
CSS Techniques for Web Content Accessibility
Guidelines 1.0

W3C Working Draft 27 July 2000
This version:

http://www.w3.org/WAI/GL/WD-WCAG10-CSS-TECHS-20000727
(plain text, postscript, pdf, gzip tar file of HTML, zip archive of HTML)

Latest version:
http://www.w3.org/WAI/GL/WCAG10-CSS-TECHS

Previous version:
http://www.w3.org/WAI/GL/WD-WCAG10-CSS-TECHS-20000720

Editors:
Wendy Chisholm, W3C,
Gregg Vanderheiden, Trace R & D Center, University of Wisconsin -- Madison
Ian Jacobs, W3C

Copyright ©1999 - 2000 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C
liability, trademark, document use and software licensing rules apply.

Abstract
This document describes techniques for satisfying the checkpoints of "CSS
Techniques for Web Content Accessibility Guidelines 1.0" [WCAG10] [p. 22] when
using CSS ([CSS1] [p. 22] , [CSS2] [p. 22]).

CSS1 allows content developers to duplicate most HTML 4.0 presentation
capabilities and offer more power with less cost. However, until most users have
browsers that support style sheets, not every presentation idiom may be expressed
satisfactorily with style sheets. We also provide examples of how to use HTML 4.0
features (e.g., tables, bitmap text) more accessibly when they must be used.

"Techniques for Web Content Accessibility Guidelines 1.0" [WCAG10-TECHS]
[p. 22] contains additional techniques and references for other formats and
languages.

27 Jul 2000 18:271

CSS Techniques for Web Content Accessibility Guidelines 1.0

http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.tracecenter.org/
http://www.w3.org/
http://www.w3.org/WAI/GL/WD-WCAG10-CSS-TECHS-20000720
http://www.w3.org/WAI/GL/WCAG10-CSS-TECHS
http://www.w3.org/WAI/GL/WD-WCAG10-CSS-TECHS-20000727
http://www.w3.org/

Status of this document
This section describes the status of this document at the time of its publication.
Other documents may supersede this document. The latest status of this document
series is maintained at the W3C.

While CSS Techniques for Web Content Accessibility Guidelines 1.0 strives to be
a stable document (as a W3C Recommendation), the current document is expected
to evolve as technologies change and content developers discover more effective
techniques for designing accessible Web sites and pages.

This is a W3C Working Draft for review by W3C Members and other interested
parties. It is a draft document and may be updated, replaced or obsoleted by other
documents at any time. It is inappropriate to use W3C Working Drafts as reference
material or to cite them as other than "work in progress". This is work in progress
and does not imply endorsement by, or the consensus of, either W3C or participants
in the Web Content Accessibility Guidelines (WCAG) Working Group.

This document is part of a series of accessibility documents published by the Web
Accessibility Initiative. WAI Accessibility Guidelines are produced as part of the WAI
Technical Activity. The goal of the Web Content Guidelines Working Group is
discussed in the Working Group charter.

A list of current W3C Recommendations and other technical documents can be
found at http://www.w3.org/TR.

Please send detailed comments on this document to wai-wcag-editor@w3.org.

To do

Get rid of @@’s placed by editors.
Include WebReview browser compatibility information for each CSS property as
well as other known bugs, inconsistencies, etc. Reference links where possible.
E.g., other webreview articles.
Ensure that discussions of checkpoints are grouped according to priority so that
it is clear which techniques need to be implemented in order to conform at a
certain priority level.

227 Jul 2000 18:27

CSS Techniques for Web Content Accessibility Guidelines 1.0

http://www.w3.org/TR
http://www.w3.org/WAI/GL/new-charter.html
http://www.w3.org/WAI/GL
http://www.w3.org/WAI/Technical/Activity
http://www.w3.org/WAI/Technical/Activity
http://www.w3.org/WAI/
http://www.w3.org/WAI/

Table of Contents
................. 1Abstract
.............. 2Status of this document
....... 41 Decrease maintenance and increase consistency
.............. 42 User override of styles
............... 53 Units of measure
.............. 64 Generated content
.................. 75 Fonts
............... 86 Text style effects
............. 87 Text instead of images
............ 98 Text formatting and position
................. 109 Colors
......... 1110 Providing contextual clues in HTML lists
........ 1211 Layout, positioning, layering, and alignment
......... 1311.1 If you must use images as spacers
.............. 1312 Rules and borders
... 1413 Using style sheet positioning and markup to transform gracefully
....... 1914 Creating movement with style sheets and scripts
........... 1915 Aural Cascading Style Sheets
....... 2016 Access to alternative representations of content
................ 2017 Media types
............... 21Acknowledgments
................ 2218 References
................ 2219 Resources
............ 2219.1 Accessibility resources

27 Jul 2000 18:273

CSS Techniques for Web Content Accessibility Guidelines 1.0

1 Decrease maintenance and increase consistency
Checkpoints in this section: 14.3 Create a style of presentation that is consistent
across pages. [Priority 3] .

Use a minimal number of style sheet for your site
Use linked style sheets rather than embedded styles, and avoid inline style
sheets.
If you have more than one, use the same "class" name for the same concept in
all of the style sheets.

2 User override of styles
Checkpoint in this section: 11.2 Avoid deprecated features of W3C technologies.
[Priority 2] .

In order to ensure that users can control styles, CSS2 changes the semantics of
the "!important" operator defined in CSS1. In CSS1, authors always had final say
over styles. In CSS2, if a user’s style sheet contains "!important", it takes
precedence over any applicable rule in an author’s style sheet. This is an important
feature to users who require or must avoid certain color combinations or contrasts,
users who require large fonts, etc. For instance, the following rule specifies a large
font size for paragraph text and would override an author rule of equal weight:

Example.

P { font-size: 24pt ! important }

The CSS2 ’inherit’ value - available for every property - leads to compact
"!important" style rules that govern most or all of a document. For instance, the
following style rules force all backgrounds to white and all foreground colors to black:

Example.

/* Sets the text color to black
and the background color to
white for the document body. */

BODY {
 color: black ! important ;
 background: white ! important
}

 /* Causes the values of ’color’ and ’background’
to be inherited by all other elements,
strengthened by !important. Note that this
may be overridden by other, more specific,
user styles. */

427 Jul 2000 18:27

CSS Techniques for Web Content Accessibility Guidelines 1.0

http://www.w3.org/WAI/GL/WCAG10-TECHS#tech-avoid-deprecated
http://www.w3.org/WAI/GL/WCAG10-TECHS#tech-consistent-style

* {
 color: inherit ! important ;
 background: inherit ! important
}

CSS2 also includes these user control features:

System colors (for ’color’, ’background-color’, ’border-color’, and ’outline-color’)
and system fonts (for ’font’) mean that users may apply their system color and
font preferences to Web documents.
Dynamic outlines (the ’outline’ property) allow users (e.g., with low vision) to
create outlines around content that don’t affect layout but do provide highlight
information.

For example, to draw a thick black line around an element when it has the focus,
and a thick red line when it is active, the following rules can be used:

Example.

:focus { outline: thick solid black }
:active { outline: thick solid red }

3 Units of measure
Checkpoints in this section: 3.4 Use relative rather than absolute units in markup
language attribute values and style sheet property values. [Priority 2] .

Techniques:

Use the "em" unit to set font sizes.
Use relative length units and percentages. CSS allows you to use relative units
even in absolute positioning. Thus, you may position an image to be offset by
"3em" from the top of its containing element. This is a fixed distance, but is
relative to the current font size, so it scales nicely.
Only use absolute length units when the physical characteristics of the output
medium are known, such as bitmap images.

Example.

Use em to set font sizes, as in:

 H1 { font-size: 2em }

rather than:

 H1 { font-size: 12pt }

End example.

27 Jul 2000 18:275

CSS Techniques for Web Content Accessibility Guidelines 1.0

http://www.w3.org/WAI/GL/WCAG10-TECHS#tech-relative-units

Example.

Use relative length units and percentages.

 BODY { margin-left: 15%; margin-right: 10%}

End example.

Example.

Only use absolute length units when the physical characteristics of the output
medium are known.

 .businesscard { font-size: 8pt }

End example.

4 Generated content
Checkpoints in this section:

3.1 When an appropriate markup language exists, use markup rather than
images to convey information. [Priority 2] ,
6.1 Organize documents so they may be read without style sheets. For
example, when an HTML document is rendered without associated style sheets,
it must still be possible to read the document. [Priority 1]

Techniques:

Provide a text equivalent for any important image or text generated by style
sheets (e.g., via the ’background-image’, ’list-style’, or ’content’ properties).
Ensure that important content appears in the document object. Text generated
by style sheets is not part of the document source and will not be available to
assistive technologies that access content through DOM, levels 1 and 2
([[DOM1],[DOM2]]).

CSS2 includes several mechanisms that allow content to be generated from style
sheets:

the :before and :after pseudo-elements and the ’content’ property. When used
together, these allow authors to insert markers (e.g., counters and constant
strings such as "End Example" in the examples below) before or after and
element’s content.
the ’cue’, ’cue-before’, and ’cue-after’ properties. This properties allow users to
play a sound before or after an element’s content.
List styles, which may be numbers, glyphs, or images (usually associated with
the LI element in HTML). CSS2 adds international list styles to the styles
defined in CSS1. See the ’list-style-type’ and ’content’ properties.

627 Jul 2000 18:27

CSS Techniques for Web Content Accessibility Guidelines 1.0

http://www.w3.org/WAI/GL/WCAG10-TECHS#tech-order-style-sheets
http://www.w3.org/WAI/GL/WCAG10-TECHS#tech-use-markup

Generated content can serve as markers to help users navigate a document and
stay oriented when they can’t access visual clues such as proportional scrollbars,
frames with tables of contents, etc.

For instance, the following user style sheet would cause the words "End Example"
to be generated after each example marked up with a special class value in the
document:

Example.

DIV.example:after {
 content: End Example
}

Users could also, for example, number paragraphs so that they could locate their
current reading position in a document:

Example.

P:before {
 content: counter(paragraph) ". " ;
 counter-increment: paragraph
}

5 Fonts
Checkpoints in this section: 11.2 Avoid deprecated features of W3C technologies.
[Priority 2] .

Techniques:

Always specify a fallback generic font.
Instead of using deprecated presentation elements and attributes, use the many
CSS properties to control font characteristics: ’font-family’, ’font-size’,
’font-size-adjust’, ’font-stretch’, ’font-style’, ’font-variant’, and ’font-weight’.
Use the following CSS2 properties to control font information

’font’, ’font-family’, ’font-size’, ’font-size-adjust’, ’font-stretch’, ’font-style’,
’font-variant’, and ’font-weight’

instead of the following deprecated font elements and attributes in HTML:

FONT, BASEFONT, "face", and "size".
If you must use HTML elements to control font information, use BIG and
SMALL, which are not deprecated.

Example.

Always specify a fallback generic font:

27 Jul 2000 18:277

CSS Techniques for Web Content Accessibility Guidelines 1.0

http://www.w3.org/WAI/GL/WCAG10-TECHS#tech-avoid-deprecated

 BODY { font-family: "Gill Sans", sans-serif }

End example.

Example.

<STYLE type="text/css">
 P.important { font-weight: bold }
 P.less-important { font-weight: lighter; font-size: smaller }
 H2.subsection { font-family: Helvetica, sans-serif }
</STYLE>

End example.

6 Text style effects
Checkpoints in this section: 7.2 Until user agents allow users to control blinking,
avoid causing content to blink (i.e., change presentation at a regular rate, such as
turning on and off). [Priority 2] .

The following CSS2 properties can be used to style text:

Case: ’text-transform’ (for uppercase, lowercase, and capitalization).
Shadow effects: ’text-shadow’
Underlines, overlinks, blinking: ’text-decoration’. Note. If blinking content (e.g., a
headline that appears and disappears at regular intervals) is used, provide a
mechanism for stopping the blinking. In CSS, ’text-decoration: blink’ will cause
content to blink and will allow users to stop the effect by turning off style sheets
or overriding the rule in a user style sheet. Do not use the BLINK and
MARQUEE elements. These elements are not part of any W3C specification for
HTML (i.e., they are non-standard elements).

7 Text instead of images
Checkpoints in this section: 3.3 Use style sheets to control layout and presentation.
[Priority 2] .

Content developers should use style sheets to style text rather than representing
text in images. Using text instead of images means that the information will be
available to a greater number of users (with speech synthesizers, braille displays,
graphical displays, etc.). Using style sheets will also allow users to override author
styles and change colors or fonts sizes more easily.

If it is necessary to use a bitmap to create a text effect (special font,
transformation, shadows, etc.) the bitmap must be accessible (see the sections on
text equivalents and alternative pages).

Example.

827 Jul 2000 18:27

CSS Techniques for Web Content Accessibility Guidelines 1.0

http://www.w3.org/WAI/GL/WCAG10-TECHS/#alt-pages
http://www.w3.org/WAI/GL/WCAG10-TECHS/#text-equivalent
http://www.w3.org/WAI/GL/WCAG10-TECHS#tech-style-sheets
http://www.w3.org/WAI/GL/WCAG10-TECHS#tech-avoid-blinking

In this example, the inserted image shows the large red characters "Example",
and is captured by the value of the "alt" attribute.

<P>This is an

 of what we mean.
</P>

End example.

8 Text formatting and position
Checkpoints in this section: 3.3 Use style sheets to control layout and presentation.
[Priority 2] .

The following CSS2 properties can be used to control the formatting and position
of text:

Indentation: ’text-indent’. Do not use the BLOCKQUOTE or any other structural
element to indent text.
Letter/word spacing: ’letter-spacing’, ’word-spacing’. For example instead of
writing "H E L L O" (which users generally recognize as the word "hello" but
would hear as individual letters), authors may create the same visual effect with
the ’word-spacing’ property applied to "HELLO". Text without spaces will be
transformed more effectively to speech.
White space: ’white-space’. This property controls the white space processing of
an element’s content.
Text direction: ’direction’, ’unicode-bidi’.
The :first-letter and :first-line pseudo-elements allow authors to refer to the first
letter or line of a paragraph of text.

The following example shows how to use style sheets to create a drop-cap effect.

Example.

<HEAD>
<TITLE>Drop caps</TITLE>
<STYLE type="text/css">
 .dropcap { font-size : 120%; font-family : Helvetica }
</STYLE>
</HEAD>
<BODY>
<P>Once upon a time...
</BODY>

Note. As of the writing of this document, the CSS pseudo-element ’:first-letter’,
which allows content developers to refer to the first letter of a chunk of text, is not
widely supported.

27 Jul 2000 18:279

CSS Techniques for Web Content Accessibility Guidelines 1.0

http://www.w3.org/WAI/GL/WCAG10-TECHS#tech-style-sheets

9 Colors
Checkpoints in this section:

2.1 Ensure that all information conveyed with color is also available without
color, for example from context or markup. [Priority 1]
2.2 Ensure that foreground and background color combinations provide
sufficient contrast when viewed by someone having color deficits or when
viewed on a black and white screen. [Priority 2 for images, Priority 3 for text]. .

Techniques:

Use numbers, not names, for colors.

Example.

Use numbers, not names, for colors:

 H1 {color: #808000}
 H1 {color: rgb(50%,50%,0%)}

End example.

Use these CSS properties to specify colors:

’color’, for foreground text color.
’background-color’, for background colors.
’border-color’, ’outline-color’ for border colors.
For link colors, refer to the :link, :visited, and :active pseudo-classes.

Ensure that foreground and background colors contrast well. If specifying a
foreground color, always specify a background color as well (and vice versa).

Ensure that information is not conveyed through color alone. For example, when
asking for input from users, do not write "Please select an item from those listed in
green." Instead, ensure that information is available through other style effects (e.g.,
a font effect) and through context (e.g,. comprehensive text links).

For instance, in this document, examples are styled by default (through style
sheets) as follows:

They are surrounded by a border.
They use a different background color.
They begin with the word "Example" (or "Deprecated Example".
They also end with the phrase "End example", but that phrase is hidden by
default with ’display: none’. For user agents that don’t support style sheets or
when style sheets are turned off, this text helps delineate the end of an example
for readers who may not be able to see the border around the example.

1027 Jul 2000 18:27

CSS Techniques for Web Content Accessibility Guidelines 1.0

http://www.w3.org/WAI/GL/WCAG10-TECHS#tech-color-contrast
http://www.w3.org/WAI/GL/WCAG10-TECHS#tech-color-convey

Quicktest! To test whether your document still works without colors, examine it
with a monochrome monitor or browser colors turned off. Also, try setting up a color
scheme in your browser that only uses black, white, and the four browser-safe greys
and see how your page holds up.

Quicktest! To test whether color contrast is sufficient to be read by people with
color deficiencies or by those with low resolution monitors, print pages on a black
and white printer (with backgrounds and colors appearing in grayscale). Also try
taking the printout and copying it for two or three generations to see how it degrades.
This will show you where you need to add redundant cues (example: hyperlinks are
usually underlined on Web pages), or whether the cues are two small or indistinct to
hold up well.

For more information about colors and contrasts, refer to [LIGHTHOUSE] [p. 22] .

10 Providing contextual clues in HTML lists
Checkpoints in this section:

3.6 Mark up lists and list items properly. [Priority 2]
13.2 Provide metadata to add semantic information to pages and sites.
[Priority 2]

Content developers are encouraged to use UL for unordered lists and OL for
ordered lists (i.e., use markup appropriately) combined with CSS to provide
contextual clues.

The following CSS2 style sheet shows how to provide compound numbers for
nested lists created with either UL or OL elements. Items are numbered as "1", "1.1",
"1.1.1", etc.

Example.

<STYLE type="text/css">
 UL, OL { counter-reset: item }
 LI { display: block }
 LI:before { content: counters(item, "."); counter-increment: item }
</STYLE>

End example.

Until either CSS2 is widely supported by users agents or user agents allow users
to control rendering of lists through other means, authors should consider providing
contextual clues in nested lists. The following CSS1 mechanism shows how to hide
the end of a list when style sheets are turned on, and to reveal it when style sheets
are turned off, when user style sheets override the hiding mechanism, or when style
sheets aren’t supported.

Example.

27 Jul 2000 18:2711

CSS Techniques for Web Content Accessibility Guidelines 1.0

http://www.w3.org/WAI/GL/WCAG10-TECHS#tech-use-metadata
http://www.w3.org/WAI/GL/WCAG10-TECHS#tech-list-structure

 <STYLE type="text/css">
 .endoflist { display: none }
 </STYLE>

 Paper:

 Envelopes
 Notepaper
 Letterhead
 Poster paper
 (End of Paper)

 Pens:

 Blue writing pens
 whiteboard pens
 (End of Pens)

 Fasteners:

 paper clips
 staples
 Big lengths of rope.
 (End of Fasteners)

 (End of Office Supplies)

End example.

Note: This example does not help the case of wrapping list items. With some more
effort, the author could put similar markup at the end of each list item.

@@Question: Perhaps it’s also helpful to use this mechanism at the beginning of
each list to say how many items are in the list. Any thoughts?

@@Need to create test file determine what users think of this proposal.

11 Layout, positioning, layering, and alignment
Checkpoints in this section:

3.3 Use style sheets to control layout and presentation. [Priority 2]
5.3 Do not use tables for layout unless the table makes sense when linearized.
Otherwise, if the table does not make sense, provide an alternative equivalent
(which may be a linearized version). [Priority 2] .

Layout, positioning, layering, and alignment should be done through style sheets
(notably by using CSS floats and absolute positioning):

’text-indent’, ’text-align’, ’word-spacing’, ’font-stretch’. Each of these properties
allows users to control spacing without adding additional spaces. Use ’text-align:
center’ instead of the deprecated CENTER element.
’margin’, ’margin-top’, ’margin-right’, ’margin-bottom’, ’margin-left’. With these

1227 Jul 2000 18:27

CSS Techniques for Web Content Accessibility Guidelines 1.0

http://www.w3.org/WAI/GL/WCAG10-TECHS#tech-avoid-table-for-layout
http://www.w3.org/WAI/GL/WCAG10-TECHS#tech-style-sheets

properties, authors can create space on four sides of an element’s content
instead of adding non-breaking spaces (), which are non-standard
mark-up, to create space around an element.
’float’, ’position’, ’top’, ’right’, ’bottom’, ’left’. With these properties, the user can
control the visual position of almost any element in a manner independent of
where the element appears in the document. Authors should always design
documents that make sense without style sheets (i.e., the document should be
written in a "logical" order) and then apply style sheets to achieve visual effects.
The positioning properties may be used to create margin notes (which may be
automatically numbered), side bars, frame-like effects, simple headers and
footers, and more.
The ’empty-cells’ property allows users to leave table cells empty and still give
them proper borders on the screen or on paper. A data cell that is meant to be
empty should not be filled with white space or a non-breaking space just to
achieve a visual effect.

11.1 If you must use images as spacers
Provide text equivalents for all images, including invisible or transparent images.

If content developers cannot use style sheets and must use invisible or
transparent images (e.g., with IMG) to lay out images on the page, they should
specify alt="" for them.

Deprecated example.

Authors should not use spaces for the value of "alt" to prevent the words from
running together when the image is not loaded:

 my poem requires a big spacehere

In this next example, an image is used to force a graphic to appear in a certain
position:

End example.

12 Rules and borders
Checkpoints in this section: 6.1 Organize documents so they may be read without
style sheets. For example, when an HTML document is rendered without associated
style sheets, it must still be possible to read the document. [Priority 1] .

Rules and borders may convey the notion of "separation" to visually enabled users
but that meaning cannot be inferred out of a visual context.

Use these CSS properties to specify border styles:

27 Jul 2000 18:2713

CSS Techniques for Web Content Accessibility Guidelines 1.0

http://www.w3.org/WAI/GL/WCAG10-TECHS#tech-order-style-sheets

’border’, ’border-width’, ’border-style’, ’border-color’.
’border-spacing’ and ’border-collapse’ for tables.
’outline, ’outline-color’, ’outline-style’, and ’outline-width’ for dynamic outlines.

Authors should use style sheets to create rules and borders.

Example.

In this example, the H1 element will have a top border that is 2px thick, red, and
separated from the content by 1em:

 <HEAD>
 <TITLE>Redline with style sheets</TITLE>
 <STYLE type="text/css">
 H1 { padding-top: 1em; border-top: 2px red }
 </STYLE>
 </HEAD>
 <BODY>
 <H1>Chapter 8 - Auditory and Tactile Displays</H1>
 </BODY>

End example.

If a rule (e.g., the HR element) is used to indicate structure, be sure to indicate the
structure in a non-visual way as well. (e.g., by using structural markup).

Example.

In this example, the DIV element is used to create a navigation bar, which includes
a horizontal separator.

 <DIV class="navigation-bar">
 <HR>
 [Next page]
 [Prevous page]
 [First page]
 </DIV>

End example.

13 Using style sheet positioning and markup to
transform gracefully
Checkpoints in this section:

6.1 Organize documents so they may be read without style sheets. For
example, when an HTML document is rendered without associated style sheets,
it must still be possible to read the document. [Priority 1] ,
11.3 Provide information so that users may receive documents according to
their preferences (e.g., language, content type, etc.) [Priority 3] .

1427 Jul 2000 18:27

CSS Techniques for Web Content Accessibility Guidelines 1.0

http://www.w3.org/WAI/GL/WCAG10-TECHS#tech-content-preferences
http://www.w3.org/WAI/GL/WCAG10-TECHS#tech-order-style-sheets

Using the positioning properties of CSS2, content may be displayed at any
position on the user’s viewport. The order in which items appear on a screen may be
different than the order they are found in the source document. The following
example demonstrates a few principles:

1. the text appears visually in the browser in a different order than in the markup.
2. CSS positioning may be used to create tabular effects. A TABLE element could

have been used to create the same effect.

Note that a class is defined for each object that is being positioned. The use of "id"
could be substituted for "class" in these examples. "Class" was used because in the
live example, the objects are replicated and thus not unique.

Deprecated example.

<head><style type="text/css">
 .menu1 { position: absolute; top: 3em; left: 0em;
 margin: 0px; font-family: sans-serif;
 font-size: 120%; color: red; background-color: white }
 .menu2 { position: absolute; top: 3em; left: 10em;
 margin: 0px; font-family: sans-serif;
 font-size: 120%; color: red; background-color: white }
 .item1 { position: absolute; top: 7em; left: 0em; margin: 0px }
 .item2 { position: absolute; top: 8em; left: 0em; margin: 0px }
 .item3 { position: absolute; top: 9em; left: 0em; margin: 0px }
 .item4 { position: absolute; top: 7em; left: 14em; margin: 0px }
 .item5 { position: absolute; top: 8em; left: 14em; margin: 0px }
 #box { position: absolute; top: 5em; left: 5em }
</style></head>
<body>
<div class="box">
 Products
 Locations
 Telephones
 Computers
 Portable MP3 Players
 Wisconsin
 Idaho
</div>
</body>

End example.

When style sheets are applied, the text appears in two columns. Elements of class
"menu1" (Products) and "menu2" (Locations) appear as column headings.
"Telephones, Computers, and Portable MP3 Players" are listed under Products and
"Wisconsin" and "Idaho" are listed under Locations as shown in this screen shot:

27 Jul 2000 18:2715

CSS Techniques for Web Content Accessibility Guidelines 1.0

When style sheets are not applied, all of the text appears in one line of words,
"Products Locations Telephones Computers Portable MP3 Players Wisconsin
Idaho". They appear in the order in which they are written in the source. Therefore,
what appear as column headings when style sheets are applied are the first phrases
since they were defined first in the source. The following screen shot illustrates this:

1627 Jul 2000 18:27

CSS Techniques for Web Content Accessibility Guidelines 1.0

The following example shows that the same visual appearance may be created in
a browser that support style sheets as well as creating a more meaningful
presentation when style sheets are not applied. Structural markup (definition lists)
have been applied to the content. Note that the margins have been set to 0 since in
HTML browsers, definition lists are displayed with a margin set on the DD element.

Example.

<head><style type="text/css">
 .menu1 { position: absolute; top: 3em; left: 0em;
 margin: 0px; font-family: sans-serif;
 font-size: 120%; color: red; background-color: white }
 .menu2 { position: absolute; top: 3em; left: 10em;
 margin: 0px; font-family: sans-serif;
 font-size: 120%; color: red; background-color: white }
 .item1 { position: absolute; top: 7em; left: 0em; margin: 0px }
 .item2 { position: absolute; top: 8em; left: 0em; margin: 0px }
 .item3 { position: absolute; top: 9em; left: 0em; margin: 0px }
 .item4 { position: absolute; top: 7em; left: 14em; margin: 0px }
 .item5 { position: absolute; top: 8em; left: 14em; margin: 0px }
 #box { position: absolute; top: 5em; left: 5em }
</style></head>
<body>
<div class="box">
<dl>
 <dt class="menu1">Products</dt>
 <dd class="item1">Telephones</dd>

27 Jul 2000 18:2717

CSS Techniques for Web Content Accessibility Guidelines 1.0

 <dd class="item2">Computers</dd>
 <dd class="item3">Portable MP3 Players</dd>
 <dt class="menu2">Locations</dt>
 <dd class="item4">Idaho
 <dd class="item5">Wisconsin
 </dt>
</dl>
</div>
</body>

End example.

When style sheets are applied, it looks as it did before. However, now when the
style sheets are not applied, the text appears in a definition list rather than a string of
words. What appear as column headings when style sheets are applied, appear as
defined terms when style sheets are not applied as demonstrated in the following
screen shot.

Note. Experience the difference between these examples for yourself: test file for
style sheets that transform gracefully.

@@Quicktest: turn off style sheets to determine the reading order.

1827 Jul 2000 18:27

CSS Techniques for Web Content Accessibility Guidelines 1.0

14 Creating movement with style sheets and scripts
Checkpoints in this section: 7.3 Until user agents allow users to freeze moving
content, avoid movement in pages. [Priority 2]

@@discuss Javascript, and style sheets, point to the MWC example or "the
company" example. points to make/demonstrate:

hide/show content,
change presentation (movement and colors)

15 Aural Cascading Style Sheets
Checkpoints in this section: 11.3 Provide information so that users may receive
documents according to their preferences (e.g., language, content type, etc.)
[Priority 3] .

CSS2’s aural properties provide information to non-sighted users and
voice-browser users much in the same way fonts provide visual information. The
following example show how various sound qualities (including ’voice-family’, which
is something like an audio font) can let a user know that spoken content is a header:

Example.

H1 {
 voice-family: paul;
 stress: 20;
 richness: 90;
 cue-before: url("ping.au")
}

The following properties are part of CSS2’s aural cascading style sheets.

’volume’ controls the volume of spoken text.
’speak’ controls whether content will be spoken and, if so, whether it will be
spelled or spoken as words.
’pause’, ’pause-before’, and ’pause-after’ control pauses before and after
content is spoken. This allows users to separate content for better
comprehension.
’cue’, ’cue-before’, and ’cue-after’ specify a sound to be played before and after
content, which can be valuable for orientation (much like a visual icon).
’play-during’ controls background sounds while an element is rendered (much
like a background image).
’azimuth’ and ’elevation’ provide dimension to sound, which allows users to
distinguish voices, for example.
’speech-rate’, ’voice-family’, ’pitch’, ’pitch-range’, ’stress’, and ’richness’ control
the quality of spoken content. By varying these properties for different elements,
users can fine-tune how content is presented aurally.

27 Jul 2000 18:2719

CSS Techniques for Web Content Accessibility Guidelines 1.0

http://www.w3.org/WAI/GL/WCAG10-TECHS#tech-content-preferences
http://www.w3.org/WAI/GL/WCAG10-TECHS#tech-avoid-movement

’speak-punctuation’ and ’speak-numeral’ control how numbers and punctuation
are spoken, which has an effect on the quality of the experience of aural
browsing.

Furthermore, the ’speak-header’ property describes how table header information
is to be spoken before a table cell.

16 Access to alternative representations of content
Checkpoints in this section: 11.3 Provide information so that users may receive
documents according to their preferences (e.g., language, content type, etc.)
[Priority 3] .

CSS2 lets users access alternative representations of content that is specified in
attribute values when the following are used together:

attribute selectors.
the attr() function and the ’content’ property’
the :before and :after pseudo-elements

In the following example, the value of the "alt" attribute for the IMG element is
rendered after the image (visually, aurally, etc.):

Example.

 IMG:after {
 content: attr(alt)
 }

Note that the value of the attribute is displayed even though the image may not be
(e.g., the user has turned off images through the user interface).

17 Media types
Checkpoints in this section: 11.3 Provide information so that users may receive
documents according to their preferences (e.g., language, content type, etc.)
[Priority 3] .

The CSS2 "media types" (used with @media rules) allow authors and users to
design style sheets that will cause documents to render more appropriately on
certain target devices. These style sheets can tailor content for presentation on
braille devices, speech synthesizers, or tty devices. Using "@media" rules can also
reduce download times by allowing user agents to ignore inapplicable rules.

2027 Jul 2000 18:27

CSS Techniques for Web Content Accessibility Guidelines 1.0

http://www.w3.org/WAI/GL/WCAG10-TECHS#tech-content-preferences
http://www.w3.org/WAI/GL/WCAG10-TECHS#tech-content-preferences

Acknowledgments
Web Content Guidelines Working Group Co-Chairs:

Jason White, University of Melbourne
Gregg Vanderheiden, Trace Research and Development

W3C Team contact:
Wendy Chisholm

We wish to thank the following people who have contributed their time and valuable
comments to shaping these guidelines:

Harvey Bingham, Kevin Carey, Chetz Colwell, Neal Ewers, Geoff Freed, Al
Gilman, Larry Goldberg, Jon Gunderson, Eric Hansen, Phill Jenkins, Leonard
Kasday, George Kerscher, Marja-Riitta Koivunen, Josh Krieger, Chuck
Letourneau, Scott Luebking, William Loughborough, Murray Maloney, Charles
McCathieNevile, MegaZone (Livingston Enterprises), Masafumi Nakane, Mark
Novak, Charles Oppermann, Mike Paciello, David Pawson, Michael Pieper,
Greg Rosmaita, Liam Quinn, Dave Raggett, T.V. Raman, Robert Savellis, Jutta
Treviranus, Steve Tyler, and Jaap van Lelieveld

The original draft of this document is based on "The Unified Web Site Accessibility
Guidelines" [[UWSAG]]] compiled by the Trace R & D Center at the University of
Wisconsin. That document includes a list of additional contributors.

27 Jul 2000 18:2721

CSS Techniques for Web Content Accessibility Guidelines 1.0

18 References
For the latest version of any W3C specification please consult the list of W3C
Technical Reports at http://www.w3.org/TR.

[CSS1]
"CSS, level 1 Recommendation", B. Bos, H. Wium Lie, eds., 17 December
1996, revised 11 January 1999. This CSS1 Recommendation is
http://www.w3.org/TR/1999/REC-CSS1-19990111. The latest version of CSS1
is available at http://www.w3.org/TR/REC-CSS1.

[CSS2]
"CSS, level 2 Recommendation", B. Bos, H. Wium Lie, C. Lilley, and I. Jacobs,
eds., 12 May 1998. This CSS2 Recommendation is
http://www.w3.org/TR/1998/REC-CSS2-19980512. The latest version of CSS2
is available at http://www.w3.org/TR/REC-CSS2.

[WCAG10]
"Web Content Accessibility Guidelines 1.0", W. Chisholm, G. Vanderheiden, and
I. Jacobs, eds., 5 May 1999. This WCAG 1.0 Recommendation is
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505.

[WCAG10-TECHS]
"Techniques for Web Content Accessibility Guidelines 1.0", W. Chisholm, G.
Vanderheiden, I. Jacobs, eds. This document explains how to implement the
checkpoints defined in "Web Content Accessibility Guidelines 1.0". The latest
draft of the techniques is available at
http://www.w3.org/WAI/GL/WCAG10-TECHS/.

19 Resources
Note: W3C does not guarantee the stability of any of the following references
outside of its control. These references are included for convenience. References to
products are not endorsements of those products.

19.1 Accessibility resources

[LIGHTHOUSE]
The Lighthouse provides information about accessible colors and contrasts.

2227 Jul 2000 18:27

CSS Techniques for Web Content Accessibility Guidelines 1.0

http://www.w3.org/WAI/WCAG1AAA-Conformance
http://www.lighthouse.org/
http://www.w3.org/WAI/GL/WCAG10-TECHS
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505
http://www.w3.org/TR/REC-CSS2
http://www.w3.org/TR/1998/REC-CSS2-19980512
http://www.w3.org/TR/REC-CSS1
http://www.w3.org/TR/1999/REC-CSS1-19990111
http://www.w3.org/TR
http://www.w3.org/TR

	CSS Techniques for Web Content Accessibility Guidelines 1.0
	W3C Working Draft 27 July 2000
	Abstract
	Status of this document
	To do

	Table of Contents
	1 Decrease maintenance and increase consistency
	2 User override of styles
	3 Units of measure
	4 Generated content
	5 Fonts
	6 Text style effects
	7 Text instead of images
	8 Text formatting and position
	9 Colors
	10 Providing contextual clues in HTML lists
	11 Layout, positioning, layering, and alignment
	11.1 If you must use images as spacers

	12 Rules and borders
	13 Using style sheet positioning and markup to transform gracefully
	14 Creating movement with style sheets and scripts
	15 Aural Cascading Style Sheets
	16 Access to alternative representations of content
	17 Media types
	Acknowledgments
	18 References
	19 Resources
	19.1 Accessibility resources

