

Customer Experience Digital Data Acquisition 1.0

Revision Date: May 17, 2013

DRAFT Community Group Final Specification

Latest version:

 http://www.w3.org/TR/PLACEHOLDER

Authors:

Individual Organization

Miles Fender

Murray Williams

Accenture

Vinay Goel

Reza Jalili

Dave McNamee

Adobe

Jay Myers Best Buy

Jon Revill Blue Cross and Blue Shield of North Carolina

Blane Sims

Jared Vestal

Eric Lunt

BrightTag

Patrick Wyatt Criteo

Anna Long

Eric Feinberg

Digital Analytics Association

Peter Loveday Digital Window

Daniel Karpantschof Economist Digital, The

Mark Prince

Josh Goodwin

Ensighten

Mathieu Jondet Eulerian Technologies

Laura Holmes

Brian Kuhn

Justin Cutroni

Vishal Goenka

Google

Brian Hendrixson HSN

Viswanath Srikanth

Eliot Towb

Hutch White

IBM

Lee Isensee Localytics

Gagan Kanwar

Emilie Laffray

Nicholas Gadacz

Marin Software

Anton Gething nToklo

Harry Hurst

Ian McCaig

Stephen Elliott

QuBit

Keith Watkins Red Hat

Jonathan Conway Reevoo

Oliver Schiffs SapientNitro

Alexander Dean Snowplow Analytics

Toby Doig TagMan

Ali Behnam Tealium

Copyright© 2013 W3C
®
, All Rights Reserved. W3C liability, trademark and document use rules apply.

Abstract

This specification describes a method for surfacing Customer Experience Digital Data on a Web/Digital

resource as a set of JavaScript Objects, and also specifies the parameters for communicating this data to

digital analytic and reporting servers.

Status of this Document

This is a DRAFT of the Final Specification Document of the W3C Customer Experience Digital Data

Community Group.

Table of Contents

1. Introduction

2. Rationale and Design Goals

3. How to Read this Document

4. The Specification through Examples

5. Instrumentation/Deployment of the Specification

6. Privacy Implications

7. The Customer Experience Digital Data Object

7.1 The Root JavaScript Object

7.2 Page Identifier Object

7.3 Page Object

7.4 Product Object

7.5 Cart Object

7.6 Transaction Object

7.7 Event Object

7.8 Component Object

7.9 User Object

7.10 Version Object

8. Extending the Specification

9. Industry Specific Examples of Using the Specification

10. Additional Examples of Using the Specification

11. Acknowledgements

12. References

13. Appendices

1. Introduction

Collection and analysis of visitor behavioral and demographic data has become an integral part of web

design and website success. This data is central to site performance analysis, dynamically tailoring site

content to visitor activity and interest and retargeting visitors based on behaviors.

Increasingly, multiple vendors are involved in the data collection process on a given digital property, and

each has a solution that needs to be implemented on the web page. As a result, page design has become

more complex and development cycles lengthen as different requirements for data surfacing and

formatting are added to the design process. Further, changing or adding vendors typically requires that

the development team change page design to accommodate vendor-specific requirements. Common

data items must be continually surfaced in different ways - and each design requirement is a custom

effort, further lengthening development cycles. Companies are searching for a simpler, flexible and

standard method to surface this common data on the web and across their digital properties.

This document details the specification for a standard data layer that collects this valuable user

interaction information for subsequent use in analysis and reporting. The information in this document

will be relevant to Web Analysts, Website Implementation Engineers as well as Marketing Professionals

who need to understand user experience data that is being gathered.

2. Rationale and Design Goals

Customer Experience digital data items that are tracked and captured by different vendors are

commonly understood elements used in digital analytics, but vendor specific format requirements and

code assignments create design complexity and vendor dependency in site design.

As a simple instance, vendorA may capture some digital data for page details as a concatenation of

‘PageID + PAGENAME + PAGECATEGORY’ while vendor B may capture the same through distinct

variables vendorB.page.pageId, vendorB.page.pageName, vendorB.page.pageCategory. Further, the

names of the variables, the data structure name & types and methods of extensibility all vary on a per-

vendor basis. Frequently, custom code must be written to capture data to meet a given vendor’s

requirements.

Cumulatively, differences of this type between vendors permeate across all relevant customer

experience digital data objects including Order, Shopping Cart, Registrant and more, increasing the

complexity of customer experience digital data management at the site.

Figure 1: Vendor specific tags on a digital property

To this end, a Standard data object that represents the common data elements in a standard way will

allow development teams to implement standard design structures that populate the Standard data

object. Vendor code placed on the page would reference that standard structure, simplifying the

process of on-boarding or changing vendors, and shaving off expensive development cycles.

Figure 2: Adherence to standard data object accelerates deployment, simplifies site management

The proposed Standard data object is a JavaScript object because of ubiquitous support for JavaScript in

web browsers and web based applications, as well as in other forms of digital properties like mobile &

kiosks and so forth.

The use of a JavaScript object means that the data is not embedded in the html markup and would not

affect page registration or performance. Developers would only need to populate the data fields in the

object that are applicable to the page, keeping the size and complexity of the object to a minimum. That

coding would never change regardless of page requirements vis-à-vis vendor additions or deletions

unless new data elements were required. Because the data is a standard object, vendors who recognize

the object would provide code that references that object, requiring no modification of the page other

than to drop the vendor code container onto the page.

This standard will thus yield a shorter development cycle using fewer resources and there will be a

savings to the client in time and money. The addition or deletion of vendors will be independent of

considerations of page redesign, allowing decisions to be made based on vendor efficacy rather than

cost of migration.

3. How to Read this Document

To understand the value of the specification, it is useful to go through Sections 1, 2, 3 and 4 to get a high

level understanding behind the rationale, applicability and use of the specification. Section 5 talks about

how the code will appear on your digital property, and Section 6 discusses Privacy implications. Sections

7 & 8 take a deep dive into the specific objects and their attributes. Section 9 & 10 wrap up with

additional examples around the specification.

Also note that none of the objects in the specification are designed to be required - use of each object

is at the discretion of the digital property owner. However, once an object has been selected for use, the

object must adhere to the structure as specified in this document to remain conformant.

The term reserved is encountered in the specification when defining certain Object Literals. In this

context, names of certain values are reserved for specific use within the Object Literal, and these values

should be populated for intended purpose only to maintain the integrity of the specification.

4. The Specification through Examples

This section will introduce the specification through detailed examples.

5. Instrumentation/Deployment of the Specification

This section will discuss deployment of the JSO on the page.

Two data points to anchor this section:

● Instantiation of the data layer should be done before any use of the data layer (ideally as high

on the page as possible), e.g. if you plan to use an analytics tag, you should place the data layer

above the analytics tag; if you plan to use a TMS, you should place the data above the TMS

snippet

● Recommend placing the data layer directly in the page, as opposed to an included script; this

will allow anyone trying to consult on data collection implementation to access the data layer

easily when inspecting the source code of your page

6. Privacy Implications

This section will detail recommendations to help with privacy related access issues for siteowners.

7. The Customer Experience Digital Data Object

7.1 The Root JavaScript Object

This section is normative

The root JavaScript Object (JSO) MUST be digitalData, and all data elements used in digital analytics

MUST derive off of this JavaScript Object either directly or indirectly.

The following sub-objects are defined directly off of the digitalData object. and the following subsections

detail each of these subobjects.

ObjectName

digitalData.pageIDentifier

digitalData.page

digitalData.product[n]

digitalData.cart

digitalData.transaction

digitalData.event[n]

digitalData.component[n]

digitalData.user[n]

digitalData.version

7.2 Page Identifier Object

This section is normative

Page Identifier is among the most widely used web analytic data element, and is among the top level

web analytic objects. A Page Identifier MUST have the following Object Name & Type.

ObjectName Type Comment

digitalData.pageIDentifier String ID content area specific to environment; to deal with dev, staging,

and production - unique among environments

7.3 Page Object

This section is normative

Page Object carries significant details about the page, and the most commonly used data elements are

captured by the specification below. Page MUST have the following Object Name & Type.

ObjectName Type Comment

digitalData.page.pageID String Page ID

digitalData.page.pageName String

digitalData.page.pageCategory Object Literal

= {

primaryCategory:’FAQ

Because of the wide range of methods

for categorization, an object literal works

best here.

Pages’

subCategory1:

'ProductInfo',

PageType: 'FAQ'

};

Reserved:

primaryCategory: String

The first name, primaryCategory is

reserved. All other values are optional

and should fit the individual

implementation needs in both naming

and values passed.

digitalData.page.searchTerm String Internal Search Term

digitalData.page.searchResult Integer Number of Internal Search Results

digitalData.page.destinationURL String Destination URL

digitalData.page.referringURL String Referring URL

digitalData.page.attributes Object Literal

={

SysEnv: 'mobile',

Variant: '2',

Version: '1.14'

Breadcrumbs:

'home,Products,haircare,

};

Reserved:

SysEnv: String

Variant: String

Version:String

Breadcrumbs:String

The object provides extensibility to the

Page object. There are four reserved

names, SysEnv,Variant,Version, and

Breadcrumbs. All other values are

optional and should fit the individual

implementation needs in both naming

and values passed.

7.4 Product Object

This section is normative

Product Object carries details about a particular product with frequently used attributes listed below.

Product Object MUST have the following Object Name & Type.

ObjectName Type Comment

digitalData.product.productID Object Literal

= {

prodID: 'rog300',

productName: 'Rogaine',

description: 'Hair Regrowth’

The object provides

extensibility to the

Product object. There

are four reserved

names: prodID,

productURL: 'http://site.com/r.html'

manufacturer:'Pharma'

size:'300ml'

};

Reserved:

prodID:String

productName:String

description:String

productURL:String

productName,

description, and

productURL. Other

names optional and

should fit the individual

implementation needs

in both Naming and

values passed.

digitalData.product.productCategory Object Literal

= {

primaryCategory: 'Haircare',

subCategory1: 'Men's',

ProductType: 'Thining Hair

Treatments'

}

Reserved:

primaryCategory: String

Because of the wide

range of methods for

categorization an object

literal works best here.

The name

primaryCategory is

reserved . Other names

are optional and should

fit the individual

implementation needs

in both naming and

values passed.

digitalData.product.linkedProducts Object Literal

={ productID1: value from

digitalData.product.productID.

prodID;

productID2: value from

digitalData.product.productID.prodID

….

}

Object Literal value

containing lists of Linked

Product IDs.

digitalData.product.attributes Object Literal Any additional

dimensions related to

the product as a name-

value pair in an Object

Literal

7.5 Cart Object

This section is normative

ObjectName Type Comment

digitalData.cart.cartID String ID associated with a shopping Cart

digitalData.cart.price Object Literal

= {

basePrice:2.00,

vouchercode:'Alpha',

voucherdiscount:.50,

currency: 'EUR',

tax: '2.00',

shipping: '1.14'

shippingmethod: 'UPS'

priceWithTax:

cartTotal:

};

Reserved:

basePrice: Number

voucherCode:String

voucherDiscount:

Number

currency: String

tax: Number

shipping: Number

shippingmethod: String

priceWithTax: Number

cartTotal:

The object provides extensibility to the Cart Price

object. The name basePrice is reserved. All other

names are optional and should fit the individual

implementation needs in both naming and values

passed. This object is duplicated in the Items

object as some vendors track this information on

each item.

digitalData.cart.items[n] Array List of Items in the Cart

digitalData.cart.items[n].

productID

Object Literal

= {

prodID: 'rog300',

productName: 'Rogaine',

description: 'Hair

Regrowth’

productURL:

'http://site.com/r.html'

manufacturer:'Pharma'

sku:'RG003'

size:'300ml'

};

Reserved:

prodID:String

productName:String

description:String

productURL:String

Same as productID defined under Products

object.

The object provides extensibility to the Items

object. The names prodID, productName,

description, and productURL are reserved. All

other names are optional and should fit the

individual implementation needs in both Naming

and values passed.

digitalData.cart.items[n]. Object Literal Same as productCategory under Product Object.

productCategory = {

primaryCategory:

'Haircare',

subCategory1: 'Men's',

ProductType: 'Thining

Hair Treatments'

}

Reserved:

primaryCategory: String

Because of the wide range of methods for

categorization an object literal works best here.

The name primaryCategory is reserved. All other

names are optional and should fit the individual

implementation needs in both naming and values

passed.

digitalData.cart.items[n].

quantity

Number QuantiyNumber of this particular item

digitalData.cart.items[n].

price

Object Literal

= {

basePrice:2.00,

 vouchercode:'Alp

ha',

voucherdiscount:.50,

currency: 'EUR',

tax: '2.00',

shipping: '1.14'

 shippingmethod:

'UPS'

priceWithTax:

cartTotal:

};"

Same as Price at the Cart Level.

The object provides extensibility to the Cart item

Price object. There may be duplication with the

main Cart object but some vendors track this

data on each individual item in the Cart. Other

than the Reserved values, all others are optional

and should fit the individual

implementation needs in both naming and values

passed.

digitalData.cart.items[n].

linkedProducts

Object Literal Same as under the Product Object. Object Literal

value containing list of Linked Product IDs.

digitalData.cart.items[n].

attributes

Object Literal Same as under the Product Object. Object Literal

value for additional dimensions of the item.

7.6 Transaction Object

This section is normative

ObjectName Type Comment

digitalData.transaction.transactionID String

digitalData.transaction.profileID String

digitalData.transaction.profileID. Object Literal The object

address = {

line1:'673 Mystreet',

line2:'Apt 1',

city:'Austin',

stateProvince: 'TX',

postalCode:'78610'

country: 'USA',

};

Reserved:

line1:String

line2: String

city:String

stateProvince:String

postalCode:String

country:String

provides

extensibility to

the purchaser

object. There

are six reserved

names: line1,

line2, city,

stateProvince,

postalCode, and

country.

Optional values

(those not in the

reserved list)

should fit the

individual

implementation

needs in both

naming and

values passed.

digitalData.transaction.profileID.

shippingAddress

Object Literal

= {

line1:'673 Mystreet',

line2:'Apt 1',

city:'Austin',

stateProvince: 'TX',

postalCode:'78610'

country: 'USA',

shippingMethod:'UPS'

};

Reserved:

line1:String

line2: String

city:String stateProvince:String

postalCode:String country:String

shippingMethod:String

The object

provides

extensibility to

the purchaser

object. There

are seven

reserved names:

line1, line2, city,

stateProvinde,

postalCode,

country, and

shippingMethod.

Optional names

(those not in the

reserved list)

should fit the

individual

implementation

needs in both

naming and

values passed.

digitalData.transaction.total Object Literal

={

totalPrice:2.00,

voucherCode:'Alpha',

The object

provides

extensibility to

the Transaction

voucherDiscount:.50,

currency: 'EUR',

paymentType:'VISA'

tax: '2.00',

shipping: '1.14'

shippingMethod:'UPS'

};

Reserved:

totalPrice:Number

voucherCode:String

voucherDiscount:String

currenty:String

paymentType:String

tax:Number

shipping:Number

shippingMethod:String

object. There are

eight reserved

names:

totalPrice,

voucherCode,

voucherDiscount,

currency,

paymentType,

tax, shipping,

shippingMethod.

Optional names

(those not in the

reserved list)

should fit the

individual

implementation

needs in both

naming and

values passed.

digitalData.transaction.attributes Object Literal Provides

extensibility

digitalData.transaction.items[n] Array List of items in

the transaction

digitalData.transaction.items[n].

productID

Object Literal

={

prodID: 'rog300',

productName: 'Rogaine',

description: 'Hair Regrowth Treatment'

productURL:

'http://somesite.com/Products/rogain300.html'

manufacturer:'Pharmecutical Company'

sku:'RG003'

size:'300ml'

};

Reserved:

prodID:String

productName:String

description:String

productURL:String

manufacturer:String

sku:String

color:String

The object

provides

extensibility to

the Transaction

object. The

name prodID, is

recommended

and reserved.

Other reserved

names are

productName,

description,

productURL,

manufacturer,

sku, color and

size. All other

values are

optional and

should fit the

individual

size:String implementation

needs in both

Naming and

values passed.

digitalData.transaction.items[n].

categoryID

Object Literal

={

primaryCategory: 'Haircare',

subCategory1: 'Men's',

productType: 'Thining Hair Treatments'

};

Reserved:

primaryCategory:String

Because of the

wide range of

methods for

categorization

and object literal

works best here.

The name

primaryCategory

is recommended

and reserved, all

other names are

optional and

should fit the

individual

implementation

needs in both

naming and

values passed.

W3C should have

a list of best

practices but not

require a

particular

structure.

digitalData.transaction.items[n].

quantity

Number

digitalData.transaction.items[n].

price

Object Literal

={

basePrice:2.00,

voucherCode:'Alpha',

voucherDiscount:.50,

currency: 'EUR',

tax: '2.00',

shipping: '1.14'

shippingMethod:'UPS'

};

Reserved:

basePrice:Number

The object

provides

extensibility to

the Transaction

Items object.

There may be

duplication with

the main

Transaction

object but some

vendors track

this data on each

individual item in

voucherCode:String

voucherDiscount:Number

currency:String

tax:Number

shipping:Number

shippingMethod:String

the cart. There

are seven

reserved names,

basePrice,

voucherCode,

voucherDiscount,

currency, tax,

shipping,

shippingMethod.

All other names

are optional and

should fit the

individual

implementation

needs in both

naming and

values passed.

W3C should have

a list of best

practices but not

require a

particular

structure.

digitalData.transaction.items[n].

linkedProducts

Object Literal Contains lists of

linked Product

ID’s

digitalData.transaction.items[n].

attributes

Object Literal Provides

extensibility

7.7 Event Object

This section is normative

ObjectName Type Comment

event[n] Array

event[n].eventID Object Literal

={

eventName:'Add News

Portal',

eventAction:'addportal',

eventPoints:200,

The object provides extensibility to the event

object. There are seven reserved names, eventID,

eventName, eventAction, eventPoints, type,

timeStamp and effect. The name eventID is

required. All other names are optional and should

fit the individual implementation needs in both

type:'contentModifier',

timeStamp:nnnnnnnnn,

effect:'include portal

1234'

};

Reserved:

eventName:String

eventAction:String

eventPoints:Number

type:String

timeStamp:number

effect:String

Naming and values passed. W3C should have a

list of best practices but not require a particular

structure.

event[n].eventCategory Object Literal

={

primaryCategory: 'Portal',

subCategory1:

'dashboard',

}

Reserved:

primaryCategory:String

Because of the wide range of methods for

categorization and object literal works best here.

The names primaryCategory is recommended and

reserved, all other names are optional and should

fit the individual implementation needs in both

naming and values passed. W3C should have a list

of best practices but not require a particular

structure.

event.attributes Object Literal

={

cause: 'Portal Selection

From Dropdown',

effect: 'Add News Portal',

};

Reserved:

cause:String

effect:String

Object literal to provide object extensibility and

more granular tracking. There are two reserved

names, cause and effect. W3C should have a list

of best practices but not a required structure.

7.8 Component Object

This section is normative

ObjectName Type Comment

component[n] Array

component[n].componentID Object Literal

={

compID: 'rog300v',

The object provides extensibility to the

component object. The name compID is

recommended and reserved. Other reserved

componentName: 'How

to use Rogaine',

description: 'Hair

Treatment Video'

};

Reserved:

compID:String

value Names are compID, componentName,

and description. All other names are optional

and should fit the individual implementation

needs in both Naming and values passed.

W3C should have a list of best practices but

not require a particular structure.

component[n].category Object Literal

={

primaryCategory:

'Haircare',

subCategory1: 'VIDoes',

productType: 'Flash

Movie'

};

Reserved:

primaryCategory:String

Because of the wide range of methods for

categorization and object literal works best

here. The value, primaryCategory is

recommended and reserved, all other names

are optional and should fit the individual

implementation needs in both naming and

values passed. W3C should have a list of best

practices but not require a particular

structure.

component[n].attributes Object Literal Provides extensibility.

7.9 User Object

This section is normative

ObjectName Type Comment

user[n] Array Array of Users

user[n]. segment Object Literal

user[n].profile[n] Array Array of User Profiles.

user[n].profile[n].

profileID

Object Literal

={

profileID:

'humanbeing12345',

userName: 'me',

};

Reserved:

profileID:String

userName:String

The object provides extensibility to the profile

object. The value, profileID, is recommended and

reserved. The other reserved name is userName.

All other names are optional and should fit the

individual implementation needs in both Naming

and values passed.

user[n].profile[n]. Object Literal There are six reserved names, line1, line2, city,

address ={

line1:'673 Mystreet',

line2:'Apt 1',

city:'Austin',

stateProvince: 'TX',

postalCode:'78610'

country: 'USA',

};

Reserved:

line1:String

line2:String

city:String

stateProvince:String

postalCode:String

country:String

stateProvince, postalCode, and country. All other

names are optional and should fit the individual

implementation needs in both naming and values

passed.

user[n].profile[n].

social

Object Literal

={

twitter: 'soembody',

twitterinfo: 'stuff',

facebook: 'somebody1234'

facebookinfo: 'morestuff'

};

The object provides extensibility to the profile

object. All names are optional and should fit the

individual implementation needs in both naming and

values passed.

user[n].profile[n].

attributes

Object Literal

={

userLogin: 'logmein',

email:

'somebody@somesite.com',

language: 'chr'

returningStatus: 'new'

type:'premium'

};

Reserved:

userLogin:String

email:String

language:String

returningStatus:String

type:String

The object provides extensibility to the profile

object. There are five reserved names: userLogin,

email, language, returningStatus, and type. All

other names are optional and should fit the

individual implementation needs in both Naming

and values passed.

7.10 Version Object

This section is normative

ObjectName Type Comment

version String

8. Extending the Specification

Normative section regarding extensions. Then followed by examples of extending the specification

9. Industry Specific Examples of Using the Specification

Industry specific examples – using the specifications, including its extension capabilities

10. Additional Examples of Using the Specification

This continues illustration of the specification through examples including Events, and other areas that

we should illustrate.

At the end of the day, reading sections 3, 4, 7 & 8 should give the reader virtually everything they need to

know about the specification without even going through the details of the specification.

11. Acknowledgements

Additional Contributors

12. References

RFC 2119: Key words for use in RFCs to Indicate Requirement Levels , S. Bradner, Author. Internet

Engineering Task Force, March 1997. Available at http://www.ietf.org/rfc/rfc2119.txt.

RFC 4627: The application/json Media Type for JavaScript Object Notation (JSON), D. Crockford, Author.

Internet Engineering Task Force, July 2006. Available at http://www.ietf.org/rfc/rfc4627.txt.

13. Appendices

To be filled in as needed.

