225C
triangleright; U+025B9
trianglerighteq; U+022B5
tridot; U+025EC
trie; U+0225C
triminus; U+02A3A
TripleDot; U+020DB ◌⃛
triplus; U+02A39
trisb; U+029CD
tritime; U+02A3B
trpezium; U+023E2
Tscr; U+1D4AF
tscr; U+1D4C9
TScy; U+00426 Ц
tscy; U+00446 ц
TSHcy; U+0040B Ћ
tshcy; U+0045B ћ
Tstrok; U+00166 Ŧ
tstrok; U+00167 ŧ
twixt; U+0226C
twoheadleftarrow; U+0219E
twoheadrightarrow; U+021A0
Uacute; U+000DA Ú
Uacute U+000DA Ú
uacute; U+000FA ú
uacute U+000FA ú
Uarr; U+0219F
uArr; U+021D1
uarr; U+02191
Uarrocir; U+02949
Ubrcy; U+0040E Ў
ubrcy; U+0045E ў
Ubreve; U+0016C Ŭ
ubreve; U+0016D ŭ
Ucirc; U+000DB Û
Ucirc U+000DB Û
ucirc; U+000FB û
ucirc U+000FB û
Ucy; U+00423 У
ucy; U+00443 у
udarr; U+021C5
Udblac; U+00170 Ű
udblac; U+00171 ű
udhar; U+0296E
ufisht; U+0297E
Ufr; U+1D518
ufr; U+1D532
Ugrave; U+000D9 Ù
Ugrave U+000D9 Ù
ugrave; U+000F9 ù
ugrave U+000F9 ù
uHar; U+02963
uharl; U+021BF
uharr; U+021BE
uhblk; U+02580
ulcorn; U+0231C
ulcorner; U+0231C
ulcrop; U+0230F
ultri; U+025F8
Umacr; U+0016A Ū
umacr; U+0016B ū
uml; U+000A8 ¨
uml U+000A8 ¨
UnderBar; U+0005F _
UnderBrace; U+023DF
UnderBracket; U+023B5
UnderParenthesis; U+023DD
Union; U+022C3
UnionPlus; U+0228E
Uogon; U+00172 Ų
uogon; U+00173 ų
Uopf; U+1D54C
uopf; U+1D566
UpArrow; U+02191
Uparrow; U+021D1
uparrow; U+02191
UpArrowBar; U+02912
UpArrowDownArrow; U+021C5
UpDownArrow; U+02195
Updownarrow; U+021D5
updownarrow; U+02195
UpEquilibrium; U+0296E
upharpoonleft; U+021BF
upharpoonright; U+021BE
uplus; U+0228E
UpperLeftArrow; U+02196
UpperRightArrow; U+02197
Upsi; U+003D2 ϒ
upsi; U+003C5 υ
upsih; U+003D2 ϒ
Upsilon; U+003A5 Υ
upsilon; U+003C5 υ
UpTee; U+022A5
UpTeeArrow; U+021A5
upuparrows; U+021C8
urcorn; U+0231D
urcorner; U+0231D
urcrop; U+0230E
Uring; U+0016E Ů
uring; U+0016F ů
urtri; U+025F9
Uscr; U+1D4B0
uscr; U+1D4CA
utdot; U+022F0
Utilde; U+00168 Ũ
utilde; U+00169 ũ
utri; U+025B5
utrif; U+025B4
uuarr; U+021C8
Uuml; U+000DC Ü
Uuml U+000DC Ü
uuml; U+000FC ü
uuml U+000FC ü
uwangle; U+029A7
vangrt; U+0299C
varepsilon; U+003F5 ϵ
varkappa; U+003F0 ϰ
varnothing; U+02205
varphi; U+003D5 ϕ
varpi; U+003D6 ϖ
varpropto; U+0221D
vArr; U+021D5
varr; U+02195
varrho; U+003F1 ϱ
varsigma; U+003C2 ς
varsubsetneq; U+0228A U+0FE00 ⊊︀
varsubsetneqq; U+02ACB U+0FE00 ⫋︀
varsupsetneq; U+0228B U+0FE00 ⊋︀
varsupsetneqq; U+02ACC U+0FE00 ⫌︀
vartheta; U+003D1 ϑ
vartriangleleft; U+022B2
vartriangleright; U+022B3
Vbar; U+02AEB
vBar; U+02AE8
vBarv; U+02AE9
Vcy; U+00412 В
vcy; U+00432 в
VDash; U+022AB
Vdash; U+022A9
vDash; U+022A8
vdash; U+022A2
Vdashl; U+02AE6
Vee; U+022C1
vee; U+02228
veebar; U+022BB
veeeq; U+0225A
vellip; U+022EE
Verbar; U+02016
verbar; U+0007C |
Vert; U+02016
vert; U+0007C |
VerticalBar; U+02223
VerticalLine; U+0007C |
VerticalSeparator; U+02758
VerticalTilde; U+02240
VeryThinSpace; U+0200A
Vfr; U+1D519
vfr; U+1D533
vltri; U+022B2
vnsub; U+02282 U+020D2 ⊂⃒
vnsup; U+02283 U+020D2 ⊃⃒
Vopf; U+1D54D
vopf; U+1D567
vprop; U+0221D
vrtri; U+022B3
Vscr; U+1D4B1
vscr; U+1D4CB
vsubnE; U+02ACB U+0FE00 ⫋︀
vsubne; U+0228A U+0FE00 ⊊︀
vsupnE; U+02ACC U+0FE00 ⫌︀
vsupne; U+0228B U+0FE00 ⊋︀
Vvdash; U+022AA
vzigzag; U+0299A
Wcirc; U+00174 Ŵ
wcirc; U+00175 ŵ
wedbar; U+02A5F
Wedge; U+022C0
wedge; U+02227
wedgeq; U+02259
weierp; U+02118
Wfr; U+1D51A
wfr; U+1D534
Wopf; U+1D54E
wopf; U+1D568
wp; U+02118
wr; U+02240
wreath; U+02240
Wscr; U+1D4B2
wscr; U+1D4CC
xcap; U+022C2
xcirc; U+025EF
xcup; U+022C3
xdtri; U+025BD
Xfr; U+1D51B
xfr; U+1D535
xhArr; U+027FA
xharr; U+027F7
Xi; U+0039E Ξ
xi; U+003BE ξ
xlArr; U+027F8
xlarr; U+027F5
xmap; U+027FC
xnis; U+022FB
xodot; U+02A00
Xopf; U+1D54F
xopf; U+1D569
xoplus; U+02A01
xotime; U+02A02
xrArr; U+027F9
xrarr; U+027F6
Xscr; U+1D4B3
xscr; U+1D4CD
xsqcup; U+02A06
xuplus; U+02A04
xutri; U+025B3
xvee; U+022C1
xwedge; U+022C0
Yacute; U+000DD Ý
Yacute U+000DD Ý
yacute; U+000FD ý
yacute U+000FD ý
YAcy; U+0042F Я
yacy; U+0044F я
Ycirc; U+00176 Ŷ
ycirc; U+00177 ŷ
Ycy; U+0042B Ы
ycy; U+0044B ы
yen; U+000A5 ¥
yen U+000A5 ¥
Yfr; U+1D51C
yfr; U+1D536
YIcy; U+00407 Ї
yicy; U+00457 ї
Yopf; U+1D550
yopf; U+1D56A
Yscr; U+1D4B4
yscr; U+1D4CE
YUcy; U+0042E Ю
yucy; U+0044E ю
Yuml; U+00178 Ÿ
yuml; U+000FF ÿ
yuml U+000FF ÿ
Zacute; U+00179 Ź
zacute; U+0017A ź
Zcaron; U+0017D Ž
zcaron; U+0017E ž
Zcy; U+00417 З
zcy; U+00437 з
Zdot; U+0017B Ż
zdot; U+0017C ż
zeetrf; U+02128
ZeroWidthSpace; U+0200B
Zeta; U+00396 Ζ
zeta; U+003B6 ζ
Zfr; U+02128
zfr; U+1D537
ZHcy; U+00416 Ж
zhcy; U+00436 ж
zigrarr; U+021DD
Zopf; U+02124
zopf; U+1D56B
Zscr; U+1D4B5
zscr; U+1D4CF
zwj; U+0200D
zwnj; U+0200C

This data is also available as a JSON file.

The glyphs displayed above are non-normative. Refer to the Unicode specifications for formal definitions of the characters listed above.

9 The XHTML syntax

This section only describes the rules for XML resources. Rules for text/html resources are discussed in the section above entitled "The HTML syntax".

9.1 Writing XHTML documents

The syntax for using HTML with XML, whether in XHTML documents or embedded in other XML documents, is defined in the XML and Namespaces in XML specifications. [XML] [XMLNS]

This specification does not define any syntax-level requirements beyond those defined for XML proper.

XML documents may contain a DOCTYPE if desired, but this is not required to conform to this specification. This specification does not define a public or system identifier, nor provide a formal DTD.

According to the XML specification, XML processors are not guaranteed to process the external DTD subset referenced in the DOCTYPE. This means, for example, that using entity references for characters in XHTML documents is unsafe if they are defined in an external file (except for &lt;, &gt;, &amp;, &quot; and &apos;).

9.2 Parsing XHTML documents

This section describes the relationship between XML and the DOM, with a particular emphasis on how this interacts with HTML.

An XML parser, for the purposes of this specification, is a construct that follows the rules given in the XML specification to map a string of bytes or characters into a Document object.

At the time of writing, no such rules actually exist.

An XML parser is either associated with a Document object when it is created, or creates one implicitly.

This Document must then be populated with DOM nodes that represent the tree structure of the input passed to the parser, as defined by the XML specification, the Namespaces in XML specification, and the DOM specification. DOM mutation events must not fire for the operations that the XML parser performs on the Document's tree, but the user agent must act as if elements and attributes were individually appended and set respectively so as to trigger rules in this specification regarding what happens when an element is inserted into a document or has its attributes set, and the DOM specification's requirements regarding mutation observers mean that mutation observers are fired (unlike mutation events). [XML] [XMLNS] [DOM] [DOMEVENTS]

Between the time an element's start tag is parsed and the time either the element's end tag is parsed or the parser detects a well-formedness error, the user agent must act as if the element was in a stack of open elements.

This is used by the object element to avoid instantiating plugins before the param element children have been parsed.

This specification provides the following additional information that user agents should use when retrieving an external entity: the public identifiers given in the following list all correspond to the URL given by this link. (This URL is a DTD containing the entity declarations for the names listed in the named character references section.) [XML]

Furthermore, user agents should attempt to retrieve the above external entity's content when one of the above public identifiers is used, and should not attempt to retrieve any other external entity's content.

This is not strictly a violation of the XML specification, but it does contradict the spirit of the XML specification's requirements. This is motivated by a desire for user agents to all handle entities in an interoperable fashion without requiring any network access for handling external subsets. [XML]

When an XML parser creates a script element, it must be marked as being "parser-inserted" and its "force-async" flag must be unset. If the parser was originally created for the XML fragment parsing algorithm, then the element must be marked as "already started" also. When the element's end tag is parsed, the user agent must perform a microtask checkpoint, and then prepare the script element. If this causes there to be a pending parsing-blocking script, then the user agent must run the following steps:

  1. Block this instance of the XML parser, such that the event loop will not run tasks that invoke it.

  2. Spin the event loop until the parser's Document has no style sheet that is blocking scripts and the pending parsing-blocking script's "ready to be parser-executed" flag is set.

  3. Unblock this instance of the XML parser, such that tasks that invoke it can again be run.

  4. Execute the pending parsing-blocking script.

  5. There is no longer a pending parsing-blocking script.

Since the document.write() API is not available for XML documents, much of the complexity in the HTML parser is not needed in the XML parser.

When an XML parser would append a node to a template element, it must instead append it to the template element's template contents (a DocumentFragment node).

This is a willful violation of the XML specification; unfortunately, XML is not formally extensible in the manner that is needed for template processing. [XML]

When an XML parser creates a Node object, its ownerDocument must be set to the Document of the node into which the newly created node is to be inserted.

Certain algorithms in this specification spoon-feed the parser characters one string at a time. In such cases, the XML parser must act as it would have if faced with a single string consisting of the concatenation of all those characters.

When an XML parser reaches the end of its input, it must stop parsing, following the same rules as the HTML parser. An XML parser can also be aborted, which must again by done in the same way as for an HTML parser.

For the purposes of conformance checkers, if a resource is determined to be in the XHTML syntax, then it is an XML document.

9.3 Serializing XHTML fragments

The XML fragment serialization algorithm for a Document or Element node either returns a fragment of XML that represents that node or throws an exception.

For Documents, the algorithm must return a string in the form of a document entity, if none of the error cases below apply.

For Elements, the algorithm must return a string in the form of an internal general parsed entity, if none of the error cases below apply.

In both cases, the string returned must be XML namespace-well-formed and must be an isomorphic serialization of all of that node's relevant child nodes, in tree order. User agents may adjust prefixes and namespace declarations in the serialization (and indeed might be forced to do so in some cases to obtain namespace-well-formed XML). User agents may use a combination of regular text and character references to represent Text nodes in the DOM.

A node's relevant child nodes are those that apply given the following rules:

For template elements
The relevant child nodes are the child nodes of the template element's template contents, if any.
For all other nodes
The relevant child nodes are the child nodes of node itself, if any.

For Elements, if any of the elements in the serialization are in no namespace, the default namespace in scope for those elements must be explicitly declared as the empty string. (This doesn't apply in the Document case.) [XML] [XMLNS]

For the purposes of this section, an internal general parsed entity is considered XML namespace-well-formed if a document consisting of an element with no namespace declarations whose contents are the internal general parsed entity would itself be XML namespace-well-formed.

If any of the following error cases are found in the DOM subtree being serialized, then the algorithm must throw an InvalidStateError exception instead of returning a string:

These are the only ways to make a DOM unserializable. The DOM enforces all the other XML constraints; for example, trying to append two elements to a Document node will throw a HierarchyRequestError exception.

When the algorithm must produce a serialization of a template element, the string returned must contain a serialization of the child nodes of the template element's content DocumentFragment, rather than the template element's children.

9.4 Parsing XHTML fragments

The XML fragment parsing algorithm either returns a Document or throws a SyntaxError exception. Given a string input and an optional context element context, the algorithm is as follows:

  1. Create a new XML parser.

  2. If there is a context element, feed the parser just created the string corresponding to the start tag of that element, declaring all the namespace prefixes that are in scope on that element in the DOM, as well as declaring the default namespace (if any) that is in scope on that element in the DOM.

    A namespace prefix is in scope if the DOM lookupNamespaceURI() method on the element would return a non-null value for that prefix.

    The default namespace is the namespace for which the DOM isDefaultNamespace() method on the element would return true.

    If there is a context element, no DOCTYPE is passed to the parser, and therefore no external subset is referenced, and therefore no entities will be recognized.

  3. Feed the parser just created the string input.

  4. If there is a context element, feed the parser just created the string corresponding to the end tag of that element.

  5. If there is an XML well-formedness or XML namespace well-formedness error, then throw a SyntaxError exception and abort these steps.

  6. If there is a context element, and the root element of the resulting Document has any sibling nodes, then throw a SyntaxError exception and abort these steps.

  7. If there is a context element, then return the child nodes of the root element of the resulting Document, in tree order.

    Otherwise, return the children of the Document object, in tree order.

10 Rendering

User agents are not required to present HTML documents in any particular way. However, this section provides a set of suggestions for rendering HTML documents that, if followed, are likely to lead to a user experience that closely resembles the experience intended by the documents' authors. So as to avoid confusion regarding the normativity of this section, RFC2119 terms have not been used. Instead, the term "expected" is used to indicate behavior that will lead to this experience. For the purposes of conformance for user agents designated as supporting the suggested default rendering, the term "expected" in this section has the same conformance implications as the RFC2119-defined term "must".

10.1 Introduction

In general, user agents are expected to support CSS, and many of the suggestions in this section are expressed in CSS terms. User agents that use other presentation mechanisms can derive their expected behavior by translating from the CSS rules given in this section.

In the absence of style-layer rules to the contrary (e.g. author style sheets), user agents are expected to render an element so that it conveys to the user the meaning that the element represents, as described by this specification.

The suggestions in this section generally assume a visual output medium with a resolution of 96dpi or greater, but HTML is intended to apply to multiple media (it is a media-independent language). User agent implementors are encouraged to adapt the suggestions in this section to their target media.


An element is being rendered if it has any associated CSS layout boxes, SVG layout boxes, or some equivalent in other styling languages.

Just being off-screen does not mean the element is not being rendered. The presence of the hidden attribute normally means the element is not being rendered, though this might be overridden by the style sheets.


User agents that do not honor author-level CSS style sheets are nonetheless expected to act as if they applied the CSS rules given in these sections in a manner consistent with this specification and the relevant CSS and Unicode specifications. [CSS] [UNICODE] [BIDI]

This is especially important for issues relating to the 'display', 'unicode-bidi', and 'direction' properties.

10.2 The CSS user agent style sheet and presentational hints

The CSS rules given in these subsections are, except where otherwise specified, expected to be used as part of the user-agent level style sheet defaults for all documents that contain HTML elements.

Some rules are intended for the author-level zero-specificity presentational hints part of the CSS cascade; these are explicitly called out as presentational hints.

Some of the rules regarding left and right margins are given here as appropriate for elements whose 'direction' property is 'ltr', and are expected to be flipped around on elements whose 'direction' property is 'rtl'. These are marked "LTR-specific".

These markings only affect the handling of attribute values, not attribute names or element names.


When the text below says that an attribute attribute on an element element maps to the pixel length property (or properties) properties, it means that if element has an attribute attribute set, and parsing that attribute's value using the rules for parsing non-negative integers doesn't generate an error, then the user agent is expected to use the parsed value as a pixel length for a presentational hint for properties.

When the text below says that an attribute attribute on an element element maps to the dimension property (or properties) properties, it means that if element has an attribute attribute set, and parsing that attribute's value using the rules for parsing dimension values doesn't generate an error, then the user agent is expected to use the parsed dimension as the value for a presentational hint for properties, with the value given as a pixel length if the dimension was an integer, and with the value given as a percentage if the dimension was a percentage.

When a user agent is to align descendants of a node, the user agent is expected to align only those descendants that have both their 'margin-left' and 'margin-right' properties computing to a value other than 'auto', that are over-constrained and that have one of those two margins with a used value forced to a greater value, and that do not themselves have an applicable align attribute. When multiple elements are to align a particular descendant, the most deeply nested such element is expected to override the others. Aligned elements are expected to be aligned by having the used values of their left and right margins be set accordingly.

10.3 Non-replaced elements

10.3.1 Hidden elements

@namespace url(http://www.w3.org/1999/xhtml);

[hidden], area, base, basefont, datalist, head, link, menu[type=popup i], meta,
noembed, noframes, param, rp, script, source, style, template, track, title {
  display: none;
}

embed[hidden] { display: inline; height: 0; width: 0; }

The user agent is expected to force the 'display' property of noscript elements for whom scripting is enabled to compute to 'none', irrespective of CSS rules.

The user agent is expected to force the 'display' property of input elements whose type attribute is in the Hidden state to compute to 'none', irrespective of CSS rules.

10.3.2 The page

@namespace url(http://www.w3.org/1999/xhtml);

html, body { display: block; }

For each property in the table below, given a body element, the first attribute that exists maps to the pixel length property on the body element. If none of the attributes for a property are found, or if the value of the attribute that was found cannot be parsed successfully, then, if the body element's Document's browsing context does not have its seamless browsing context flag set, a default value of 8px is expected to be used for that property instead.

Property Source
'margin-top' body element's marginheight attribute
The body element's container frame element's marginheight attribute
body element's topmargin attribute
'margin-right' body element's marginwidth attribute
The body element's container frame element's marginwidth attribute
body element's rightmargin attribute
'margin-bottom' body element's marginheight attribute
The body element's container frame element's marginheight attribute
body element's bottommargin attribute
'margin-left' body element's marginwidth attribute
The body element's container frame element's marginwidth attribute
body element's leftmargin attribute

If the body element's Document's browsing context is a nested browsing context, and the browsing context container of that nested browsing context is a frame or iframe element, then the container frame element of the body element is that frame or iframe element. Otherwise, there is no container frame element.

The above requirements imply that a page can change the margins of another page (including one from another origin) using, for example, an iframe. This is potentially a security risk, as it might in some cases allow an attack to contrive a situation in which a page is rendered not as the author intended, possibly for the purposes of phishing or otherwise misleading the user.


If a Document is in a nested browsing context, it is expected to be positioned and sized to fit inside the content box of its browsing context container. If a browsing context is not being rendered, it is expected to have a viewport with zero width and zero height.

If the Document is in a nested browsing context, and the browsing context container of that nested browsing context is a frame or iframe element, and that element has a scrolling attribute, and that attribute's value is an ASCII case-insensitive match for the string "off", "noscroll", or "no", then the user agent is expected to prevent any scroll bars from being shown for the viewport of the nested browsing context, regardless of the 'overflow' property that applies to that viewport.


When a body element has a background attribute set to a non-empty value, the new value is expected to be resolved relative to the element, and if this is successful, the user agent is expected to treat the attribute as a presentational hint setting the element's 'background-image' property to the resulting absolute URL.

When a body element has a bgcolor attribute set, the new value is expected to be parsed using the rules for parsing a legacy color value, and if that does not return an error, the user agent is expected to treat the attribute as a presentational hint setting the element's 'background-color' property to the resulting color.

When a body element has a text attribute, its value is expected to be parsed using the rules for parsing a legacy color value, and if that does not return an error, the user agent is expected to treat the attribute as a presentational hint setting the element's 'color' property to the resulting color.

When a body element has a link attribute, its value is expected to be parsed using the rules for parsing a legacy color value, and if that does not return an error, the user agent is expected to treat the attribute as a presentational hint setting the 'color' property of any element in the Document matching the ':link' pseudo-class to the resulting color.

When a body element has a vlink attribute, its value is expected to be parsed using the rules for parsing a legacy color value, and if that does not return an error, the user agent is expected to treat the attribute as a presentational hint setting the 'color' property of any element in the Document matching the ':visited' pseudo-class to the resulting color.

When a body element has an alink attribute, its value is expected to be parsed using the rules for parsing a legacy color value, and if that does not return an error, the user agent is expected to treat the attribute as a presentational hint setting the 'color' property of any element in the Document matching the ':active' pseudo-class and either the ':link' pseudo-class or the ':visited' pseudo-class to the resulting color.

10.3.3 Flow content

@namespace url(http://www.w3.org/1999/xhtml);

address, blockquote, center, div, figure, figcaption, footer, form, header, hr,
legend, listing, main, p, plaintext, pre, summary, xmp {
  display: block;
}

blockquote, figure, listing, p, plaintext, pre, xmp {
  margin-top: 1em; margin-bottom: 1em;
}

blockquote, figure { margin-left: 40px; margin-right: 40px; }

address { font-style: italic; }
listing, plaintext, pre, xmp {
  font-family: monospace; white-space: pre;
}

dialog:not([open]) { display: none; }
dialog {
  position: absolute;
  left: 0; right: 0;
  width: fit-content;
  height: fit-content;
  margin: auto;
  border: solid;
  padding: 1em;
  background: white;
  color: black;
}
dialog::backdrop {
  position: fixed;
  top: 0; right: 0; bottom: 0; left: 0;
  background: rgba(0,0,0,0.1);
}

The following rules are also expected to apply, as presentational hints:

@namespace url(http://www.w3.org/1999/xhtml);

pre[wrap] { white-space: pre-wrap; }

In quirks mode, the following rules are also expected to apply:

@namespace url(http://www.w3.org/1999/xhtml);

form { margin-bottom: 1em; }

The center element, and the div element when it has an align attribute whose value is an ASCII case-insensitive match for either the string "center" or the string "middle", are expected to center text within themselves, as if they had their 'text-align' property set to 'center' in a presentational hint, and to align descendants to the center.

The div element, when it has an align attribute whose value is an ASCII case-insensitive match for the string "left", is expected to left-align text within itself, as if it had its 'text-align' property set to 'left' in a presentational hint, and to align descendants to the left.

The div element, when it has an align attribute whose value is an ASCII case-insensitive match for the string "right", is expected to right-align text within itself, as if it had its 'text-align' property set to 'right' in a presentational hint, and to align descendants to the right.

The div element, when it has an align attribute whose value is an ASCII case-insensitive match for the string "justify", is expected to full-justify text within itself, as if it had its 'text-align' property set to 'justify' in a presentational hint, and to align descendants to the left.

10.3.4 Phrasing content

@namespace url(http://www.w3.org/1999/xhtml);

cite, dfn, em, i, var { font-style: italic; }
b, strong { font-weight: bolder; }
code, kbd, samp, tt { font-family: monospace; }
big { font-size: larger; }
small { font-size: smaller; }

sub { vertical-align: sub; }
sup { vertical-align: super; }
sub, sup { line-height: normal; font-size: smaller; }


ruby { display: ruby; }
rb   { display: ruby-base; white-space: nowrap; }
rt   {
    display: ruby-text;
    white-space: nowrap;
    font-size: 50%;
    font-variant-east-asian: ruby;
    text-emphasis: none;
}
rbc  { display: ruby-base-container; }
rtc  { display: ruby-text-container; }
ruby, rb, rt, rbc, rtc { unicode-bidi: isolate; }


:link { color: #0000EE; }
:visited { color: #551A8B; }
:link, :visited { text-decoration: underline; }
a:link[rel~=help], a:visited[rel~=help],
area:link[rel~=help], area:visited[rel~=help] { cursor: help; }

:focus { outline: auto; }

mark { background: yellow; color: black; } /* this color is just a suggestion and can be changed based on implementation feedback */

abbr[title], acronym[title] { text-decoration: dotted underline; }
ins, u { text-decoration: underline; }
del, s, strike { text-decoration: line-through; }
blink { text-decoration: blink; }

q::before { content: open-quote; }
q::after { content: close-quote; }

br { content: '\A'; white-space: pre; } /* this also has bidi implications */
nobr { white-space: nowrap; }
wbr { content: '\200B'; } /* this also has bidi implications */
nobr wbr { white-space: normal; }

The following rules are also expected to apply, as presentational hints:

@namespace url(http://www.w3.org/1999/xhtml);

br[clear=left i] { clear: left; }
br[clear=right i] { clear: right; }
br[clear=all i], br[clear=both i] { clear: both; }

User agents that do not support correct ruby rendering are expected to render parentheses around the text of rt elements in the absence of rp elements. [CSSRUBY]


User agents are expected to support the 'clear' property on inline elements (in order to render br elements with clear attributes) in the manner described in the non-normative note to this effect in CSS2.1.

The initial value for the 'color' property is expected to be black. The initial value for the 'background-color' property is expected to be 'transparent'. The canvas' background is expected to be white.


When a font element has a color attribute, its value is expected to be parsed using the rules for parsing a legacy color value, and if that does not return an error, the user agent is expected to treat the attribute as a presentational hint setting the element's 'color' property to the resulting color.

When a font element has a face attribute, the user agent is expected to treat the attribute as a presentational hint setting the element's 'font-family' property to the attribute's value.

When a font element has a size attribute, the user agent is expected to use the following steps, known as the rules for parsing a legacy font size, to treat the attribute as a presentational hint setting the element's 'font-size' property:

  1. Let input be the attribute's value.

  2. Let position be a pointer into input, initially pointing at the start of the string.

  3. Skip whitespace.

  4. If position is past the end of input, there is no presentational hint. Abort these steps.

  5. If the character at position is a "+" (U+002B) character, then let mode be relative-plus, and advance position to the next character. Otherwise, if the character at position is a "-" (U+002D) character, then let mode be relative-minus, and advance position to the next character. Otherwise, let mode be absolute.

  6. Collect a sequence of characters that are ASCII digits, and let the resulting sequence be digits.

  7. If digits is the empty string, there is no presentational hint. Abort these steps.

  8. Interpret digits as a base-ten integer. Let value be the resulting number.

  9. If mode is relative-plus, then increment value by 3. If mode is relative-minus, then let value be the result of subtracting value from 3.

  10. If value is greater than 7, let it be 7.

  11. If value is less than 1, let it be 1.

  12. Set 'font-size' to the keyword corresponding to the value of value according to the following table:

    value 'font-size' keyword Notes
    1 x-small
    2 small
    3 medium
    4 large
    5 x-large
    6 xx-large
    7 xxx-large see below

    The 'xxx-large' value is a non-CSS value used here to indicate a font size 50% larger than 'xx-large'.

10.3.5 Bidirectional text

@namespace url(http://www.w3.org/1999/xhtml);

[dir]:dir(ltr), bdi:dir(ltr), input[type=tel]:dir(ltr) { direction: ltr; }
[dir]:dir(rtl), bdi:dir(rtl) { direction: rtl; }

address, blockquote, center, div, figure, figcaption, footer, form, header, hr,
legend, listing, main, p, plaintext, pre, summary, xmp, article, aside, h1, h2,
h3, h4, h5, h6, hgroup, nav, section, table, caption, colgroup, col, thead,
tbody, tfoot, tr, td, th, dir, dd, dl, dt, menu, ol, ul, li, bdi, output,
[dir=ltr i], [dir=rtl i], [dir=auto i] {
  unicode-bidi: isolate; 
}

bdo, bdo[dir] { unicode-bidi: isolate-override; } 

textarea[dir=auto i], input[type=text][dir=auto i], input[type=search][dir=auto i],
input[type=tel][dir=auto i], input[type=url][dir=auto i], input[type=email][dir=auto i],
pre[dir=auto i] { unicode-bidi: plaintext; }

/* the rules setting the 'content' property on br and wbr elements also has bidi implications */

Input fields (i.e. textarea elements, and input elements when their type attribute is in the Text, Search, Telephone, URL, or E-mail state) are expected to present an editing user interface with a directionality that matches the element's 'direction' property.

When the document's character encoding is ISO-8859-8, the following rules are additionally expected to apply, following those above: [ENCODING]

@namespace url(http://www.w3.org/1999/xhtml);

address, blockquote, center, div, figure, figcaption, footer, form, header, hr,
legend, listing, main, p, plaintext, pre, summary, xmp, article, aside, h1, h2,
h3, h4, h5, h6, hgroup, nav, section, table, caption, colgroup, col, thead,
tbody, tfoot, tr, td, th, dir, dd, dl, dt, menu, ol, ul, li, [dir=ltr i],
[dir=rtl i], [dir=auto i], *|* {
  unicode-bidi: bidi-override;
}
input:not([type=submit i]):not([type=reset i]):not([type=button i]),
textarea, keygen {
  unicode-bidi: normal;
}

10.3.6 Quotes

This block is automatically generated from the Unicode Common Locale Data Repository. [CLDR]

User agents are expected to use either the block below (which will be regularly updated) or to automatically generate their own copy directly from the source material. The language codes are derived from the CLDR file names. The quotes are derived from the delimiter blocks, with fallback handled as specified in the CLDR documentation.

@namespace url(http://www.w3.org/1999/xhtml);

:root                                                         { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(af),       :not(:lang(af)) > :lang(af)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(agq),      :not(:lang(agq)) > :lang(agq)           { quotes: '\201e' '\201d' '\201a' '\2019' } /* „ ” ‚ ’ */
:root:lang(ak),       :not(:lang(ak)) > :lang(ak)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(am),       :not(:lang(am)) > :lang(am)             { quotes: '\00ab' '\00bb' '\2039' '\203a' } /* « » ‹ › */
:root:lang(ar),       :not(:lang(ar)) > :lang(ar)             { quotes: '\201d' '\201c' '\2019' '\2018' } /* ” “ ’ ‘ */
:root:lang(asa),      :not(:lang(asa)) > :lang(asa)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(az-Cyrl),  :not(:lang(az-Cyrl)) > :lang(az-Cyrl)   { quotes: '\00ab' '\00bb' '\2039' '\203a' } /* « » ‹ › */
:root:lang(bas),      :not(:lang(bas)) > :lang(bas)           { quotes: '\00ab' '\00bb' '\201e' '\201c' } /* « » „ “ */
:root:lang(bem),      :not(:lang(bem)) > :lang(bem)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(bez),      :not(:lang(bez)) > :lang(bez)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(bg),       :not(:lang(bg)) > :lang(bg)             { quotes: '\201e' '\201c' '\201a' '\2018' } /* „ “ ‚ ‘ */
:root:lang(bm),       :not(:lang(bm)) > :lang(bm)             { quotes: '\00ab' '\00bb' '\201c' '\201d' } /* « » “ ” */
:root:lang(bn),       :not(:lang(bn)) > :lang(bn)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(br),       :not(:lang(br)) > :lang(br)             { quotes: '\00ab' '\00bb' '\2039' '\203a' } /* « » ‹ › */
:root:lang(brx),      :not(:lang(brx)) > :lang(brx)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(bs-Cyrl),  :not(:lang(bs-Cyrl)) > :lang(bs-Cyrl)   { quotes: '\201e' '\201c' '\201a' '\2018' } /* „ “ ‚ ‘ */
:root:lang(ca),       :not(:lang(ca)) > :lang(ca)             { quotes: '\201c' '\201d' '\00ab' '\00bb' } /* “ ” « » */
:root:lang(cgg),      :not(:lang(cgg)) > :lang(cgg)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(chr),      :not(:lang(chr)) > :lang(chr)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(cs),       :not(:lang(cs)) > :lang(cs)             { quotes: '\201e' '\201c' '\201a' '\2018' } /* „ “ ‚ ‘ */
:root:lang(da),       :not(:lang(da)) > :lang(da)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(dav),      :not(:lang(dav)) > :lang(dav)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(de),       :not(:lang(de)) > :lang(de)             { quotes: '\201e' '\201c' '\201a' '\2018' } /* „ “ ‚ ‘ */
:root:lang(de-CH),    :not(:lang(de-CH)) > :lang(de-CH)       { quotes: '\00ab' '\00bb' '\2039' '\203a' } /* « » ‹ › */
:root:lang(dje),      :not(:lang(dje)) > :lang(dje)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(dua),      :not(:lang(dua)) > :lang(dua)           { quotes: '\00ab' '\00bb' '\2018' '\2019' } /* « » ‘ ’ */
:root:lang(dyo),      :not(:lang(dyo)) > :lang(dyo)           { quotes: '\00ab' '\00bb' '\201c' '\201d' } /* « » “ ” */
:root:lang(dz),       :not(:lang(dz)) > :lang(dz)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ebu),      :not(:lang(ebu)) > :lang(ebu)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ee),       :not(:lang(ee)) > :lang(ee)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(el),       :not(:lang(el)) > :lang(el)             { quotes: '\00ab' '\00bb' '\201c' '\201d' } /* « » “ ” */
:root:lang(en),       :not(:lang(en)) > :lang(en)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(es),       :not(:lang(es)) > :lang(es)             { quotes: '\201c' '\201d' '\00ab' '\00bb' } /* “ ” « » */
:root:lang(et),       :not(:lang(et)) > :lang(et)             { quotes: '\201e' '\201c' '\201a' '\2018' } /* „ “ ‚ ‘ */
:root:lang(eu),       :not(:lang(eu)) > :lang(eu)             { quotes: '\201c' '\201d' '\00ab' '\00bb' } /* “ ” « » */
:root:lang(ewo),      :not(:lang(ewo)) > :lang(ewo)           { quotes: '\00ab' '\00bb' '\201c' '\201d' } /* « » “ ” */
:root:lang(fa),       :not(:lang(fa)) > :lang(fa)             { quotes: '\00ab' '\00bb' '\2039' '\203a' } /* « » ‹ › */
:root:lang(ff),       :not(:lang(ff)) > :lang(ff)             { quotes: '\201e' '\201d' '\201a' '\2019' } /* „ ” ‚ ’ */
:root:lang(fi),       :not(:lang(fi)) > :lang(fi)             { quotes: '\201d' '\201d' '\2019' '\2019' } /* ” ” ’ ’ */
:root:lang(fr),       :not(:lang(fr)) > :lang(fr)             { quotes: '\00ab' '\00bb' '\00ab' '\00bb' } /* « » « » */
:root:lang(fr-CA),    :not(:lang(fr-CA)) > :lang(fr-CA)       { quotes: '\00ab' '\00bb' '\2039' '\203a' } /* « » ‹ › */
:root:lang(fr-CH),    :not(:lang(fr-CH)) > :lang(fr-CH)       { quotes: '\00ab' '\00bb' '\2039' '\203a' } /* « » ‹ › */
:root:lang(gsw),      :not(:lang(gsw)) > :lang(gsw)           { quotes: '\00ab' '\00bb' '\2039' '\203a' } /* « » ‹ › */
:root:lang(gu),       :not(:lang(gu)) > :lang(gu)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(guz),      :not(:lang(guz)) > :lang(guz)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ha),       :not(:lang(ha)) > :lang(ha)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(he),       :not(:lang(he)) > :lang(he)             { quotes: '\0022' '\0022' '\0027' '\0027' } /* " " ' ' */
:root:lang(hi),       :not(:lang(hi)) > :lang(hi)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(hr),       :not(:lang(hr)) > :lang(hr)             { quotes: '\201e' '\201c' '\201a' '\2018' } /* „ “ ‚ ‘ */
:root:lang(hu),       :not(:lang(hu)) > :lang(hu)             { quotes: '\201e' '\201d' '\00bb' '\00ab' } /* „ ” » « */
:root:lang(id),       :not(:lang(id)) > :lang(id)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ig),       :not(:lang(ig)) > :lang(ig)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(it),       :not(:lang(it)) > :lang(it)             { quotes: '\00ab' '\00bb' '\201c' '\201d' } /* « » “ ” */
:root:lang(ja),       :not(:lang(ja)) > :lang(ja)             { quotes: '\300c' '\300d' '\300e' '\300f' } /* 「 」 『 』 */
:root:lang(jgo),      :not(:lang(jgo)) > :lang(jgo)           { quotes: '\00ab' '\00bb' '\2039' '\203a' } /* « » ‹ › */
:root:lang(jmc),      :not(:lang(jmc)) > :lang(jmc)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(kab),      :not(:lang(kab)) > :lang(kab)           { quotes: '\00ab' '\00bb' '\201c' '\201d' } /* « » “ ” */
:root:lang(kam),      :not(:lang(kam)) > :lang(kam)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(kde),      :not(:lang(kde)) > :lang(kde)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(kea),      :not(:lang(kea)) > :lang(kea)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(khq),      :not(:lang(khq)) > :lang(khq)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ki),       :not(:lang(ki)) > :lang(ki)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(kkj),      :not(:lang(kkj)) > :lang(kkj)           { quotes: '\00ab' '\00bb' '\2039' '\203a' } /* « » ‹ › */
:root:lang(kln),      :not(:lang(kln)) > :lang(kln)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(km),       :not(:lang(km)) > :lang(km)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(kn),       :not(:lang(kn)) > :lang(kn)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ko),       :not(:lang(ko)) > :lang(ko)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ksb),      :not(:lang(ksb)) > :lang(ksb)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ksf),      :not(:lang(ksf)) > :lang(ksf)           { quotes: '\00ab' '\00bb' '\2018' '\2019' } /* « » ‘ ’ */
:root:lang(lag),      :not(:lang(lag)) > :lang(lag)           { quotes: '\201d' '\201d' '\2019' '\2019' } /* ” ” ’ ’ */
:root:lang(lg),       :not(:lang(lg)) > :lang(lg)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ln),       :not(:lang(ln)) > :lang(ln)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(lo),       :not(:lang(lo)) > :lang(lo)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(lt),       :not(:lang(lt)) > :lang(lt)             { quotes: '\201e' '\201c' '\201e' '\201c' } /* „ “ „ “ */
:root:lang(lu),       :not(:lang(lu)) > :lang(lu)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(luo),      :not(:lang(luo)) > :lang(luo)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(luy),      :not(:lang(luy)) > :lang(luy)           { quotes: '\201e' '\201c' '\201a' '\2018' } /* „ “ ‚ ‘ */
:root:lang(lv),       :not(:lang(lv)) > :lang(lv)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(mas),      :not(:lang(mas)) > :lang(mas)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(mer),      :not(:lang(mer)) > :lang(mer)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(mfe),      :not(:lang(mfe)) > :lang(mfe)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(mg),       :not(:lang(mg)) > :lang(mg)             { quotes: '\00ab' '\00bb' '\201c' '\201d' } /* « » “ ” */
:root:lang(mgo),      :not(:lang(mgo)) > :lang(mgo)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(mk),       :not(:lang(mk)) > :lang(mk)             { quotes: '\201e' '\201c' '\201a' '\2018' } /* „ “ ‚ ‘ */
:root:lang(ml),       :not(:lang(ml)) > :lang(ml)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(mr),       :not(:lang(mr)) > :lang(mr)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ms),       :not(:lang(ms)) > :lang(ms)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(mua),      :not(:lang(mua)) > :lang(mua)           { quotes: '\00ab' '\00bb' '\201c' '\201d' } /* « » “ ” */
:root:lang(my),       :not(:lang(my)) > :lang(my)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(naq),      :not(:lang(naq)) > :lang(naq)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(nb),       :not(:lang(nb)) > :lang(nb)             { quotes: '\00ab' '\00bb' '\2018' '\2019' } /* « » ‘ ’ */
:root:lang(nd),       :not(:lang(nd)) > :lang(nd)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(nl),       :not(:lang(nl)) > :lang(nl)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(nmg),      :not(:lang(nmg)) > :lang(nmg)           { quotes: '\201e' '\201d' '\00ab' '\00bb' } /* „ ” « » */
:root:lang(nn),       :not(:lang(nn)) > :lang(nn)             { quotes: '\00ab' '\00bb' '\2018' '\2019' } /* « » ‘ ’ */
:root:lang(nnh),      :not(:lang(nnh)) > :lang(nnh)           { quotes: '\00ab' '\00bb' '\201c' '\201d' } /* « » “ ” */
:root:lang(nus),      :not(:lang(nus)) > :lang(nus)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(nyn),      :not(:lang(nyn)) > :lang(nyn)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(pl),       :not(:lang(pl)) > :lang(pl)             { quotes: '\201e' '\201d' '\00ab' '\00bb' } /* „ ” « » */
:root:lang(pt),       :not(:lang(pt)) > :lang(pt)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(pt-PT),    :not(:lang(pt-PT)) > :lang(pt-PT)       { quotes: '\00ab' '\00bb' '\201c' '\201d' } /* « » “ ” */
:root:lang(rn),       :not(:lang(rn)) > :lang(rn)             { quotes: '\201d' '\201d' '\2019' '\2019' } /* ” ” ’ ’ */
:root:lang(ro),       :not(:lang(ro)) > :lang(ro)             { quotes: '\201e' '\201d' '\00ab' '\00bb' } /* „ ” « » */
:root:lang(rof),      :not(:lang(rof)) > :lang(rof)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ru),       :not(:lang(ru)) > :lang(ru)             { quotes: '\00ab' '\00bb' '\201e' '\201c' } /* « » „ “ */
:root:lang(rw),       :not(:lang(rw)) > :lang(rw)             { quotes: '\00ab' '\00bb' '\2018' '\2019' } /* « » ‘ ’ */
:root:lang(rwk),      :not(:lang(rwk)) > :lang(rwk)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(saq),      :not(:lang(saq)) > :lang(saq)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(sbp),      :not(:lang(sbp)) > :lang(sbp)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(seh),      :not(:lang(seh)) > :lang(seh)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ses),      :not(:lang(ses)) > :lang(ses)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(sg),       :not(:lang(sg)) > :lang(sg)             { quotes: '\00ab' '\00bb' '\201c' '\201d' } /* « » “ ” */
:root:lang(shi),      :not(:lang(shi)) > :lang(shi)           { quotes: '\00ab' '\00bb' '\201e' '\201d' } /* « » „ ” */
:root:lang(shi-Latn), :not(:lang(shi-Latn)) > :lang(shi-Latn) { quotes: '\00ab' '\00bb' '\201e' '\201d' } /* « » „ ” */
:root:lang(si),       :not(:lang(si)) > :lang(si)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(sk),       :not(:lang(sk)) > :lang(sk)             { quotes: '\201e' '\201c' '\201a' '\2018' } /* „ “ ‚ ‘ */
:root:lang(sl),       :not(:lang(sl)) > :lang(sl)             { quotes: '\201e' '\201c' '\201a' '\2018' } /* „ “ ‚ ‘ */
:root:lang(sn),       :not(:lang(sn)) > :lang(sn)             { quotes: '\201d' '\201d' '\2019' '\2019' } /* ” ” ’ ’ */
:root:lang(so),       :not(:lang(so)) > :lang(so)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(sq),       :not(:lang(sq)) > :lang(sq)             { quotes: '\201e' '\201c' '\201a' '\2018' } /* „ “ ‚ ‘ */
:root:lang(sr),       :not(:lang(sr)) > :lang(sr)             { quotes: '\201e' '\201c' '\201a' '\2018' } /* „ “ ‚ ‘ */
:root:lang(sr-Latn),  :not(:lang(sr-Latn)) > :lang(sr-Latn)   { quotes: '\201e' '\201c' '\201a' '\2018' } /* „ “ ‚ ‘ */
:root:lang(sv),       :not(:lang(sv)) > :lang(sv)             { quotes: '\201d' '\201d' '\2019' '\2019' } /* ” ” ’ ’ */
:root:lang(sw),       :not(:lang(sw)) > :lang(sw)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(swc),      :not(:lang(swc)) > :lang(swc)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ta),       :not(:lang(ta)) > :lang(ta)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(te),       :not(:lang(te)) > :lang(te)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(teo),      :not(:lang(teo)) > :lang(teo)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(th),       :not(:lang(th)) > :lang(th)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ti-ER),    :not(:lang(ti-ER)) > :lang(ti-ER)       { quotes: '\2018' '\2019' '\201c' '\201d' } /* ‘ ’ “ ” */
:root:lang(to),       :not(:lang(to)) > :lang(to)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(tr),       :not(:lang(tr)) > :lang(tr)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(twq),      :not(:lang(twq)) > :lang(twq)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(tzm),      :not(:lang(tzm)) > :lang(tzm)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(uk),       :not(:lang(uk)) > :lang(uk)             { quotes: '\00ab' '\00bb' '\201e' '\201c' } /* « » „ “ */
:root:lang(ur),       :not(:lang(ur)) > :lang(ur)             { quotes: '\201d' '\201c' '\2019' '\2018' } /* ” “ ’ ‘ */
:root:lang(vai),      :not(:lang(vai)) > :lang(vai)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(vai-Latn), :not(:lang(vai-Latn)) > :lang(vai-Latn) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(vi),       :not(:lang(vi)) > :lang(vi)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(vun),      :not(:lang(vun)) > :lang(vun)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(xh),       :not(:lang(xh)) > :lang(xh)             { quotes: '\2018' '\2019' '\201c' '\201d' } /* ‘ ’ “ ” */
:root:lang(xog),      :not(:lang(xog)) > :lang(xog)           { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(yav),      :not(:lang(yav)) > :lang(yav)           { quotes: '\00ab' '\00bb' '\00ab' '\00bb' } /* « » « » */
:root:lang(yo),       :not(:lang(yo)) > :lang(yo)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(zh),       :not(:lang(zh)) > :lang(zh)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(zh-Hant),  :not(:lang(zh-Hant)) > :lang(zh-Hant)   { quotes: '\300c' '\300d' '\300e' '\300f' } /* 「 」 『 』 */
:root:lang(zu),       :not(:lang(zu)) > :lang(zu)             { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */

10.3.7 Sections and headings

@namespace url(http://www.w3.org/1999/xhtml);

article, aside, h1, h2, h3, h4, h5, h6, hgroup, nav, section {
  display: block;
}

h1 { margin-top: 0.67em; margin-bottom: 0.67em; font-size: 2.00em; font-weight: bold; }
h2 { margin-top: 0.83em; margin-bottom: 0.83em; font-size: 1.50em; font-weight: bold; }
h3 { margin-top: 1.00em; margin-bottom: 1.00em; font-size: 1.17em; font-weight: bold; }
h4 { margin-top: 1.33em; margin-bottom: 1.33em; font-size: 1.00em; font-weight: bold; }
h5 { margin-top: 1.67em; margin-bottom: 1.67em; font-size: 0.83em; font-weight: bold; }
h6 { margin-top: 2.33em; margin-bottom: 2.33em; font-size: 0.67em; font-weight: bold; }

The article, aside, nav, and section elements are expected to affect the margins and font size of h1 elements, as well as h2h5 elements that follow h1 elements in hgroup elements, based on the nesting depth. If x is a selector that matches elements that are either article, aside, nav, or section elements, then the following rules capture what is expected:

@namespace url(http://www.w3.org/1999/xhtml);

x h1 { margin-top: 0.83em; margin-bottom: 0.83em; font-size: 1.50em; }
x x h1 { margin-top: 1.00em; margin-bottom: 1.00em; font-size: 1.17em; }
x x x h1 { margin-top: 1.33em; margin-bottom: 1.33em; font-size: 1.00em; }
x x x x h1 { margin-top: 1.67em; margin-bottom: 1.67em; font-size: 0.83em; }
x x x x x h1 { margin-top: 2.33em; margin-bottom: 2.33em; font-size: 0.67em; }

x hgroup > h1 ~ h2 { margin-top: 1.00em; margin-bottom: 1.00em; font-size: 1.17em; }
x x hgroup > h1 ~ h2 { margin-top: 1.33em; margin-bottom: 1.33em; font-size: 1.00em; }
x x x hgroup > h1 ~ h2 { margin-top: 1.67em; margin-bottom: 1.67em; font-size: 0.83em; }
x x x x hgroup > h1 ~ h2 { margin-top: 2.33em; margin-bottom: 2.33em; font-size: 0.67em; }

x hgroup > h1 ~ h3 { margin-top: 1.33em; margin-bottom: 1.33em; font-size: 1.00em; }
x x hgroup > h1 ~ h3 { margin-top: 1.67em; margin-bottom: 1.67em; font-size: 0.83em; }
x x x hgroup > h1 ~ h3 { margin-top: 2.33em; margin-bottom: 2.33em; font-size: 0.67em; }

x hgroup > h1 ~ h4 { margin-top: 1.67em; margin-bottom: 1.67em; font-size: 0.83em; }
x x hgroup > h1 ~ h4 { margin-top: 2.33em; margin-bottom: 2.33em; font-size: 0.67em; }

x hgroup > h1 ~ h5 { margin-top: 2.33em; margin-bottom: 2.33em; font-size: 0.67em; }

10.3.8 Lists

@namespace url(http://www.w3.org/1999/xhtml);

dir, dd, dl, dt, menu, ol, ul { display: block; }
li { display: list-item; }

dir, dl, menu, ol, ul { margin-top: 1em; margin-bottom: 1em; }

dir dir, dir dl, dir menu, dir ol, dir ul,
dl dir, dl dl, dl menu, dl ol, dl ul,
menu dir, menu dl, menu menu, menu ol, menu ul,
ol dir, ol dl, ol menu, ol ol, ol ul,
ul dir, ul dl, ul menu, ul ol, ul ul {
  margin-top: 0; margin-bottom: 0;
}

dd { margin-left: 40px; } /* LTR-specific: use 'margin-right' for rtl elements */
dir, menu, ol, ul { padding-left: 40px; } /* LTR-specific: use 'padding-right' for rtl elements */

ol { list-style-type: decimal; }

dir, menu, ul { list-style-type: disc; }

dir dir, dir menu, dir ul,
menu dir, menu menu, menu ul,
ol dir, ol menu, ol ul,
ul dir, ul menu, ul ul {
  list-style-type: circle;
}

dir dir dir, dir dir menu, dir dir ul,
dir menu dir, dir menu menu, dir menu ul,
dir ol dir, dir ol menu, dir ol ul,
dir ul dir, dir ul menu, dir ul ul,
menu dir dir, menu dir menu, menu dir ul,
menu menu dir, menu menu menu, menu menu ul,
menu ol dir, menu ol menu, menu ol ul,
menu ul dir, menu ul menu, menu ul ul,
ol dir dir, ol dir menu, ol dir ul,
ol menu dir, ol menu menu, ol menu ul,
ol ol dir, ol ol menu, ol ol ul,
ol ul dir, ol ul menu, ol ul ul,
ul dir dir, ul dir menu, ul dir ul,
ul menu dir, ul menu menu, ul menu ul,
ul ol dir, ul ol menu, ul ol ul,
ul ul dir, ul ul menu, ul ul ul {
  list-style-type: square;
}

The following rules are also expected to apply, as presentational hints:

@namespace url(http://www.w3.org/1999/xhtml);

ol[type=1], li[type=1] { list-style-type: decimal; }
ol[type=a], li[type=a] { list-style-type: lower-alpha; }
ol[type=A], li[type=A] { list-style-type: upper-alpha; }
ol[type=i], li[type=i] { list-style-type: lower-roman; }
ol[type=I], li[type=I] { list-style-type: upper-roman; }
ul[type=none i], li[type=none i] { list-style-type: none; }
ul[type=disc i], li[type=disc i] { list-style-type: disc; }
ul[type=circle i], li[type=circle i] { list-style-type: circle; }
ul[type=square i], li[type=square i] { list-style-type: square; }

When rendering li elements, non-CSS user agents are expected to use the ordinal value of the li element to render the counter in the list item marker.

This specification does not yet define the CSS-specific rules for rendering li elements, because CSS doesn't yet provide sufficient hooks for this purpose.

10.3.9 Tables

@namespace url(http://www.w3.org/1999/xhtml);

table { display: table; }
caption { display: table-caption; }
colgroup, colgroup[hidden] { display: table-column-group; }
col, col[hidden] { display: table-column; }
thead, thead[hidden] { display: table-header-group; }
tbody, tbody[hidden] { display: table-row-group; }
tfoot, tfoot[hidden] { display: table-footer-group; }
tr, tr[hidden] { display: table-row; }
td, th, td[hidden], th[hidden] { display: table-cell; }

colgroup[hidden], col[hidden], thead[hidden], tbody[hidden],
tfoot[hidden], tr[hidden], td[hidden], th[hidden] {
  visibility: collapse;
}

table {
  box-sizing: border-box;
  border-spacing: 2px;
  border-collapse: separate;
  text-indent: initial;
}
td, th { padding: 1px; }
th { font-weight: bold; }

thead, tbody, tfoot, table > tr { vertical-align: middle; }
tr, td, th { vertical-align: inherit; }

table, td, th { border-color: gray; }
thead, tbody, tfoot, tr { border-color: inherit; }
table[rules=none i], table[rules=groups i], table[rules=rows i],
table[rules=cols i], table[rules=all i], table[frame=void i],
table[frame=above i], table[frame=below i], table[frame=hsides i],
table[frame=lhs i], table[frame=rhs i], table[frame=vsides i],
table[frame=box i], table[frame=border i],
table[rules=none i] > tr > td, table[rules=none i] > tr > th,
table[rules=groups i] > tr > td, table[rules=groups i] > tr > th,
table[rules=rows i] > tr > td, table[rules=rows i] > tr > th,
table[rules=cols i] > tr > td, table[rules=cols i] > tr > th,
table[rules=all i] > tr > td, table[rules=all i] > tr > th,
table[rules=none i] > thead > tr > td, table[rules=none i] > thead > tr > th,
table[rules=groups i] > thead > tr > td, table[rules=groups i] > thead > tr > th,
table[rules=rows i] > thead > tr > td, table[rules=rows i] > thead > tr > th,
table[rules=cols i] > thead > tr > td, table[rules=cols i] > thead > tr > th,
table[rules=all i] > thead > tr > td, table[rules=all i] > thead > tr > th,
table[rules=none i] > tbody > tr > td, table[rules=none i] > tbody > tr > th,
table[rules=groups i] > tbody > tr > td, table[rules=groups i] > tbody > tr > th,
table[rules=rows i] > tbody > tr > td, table[rules=rows i] > tbody > tr > th,
table[rules=cols i] > tbody > tr > td, table[rules=cols i] > tbody > tr > th,
table[rules=all i] > tbody > tr > td, table[rules=all i] > tbody > tr > th,
table[rules=none i] > tfoot > tr > td, table[rules=none i] > tfoot > tr > th,
table[rules=groups i] > tfoot > tr > td, table[rules=groups i] > tfoot > tr > th,
table[rules=rows i] > tfoot > tr > td, table[rules=rows i] > tfoot > tr > th,
table[rules=cols i] > tfoot > tr > td, table[rules=cols i] > tfoot > tr > th,
table[rules=all i] > tfoot > tr > td, table[rules=all i] > tfoot > tr > th {
  border-color: black;
}

The following rules are also expected to apply, as presentational hints:

@namespace url(http://www.w3.org/1999/xhtml);

table[align=left i] { float: left; }
table[align=right i] { float: right; }
table[align=center i] { margin-left: auto; margin-right: auto; }
thead[align=absmiddle i], tbody[align=absmiddle i], tfoot[align=absmiddle i],
tr[align=absmiddle i], td[align=absmiddle i], th[align=absmiddle i] {
  text-align: center;
}

caption[align=bottom i] { caption-side: bottom; }
p[align=left i], h1[align=left i], h2[align=left i], h3[align=left i],
h4[align=left i], h5[align=left i], h6[align=left i] {
  text-align: left;
}
p[align=right i], h1[align=right i], h2[align=right i], h3[align=right i],
h4[align=right i], h5[align=right i], h6[align=right i] {
  text-align: right;
}
p[align=center i], h1[align=center i], h2[align=center i], h3[align=center i],
h4[align=center i], h5[align=center i], h6[align=center i] {
  text-align: center;
}
p[align=justify i], h1[align=justify i], h2[align=justify i], h3[align=justify i],
h4[align=justify i], h5[align=justify i], h6[align=justify i] {
  text-align: justify;
}
thead[valign=top i], tbody[valign=top i], tfoot[valign=top i],
tr[valign=top i], td[valign=top i], th[valign=top i] {
  vertical-align: top;
}
thead[valign=middle i], tbody[valign=middle i], tfoot[valign=middle i],
tr[valign=middle i], td[valign=middle i], th[valign=middle i] {
  vertical-align: middle;
}
thead[valign=bottom i], tbody[valign=bottom i], tfoot[valign=bottom i],
tr[valign=bottom i], td[valign=bottom i], th[valign=bottom i] {
  vertical-align: bottom;
}
thead[valign=baseline i], tbody[valign=baseline i], tfoot[valign=baseline i],
tr[valign=baseline i], td[valign=baseline i], th[valign=baseline i] {
  vertical-align: baseline;
}

td[nowrap], th[nowrap] { white-space: nowrap; }

table[rules=none i], table[rules=groups i], table[rules=rows i],
table[rules=cols i], table[rules=all i] {
  border-style: hidden;
  border-collapse: collapse;
}
table[border] { border-style: outset; } /* only if border is not equivalent to zero */
table[frame=void i] { border-style: hidden; }
table[frame=above i] { border-style: outset hidden hidden hidden; }
table[frame=below i] { border-style: hidden hidden outset hidden; }
table[frame=hsides i] { border-style: outset hidden outset hidden; }
table[frame=lhs i] { border-style: hidden hidden hidden outset; }
table[frame=rhs i] { border-style: hidden outset hidden hidden; }
table[frame=vsides i] { border-style: hidden outset; }
table[frame=box i], table[frame=border i] { border-style: outset; }

table[border] > tr > td, table[border] > tr > th,
table[border] > thead > tr > td, table[border] > thead > tr > th,
table[border] > tbody > tr > td, table[border] > tbody > tr > th,
table[border] > tfoot > tr > td, table[border] > tfoot > tr > th {
  /* only if border is not equivalent to zero */
  border-width: 1px;
  border-style: inset;
}
table[rules=none i] > tr > td, table[rules=none i] > tr > th,
table[rules=none i] > thead > tr > td, table[rules=none i] > thead > tr > th,
table[rules=none i] > tbody > tr > td, table[rules=none i] > tbody > tr > th,
table[rules=none i] > tfoot > tr > td, table[rules=none i] > tfoot > tr > th,
table[rules=groups i] > tr > td, table[rules=groups i] > tr > th,
table[rules=groups i] > thead > tr > td, table[rules=groups i] > thead > tr > th,
table[rules=groups i] > tbody > tr > td, table[rules=groups i] > tbody > tr > th,
table[rules=groups i] > tfoot > tr > td, table[rules=groups i] > tfoot > tr > th,
table[rules=rows i] > tr > td, table[rules=rows i] > tr > th,
table[rules=rows i] > thead > tr > td, table[rules=rows i] > thead > tr > th,
table[rules=rows i] > tbody > tr > td, table[rules=rows i] > tbody > tr > th,
table[rules=rows i] > tfoot > tr > td, table[rules=rows i] > tfoot > tr > th {
  border-width: 1px;
  border-style: none;
}
table[rules=cols i] > tr > td, table[rules=cols i] > tr > th,
table[rules=cols i] > thead > tr > td, table[rules=cols i] > thead > tr > th,
table[rules=cols i] > tbody > tr > td, table[rules=cols i] > tbody > tr > th,
table[rules=cols i] > tfoot > tr > td, table[rules=cols i] > tfoot > tr > th {
  border-width: 1px;
  border-style: none solid;
}
table[rules=all i] > tr > td, table[rules=all i] > tr > th,
table[rules=all i] > thead > tr > td, table[rules=all i] > thead > tr > th,
table[rules=all i] > tbody > tr > td, table[rules=all i] > tbody > tr > th,
table[rules=all i] > tfoot > tr > td, table[rules=all i] > tfoot > tr > th {
  border-width: 1px;
  border-style: solid;
}

table[rules=groups i] > colgroup {
  border-left-width: 1px;
  border-left-style: solid;
  border-right-width: 1px;
  border-right-style: solid;
}
table[rules=groups i] > thead,
table[rules=groups i] > tbody,
table[rules=groups i] > tfoot {
  border-top-width: 1px;
  border-top-style: solid;
  border-bottom-width: 1px;
  border-bottom-style: solid;
}

table[rules=rows i] > tr, table[rules=rows i] > thead > tr,
table[rules=rows i] > tbody > tr, table[rules=rows i] > tfoot > tr {
  border-top-width: 1px;
  border-top-style: solid;
  border-bottom-width: 1px;
  border-bottom-style: solid;
}

In quirks mode, the following rules are also expected to apply:

@namespace url(http://www.w3.org/1999/xhtml);

table {
  font-weight: initial;
  font-style: initial;
  font-variant: initial;
  font-size: initial;
  line-height: initial;
  white-space: initial;
  text-align: initial;
}

For the purposes of the CSS table model, the col element is expected to be treated as if it was present as many times as its span attribute specifies.

For the purposes of the CSS table model, the colgroup element, if it contains no col element, is expected to be treated as if it had as many such children as its span attribute specifies.

For the purposes of the CSS table model, the colspan and rowspan attributes on td and th elements are expected to provide the special knowledge regarding cells spanning rows and columns.

In HTML documents, the user agent is expected to force the 'display' property of form elements that are children of table, thead, tbody, tfoot, or tr elements to compute to 'none', irrespective of CSS rules.


The table element's cellspacing attribute maps to the pixel length property 'border-spacing' on the element.

The table element's cellpadding attribute maps to the pixel length properties 'padding-top', 'padding-right', 'padding-bottom', and 'padding-left' of any td and th elements that have corresponding cells in the table corresponding to the table element.

The table element's hspace attribute maps to the dimension properties 'margin-left' and 'margin-right' on the table element.

The table element's vspace attribute maps to the dimension properties 'margin-top' and 'margin-bottom' on the table element.

The table element's height attribute maps to the dimension property 'height' on the table element.

The table element's width attribute maps to the dimension property 'width' on the table element.

The col element's width attribute maps to the dimension property 'width' on the col element.

The tr element's height attribute maps to the dimension property 'height' on the tr element.

The td and th elements' height attributes map to the dimension property 'height' on the element.

The td and th elements' width attributes map to the dimension property 'width' on the element.


The caption element unless specified otherwise below, and the thead, tbody, tfoot, tr, td, and th elements when they have an align attribute whose value is an ASCII case-insensitive match for either the string "center" or the string "middle", are expected to center text within themselves, as if they had their 'text-align' property set to 'center' in a presentational hint, and to align descendants to the center.

The caption, thead, tbody, tfoot, tr, td, and th elements, when they have an align attribute whose value is an ASCII case-insensitive match for the string "left", are expected to left-align text within themselves, as if they had their 'text-align' property set to 'left' in a presentational hint, and to align descendants to the left.

The caption, thead, tbody, tfoot, tr, td, and th elements, when they have an align attribute whose value is an ASCII case-insensitive match for the string "right", are expected to right-align text within themselves, as if they had their 'text-align' property set to 'right' in a presentational hint, and to align descendants to the right.

The caption, thead, tbody, tfoot, tr, td, and th elements, when they have an align attribute whose value is an ASCII case-insensitive match for the string "justify", are expected to full-justify text within themselves, as if they had their 'text-align' property set to 'justify' in a presentational hint, and to align descendants to the left.

User agents are expected to have a rule in their user agent stylesheet that matches th elements that have a parent node whose computed value for the 'text-align' property is its initial value, whose declaration block consists of just a single declaration that sets the 'text-align' property to the value 'center'.


When a table, thead, tbody, tfoot, tr, td, or th element has a background attribute set to a non-empty value, the new value is expected to be resolved relative to the element, and if this is successful, the user agent is expected to treat the attribute as a presentational hint setting the element's 'background-image' property to the resulting absolute URL.

When a table, thead, tbody, tfoot, tr, td, or th element has a bgcolor attribute set, the new value is expected to be parsed using the rules for parsing a legacy color value, and if that does not return an error, the user agent is expected to treat the attribute as a presentational hint setting the element's 'background-color' property to the resulting color.

When a table element has a bordercolor attribute, its value is expected to be parsed using the rules for parsing a legacy color value, and if that does not return an error, the user agent is expected to treat the attribute as a presentational hint setting the element's 'border-top-color', 'border-right-color', 'border-bottom-color', and 'border-right-color' properties to the resulting color.


The table element's border attribute maps to the pixel length properties 'border-top-width', 'border-right-width', 'border-bottom-width', 'border-left-width' on the element. If the attribute is present but parsing the attribute's value using the rules for parsing non-negative integers generates an error, a default value of 1px is expected to be used for that property instead.

Rules marked "only if border is not equivalent to zero" in the CSS block above is expected to only be applied if the border attribute mentioned in the selectors for the rule is not only present but, when parsed using the rules for parsing non-negative integers, is also found to have a value other than zero or to generate an error.


In quirks mode, a td element or a th element that has a nowrap attribute but also has a width attribute whose value, when parsed using the rules for parsing dimension values, is found to be a length (not an error or a number classified as a percentage), is expected to have a presentational hint setting the element's 'white-space' property to 'normal', overriding the rule in the CSS block above that sets it to 'nowrap'.


User agents are expected to render sorting interface th elements in such a manner as to indicate that activating the elements will cause the table to be sorted.

10.3.10 Margin collapsing quirks

A node is substantial if it is a text node that is not inter-element whitespace, or if it is an element node.

A node is blank if it is an element that contains no substantial nodes.

The elements with default margins are the following elements: blockquote, dir, dl, h1, h2, h3, h4, h5, h6, listing, menu, multicol, ol, p, plaintext, pre, ul, xmp

In quirks mode, any element with default margins that is the child of a body, td, or th element and has no substantial previous siblings is expected to have a user-agent level style sheet rule that sets its 'margin-top' property to zero.

In quirks mode, any element with default margins that is the child of a body, td, or th element, has no substantial previous siblings, and is blank, is expected to have a user-agent level style sheet rule that sets its 'margin-bottom' property to zero also.

In quirks mode, any element with default margins that is the child of a td or th element, has no substantial following siblings, and is blank, is expected to have a user-agent level style sheet rule that sets its 'margin-top' property to zero.

In quirks mode, any p element that is the child of a td or th element and has no substantial following siblings, is expected to have a user-agent level style sheet rule that sets its 'margin-bottom' property to zero.

10.3.11 Form controls

@namespace url(http://www.w3.org/1999/xhtml);

input, select, option, optgroup, button, textarea, keygen {
  text-indent: initial;
}

textarea { white-space: pre-wrap; }

input[type="radio"], input[type="checkbox"], input[type="reset"], input[type="button"],
input[type="submit"], select, button {
  box-sizing: border-box;
}

In quirks mode, the following rules are also expected to apply:

@namespace url(http://www.w3.org/1999/xhtml);

input:not([type=image]), textarea { box-sizing: border-box; }

Each kind of form control is also given a specific default binding, as described in subsequent sections, which implements the look and feel of the control.

10.3.12 The hr element

@namespace url(http://www.w3.org/1999/xhtml);

hr { color: gray; border-style: inset; border-width: 1px; margin: 0.5em auto; }

The following rules are also expected to apply, as presentational hints:

@namespace url(http://www.w3.org/1999/xhtml);

hr[align=left] { margin-left: 0; margin-right: auto; }
hr[align=right] { margin-left: auto; margin-right: 0; }
hr[align=center] { margin-left: auto; margin-right: auto; }
hr[color], hr[noshade] { border-style: solid; }

If an hr element has either a color attribute or a noshade attribute, and furthermore also has a size attribute, and parsing that attribute's value using the rules for parsing non-negative integers doesn't generate an error, then the user agent is expected to use the parsed value divided by two as a pixel length for presentational hints for the properties 'border-top-width', 'border-right-width', 'border-bottom-width', and 'border-left-width' on the element.

Otherwise, if an hr element has neither a color attribute nor a noshade attribute, but does have a size attribute, and parsing that attribute's value using the rules for parsing non-negative integers doesn't generate an error, then: if the parsed value is one, then the user agent is expected to use the attribute as a presentational hint setting the element's 'border-bottom-width' to 0; otherwise, if the parsed value is greater than one, then the user agent is expected to use the parsed value minus two as a pixel length for presentational hints for the 'height' property on the element.

The width attribute on an hr element maps to the dimension property 'width' on the element.

When an hr element has a color attribute, its value is expected to be parsed using the rules for parsing a legacy color value, and if that does not return an error, the user agent is expected to treat the attribute as a presentational hint setting the element's 'color' property to the resulting color.

10.3.13 The fieldset and legend elements

@namespace url(http://www.w3.org/1999/xhtml);

fieldset {
  margin-left: 2px; margin-right: 2px;
  border: groove 2px ThreeDFace;
  padding: 0.35em 0.625em 0.75em;
  min-width: min-content;
}

legend {
  padding-left: 2px; padding-right: 2px;
}

The fieldset element is expected to establish a new block formatting context.

If the fieldset element has a child that matches the conditions in the list below, then the first such child is the fieldset element's rendered legend:

A fieldset element's rendered legend, if any, is expected to be rendered over the top border edge of the fieldset element as a 'block' box (overriding any explicit 'display' value). In the absence of an explicit width, the box should shrink-wrap. If the legend element in question has an align attribute, and its value is an ASCII case-insensitive match for one of the strings in the first column of the following table, then the legend is expected to be rendered horizontally aligned over the border edge in the position given in the corresponding cell on the same row in the second column. If the attribute is absent or has a value that doesn't match any of the cases in the table, then the position is expected to be on the right if the 'direction' property on this element has a computed value of 'rtl', and on the left otherwise.

Attribute value Alignment position
left On the left
right On the right
center In the middle

10.4 Replaced elements

10.4.1 Embedded content

The embed, iframe, and video elements are expected to be treated as replaced elements.

A canvas element that represents embedded content is expected to be treated as a replaced element; the contents of such elements are the element's bitmap, if any, or else a transparent black bitmap with the same intrinsic dimensions as the element. Other canvas elements are expected to be treated as ordinary elements in the rendering model.

An object element that represents an image, plugin, or nested browsing context is expected to be treated as a replaced element. Other object elements are expected to be treated as ordinary elements in the rendering model.

An applet element that represents a plugin is expected to be treated as a replaced element. Other applet elements are expected to be treated as ordinary elements in the rendering model.

The audio element, when it is exposing a user interface, is expected to be treated as a replaced element about one line high, as wide as is necessary to expose the user agent's user interface features. When an audio element is not exposing a user interface, the user agent is expected to force its 'display' property to compute to 'none', irrespective of CSS rules.

Whether a video element is exposing a user interface is not expected to affect the size of the rendering; controls are expected to be overlaid above the page content without causing any layout changes, and are expected to disappear when the user does not need them.

When a video element represents a poster frame or frame of video, the poster frame or frame of video is expected to be rendered at the largest size that maintains the aspect ratio of that poster frame or frame of video without being taller or wider than the video element itself, and is expected to be centered in the video element.

Any subtitles or captions are expected to be overlayed directly on top of their video element, as defined by the relevant rendering rules; for WebVTT, those are the rules for updating the display of WebVTT text tracks. [WEBVTT]

When the user agent starts exposing a user interface for a video element, the user agent should run the rules for updating the text track rendering of each of the text tracks in the video element's list of text tracks that are showing and whose text track kind is one of subtitles or captions (e.g., for text tracks based on WebVTT, the rules for updating the display of WebVTT text tracks). [WEBVTT]

Resizing video and canvas elements does not interrupt video playback or clear the canvas.


The following CSS rules are expected to apply:

@namespace url(http://www.w3.org/1999/xhtml);

iframe:not([seamless]) { border: 2px inset; }
iframe[seamless] { display: block; }
video { object-fit: contain; }

10.4.2 Images

User agents are expected to render img elements and input elements whose type attributes are in the Image Button state, according to the first applicable rules from the following list:

If the element represents an image
The user agent is expected to treat the element as a replaced element and render the image according to the rules for doing so defined in CSS.
If the element does not represent an image, but the element already has intrinsic dimensions (e.g. from the dimension attributes or CSS rules), and either:
  • the user agent has reason to believe that the image will become available and be rendered in due course, or
  • the element has no alt attribute, or
  • the Document is in quirks mode
The user agent is expected to treat the element as a replaced element whose content is the text that the element represents, if any, optionally alongside an icon indicating that the image is being obtained (if applicable). For input elements, the element is expected to appear button-like to indicate that the element is a button.
If the element is an img element that represents some text and the user agent does not expect this to change
The user agent is expected to treat the element as a non-replaced phrasing element whose content is the text, optionally with an icon indicating that an image is missing, so that the user can request the image be displayed or investigate why it is not rendering. In non-graphical contexts, such an icon should be omitted.
If the element is an img element that represents nothing and the user agent does not expect this to change
The user agent is expected to treat the element as an empty inline element. (In the absence of further styles, this will cause the element to essentially not be rendered.)
If the element is an input element that does not represent an image and the user agent does not expect this to change
The user agent is expected to treat the element as a replaced element consisting of a button whose content is the element's alternative text. The intrinsic dimensions of the button are expected to be about one line in height and whatever width is necessary to render the text on one line.

The icons mentioned above are expected to be relatively small so as not to disrupt most text but be easily clickable. In a visual environment, for instance, icons could be 16 pixels by 16 pixels square, or 1em by 1em if the images are scalable. In an audio environment, the icon could be a short bleep. The icons are intended to indicate to the user that they can be used to get to whatever options the UA provides for images, and, where appropriate, are expected to provide access to the context menu that would have come up if the user interacted with the actual image.


All animated images with the same absolute URL and the same image data are expected to be rendered synchronised to the same timeline as a group, with the timeline starting at the time of the least recent addition to the group.

In other words, the animation loop of an animated image is restarted each time another image with the same absolute URL and image data begins to animate, e.g. after being inserted into the document.


The following CSS rules are expected to apply when the Document is in quirks mode:

@namespace url(http://www.w3.org/1999/xhtml);

img[align=left i] { margin-right: 3px; }
img[align=right i] { margin-left: 3px; }

10.4.3 Attributes for embedded content and images

The following CSS rules are expected to apply as presentational hints:

@namespace url(http://www.w3.org/1999/xhtml);

iframe[frameborder=0], iframe[frameborder=no i] { border: none; }

applet[align=left i], embed[align=left i], iframe[align=left i],
img[align=left i], input[type=image i][align=left i], object[align=left i] {
  float: left;
}

applet[align=right i], embed[align=right i], iframe[align=right i],
img[align=right i], input[type=image i][align=right i], object[align=right i] {
  float: right;
}

applet[align=top i], embed[align=top i], iframe[align=top i],
img[align=top i], input[type=image i][align=top i], object[align=top i] {
  vertical-align: top;
}

applet[align=baseline i], embed[align=baseline i], iframe[align=baseline i],
img[align=baseline i], input[type=image i][align=baseline i], object[align=baseline i] {
  vertical-align: baseline;
}

applet[align=texttop i], embed[align=texttop i], iframe[align=texttop i],
img[align=texttop i], input[type=image i][align=texttop i], object[align=texttop i] {
  vertical-align: text-top;
}

applet[align=absmiddle i], embed[align=absmiddle i], iframe[align=absmiddle i],
img[align=absmiddle i], input[type=image i][align=absmiddle i], object[align=absmiddle i],
applet[align=abscenter i], embed[align=abscenter i], iframe[align=abscenter i],
img[align=abscenter i], input[type=image i][align=abscenter i], object[align=abscenter i] {
  vertical-align: middle;
}

applet[align=bottom i], embed[align=bottom i], iframe[align=bottom i],
img[align=bottom i], input[type=image i][align=bottom i],
object[align=bottom i] {
  vertical-align: bottom;
}

When an applet, embed, iframe, img, or object element, or an input element whose type attribute is in the Image Button state, has an align attribute whose value is an ASCII case-insensitive match for the string "center" or the string "middle", the user agent is expected to act as if the element's 'vertical-align' property was set to a value that aligns the vertical middle of the element with the parent element's baseline.

The hspace attribute of applet, embed, iframe, img, or object elements, and input elements with a type attribute in the Image Button state, maps to the dimension properties 'margin-left' and 'margin-right' on the element.

The vspace attribute of applet, embed, iframe, img, or object elements, and input elements with a type attribute in the Image Button state, maps to the dimension properties 'margin-top' and 'margin-bottom' on the element.

When an img element, object element, or input element with a type attribute in the Image Button state has a border attribute whose value, when parsed using the rules for parsing non-negative integers, is found to be a number greater than zero, the user agent is expected to use the parsed value for eight presentational hints: four setting the parsed value as a pixel length for the element's 'border-top-width', 'border-right-width', 'border-bottom-width', and 'border-left-width' properties, and four setting the element's 'border-top-style', 'border-right-style', 'border-bottom-style', and 'border-left-style' properties to the value 'solid'.

The width and height attributes on applet, embed, iframe, img, object or video elements, and input elements with a type attribute in the Image Button state and that either represents an image or that the user expects will eventually represent an image, map to the dimension properties 'width' and 'height' on the element respectively.

10.4.4 Image maps

Shapes on an image map are expected to act, for the purpose of the CSS cascade, as elements independent of the original area element that happen to match the same style rules but inherit from the img or object element.

For the purposes of the rendering, only the 'cursor' property is expected to have any effect on the shape.

Thus, for example, if an area element has a style attribute that sets the 'cursor' property to 'help', then when the user designates that shape, the cursor would change to a Help cursor.

Similarly, if an area element had a CSS rule that set its 'cursor' property to 'inherit' (or if no rule setting the 'cursor' property matched the element at all), the shape's cursor would be inherited from the img or object element of the image map, not from the parent of the area element.

10.5 Bindings

10.5.1 Introduction

A number of elements have their rendering defined in terms of the 'binding' property. [BECSS]

The CSS snippets below set the 'binding' property to a user-agent-defined value, represented below by keywords like button. The rules then described for these bindings are only expected to apply if the element's 'binding' property has not been overridden (e.g. by the author) to have another value.

Exactly how the bindings are implemented is not specified by this specification. User agents are encouraged to make their bindings set the 'appearance' CSS property appropriately to achieve platform-native appearances for widgets, and are expected to implement any relevant animations, etc, that are appropriate for the platform. [CSSUI]

10.5.2 The button element

@namespace url(http://www.w3.org/1999/xhtml);

button { binding: button; }

When the button binding applies to a button element, the element is expected to render as an 'inline-block' box rendered as a button whose contents are the contents of the element.

When the button element's type attribute is in the Menu state, the user agent is expected to indicate that activating the element will display a menu, e.g. by displaying a down-pointing triangle after the button's label.

10.5.3 The details element

@namespace url(http://www.w3.org/1999/xhtml);

details { binding: details; }

When the details binding applies to a details element, the element is expected to render as a 'block' box with its 'padding-left' property set to '40px' for left-to-right elements (LTR-specific) and with its 'padding-right' property set to '40px' for right-to-left elements. The element's shadow tree is expected to take the element's first child summary element, if any, and place it in a first 'block' box container, and then take the element's remaining descendants, if any, and place them in a second 'block' box container.

The first container is expected to contain at least one line box, and that line box is expected to contain a disclosure widget (typically a triangle), horizontally positioned within the left padding of the details element. That widget is expected to allow the user to request that the details be shown or hidden.

The second container is expected to have its 'overflow' property set to 'hidden'. When the details element does not have an open attribute, this second container is expected to be removed from the rendering.

10.5.4 The input element as a text entry widget

@namespace url(http://www.w3.org/1999/xhtml);

input { binding: input-textfield; }
input[type=password i] { binding: input-password; }
/* later rules override this for other values of type="" */

When the input-textfield binding applies to an input element whose type attribute is in the Text, Search, Telephone, URL, or E-mail state, the element is expected to render as an 'inline-block' box rendered as a text field.

When the input-password binding applies to an input element whose type attribute is in the Password state, the element is expected to render as an 'inline-block' box rendered as a text field whose contents are obscured.

If these text fields provide a text selection, then, when the user changes the currect selection in such a binding, the user agent is expected to queue a task to fire a simple event that bubbles named select at the element, using the user interaction task source as the task source.

If an input element whose type attribute is in one of the above states has a size attribute, and parsing that attribute's value using the rules for parsing non-negative integers doesn't generate an error, then the user agent is expected to use the attribute as a presentational hint for the 'width' property on the element, with the value obtained from applying the converting a character width to pixels algorithm to the value of the attribute.

If an input element whose type attribute is in one of the above states does not have a size attribute, then the user agent is expected to act as if it had a user-agent-level style sheet rule setting the 'width' property on the element to the value obtained from applying the converting a character width to pixels algorithm to the number 20.

The converting a character width to pixels algorithm returns (size-1)×avg + max, where size is the character width to convert, avg is the average character width of the primary font for the element for which the algorithm is being run, in pixels, and max is the maximum character width of that same font, also in pixels. (The element's 'letter-spacing' property does not affect the result.)

When the input-textfield binding applies to an element, the 'line-height' property, if it has a computed value equivalent to a value that is less than 1.0, must have a used value of 1.0.

10.5.5 The input element as domain-specific widgets

@namespace url(http://www.w3.org/1999/xhtml);

input[type=datetime i] { binding: input-datetime; }
input[type=date i] { binding: input-date; }
input[type=month i] { binding: input-month; }
input[type=week i] { binding: input-week; }
input[type=time i] { binding: input-time; }
input[type=number i] { binding: input-number; }

When the input-datetime binding applies to an input element whose type attribute is in the Date and Time state, the element is expected to render as an 'inline-block' box depicting a Date and Time control.

When the input-date binding applies to an input element whose type attribute is in the Date state, the element is expected to render as an 'inline-block' box depicting a Date control.

When the input-month binding applies to an input element whose type attribute is in the Month state, the element is expected to render as an 'inline-block' box depicting a Month control.

When the input-week binding applies to an input element whose type attribute is in the Week state, the element is expected to render as an 'inline-block' box depicting a Week control.

When the input-time binding applies to an input element whose type attribute is in the Time state, the element is expected to render as an 'inline-block' box depicting a Time control.

When the input-number binding applies to an input element whose type attribute is in the Number state, the element is expected to render as an 'inline-block' box depicting a Number control.

These controls are all expected to be about one line high, and about as wide as necessary to show the widest possible value.

10.5.6 The input element as a range control

@namespace url(http://www.w3.org/1999/xhtml);

input[type=range i] { binding: input-range; }

When the input-range binding applies to an input element whose type attribute is in the Range state, the element is expected to render as an 'inline-block' box depicting a slider control.

When the control is wider than it is tall (or square), the control is expected to be a horizontal slider, with the lowest value on the right if the 'direction' property on this element has a computed value of 'rtl', and on the left otherwise. When the control is taller than it is wide, it is expected to be a vertical slider, with the lowest value on the bottom.

Predefined suggested values (provided by the list attribute) are expected to be shown as tick marks on the slider, which the slider can snap to.

User agents are expected to use the used value of the 'direction' property on the element to determine the direction in which the slider operates. Typically, a left-to-right ('ltr') horizontal control would have the lowest value on the left and the highest value on the right, and vice versa.

10.5.7 The input element as a color well

@namespace url(http://www.w3.org/1999/xhtml);

input[type=color i] { binding: input-color; }

When the input-color binding applies to an input element whose type attribute is in the Color state, the element is expected to render as an 'inline-block' box depicting a color well, which, when activated, provides the user with a color picker (e.g. a color wheel or color palette) from which the color can be changed.

Predefined suggested values (provided by the list attribute) are expected to be shown in the color picker interface, not on the color well itself.

10.5.8 The input element as a checkbox and radio button widgets

@namespace url(http://www.w3.org/1999/xhtml);

input[type=checkbox i] { binding: input-checkbox; }
input[type=radio i] { binding: input-radio; }

When the input-checkbox binding applies to an input element whose type attribute is in the Checkbox state, the element is expected to render as an 'inline-block' box containing a single checkbox control, with no label.

When the input-radio binding applies to an input element whose type attribute is in the Radio Button state, the element is expected to render as an 'inline-block' box containing a single radio button control, with no label.

10.5.9 The input element as a file upload control

@namespace url(http://www.w3.org/1999/xhtml);

input[type=file i] { binding: input-file; }

When the input-file binding applies to an input element whose type attribute is in the File Upload state, the element is expected to render as an 'inline-block' box containing a span of text giving the file name(s) of the selected files, if any, followed by a button that, when activated, provides the user with a file picker from which the selection can be changed.

10.5.10 The input element as a button

@namespace url(http://www.w3.org/1999/xhtml);

input[type=submit i], input[type=reset i], input[type=button i] {
  binding: input-button;
}

When the input-button binding applies to an input element whose type attribute is in the Submit Button, Reset Button, or Button state, the element is expected to render as an 'inline-block' box rendered as a button, about one line high, containing the contents of the element's value attribute, if any, or text derived from the element's type attribute in a user-agent-defined (and probably locale-specific) fashion, if not.

10.5.11 The marquee element

@namespace url(http://www.w3.org/1999/xhtml);

marquee { binding: marquee; }

When the marquee binding applies to a marquee element, while the element is turned on, the element is expected to render in an animated fashion according to its attributes as follows:

If the element's behavior attribute is in the scroll state

Slide the contents of the element in the direction described by the direction attribute as defined below, such that it begins off the start side of the marquee, and ends flush with the inner end side.

For example, if the direction attribute is left (the default), then the contents would start such that their left edge are off the side of the right edge of the marquee's content area, and the contents would then slide up to the point where the left edge of the contents are flush with the left inner edge of the marquee's content area.

Once the animation has ended, the user agent is expected to increment the marquee current loop index. If the element is still turned on after this, then the user agent is expected to restart the animation.

If the element's behavior attribute is in the slide state

Slide the contents of the element in the direction described by the direction attribute as defined below, such that it begins off the start side of the marquee, and ends off the end side of the marquee.

For example, if the direction attribute is left (the default), then the contents would start such that their left edge are off the side of the right edge of the marquee's content area, and the contents would then slide up to the point where the right edge of the contents are flush with the left inner edge of the marquee's content area.

Once the animation has ended, the user agent is expected to increment the marquee current loop index. If the element is still turned on after this, then the user agent is expected to restart the animation.

If the element's behavior attribute is in the alternate state

When the marquee current loop index is even (or zero), slide the contents of the element in the direction described by the direction attribute as defined below, such that it begins flush with the start side of the marquee, and ends flush with the end side of the marquee.

When the marquee current loop index is odd, slide the contents of the element in the opposite direction than that described by the direction attribute as defined below, such that it begins flush with the end side of the marquee, and ends flush with the start side of the marquee.

For example, if the direction attribute is left (the default), then the contents would with their right edge flush with the right inner edge of the marquee's content area, and the contents would then slide up to the point where the left edge of the contents are flush with the left inner edge of the marquee's content area.

Once the animation has ended, the user agent is expected to increment the marquee current loop index. If the element is still turned on after this, then the user agent is expected to continue the animation.

The direction attribute has the meanings described in the following table:

direction attribute state Direction of animation Start edge End edge Opposite direction
left ← Right to left Right Left → Left to Right
right → Left to Right Left Right ← Right to left
up ↑ Up (Bottom to Top) Bottom Top ↓ Down (Top to Bottom)
down ↓ Down (Top to Bottom) Top Bottom ↑ Up (Bottom to Top)

In any case, the animation should proceed such that there is a delay given by the marquee scroll interval between each frame, and such that the content moves at most the distance given by the marquee scroll distance with each frame.

When a marquee element has a bgcolor attribute set, the value is expected to be parsed using the rules for parsing a legacy color value, and if that does not return an error, the user agent is expected to treat the attribute as a presentational hint setting the element's 'background-color' property to the resulting color.

The width and height attributes on a marquee element map to the dimension properties 'width' and 'height' on the element respectively.

The intrinsic height of a marquee element with its direction attribute in the up or down states is 200 CSS pixels.

The vspace attribute of a marquee element maps to the dimension properties 'margin-top' and 'margin-bottom' on the element. The hspace attribute of a marquee element maps to the dimension properties 'margin-left' and 'margin-right' on the element.

The 'overflow' property on the marquee element is expected to be ignored; overflow is expected to always be hidden.

10.5.12 The meter element

@namespace url(http://www.w3.org/1999/xhtml);

meter { binding: meter; }

When the meter binding applies to a meter element, the element is expected to render as an 'inline-block' box with a 'height' of '1em' and a 'width' of '5em', a 'vertical-align' of '-0.2em', and with its contents depicting a gauge.

When the element is wider than it is tall (or square), the depiction is expected to be of a horizontal gauge, with the minimum value on the right if the 'direction' property on this element has a computed value of 'rtl', and on the left otherwise. When the element is taller than it is wide, it is expected to depict a vertical gauge, with the minimum value on the bottom.

User agents are expected to use a presentation consistent with platform conventions for gauges, if any.

Requirements for what must be depicted in the gauge are included in the definition of the meter element.

10.5.13 The progress element

@namespace url(http://www.w3.org/1999/xhtml);

progress { binding: progress; }

When the progress binding applies to a progress element, the element is expected to render as an 'inline-block' box with a 'height' of '1em' and a 'width' of '10em', and a 'vertical-align' of '-0.2em'.

When the element is wider than it is tall, the element is expected to be depicted as a horizontal progress bar, with the start on the right and the end on the left if the 'direction' property on this element has a computed value of 'rtl', and with the start on the left and the end on the right otherwise. When the element is taller than it is wide, it is expected to depicted as a vertical progress bar, with the lowest value on the bottom. When the element is square, it is expected to be depicted as a direction-independent progress widget (e.g. a circular progress ring).

User agents are expected to use a presentation consistent with platform conventions for progress bars. In particular, user agents are expected to use different presentations for determinate and indeterminate progress bars. User agents are also expected to vary the presentation based on the dimensions of the element.

For example, on some platforms for showing indeterminate progress there is an asynchronous progress indicator with square dimensions, which could be used when the element is square, and an indeterminate progress bar, which could be used when the element is wide.

Requirements for how to determine if the progress bar is determinate or indeterminate, and what progress a determinate progress bar is to show, are included in the definition of the progress element.

10.5.14 The select element

@namespace url(http://www.w3.org/1999/xhtml);

select { binding: select; }

When the select binding applies to a select element whose multiple attribute is present, the element is expected to render as a multi-select list box.

When the select binding applies to a select element whose multiple attribute is absent, and the element's display size is greater than 1, the element is expected to render as a single-select list box.

When the element renders as a list box, it is expected to render as an 'inline-block' box whose 'height' is the height necessary to contain as many rows for items as given by the element's display size, or four rows if the attribute is absent, and whose 'width' is the width of the select's labels plus the width of a scrollbar.

When the select binding applies to a select element whose multiple attribute is absent, and the element's display size is 1, the element is expected to render as a one-line drop down box whose width is the width of the select's labels.

In either case (list box or drop-down box), the element's items are expected to be the element's list of options, with the element's optgroup element children providing headers for groups of options where applicable.

An optgroup element is expected to be rendered by displaying the element's label attribute.

An option element is expected to be rendered by displaying the element's label, indented under its optgroup element if it has one.

The width of the select's labels is the wider of the width necessary to render the widest optgroup, and the width necessary to render the widest option element in the element's list of options (including its indent, if any).

If a select element contains a placeholder label option, the user agent is expected to render that option in a manner that conveys that it is a label, rather than a valid option of the control. This can include preventing the placeholder label option from being explicitly selected by the user. When the placeholder label option's selectedness is true, the control is expected to be displayed in a fashion that indicates that no valid option is currently selected.

User agents are expected to render the labels in a select in such a manner that any alignment remains consistent whether the label is being displayed as part of the page or in a menu control.

10.5.15 The textarea element

@namespace url(http://www.w3.org/1999/xhtml);

textarea { binding: textarea; white-space: pre-wrap; }

When the textarea binding applies to a textarea element, the element is expected to render as an 'inline-block' box rendered as a multiline text field. If this text field provides a selection, then, when the user changes the currect selection in such a binding, the user agent is expected to queue a task to fire a simple event that bubbles named select at the element, using the user interaction task source as the task source.

If the element has a cols attribute, and parsing that attribute's value using the rules for parsing non-negative integers doesn't generate an error, then the user agent is expected to use the attribute as a presentational hint for the 'width' property on the element, with the value being the textarea effective width (as defined below). Otherwise, the user agent is expected to act as if it had a user-agent-level style sheet rule setting the 'width' property on the element to the textarea effective width.

The textarea effective width of a textarea element is size×avg + sbw, where size is the element's character width, avg is the average character width of the primary font of the element, in CSS pixels, and sbw is the width of a scroll bar, in CSS pixels. (The element's 'letter-spacing' property does not affect the result.)

If the element has a rows attribute, and parsing that attribute's value using the rules for parsing non-negative integers doesn't generate an error, then the user agent is expected to use the attribute as a presentational hint for the 'height' property on the element, with the value being the textarea effective height (as defined below). Otherwise, the user agent is expected to act as if it had a user-agent-level style sheet rule setting the 'height' property on the element to the textarea effective height.

The textarea effective height of a textarea element is the height in CSS pixels of the number of lines specified the element's character height, plus the height of a scrollbar in CSS pixels.

User agents are expected to apply the 'white-space' CSS property to textarea elements. For historical reasons, if the element has a wrap attribute whose value is an ASCII case-insensitive match for the string "off", then the user agent is expected to treat the attribute as a presentational hint setting the element's 'white-space' property to 'pre'.

10.5.16 The keygen element

@namespace url(http://www.w3.org/1999/xhtml);

keygen { binding: keygen; }

When the keygen binding applies to a keygen element, the element is expected to render as an 'inline-block' box containing a user interface to configure the key pair to be generated.

10.6 Frames and framesets

User agent are expected to render frameset elements as a box with the height and width of the viewport, with a surface rendered according to the following layout algorithm:

  1. The cols and rows variables are lists of zero or more pairs consisting of a number and a unit, the unit being one of percentage, relative, and absolute.

    Use the rules for parsing a list of dimensions to parse the value of the element's cols attribute, if there is one. Let cols be the result, or an empty list if there is no such attribute.

    Use the rules for parsing a list of dimensions to parse the value of the element's rows attribute, if there is one. Let rows be the result, or an empty list if there is no such attribute.

  2. For any of the entries in cols or rows that have the number zero and the unit relative, change the entry's number to one.

  3. If cols has no entries, then add a single entry consisting of the value 1 and the unit relative to cols.

    If rows has no entries, then add a single entry consisting of the value 1 and the unit relative to rows.

  4. Invoke the algorithm defined below to convert a list of dimensions to a list of pixel values using cols as the input list, and the width of the surface that the frameset is being rendered into, in CSS pixels, as the input dimension. Let sized cols be the resulting list.

    Invoke the algorithm defined below to convert a list of dimensions to a list of pixel values using rows as the input list, and the height of the surface that the frameset is being rendered into, in CSS pixels, as the input dimension. Let sized rows be the resulting list.

  5. Split the surface into a grid of w×h rectangles, where w is the number of entries in sized cols and h is the number of entries in sized rows.

    Size the columns so that each column in the grid is as many CSS pixels wide as the corresponding entry in the sized cols list.

    Size the rows so that each row in the grid is as many CSS pixels high as the corresponding entry in the sized rows list.

  6. Let children be the list of frame and frameset elements that are children of the frameset element for which the algorithm was invoked.

  7. For each row of the grid of rectangles created in the previous step, from top to bottom, run these substeps:

    1. For each rectangle in the row, from left to right, run these substeps:

      1. If there are any elements left in children, take the first element in the list, and assign it to the rectangle.

        If this is a frameset element, then recurse the entire frameset layout algorithm for that frameset element, with the rectangle as the surface.

        Otherwise, it is a frame element; render its nested browsing context, positoned and sized to fit the rectangle.

      2. If there are any elements left in children, remove the first element from children.

  8. If the frameset element has a border, draw an outer set of borders around the rectangles, using the element's frame border color.

    For each rectangle, if there is an element assigned to that rectangle, and that element has a border, draw an inner set of borders around that rectangle, using the element's frame border color.

    For each (visible) border that does not abut a rectangle that is assigned a frame element with a noresize attribute (including rectangles in further nested frameset elements), the user agent is expected to allow the user to move the border, resizing the rectangles within, keeping the proportions of any nested frameset grids.

    A frameset or frame element has a border if the following algorithm returns true:

    1. If the element has a frameborder attribute whose value is not the empty string and whose first character is either a "1" (U+0031) character, a "y" (U+0079) character, or a "Y" (U+0059) character, then return true.

    2. Otherwise, if the element has a frameborder attribute, return false.

    3. Otherwise, if the element has a parent element that is a frameset element, then return true if that element has a border, and false if it does not.

    4. Otherwise, return true.

    The frame border color of a frameset or frame element is the color obtained from the following algorithm:

    1. If the element has a bordercolor attribute, and applying the rules for parsing a legacy color value to that attribute's value does not result in an error, then return the color so obtained.

    2. Otherwise, if the element has a parent element that is a frameset element, then return the frame border color of that element.

    3. Otherwise, return gray.

The algorithm to convert a list of dimensions to a list of pixel values consists of the following steps:

  1. Let input list be the list of numbers and units passed to the algorithm.

    Let output list be a list of numbers the same length as input list, all zero.

    Entries in output list correspond to the entries in input list that have the same position.

  2. Let input dimension be the size passed to the algorithm.

  3. Let count percentage be the number of entries in input list whose unit is percentage.

    Let total percentage be the sum of all the numbers in input list whose unit is percentage.

    Let count relative be the number of entries in input list whose unit is relative.

    Let total relative be the sum of all the numbers in input list whose unit is relative.

    Let count absolute be the number of entries in input list whose unit is absolute.

    Let total absolute be the sum of all the numbers in input list whose unit is absolute.

    Let remaining space be the value of input dimension.

  4. If total absolute is greater than remaining space, then for each entry in input list whose unit is absolute, set the corresponding value in output list to the number of the entry in input list multiplied by remaining space and divided by total absolute. Then, set remaining space to zero.

    Otherwise, for each entry in input list whose unit is absolute, set the corresponding value in output list to the number of the entry in input list. Then, decrement remaining space by total absolute.

  5. If total percentage multiplied by the input dimension and divided by 100 is greater than remaining space, then for each entry in input list whose unit is percentage, set the corresponding value in output list to the number of the entry in input list multiplied by remaining space and divided by total percentage. Then, set remaining space to zero.

    Otherwise, for each entry in input list whose unit is percentage, set the corresponding value in output list to the number of the entry in input list multiplied by the input dimension and divided by 100. Then, decrement remaining space by total percentage multiplied by the input dimension and divided by 100.

  6. For each entry in input list whose unit is relative, set the corresponding value in output list to the number of the entry in input list multiplied by remaining space and divided by total relative.

  7. Return output list.

User agents working with integer values for frame widths (as opposed to user agents that can lay frames out with subpixel accuracy) are expected to distribute the remainder first to the last entry whose unit is relative, then equally (not proportionally) to each entry whose unit is percentage, then equally (not proportionally) to each entry whose unit is absolute, and finally, failing all else, to the last entry.


The contents of a frame element that does not have a frameset parent are expected to be rendered as transparent black; the user agent is expected to not render the nested browsing context in this case, and that nested browsing context is expected to have a viewport with zero width and zero height.

10.7 Interactive media

10.7.1 Links, forms, and navigation

User agents are expected to allow the user to control aspects of hyperlink activation and form submission, such as which browsing context is to be used for the subsequent navigation.

User agents are expected to allow users to discover the destination of hyperlinks and of forms before triggering their navigation.

User agents may allow users to navigate browsing contexts to the resources indicated by the cite attributes on q, blockquote, ins, and del elements.

User agents may surface hyperlinks created by link elements in their user interface.

While link elements that create hyperlinks will match the ':link' or ':visited' pseudo-classes, will react to clicks if visible, and so forth, this does not extend to any browser interface constructs that expose those same links. Activating a link through the browser's interface, rather than in the page itself, does not trigger click events and the like.

10.7.2 The title attribute

User agents are expected to expose the advisory information of elements upon user request, and to make the user aware of the presence of such information.

On interactive graphical systems where the user can use a pointing device, this could take the form of a tooltip. When the user is unable to use a pointing device, then the user agent is expected to make the content available in some other fashion, e.g. by making the element a focusable area and always displaying the advisory information of the currently focused element, or by showing the advisory information of the elements under the user's finger on a touch device as the user pans around the screen.

"LF" (U+000A) characters are expected to cause line breaks in the tooltip; "tab" (U+0009) characters are expected to render as a non-zero horizontal shift that lines up the next glyph with the next tab stop, with tab stops occurring at points that are multiples of 8 times the width of a U+0020 SPACE character.

For example, a visual user agent could make elements with a title attribute focusable, and could make any focused element with a title attribute show its tooltip under the element while the element has focus. This would allow a user to tab around the document to find all the advisory text.

As another example, a screen reader could provide an audio cue when reading an element with a tooltip, with an associated key to read the last tooltip for which a cue was played.

10.7.3 Editing hosts

The current text editing caret (i.e. the active range, if it is empty and in an editing host), if any, is expected to act like an inline replaced element with the vertical dimensions of the caret and with zero width for the purposes of the CSS rendering model.

This means that even an empty block can have the caret inside it, and that when the caret is in such an element, it prevents margins from collapsing through the element.

10.7.4 Text rendered in native user interfaces

User agents are expected to honor the Unicode semantics of text that is exposed in user interfaces, for example supporting the bidirectional algorithm in text shown in dialogs, title bars, pop-up menus, and tooltips. Text from the contents of elements is expected to be rendered in a manner that honors the directionality of the element from which the text was obtained. Text from attributes is expected to be rendered in a manner that honours the directionality of the attribute.

Consider the following markup, which has Hebrew text asking for a programming language, the languages being text for which a left-to-right direction is important given the punctuation in some of their names:

<p dir="rtl" lang="he">
 <label>
  בחר שפת תכנות:
  <select>
   <option dir="ltr">C++</option>
   <option dir="ltr">C#</option>
   <option dir="ltr">FreePascal</option>
   <option dir="ltr">F#</option>
  </select>
 </label>
</p>

If the select element was rendered as a drop down box, a correct rendering would ensure that the punctuation was the same both in the drop down, and in the box showing the current selection.

The directionality of attributes depends on the attribute and on the element's dir attribute, as the following example demonstrates. Consider this markup:

<table>
 <tr>
  <th abbr="(א" dir=ltr>A
  <th abbr="(א" dir=rtl>A
  <th abbr="(א" dir=auto>A
</table>

If the abbr attributes are rendered, e.g. in a tooltip or other user interface, the first will have a left parenthesis (because the direction is 'ltr'), the second will have a right parenthesis (because the direction is 'rtl'), and the third will have a right parenthesis (because the direction is determined from the attribute value to be 'rtl').

However, if instead the attribute was not a directionality-capable attribute, the results would be different:

<table>
 <tr>
  <th data-abbr="(א" dir=ltr>A
  <th data-abbr="(א" dir=rtl>A
  <th data-abbr="(א" dir=auto>A
</table>

In this case, if the user agent were to expose the data-abbr attribute in the user interface (e.g. in a debugging environment), the last case would be rendered with a left parenthesis, because the direction would be determined from the element's contents.

A string provided by a script (e.g. the argument to window.alert()) is expected to be treated as an independent set of one or more bidirectional algorithm paragraphs when displayed, as defined by the bidirectional algorithm, including, for instance, supporting the paragraph-breaking behaviour of "LF" (U+000A) characters. For the purposes of determining the paragraph level of such text in the bidirectional algorithm, this specification does not provide a higher-level override of rules P2 and P3. [BIDI]

When necessary, authors can enforce a particular direction for a given paragraph by starting it with the Unicode U+200E LEFT-TO-RIGHT MARK or U+200F RIGHT-TO-LEFT MARK characters.

Thus, the following script:

alert('\u05DC\u05DE\u05D3 HTML \u05D4\u05D9\u05D5\u05DD!')

...would always result in a message reading "למד LMTH היום!" (not "דמל HTML םויה!"), regardless of the language of the user agent interface or the direction of the page or any of its elements.

For a more complex example, consider the following script:

/* Warning: this script does not handle right-to-left scripts correctly */
var s;
if (s = prompt('What is your name?')) {
  alert(s + '! Ok, Fred, ' + s + ', and Wilma will get the car.');
}

When the user enters "Kitty", the user agent would alert "Kitty! Ok, Fred, Kitty, and Wilma will get the car.". However, if the user enters "لا أفهم", then the bidirectional algorithm will determine that the direction of the paragraph is right-to-left, and so the output will be the following unintended mess: "لا أفهم! derF ,kO, لا أفهم, rac eht teg lliw amliW dna."

To force an alert that starts with user-provided text (or other text of unknown directionality) to render left-to-right, the string can be prefixed with a U+200E LEFT-TO-RIGHT MARK character:

var s;
if (s = prompt('What is your name?')) {
  alert('\u200E' + s + '! Ok, Fred, ' + s + ', and Wilma will get the car.');
}

User agents are expected to allow the user to request the opportunity to obtain a physical form (or a representation of a physical form) of a Document. For example, selecting the option to print a page or convert it to PDF format. [PDF]

When the user actually obtains a physical form (or a representation of a physical form) of a Document, the user agent is expected to create a new rendering of the Document for the print media.

10.9 Unstyled XML documents

HTML user agents may, in certain circumstances, find themselves rendering non-HTML documents that use vocabularies for which they lack any built-in knowledge. This section provides for a way for user agents to handle such documents in a somewhat useful manner.

While a Document is an unstyled document, the user agent is expected to render an unstyled document view.

A Document is an unstyled document while it matches the following conditions:

An unstyled document view is one where the DOM is not rendered according to CSS (which would, since there are no applicable styles in this context, just result in a wall of text), but is instead rendered in a manner that is useful for a developer. This could consist of just showing the Document object's source, maybe with syntax highlighting, or it could consist of displaying just the DOM tree, or simply a message saying that the page is not a styled document.

If a Document stops being an unstyled document, then the conditions above stop applying, and thus a user agent following these requirements will switch to using the regular CSS rendering.

11 Obsolete features

11.1 Obsolete but conforming features

Features listed in this section will trigger warnings in conformance checkers.

Authors should not specify a border attribute on an img element. If the attribute is present, its value must be the string "0". CSS should be used instead.

Authors should not specify a language attribute on a script element. If the attribute is present, its value must be an ASCII case-insensitive match for the string "JavaScript" and either the type attribute must be omitted or its value must be an ASCII case-insensitive match for the string "text/javascript". The attribute should be entirely omitted instead (with the value "JavaScript", it has no effect), or replaced with use of the type attribute.

Authors should not specify the name attribute on a elements. If the attribute is present, its value must not be the empty string and must neither be equal to the value of any of the IDs in the element's home subtree other than the element's own ID, if any, nor be equal to the value of any of the other name attributes on a elements in the element's home subtree. If this attribute is present and the element has an ID, then the attribute's value must be equal to the element's ID. In earlier versions of the language, this attribute was intended as a way to specify possible targets for fragment identifiers in URLs. The id attribute should be used instead.

Authors should not, but may despite requirements to the contrary elsewhere in this specification, specify the maxlength and size attributes on input elements whose type attributes are in the Number state. One valid reason for using these attributes regardless is to help legacy user agents that do not support input elements with type="number" to still render the text field with a useful width.

In the HTML syntax, specifying a DOCTYPE that is an obsolete permitted DOCTYPE will also trigger a warning.

11.1.1 Warnings for obsolete but conforming features

To ease the transition from HTML4 Transitional documents to the language defined in this specification, and to discourage certain features that are only allowed in very few circumstances, conformance checkers must warn the user when the following features are used in a document. These are generally old obsolete features that have no effect, and are allowed only to distinguish between likely mistakes (regular conformance errors) and mere vestigial markup or unusual and discouraged practices (these warnings).

The following features must be categorised as described above:

Conformance checkers must distinguish between pages that have no conformance errors and have none of these obsolete features, and pages that have no conformance errors but do have some of these obsolete features.

For example, a validator could report some pages as "Valid HTML" and others as "Valid HTML with warnings".

11.2 Non-conforming features

Elements in the following list are entirely obsolete, and must not be used by authors:

applet

Use embed or object instead.

acronym

Use abbr instead.

bgsound

Use audio instead.

dir

Use ul instead.

frame
frameset
noframes

Either use iframe and CSS instead, or use server-side includes to generate complete pages with the various invariant parts merged in.

hgroup

To mark up subheadings, consider putting the subheading into a p element after the h1-h6 element containing the main heading, or putting the subheading directly within the h1-h6 element containing the main heading, but separated from the main heading by punctuation and/or within, for example, a span class="subheading" element with differentiated styling.

Headings and subheadings, alternative titles, or taglines can be grouped using the header or div elements.

isindex

Use an explicit form and text field combination instead.

listing

Use pre and code instead.

nextid

Use GUIDs instead.

noembed

Use object instead of embed when fallback is necessary.

plaintext

Use the "text/plain" MIME type instead.

strike

Use del instead if the element is marking an edit, otherwise use s instead.

xmp

Use pre and code instead, and escape "<" and "&" characters as "&lt;" and "&amp;" respectively.

basefont
big
blink
center
font
marquee
multicol
nobr
spacer
tt

Use appropriate elements or CSS instead.

Where the tt element would have been used for marking up keyboard input, consider the kbd element; for variables, consider the var element; for computer code, consider the code element; and for computer output, consider the samp element.

Similarly, if the big element is being used to denote a heading, consider using the h1 element; if it is being used for marking up important passages, consider the strong element; and if it is being used for highlighting text for reference purposes, consider the mark element.

See also the text-level semantics usage summary for more suggestions with examples.


The following attributes are obsolete (though the elements are still part of the language), and must not be used by authors:

charset on a elements
charset on link elements

Use an HTTP Content-Type header on the linked resource instead.

coords on a elements
shape on a elements

Use area instead of a for image maps.

methods on a elements
methods on link elements

Use the HTTP OPTIONS feature instead.

name on a elements (except as noted in the previous section)
name on embed elements
name on img elements
name on option elements

Use the id attribute instead.

urn on a elements
urn on link elements

Specify the preferred persistent identifier using the href attribute instead.

accept on form elements

Use the accept attribute directly on the input elements instead.

nohref on area elements

Omitting the href attribute is sufficient; the nohref attribute is unnecessary. Omit it altogether.

profile on head elements

When used for declaring which meta terms are used in the document, unnecessary; omit it altogether, and register the names.

When used for triggering specific user agent behaviors: use a link element instead.

version on html elements

Unnecessary. Omit it altogether.

ismap on input elements

Unnecessary. Omit it altogether. All input elements with a type attribute in the Image Button state are processed as server-side image maps.

usemap on input elements

Use img instead of input for image maps.

lowsrc on img elements

Use a progressive JPEG image (given in the src attribute), instead of using two separate images.

target on link elements

Unnecessary. Omit it altogether.

scheme on meta elements

Use only one scheme per field, or make the scheme declaration part of the value.

archive on object elements
classid on object elements
code on object elements
codebase on object elements
codetype on object elements

Use the data and type attributes to invoke plugins. To set parameters with these names in particular, the param element can be used.

declare on object elements

Repeat the object element completely each time the resource is to be reused.

standby on object elements

Optimise the linked resource so that it loads quickly or, at least, incrementally.

type on param elements
valuetype on param elements

Use the name and value attributes without declaring value types.

language on script elements (except as noted in the previous section)

Use the type attribute instead.

event on script elements
for on script elements

Use DOM Events mechanisms to register event listeners. [DOM]

media on source elements

Use script to select the media resource(s) to use.

datapagesize on table elements

Unnecessary. Omit it altogether.

summary on table elements

Use one of the techniques for describing tables given in the table section instead.

axis on td and th elements

Use the scope attribute on the relevant th.

scope on td elements

Use th elements for heading cells.

datasrc on a, applet, button, div, frame, iframe, img, input, label, legend, marquee, object, option, select, span, table, and textarea elements
datafld on a, applet, button, div, fieldset, frame, iframe, img, input, label, legend, marquee, object, param, select, span, and textarea elements
dataformatas on button, div, input, label, legend, marquee, object, option, select, span, and table elements

Use script and a mechanism such as XMLHttpRequest to populate the page dynamically. [XHR]

alink on body elements
bgcolor on body elements
link on body elements
marginbottom on body elements
marginheight on body elements
marginleft on body elements
marginright on body elements
margintop on body elements
marginwidth on body elements
text on body elements
vlink on body elements
clear on br elements
align on caption elements
align on col elements
char on col elements
charoff on col elements
valign on col elements
width on col elements
align on div elements
compact on dl elements
align on embed elements
hspace on embed elements
vspace on embed elements
align on hr elements
color on hr elements
noshade on hr elements
size on hr elements
width on hr elements
align on h1h6 elements
align on iframe elements
allowtransparency on iframe elements
frameborder on iframe elements
hspace on iframe elements
marginheight on iframe elements
marginwidth on iframe elements
scrolling on iframe elements
vspace on iframe elements
align on input elements
hspace on input elements
vspace on input elements
align on img elements
border on img elements (except as noted in the previous section)
hspace on img elements
vspace on img elements
align on legend elements
type on li elements
compact on menu elements
align on object elements
border on object elements
hspace on object elements
vspace on object elements
compact on ol elements
align on p elements
width on pre elements
align on table elements
bgcolor on table elements
bordercolor on table elements
cellpadding on table elements
cellspacing on table elements
frame on table elements
rules on table elements
width on table elements
align on tbody, thead, and tfoot elements
char on tbody, thead, and tfoot elements
charoff on tbody, thead, and tfoot elements
valign on tbody, thead, and tfoot elements
align on td and th elements
bgcolor on td and th elements
char on td and th elements
charoff on td and th elements
height on td and th elements
nowrap on td and th elements
valign on td and th elements
width on td and th elements
align on tr elements
bgcolor on tr elements
char on tr elements
charoff on tr elements
valign on tr elements
compact on ul elements
type on ul elements
background on body, table, thead, tbody, tfoot, tr, td, and th elements

Use CSS instead.


The border attribute on the table element can be used to provide basic fallback styling for the purpose of making tables legible in browsing environments where CSS support is limited or absent, such as text-based browsers, WYSIWYG editors, and in situations where CSS support is disabled or the style sheet is lost. Only the empty string and the value "1" may be used as border values for this purpose. Other values are considered obsolete. To regulate the thickness of such borders, authors should instead use CSS.

11.3 Requirements for implementations

11.3.1 The applet element

The applet element is a Java-specific variant of the embed element. The applet element is now obsoleted so that all extension frameworks (Java, .NET, Flash, etc) are handled in a consistent manner.

When the element matches any of the following conditions, it represents its contents:

Otherwise, the user agent should instantiate a Java Language runtime plugin, and should pass the names and values of all the attributes on the element, in the order they were added to the element, with the attributes added by the parser being ordered in source order, and then a parameter named "PARAM" whose value is null, and then all the names and values of parameters given by param elements that are children of the applet element, in tree order, to the plugin used. If the plugin supports a scriptable interface, the HTMLAppletElement object representing the element should expose that interface. The applet element represents the plugin.

The applet element is unaffected by the CSS 'display' property. The Java Language runtime is instantiated even if the element is hidden with a 'display:none' CSS style.

The applet element must implement the HTMLAppletElement interface.

interface HTMLAppletElement : HTMLElement {
           attribute DOMString align;
           attribute DOMString alt;
           attribute DOMString archive;
           attribute DOMString code;
           attribute DOMString codeBase;
           attribute DOMString height;
           attribute unsigned long hspace;
           attribute DOMString name;
           attribute DOMString _object; // the underscore is not part of the identifier 
           attribute unsigned long vspace;
           attribute DOMString width;
};

The align, alt, archive, code, height, hspace, name, object, vspace, and width IDL attributes must reflect the respective content attributes of the same name. For the purposes of reflection, the applet element's object content attribute is defined as containing a URL.

The codeBase IDL attribute must reflect the codebase content attribute, which for the purposes of reflection is defined as containing a URL.

11.3.2 The marquee element

The marquee element is a presentational element that animates content. CSS transitions and animations are a more appropriate mechanism. [CSSANIMATIONS] [CSSTRANSITIONS]

The task source for tasks mentioned in this section is the DOM manipulation task source.

The marquee element must implement the HTMLMarqueeElement interface.

interface HTMLMarqueeElement : HTMLElement {
           attribute DOMString behavior;
           attribute DOMString bgColor;
           attribute DOMString direction;
           attribute DOMString height;
           attribute unsigned long hspace;
           attribute long loop;
           attribute unsigned long scrollAmount;
           attribute unsigned long scrollDelay;
           attribute boolean trueSpeed;
           attribute unsigned long vspace;
           attribute DOMString width;

           attribute EventHandler onbounce;
           attribute EventHandler onfinish;
           attribute EventHandler onstart;

  void start();
  void stop();
};

A marquee element can be turned on or turned off. When it is created, it is turned on.

When the start() method is called, the marquee element must be turned on.

When the stop() method is called, the marquee element must be turned off.

When a marquee element is created, the user agent must queue a task to fire a simple event named start at the element.


The behavior content attribute on marquee elements is an enumerated attribute with the following keywords (all non-conforming):

Keyword State
scroll scroll
slide slide
alternate alternate

The missing value default is the scroll state.


The direction content attribute on marquee elements is an enumerated attribute with the following keywords (all non-conforming):

Keyword State
left left
right right
up up
down down

The missing value default is the left state.


The truespeed content attribute on marquee elements is a boolean attribute.


A marquee element has a marquee scroll interval, which is obtained as follows:

  1. If the element has a scrolldelay attribute, and parsing its value using the rules for parsing non-negative integers does not return an error, then let delay be the parsed value. Otherwise, let delay be 85.

  2. If the element does not have a truespeed attribute, and the delay value is less than 60, then let delay be 60 instead.

  3. The marquee scroll interval is delay, interpreted in milliseconds.


A marquee element has a marquee scroll distance, which, if the element has a scrollamount attribute, and parsing its value using the rules for parsing non-negative integers does not return an error, is the parsed value interpreted in CSS pixels, and otherwise is 6 CSS pixels.


A marquee element has a marquee loop count, which, if the element has a loop attribute, and parsing its value using the rules for parsing integers does not return an error or a number less than 1, is the parsed value, and otherwise is −1.

The loop IDL attribute, on getting, must return the element's marquee loop count; and on setting, if the new value is different than the element's marquee loop count and either greater than zero or equal to −1, must set the element's loop content attribute (adding it if necessary) to the valid integer that represents the new value. (Other values are ignored.)

A marquee element also has a marquee current loop index, which is zero when the element is created.

The rendering layer will occasionally increment the marquee current loop index, which must cause the following steps to be run:

  1. If the marquee loop count is −1, then abort these steps.

  2. Increment the marquee current loop index by one.

  3. If the marquee current loop index is now equal to or greater than the element's marquee loop count, turn off the marquee element and queue a task to fire a simple event named finish at the marquee element.

    Otherwise, if the behavior attribute is in the alternate state, then queue a task to fire a simple event named bounce at the marquee element.

    Otherwise, queue a task to fire a simple event named start at the marquee element.


The following are the event handlers (and their corresponding event handler event types) that must be supported, as event handler content attributes and event handler IDL attributes, by marquee elements:

Event handler Event handler event type
onbounce bounce
onfinish finish
onstart start

The behavior, direction, height, hspace, vspace, and width IDL attributes must reflect the respective content attributes of the same name.

The bgColor IDL attribute must reflect the bgcolor content attribute.

The scrollAmount IDL attribute must reflect the scrollamount content attribute. The default value is 6.

The scrollDelay IDL attribute must reflect the scrolldelay content attribute. The default value is 85.

The trueSpeed IDL attribute must reflect the truespeed content attribute.

11.3.3 Frames

The frameset element acts as the body element in documents that use frames.

The frameset element must implement the HTMLFrameSetElement interface.

interface HTMLFrameSetElement : HTMLElement {
           attribute DOMString cols;
           attribute DOMString rows;
};
HTMLFrameSetElement implements WindowEventHandlers;

The cols and rows IDL attributes of the frameset element must reflect the respective content attributes of the same name.

The frameset element exposes as event handler content attributes a number of the event handlers of the Window object. It also mirrors their event handler IDL attributes.

The onblur, onerror, onfocus, onload, onresize, and onscroll event handlers of the Window object, exposed on the frameset element, replace the generic event handlers with the same names normally supported by HTML elements.


The frame element defines a nested browsing context similar to the iframe element, but rendered within a frameset element.

A frame element is said to be an active frame element when it is in a Document.

When a frame element is created as an active frame element, or becomes an active frame element after not having been one, the user agent must create a nested browsing context, and then process the frame attributes for the first time.

When a frame element stops being an active frame element, the user agent must discard the nested browsing context.

Whenever a frame element with a nested browsing context has its src attribute set, changed, or removed, the user agent must process the frame attributes.

When the user agent is to process the frame attributes, it must run the first appropriate steps from the following list:

If the element has no src attribute specified, and the user agent is processing the frame's attributes for the first time

Queue a task to fire a simple event named load at the frame element.

Otherwise
  1. If the value of the src attribute is the empty string, let url be the string "about:blank".

    Otherwise, resolve the value of the src attribute, relative to the frame element.

    If that is not successful, then let url be the string "about:blank". Otherwise, let url be the resulting absolute URL.

  2. Navigate the element's child browsing context to url.

Any navigation required of the user agent in the process the frame attributes algorithm must be completed as an explicit self-navigation override and with the frame element's document's browsing context as the source browsing context.

Furthermore, if the active document of the element's child browsing context before such a navigation was not completely loaded at the time of the new navigation, then the navigation must be completed with replacement enabled.

Similarly, if the child browsing context's session history contained only one Document when the process the frame attributes algorithm was invoked, and that was the about:blank Document created when the child browsing context was created, then any navigation required of the user agent in that algorithm must be completed with replacement enabled.

When a Document in a frame is marked as completely loaded, the user agent must queue a task to fire a simple event named load at the frame element.

The task source for the tasks above is the DOM manipulation task source.

When a frame element's nested browsing context's active document is not ready for post-load tasks, and when anything is delaying the load event of the frame element's browsing context's active document, and when the frame element's browsing context is in the delaying load events mode, the frame must delay the load event of its document.

When the browsing context is created, if a name attribute is present, the browsing context name must be set to the value of this attribute; otherwise, the browsing context name must be set to the empty string.

Whenever the name attribute is set, the nested browsing context's name must be changed to the new value. If the attribute is removed, the browsing context name must be set to the empty string.

The frame element must implement the HTMLFrameElement interface.

interface HTMLFrameElement : HTMLElement {
           attribute DOMString name;
           attribute DOMString scrolling;
           attribute DOMString src;
           attribute DOMString frameBorder;
           attribute DOMString longDesc;
           attribute boolean noResize;
  readonly attribute Document? contentDocument;
  readonly attribute WindowProxy? contentWindow;

  [TreatNullAs=EmptyString] attribute DOMString marginHeight;
  [TreatNullAs=EmptyString] attribute DOMString marginWidth;
};

The name, scrolling, and src IDL attributes of the frame element must reflect the respective content attributes of the same name. For the purposes of reflection, the frame element's src content attribute is defined as containing a URL.

The frameBorder IDL attribute of the frame element must reflect the element's frameborder content attribute.

The longDesc IDL attribute of the frame element must reflect the element's longdesc content attribute, which for the purposes of reflection is defined as containing a URL.

The noResize IDL attribute of the frame element must reflect the element's noresize content attribute.

The contentDocument IDL attribute of the frame element must return the Document object of the active document of the frame element's nested browsing context, if any and if its effective script origin is the same origin as the effective script origin specified by the incumbent settings object, or null otherwise.

The contentWindow IDL attribute must return the WindowProxy object of the frame element's nested browsing context.

The marginHeight IDL attribute of the frame element must reflect the element's marginheight content attribute.

The marginWidth IDL attribute of the frame element must reflect the element's marginwidth content attribute.

11.3.4 Other elements, attributes and APIs

User agents must treat acronym elements in a manner equivalent to abbr elements in terms of semantics and for purposes of rendering.


partial interface HTMLAnchorElement {
           attribute DOMString coords;
           attribute DOMString charset;
           attribute DOMString name;
           attribute DOMString shape;
};

The coords, charset, name, and shape IDL attributes of the a element must reflect the respective content attributes of the same name.


partial interface HTMLAreaElement {
           attribute boolean noHref;
};

The noHref IDL attribute of the area element must reflect the element's nohref content attribute.


partial interface HTMLBodyElement {
  [TreatNullAs=EmptyString] attribute DOMString text;
  [TreatNullAs=EmptyString] attribute DOMString link;
  [TreatNullAs=EmptyString] attribute DOMString vLink;
  [TreatNullAs=EmptyString] attribute DOMString aLink;
  [TreatNullAs=EmptyString] attribute DOMString bgColor;
                            attribute DOMString background;
};

The text IDL attribute of the body element must reflect the element's text content attribute.

The link IDL attribute of the body element must reflect the element's link content attribute.

The aLink IDL attribute of the body element must reflect the element's alink content attribute.

The vLink IDL attribute of the body element must reflect the element's vlink content attribute.

The bgColor IDL attribute of the body element must reflect the element's bgcolor content attribute.

The background IDL attribute of the body element must reflect the element's background content attribute. (The background content is not defined to contain a URL, despite rules regarding its handling in the rendering section above.)


partial interface HTMLBRElement {
           attribute DOMString clear;
};

The clear IDL attribute of the br element must reflect the content attribute of the same name.


partial interface HTMLTableCaptionElement {
           attribute DOMString align;
};

The align IDL attribute of the caption element must reflect the content attribute of the same name.


partial interface HTMLTableColElement {
           attribute DOMString align;
           attribute DOMString ch;
           attribute DOMString chOff;
           attribute DOMString vAlign;
           attribute DOMString width;
};

The align and width IDL attributes of the col element must reflect the respective content attributes of the same name.

The ch IDL attribute of the col element must reflect the element's char content attribute.

The chOff IDL attribute of the col element must reflect the element's charoff content attribute.

The vAlign IDL attribute of the col element must reflect the element's valign content attribute.


User agents must treat dir elements in a manner equivalent to ul elements in terms of semantics and for purposes of rendering.

The dir element must implement the HTMLDirectoryElement interface.

interface HTMLDirectoryElement : HTMLElement {
           attribute boolean compact;
};

The compact IDL attribute of the dir element must reflect the content attribute of the same name.


partial interface HTMLDivElement {
           attribute DOMString align;
};

The align IDL attribute of the div element must reflect the content attribute of the same name.


partial interface HTMLDListElement {
           attribute boolean compact;
};

The compact IDL attribute of the dl element must reflect the content attribute of the same name.


partial interface HTMLEmbedElement {
           attribute DOMString align;
           attribute DOMString name;
};

The name and align IDL attributes of the embed element must reflect the respective content attributes of the same name.


The font element must implement the HTMLFontElement interface.

interface HTMLFontElement : HTMLElement {
  [TreatNullAs=EmptyString] attribute DOMString color;
                            attribute DOMString face;
                            attribute DOMString size; 
};

The color, face, and size IDL attributes of the font element must reflect the respective content attributes of the same name.


partial interface HTMLHeadingElement {
           attribute DOMString align;
};

The align IDL attribute of the h1h6 elements must reflect the content attribute of the same name.


The profile IDL attribute on head elements (with the HTMLHeadElement interface) is intentionally omitted. Unless so required by another applicable specification, implementations would therefore not support this attribute. (It is mentioned here as it was defined in a previous version of the DOM specifications.)


partial interface HTMLHRElement {
           attribute DOMString align;
           attribute DOMString color;
           attribute boolean noShade;
           attribute DOMString size;
           attribute DOMString width;
};

The align, color, size, and width IDL attributes of the hr element must reflect the respective content attributes of the same name.

The noShade IDL attribute of the hr element must reflect the element's noshade content attribute.


partial interface HTMLHtmlElement {
           attribute DOMString version;
};

The version IDL attribute of the html element must reflect the content attribute of the same name.


partial interface HTMLIFrameElement {
           attribute DOMString align;
           attribute DOMString scrolling;
           attribute DOMString frameBorder;
           attribute DOMString longDesc;

  [TreatNullAs=EmptyString] attribute DOMString marginHeight;
  [TreatNullAs=EmptyString] attribute DOMString marginWidth;
};

The align and scrolling IDL attributes of the iframe element must reflect the respective content attributes of the same name.

The frameBorder IDL attribute of the iframe element must reflect the element's frameborder content attribute.

The longDesc IDL attribute of the iframe element must reflect the element's longdesc content attribute, which for the purposes of reflection is defined as containing a URL.

The marginHeight IDL attribute of the iframe element must reflect the element's marginheight content attribute.

The marginWidth IDL attribute of the iframe element must reflect the element's marginwidth content attribute.


partial interface HTMLImageElement {
           attribute DOMString name;
           attribute DOMString lowsrc;
           attribute DOMString align;
           attribute unsigned long hspace;
           attribute unsigned long vspace;
           attribute DOMString longDesc;

  [TreatNullAs=EmptyString] attribute DOMString border;
};

The name, align, border, hspace, and vspace IDL attributes of the img element must reflect the respective content attributes of the same name.

The longDesc IDL attribute of the img element must reflect the element's longdesc content attribute, which for the purposes of reflection is defined as containing a URL.

The lowsrc IDL attribute of the img element must reflect the element's lowsrc content attribute, which for the purposes of reflection is defined as containing a URL.


partial interface HTMLInputElement {
           attribute DOMString align;
           attribute DOMString useMap;
};

The align IDL attribute of the input element must reflect the content attribute of the same name.

The useMap IDL attribute of the input element must reflect the element's usemap content attribute.


partial interface HTMLLegendElement {
           attribute DOMString align;
};

The align IDL attribute of the legend element must reflect the content attribute of the same name.


partial interface HTMLLIElement {
           attribute DOMString type;
};

The type IDL attribute of the li element must reflect the content attribute of the same name.


partial interface HTMLLinkElement {
           attribute DOMString charset;
           attribute DOMString target;
};

The charset and target IDL attributes of the link element must reflect the respective content attributes of the same name.


User agents must treat listing elements in a manner equivalent to pre elements in terms of semantics and for purposes of rendering.


partial interface HTMLMenuElement {
           attribute boolean compact;
};

The compact IDL attribute of the menu element must reflect the content attribute of the same name.


partial interface HTMLMetaElement {
           attribute DOMString scheme;
};

User agents may treat the scheme content attribute on the meta element as an extension of the element's name content attribute when processing a meta element with a name attribute whose value is one that the user agent recognizes as supporting the scheme attribute.

User agents are encouraged to ignore the scheme attribute and instead process the value given to the metadata name as if it had been specified for each expected value of the scheme attribute.

For example, if the user agent acts on meta elements with name attributes having the value "eGMS.subject.keyword", and knows that the scheme attribute is used with this metadata name, then it could take the scheme attribute into account, acting as if it was an extension of the name attribute. Thus the following two meta elements could be treated as two elements giving values for two different metadata names, one consisting of a combination of "eGMS.subject.keyword" and "LGCL", and the other consisting of a combination of "eGMS.subject.keyword" and "ORLY":

<!-- this markup is invalid -->
<meta name="eGMS.subject.keyword" scheme="LGCL" content="Abandoned vehicles">
<meta name="eGMS.subject.keyword" scheme="ORLY" content="Mah car: kthxbye">

The suggested processing of this markup, however, would be equivalent to the following:

<meta name="eGMS.subject.keyword" content="Abandoned vehicles">
<meta name="eGMS.subject.keyword" content="Mah car: kthxbye">

The scheme IDL attribute of the meta element must reflect the content attribute of the same name.


partial interface HTMLObjectElement {
           attribute DOMString align;
           attribute DOMString archive;
           attribute DOMString code;
           attribute boolean declare;
           attribute unsigned long hspace;
           attribute DOMString standby;
           attribute unsigned long vspace;
           attribute DOMString codeBase;
           attribute DOMString codeType;

  [TreatNullAs=EmptyString] attribute DOMString border;
};

The align, archive, border, code, declare, hspace, standby, and vspace IDL attributes of the object element must reflect the respective content attributes of the same name.

The codeBase IDL attribute of the object element must reflect the element's codebase content attribute, which for the purposes of reflection is defined as containing a URL.

The codeType IDL attribute of the object element must reflect the element's codetype content attribute.


partial interface HTMLOListElement {
           attribute boolean compact;
};

The compact IDL attribute of the ol element must reflect the content attribute of the same name.


partial interface HTMLParagraphElement {
           attribute DOMString align;
};

The align IDL attribute of the p element must reflect the content attribute of the same name.


partial interface HTMLParamElement {
           attribute DOMString type;
           attribute DOMString valueType;
};

The type IDL attribute of the param element must reflect the content attribute of the same name.

The valueType IDL attribute of the param element must reflect the element's valuetype content attribute.


User agents must treat plaintext elements in a manner equivalent to pre elements in terms of semantics and for purposes of rendering. (The parser has special behavior for this element, though.)


partial interface HTMLPreElement {
           attribute long width;
};

The width IDL attribute of the pre element must reflect the content attribute of the same name.


partial interface HTMLScriptElement {
           attribute DOMString event;
           attribute DOMString htmlFor;
};

The event and htmlFor IDL attributes of the script element must return the empty string on getting, and do nothing on setting.


partial interface HTMLTableElement {
           attribute DOMString align;
           attribute DOMString frame;
           attribute DOMString rules;
           attribute DOMString summary;
           attribute DOMString width;

  [TreatNullAs=EmptyString] attribute DOMString bgColor;
  [TreatNullAs=EmptyString] attribute DOMString cellPadding;
  [TreatNullAs=EmptyString] attribute DOMString cellSpacing;
};

The align, border, frame, summary, rules, and width, IDL attributes of the table element must reflect the respective content attributes of the same name.

The bgColor IDL attribute of the table element must reflect the element's bgcolor content attribute.

The cellPadding IDL attribute of the table element must reflect the element's cellpadding content attribute.

The cellSpacing IDL attribute of the table element must reflect the element's cellspacing content attribute.


partial interface HTMLTableSectionElement {
           attribute DOMString align;
           attribute DOMString ch;
           attribute DOMString chOff;
           attribute DOMString vAlign;
};

The align IDL attribute of the tbody, thead, and tfoot elements must reflect the content attribute of the same name.

The ch IDL attribute of the tbody, thead, and tfoot elements must reflect the elements' char content attributes.

The chOff IDL attribute of the tbody, thead, and tfoot elements must reflect the elements' charoff content attributes.

The vAlign IDL attribute of the tbody, thead, and tfoot element must reflect the elements' valign content attributes.


partial interface HTMLTableCellElement {
           attribute DOMString align;
           attribute DOMString axis;
           attribute DOMString height;
           attribute DOMString width;

           attribute DOMString ch;
           attribute DOMString chOff;
           attribute boolean noWrap;
           attribute DOMString vAlign;

  [TreatNullAs=EmptyString] attribute DOMString bgColor;
};

The align, axis, height, and width IDL attributes of the td and th elements must reflect the respective content attributes of the same name.

The ch IDL attribute of the td and th elements must reflect the elements' char content attributes.

The chOff IDL attribute of the td and th elements must reflect the elements' charoff content attributes.

The noWrap IDL attribute of the td and th elements must reflect the elements' nowrap content attributes.

The vAlign IDL attribute of the td and th element must reflect the elements' valign content attributes.

The bgColor IDL attribute of the td and th elements must reflect the elements' bgcolor content attributes.


partial interface HTMLTableDataCellElement {
           attribute DOMString abbr;
};

The abbr IDL attribute of the td element must reflect the respective content attributes of the same name.


partial interface HTMLTableRowElement {
           attribute DOMString align;
           attribute DOMString ch;
           attribute DOMString chOff;
           attribute DOMString vAlign;

  [TreatNullAs=EmptyString] attribute DOMString bgColor;
};

The align IDL attribute of the tr element must reflect the content attribute of the same name.

The ch IDL attribute of the tr element must reflect the element's char content attribute.

The chOff IDL attribute of the tr element must reflect the element's charoff content attribute.

The vAlign IDL attribute of the tr element must reflect the element's valign content attribute.

The bgColor IDL attribute of the tr element must reflect the element's bgcolor content attribute.


partial interface HTMLUListElement {
           attribute boolean compact;
           attribute DOMString type;
};

The compact and type IDL attributes of the ul element must reflect the respective content attributes of the same name.


User agents must treat xmp elements in a manner equivalent to pre elements in terms of semantics and for purposes of rendering. (The parser has special behavior for this element though.)


The blink, bgsound, isindex, multicol, nextid, and spacer elements must use the HTMLUnknownElement interface.


partial interface Document {
  [TreatNullAs=EmptyString] attribute DOMString fgColor;
  [TreatNullAs=EmptyString] attribute DOMString linkColor;
  [TreatNullAs=EmptyString] attribute DOMString vlinkColor;
  [TreatNullAs=EmptyString] attribute DOMString alinkColor;
  [TreatNullAs=EmptyString] attribute DOMString bgColor;

  readonly attribute HTMLCollection anchors;
  readonly attribute HTMLCollection applets;

  void clear();
  void captureEvents();
  void releaseEvents();

  readonly attribute HTMLAllCollection all;
};

The attributes of the Document object listed in the first column of the following table must reflect the content attribute on the body element with the name given in the corresponding cell in the second column on the same row, if the body element is a body element (as opposed to a frameset element). When there is no body element or if it is a frameset element, the attributes must instead return the empty string on getting and do nothing on setting.

IDL attribute Content attribute
fgColor text
linkColor link
vlinkColor vlink
alinkColor alink
bgColor bgcolor

The anchors attribute must return an HTMLCollection rooted at the Document node, whose filter matches only a elements with name attributes.

The applets attribute must return an HTMLCollection rooted at the Document node, whose filter matches only applet elements.

The clear(), captureEvents(), and releaseEvents() methods must do nothing.


The all attribute must return an HTMLAllCollection rooted at the Document node, whose filter matches all elements.

The object returned for all has several unusual behaviors:

These requirements are a willful violation of the JavaScript specification current at the time of writing (ECMAScript edition 5). The JavaScript specification requires that the ToBoolean() operator convert all objects to the true value, and does not have provisions for objects acting as if they were undefined for the purposes of certain operators. This violation is motivated by a desire for compatibility with two classes of legacy content: one that uses the presence of document.all as a way to detect legacy user agents, and one that only supports those legacy user agents and uses the document.all object without testing for its presence first. [ECMA262]


partial interface Window {
  void captureEvents();
  void releaseEvents();
};

The captureEvents() and releaseEvents() methods must do nothing.


The hgroup element does not have strong native semantics or default implicit ARIA semantics. User agents must not implement accessibility layer semantics for the hgroup element that obfuscates or modifies the semantics of its children.

12 IANA considerations

12.1 text/html

This registration is for community review and will be submitted to the IESG for review, approval, and registration with IANA.

Type name:
text
Subtype name:
html
Required parameters:
No required parameters
Optional parameters:
charset

The charset parameter may be provided to definitively specify the document's character encoding, overriding any character encoding declarations in the document. The parameter's value must be one of the labels of the character encoding used to serialise the file. [ENCODING]

Encoding considerations:
8bit (see the section on character encoding declarations)
Security considerations:

Entire novels have been written about the security considerations that apply to HTML documents. Many are listed in this document, to which the reader is referred for more details. Some general concerns bear mentioning here, however:

HTML is scripted language, and has a large number of APIs (some of which are described in this document). Script can expose the user to potential risks of information leakage, credential leakage, cross-site scripting attacks, cross-site request forgeries, and a host of other problems. While the designs in this specification are intended to be safe if implemented correctly, a full implementation is a massive undertaking and, as with any software, user agents are likely to have security bugs.

Even without scripting, there are specific features in HTML which, for historical reasons, are required for broad compatibility with legacy content but that expose the user to unfortunate security problems. In particular, the img element can be used in conjunction with some other features as a way to effect a port scan from the user's location on the Internet. This can expose local network topologies that the attacker would otherwise not be able to determine.

HTML relies on a compartmentalization scheme sometimes known as the same-origin policy. An origin in most cases consists of all the pages served from the same host, on the same port, using the same protocol.

It is critical, therefore, to ensure that any untrusted content that forms part of a site be hosted on a different origin than any sensitive content on that site. Untrusted content can easily spoof any other page on the same origin, read data from that origin, cause scripts in that origin to execute, submit forms to and from that origin even if they are protected from cross-site request forgery attacks by unique tokens, and make use of any third-party resources exposed to or rights granted to that origin.

Interoperability considerations:
Rules for processing both conforming and non-conforming content are defined in this specification.
Published specification:
This document is the relevant specification. Labeling a resource with the text/html type asserts that the resource is an HTML document using the HTML syntax.
Applications that use this media type:
Web browsers, tools for processing Web content, HTML authoring tools, search engines, validators.
Additional information:
Magic number(s):
No sequence of bytes can uniquely identify an HTML document. More information on detecting HTML documents is available in the MIME Sniffing specification. [MIMESNIFF]
File extension(s):
"html" and "htm" are commonly, but certainly not exclusively, used as the extension for HTML documents.
Macintosh file type code(s):
TEXT
Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>
Intended usage:
Common
Restrictions on usage:
No restrictions apply.
Author:
Ian Hickson <ian@hixie.ch>
Change controller:
W3C

Fragment identifiers used with text/html resources either refer to the indicated part of the document or provide state information for in-page scripts.

12.2 multipart/x-mixed-replace

This registration is for community review and will be submitted to the IESG for review, approval, and registration with IANA.

Type name:
multipart
Subtype name:
x-mixed-replace
Required parameters:
Optional parameters:
No optional parameters.
Encoding considerations:
binary
Security considerations:
Subresources of a multipart/x-mixed-replace resource can be of any type, including types with non-trivial security implications such as text/html.
Interoperability considerations:
None.
Published specification:
This specification describes processing rules for Web browsers. Conformance requirements for generating resources with this type are the same as for multipart/mixed. [RFC2046]
Applications that use this media type:
This type is intended to be used in resources generated by Web servers, for consumption by Web browsers.
Additional information:
Magic number(s):
No sequence of bytes can uniquely identify a multipart/x-mixed-replace resource.
File extension(s):
No specific file extensions are recommended for this type.
Macintosh file type code(s):
No specific Macintosh file type codes are recommended for this type.
Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>
Intended usage:
Common
Restrictions on usage:
No restrictions apply.
Author:
Ian Hickson <ian@hixie.ch>
Change controller:
W3C

Fragment identifiers used with multipart/x-mixed-replace resources apply to each body part as defined by the type used by that body part.

12.3 application/xhtml+xml

This registration is for community review and will be submitted to the IESG for review, approval, and registration with IANA.

Type name:
application
Subtype name:
xhtml+xml
Required parameters:
Same as for application/xml [RFC3023]
Optional parameters:
Same as for application/xml [RFC3023]
Encoding considerations:
Same as for application/xml [RFC3023]
Security considerations:
Same as for application/xml [RFC3023]
Interoperability considerations:
Same as for application/xml [RFC3023]
Published specification:
Labeling a resource with the application/xhtml+xml type asserts that the resource is an XML document that likely has a root element from the HTML namespace. Thus, the relevant specifications are the XML specification, the Namespaces in XML specification, and this specification. [XML] [XMLNS]
Applications that use this media type:
Same as for application/xml [RFC3023]
Additional information:
Magic number(s):
Same as for application/xml [RFC3023]
File extension(s):
"xhtml" and "xht" are sometimes used as extensions for XML resources that have a root element from the HTML namespace.
Macintosh file type code(s):
TEXT
Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>
Intended usage:
Common
Restrictions on usage:
No restrictions apply.
Author:
Ian Hickson <ian@hixie.ch>
Change controller:
W3C

Fragment identifiers used with application/xhtml+xml resources have the same semantics as with any XML MIME type. [RFC3023]

12.4 application/x-www-form-urlencoded

This registration is for community review and will be submitted to the IESG for review, approval, and registration with IANA.

Type name:
application
Subtype name:
x-www-form-urlencoded
Required parameters:
No parameters
Optional parameters:
No parameters
Encoding considerations:
7bit (US-ASCII encoding of octets that themselves can be encoding text using any ASCII-compatible character encoding)
Security considerations:

In isolation, an application/x-www-form-urlencoded payload poses no security risks. However, as this type is usually used as part of a form submission, all the risks that apply to HTML forms need to be considered in the context of this type.

Interoperability considerations:
Rules for generating and processing application/x-www-form-urlencoded payloads are defined in this specification.
Published specification:
This document is the relevant specification. Algorithms for encoding and decoding are defined.
Applications that use this media type:
Web browsers and servers.
Additional information:
Magic number(s):
There is no reliable mechanism for recognising application/x-www-form-urlencoded payloads.
File extension(s):
Not applicable.
Macintosh file type code(s):
Not applicable.
Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>
Intended usage:
Common
Restrictions on usage:
This type is only intended to be used to describe HTML form submission payloads.
Author:
Ian Hickson <ian@hixie.ch>
Change controller:
W3C

Fragment identifiers have no meaning with the application/x-www-form-urlencoded type.

12.5 text/cache-manifest

This registration is for community review and will be submitted to the IESG for review, approval, and registration with IANA.

Type name:
text
Subtype name:
cache-manifest
Required parameters:
No parameters
Optional parameters:
charset

The charset parameter may be provided. The parameter's value must be "utf-8". This parameter serves no purpose; it is only allowed for compatibility with legacy servers.

Encoding considerations:
8bit (always UTF-8)
Security considerations:

Cache manifests themselves pose no immediate risk unless sensitive information is included within the manifest. Implementations, however, are required to follow specific rules when populating a cache based on a cache manifest, to ensure that certain origin-based restrictions are honored. Failure to correctly implement these rules can result in information leakage, cross-site scripting attacks, and the like.

Interoperability considerations:
Rules for processing both conforming and non-conforming content are defined in this specification.
Published specification:
This document is the relevant specification.
Applications that use this media type:
Web browsers.
Additional information:
Magic number(s):
Cache manifests begin with the string "CACHE MANIFEST", followed by either a U+0020 SPACE character, a "tab" (U+0009) character, a "LF" (U+000A) character, or a "CR" (U+000D) character.
File extension(s):
"appcache"
Macintosh file type code(s):
No specific Macintosh file type codes are recommended for this type.
Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>
Intended usage:
Common
Restrictions on usage:
No restrictions apply.
Author:
Ian Hickson <ian@hixie.ch>
Change controller:
W3C

Fragment identifiers have no meaning with text/cache-manifest resources.

12.6 web+ scheme prefix

This section describes a convention for use with the IANA URI scheme registry. It does not itself register a specific scheme. [RFC4395]

URI scheme name:
Schemes starting with the four characters "web+" followed by one or more letters in the range a-z.
Status:
permanent
URI scheme syntax:
Scheme-specific.
URI scheme semantics:
Scheme-specific.
Encoding considerations:
All "web+" schemes should use UTF-8 encodings where relevant.
Applications/protocols that use this URI scheme name:
Scheme-specific.
Interoperability considerations:
The scheme is expected to be used in the context of Web applications.
Security considerations:
Any Web page is able to register a handler for all "web+" schemes. As such, these schemes must not be used for features intended to be core platform features (e.g. network transfer protocols like HTTP or FTP). Similarly, such schemes must not store confidential information in their URLs, such as usernames, passwords, personal information, or confidential project names.
Contact:
Ian Hickson <ian@hixie.ch>
Author/Change controller:
Ian Hickson <ian@hixie.ch>
References:
Custom scheme and content handlers, HTML Living Standard: http://www.whatwg.org/specs/web-apps/current-work/#custom-handlers

Index

The following sections only cover conforming elements and features.

Elements

This section is non-normative.

List of elements
Element Description Categories Parents† Children Attributes Interface
a Hyperlink flow; phrasing*; interactive phrasing transparent* globals; href; target; download; rel; hreflang; type HTMLAnchorElement
abbr Abbreviation flow; phrasing phrasing phrasing globals HTMLElement
address Contact information for a page or article element flow flow flow* globals HTMLElement
area Hyperlink or dead area on an image map flow; phrasing phrasing* empty globals; alt; coords; shape; href; target; download; rel; hreflang; type HTMLAreaElement
article Self-contained syndicatable or reusable composition flow; sectioning flow flow globals HTMLElement
aside Sidebar for tangentially related content flow; sectioning flow flow globals HTMLElement
audio Audio player flow; phrasing; embedded; interactive phrasing source*; transparent* globals; src; crossorigin; preload; autoplay; mediagroup; loop; muted; controls HTMLAudioElement
b Keywords flow; phrasing phrasing phrasing globals HTMLElement
base Base URL and default target browsing context for hyperlinks and forms metadata head; template empty globals; href; target HTMLBaseElement
bdi Text directionality isolation flow; phrasing phrasing phrasing globals HTMLElement
bdo Text directionality formatting flow; phrasing phrasing phrasing globals HTMLElement
blockquote A section quoted from another source flow; sectioning root flow flow globals; cite HTMLQuoteElement
body Document body sectioning root html flow globals; onafterprint; onbeforeprint; onbeforeunload; onhashchange; onlanguagechange; onmessage; onoffline; ononline; onpagehide; onpageshow; onpopstate; onstorage; onunload HTMLBodyElement
br Line break, e.g. in poem or postal address flow; phrasing phrasing empty globals HTMLBRElement
button Button control flow; phrasing; interactive; listed; labelable; submittable; reassociateable; form-associated phrasing phrasing* globals; autofocus; disabled; form; formaction; formenctype; formmethod; formnovalidate; formtarget; menu; name; type; value HTMLButtonElement
canvas Scriptable bitmap canvas flow; phrasing; embedded phrasing transparent globals; width; height HTMLCanvasElement
caption Table caption none table; template flow* globals HTMLTableCaptionElement
cite Title of a work flow; phrasing phrasing phrasing globals HTMLElement
code Computer code flow; phrasing phrasing phrasing globals HTMLElement
col Table column none colgroup; template empty globals; span HTMLTableColElement
colgroup Group of columns in a table none table; template col*; template* globals; span HTMLTableColElement
data Machine-readable equivalent flow; phrasing phrasing phrasing globals; value HTMLDataElement
datalist Container for options for combo box control flow; phrasing phrasing phrasing; option globals HTMLDataListElement
dd Content for corresponding dt element(s) none dl; template flow globals HTMLElement
del A removal from the document flow; phrasing* phrasing transparent globals; cite; datetime HTMLModElement
details Disclosure control for hiding details flow; sectioning root; interactive flow summary*; flow globals; open HTMLDetailsElement
dfn Defining instance flow; phrasing phrasing phrasing* globals HTMLElement
dialog Dialog box or window flow; sectioning root flow flow globals; open HTMLDialogElement
div Generic flow container flow flow flow globals HTMLDivElement
dl Association list consisting of zero or more name-value groups flow flow dt*; dd*; script-supporting elements globals HTMLDListElement
dt Legend for corresponding dd element(s) none dl; template flow* globals HTMLElement
em Stress emphasis flow; phrasing phrasing phrasing globals HTMLElement
embed Plugin flow; phrasing; embedded; interactive phrasing empty globals; src; type; width; height; any* HTMLEmbedElement
fieldset Group of form controls flow; sectioning root; listed; reassociateable; form-associated flow legend*; flow globals; disabled; form; name HTMLFieldSetElement
figcaption Caption for figure none figure; template flow globals HTMLElement
figure Figure with optional caption flow; sectioning root flow figcaption*; flow globals HTMLElement
footer Footer for a page or section flow flow flow* globals HTMLElement
form User-submittable form flow flow flow* globals; accept-charset; action; autocomplete; enctype; method; name; novalidate; target HTMLFormElement
h1, h2, h3, h4, h5, h6 Section heading flow; heading flow phrasing globals HTMLHeadingElement
head Container for document metadata none html metadata content* globals HTMLHeadElement
header Introductory or navigational aids for a page or section flow flow flow* globals HTMLElement
hr Thematic break flow flow empty globals HTMLHRElement
html Root element none none* head*; body* globals; manifest HTMLHtmlElement
i Alternate voice flow; phrasing phrasing phrasing globals HTMLElement
iframe Nested browsing context flow; phrasing; embedded; interactive phrasing text* globals; src; srcdoc; name; sandbox; seamless; allowfullscreen; width; height HTMLIFrameElement
img Image flow; phrasing; embedded; interactive*; form-associated phrasing empty globals; alt; src; crossorigin; usemap; ismap; width; height HTMLImageElement
input Form control flow; phrasing; interactive*; listed; labelable; submittable; resettable; reassociateable; form-associated phrasing empty globals; accept; alt; autocomplete; autofocus; checked; dirname; disabled; form; formaction; formenctype; formmethod; formnovalidate; formtarget; height; inputmode; list; max; maxlength; min; minlength; multiple; name; pattern; placeholder; readonly; required; size; src; step; type; value; width HTMLInputElement
ins An addition to the document flow; phrasing* phrasing transparent globals; cite; datetime HTMLModElement
kbd User input flow; phrasing phrasing phrasing globals HTMLElement
keygen Cryptographic key-pair generator form control flow; phrasing; interactive; listed; labelable; submittable; resettable; reassociateable; form-associated phrasing empty globals; autofocus; challenge; disabled; form; keytype; name HTMLKeygenElement
label Caption for a form control flow; phrasing; interactive; reassociateable; form-associated phrasing phrasing* globals; form; for HTMLLabelElement
legend Caption for fieldset none fieldset; template phrasing globals HTMLLegendElement
li List item none ol; ul; menu*; template flow globals; value* HTMLLIElement
link Link metadata metadata; flow*; phrasing* head; template; noscript*; phrasing* empty globals; href; crossorigin; rel; media; hreflang; type; sizes HTMLLinkElement
main Main content of a document flow flow flow* globals HTMLElement
map Image map flow; phrasing* phrasing transparent; area* globals; name HTMLMapElement
mark Highlight flow; phrasing phrasing phrasing globals HTMLElement
menu Menu of commands flow flow; menu* li*; flow*; menuitem*; hr*; menu*; script-supporting elements* globals; type; label HTMLMenuElement
menuitem Menu command none menu; template empty globals; type; label; icon; disabled; checked; radiogroup; default; command HTMLMenuItemElement
meta Text metadata metadata; flow*; phrasing* head; template; noscript*; phrasing* empty globals; name; http-equiv; content; charset HTMLMetaElement
meter Gauge flow; phrasing; labelable phrasing phrasing* globals; value; min; max; low; high; optimum HTMLMeterElement
nav Section with navigational links flow; sectioning flow flow globals HTMLElement
noscript Fallback content for script metadata; flow; phrasing head*; template*; phrasing* varies* globals HTMLElement
object Image, nested browsing context, or plugin flow; phrasing; embedded; interactive*; listed; submittable; reassociateable; form-associated phrasing param*; transparent globals; data; type; typemustmatch; name; usemap; form; width; height HTMLObjectElement
ol Ordered list flow flow li; script-supporting elements globals; reversed; start; type HTMLOListElement
optgroup Group of options in a list box none select; template option; script-supporting elements globals; disabled; label HTMLOptGroupElement
option Option in a list box or combo box control none select; datalist; optgroup; template text* globals; disabled; label; selected; value HTMLOptionElement
output Calculated output value flow; phrasing; listed; labelable; resettable; reassociateable; form-associated phrasing phrasing globals; for; form; name HTMLOutputElement
p Paragraph flow flow phrasing globals HTMLParagraphElement
param Parameter for object none object; template empty globals; name; value HTMLParamElement
pre Block of preformatted text flow flow phrasing globals HTMLPreElement
progress Progress bar flow; phrasing; labelable phrasing phrasing* globals; value; max HTMLProgressElement
q Quotation flow; phrasing phrasing phrasing globals; cite HTMLQuoteElement
rb Ruby base none ruby; template phrasing globals HTMLElement
rp Parenthesis for ruby annotation text none ruby; template phrasing globals HTMLElement
rt Ruby annotation text none ruby; rtc; template phrasing globals HTMLElement
rtc Ruby annotation text container none ruby; template phrasing globals HTMLElement
ruby Ruby annotation(s) flow; phrasing phrasing phrasing; rp; rt; rb; rtc* globals HTMLElement
s Inaccurate text flow; phrasing phrasing phrasing globals HTMLElement
samp Computer output flow; phrasing phrasing phrasing globals HTMLElement
script Embedded script metadata; flow; phrasing; script-supporting head; phrasing; script-supporting script, data, or script documentation* globals; src; type; charset; async; defer; crossorigin HTMLScriptElement
section Generic document or application section flow; sectioning flow flow globals HTMLElement
select List box control flow; phrasing; interactive; listed; labelable; submittable; resettable; reassociateable; form-associated phrasing option; optgroup; script-supporting elements globals; autocomplete; autofocus; disabled; form; multiple; name; required; size HTMLSelectElement
small Side comment flow; phrasing phrasing phrasing globals HTMLElement
source Media source for video or audio none video; audio; template empty globals; src; type HTMLSourceElement
span Generic phrasing container flow; phrasing phrasing phrasing globals HTMLSpanElement
strong Importance flow; phrasing phrasing phrasing globals HTMLElement
style Embedded styling information metadata; flow* head; noscript*; flow* varies* globals; media; type; scoped HTMLStyleElement
sub Subscript flow; phrasing phrasing phrasing globals HTMLElement
summary Caption for details none details phrasing globals HTMLElement
sup Superscript flow; phrasing phrasing phrasing globals HTMLElement
table Table flow flow caption*; colgroup*; thead*; tbody*; tfoot*; tr*; script-supporting elements globals; border sortable HTMLTableElement
tbody Group of rows in a table none table; template tr; script-supporting elements globals HTMLTableSectionElement
td Table cell sectioning root tr; template flow globals; colspan; rowspan; headers HTMLTableDataCellElement
template Template metadata; flow; phrasing; script-supporting metadata; phrasing; script-supporting; colgroup* it's complicated* globals HTMLTemplateElement
textarea Multiline text field flow; phrasing; interactive; listed; labelable; submittable; resettable; reassociateable; form-associated phrasing text globals; autofocus; cols; dirname; disabled; form; inputmode; maxlength; minlength; name; placeholder; readonly; required; rows; wrap HTMLTextAreaElement
tfoot Group of footer rows in a table none table; template tr; script-supporting elements globals HTMLTableSectionElement
th Table header cell interactive* tr; template flow* globals; colspan; rowspan; headers; scope; sorted; abbr HTMLTableHeaderCellElement
thead Group of heading rows in a table none table; template tr; script-supporting elements globals HTMLTableSectionElement
time Machine-readable equivalent of date- or time-related data flow; phrasing phrasing phrasing globals; datetime HTMLTimeElement
title Document title metadata head; template text* globals HTMLTitleElement
tr Table row none table; thead; tbody; tfoot; template th*; td; script-supporting elements globals HTMLTableRowElement
track Timed text track none audio; video; template empty globals; default; kind; label; src; srclang HTMLTrackElement
u Keywords flow; phrasing phrasing phrasing globals HTMLElement
ul List flow flow li; script-supporting elements globals HTMLUListElement
var Variable flow; phrasing phrasing phrasing globals HTMLElement
video Video player flow; phrasing; embedded; interactive phrasing source*; transparent* globals; src; crossorigin; poster; preload; autoplay; mediagroup; loop; muted; controls; width; height HTMLVideoElement
wbr Line breaking opportunity flow; phrasing phrasing empty globals HTMLElement

An asterisk (*) in a cell indicates that the actual rules are more complicated than indicated in the table above.

† Categories in the "Parents" column refer to parents that list the given categories in their content model, not to elements that themselves are in those categories. For example, the a element's "Parents" column says "phrasing", so any element whose content model contains the "phrasing" category could be a parent of an a element. Since the "flow" category includes all the "phrasing" elements, that means the th element could be a parent to an a element.

Element content categories

This section is non-normative.

List of element content categories
Category Elements Elements with exceptions
Metadata content base; link; meta; noscript; script; style; template; title
Flow content a; abbr; address; article; aside; audio; b; bdi; bdo; blockquote; br; button; canvas; cite; code; data; datalist; del; details; dfn; dialog; div; dl; em; embed; fieldset; figure; footer; form; h1; h2; h3; h4; h5; h6; header; hr; i; iframe; img; input; ins; kbd; keygen; label; main; map; mark; math; menu; meter; nav; noscript; object; ol; output; p; pre; progress; q; ruby; s; samp; script; section; select; small; span; strong; sub; sup; svg; table; template; textarea; time; u; ul; var; video; wbr; Text area (if it is a descendant of a map element); link (if the itemprop attribute is present); meta (if the itemprop attribute is present); style (if the scoped attribute is present)
Sectioning content article; aside; nav; section
Heading content h1; h2; h3; h4; h5; h6;
Phrasing content a; abbr; audio; b; bdi; bdo; br; button; canvas; cite; code; data; datalist; del; dfn; em; embed; i; iframe; img; input; ins; kbd; keygen; label; map; mark; math; meter; noscript; object; output; progress; q; ruby; s; samp; script; select; small; span; strong; sub; sup; svg; template; textarea; time; u; var; video; wbr; Text area (if it is a descendant of a map element); link (if the itemprop attribute is present); meta (if the itemprop attribute is present)
Embedded content audio; canvas; embed; iframe; img; math; object; svg; video
Interactive content* a; button; details; embed; iframe; keygen; label; select; textarea audio (if the controls attribute is present); img (if the usemap attribute is present); input (if the type attribute is not in the Hidden state); object (if the usemap attribute is present); th (for sorting interface th elements) video (if the controls attribute is present)
Sectioning roots blockquote; body; details; dialog; fieldset; figure; td
Form-associated elements button; fieldset; input; keygen; label; object; output; select; textarea; img
Listed elements button; fieldset; input; keygen; object; output; select; textarea
Submittable elements button; input; keygen; object; select; textarea
Resettable elements input; keygen; output; select; textarea
Labelable elements button; input; keygen; meter; output; progress; select; textarea
Reassociateable elements button; fieldset; input; keygen; label; object; output; select; textarea
Palpable content a; abbr; address; article; aside; b; bdi; bdo; blockquote; button; canvas; cite; code; data; details; dfn; div; em; embed; fieldset; figure; footer; form; h1; h2; h3; h4; h5; h6; header; i; iframe; img; ins; kbd; keygen; label; main; map; mark; math; meter; nav; object; output; p; pre; progress; q; ruby; s; samp; section; select; small; span; strong; sub; sup; svg; table; textarea; time; u; var; video audio (if the controls attribute is present); dl (if the element's children include at least one name-value group); input (if the type attribute is not in the Hidden state); menu (if the type attribute is in the toolbar state); ol (if the element's children include at least one li element); ul (if the element's children include at least one li element); Text that is not inter-element whitespace
Script-supporting elements script; template

* The tabindex attribute can also make any element into interactive content.

Attributes

This section is non-normative.

List of attributes (excluding event handler content attributes)
Attribute Element(s) Description Value
abbr th Alternative label to use for the header cell when referencing the cell in other contexts Text*
accept input Hint for expected file type in file upload controls Set of comma-separated tokens* consisting of valid MIME types with no parameters or audio/*, video/*, or image/*
accept-charset form Character encodings to use for form submission Ordered set of unique space-separated tokens, ASCII case-insensitive, consisting of labels of ASCII-compatible character encodings*
accesskey HTML elements Keyboard shortcut to activate or focus element Ordered set of unique space-separated tokens, case-sensitive, consisting of one Unicode code point in length
action form URL to use for form submission Valid non-empty URL potentially surrounded by spaces
allowfullscreen iframe Whether to allow the iframe's contents to use requestFullscreen() Boolean attribute
alt area; img; input Replacement text for use when images are not available Text*
async script Execute script asynchronously Boolean attribute
autocomplete form Default setting for autofill feature for controls in the form "on"; "off"
autocomplete input; select; textarea Hint for form autofill feature Autofill field name and related tokens*
autofocus button; input; keygen; select; textarea Automatically focus the form control when the page is loaded Boolean attribute
autoplay audio; video Hint that the media resource can be started automatically when the page is loaded Boolean attribute
border table Explicit indication that the table element is not being used for layout purposes The empty string, or "1"
challenge keygen String to package with the generated and signed public key Text
charset meta Character encoding declaration Encoding label*
charset script Character encoding of the external script resource Encoding label*
checked menuitem; input Whether the command or control is checked Boolean attribute
cite blockquote; del; ins; q Link to the source of the quotation or more information about the edit Valid URL potentially surrounded by spaces
class HTML elements Classes to which the element belongs Set of space-separated tokens
cols textarea Maximum number of characters per line Valid non-negative integer greater than zero
colspan td; th Number of columns that the cell is to span Valid non-negative integer greater than zero
command menuitem Command definition ID*
content meta Value of the element Text*
contenteditable HTML elements Whether the element is editable "true"; "false"
contextmenu HTML elements The element's context menu ID*
controls audio; video Show user agent controls Boolean attribute
coords area Coordinates for the shape to be created in an image map Valid list of integers*
crossorigin audio; img; link; script; video How the element handles crossorigin requests "anonymous"; "use-credentials"
data object Address of the resource Valid non-empty URL potentially surrounded by spaces
datetime del; ins Date and (optionally) time of the change Valid date string with optional time
datetime time Machine-readable value Valid month string, valid date string, valid yearless date string, valid time string, valid floating date and time string, valid time-zone offset string, valid global date and time string, valid week string, valid non-negative integer, or valid duration string
default menuitem Mark the command as being a default command Boolean attribute
default track Enable the track if no other text track is more suitable Boolean attribute
defer script Defer script execution Boolean attribute
dir HTML elements The text directionality of the element "ltr"; "rtl"; "auto"
dir bdo The text directionality of the element "ltr"; "rtl"
dirname input; textarea Name of form field to use for sending the element's directionality in form submission Text*
disabled button; menuitem; fieldset; input; keygen; optgroup; option; select; textarea Whether the form control is disabled Boolean attribute
download a; area Whether to download the resource instead of navigating to it, and its file name if so Text
draggable HTML elements Whether the element is draggable "true"; "false"
dropzone HTML elements Accepted item types for drag-and-drop Unordered set of unique space-separated tokens, ASCII case-insensitive, consisting of accepted types and drag feedback*
enctype form Form data set encoding type to use for form submission "application/x-www-form-urlencoded"; "multipart/form-data"; "text/plain"
for label Associate the label with form control ID*
for output Specifies controls from which the output was calculated Unordered set of unique space-separated tokens, case-sensitive, consisting of IDs*
form button; fieldset; input; keygen; label; object; output; select; textarea Associates the control with a form element ID*
formaction button; input URL to use for form submission Valid non-empty URL potentially surrounded by spaces
formenctype button; input Form data set encoding type to use for form submission "application/x-www-form-urlencoded"; "multipart/form-data"; "text/plain"
formmethod button; input HTTP method to use for form submission "GET"; "POST"
formnovalidate button; input Bypass form control validation for form submission Boolean attribute
formtarget button; input Browsing context for form submission Valid browsing context name or keyword
headers td; th The header cells for this cell Unordered set of unique space-separated tokens, case-sensitive, consisting of IDs*
height canvas; embed; iframe; img; input; object; video Vertical dimension Valid non-negative integer
hidden HTML elements Whether the element is relevant Boolean attribute
high meter Low limit of high range Valid floating-point number*
href a; area Address of the hyperlink Valid URL potentially surrounded by spaces
href link Address of the hyperlink Valid non-empty URL potentially surrounded by spaces
href base Document base URL Valid URL potentially surrounded by spaces
hreflang a; area; link Language of the linked resource Valid BCP 47 language tag
http-equiv meta Pragma directive Text*
icon menuitem Icon for the command Valid non-empty URL potentially surrounded by spaces
id HTML elements The element's ID Text*
inputmode input; textarea Hint for selecting an input modality "verbatim"; "latin"; "latin-name"; "latin-prose"; "full-width-latin"; "kana"; "kana-name"; "katakana"; "numeric"; "tel"; "email"; "url"
ismap img Whether the image is a server-side image map Boolean attribute
itemid HTML elements Global identifier for a microdata item Valid URL potentially surrounded by spaces
itemprop HTML elements Property names of a microdata item Unordered set of unique space-separated tokens, case-sensitive, consisting of valid absolute URLs, defined property names, or text*
itemref HTML elements Referenced elements Unordered set of unique space-separated tokens, case-sensitive, consisting of IDs*
itemscope HTML elements Introduces a microdata item Boolean attribute
itemtype HTML elements Item types of a microdata item Unordered set of unique space-separated tokens, case-sensitive, consisting of valid absolute URL*
keytype keygen The type of cryptographic key to generate Text*
kind track The type of text track "subtitles"; "captions"; "descriptions"; "chapters"; "metadata"
label menuitem; menu; optgroup; option; track User-visible label Text
lang HTML elements Language of the element Valid BCP 47 language tag or the empty string
list input List of autocomplete options ID*
loop audio; video Whether to loop the media resource Boolean attribute
low meter High limit of low range Valid floating-point number*
manifest html Application cache manifest Valid non-empty URL potentially surrounded by spaces
max input Maximum value Varies*
max meter; progress Upper bound of range Valid floating-point number*
maxlength input; textarea Maximum length of value Valid non-negative integer
media link; style Applicable media Valid media query
mediagroup audio; video Groups media elements together with an implicit MediaController Text
menu button Specifies the element's designated pop-up menu ID*
method form HTTP method to use for form submission "GET"; "POST"; "dialog"
min input Minimum value Varies*
min meter Lower bound of range Valid floating-point number*
minlength input; textarea Minimum length of value Valid non-negative integer
multiple input; select Whether to allow multiple values Boolean attribute
muted audio; video Whether to mute the media resource by default Boolean attribute
name button; fieldset; input; keygen; output; select; textarea Name of form control to use for form submission and in the form.elements API Text*
name form Name of form to use in the document.forms API Text*
name iframe; object Name of nested browsing context Valid browsing context name or keyword
name map Name of image map to reference from the usemap attribute Text*
name meta Metadata name Text*
name param Name of parameter Text
novalidate form Bypass form control validation for form submission Boolean attribute
open details Whether the details are visible Boolean attribute
open dialog Whether the dialog box is showing Boolean attribute
optimum meter Optimum value in gauge Valid floating-point number*
pattern input Pattern to be matched by the form control's value Regular expression matching the JavaScript Pattern production
placeholder input; textarea User-visible label to be placed within the form control Text*
poster video Poster frame to show prior to video playback Valid non-empty URL potentially surrounded by spaces
preload audio; video Hints how much buffering the media resource will likely need "none"; "metadata"; "auto"
radiogroup menuitem Name of group of commands to treat as a radio button group Text
readonly input; textarea Whether to allow the value to be edited by the user Boolean attribute
rel a; area; link Relationship between the document containing the hyperlink and the destination resource Set of space-separated tokens*
required input; select; textarea Whether the control is required for form submission Boolean attribute
reversed ol Number the list backwards Boolean attribute
rows textarea Number of lines to show Valid non-negative integer greater than zero
rowspan td; th Number of rows that the cell is to span Valid non-negative integer
sandbox iframe Security rules for nested content Unordered set of unique space-separated tokens, ASCII case-insensitive, consisting of "allow-forms", "allow-pointer-lock", "allow-popups", "allow-same-origin", "allow-scripts and "allow-top-navigation"
spellcheck HTML elements Whether the element is to have its spelling and grammar checked "true"; "false"
scope th Specifies which cells the header cell applies to "row"; "col"; "rowgroup"; "colgroup"
scoped style Whether the styles apply to the entire document or just the parent subtree Boolean attribute
seamless iframe Whether to apply the document's styles to the nested content Boolean attribute
selected option Whether the option is selected by default Boolean attribute
shape area The kind of shape to be created in an image map "circle"; "default"; "poly"; "rect"
size input; select Size of the control Valid non-negative integer greater than zero
sizes link Sizes of the icons (for rel="icon") Unordered set of unique space-separated tokens, ASCII case-insensitive, consisting of sizes*
sortable table Enables a sorting interface for the table Boolean attribute
sorted th Column sort direction and ordinality Set of space-separated tokens, ASCII case-insensitive, consisting of neither, one, or both of "reversed" and a valid non-negative integer greater than zero
span col; colgroup Number of columns spanned by the element Valid non-negative integer greater than zero
src audio; embed; iframe; img; input; script; source; track; video Address of the resource Valid non-empty URL potentially surrounded by spaces
srcdoc iframe A document to render in the iframe The source of an iframe srcdoc document*
srclang track Language of the text track Valid BCP 47 language tag
start ol Ordinal value of the first item Valid integer
step input Granularity to be matched by the form control's value Valid floating-point number greater than zero, or "any"
style HTML elements Presentational and formatting instructions CSS declarations*
tabindex HTML elements Whether the element is focusable, and the relative order of the element for the purposes of sequential focus navigation Valid integer
target a; area Browsing context for hyperlink navigation Valid browsing context name or keyword
target base Default browsing context for hyperlink navigation and form submission Valid browsing context name or keyword
target form Browsing context for form submission Valid browsing context name or keyword
title HTML elements Advisory information for the element Text
title abbr; dfn Full term or expansion of abbreviation Text
title input Description of pattern (when used with pattern attribute) Text
title menuitem Hint describing the command Text
title link Title of the link Text
title link; style Alternative style sheet set name Text
translate HTML elements Whether the element is to be translated when the page is localized "yes"; "no"
type a; area; link Hint for the type of the referenced resource Valid MIME type
type button Type of button "submit"; "reset"; "button"; "menu"
type embed; object; script; source; style Type of embedded resource Valid MIME type
type input Type of form control input type keyword
type menu Type of menu "popup"; "toolbar"
type menuitem Type of command "command"; "checkbox"; "radio"
type ol Kind of list marker "1"; "a"; "A"; "i"; "I"
typemustmatch object Whether the type attribute and the Content-Type value need to match for the resource to be used Boolean attribute
usemap img; object Name of image map to use Valid hash-name reference*
value button; option Value to be used for form submission Text
value data Machine-readable value Text*
value input Value of the form control Varies*
value li Ordinal value of the list item Valid integer
value meter; progress Current value of the element Valid floating-point number
value param Value of parameter Text
width canvas; embed; iframe; img; input; object; video Horizontal dimension Valid non-negative integer
wrap textarea How the value of the form control is to be wrapped for form submission "soft"; "hard"

An asterisk (*) in a cell indicates that the actual rules are more complicated than indicated in the table above.


List of event handler content attributes
Attribute Element(s) Description Value
onabort HTML elements abort event handler Event handler content attribute
onautocomplete HTML elements autocomplete event handler Event handler content attribute
onautocompleteerror HTML elements autocompleteerror event handler Event handler content attribute
onafterprint body afterprint event handler for Window object Event handler content attribute
onbeforeprint body beforeprint event handler for Window object Event handler content attribute
onbeforeunload body beforeunload event handler for Window object Event handler content attribute
onblur HTML elements blur event handler Event handler content attribute
oncancel HTML elements cancel event handler Event handler content attribute
oncanplay HTML elements canplay event handler Event handler content attribute
oncanplaythrough HTML elements canplaythrough event handler Event handler content attribute
onchange HTML elements change event handler Event handler content attribute
onclick HTML elements click event handler Event handler content attribute
onclose HTML elements close event handler Event handler content attribute
oncontextmenu HTML elements contextmenu event handler Event handler content attribute
oncuechange HTML elements cuechange event handler Event handler content attribute
ondblclick HTML elements dblclick event handler Event handler content attribute
ondrag HTML elements drag event handler Event handler content attribute
ondragend HTML elements dragend event handler Event handler content attribute
ondragenter HTML elements dragenter event handler Event handler content attribute
ondragexit HTML elements dragexit event handler Event handler content attribute
ondragleave HTML elements dragleave event handler Event handler content attribute
ondragover HTML elements dragover event handler Event handler content attribute
ondragstart HTML elements dragstart event handler Event handler content attribute
ondrop HTML elements drop event handler Event handler content attribute
ondurationchange HTML elements durationchange event handler Event handler content attribute
onemptied HTML elements emptied event handler Event handler content attribute
onended HTML elements ended event handler Event handler content attribute
onerror HTML elements error event handler Event handler content attribute
onfocus HTML elements focus event handler Event handler content attribute
onhashchange body hashchange event handler for Window object Event handler content attribute
oninput HTML elements input event handler Event handler content attribute
oninvalid HTML elements invalid event handler Event handler content attribute
onkeydown HTML elements keydown event handler Event handler content attribute
onkeypress HTML elements keypress event handler Event handler content attribute
onkeyup HTML elements keyup event handler Event handler content attribute
onlanguagechange body languagechange event handler for Window object Event handler content attribute
onload HTML elements load event handler Event handler content attribute
onloadeddata HTML elements loadeddata event handler Event handler content attribute
onloadedmetadata HTML elements loadedmetadata event handler Event handler content attribute
onloadstart HTML elements loadstart event handler Event handler content attribute
onmessage body message event handler for Window object Event handler content attribute
onmousedown HTML elements mousedown event handler Event handler content attribute
onmouseenter HTML elements mouseenter event handler Event handler content attribute
onmouseleave HTML elements mouseleave event handler Event handler content attribute
onmousemove HTML elements mousemove event handler Event handler content attribute
onmouseout HTML elements mouseout event handler Event handler content attribute
onmouseover HTML elements mouseover event handler Event handler content attribute
onmouseup HTML elements mouseup event handler Event handler content attribute
onmousewheel HTML elements mousewheel event handler Event handler content attribute
onoffline body offline event handler for Window object Event handler content attribute
ononline body online event handler for Window object Event handler content attribute
onpagehide body pagehide event handler for Window object Event handler content attribute
onpageshow body pageshow event handler for Window object Event handler content attribute
onpause HTML elements pause event handler Event handler content attribute
onplay HTML elements play event handler Event handler content attribute
onplaying HTML elements playing event handler Event handler content attribute
onpopstate body popstate event handler for Window object Event handler content attribute
onprogress HTML elements progress event handler Event handler content attribute
onratechange HTML elements ratechange event handler Event handler content attribute
onreset HTML elements reset event handler Event handler content attribute
onresize HTML elements resize event handler Event handler content attribute
onscroll HTML elements scroll event handler Event handler content attribute
onseeked HTML elements seeked event handler Event handler content attribute
onseeking HTML elements seeking event handler Event handler content attribute
onselect HTML elements select event handler Event handler content attribute
onshow HTML elements show event handler Event handler content attribute
onsort HTML elements sort event handler Event handler content attribute
onstalled HTML elements stalled event handler Event handler content attribute
onstorage body storage event handler for Window object Event handler content attribute
onsubmit HTML elements submit event handler Event handler content attribute
onsuspend HTML elements suspend event handler Event handler content attribute
ontimeupdate HTML elements timeupdate event handler Event handler content attribute
ontoggle HTML elements toggle event handler Event handler content attribute
onunload body unload event handler for Window object Event handler content attribute
onvolumechange HTML elements volumechange event handler Event handler content attribute
onwaiting HTML elements waiting event handler Event handler content attribute

Element Interfaces

This section is non-normative.

List of interfaces for elements
Element(s) Interface(s)
a HTMLAnchorElement : HTMLElement
abbr HTMLElement
address HTMLElement
area HTMLAreaElement : HTMLElement
article HTMLElement
aside HTMLElement
audio HTMLAudioElement : HTMLMediaElement : HTMLElement
b HTMLElement
base HTMLBaseElement : HTMLElement
bdi HTMLElement
bdo HTMLElement
blockquote HTMLQuoteElement : HTMLElement
body HTMLBodyElement : HTMLElement
br HTMLBRElement : HTMLElement
button HTMLButtonElement : HTMLElement
canvas HTMLCanvasElement : HTMLElement
caption HTMLTableCaptionElement : HTMLElement
cite HTMLElement
code HTMLElement
col HTMLTableColElement : HTMLElement
colgroup HTMLTableColElement : HTMLElement
menuitem HTMLMenuItemElement : HTMLElement
data HTMLDataElement : HTMLElement
datalist HTMLDataListElement : HTMLElement
dd HTMLElement
del HTMLModElement : HTMLElement
details HTMLDetailsElement : HTMLElement
dfn HTMLElement
dialog HTMLDialogElement : HTMLElement
div HTMLDivElement : HTMLElement
dl HTMLDListElement : HTMLElement
dt HTMLElement
em HTMLElement
embed HTMLEmbedElement : HTMLElement
fieldset HTMLFieldSetElement : HTMLElement
figcaption HTMLElement
figure HTMLElement
footer HTMLElement
form HTMLFormElement : HTMLElement
h1 HTMLHeadingElement : HTMLElement
h2 HTMLHeadingElement : HTMLElement
h3 HTMLHeadingElement : HTMLElement
h4 HTMLHeadingElement : HTMLElement
h5 HTMLHeadingElement : HTMLElement
h6 HTMLHeadingElement : HTMLElement
head HTMLHeadElement : HTMLElement
header HTMLElement
hr HTMLHRElement : HTMLElement
html HTMLHtmlElement : HTMLElement
i HTMLElement
iframe HTMLIFrameElement : HTMLElement
img HTMLImageElement : HTMLElement
input HTMLInputElement : HTMLElement
ins HTMLModElement : HTMLElement
kbd HTMLElement
keygen HTMLKeygenElement : HTMLElement
label HTMLLabelElement : HTMLElement
legend HTMLLegendElement : HTMLElement
li HTMLLIElement : HTMLElement
link HTMLLinkElement : HTMLElement
main HTMLElement
map HTMLMapElement : HTMLElement
mark HTMLElement
menu HTMLMenuElement : HTMLElement
meta HTMLMetaElement : HTMLElement
meter HTMLMeterElement : HTMLElement
nav HTMLElement
noscript HTMLElement
object HTMLObjectElement : HTMLElement
ol HTMLOListElement : HTMLElement
optgroup HTMLOptGroupElement : HTMLElement
option HTMLOptionElement : HTMLElement
output HTMLOutputElement : HTMLElement
p HTMLParagraphElement : HTMLElement
param HTMLParamElement : HTMLElement
pre HTMLPreElement : HTMLElement
progress HTMLProgressElement : HTMLElement
q HTMLQuoteElement : HTMLElement
rb HTMLElement
rp HTMLElement
rt HTMLElement
rtc HTMLElement
ruby HTMLElement
s HTMLElement
samp HTMLElement
script HTMLScriptElement : HTMLElement
section HTMLElement
select HTMLSelectElement : HTMLElement
small HTMLElement
source HTMLSourceElement : HTMLElement
span HTMLSpanElement : HTMLElement
strong HTMLElement
style HTMLStyleElement : HTMLElement
sub HTMLElement
summary HTMLElement
sup HTMLElement
table HTMLTableElement : HTMLElement
tbody HTMLTableSectionElement : HTMLElement
td HTMLTableDataCellElement : HTMLTableCellElement : HTMLElement
template HTMLTemplateElement : HTMLElement
textarea HTMLTextAreaElement : HTMLElement
tfoot HTMLTableSectionElement : HTMLElement
th HTMLTableHeaderCellElement : HTMLTableCellElement : HTMLElement
thead HTMLTableSectionElement : HTMLElement
time HTMLTimeElement : HTMLElement
title HTMLTitleElement : HTMLElement
tr HTMLTableRowElement : HTMLElement
track HTMLTrackElement : HTMLElement
u HTMLElement
ul HTMLUListElement : HTMLElement
var HTMLElement
video HTMLVideoElement : HTMLMediaElement : HTMLElement
wbr HTMLElement

All Interfaces

This section is non-normative.

Events

This section is non-normative.

List of events
Event Interface Interesting targets Description
abort Event Window Fired at the Window when the download was aborted by the user
autocomplete Event form elements Fired at a form element when it is autofilled
autocompleteerror Event form elements Fired at a form element when a bulk autofill fails
DOMContentLoaded Event Document Fired at the Document once the parser has finished
afterprint Event Window Fired at the Window after printing
afterscriptexecute Event script elements Fired at script elements after the script runs (just before the corresponding load event)
beforeprint Event Window Fired at the Window before printing
beforescriptexecute Event script elements Fired at script elements just before the script runs; canceling the event cancels the running of the script
beforeunload BeforeUnloadEvent Window Fired at the Window when the page is about to be unloaded, in case the page would like to show a warning prompt
blur Event Window, elements Fired at nodes losing focus
cancel Event dialog elements Fired at dialog elements when they are canceled by the user (e.g. by pressing the Escape key)
change Event Form controls Fired at controls when the user commits a value change (see also the change event of input elements)
click MouseEvent Elements Normally a mouse event; also synthetically fired at an element before its activation behavior is run, when an element is activated from a non-pointer input device (e.g. a keyboard)
close Event dialog elements, WebSocket Fired at dialog elments when they are closed, and at WebSocket elements when the connection is terminated
connect MessageEvent SharedWorkerGlobalScope Fired at a shared worker's global scope when a new client connects
contextmenu Event Elements Fired at elements when the user requests their context menu
error Event Global scope objects, Worker objects, elements, networking-related objects Fired when unexpected errors occur (e.g. networking errors, script errors, decoding errors)
focus Event Window, elements Fired at nodes gaining focus
hashchange HashChangeEvent Window Fired at the Window when the fragment identifier part of the document's address changes
input Event Form controls Fired at controls when the user changes the value (see also the change event of input elements)
invalid Event Form controls Fired at controls during form validation if they do not satisfy their constraints
languagechange Event Global scope objects Fired at the global scope object when the user's preferred languages change
load Event Window, elements Fired at the Window when the document has finished loading; fired at an element containing a resource (e.g. img, embed) when its resource has finished loading
loadend Event or ProgressEvent img elements Fired at img elements after a successful load (see also media element events)
loadstart ProgressEvent img elements Fired at img elements when a load begins (see also media element events)
message MessageEvent Window, EventSource, WebSocket, MessagePort, BroadcastChannel, DedicatedWorkerGlobalScope, Worker Fired at an object when it receives a message
offline Event Global scope objects Fired at the global scope object when the network connections fails
online Event Global scope objects Fired at the global scope object when the network connections returns
open Event EventSource, WebSocket Fired at networking-related objects when a connection is established
pagehide PageTransitionEvent Window Fired at the Window when the page's entry in the session history stops being the current entry
pageshow PageTransitionEvent Window Fired at the Window when the page's entry in the session history becomes the current entry
popstate PopStateEvent Window Fired at the Window when the user navigates the session history
progress ProgressEvent img elements Fired at img elements during a CORS-same-origin image load (see also media element events)
readystatechange Event Document Fired at the Document when it finishes parsing and again when all its subresources have finished loading
reset Event form elements Fired at a form element when it is reset
select Event Form controls Fired at form controls when their text selection is adjusted (whether by an API or by the user)
show RelatedEvent menu elements Fired at a menu element when it is shown as a context menu
sort Event table elements Fired at table elements before it is sorted; canceling the event cancels the sorting of the table
storage StorageEvent Window Fired at Window event when the corresponding localStorage or sessionStorage storage areas change
submit Event form elements Fired at a form element when it is submitted
toggle Event details element Fired at details elements when they open or close
unload Event Window Fired at the Window object when the page is going away

See also media element events, application cache events, and drag-and-drop events.

References

All references are normative unless marked "Non-normative".

[ABNF]
Augmented BNF for Syntax Specifications: ABNF (URL: http://www.ietf.org/rfc/std/std68.txt), D. Crocker, P. Overell. IETF.
[ABOUT]
The 'about' URI scheme (URL: http://tools.ietf.org/html/rfc6694), S. Moonesamy. IETF.
[APNG]
(Non-normative) APNG Specification (URL: https://wiki.mozilla.org/APNG_Specification). S. Parmenter, V. Vukicevic, A. Smith. Mozilla.
[ARIA]
Accessible Rich Internet Applications (WAI-ARIA) (URL: http://www.w3.org/WAI/PF/aria/), J. Craig, M. Cooper, L. Pappas, R. Schwerdtfeger, L. Seeman. W3C.
[ARIAIMPL]
WAI-ARIA 1.0 User Agent Implementation Guide (URL: http://www.w3.org/WAI/PF/aria-implementation/), A. Snow-Weaver, M. Cooper. W3C.
[ATAG]
(Non-normative) Authoring Tool Accessibility Guidelines (ATAG) 2.0 (URL: http://www.w3.org/TR/ATAG20/), J. Richards, J. Spellman, J. Treviranus. W3C.
[ATOM]
(Non-normative) The Atom Syndication Format (URL: http://tools.ietf.org/html/rfc4287), M. Nottingham, R. Sayre. IETF.
[BCP47]
Tags for Identifying Languages; Matching of Language Tags (URL: http://www.ietf.org/rfc/bcp/bcp47.txt), A. Phillips, M. Davis. IETF.
[BECSS]
Behavioral Extensions to CSS (URL: http://www.w3.org/TR/becss/), I. Hickson. W3C.
[BIDI]
UAX #9: Unicode Bidirectional Algorithm (URL: http://www.unicode.org/reports/tr9/), M. Davis. Unicode Consortium.
[BOCU1]
(Non-normative) UTN #6: BOCU-1: MIME-Compatible Unicode Compression (URL: http://www.unicode.org/notes/tn6/), M. Scherer, M. Davis. Unicode Consortium.
[CANVAS2D]
HTML Canvas 2D Context (URL: http://www.w3.org/TR/2dcontext/), R. Cabanier, E. Graff, J. Munro, T. Wiltzius. W3C.
[CESU8]
(Non-normative) UTR #26: Compatibility Encoding Scheme For UTF-16: 8-BIT (CESU-8) (URL: http://www.unicode.org/reports/tr26/), T. Phipps. Unicode Consortium.
[CHARMOD]
(Non-normative) Character Model for the World Wide Web 1.0: Fundamentals (URL: http://www.w3.org/TR/charmod/), M. Dürst, F. Yergeau, R. Ishida, M. Wolf, T. Texin. W3C.
[CLDR]
Unicode Common Locale Data Repository (URL: http://cldr.unicode.org/). Unicode.
[COMPUTABLE]
(Non-normative) On computable numbers, with an application to the Entscheidungsproblem (URL: http://www.turingarchive.org/browse.php/B/12), A. Turing. In Proceedings of the London Mathematical Society, series 2, volume 42, pages 230-265. London Mathematical Society, 1937.
[COOKIES]
HTTP State Management Mechanism (URL: http://tools.ietf.org/html/rfc6265), A. Barth. IETF.
[CP50220]
(Non-normative) CP50220 (URL: http://www.iana.org/assignments/charset-reg/CP50220), Y. Naruse. IANA.
[CSP]
(Non-normative) Content Security Policy (URL: http://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html), B. Sterne, A. Barth. W3C.
[CSS]
Cascading Style Sheets Level 2 Revision 1 (URL: http://www.w3.org/TR/CSS2/), B. Bos, T. Çelik, I. Hickson, H. Lie. W3C.
[CSSANIMATIONS]
(Non-normative) CSS Animations (URL: http://dev.w3.org/csswg/css3-animations/), D. Jackson, D. Hyatt, C. Marrin, S. Galineau, L. Baron. W3C.
[CSSATTR]
CSS Styling Attribute Syntax (URL: http://dev.w3.org/csswg/css-style-attr/), T. Çelik, E. Etemad. W3C.
[CSSCOLOR]
CSS Color Module Level 3 (URL: http://dev.w3.org/csswg/css3-color/), T. Çelik, C. Lilley, L. Baron. W3C.
[CSSFONTLOAD]
(Non-normative) CSS Font Loading (URL: http://dev.w3.org/csswg/css-font-loading/), T. Atkins. W3C.
[CSSFONTS]
CSS Fonts (URL: http://dev.w3.org/csswg/css3-fonts/), J. Daggett. W3C.
[CSSGC]
CSS Generated Content (URL: http://dev.w3.org/csswg/css-content), H. Lie, E. Etemad, I. Hickson. W3C.
[CSSIMAGES]
CSS Image Values and Replaced Content Module (URL: http://dev.w3.org/csswg/css-images/), E. Etemad, T. Atkins. W3C.
[CSSOM]
Cascading Style Sheets Object Model (CSSOM) (URL: http://dev.w3.org/csswg/cssom/), S. Pieters, G. Adams. W3C.
[CSSOMVIEW]
CSSOM View Module (URL: http://dev.w3.org/csswg/cssom-view/), S. Pieters, G. Adams. W3C.
[CSSRUBY]
CSS Ruby Module Level 1 (URL: http://dev.w3.org/csswg/css-ruby/), E. Etemad, K. Ishii, R. Ishida. W3C.
[CSSTRANSITIONS]
(Non-normative) CSS Transitions (URL: http://dev.w3.org/csswg/css3-transitions/), D. Jackson, D. Hyatt, C. Marrin, L. Baron. W3C.
[CSSUI]
CSS3 Basic User Interface Module (URL: http://dev.w3.org/csswg/css3-ui/), T. Çelik. W3C.
[CSSSCOPED]
CSS Scoping (URL: http://dev.w3.org/csswg/css-scoping/), T. Atkins, E. Etemad. W3C.
[CSSSYNTAX]
CSS Syntax (URL: http://dev.w3.org/csswg/css-syntax/), T. Atkins, S. Sapin. W3C.
[CSSVALUES]
CSS3 Values and Units (URL: http://dev.w3.org/csswg/css3-values/), H. Lie, T. Atkins, E. Etemad. W3C.
[CSSWM]
CSS Writing Modes (URL: http://dev.w3.org/csswg/css-writing-modes), E. Etemad, K. Ishii. W3C.
[DASH]
Dynamic adaptive streaming over HTTP (DASH) (URL: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57623). ISO.
[DOM]
DOM (URL: http://www.w3.org/TR/dom/), A. van Kesteren, A. Gregor, Ms2ger, A. Russell, R. Berjon. W3C.
[DOMEVENTS]
Document Object Model (DOM) Level 3 Events Specification (URL: http://dev.w3.org/2006/webapi/DOM-Level-3-Events/html/DOM3-Events.html), T. Leithead, J. Rossi, D. Schepers, B. Höhrmann, P. Le Hégaret, T. Pixley. W3C.
[DOMPARSING]
DOM Parsing and Serialization (URL: http://dvcs.w3.org/hg/innerhtml/raw-file/tip/index.html), T. Leithead. Work in Progress. W3C.
[DOT]
(Non-normative) The DOT Language (URL: http://www.graphviz.org/content/dot-language). Graphviz.
[ECMA262]
ECMAScript Language Specification (URL: http://people.mozilla.org/~jorendorff/es6-draft.html). ECMA.
[EDITING]
HTML Editing APIs (URL: http://dvcs.w3.org/hg/editing/raw-file/tip/editing.html), A. Gregor. W3C Editing APIs CG.
[ENCODING]
Encoding (URL: http://www.w3.org/TR/encoding/), A. van Kesteren, J. Bell, A. Phillips. W3C.
[EVENTSOURCE]
Server-Sent Events (URL: http://www.w3.org/TR/eventsource/), I. Hickson. W3C.
[FETCH]
Fetch (URL: http://fetch.spec.whatwg.org/), A. van Kesteren. WHATWG.
[FILEAPI]
File API (URL: http://dev.w3.org/2006/webapi/FileUpload/publish/FileAPI.html), A. Ranganathan. W3C.
[FULLSCREEN]
Fullscreen (URL: https://dvcs.w3.org/hg/fullscreen/raw-file/tip/Overview.html), A. van Kesteren, T. Çelik. W3C.
[GIF]
(Non-normative) Graphics Interchange Format (URL: http://www.w3.org/Graphics/GIF/spec-gif89a.txt). CompuServe.
[GRAPHICS]
(Non-normative) Computer Graphics: Principles and Practice in C, Second Edition, J. Foley, A. van Dam, S. Feiner, J. Hughes. Addison-Wesley. ISBN 0-201-84840-6.
[GREGORIAN]
(Non-normative) Inter Gravissimas, A. Lilius, C. Clavius. Gregory XIII Papal Bull, February 1582.
[HPAAIG]
HTML to Platform Accessibility APIs Implementation Guide (URL: http://dev.w3.org/html5/html-api-map/overview.html). W3C.
[HTMLDIFF]
(Non-normative) HTML5 differences from HTML4 (URL: http://dev.w3.org/html5/html4-differences/), S. Pieters. W3C.
[HTTP]
Hypertext Transfer Protocol — HTTP/1.1 (URL: http://tools.ietf.org/html/rfc2616), R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee. IETF.
[HTTPS]
(Non-normative) HTTP Over TLS (URL: http://tools.ietf.org/html/rfc2818), E. Rescorla. IETF.
[IANAPERMHEADERS]
Permanent Message Header Field Names (URL: http://www.iana.org/assignments/message-headers/message-headers.xhtml). IANA.
[INBANDTRACKS]
(Non-normative) Sourcing In-band Media Resource Tracks from Media Containers into HTML (URL: http://dev.w3.org/html5/html-sourcing-inband-tracks/), S. Pfeiffer, B. Lund. W3C.
[ISO3166]
ISO 3166: Codes for the representation of names of countries and their subdivisions (URL: http://www.iso.org/iso/home/standards/country_codes.htm). ISO.
[ISO8601]
(Non-normative) ISO8601: Data elements and interchange formats — Information interchange — Representation of dates and times (URL: http://isotc.iso.org/livelink/livelink/4021199/ISO_8601_2004_E.zip?func=doc.Fetch&nodeid=4021199). ISO.
[JLREQ]
Requirements for Japanese Text Layout (URL: http://www.w3.org/TR/jlreq/). W3C.
[JPEG]
JPEG File Interchange Format (URL: http://www.w3.org/Graphics/JPEG/jfif3.pdf), E. Hamilton.
[MAILTO]
(Non-normative) The 'mailto' URI scheme (URL: http://tools.ietf.org/html/rfc6068), M. Duerst, L. Masinter, J. Zawinski. IETF.
[MATHML]
Mathematical Markup Language (MathML) (URL: http://www.w3.org/TR/MathML/), D. Carlisle, P. Ion, R. Miner, N. Poppelier. W3C.
[MEDIAFRAG]
Media Fragments URI 1.0 (URL: http://www.w3.org/TR/2011/CR-media-frags-20111201/), R. Troncy, E. Mannens, S. Pfeiffer, D. Van Deursen. W3C CR.
[MFREL]
Microformats Wiki: existing rel values (URL: http://microformats.org/wiki/existing-rel-values#HTML5_link_type_extensions). Microformats.
[MIMESNIFF]
MIME Sniffing (URL: http://mimesniff.spec.whatwg.org/), G. Hemsley. WHATWG.
[MNG]
MNG (Multiple-image Network Graphics) Format (URL: http://www.libpng.org/pub/mng/spec/). G. Randers-Pehrson.
[MPEG2]
ISO/IEC 13818-1: Information technology — Generic coding of moving pictures and associated audio information: Systems. ISO/IEC.
[MPEG4]
ISO/IEC 14496-12: ISO base media file format. ISO/IEC.
[MQ]
Media Queries (URL: http://www.w3.org/TR/css3-mediaqueries/), H. Lie, T. Çelik, D. Glazman, A. van Kesteren. W3C.
[NPAPI]
(Non-normative) Gecko Plugin API Reference (URL: https://developer.mozilla.org/en/Gecko_Plugin_API_Reference). Mozilla.
[OGGSKELETONHEADERS]
SkeletonHeaders (URL: http://wiki.xiph.org/SkeletonHeaders). Xiph.Org.
[OPENSEARCH]
Autodiscovery in HTML/XHTML (URL: http://www.opensearch.org/Specifications/OpenSearch/1.1#Autodiscovery_in_HTML.2FXHTML). In OpenSearch 1.1 Draft 4, Section 4.6.2. OpenSearch.org.
[ORIGIN]
The Web Origin Concept (URL: http://tools.ietf.org/html/rfc6454), A. Barth. IETF.
[PAGEVIS]
(Non-normative) Page Visibility (URL: https://w3c.github.io/web-performance/specs/PageVisibility/Overview.html), J. Mann, A. Jain. W3C.
[PDF]
(Non-normative) Document management — Portable document format — Part 1: PDF (URL: http://www.adobe.com/devnet/acrobat/pdfs/PDF32000_2008.pdf). ISO.
[PNG]
Portable Network Graphics (PNG) Specification (URL: http://www.w3.org/TR/PNG/), D. Duce. W3C.
[POINTERLOCK]
Pointer Lock (URL: http://dvcs.w3.org/hg/pointerlock/raw-file/default/index.html), V. Scheib. W3C.
[POLYGLOT]
(Non-normative) Polyglot Markup: HTML-Compatible XHTML Documents (URL: http://dev.w3.org/html5/html-xhtml-author-guide/html-xhtml-authoring-guide.html), E. Graff. W3C.
[PPUTF8]
(Non-normative) The Properties and Promises of UTF-8 (URL: http://www.sw.it.aoyama.ac.jp/2012/pub/IUC11-UTF-8.pdf), M. Dürst. University of Zürich. In Proceedings of the 11th International Unicode Conference.
[PSL]
Public Suffix List (URL: http://publicsuffix.org/). Mozilla Foundation.
[RFC1034]
Domain Names - Concepts and Facilities (URL: http://tools.ietf.org/html/rfc1034), P. Mockapetris. IETF, November 1987.
[RFC1123]
Requirements for Internet Hosts -- Application and Support (URL: http://tools.ietf.org/html/rfc1123), R. Braden. IETF, October 1989.
[RFC1345]
(Non-normative) Character Mnemonics and Character Sets (URL: http://tools.ietf.org/html/rfc1345), K. Simonsen. IETF.
[RFC1468]
(Non-normative) Japanese Character Encoding for Internet Messages (URL: http://tools.ietf.org/html/rfc1468), J. Murai, M. Crispin, E. van der Poel. IETF.
[RFC1554]
(Non-normative) ISO-2022-JP-2: Multilingual Extension of ISO-2022-JP (URL: http://tools.ietf.org/html/rfc1554), M. Ohta, K. Handa. IETF.
[RFC1557]
(Non-normative) Korean Character Encoding for Internet Messages (URL: http://tools.ietf.org/html/rfc1557), U. Choi, K. Chon, H. Park. IETF.
[RFC1842]
(Non-normative) ASCII Printable Characters-Based Chinese Character Encoding for Internet Messages (URL: http://tools.ietf.org/html/rfc1842), Y. Wei, Y. Zhang, J. Li, J. Ding, Y. Jiang. IETF.
[RFC1922]
(Non-normative) Chinese Character Encoding for Internet Messages (URL: http://tools.ietf.org/html/rfc1922), HF. Zhu, DY. Hu, ZG. Wang, TC. Kao, WCH. Chang, M. Crispin. IETF.
[RFC2046]
Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types (URL: http://tools.ietf.org/html/rfc2046), N. Freed, N. Borenstein. IETF.
[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels (URL: http://tools.ietf.org/html/rfc2119), S. Bradner. IETF.
[RFC2237]
(Non-normative) Japanese Character Encoding for Internet Messages (URL: http://tools.ietf.org/html/rfc2237), K. Tamaru. IETF.
[RFC2313]
PKCS #1: RSA Encryption (URL: http://tools.ietf.org/html/rfc2313), B. Kaliski. IETF.
[RFC2318]
The text/css Media Type (URL: http://tools.ietf.org/html/rfc2318), H. Lie, B. Bos, C. Lilley. IETF.
[RFC2388]
Returning Values from Forms: multipart/form-data (URL: http://tools.ietf.org/html/rfc2388), L. Masinter. IETF.
[RFC2397]
The "data" URL scheme (URL: http://tools.ietf.org/html/rfc2397), L. Masinter. IETF.
[RFC2483]
URI Resolution Services Necessary for URN Resolution (URL: http://tools.ietf.org/html/rfc2483), M. Mealling, R. Daniel. IETF.
[RFC3676]
The Text/Plain Format and DelSp Parameters (URL: http://tools.ietf.org/html/rfc3676), R. Gellens. IETF.
[RFC3023]
XML Media Types (URL: http://tools.ietf.org/html/rfc3023), M. Murata, S. St. Laurent, D. Kohn. IETF.
[RFC3279]
Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile (URL: http://tools.ietf.org/html/rfc3279), W. Polk, R. Housley, L. Bassham. IETF.
[RFC3490]
Internationalizing Domain Names in Applications (IDNA) (URL: http://tools.ietf.org/html/rfc3490), P. Faltstrom, P. Hoffman, A. Costello. IETF.
[RFC4281]
The Codecs Parameter for "Bucket" Media Types (URL: http://tools.ietf.org/html/rfc4281), R. Gellens, D. Singer, P. Frojdh. IETF.
[RFC4329]
(Non-normative) Scripting Media Types (URL: http://tools.ietf.org/html/rfc4329), B. Höhrmann. IETF.
[RFC4395]
Guidelines and Registration Procedures for New URI Schemes (URL: http://tools.ietf.org/html/rfc4395), T. Hansen, T. Hardie, L. Masinter. IETF.
[RFC4648]
The Base16, Base32, and Base64 Data Encodings (URL: http://tools.ietf.org/html/rfc4648), S. Josefsson. IETF.
[RFC5280]
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile (URL: http://tools.ietf.org/html/rfc5280), D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, W. Polk. IETF.
[RFC5322]
Internet Message Format (URL: http://tools.ietf.org/html/rfc5322), P. Resnick. IETF.
[RFC5724]
URI Scheme for Global System for Mobile Communications (GSM) Short Message Service (SMS) (URL: http://tools.ietf.org/html/rfc5724), E. Wilde, A. Vaha-Sipila. IETF.
[RFC6266]
Use of the Content-Disposition Header Field in the Hypertext Transfer Protocol (HTTP) (URL: http://tools.ietf.org/html/rfc6266), J. Reschke. IETF.
[RFC6350]
vCard Format Specification (URL: http://tools.ietf.org/html/rfc6350), S. Perreault. IETF.
[RUBY-UC]
(Non-normative) Use Cases & Exploratory Approaches for Ruby Markup (URL: http://www.w3.org/TR/ruby-use-cases/), R. Ishida. W3C.
[SCSU]
(Non-normative) UTR #6: A Standard Compression Scheme For Unicode (URL: http://www.unicode.org/reports/tr6/), M. Wolf, K. Whistler, C. Wicksteed, M. Davis, A. Freytag, M. Scherer. Unicode Consortium.
[SELECTORS]
Selectors (URL: http://dev.w3.org/csswg/selectors/), E. Etemad, T. Çelik, D. Glazman, I. Hickson, P. Linss, J. Williams. W3C.
[SRGB]
IEC 61966-2-1: Multimedia systems and equipment — Colour measurement and management — Part 2-1: Colour management — Default RGB colour space — sRGB (URL: http://webstore.iec.ch/webstore/webstore.nsf/artnum/025408!OpenDocument&Click=). IEC.
[SVG]
Scalable Vector Graphics (SVG) Tiny 1.2 Specification (URL: http://www.w3.org/TR/SVGTiny12/), O. Andersson, R. Berjon, E. Dahlström, A. Emmons, J. Ferraiolo, A. Grasso, V. Hardy, S. Hayman, D. Jackson, C. Lilley, C. McCormack, A. Neumann, C. Northway, A. Quint, N. Ramani, D. Schepers, A. Shellshear. W3C.
[TOR]
(Non-normative) Tor (URL: https://www.torproject.org/).
[TOUCH]
Touch Events (URL: https://dvcs.w3.org/hg/webevents/raw-file/v1/touchevents.html), D. Schepers, S. Moon, M. Brubeck, A. Barstow. W3C.
[TIMEZONES]
(Non-normative) Working with Time Zones (URL: http://www.w3.org/TR/timezone/), A. Phillips, N. Lindenberg, M. Davis, M.J. Dürst, F. Sasaki, R. Ishida. W3C.
[TZDATABASE]
(Non-normative) Time Zone Database (URL: http://www.iana.org/time-zones). IANA.
[UAAG]
(Non-normative) User Agent Accessibility Guidelines (UAAG) 2.0 (URL: http://www.w3.org/TR/UAAG20/), J. Allan, K. Ford, J. Richards, J. Spellman. W3C.
[UCA]
UTR #10: Unicode Collation Algorithm (URL: http://www.unicode.org/reports/tr10/), M. Davis, K. Whistler. Unicode Consortium.
[UNDO]
UndoManager and DOM Transaction (URL: http://rniwa.com/editing/undomanager.html), R. Niwa.
[UNICODE]
The Unicode Standard (URL: http://www.unicode.org/versions/). Unicode Consortium.
[UNIVCHARDET]
(Non-normative) A composite approach to language/encoding detection (URL: http://www.mozilla.org/projects/intl/UniversalCharsetDetection.html), S. Li, K. Momoi. Netscape. In Proceedings of the 19th International Unicode Conference.
[URL]
URL (URL: http://url.spec.whatwg.org/), A. van Kesteren. WHATWG.
[UTF7]
(Non-normative) UTF-7: A Mail-Safe Transformation Format of Unicode (URL: http://tools.ietf.org/html/rfc2152), D. Goldsmith, M. Davis. IETF.
[UTF8DET]
(Non-normative) Multilingual form encoding (URL: http://www.w3.org/International/questions/qa-forms-utf-8), M. Dürst. W3C.
[UTR36]
(Non-normative) UTR #36: Unicode Security Considerations (URL: http://www.unicode.org/reports/tr36/), M. Davis, M. Suignard. Unicode Consortium.
[WCAG]
(Non-normative) Web Content Accessibility Guidelines (WCAG) 2.0 (URL: http://www.w3.org/TR/WCAG20/), B. Caldwell, M. Cooper, L. Reid, G. Vanderheiden. W3C.
[WEBGL]
WebGL Specification (URL: http://www.khronos.org/registry/webgl/specs/latest/), D. Jackson. Khronos Group.
[WEBIDL]
Web IDL (URL: http://dev.w3.org/2006/webapi/WebIDL/), C. McCormack. W3C.
Web Linking (URL: http://tools.ietf.org/html/rfc5988), M. Nottingham. IETF.
[WEBMSG]
Web Messaging (URL: http://www.w3.org/TR/webmessaging/), I. Hickson. W3C.
[WEBMCG]
WebM Container Guidelines (URL: http://www.webmproject.org/code/specs/container/). The WebM Project.
[WEBSTORAGE]
Web Storage (URL: http://dev.w3.org/html5/webstorage/), I. Hickson. W3C.
[WEBVTT]
WebVTT (URL: http://dev.w3.org/html5/webvtt/), I. Hickson. W3C.
[WEBWORKERS]
Web Workers (URL: http://dev.w3.org/html5/workers/), I. Hickson. W3C.
[WHATWGWIKI]
The WHATWG Wiki (URL: http://wiki.whatwg.org/). WHATWG.
[WSP]
The WebSocket protocol (URL: http://tools.ietf.org/html/rfc6455), I. Fette, A. Melnikov. IETF.
[X690]
Recommendation X.690 — Information Technology — ASN.1 Encoding Rules — Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished Encoding Rules (DER) (URL: http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf). International Telecommunication Union.
[XHR]
XMLHttpRequest (URL: http://xhr.spec.whatwg.org/), A. van Kesteren. WHATWG.
[XML]
Extensible Markup Language (URL: http://www.w3.org/TR/xml/), T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, F. Yergeau. W3C.
[XMLBASE]
XML Base (URL: http://www.w3.org/TR/xmlbase/), J. Marsh, R. Tobin. W3C.
[XMLNS]
Namespaces in XML (URL: http://www.w3.org/TR/xml-names/), T. Bray, D. Hollander, A. Layman, R. Tobin. W3C.
[XPATH10]
XML Path Language (XPath) Version 1.0 (URL: http://www.w3.org/TR/1999/REC-xpath-19991116), J. Clark, S. DeRose. W3C.
[XSLT10]
(Non-normative) XSL Transformations (XSLT) Version 1.0 (URL: http://www.w3.org/TR/1999/REC-xslt-19991116), J. Clark. W3C.

Acknowledgments

Thanks to Tim Berners-Lee for inventing HTML, without which none of this would exist.

Thanks to Aankhen, Aaron Boodman, Aaron Leventhal, Adam Barth, Adam de Boor, Adam Hepton, Adam Klein, Adam Roben, Addison Phillips, Adele Peterson, Adrian Bateman, Adrian Sutton, Agustín Fernández, Aharon (Vladimir) Lanin, Ajai Tirumali, Akatsuki Kitamura, Alan Plum, Alastair Campbell, Alejandro G. Castro, Alex Bishop, Alex Nicolaou, Alex Rousskov, Alexander Farkas, Alexander J. Vincent, Alexandre Morgaut, Alexey Feldgendler, Алексей Проскуряков (Alexey Proskuryakov), Alexis Deveria, Allan Clements, Ami Fischman, Amos Jeffries, Anders Carlsson, André E. Veltstra, Andrea Rendine, Andreas, Andreas Kling, Andrei Popescu, Andres Gomez, Andrew Barfield, Andrew Clover, Andrew Gove, Andrew Grieve, Andrew Oakley, Andrew Sidwell, Andrew Simons, Andrew Smith, Andrew W. Hagen, Andrey V. Lukyanov, Andry Rendy, Andy Earnshaw, Andy Heydon, Andy Palay, Anne van Kesteren, Anthony Boyd, Anthony Bryan, Anthony Hickson, Anthony Ricaud, Antti Koivisto, Arkadiusz Michalski, Arne Thomassen, Aron Spohr, Arphen Lin, Arthur Stolyar, Arun Patole, Aryeh Gregor, Asbjørn Ulsberg, Ashley Gullen, Ashley Sheridan, Atsushi Takayama, Aurelien Levy, Ave Wrigley, Axel Dahmen, Ben Boyle, Ben Godfrey, Ben Lerner, Ben Leslie, Ben Meadowcroft, Ben Millard, Benjamin Carl Wiley Sittler, Benjamin Hawkes-Lewis, Benoit Ren, Bert Bos, Bijan Parsia, Bil Corry, Bill Mason, Bill McCoy, Billy Wong, Bjartur Thorlacius, Björn Höhrmann, Blake Frantz, Bob Lund, Bob Owen, Boris Zbarsky, Brad Fults, Brad Neuberg, Brad Spencer, Brady Eidson, Brendan Eich, Brenton Simpson, Brett Wilson, Brett Zamir, Brian Blakely, Brian Campbell, Brian Korver, Brian Kuhn, Brian M. Dube, Brian Ryner, Brian Smith, Brian Wilson, Bryan Sullivan, Bruce Bailey, Bruce D'Arcus, Bruce Lawson, Bruce Miller, C. Williams, Cameron McCormack, Cameron Zemek, Cao Yipeng, Carlos Amengual, Carlos Gabriel Cardona, Carlos Perelló Marín, Chao Cai, 윤석찬 (Channy Yun), Charl van Niekerk, Charles Iliya Krempeaux, Charles McCathieNevile, Chris Apers, Chris Cressman, Chris Evans, Chris Morris, Chris Pearce, Chris Peterson, Chris Weber, Christian Biesinger, Christian Johansen, Christian Schmidt, Christoph Päper, Christophe Dumez, Christopher Aillon, Christopher Ferris, Chriswa, Clark Buehler, Cole Robison, Colin Fine, Collin Jackson, Corprew Reed, Craig Cockburn, Csaba Gabor, Csaba Marton, Cynthia Shelly, Dan Yoder, Daniel Barclay, Daniel Bratell, Daniel Brooks, Daniel Brumbaugh Keeney, Daniel Cheng, Daniel Davis, Daniel Glazman, Daniel Peng, Daniel Schattenkirchner, Daniel Spång, Daniel Steinberg, Daniel Trebbien, Danny Sullivan, Darin Adler, Darin Fisher, Darxus, Dave Camp, Dave Hodder, Dave Lampton, Dave Singer, Dave Townsend, David Baron, David Bloom, David Bruant, David Carlisle, David E. Cleary, David Egan Evans, David Fink, David Flanagan, David Gerard, David Håsäther, David Hyatt, David I. Lehn, David John Burrowes, David Kendal, David MacDonald, David Matja, David Remahl, David Smith, David Woolley, DeWitt Clinton, Dean Edridge, Dean Edwards, Debi Orton, Derek Featherstone, Devarshi Pant, Devdatta, Dimitri Glazkov, Dimitry Golubovsky, Dirk Pranke, Dirk Schulze, Dirkjan Ochtman, Divya Manian, Dmitry Titov, dolphinling, Domenic Denicola, Dominique Hazaël-Massieux, Don Brutzman, Doron Rosenberg, Doug Kramer, Doug Simpkinson, Drew Wilson, Edmund Lai, Eduard Pascual, Eduardo Vela, Edward O'Connor, Edward Welbourne, Edward Z. Yang, Ehsan Akhgari, Eira Monstad, Eitan Adler, Eliot Graff, Elisabeth Robson, Elizabeth Castro, Elliott Sprehn, Elliotte Harold, Eric Carlson, Eric Casler, Eric Lawrence, Eric Rescorla, Eric Semling, Erik Arvidsson, Erik Rose, Evan Martin, Evan Prodromou, Evan Stade, Evert, fantasai, Felix Sasaki, Francesco Schwarz, Francis Brosnan Blazquez, Franck 'Shift' Quélain, Frank Barchard, Fredrik Söderquist, 鵜飼文敏 (Fumitoshi Ukai), Futomi Hatano, Gavin Carothers, Gavin Kistner, Gareth Rees, Garrett Smith, Geoff Richards, Geoffrey Garen, Sam Sneddon, Gez Lemon, George Lund, Gianmarco Armellin, Giovanni Campagna, Giuseppe Pascale, Glenn Adams, Glenn Maynard, Graham Klyne, Greg Botten, Greg Houston, Greg Wilkins, Gregg Tavares, Gregory J. Rosmaita, Grey, Guilherme Johansson Tramontina, Gytis Jakutonis, Håkon Wium Lie, Habib Virji, Hallvord Reiar Michaelsen Steen, Hans S. Tømmerhalt, Hans Stimer, Harald Alvestrand, Henri Sivonen, Henrik Lied, Henry Mason, Henry Story, Heydon Pickering, Hugh Guiney, Hugh Winkler, Ian Bicking, Ian Clelland, Ian Davis, Ian Fette, Ido Green, Ignacio Javier, Ivan Enderlin, Ivo Emanuel Gonçalves, J. King, Jacob Davies, Jacques Distler, Jake Verbaten, Jakub Łopuszański, James Craig, James Graham, James Greene, James Justin Harrell, James Kozianski, James M Snell, James Perrett, James Robinson, Jamie Lokier, Janusz Majnert, Jan-Klaas Kollhof, Jared Jacobs, Jason Duell, Jason Kersey, Jason Lustig, Jason White, Jasper Bryant-Greene, Jasper St. Pierre, Jatinder Mann, Jed Hartman, Jeff Balogh, Jeff Cutsinger, Jeff Schiller, Jeff Walden, Jeffrey Zeldman, 胡慧鋒 (Jennifer Braithwaite), Jens Bannmann, Jens Fendler, Jens Lindström, Jens Meiert, Jeremey Hustman, Jeremy Keith, Jeremy Orlow, Jeroen van der Meer, Jian Li, Jim Jewett, Jim Ley, Jim Meehan, Jim Michaels, Jirka Kosek, Jjgod Jiang, João Eiras, Joe Clark, Joe Gregorio, Joel Spolsky, Joel Verhagen, Johan Herland, John Boyer, John Bussjaeger, John Carpenter, John Daggett, John Fallows, John Foliot, John Harding, John Keiser, John Snyders, John Stockton, John-Mark Bell, Johnny Stenback, Jon Ferraiolo, Jon Gibbins, Jon Perlow, Jonas Sicking, Jonathan Cook, Jonathan Rees, Jonathan Watt, Jonathan Worent, Jonny Axelsson, Jordan Tucker, Jorgen Horstink, Jorunn Danielsen Newth, Joseph Kesselman, Joseph Mansfield, Joseph Pecoraro, Josh Aas, Josh Hart, Josh Levenberg, Joshua Bell, Joshua Randall, Jukka K. Korpela, Jules Clément-Ripoche, Julian Reschke, Jürgen Jeka, Justin Lebar, Justin Novosad, Justin Schuh, Justin Sinclair, Ka-Sing Chou, Kai Hendry, 呂康豪 (KangHao Lu), Kartikaya Gupta, Kathy Walton, Kelly Ford, Kelly Norton, Kevin Benson, Kevin Gadd, Kevin Cole, Kornél Pál, Kornel Lesinski, Kris Northfield, Kristof Zelechovski, Krzysztof Maczyński, 黒澤剛志 (Kurosawa Takeshi), Kyle Barnhart, Kyle Hofmann, Kyle Huey, Léonard Bouchet, Léonie Watson, Lachlan Hunt, Larry Masinter, Larry Page, Lars Gunther, Lars Solberg, Laura Carlson, Laura Granka, Laura L. Carlson, Laura Wisewell, Laurens Holst, Lawrence Forooghian, Lee Kowalkowski, Leif Halvard Silli, Leif Kornstaedt, Lenny Domnitser, Leonard Rosenthol, Leonie Watson, Leons Petrazickis, Lobotom Dysmon, Logan, Loune, Łukasz Pilorz, Luke Kenneth Casson Leighton, Maciej Stachowiak, Magnus Kristiansen, Maik Merten, Malcolm Rowe, Manish Tripathi, Marc Hoyois, Marcus Bointon, Mark Birbeck, Mark Davis, Mark Miller, Mark Nottingham, Mark Pilgrim, Mark Rowe, Mark Schenk, Mark Vickers, Mark Wilton-Jones, Martijn Wargers, Martin Atkins, Martin Dürst, Martin Honnen, Martin Janecke, Martin Kutschker, Martin Nilsson, Martin Thomson, Masataka Yakura, Matt May, Masatoshi Kimura, Mathias Bynens, Mathieu Henri, Matias Larsson, Matt Falkenhagen, Matt Schmidt, Matt Wright, Matthew Gregan, Matthew Mastracci, Matthew Raymond, Matthew Thomas, Mattias Waldau, Max Romantschuk, Menachem Salomon, Menno van Slooten, Micah Dubinko, Michael 'Ratt' Iannarelli, Michael A. Nachbaur, Michael A. Puls II, Michael Carter, Michael Daskalov, Michael Day, Michael Dyck, Michael Enright, Michael Gratton, Michael Nordman, Michael Powers, Michael Rakowski, Michael(tm) Smith, Michael Walmsley, Michal Zalewski, Michel Fortin, Michelangelo De Simone, Michiel van der Blonk, Mihai Şucan, Mihai Parparita, Mike Brown, Mike Dierken, Mike Dixon, Mike Hearn, Mike Schinkel, Mike Shaver, Mikko Rantalainen, Mohamed Zergaoui, Mohammad Al Houssami, Mounir Lamouri, Ms2ger, Nadia Heninger, NARUSE Yui, Neil Deakin, Neil Rashbrook, Neil Soiffer, Nicholas Shanks, Nicholas Stimpson, Nicholas Zakas, Nickolay Ponomarev, Nicolas Gallagher, Noah Mendelsohn, Noah Slater, Noel Gordon, Nolan Waite, NoozNooz42, Norbert Lindenberg, Ojan Vafai, Olaf Hoffmann, Olav Junker Kjær, Oldřich Vetešník, Oli Studholme, Oliver Hunt, Oliver Rigby, Olivier Gendrin, Olli Pettay, oSand, Pablo Flouret, Patrick Garies, Patrick H. Lauke, Patrik Persson, Paul Adenot, Paul Norman, Per-Erik Brodin, Perry Smith, Peter Beverloo, Peter Karlsson, Peter Kasting, Peter Moulder, Peter Occil, Peter Stark, Peter Van der Beken, Peter-Paul Koch, Phil Pickering, Philip Jägenstedt, Philip Taylor, Philip TAYLOR, Philippe De Ryck, Prateek Rungta, Pravir Gupta, 李普君 (Pujun Li), Rachid Finge, Rafael Weinstein, Rafał Miłecki, Raj Doshi, Rajas Moonka, Ralf Stoltze, Ralph Giles, Raphael Champeimont, Remci Mizkur, Remco, Remy Sharp, Rene Saarsoo, Rene Stach, Ric Hardacre, Rich Clark, Rich Doughty, Richard Ishida, Rigo Wenning, Rikkert Koppes, Rimantas Liubertas, Riona Macnamara, Rob Ennals, Rob Jellinghaus, Rob S, Robert Blaut, Robert Collins, Robert Kieffer, Robert Millan, Robert O'Callahan, Robert Sayre, Robin Berjon, Robin Schaufler, Rodger Combs, Roland Steiner, Roma Matusevich, Roman Ivanov, Roy Fielding, Ruud Steltenpool, Ryan King, Ryosuke Niwa, S. Mike Dierken, Salvatore Loreto, Sam Dutton, Sam Kuper, Sam Ruby, Sam Weinig, Samuel Bronson, Samy Kamkar, Sander van Lambalgen, Sarven Capadisli, Scott González, Scott Hess, Sean Fraser, Sean Hayes, Sean Hogan, Sean Knapp, Sebastian Markbåge, Sebastian Schnitzenbaumer, Seth Call, Seth Dillingham, Shannon Moeller, Shanti Rao, Shaun Inman, Shiki Okasaka, Sierk Bornemann, Sigbjørn Finne, Sigbjørn Vik, Silver Ghost, Silvia Pfeiffer, Šime Vidas, Simon Montagu, Simon Pieters, Simon Spiegel, skeww, Smylers, Stanton McCandlish, Stefan Håkansson, Stefan Haustein, Stefan Santesson, Stefan Weiss, Steffen Meschkat, Stephen Ma, Stephen White, Steve Comstock, Steve Faulkner, Steve Runyon, Steven Bennett, Steven Garrity, Steven Tate, Stewart Brodie, Stuart Ballard, Stuart Langridge, Stuart Parmenter, Subramanian Peruvemba, Sunava Dutta, Susan Borgrink, Susan Lesch, Sylvain Pasche, T. J. Crowder, Tab Atkins, Takeshi Yoshino, Tantek Çelik, 田村健人 (TAMURA Kent), Ted Mielczarek, Terrence Wood, Thijs van der Vossen, Thomas Broyer, Thomas Koetter, Thomas O'Connor, Tim Altman, Tim Johansson, TJ VanToll, Toby Inkster, Todd Moody, Tom Baker, Tom Pike, Tommy Thorsen, Tony Ross, Travis Leithead, Trevor Saunders, Tyler Close, Victor Carbune, Vipul Snehadeep Chawathe, Vitya Muhachev, Vladimir Katardjiev, Vladimir Vukićević, voracity, Wakaba, Wayne Carr, Wayne Pollock, Wellington Fernando de Macedo, Weston Ruter, Wilhelm Joys Andersen, Will Levine, William Chen, William Swanson, Wladimir Palant, Wojciech Mach, Wolfram Kriesing, Xan Gregg, Yang Chen, Ye-Kui Wang, Yehuda Katz, Yi-An Huang, Yngve Nysaeter Pettersen, Yonathan Randolph, Yuzo Fujishima, Zhenbin Xu, Zoltan Herczeg, and Øistein E. Andersen, for their useful comments, both large and small, that have led to changes to this specification over the years.

Thanks also to everyone who has ever posted about HTML to their blogs, public mailing lists, or forums, including all the contributors to the various W3C HTML WG lists and the various WHATWG lists.

Special thanks to Richard Williamson for creating the first implementation of canvas in Safari, from which the canvas feature was designed.

Special thanks also to the Microsoft employees who first implemented the event-based drag-and-drop mechanism, contenteditable, and other features first widely deployed by the Windows Internet Explorer browser.

Special thanks and $10,000 to David Hyatt who came up with a broken implementation of the adoption agency algorithm that the editor had to reverse engineer and fix before using it in the parsing section.

Thanks to the participants of the microdata usability study for allowing us to use their mistakes as a guide for designing the microdata feature.

Thanks to the many sources that provided inspiration for the examples used in the specification.

Thanks also to the Microsoft blogging community for some ideas, to the attendees of the W3C Workshop on Web Applications and Compound Documents for inspiration, to the #mrt crew, the #mrt.no crew, and the #whatwg crew, and to Pillar and Hedral for their ideas and support.

Thanks to the many sources that provided inspiration for the examples used in the specification.

The image of two cute kittens in a basket used in the context menu example is based on a photo by Alex G. (CC BY 2.0)

The Blue Robot Player sprite used in the canvas demo is based on a work by JohnColburn. (CC BY-SA 3.0)

The photograph of robot 148 climbing the tower at the FIRST Robotics Competition 2013 Silicon Valley Regional is based on a work by Lenore Edman. (CC BY 2.0)

Parts of this specification are © Copyright 2004-2014 Apple Inc., Mozilla Foundation, and Opera Software ASA. You are granted a license to use, reproduce and create derivative works of this document.