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•  A	
  joint	
  project	
  

•  Content	
  of	
  PharmGKB	
  

-­‐  Current:	
  	
  
pharmacogenomics	
  (PGx)	
  relaPonships	
  
Gene	
  –	
  Drug	
  ;	
  Gene	
  –	
  Disease	
  ;	
  Drug	
  –	
  Disease	
  

	
  
-­‐  Goal:	
  	
  
to	
  provide	
  more	
  precise	
  relaPonships 



Population of PharmGKB 
Sentence	
  1:	
  	
  BAK1 gene polymorphism affects doxorubicin resistance. 
Sentence	
  2:	
  	
  Resistance to Doxorubicin is influenced by BAK1 variants. 

Sentence	
  3:	
  	
  Doxorubicin induces BAK1 activity.	
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Outline 

1.  LimitaPons	
  of	
  co-­‐occurrences	
  

2.  ConstrucPon	
  of	
  a	
  knowledge	
  base	
  
1. Algorithm to extract raw relationships 
2. Semi-automated ontology building 
3. Knowledge base content from 1 & 2 
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1.  Avoid false positive connections 
 
 
 
 
 

 

 
 

Limitations of co-occurrence  
(that we wanted to solve) 

“Trimethoprim inhibits activity of CYP2C8 while 
sulfamethoxazole inhibits CYP2C9 activity.”	
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1.  Avoid false positive connections 
 
 
 
 
 

2.  Characterize fine-grain semantics of relationships 

 
 

“Trimethoprim inhibits activity of CYP2C8 while 
sulfamethoxazole inhibits CYP2C9 activity.”	



Limitations of co-occurrence  
(that we wanted to solve) 

“CYP3A4 mRNA expression was increased 
significantly by rifampicin exposure in human 
hepatocytes.”	
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1.  Avoid false positive connections 
 
 
 
 
 

2.  Characterize fine-grain semantics of relationships 

3.  To consolidate synonyms (normalize): 
•  Between complex entity names:  

 

•  Between relationships:  
 
 

Limitations of co-occurrence  
(that we wanted to solve) 

inhibit	


repress          à INHIBIT	


antagonize	



synthesis of PGE2 
PGE2 formation        àdinoprostone_synthesis 
Prostaglandin E2 production  

“Trimethoprim inhibits activity of CYP2C8 while 
sulfamethoxazole inhibits CYP2C9 activity.”	



“CYP3A4 mRNA expression was increased 
significantly by rifampicin exposure in human 
hepatocytes.”	
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Several steps of text processing enable 
extracting relationship semantics 
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Issue:	
  we	
  extracted	
  	
  
heterogeneous	
  rela7onships	
  

MEDLINE 
abstracts  

R1(a1,b1) 
R2(a2,b2) 
   … 
Rn(an,bn) 

Dependency 
Graphs of 
sentences 

 Dependency 
Graph parsing 

Relationship 
extraction  

~87,000,000  
dependency graphs 

Raw 
relationships 

~41,000 raw 
relationships 

Example: 

augment(ABCB1_SNPs, methotrexate_sensitivity) 

increase(P-gp_variants, methopterin_intolerance) 

methotrexate 
sensitivity 

increases 

ABCB1 
variant 

~17,000,000  
abstracts 
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• There is no relation 
ontology for most of 
specialized domains 

• We created one from 
extracted relationships 
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We built and use an ontology to 
normalize relationships 

ontology 
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We manually created a PGx ontology 
“bottom-up” 
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We manually created a PGx ontology 
“bottom-up” 

237 
concepts	


76 roles	
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Snapshot of the role hierarchy 
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Snapshot of the concept hierarchy 
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We use the ontology to normalize the raw 
relationship (subject, relation and object) 
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We use the ontology to normalize the raw 
relationship (subject, relation and object) 

22	
  



Example: two sentences but one fact 
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Example of network (1/3): VKORC1 
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Example of network (2/3):   
  modified by VKORC1 
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Example of network (3/3): AD 
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Example of network (3/3): AD 
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Resulting Knowledge Base 
•  Useful 

– For curation and knowledge summarization  
       @PharmGKB 

– For knowledge discovery  
  e.g.Predicting Drug-Drug interaction 

=>Yael Garten’s PhD thesis 
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Resulting Knowledge Base 
•  Online 

– SPARQL endpoint  
http://sparql.bioontology.org/webui/ 

 
– Example of queries 

http://www.loria.fr/~coulet/material/sparql_queries 
!
###all sentences where the gene UCHL1 is involved in a relation!
select $y!
from <rmi:phare.owl#pd> !
where $rel <http://www.w3.org/2000/01/rdf-schema#comment> $y!
and $rel <owl:annotatedSource> <http://www.stanford.edu/~coulet/
phare.owl#uchl1>;!
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Resulting Knowledge Base 
 To improve! (1/2) 

 
•  Representation of provenance 

– One relation is one triplet 
– Provenance is encoded as an rdfs:comment 

!
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Resulting Knowledge Base 
 To improve! (2/2) 

•  Connections with the Linked Data Cloud? 
–  IDs from Entrez Gene, DrugBank, MeSH!
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Coulet et al. Journal of Biomedical Informatics 43(6), December 2010 

or 
adrien.coulet@loria.fr 

 
 

Thanks 
 

And thanks to Yael Garten for many slides 
 

Questions? 
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MEDLINE 
abstracts  

R1(a1,b1) 
R2(a2,b2) 
   … 
Rn(an,bn) 

Dependency 
Graphs of 
sentences 

Raw 
relationships 

 Dependency 
Graph parsing 

Relationship 
extraction  

~87,000,000  
dependency graphs 

~41,000 raw 
relationships 

The method extracts  
high quality typed relationships 

Evaluation:	


Randomly selected 220 raw relationships: 
classified into 3	


	



“polymorphisms in VKORC1 are associated with 
warfarin dose.”	


	



• associated(VKORC1_polymorphisms,warfarin_dose) 
	

 	

 	

 	

= true and complete	



•  associated (VKORC1_polymorphisms, warfarin)	


	

 	

 	

 	

= true and 

incomplete	


• polymorphisms (VKORC1, warfarin_dose) 	



	

 	

 	

 	

= false	


	



Results:	


•  87.7% were complete or incomplete true 

positives	


•  70%    true and complete	


•  17.7%  true and incomplete���
	



•  12.3% were false positives	



~17,000,000  
abstracts 




