

 Publication Manifest

 W3C Recommendation 10 November 2020
			

 Matt Garrish, DAISY Consortium; Ivan Herman, W3C

 [image: W3C main logo]

 Note: this EPUB edition does not represent the authoritative text of the specification; please consult the original document on the W3C Web Site.

 Copyright
 © of the original documents: 10 November 2020 W3C® (MIT, ERCIM,
 Keio, Beihang).

 All right reserved. W3C liability,
 trademark,
 and document use rules apply.

			Table of Contents

			
					
					1. Introduction
					
							
							1.1 Scope
						

							
							1.2 Manifest Format
						

							
							1.3 JSON-LD Authoring
								and Processing
						

							
							1.4 Relationship to
								Schema.org
						

					

				

					
					2. Terminology
				

					
					3. Conformance
				

					
					4. Publication Manifest
					
							
							4.1
								Requirements
						

							
							4.2 Value
								Categories
							
									
									4.2.1 Literals
								

									
									4.2.2 Numbers
								

									
									4.2.3 Booleans
								

									
									4.2.4
										Explicit and Implied Objects
									
											
											4.2.4.1 Localizable Strings
										

											
											4.2.4.2
												Entities
										

											
											4.2.4.3
												Linked Resources
										

											
											4.2.4.4
												Objects
										

									

								

									
									
										4.2.5
										URLs
									
								

									
									4.2.6 Identifiers
								

									
									4.2.7 Arrays
								

							

						

							
							4.3 Manifest
								Contexts
						

							
							4.4 Manifest Language
								and Direction
							
									
									4.4.1
										Global Declarations
								

									
									4.4.2
										Item-Specific Declarations
								

							

						

							
							4.5 Publication
								Types
						

							
							4.6 Profile
								Conformance
						

							
							4.7 Properties
							
									
									4.7.1
										Descriptive Properties
									
											
											4.7.1.1
												Abridged
										

											
											4.7.1.2
												Accessibility
										

											
											4.7.1.3
												Address
										

											
											4.7.1.4
												Canonical Identifier
										

											
											4.7.1.5
												Creators
										

											
											4.7.1.6
												Duration
										

											
											4.7.1.7
												Last Modification Date
										

											
											4.7.1.8
												Publication Date
										

											
											4.7.1.9
												Publication Language
										

											
											4.7.1.10 Reading Progression Direction
										

											
											4.7.1.11
												Title
										

									

								

									
									4.7.2 Resource Categorization Properties
									
											
											4.7.2.1
												Default Reading Order
										

											
											4.7.2.2
												Resource List
										

											
											4.7.2.3 Links
										

									

								

									
									4.7.3
										Extensibility
									
											
											4.7.3.1 Linked records
										

											
											4.7.3.2 Additional Manifest Properties
										

									

								

							

						

							
							4.8 Resource Relations
							
									
									4.8.1 Structural
										Resources
									
											
											4.8.1.1 Cover
										

											
											4.8.1.2 Page
												List
										

											
											4.8.1.3 Table
												of Contents
										

									

								

									
									4.8.2
										Informative Resources
									
											
											4.8.2.1
												Accessibility Report
										

											
											4.8.2.2
												Preview
										

											
											4.8.2.3
												Privacy Policy
										

									

								

									
									4.8.3
										Extensions
								

							

						

					

				

					
					5. Publication
						Resources
				

					
					6. Manifest Discovery
					
							
							6.1 Linking
						

							
							6.2 Embedding
						

							
							6.3 Other
								Discovery Methods
						

					

				

					
					7. Processing a Manifest
					
							
							7.1 Introduction
						

							
							7.2 Error Handling
						

							
							7.3 Processing
								Contexts
						

							
							7.4 Generate the
								Internal Representation
							
									
									7.4.1 Normalize
										Data
									
											
											7.4.1.1
												Convert to Absolute URL
										

									

								

									
									7.4.2 Data
										Validation
									
											
											7.4.2.1
												Global Data Checks
										

											
											7.4.2.2
												Verify Value Category
										

											
											7.4.2.3
												Get Unique URLs
										

											
											7.4.2.4
												Remove Empty Arrays
										

									

								

									
									7.4.3 Add
										Default Values
								

							

						

					

				

					
					8. Modular Extensions
				

					
					9. Security and Privacy
						Considerations
				

					
					A. Internal
						Representation Data Model
					
							
							A.1 The
									PublicationManifest Dictionary
							
									
									A.1.1 The
											LinkedResource Dictionary
								

									
									A.1.2 The
											Entity Dictionary
								

									
									A.1.3 The
											LocalizableString Dictionary
								

							

						

					

				

					
					B. Selecting an Alternate
						Resource
				

					
					C. Machine-Processable Table
						of Contents
					
							
							C.1 Introduction
						

							
							C.2 HTML Structure
							
									
									C.2.1
										Examples
								

							

						

							
							C.3 User Agent Processing
						

					

				

					
					D. Change Log
				

					
					E. IANA considerations
					
							
							E.1 Link
								relation type registration
						

					

				

					
					F. Manifest Examples
					
							
							F.1 Basic Manifest
						

							
							F.2
								Single-Document Publication
						

							
							F.3 Audiobook
						

					

				

					
					G. Properties Index
				

					
					H. Resource Relations Index
				

					
					I. Acknowledgements
				

					
					J. References
					
							
							J.1 Normative
								references
						

							
							J.2 Informative
								references
						

					

				

			

		

		
			
				[image: W3C]
			
			Publication Manifest

			 W3C Recommendation 10 November 2020
			

			
					This version:

					
					https://www.w3.org/TR/2020/REC-pub-manifest-20201110/
				

					Latest published version:

					
					https://www.w3.org/TR/pub-manifest/
				

					Latest editor's draft:

					
					https://w3c.github.io/pub-manifest/
				

					Implementation report:

					
					https://www.w3.org/publishing/groups/publ-wg/implementation/results.html
				

					Previous version:

					
					https://www.w3.org/TR/2020/PR-pub-manifest-20201001/
				

					Editors:

					Matt Garrish (DAISY Consortium)

					Ivan Herman
							
							
							
						
					 (W3C)

					Participate:

					
					GitHub w3c/pub-manifest
				

					
					File a bug
				

					
					Commit history
				

					
					Pull requests
				

			

			 Please check the errata for
				any errors or issues reported since publication.

			 See also
					translations.

			 This document is also available in this non-normative format: EPUB
			

			
				Copyright © 2020 W3C® (MIT, ERCIM, Keio, Beihang). W3C liability, trademark and permissive document license rules apply.

			

		

		
			Abstract

			This specification defines a general manifest format for expressing information about a digital
				publication. It uses [schema.org] metadata augmented to include various structural
				properties about publications, serialized in [json-ld11], to enable interoperability
				between publishing formats while accommodating variances in the information that needs to be
				expressed.

		
		
			Status of This Document

			
				This section describes the status of this document at the time of its publication. Other documents
					may supersede this document. A list of current W3C
					publications and the latest revision of this technical report can be found in the W3C technical
						reports index at https://www.w3.org/TR/.
			

			 This document was published by the Publishing
					Working Group as a Recommendation.

			
				GitHub Issues are preferred for discussion of
				this specification. Alternatively, you can send comments to our mailing list. Please send them to public-publ-wg@w3.org (archives).

			 A W3C Recommendation is a specification that, after
				extensive consensus-building, has received the endorsement of the W3C and its Members. W3C recommends the wide deployment of this specification as
				a standard for the Web. Future updates to this Recommendation may incorporate new features.

			 This document was produced by a group operating under the 1 August 2017 W3C Patent Policy. W3C maintains a public list of any patent disclosures
				made in connection with the deliverables of the group; that page also includes instructions for
				disclosing a patent. An individual who has actual knowledge of a patent which the individual believes
				contains Essential
					Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.

			 This document is governed by the 15 September 2020 W3C Process Document.

		
		
		
			1. Introduction

			
				1.1 Scope

				This specification defines a general manifest format to describe publications. It is designed to be
					adaptable to the needs of specific areas of publishing, such as audiobook production, by specifying
					a modular approach for creating specializations.

				This specification is also intended to facilitate different user agent architectures. While it is
					expected that traditional Web user agents (browsers) will be able to consume a publication manifest,
					this should not limit the capabilities of any other possible type of user agent (e.g., applications,
					whether standalone or running within a user agent, or even publications that include their own user
					interface).

				This specification does not define how user agents are expected to render publications that use the
					manifest format.

			

			
				1.2 Manifest Format

				
					This section is non-normative.
				

				A digital publication is described by its manifest, which provides a set of properties expressed using a specific shape of
							JSON-LD [json-ld11] (a variant of JSON [ecma-404] for linked data).

				The manifest is what enables user agents to understand the bounds of digital
						publication and the connection between its resources. It includes metadata that describes
					the digital publication, as a publication has an identity and nature beyond its constituent
					resources. The manifest also provides a list of resources that belong
					to the digital publication and a default reading order, which
					is how it connects resources into a single contiguous work.

				The properties of the manifest describe the basic information a user agent requires to process and
					render a publication. For ease of understanding, these properties are categorized as follows:

				
						
						Descriptive properties
					

						
						Descriptive properties describe aspects of a digital publication, such as its title, creator, and language.

					

						
						Resource categorization properties
					

						
						Resource categorization properties describe or identify common sets of resources, such as the
								resource list and default
								reading order. These properties refer to one or more resources, such as HTML
							documents, images, scripts, and metadata records.

					

				

				The manifest also identifies key resources of a digital publication using link relations. These
					relations are defined in the rel property of LinkedResource objects (i.e.,
					the JSON objects that represent each resource in the default reading order, resource list, and links
					sections).

				The types of resources these relations identify are categorized as follows:

				
						
						Informative resources
					

						
						Informative resources are resources that contain additional information about the
							publication, such as its privacy policy, accessibility report, or preview.

					

						
						Structural resources
					

						
						Structural resources are key meta structures of the publication, such as the cover image, table of contents, and page list.

					

				

			

			
				1.3 JSON-LD Authoring and
						Processing

				This specification defines the publication manifest as a specific "shape" of [json-ld11].
					This means that the manifest SHOULD be expressed using only the syntactic
					constructions defined in this specification, as opposed to all the possibilities offered by the
					JSON-LD syntax.

				
					
						Note
					

					This shape is also defined, informally, through a JSON schema [json-schema] that
						expresses the constraints defined in this specification. This schema is maintained at https://www.w3.org/ns/pub-schema/manifest/.

				

				The publication manifest also has several authoring flexibilities and compact authoring expressions.
					For example, it is not always required that object types be explicitly authored, as these are
					automatically generated during processing when missing (see § 4.2.4 Explicit and Implied Objects for more
					information). An internal representation of the manifest data is
					defined separately; see § A. Internal Representation Data Model for further details.

				Consequently, a user agent does not have to be a full JSON-LD processor. User agents only need to be
					able to read the manifest's specific shape and internalize the data.

			

			
				1.4 Relationship to Schema.org

				
					This section is non-normative.
				

				Manifest properties, in particular those categorized as descriptive
						properties, are primarily drawn from Schema.org and its hosted extensions [schema.org].
					Consequently, these properties inherit their syntax and semantics from Schema.org, making manifest
					authoring compatible with Schema.org authoring.

				When a manifest item corresponds to a Schema.org property, its property definition identifies its mapping and includes the defining type (e.g., CreativeWork or Book) in parentheses.

				Schema.org additionally includes a many properties that, though relevant for publishing, are not
					mentioned in this specification. These properties can be used in a manifest as this document defines
					only the minimal set of manifest items (see § 4.7.3.2 Additional Manifest Properties).

				When using additional Schema.org properties, ensure that they are valid for the type of publication specified in the manifest. Properties are
					often available in many Schema.org types, as a result of the inheritance model used by the
					vocabulary, but not all properties are available for all types. For more detailed information about
					which types accept which properties, refer to [schema.org].

				More information about using additional Schema.org properties is also available in § 4.5 Publication
						Types and § 4.7.3.2 Additional Manifest Properties.

			
		
		
			2. Terminology

			This specification depends on the Infra Standard [infra].

			
					
					Bounds
				

					
					A digital publication consists of a finite set of
						resources that represent its content. This extent is known as its bounds and is defined within
						its manifest as described in § 5. Publication Resources.

				

					
					Digital Publication
				

					
					A digital publication is any publication authored in a format that uses a profile of the manifest.

				

					
					Internal Representation
				

					
					The internal representation of a manifest is the data structure created by user agents when they
							process the manifest and remove all possible ambiguities
						and incorporate any missing values that can be inferred from another source.

					It is possible for the information expressed in the manifest to be the equivalent of the internal
						representation created by user agents if there are no ambiguities or missing information.

				

					
					Manifest
				

					
					A manifest represents structured information about a publication, such as informative metadata, a
							list of resources, and a default
							reading order.

				

					
					Profile
				

					
					Profiles are publication formats (e.g., audiobooks) that use the manifest format
						defined in this specification to describe their bounds and content. These formats can
						extend the core definition in this specification with profile-specific terms and/or new
						requirements.

					Although profiles can differ in their structural and content requirements, such variances are
						restricted to maintain a high degree of predictability between formats. (See § 8. Modular
						Extensions.)

				

			

		
		
			3. Conformance

			As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in
				this specification are non-normative. Everything else in this specification is normative.

			 The key words MAY, MUST, MUST
					NOT, OPTIONAL, RECOMMENDED, REQUIRED, SHOULD, and SHOULD
					NOT in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and
				only when, they appear in all capitals, as shown here.

			All algorithm explanations are informative.

		
		
			4. Publication Manifest

			
				4.1 Requirements

				The following properties MUST be set in the manifest:

				
						
						
							context
						
					

						
						
							conformsTo
						
					

				

				The following properties are RECOMMENDED:

				
						
						
							type
						
					

						
						
							id
						
					

				

				The priority of all other properties and resource relations is OPTIONAL, but MAY
					be modified by implementations of the manifest format.

				
					
						Note
					

					Some properties are implicitly required, as they are compiled from alternative
						information when not explicitly authored. See § A. Internal Representation Data Model
						for more information.

				

			

			
				4.2 Value Categories

				This section describes the categories of values that can be used with properties of the publication
					manifest.

				
					4.2.1 Literals

					When a manifest property expects a literal text string — one
						that is not language-dependent, such as a code value or date — as its value, the value MUST be expressed as a [json] string.

					Literal values are not changed during processing of the
							manifest, unlike other values which might be, for example, converted to objects.

				

				
					4.2.2 Numbers

					When a manifest property expects a number as its value, the
						value MUST be expressed as a [json] number.

				

				
					4.2.3 Booleans

					When a manifest property expects a boolean as its value, the
						value MUST be expressed as an [ecmascript] Boolean value
							(true or false).

				

				
					4.2.4 Explicit and Implied
							Objects

					Various manifest properties are expected to be expressed as [json] objects. Although the use of explicit objects is usually advised, the following sections
						identify cases where it is also acceptable to use string values. These strings are automatically
						translated into objects during processing of the manifest by
						a user agent (the exact mapping of text values to objects is included in each definition).

					
						4.2.4.1 Localizable Strings

						When a manifest property expects a localizable text string
							as its value, the value MUST be expressed as one of:

						
								a [json] string value; or

								a LocalizableString.

						

						A single string value represents an implied object whose value property is the
							string's text and whose language and base direction is determined from other information in
							the manifest.

						As localizable strings are intended to facilitate multiple language representations of a
							value, properties that accept a localizable string always accept an array of these values.
							For this reason, although only a single string or object has to be authored, such values are
							converted to arrays for consistency of processing.

						A LocalizableString is a [json] object consisting of the following properties:

						
							
								
										Term
										Description
										Required Value
										Value Category
										[schema.org] Mapping
								

							
							
								
										
										value
									
										The value of the localizable string. REQUIRED.
										Text.
										
										Literal
									
										(None)
								

								
										
										language
									
										The language of the value. OPTIONAL.
										A well-formed language
											tag [bcp47].
										
										Literal
									
										(None)
								

								
										
										direction
									
										The base direction of the value. OPTIONAL.
										ltr or rtl
										
										Literal
									
										(None)
								

							
						

						The meanings of the base direction values are:

						
								ltr: indicates that the textual value is explicitly directionally set to
								left-to-right text.

								rtl: indicates that the textual value is explicitly directionally set to
								right-to-left text.

						

						 A missing base direction value means that that the textual value is explicitly directionally
							set to the direction of the first character with a strong directionality, following the
							rules of the Unicode Bidirectional Algorithm [bidi].

						
							
								Example
									1
								: Set the language of a string
							

							{
 "value" : "孔子",
 "language" : "zh"
}

						
						
							
								Example
										2
								: Set the language and the base direction of a string
							

							{
 "value" : "HTML היא שפת סימון.",
 "language" : "he",
 "direction" : "rtl"
}

						
						
							
								Note
							

							
								 If the base direction value were not set in the last example, the text would be
									displayed, following the Unicode Bidirectional Algorithm [bidi] and due to the
									presence of a Latin character starting the string, as:

								HTML היא שפת סימון.

								 However, that would be incorrect. The extra direction value is
									necessary to control the display to yield:

								HTML היא שפת סימון.

								Note that the value field in the example represents the text as it is
									stored in memory, hence the discrepancy between it and the two renderings depicted
									here. Text editors might also display the JSON value differently (e.g., using the
									Unicode Bidirectional Algorithm only).

								See also the [string-meta] document for further explanations and examples.

							

						

					

					
						4.2.4.2 Entities

						When a manifest property expects an entity (i.e., an
							individual or organization responsible for the various aspects of creation), its value MUST be expressed either as:

						
								a [json] string value; or

								an Entity.

						

						A single string value represents an instance of an Entity object whose
								name property is the string's text and whose type is assumed
							to be Person [schema.org].

						An Entity is defined as an instance of
							either the [schema.org] Person or Organization type with the following minimal property set:

						
							
								
										Term
										Description
										Required Value
										Value Category
										[schema.org] Mapping
								

							
							
								
										
										type
									
										The type of entity. OPTIONAL
										One or more Text. Sequence MUST include
											"Person" or "Organization".
										
										Array of Literals
									
										(None)
								

								
										
										name
									
										Name of the entity. REQUIRED.
										One or more Text.
										
										Array of Localizable Strings
									
										
										
											name
										
									
								

								
										
										id
									
										A canonical identifier associated with the entity. OPTIONAL.
										A URL record [url].
										
										Identifier
									
										(None)
								

								
										
										url
									
										An address associated with the entity. OPTIONAL.
										A valid URL string [url].
										
										URL
									
										
										
											url
										
									
								

								
										
										identifier
									
										An identifier associated with the entity (e.g., ORCID). OPTIONAL.
										One or more Text.
										
										Array of Literals
									
										
										
											identifier
										
									
								

							
						

						
							
								Note
							

							This minimal set of properties is not restrictive. Authors can include any
								additional properties defined for the [schema.org] Person or Organization types, as
								appropriate. User agents are similarly not limited to interpreting only the preceding
								properties.

						

						
							
								Example 3
								: Using a string instead of a Person object.
							

							The following author name is expressed as a string:

							{
 …
 "author" : "Edgar Allen Poe",
 …
}

							but, in the context of creators, it is equivalent to:

							{
 …
 "author" : {
 "type" : "Person",
 "name" : "Edgar Allen Poe"
 },
 …
}

							(See § 4.7.1.5
									Creators for further details.)

						
					

					
						4.2.4.3 Linked Resources

						When a manifest property links to one or more resources, it MUST be
							expressed either as:

						
								a [json] string encoding the URL of the resources; or

								an instance of a LinkedResource.

						

						A string value represents an implied LinkedResource object whose
								url property is set to the string value.

						A LinkedResource object is defined as follows:

						
							
								
										Term
										Description
										Required Value
										Value Category
										[schema.org] Mapping
								

							
							
								
										
										type
									
										The type of resource. OPTIONAL
										One or more Text. Sequence MUST include
											"LinkedResource".
										
										Array of Literals
									
										(None)
								

								
										
										url
									
										Location of the resource. REQUIRED.
										A valid URL string [url]. Refer to the
										property definitions that accept this type for additional restrictions.
										
										URL
									
										
										
											url
										
									
								

								
										
										encodingFormat
									
										Media type of the resource (e.g., text/html). OPTIONAL.
										MIME Media Type [rfc2046].
										
										Literal
									
										
										
											encodingFormat
										
									
								

								
										
										name
									
										Name of the item. OPTIONAL.
										One or more Text.
										
										Array of Localizable Strings
									
										
										
											name
										
									
								

								
										
										description
									
										Description of the item. OPTIONAL.
										One or more Text.
										
										Array of Localizable Strings
									
										
										
											description
										
									
								

								
										
										rel
									
										The relation of the resource to the publication. OPTIONAL.
										
										One or more relations.

										Keywords are ASCII case-insensitive [infra] and MUST be compared as
											such.

									
										
										Array of Literals
									
										(None)
								

								
										
										integrity
									
										A cryptographic hashing of the resource that allows its integrity to be
										verified. OPTIONAL.
										
										One or more whitespace-separated sets of integrity
												metadata [sri]. The
											value MUST conform to the metadata
												definition [sri].

										Refer to [sri] for the list of
												cryptographic hashing functions that user agents are expected to
											support.

									
										
										Literal
									
										(None)
								

								
										
										duration
									
										Overall duration of a time-based media resource. OPTIONAL
										Duration value as defined by [iso8601-1].
										
										Literal
									
										
										duration (Property)
								

								
										
										alternate
									
										
										References to one or more reformulation(s) of the resource in alternative
											formats, where the encodingFormat specifies the format of the
											reformulation. OPTIONAL.

									
										
										One or more of:

										
												a string, representing the URL of the resource
												reformulation in an alternative format; or

												an instance of a LinkedResource object

										

										A string value represents an implied LinkedResource object whose
												url property is set to the string value.

									
										
										Array of Linked
											Resources
									
										(None)
								

							
						

						Although user agent support for the integrity property is OPTIONAL, user agents that support cryptographic hashing comparisons using this
							property MUST do so in accordance with [sri].

						This specification only defines the alternate property for selecting from
							alternative formats (i.e., based on encodingFormat or by inspecting URLs). Profiles
							MAY extend this behaviour to allow selection based on other
							criteria. The process for selecting an alternate is described in § B.
								Selecting an Alternate Resource.

						
							
								Note
							

							When defining a LinkedResource object, it is advised to always
								specify the media type of the resource using the encodingFormat property.
								Doing so allows user agents to more readily determine the usability of the resource.

						

						
							
								Example 4
								: A resource with a SHA-256 hashing of its content.
							

							{
 "type" : "LinkedResource",
 "url" : "chapter1.html",
 "encodingFormat" : "text/html",
 "name" : "Chapter 1 - Loomings",
 "integrity" : "sha256-13AE04E21177BABEDFDE721577615A638341F963731EA936BBB8C3862F57CDFC"
}

						

						
							
								Example 5
								: A resource with its alternate formats.
							

							{
 "type" : "LinkedResource",
 "url" : "chapter1.mp3",
 "encodingFormat" : "audio/mpeg",
 "name" : "Chapter 1 - Loomings",
 "alternate" : [
 "chapter1.html",
 {
 "type": "LinkedResource",
 "url": "chapter1.json",
 "encodingFormat": "application/vnd.syncnarr+json",
 "duration": "PT1669S"
 }
]
}

						

						
							
								Example 6
								: Resource list that includes one link using a relative URL
									as a string ('datatypes.svg') and two that display the various properties of the a
									LinkedResource object.
							

							{
 …
 "resources" : [
 "datatypes.svg",
 {
 "type" : "LinkedResource",
 "url" : "test-utf8.csv",
 "encodingFormat" : "text/csv",
 "name" : "Test Results",
 "description" : "CSV file containing the full data set used."
 },
 {
 "type" : "LinkedResource",
 "url" : "terminology.html",
 "encodingFormat" : "text/html",
 "rel" : "glossary"
 }
],
 …
}

						

					

					
						4.2.4.4 Objects

						When a manifest property expects a type of object not defined in this section, or by a profile, it MUST be expressed
							as a [json] object (i.e., the property's value will not be processed to create an object).

					
				

				
					
						4.2.5
						URLs
						
					

					URLs are used to identify resources associated with a digital publication. When a property expects a
						URL value, it MUST be a valid URL string [url].

					In the case of relative-URL
							strings, these are resolved to absolute-URL strings using a base URL [url].

					The base URL for relative-URL strings is determined as follows:

					
							In the case of an embedded manifest, it is the document base URL of the embedding document [json-ld11].

							In the case of a linked manifest, it is the URL of the manifest
							resource.

							In the case of a digital publication format that uses another means of discovering the manifest, it is defined by the format.

					

					By consequence, relative-URL strings in embedded manifests are resolved against the URL of the
						document that references the manifest unless the document declares a base URL (i.e., in
						a <base> element in its header).

				

				
					4.2.6 Identifiers

					Identifiers are used to refer to a digital publication and the
							entities responsible for its creation in a persistent and
						unambiguous manner. URLs, URNs, DOIs, ISBNs, and PURLs are all examples of persistent
						identifiers frequently used in publishing.

					Identifiers MUST be expressed as URL records [url]

				

				
					4.2.7 Arrays

					When a manifest property allows one or more value of their
						respective type (e.g., literal, object, or URL), these values are expressed as [json] arrays. When
						a property value is a single element, however, the array syntax MAY be
						omitted.

					
						
							Example
									7
							: Using a text string instead of an array.
						

						As a digital publication typically contains many resources, this declaration of a single
							resource:

						{
 …
 "resources" : "datatypes.svg",
 …
}

						is equivalent to the array:

						{
 …
 "resources" : ["datatypes.svg"],
 …
}

					
				
			

			
				4.3 Manifest Contexts

				A manifest
					MUST set its JSON-LD context [json-ld11] with
					the following two components, in the specified order:

				
						the [schema.org] context: https://schema.org

						the publication context:
							https://www.w3.org/ns/pub-context

				

				
					
						Note
					

					Although Schema.org is often referenced using the http URI scheme, the vocabulary is being migrated to use the
						secure https scheme as its default. As a result, only the https scheme
						is recognized in the publication manifest context.

				

				
					
						Example 8
						: Setting the context declaration.
					

					{
 "@context" : [
 "https://schema.org",
 "https://www.w3.org/ns/pub-context"
],
 …
}

				

				The publication context document adds features to the properties defined in Schema.org (e.g., the
					requirement for the creator property to be order
					preserving).

				Profiles of this specification MAY require additional context
						URLs, but such URLs
					MUST be ordered after these two components.

				The context can be extended by including additional parameters — such as the global language and direction declarations — in an object following
					the publication context.

				
					
						Example 9
					

					{
 "@context" : [
 "https://schema.org",
 "https://www.w3.org/ns/pub-context",
 {
 "language" : "es"
 }
],
 …
}

				

			

			
				4.4 Manifest Language and
						Direction

				Each natural language property value in a manifest (e.g., title, creators) has a default natural language, which is the language that it is expressed in (e.g., English,
					French, Chinese). It also has a natural base direction in which
					it is written — the display direction, either left-to-right or right-to-left.

				 The digital publication manifest provides the ability to set both these concepts globally as well as on individual items to aid user agents in interpreting and presenting the metadata.

				
					
						Note
					

					 The ability to set the base direction is a JSON-LD 1.1 [json-ld11] feature. In other words, the Publication Manifest has a
						dependency on that version of the JSON-LD specification (as opposed to the earlier
								1.0 [json-ld10] version).

				

				
					4.4.1 Global Declarations

					The global language and base direction declarations for natural language manifest properties are
						set in the context using the language
						and direction keywords [json-ld11], respectively. These
						values are used to expand simple string values into localizable strings during the processing of the
							manifest, as well as to provide a language and the base direction for localizable
						strings that omit one.

					The value of language
						MUST be a well-formed language tag [bcp47].

					The value of direction
						MUST have one of the following values:

					
							"ltr": indicates that the textual values are explicitly directionally set to
							left-to-right text.

							"rtl": indicates that the textual values are explicitly directionally set to
							right-to-left text.

					

					The global language and base direction declaration, when present, MUST
						follow the publication context.

					Default values are not specified for the global language or base direction.

					
						
							Example 10
							: Declaring French as the default language for the
								manifest.
						

						{
 "@context": [
 "https://schema.org",
 "https://www.w3.org/ns/pub-context",
 {
 "language": "fr"
 }
],
 …
}

					

					
						
							Example 11
							: Declaring Azeri as the default language and with the base
								direction to right-to-left.
						

						{
 "@context": [
 "https://schema.org",
 "https://www.w3.org/ns/pub-context",
 {
 "language": "az",
 "direction": "rtl"
 }
],
 …
}

					
				

				
					4.4.2 Item-Specific
							Declarations

					It is possible to set the language or a base direction locally for any natural language value in
						the manifest using a localizable string:

					
						
							Example 12
							: Providing the author name in English for a Chinese
								publication.
						

						{
 "@context" : [
 "https://schema.org",
 "https://www.w3.org/ns/pub-context",
 {
 "language": "zh"
 }
],
 "type" : "Book",
 …
 "author" : {
 "type" : "Person"
 "name" : [
 "孔子",
 {
 "value" : "Confucius",
 "language" : "en"				
 }
]
 }
}

					

					
						
							Example 13
							: A publication in Arabic with the title also given in
								English.
						

						{
 "@context" : [
 "https://schema.org",
 "https://www.w3.org/ns/pub-context",
 {
 "language": "ar"
 }
],
 "type" : "Book",
 …
 "name" : [
 {
 "value": "HTML و CSS: تصميم و إنشاء مواقع الويب",
 "direction": "rtl"
 },
 {
 "value" : "HTML and CSS: Design and Build Websites",
 "language" : "en"
 }
]
}

						The extra base direction setting for the Arabic title (i.e., HTML و
								CSS: تصميم و إنشاء مواقع الويب) is necessary to yield the correct display:

					

					 The possible values of the language and direction
								keywords [json-ld11] are the same as for the global declaration. Furthermore, both values can also
						be the (JSON) value of null, indicating that no explicit language, respectively
						direction, is set.

					
						
							Note
						

						 Setting the value of language to null can be useful if a
							value (e.g., the name of an organization) is commonly used without any associated language
							(e.g., "Google").

					

					A local declaration of the language, respectively the base direction, takes precedence over a global declaration.

				
			

			
				4.5 Publication Types

				A digital publication's
					manifest defines its Publication Type using the
						type keyword [json-ld11]. The type MAY be mapped onto any [schema.org] type, but CreativeWork is assumed as the default when no type is specified.

				
					
						Example 14
						: Setting a publication's type to CreativeWork.
					

					{
 "@context" : ["https://schema.org", "https://www.w3.org/ns/pub-context"],
 "type" : "CreativeWork",
 …
}

				

				More specific subtypes of CreativeWork, such as Article, Book, TechArticle, and Course can be used instead of, or in addition
					to, CreativeWork.

				
					
						Example
								15
						: Setting a publication's type to Book.
					

					{
 "@context" : ["https://schema.org", "https://www.w3.org/ns/pub-context"],
 "type" : "Book",
 …
}

				

				Each Schema.org type defines a set of properties that are valid for use with it. To ensure that the
					manifest can be validated and processed by Schema.org-aware processors, the manifest SHOULD contain only the properties associated with the selected type.

				If properties from more than one type are needed, the manifest MAY include
					multiple type declarations.

				
					
						Example 16
						: Setting the type property for a publication that combines
							properties from Book and VisualArtwork.
					

					{
 "@context" : ["https://schema.org", "https://www.w3.org/ns/pub-context"],
 "type" : ["Book", "VisualArtwork"],
 …
}

				

				User agents SHOULD NOT fail to process manifests that are not valid to their
					declared Schema.org type(s).

				
					
						Note
					

					Refer to the Schema.org site for the complete list of CreativeWork
							subtypes.

				

			

			
				4.6 Profile Conformance

				A digital publication indicates the profile its manifest and content conform to using the conformsTo property.

				
					
						
								Term
								Description
								Required Value
								Value Category
								[dcterms] Mapping
						

					
					
						
								
								 conformsTo
							
								URL of the profile.
								An absolute-URL-with-fragment string [url].
								Array of Literals
								
								conformsTo
							
						

					
				

				The URL to use for a profile is defined in its respective specification.

				
					
						Note
					

					The conformsTo property can also be used to indicate conformance to other
						specifications and standards (e.g., to [wcag21]).

				

				
					
						Example 17
						: Identify that a digital publication conforms to the W3C Audiobooks
							specification.
					

					{
 …
 "conformsTo" : "https://www.w3.org/TR/audiobooks/",
 …
}

				

			

			
				4.7 Properties

				
					4.7.1 Descriptive Properties

					
						4.7.1.1 Abridged

						The abridged property provides information on whether or not a digital publication has been shortened from
							its original form.

						
							
								
										Term
										Description
										Required Value
										Value Category
										[schema.org] Mapping
								

							
							
								
										
										abridged
									
										Indicates whether the book is an abridged edition.
										Either true or false.
										
										Boolean
									
										
										abridged (Book)
								

							
						

						
							
								Example 18
								: Setting that a publication is abridged.
							

							{
 …
 "abridged" : true,
 …
}

						

					

					
						4.7.1.2 Accessibility

						The accessibility properties provide information about the suitability of a digital publication for consumption by users
							with different preferred reading modalities. These properties typically supplement an
							evaluation against established accessibility criteria, such as those provided in [wcag21].

						The following properties are categorized as accessibility properties:

						
							
								
										Term
										Description
										Required Value
										Value Category
										[schema.org] Mapping
								

							
							
								
										
										accessMode
									
										The human sensory perceptual system or cognitive faculty through which a person
										may process or perceive information.
										One or more Text.
										
										Array of Literals
									
										
										accessMode (CreativeWork)
								

								
										
										accessModeSufficient
									
										 A list of single or combined access modes that are sufficient to understand all
										the intellectual content of a resource.
										 One or more ItemList.
										
										Array of Object
									
										
										accessModeSufficient (CreativeWork)
								

								
										
										accessibilityFeature
									
										 Content features of the resource, such as accessible media, alternatives and
										supported enhancements for accessibility.
										 One or more Text.
										
										Array of Literals
									
										
										accessibilityFeature (CreativeWork)
								

								
										
										accessibilityHazard
									
										 A characteristic of the described resource that is physiologically dangerous to
										some users.
										 One or more Text.
										
										Array of Literals
									
										
										accessibilityHazard (CreativeWork)
								

								
										
										accessibilitySummary
									
										A human-readable summary of specific accessibility features or deficiencies that
										is consistent with the other accessibility metadata.
										Text.
										
										Array of Localizable Strings
									
										
										accessibilitySummary (CreativeWork)
								

							
						

						
							
								Note
							

							Detailed descriptions of these properties, including the expected values to use
								with them, are available at [webschemas-a11y].

						

						
							
								Note
							

							A reference to a detailed accessibility
									report can also be provided if more information is needed than can be expressed
								by these properties.

						

						
							
								Example 19
								: Setting accessibility metadata for a publication that
									provides alternative text and long descriptions appropriate for each image, enabling
									it to be read in purely textual form.
							

							{
 …
 "accessMode" : ["textual", "visual"],
 "accessibilityFeature" : ["alternativeText", "longDescription"]
 "accessModeSufficient" : [
 {
 "type" : "ItemList",
 "itemListElement" : ["textual", "visual"]
 },
 {
 "type" : "ItemList",
 "itemListElement" : ["textual"]
 }
],
 …
}

						

					

					
						4.7.1.3 Address

						An address is a URL that identifies the source location
							of a digital publication. It is expressed using
							the url property.

						
							
								
										Term
										Description
										Required Value
										Value Category
										[schema.org] Mapping
								

							
							
								
										
										url
									
										URL of the publication.
										A valid URL string [url].
										Array of URLs
										
										url (Thing)
								

							
						

						A digital publication MAY have more than one address, but all the
							addresses MUST resolve to the same document.

						
							
								Note
							

							The publication's address can also be used as value for an identifier link
										relation [link-relation].

						

						
							
								Example 20
								: Setting the address of the publication.
							

							{
 …
 "url" : "https://publisher.example.org/frankenstein",
 …
}

						

					

					
						4.7.1.4 Canonical Identifier

						A digital publication's
							canonical identifier property provides a unique
							identifier for a digital publication.
							It is expressed using the id property.

						
							
								
										Term
										Description
										Required Value
										Value Category
										[schema.org] Mapping
								

							
							
								
										
										id
									
										Preferred version of the publication.
										A URL record [url].
										
										Identifier
									
										(None)
								

							
						

						
							
								Note
							

							Ensuring uniqueness of canonical identifiers is outside the scope of this
								specification. The actual achievable uniqueness depends on such factors as the
								conventions of the identifier scheme used and the degree of control over assignment of
								identifiers.

						

						If a canonical identifier is not provided in the manifest, or the value is an invalid URL,
							the digital publication does not have a canonical identifier. User agents MUST NOT attempt to construct a canonical identifier from any other
							identifiers provided in the manifest.

						The specification of the canonical identifier MAY be complemented by
							the inclusion of additional types of identifiers using the identifier property [schema.org] and/or its subtypes.

						
							
								Example 21
								: Setting the canonical identifier and the address as
									URLs.
							

							{
 …
 "id" : "http://www.w3.org/TR/tabular-data-model/",
 "url" : "http://www.w3.org/TR/2015/REC-tabular-data-model-20151217/",
 …
}

						

						
							
								Example 22
								: Using a URN for the canonical identifier.
							

							{
 …
 "id" : "urn:isbn:9780123456789",
 "url" : "https://publisher.example.org/wuthering-heights",
 …
}

						

					

					
						4.7.1.5 Creators

						A creator is an individual or organization responsible for the
							creation of a digital publication.

						The following properties are categorized as creators:

						
							
								
										Term
										Description
										Required Value
										Value Category
										[schema.org] Mapping
								

							
							
								
										
										artist
									
										The primary artist for the publication, in a medium other than pencils or
										digital line art.
										One or more Person.
										
										Array of Entities
									
										
										artist (VisualArtwork)
								

								
										
										author
									
										The author of the publication.
										One or more Person and/or
											Organization.
										
										Array of Entities
									
										
										author (CreativeWork)
								

								
										
										colorist
									
										The individual who adds color to inked drawings.
										One or more Person.
										
										Array of Entities
									
										
										colorist (VisualArtwork)
								

								
										
										contributor
									
										Contributor whose role does not fit to one of the other roles in this
										table.
										One or more Person and/or
											Organization.
										
										Array of Entities
									
										
										contributor (CreativeWork)
								

								
										
										creator
									
										
										The creator of the publication.

										Use of this property might lead to inconsistent results in user agents. It is
											marked as a synonym for author in [schema.org], but there is no guidance
											on which takes precedence or how to combine them. It is advised to use only
											one or the other, with preference given to the more specific author
											property.

									
										One or more Person and/or
											Organization.
										
										Array of Entities
									
										
										creator (CreativeWork)
								

								
										
										editor
									
										The editor of the publication.
										One or more Person.
										
										Array of Entities
									
										
										editor (CreativeWork)
								

								
										
										illustrator
									
										The illustrator of the publication.
										One or more Person.
										
										Array of Entities
									
										
										illustrator (Book)
								

								
										
										inker
									
										The individual who traces over the pencil drawings in ink.
										One or more Person.
										
										Array of Entities
									
										
										inker (VisualArtwork)
								

								
										
										letterer
									
										The individual who adds lettering, including speech balloons and sound effects,
										to artwork.
										One or more Person.
										
										Array of Entities
									
										
										letterer (VisualArtwork)
								

								
										
										penciler
									
										The individual who draws the primary narrative artwork.
										One or more Person.
										
										Array of Entities
									
										
										penciler (VisualArtwork)
								

								
										
										publisher
									
										The publisher of the publication.
										One or more Person and/or
											Organization.
										
										Array of Entities
									
										
										publisher (CreativeWork)
								

								
										
										readBy
									
										A person who reads (performs) the publication (for audiobooks).
										One or more Person.
										
										Array of Entities
									
										
										readBy (Audiobook)
								

								
										
										translator
									
										The translator of the publication.
										One or more Person and/or
											Organization.
										
										Array of Entities
									
										
										translator (CreativeWork)
								

							
						

						Creators MUST be represented either as:

						
								a [json] string encoding the name of a Person [schema.org]; or

								an instance of a Person or Organization [schema.org].

						

						A single string value is a shorthand for a [schema.org] Person
							whose name property is set to that string value. (See also § 4.2.4.2
								Entities.)

						The manifest MAY include more than one of each type of creator.

						
							
								Example
										23
								: Setting the author of a book.
							

							{
 …
 "url" : "https://publisher.example.org/alice-in-wonderland",
 "author" : {
 "type" : "Person",
 "name" : "Lewis Carroll"
 }
}

						

						
							
								Example 24
								: Separating editors, authors, and publisher. Some persons
									expressed as simple strings instead of objects.
							

							{
 …
 "author" : [
 "Jeni Tennison",
 {
 "type" : "Person",
 "name" : "Gregg Kellogg",
 },
 {
 "type" : "Person",
 "name" : "Ivan Herman",
 "id" : "https://www.w3.org/People/Ivan/"
 "identifier" : "0000-0003-0782-2704",
 }
],
 "editor" : [
 "Jeni Tennison",
 {
 "type" : "Person",
 "name" : "Gregg Kellogg",
 }
],
 "publisher" : {
 "type" : "Organization",
 "name" : "World Wide Web Consortium",
 "id" : "https://www.w3.org/"
 }
 …
}

						

					

					
						4.7.1.6 Duration

						 The global duration indicates the overall length of a
								time-based
							digital publication (e.g., an audiobook or
							a book consisting of a series of video clips). It is expressed using the
								duration property.

						
							
								
										Term
										Description
										Required Value
										Value Category
										[schema.org] Mapping
								

							
							
								
										
										duration
									
										Overall duration of a time-based publication.
										Duration value as defined by [iso8601-1].
										
										Literal
									
										
										duration (Property)
								

							
						

						
							
								Example 25
								: Setting the global duration in seconds.
							

							{
 …
 "type" : "Audiobook",
 "id" : "https://example.org/flatland-a-romance-of-many-dimensions/",
 "url" : "https://w3c.github.io/pub-manifest/experiments/audiobook/",
 "name" : "Flatland: A Romance of Many Dimensions",
 …
 "duration" : "PT15153S",
 …
}

						

						
							
								Note
							

							 The relevant
									Wikipedia page gives a concise description of the ISO duration syntax.

						

					

					
						4.7.1.7 Last Modification
								Date

						The last modification date is the date when a digital publication was last updated (i.e.,
							whenever changes were last made to any of the resources of the publication, including the manifest). It is expressed using the
								dateModified property.

						
							
								
										Term
										Description
										Required Value
										Value Category
										[schema.org] Mapping
								

							
							
								
										
										dateModified
									
										Last modification date of the publication.
										A Date or DateTime
												value [schema.org], both
										expressed in ISO 8601 Date, or Date Time formats, respectively [iso8601-1].
										
										Literal
									
										
										dateModified (CreativeWork)
								

							
						

						The last modification date does not necessarily reflect all changes to a publication (e.g.,
							if a digital publication format allows references to third-party content). User agents SHOULD check the last modification date of individual resources to
							determine if they have changed and need updating.

						
							
								Example 26
								: Setting the last modification date of the
									publication.
							

							{
 …
 "dateModified" : "2015-12-17",
 …
}

						

					

					
						4.7.1.8 Publication Date

						The publication date is the date on which a digital publication was originally
							published. It represents a static event in the lifecycle of a publication and allows
							subsequent revisions to be identified and compared. It is expressed using the
								datePublished property.

						
							
								
										Term
										Description
										Required Value
										Value Category
										[schema.org] Mapping
								

							
							
								
										
										datePublished
									
										Creation date of the publication.
										A Date or DateTime, both expressed
										in ISO 8601 Date, or Date Time formats, respectively [iso8601-1].
										
										Literal
									
										
										datePublished (CreativeWork)
								

							
						

						The exact moment of publication is intentionally left open to interpretation: it could be
							when the publication is first made available or could be a point in time before publication
							when the publication is considered final.

						
							
								Example 27
								: Setting the creation and modification date of the
									publication.
							

							{
 …
 "datePublished" : "2015-12-17",
 "dateModified" : "2016-01-30",
 …
}

						

					

					
						4.7.1.9 Publication Language

						A digital publication has at least one
							natural language, which is the language that the content is expressed in (e.g., English,
							French, Chinese). The manifest includes the following property to set this concept, which
							can influence, for example, the behavior of a user agent (e.g., to preload a dictionary or
							text-to-speech engine).

						
							
								
										Term
										Description
										Required Value
										Value Category
										[schema.org] Mapping
								

							
							
								
										
										inLanguage
									
										Default language for the publication.
										One or more well-formed language tags [bcp47].
										
										Array of Literals
									
										
										inLanguage (Property)
								

							
						

						The natural language MUST be a well-formed language tag
									 [bcp47].

						If a user agent requires the publication language and it is not available in the manifest, or
							the obtained value is not well-formed [bcp47], the user agent MAY attempt to determine the publication language when generating its internal representation. This
							specification does not mandate how such a language tag is created. The user agent might:

						
								use the language declaration of the manifest;

								use the first language declaration found in a resource in the default reading order; or

								calculate the language using an algorithm of its own design.

						

						If a user agent requires a primary language for the publication and more than one language is
							specified, the first entry in the inLanguage array MUST be recognized as the primary.

						
							
								Note
							

							It is important to differentiate the language of the publication from
								the language of the individual resources that compose it. If such resources are, for
								example, in HTML, the language needs to be set in those resources, too. The language of
								the publication is not inherited.

						

					

					
						4.7.1.10 Reading
							Progression Direction

						The reading progression direction establishes the
							reading direction from one resource to the next within a digital publication. It is used to adapt such publication-level interactions as
							menu position, touch gestures, swap direction, and tap zones for next and previous page. The
							reading progression is expressed using the readingDirection property.

						
							
								
										Term
										Description
										Required Value
										Value Category
										[schema.org] Mapping
								

							
							
								
										
										readingProgression
									
										Reading progression direction from one resource to the other.
										One of: ltr or rtl.
										
										Literal
									
										(None)
								

							
						

						The value of this property MUST be either:

						
								ltr: left-to-right; or

								rtl: right-to-left.

						

						The default value is ltr. If the readingProgression is not set,
							user agents MUST use the default value when generating their internal representation.

						This property has no effect on the rendering of the individual primary resources; it
							is only relevant for the progression direction from one resource to the other.

						
							
								Example 28
								: Setting the reading progression explicitly to ltr
									(left-to-right).
							

							{
 …
 "readingProgression" : "ltr",
 …
}

						

					

					
						4.7.1.11 Title

						The title provides the human-readable name of a digital publication. It is expressed using the name property.

						
							
								
										Term
										Description
										Required Value
										Value Category
										[schema.org] Mapping
								

							
							
								
										
										name
									
										Human-readable title of the publication.
										One or more Text.
										
										Array of Localizable Strings
									
										
										name (Thing)
								

							
						

						If a title is not included in the manifest, the user agent MUST create one. The process for obtaining the title is defined in
								§ 7.4.3 Add
								Default Values.

						
							
								Note
							

							A user agent is not expected to produce a meaningful title [wcag21] for a
								publication when one is not specified.

						

						
							
								Example 29
								: Setting the title of a book explicitly.
							

							{
 …
 "name" : "Heart of Darkness",
 …
}

						

					
				

				
					4.7.2 Resource
						Categorization Properties

					Publication resources are specified via the default
							reading order, the resource list, and the links, as defined in
						this section. These lists contain references to informative
							resources like the privacy policy, and structural resources like the table of
							contents.

					
						
							Note
						

						It is not necessary to include a reference to the manifest in any of these
							lists.

					

					
						4.7.2.1 Default Reading Order

						The default reading order is a specific progression
							through a set of digital publication
							resources. A user might follow alternative pathways through the content, but in the absence
							of such interaction the default reading order defines the expected progression from one
							resource to the next.

						The default reading order is expressed using the readingOrder property.

						
							
								
										Term
										Description
										Required Value
										Value Category
										[schema.org] Mapping
								

							
							
								
										
										readingOrder
									
										Order of progression through the resources of a digital publication.
										
										One or more LinkedResource.

									
										
										Array of Linked
											Resources
									
										(None)
								

							
						

						Each element of the readingOrder property MUST be
							expressed either as:

						
								a [json] string representing the URL of the resource; or

								an instance of a LinkedResource
								object.

						

						A single string value represents an instance of a LinkedResource object whose
								url property is the string's text.

						The order of items is significant.

						The URLs expressed in the reading order MAY include fragment identifiers, although profiles of
							this specification MAY restrict both their use as well as what
							schemes and features are supported. Fragment identifiers are to be interpreted as defined by
							their respective specifications (e.g., the start location to move the user to, or the range
							of content to render before moving to the next item in the reading order).

						Resources SHOULD NOT be listed more than once in the reading order,
							as this can lead to unexpected results in user agents (e.g., links to the resource might not
							resolve to the right instance in the reading order).

						The default reading order MAY be omitted when a digital publication consists only of the
							resource that links to the manifest. When the default reading
							order is absent, user agents MUST include an entry for the linking
							resource when compiling the internal
								representation. See § 7.4.3 Add Default Values for more information.

						The default reading order MUST include at least one resource after
								processing of the manifest.

						
							
								Example 30
								: Expressing the reading order as a simple list of
									URLs.
							

							{
 …
 "readingOrder" : [
 "html/title.html",
 "html/copyright.html",
 "html/introduction.html",
 "html/epigraph.html",
 "html/c001.html",
 …
],
 …
}

						

						
							
								Example 31
								: Expressing the reading order as LinkedResource objects to
									provide more information.
							

							{
 …
 "readingOrder" : [
 {
 "type" : "LinkedResource",
 "url" : "html/title.html",
 "encodingFormat" : "text/html",
 "name" : "Title page"
 },
 {
 "type" : "LinkedResource",
 "url" : "html/copyright.html",
 "encodingFormat" : "text/html",
 "name" : "Copyright page"
 },
 …
],
 …
}

						

					

					
						4.7.2.2 Resource List

						The resource list enumerates any additional resources used
							in the processing or rendering of a digital publication
							that are not already listed in the default reading order.
							It is expressed using the resources property.

						
							
								
										Term
										Description
										Required Value
										Value Category
										[schema.org] Mapping
								

							
							
								
										
										resources
									
										List of additional publication resources used in the processing or rendering of
										a publication.
										
										One or more LinkedResource.

									
										
										Array of Linked
											Resources
									
										(None)
								

							
						

						Each element of the resources property MUST be
							expressed either as:

						
								a [json] string representing the URL of the resource; or

								an instance of a LinkedResource
								object.

						

						A single string value represents an instance of a LinkedResource object whose
								url property is the string's text.

						The order of items is not significant.

						To avoid conflicting information about a resource, a particular resource's URL
							SHOULD NOT be repeated within the resource list.

						The URLs expressed in the resource list SHOULD NOT include fragment identifiers.

						The completeness of the resource list can affect the usability of a digital publication in
							certain reading scenarios (e.g., the ability to read it offline). For this reason, it is
							strongly advised to provide a comprehensive list of all of the publication's constituent
							resources beyond those listed in the default reading order.

						In some cases, a comprehensive list of these resources might not be easily achieved (e.g.,
							third-party scripts that reference resources from deep within their source), but a user
							agent SHOULD still be able to render a publication even if some of
							these resources are not identified as belonging to the publication (e.g., if it is taken
							offline without them).

						
							
								Example 32
								: Expressing the list of resources via a combination of
									simple URL strings and LinkedResource objects.
							

							{
 …
 "resources" : [
 "datatypes.html",
 "datatypes.svg",
 "datatypes.png",
 "diff.html",
 {
 "type" : "LinkedResource",
 "url" : "test-utf8.csv",
 "encodingFormat" : "text/csv"
 },
 {
 "type" : "LinkedResource",
 "url" : "test-utf8-bom.csv",
 "encodingFormat" : "text/csv"
 },
 …
],
 …
}

						

					

					
						4.7.2.3 Links

						The Links list is used to provide a list of resources that are
								not required for the processing and rendering of a digital publication (i.e., the content of
							the publication remains unaffected even if these resources are not available). Links are
							expressed using the links property.

						
							
								
										Term
										Description
										Required Value
										Value Category
										[schema.org] Mapping
								

							
							
								
										
										links
									
										List of resources associated with a publication but not required for its
										processing or rendering.
										
										One or more LinkedResource.

									
										
										Array of Linked
											Resources
									
										(None)
								

							
						

						Each element of the links property MUST be expressed
							either as:

						
								a [json] string representing the URL of the resource; or

								an instance of a LinkedResource
								object.

						

						A single string value represents an instance of a LinkedResource object whose
								url property is the string's text.

						The order of items is not significant.

						It is RECOMMENDED to use LinkedResource objects with
							their rel values set.

						Linked resources are typically made available to user agents to augment or enhance the
							processing or rendering, such as:

						
								a privacy policy or license that the user agent can offer a link to from a shelf;

								a metadata record that the user agent can use to discover and display more information
								about the publication; or

								a dictionary of terms the user agent can process to provide enhanced language help.

						

						Links can also be used to identify resources used in the online rendering of a publication,
							but that are not essential to include when the publication is taken offline or packaged
							(e.g., to minimize the size). These include:

						
								large font files that enhance the appearance of the publication but are not vital to its
								display (i.e., a fallback font will suffice); or

								third-party scripts that are not intended for use when a publication is taken offline or
								packaged (e.g., tracking scripts).

						

						The links list SHOULD include resources necessary to
							render a linked resource (e.g., scripts, images, style sheets).

						Resources listed in the links list MUST NOT be listed
							in the default reading order or resource list.

						User agents MAY ignore linked resources and are not required to take
							them offline with a publication. These resources SHOULD NOT be
							included when packaging a publication.

					
				

				
					4.7.3 Extensibility

					The manifest is designed to provide a basic set of properties for use by user agents in
						presenting and rendering a digital publication, but
							MAY be extended in the following ways:

					
							by the provision of linked metadata records;
							or

							through the inclusion of additional properties
								in the manifest.

					

					This specification does not define how such additional properties are compiled, stored or exposed
						by user agents in their internal representation
						of the manifest. A user agent MAY ignore some or all extended
						properties.

					
						4.7.3.1 Linked records

						The manifest MAY be extended through links to metadata records, such
							as an ONIX [onix] or BibTeX [bibtex], using a LinkedResource object, where:

						
								the rel property of the
									LinkedResource includes a relevant identifier (e.g., if the linked
								record contains descriptive metadata, the describedby identifier [iana-link-relations] can be used);

								the value of the encodingFormat identifies the MIME media
										type [rfc2046] defined for that particular type of record, if
								applicable.

						

						Linked records are included in the resource list when they are
							part of the publication (i.e., are needed for more than just manifest extensibility).
							Otherwise, they are included in the links list.

						
							
								Example 33
								: Linking to an external ONIX for Books metadata
									record.
							

							{
 …
 "links" : [
 {
 "type" : "LinkedResource",
 "url" : "https://www.publisher.example.org/time-machine/onix.xml",
 "encodingFormat" : "application/onix+xml",
 "rel" : "describedby"
 },
 …
],
 …
}

						

						
							
								Editor's note
							

							The application/onix+xml MIME type has not yet been registered by
								IANA at the time of writing this document and is included in the example for
								illustrative purposes only.

						

					

					
						4.7.3.2 Additional
							Manifest Properties

						Additional properties MAY be included directly in the manifest using
							public schemes like [schema.org] or [dcterms]. Proprietary terms MAY be used, but it is
								RECOMMENDED that such terms be included using Compact IRIs [json-ld11], with prefixes defined as part of the context.

						
							
								Note
							

							Proper use of prefixes and compact IRIs is necessary to use a manifest with a
								full JSON-LD processor, but is not a requirement for the processing algorithm defined by this specification. Validation of prefixed
								terms has to be carried out separately if full JSON-LD processing is expected.

						

						
							
								Example 34
								: Extending the basic data set using a vocabulary prefix
									declaration.
							

							{
 "@context" : [
 "https://schema.org",
 "https://www.w3.org/ns/pub-context",
 {
 "language" : "en",
 "ex" : "https://example.org/vocab"
 }
],
 …
 "ex:region" : "North America",
 …
}

						

						The Schema.org context file
									[schema.org] defines several prefixes for commonly used
							vocabularies, such as the Dublin Core Terms (dcterms) [dcterms] and Element Set (dc) [dc11], the FOAF
							vocabulary (foaf) [foaf], and the Bibliographic Ontology (bibo) [bibo]. Properties from these
							vocabularies can be used without their prefixes having to be declared.

						
							
								Example 35
								: Extending the basic data using the Schema.org
									'copyrightYear' and 'copyrightHolder' terms.
							

							{
 …
 "copyrightYear" : "2015",
 "copyrightHolder" : "World Wide Web Consortium",
 …
}

						

						
							
								Example 36
								: Extending the basic data set using the Dublin Core
									'subject' term with the 2012 ACM Classification terms.
							

							{
 …
 "dcterms:subject" : ["Web data description languages","Data integration","Data Exchange"],
 …
}

						

					
				
			

			
				4.8 Resource Relations

				
					4.8.1 Structural Resources

					
						4.8.1.1 Cover

						The cover is a resource that user agents can use to present a digital publication (e.g., in a library or
							bookshelf, or when initially loading the publication).

						The cover is identified by the cover link relation.

						The link to the cover MUST NOT be specified in the links list.

						
							
								Editor's note
							

							The cover term is not currently registered in the IANA link
								relations, but the Working Group expects to add it.

						

						
							
								Example
										37
								: Identifying an HTML cover page.
							

							{
 …
 "resources" : [
 {
 "type" : "LinkedResource",
 "url" : "cover.html",
 "encodingFormat" : "text/html",
 "rel" : "cover"
 },
 …
],
 …
}

						

						If the cover is an image (whether embedded in an HTML resource or not), it is strongly
							advised to follow Success Criterion
								1.1.1 [wcag21] for the
							provision of alternative text and extended descriptions. For image formats that do not
							provide the ability to embed this information, the name and description properties of LinkedResource can be used to provide alternative
							text and extended descriptions, respectively. In these cases, the name property
								SHOULD always be set — the property can be left empty for
							decorative images.

						
							
								Example 38
								: Identifying a cover image. Alternative text and a
									description are provided in the name and description properties,
									respectively.
							

							{
 …
 "resources" : [
 {
 "type" : "LinkedResource",
 "url" : "whale-image.jpg",
 "encodingFormat" : "image/jpeg",
 "rel" : "cover",
 "name" : "Moby Dick attacking hunters",
 "description" : "A white whale is seen surfacing from the water to attack a small whaling boat"
 },
 …
],
 …
}

						

						
							
								Example
										39
								: A decorative cover. The name property is left
									empty.
							

							{
 …
 "resources" : [
 {
 "type" : "LinkedResource",
 "url" : "cover.jpg",
 "encodingFormat" : "image/jpeg",
 "rel" : "cover",
 "name" : "",
 },
 …
],
 …
}

						

						If a user agent requires alternative text for a cover image to make an interface accessible,
							and the name property is not specified, it MAY attempt
							to construct the alternative text from the publication metadata. This specification does not
							mandate how such alternative text is created. One method is to construct the alternative
							text as a string that identifies that the image as the cover, followed by the publication title.

						Only one resource MAY be identified as the cover, but additional
							covers MAY specified using the alternate property (e.g., to provide alternative dimensions or
							resolution).

						
							
								Example 40
								: Providing a cover image in JPEG and SVG formats.
							

							{
 …
 "resources" : [
 {
 "type" : "LinkedResource",
 "url" : "lilliput.jpg",
 "encodingFormat" : "image/jpeg",
 "rel" : "cover"
 "alternate" : [
 {
 "type" : "LinkedResource",
 "url" : "lilliput.svg",
 "encodingFormat" : "image/svg+xml",
 "rel" : "cover"
 }
]
 },
 …
],
 …
}

						

					

					
						4.8.1.2 Page List

						The page list is a navigational aid that contains a list of static page demarcation points
							within a digital publication.

						The page list is identified by the pagelist link relation.

						
							
								Editor's note
							

							The pagelist term is not currently registered in the IANA link
								relations but the Working Group expects to add it.

						

						Only one resource MAY be identified as containing a page list. If
							multiple instances are specified, user agents MUST use the first
							instance encountered, with precedence given to the reading
								order.

						The link to the page list MUST NOT be specified in the links list.

						
							
								Example
										41
								: Identifying the resource that contains the page
									list.
							

							{
 …
 "resources" : [
 {
 "type" : "LinkedResource",
 "url" : "toc_file.html",
 "rel" : "pagelist"
 },
 …
],
 …
}

						

					

					
						4.8.1.3 Table of Contents

						The table of contents is a navigational aid that provides links to the major structural
							sections of a digital publication.

						The resource that contains the table of
								contents is identified by the contents link relation [iana-link-relations]. The table of contents proper
							is the first element inside that resource with the role value
								doc-toc, as defined in § C.2 HTML Structure.

						Only one resource MAY be identified as containing the table of
							contents. If multiple instances are specified, user agents MUST use
							the first instance encountered, with precedence given to resources in the reading order.

						Profiles of this specification MAY define how to locate a
							resource containing the table of contents when no resource is identified by the
								contents relation.

						The link to the table of contents MUST NOT be specified in the links list.

						The RECOMMENDED structure and processing model for the table of
							contents is defined in § C. Machine-Processable Table of Contents.

						
							
								Example 42
								: Identifying the resource that contains the table of
									contents.
							

							{
 …
 "resources" : [
 {
 "type" : "LinkedResource",
 "url" : "toc_file.html",
 "rel" : "contents"
 },
 …
],
 …
}

						

					
				

				
					4.8.2 Informative Resources

					
						4.8.2.1 Accessibility Report

						An accessibility report provides information about the suitability of a digital publication for consumption by
							users with varying preferred reading modalities. These reports typically identify the result
							of an evaluation against established accessibility criteria, such as those provided in
									[wcag21], and are
							an important source of information in determining the usability of a publication.

						An accessibility report is identified using the accessibility-report link
							relation.

						
							
								Editor's note
							

							The accessibility-report term is not currently registered in the
								IANA link relations but the Working Group expects to add it.

						

						It is helpful to include the report as a resource of the publication so that it is available,
							for example, when a publication is read offline.

						
							
								Note
							

							Providing the accessibility report in a human-readable format, such as HTML
										[html], helps ensure that it can be accessed and
								understood by users. Augmenting the report with machine-processable metadata, such as
								provided in Schema.org [schema.org], will
								additionally aid in machine processing.

						

						
							
								Example 43
								: Setting a link to an accessibility report.
							

							{
 …
 "resources" : [
 …
 {
 "type" : "LinkedResource",
 "url" : "https://www.publisher.example.org/sherlock-holmes-accessibility.html",
 "rel" : "accessibility-report"
 },
 …
],
 …
}

						

					

					
						4.8.2.2 Preview

						Not all digital publications will be available to
							all users (e.g., they might be restricted to registered users of a site). In such cases, the
							publisher might wish to provide a preview of the content to entice users to access the full
							version.

						A preview is identified using the
								preview link relation [iana-link-relations].

						Previews MAY be located externally or included as resources of
							digital publications.

						
							
								Example 44
								: Identifying a preview as an audio resource of a digital
									publication.
							

							{
 …
 "links" : [
 {
 "type" : "LinkedResource",
 "url" : "preview.mp3",
 "encodingFormat" : "audio/mpeg",
 "rel" : "preview"
 },
 …
],
 …
}

						

						
							
								Example 45
								: Identifying a preview via an external link.
							

							{
 …
 "links" : [
 {
 "type" : "LinkedResource",
 "url" : "https://publisher.example.org/jekyll-hyde-preview.html",
 "encodingFormat" : "text/html",
 "rel" : "preview"
 },
 	…
],
 …
}

						

					

					
						4.8.2.3 Privacy Policy

						Users often have the legal right to know and control what information is collected about
							them, how such information is stored and for how long, whether it is personally
							identifiable, and how it can be expunged. Including a statement that addresses such privacy
							concerns is consequently an important part of publishing digital publications. Even if no information is collected, such a declaration
							increases the trust users have in the content.

						A link to a privacy policy can be included in the manifest for this purpose. It is helpful to
							include the privacy policy as a resource of the publication so that it is available, for
							example, when a publication is read offline.

						A privacy policy is
							identified using the privacy-policy link relation [iana-link-relations].

						
							
								Example
										46
								: Identifying a privacy policy via an external link.
							

							{
 …
 "resources" : [
 …
 {
 "type" : "LinkedResource",
 "url" : "https://www.w3.org/Consortium/Legal/privacy-statement-20140324",
 "encodingFormat" : "text/html",
 "rel" : "privacy-policy"
 },
 …
],
 …
}

						

					
				

				
					4.8.3 Extensions

					If additional relations beyond those defined in this specification need to be expressed, the rel property can be extended in one of the
						following ways:

					
							using relations defined in a relation vocabulary (e.g., the IANA link
								registry [iana-link-relations] and microformats existing rel
								values [mfrel]);
							or

							using extension relation
								types [rfc8288].

					

				
			
		
		
			5. Publication Resources

			The list of unique resources belonging to a digital publication — its bounds —
				is obtained from the union of resources listed in the readingOrder and resources,
				including any alternate resources. The exact
				process for creating this list is described in the manifest
				processing algorithm.

			All other resources are outside the bounds of the digital publication (e.g., resources listed in the links section and hyperlinks in the content to external resources on the
				Web).

			This specification does not place any restrictions on publication resources, but profiles of this
				specification MAY restrict both the content type and location of resources.

			User agents MAY opt to process and render resources differently depending on
				whether they are within the bounds of a digital publication (e.g., exclude external resources from an
				offline or packaged version of a publication).

		
		
			6. Manifest Discovery

			
				6.1 Linking

				Links to the manifest MUST take one or both of the following forms:

				
						
						An HTTP Link header field [rfc5988] with its
								rel parameter set to the value "publication".

						
							
								Example 47
							

							Link: <https://example.com/pub/manifest>; rel=publication

						

					

						
						A link element [html] with its rel
							attribute set to the value "publication".

						
							
								Example 48
							

							<link href="https://example.com/pub/manifest" rel="publication"/>

						

					

				

				When a manifest is embedded within an HTML document, the link MUST include a fragment identifier that references the script
					element that contains the manifest (see § 6.2 Embedding).

				
					
						Example 49
						: Linking to a manifest within the same HTML resource.
					

					<link href="#example_manifest" rel="publication">
…
<script id="example_manifest" type="application/ld+json">
{
 "@context" : ["https://schema.org", "https://www.w3.org/ns/pub-context"],
 …
}
</script>

				

				The resource that links to the manifest MUST be included in either the default reading order or the resource
						list.

			

			
				6.2 Embedding

				When a digital publication format allows manifests to be
					embedded within an HTML document, the manifest MUST be included in a script element [html] whose type
						attribute is set to application/ld+json [json-ld11].

				
					
						Example 50
						: Script tag for a publication manifest embedded in an HTML
							document.
					

					<script type="application/ld+json">
 {
 "@context" : ["https://schema.org", "https://www.w3.org/ns/pub-context"],
 …
 }
</script>

				

			

			
				6.3 Other Discovery Methods

				Digital publication formats MAY define alternative methods of discovering a manifest that do no involve linking to, or
					embedding, a manifest (e.g., that manifest could be discovered using a restricted name and/or
					location). This specification does not add any restrictions on such methods.

			
		
		
			7. Processing a Manifest

			
				This section depends on the Infra Standard [infra].
			

			
				7.1 Introduction

				
					This section is non-normative.
				

				Although a digital publication's manifest is authored as
							[json-ld11], the steps for processing a manifest described in this section detail
					how a user agent transforms the manifest into its internal
						representation of the data. The algorithm describes the process using the terminology and
					data types defined in [infra], and, if successful results in an [infra] map of the data
					being returned.

				
					
						Note
					

					An actual implementation of this algorithm will use the corresponding constructs and
						data types of whatever language is used.

				

			

			
				7.2 Error Handling

				The following error types are used in the processing algorithm:

				
						validation
							error — a non-terminating error that occurs when the value of a key does match its expected input.

						fatal error — a terminating
						error that results, for example, when a manifest cannot be processed or does not match critical
						validity constraints.

				

				User agents SHOULD expose both validation and fatal errors, but this
					specification does not prescribe the way this is done.

				For validation errors, user agents SHOULD differentiate the severity of the
					error (i.e., whether a required or recommended practice has been violated).

			

			
				7.3 Processing Contexts

				Some steps in the processing algorithm depend on the expected value
					category of a term, so the context in which a term is used can affect processing (e.g., url expects an Array of URLs only when the direct property of the Publication
					Manifest). To differentiate these uses, a context is provided to certain
					function calls. This context is set to the type of object that initiates the processing call.

				The default list of recognized
						types includes Person, Organization and
						LinkedResource. Profiles
					MAY extend this list to include additional object types.

				If a context is not provided to a function, the term being processed is considered part of the global
					context (i.e., it is a direct child of the manifest).

				
					
						Note
					

					When extending the list of recognized types, the normalize
							data function might also need to be extended to ensure that all objects have their type
						specified (e.g., when string values are automatically expanded to objects).

				

			

			
				7.4 Generate the Internal
						Representation

				This algorithm takes the following arguments:

				
						text: a UTF-8 string representing the manifest.

						base: a URL string that represents the base URL for the manifest.

						document: the HTML Document
							(DOM) Node [html] of the document that references the manifest, when available.

				

				
					
						Note
					

					This algorithm does not describe how the manifest is discovered and obtained. The steps
						by which to do so are defined by each digital publication
						format.

				

				To generate the internal representation, run the following
					steps:

				
						
						Let processed be an empty map that will contain the internal representation of the
							manifest.

					

						
						Let manifest be the result of parsing JSON into Infra
								values given text. If manifest is not a map, fatal
							error, return failure.

						
							Explanation
							Publication manifests have to be expressed as JSON objects, not arrays. After converting
								the manifest to [infra] types, an additional check is made that
								the resulting structure is a map.

						
					

						
						(§ 4.3 Manifest
								Contexts) If manifest["@context"] is not set to a list, or the first and second items in
								manifest["@context"] are not the string values
								"https://schema.org" and "https://www.w3.org/ns/pub-context",
							in this order, fatal error, return failure.

						
							Explanation
							If the context URLs are not set as
								expected, the JSON data does not represent a publication manifest.

						
					

						
						(§ 4.6 Profile
								Conformance) Let processed["profile"] be the profile the
							manifest conforms to. Set processed["profile"] as follows:

						
								
								If manifest["conformsTo"] is not set, or does not include a profile the
									user agent recognizes as capable of processing and/or rendering, the user agent SHOULD inspect the media type(s) of the resources in the
									reading order to determine if the publication matches a profile it is capable of
									processing or rendering. If so, validation error,
									set processed["profile"] to the matching profile. Otherwise, fatal error, return failure.

							

								
								Otherwise, set processed["profile"] to the first URL in
										manifest["conformsTo"] the user agent is capable of processing and/or
									rendering.

							

						

						
							
								Note
							

							The value of manifest["conformsTo"] could be a string or a list at this step in the process.

						

						
							Explanation
							The profile the publication conforms to determines any additional extension steps that
								have to be performed during processing. These steps are defined by their respective
								specifications.

							The new term profile is created because conformsTo is not
								restricted to profile identifiers (i.e., the new term provides a persistent identifier
								of the profile within the internal representation).

						
					

						
						(§ 4.4.1
								Global Declarations) Let lang be the global language and
								dir be the global direction obtained from this step. Set each initially to an
							empty string.

						For each
							context of manifest["@context"], moving from the last item to the first, if
								context is a map:

						
								if lang is an empty string and context["language"] is defined, set lang to
									context["language"];

								if dir is an empty string
								and context["direction"] is defined, set dir to
									context["direction"];

								if neither lang nor dir is an empty string, then break.

						

						If lang is neither an empty string nor a well-formed [bcp47] language tag, validation error, set lang to an
							empty string.

						If dir is neither an empty string nor one of the values "ltr" or "rtl", validation error, set dir to an
							empty string.

						
							Explanation
							The global language and direction declarations obtained here are used to set the language
								and base direction, respectively, for localizable strings without a declaration.

							The iterator moves backwards through @context as the last language and
								direction declarations override any earlier ones.

						
					

						
						(§ 4.3 Manifest
								Contexts) If a profile requires additional validation of the manifest
							context, those steps are performed here.

						
							Explanation
							This extension step allows verification of any information a profile requires be present
								in the manifest context (e.g., additional context URLs or parameters). These steps have to be
								performed at this point, as @context terms are removed as part of the data normalization in the next step. A more general
								step for processing profile data is provided at a later
									step.

						
					

						
						For each
							term → value of manifest, set processed[term] to
							the result, when successful, of calling normalize data given
								term, value, lang, dir and base.
							If failure is returned, do not add term to processed.

						
							Explanation
							The data normalization steps standardize the incoming manifest data to remove any
								authoring conveniences, such as the ability to use strings where objects or arrays are
								expected. The resulting processed data are added to the processed variable
								and are operated on in subsequent steps.

						
					

						
						Set processed to the result of running data
								validation given processed.

						
							Explanation
							The data validation checks ensure that the incoming data matches its expected value
								categories. Any restrictions on the expected values are also enforced at this step, and
								any invalid data is removed from the final representation.

						
					

						
						If a profile specifies additional processing functions that
							need to be run, those steps are executed at this point.

					

						
						Set processed to the result of running add
								default values, when successful, given processed and document,
							when specified. Otherwise, terminate processing, return failure.

						
							Explanation
							This step checks if any information missing from the manifest can be obtained from the
								HTML document that links to the document, or from other sources.

						
					

						
						Return processed.

					

				

				
					
						Note
					

					For a visualization of the resulting structure, see § A.
							Internal Representation Data Model.

				

				
					7.4.1 Normalize Data

					To normalize data for a property term's
							value, with the global language
						lang, global direction
						dir, base URL
						base, and optional context
						context run these steps:

					
							
							Let normalized be the value of value.

							
								Explanation
								The data normalization steps are performed on the copy of the incoming value held in
									the normalized variable defined in this step. This variable is returned
									at the end of a successful normalization process.

							
						

							
							(§ 4.3 Manifest
									Contexts) If term is @context, return failure.

							
								Explanation
								@context provides information for the initial processing of the manifest,
									but is not retained in the internal data representation. Returning a failure signals
									to remove the term.

							
						

							
							(§ 4.2.7 Arrays)
								If, depending on context, term expects an array and value is not a list, set normalized to
								the list:
								« value ».

							
								Explanation
								Various terms require their values to be arrays, but, for the sake of convenience,
									authors are allowed to use a single value instead of a one element array. For
									example,

								
									
										Example 51
									

									{
 …
 "name" : "Et dukkehjem",
 "author" : "Henrik Ibsen",
 …
}

								

								yields:

								
									
										Example 52
									

									«[
 …
 "name" → « "Et dukkehjem" »,
 "author" → « "Henrik Ibsen" »,
 …
]»

								

							
						

							
							(§ 4.2.4.2
									Entities) If, depending on context, term expects an
									array of entities, for each
								entity of normalized:

							
									
									if entity is a string, set entity to the map:

									«[
 "type" → « "Person" »,
 "name" → entity
]»

								

									
									otherwise, if entity is not a map, validation error, remove
										entity from normalized.

								

									
									otherwise, if entity["type"] is not set, set it to the list:
											« "Person" ». If entity["type"] is set but
										does not include the value Person or Organization, append the value
											Person to the list.

								

							

							
								Explanation
								Creators (authors, editors, etc.), are expected to be explicitly defined as an
									object, but, for the sake of convenience, only their name has to be specified in the
									manifest. For example:

								
									
										Example 53
									

									{
 …
 "author": "Ralph Ellison",
 …
}

								

								This rule converts such string values to maps with a default type of
										Person, yielding the following for the preceding example:

								
									
										Example 54
									

									«[
 …
 "author" → «
 «[
 "type" → « "Person" »
 "name" → "Ralph Ellison"
]»
 »,
 …
]»

								

								For simplicity, the conversion of name to a localizable string is
									described by a later step.

							
						

							
							(§ 4.2.4.1
									Localizable Strings) If, depending on context, term
								expects an array of localizable strings, for
									each
								item of normalized:

							
									
									if item is a string, set item to the map:

									«[
 "value" → item,
 "language" → lang,
 "direction" → dir
]»

									if lang or dir is not set, or is an empty string, remove
										item["language"] or item["direction"], respectively.

								

									
									otherwise, if item is not a map, validation error, remove
											item from normalized.

								

									
									otherwise, process the map in item as follows:

									
											
											If item["language"] is not set, set it to the value of
													lang when lang is set and is not an empty string.

											Otherwise, if item["language"] is null, remove
												item["language"].

										

											
											If item["direction"] is not set, set it to the value of
													dir when dir is set and is not an empty string.

											Otherwise, if item["direction"] is null, remove
												item["direction"].

										

									

								

							

							
								Explanation
								Natural language text values are expected to be explicitly defined as localizable
									string objects, but, for the sake of convenience, can be simple strings in the
									manifest. For example, if no language information has been provided via the global language declaration then:

								
									
										Example 55
									

									{
 "@context" : ["https://schema.org", "https://www.w3.org/ns/pub-context"],
 "name" : ["La Comédie humaine"],
 …
}

								

								yields:

								
									
										Example 56
									

									«[
 "name" → «
 «[
 "value" → "La Comédie humaine"
]»
 »,
 …
]»

								

								If, however, an explicit language has been provided in the manifest, that language is
									added to the localizable string object. For example,

								
									
										Example 57
									

									{
 "@context" : [
 "https://schema.org",
 "https://www.w3.org/ns/pub-context",
 {"language": "fr"}
],
 "name" : ["La Comédie humaine"],
 …
}

								

								yields:

								
									
										Example 58
									

									{
 "name" → «
 «[
 "value" → "La Comédie humaine"
 "language" → "fr"
]»
 »,
 …
}

								

								A local setting or a local null value prevents the global value from
									taking effect.

								
									
										Example 59
									

									{
 "@context" : [
 "https://schema.org",
 "https://www.w3.org/ns/pub-context",
 {"language":"fr"}
],
 …
 "name" : [{
 "value" : "La Comédie humaine"
 }],
 "publisher" : [{
 "type":["Organization"],
 "name":[{
 "value": "Hachette",
 "language": null
 }]
 }],
 …
}

								

								yields:

								
									
										Example 60
									

									{
 "name" → «
 «[
 "value" → "La Comédie humaine"
 "language" → "fr"
]»
 »,
 "publisher" → «
 «[
 "type" → « "Organization" »,
 "name" → «
 «[
 "value" → "Hachette",
]»
]»
 »,
 …
}

								

							
						

							
							(§ 4.2.4.3
									Linked Resources) If, depending on context, term
								expects an array of LinkedResources, for
									each
								resource of normalized:

							
									
									if resource is a string, convert resource to the map:

									«[
 "type" → « "LinkedResource" »,
 "url" → resource
]»

								

									
									otherwise, if resource is not a map, validation error, remove
											resource from normalized.

								

									
									otherwise, if resource["type"] is not set, set it to the list:
											« "LinkedResource" ». If resource["type"]
										is set but does not include the value LinkedResource, append that value to
										the list.

								

							

							
								Explanation
								Resource links are expected to be explicitly designed as an object of type
										LinkedResource, but, for the sake of convenience, only their
									absolute or relative URL has to be specified in the manifest. For example,

								
									
										Example 61
									

									{
 …
 "resources" : [
 "css/book.css",
 …
],
 …
}

								

								This step converts the string values to objects, yielding the following for the
									preceding example:

								
									
										Example 62
									

									«[
 …
 "resources" → «
 «[
 "type" → « "LinkedResource" »,
 "url" → "css/book.css"
]»,
 …
 »,
 …
]»

								

								For simplicity, the conversion of relative paths to absolute is described by a later
									step.

							
						

							
							(§ 4.2.5 URLs) If, depending on
									context, term expects a URL or array of URLs:

							
									
									if normalized is a string, set normalized to the result of running convert to absolute URL, when
										successful, given normalized. If failure is returned, return
										failure.

								

									
									otherwise, if normalized is a list, for each
										item of normalized, set item to the result of
										running convert to
											absolute URL, when successful, given normalized. If failure
										is returned, remove
										item from normalized.

								

									
									otherwise, validation
											error, return failure.

								

							

							
								Explanation
								Relative URLs in the manifest are
									resolved against the base value to obtain absolute URLs. For example:

								"url": "chapter01.html"

								for a publication hosted at
										https://example.org/publications/wuthering-heights would yield:

								"url" → "https://example.org/publications/wuthering-heights/chater01.html"

							
						

							
							(§ 8. Modular
									Extensions, extension point) If a profile defines processing
								steps for profile-specific terms, those steps are executed at this point.

						

							
							Recursively check normalized as follows to ensure that all properties get
								normalized:

							
									
									if normalized is a list, for
											each
										item of normalized that is a map:

									
											
											if item["type"] is set and includes a recognized
													type, for
													each
												key → keyValue of item, set
													key to the result of running normalize data, when successful,
												given key, keyValue, lang,
													dir, base and using item["type"] as
												the context. If failure is returned, remove
												key from item.

										

											
											otherwise, do nothing.

										

									

								

									
									otherwise, if normalized is a map:

									
											
											if normalized["type"] is set and includes a recognized
													type, for
													each
												key → keyValue of normalized, set
													key to the result of running normalize data, when successful,
												given key, keyValue, lang,
													dir, base and using
													normalized["type"] as the context. If failure is
												returned, remove
												key from normalized.

										

											
											otherwise, do nothing.

										

									

								

									
									otherwise, do nothing.

								

							

							
								Explanation
								To ensure that all the properties in the manifest get processed, this step
									recursively checks normalized for additional map entries to process. If
										normalized is a list, each item is inspected to determine if it is a
									map that can be processed.

								If a failure is returned, the item is removed from the map.

							
						

							
							return normalized.

						

					

					
						7.4.1.1 Convert to Absolute
								URL

						To convert to absolute URL
							url, with a base URL base, run the following steps:

						
								
								If url or base is not a string, or is an empty string,
										validation error, return failure.

								
									Explanation
									This step checks that both url and base are non-empty
										strings before attempting to use them.

								
							

								
								Set url to the result of running the URL
											parser [url], when successful, with
										url as input and base as the base URL. If failure is
									returned, validation error, return failure.

								
									Explanation
									This step calls the URL parser function on the url to be processed. If the url is
										not an absolute URL, the parser converts it to one using the base URL.

									If parsing returns a failure, a failure is returned to the caller to indicate to
										remove the URL.

								
							

								
								Return url.

							

						

					
				

				
					7.4.2 Data Validation

					To perform data validation on map
						data, run the following steps:

					
							
							For each
								term → value of data, set term to the result
								of running the global data checks,
								when successful, given term and value. If failure is returned,
								remove data[term].

							
								Explanation
								This step passes each entry to a set of global validation checks that need to be run
									on the value and recursively on any properties within the value.

								A failure is returned if the property is invalid and has to be removed.

							
						

							
							If a profile specifies data validation checks, those
								steps are executed at this point.

							
								Explanation
								Profile validation steps are prioritized over the default steps so that if profiles
									have, for example, different default values to apply, those values get applied.

							
						

							
							(§ 4.5
									Publication Types) If data["type"] is not set or is an empty list, validation error, set to
									« "CreativeWork" ».

						

							
							(§ 4.7.1.2
									Accessibility) If data["accessModeSufficient"] is set, for each
								item of data["accessModeSufficient"], if item["type"]
								is not set or does not contain
									"ItemList", remove
								item from data["accessModeSufficient"].

						

							
							(§ 4.7.1.4
									Canonical Identifier) If data["id"] is not set or is an empty
									string, validation error.

						

							
							(§ 4.7.1.6
								Duration) If data["duration"] is set and is not a valid duration
								value, per [iso8601-1], validation error, remove
								data["duration"].

						

							
							(§ 4.7.1.7
									Last Modification Date) If data["dateModified"] is set and is
								not a valid date or date-time per [iso8601-1], validation error, remove
								data["dateModified"].

						

							
							(§ 4.7.1.8
									Publication Date) If data["datePublished"] is set and is not a
								valid date or date-time per [iso8601-1], validation error, remove
								data["datePublished"].

						

							
							(§ 4.7.1.9
									Publication Language) If data["inLanguage"] is set, for each
								item of data["inLanguage"], if item is not well-formed [bcp47], validation error, remove
								item from data["inLanguage"].

						

							
							(§ 4.7.1.10 Reading Progression Direction) If
									data["readingProgression"] is not set, set to "ltr".
								Otherwise, if it is not one of the required
									directional values, validation error, set
								to "ltr".

						

							
							(§ 5.
									Publication Resources) Obtain and verify the unique URLs within the publication bounds as follows:

							
									
									If readingOrder is set, let readingOrderURLs be the result
										of running get unique URLs given
											readingOrder. Otherwise, let readingOrderURLs be an
										empty ordered set.

								

									
									If resources is set, let resourcesURLs be the result of
										running get unique URLs given
											resources. Otherwise, let resourcesURLs be an empty ordered set.

								

									
									Set data['uniqueResources'] to the union of
											readingOrderURLs and resourceURLs.

								

							

							
								Explanation
								This step gets the list of unique URLs
									within the reading order and the resource list. It then sets
										data['uniqueResources'] the union of these two sets, which represents
									the complete list of unique resources within the bounds of the publication.

								This step also warns if either the readingOrder or resources
									contains duplicate resource declarations. The validation errors are emitted as part
									of obtaining the unique URLs from
									each list.

							
						

							
							(§ 4.7.2.3 Links) If
									data["links"] is set, for each
								link in data["links"]:

							
									
									let url be the result of running URL
											serializer [url] on
											link["url"] with the exclude fragment flag set.

								

									
									if data["uniqueResources"]
										contains
										url, validation
											error, remove
										link from data["links"], then continue.

								

									
									if link["rel"] is not set or is an empty list, validation error, then continue.

								

									
									if link["rel"]
										contains any of the
										case-insensitive values "contents", "pagelist" or
											"cover", validation
											error, remove
										link from data["links"].

								

							

							
								Explanation
								After obtaining the list of unique publication resources in the previous step, the
									links property is checked to ensure that any linked resources are not also listed as
									publication resources.

								If the link does not specify a rel value, a warning is raised. If its
										rel property specifies a structural resource, the link is removed,
									as structural resources have to be within the publication bounds.

							
						

							
							(§ 4.8.1
									Structural Resources) Verify the use of structural relations as
								follows:

							
									
									Set resources to the value of data["readingOrder"], when
										defined, otherwise to an empty list. Extend
										resources with data["resources"], when defined.

								

									
									If more than one item in
											resources has a rel
										entry that contains the
										case-insensitive value "contents", validation error.

								

									
									If more than one item in
											resources has a rel
										entry that contains the
										case-insensitive value "pagelist", validation error.

								

									
									If more than one item in
											resources has a rel
										entry that contains the
										case-insensitive value "cover", validation error.

									If the cover(s) have an encodingFormat
										entry that specifies an
										image media type (image/*), and do not have a name
										entry, validation error.

								

							

							
								Explanation
								This checks the resources specified in the reading order and resource list to verify
									that only one instance of a table of content, page list and cover have been
									specified.

								For covers, it also checks that a name has been set on image-based formats for
									accessibility purposes.

							
						

							
							For each
								term → value of data, if running remove empty arrays given the variables
									term and value returns failure, remove
								data["term"].

							
								Explanation
								As the processing of the manifest involves removing invalid values at various stages,
									the final data structure might end up with some lists that not no longer contain any
									values. This step iterates back over the data and removes any such empty lists.

							
						

							
							Return data.

						

					

					
						7.4.2.1 Global Data Checks

						To process the global data checks on a property
								term's value with an optional context
							context, run these steps:

						
								
								(§ 4.2
										Value Categories) If term has a known value category, set value to
									the result of calling verify value
										category, when successful, given the variables term,
										value and context. If failure is returned, return
									failure.

								Otherwise, return value.

								
									Explanation
									This step verifies that the value of the term matches the expected category
										required for the term. For example, the abridged term requires a boolean value,
										so any other value used with the term will result in a failure.

									If a failure occurs calling the function, this step also returns a failure so
										that the property is removed from the final data set.

									Terms without a known value category are not processed, so the incoming value is
										returned.

								
							

								
								Recursively descend into value as follows to check any sub-properties
									first:

								
										
										if value is a map:

										
												
												if value["type"] includes a recognized type, for each
													key → keyValue of value, set
														value[key] to the result of running global data checks, when successful, given key,
														keyValue and using value["type"] as the
													context. If failure is returned, remove
													value[key].

											

												
												otherwise, do nothing.

											

										

									

										
										otherwise, if value is a list, for each
											item of value, if item is a map:

										
												
												if item["type"] includes a recognized type, for each
													key → keyValue of item, set
														item[key] to the result of running global data checks, when successful, given key,
														keyValue and using item["type"] as the
													context. If failure is returned, remove
													item[key].

											

												
												otherwise, do nothing.

											

										

									

										
										otherwise, do nothing.

									

								

								
									Explanation
									To ensure that all the properties in the manifest get processed, this step
										recursively checks each entry for additional map entries to process. If the
										value is a list, each item is inspected to determine if it is a map that can be
										processed.

									Its placement also ensures that all subproperties are checked first, so that the
										higher-level checks later in the step are tested after any invalid values are
										removed.

								
							

								
								(§ 4.4.1
										Global Declarations and § 4.4.2 Item-Specific
										Declarations) If term expects an array
									of LocalizableStrings, for each
									item of value:

								
										
										if item["value"] is not set, remove
											item from value.

									

										
										if item["language"] is set and its value is not well-formed [bcp47], validation error, remove
											item["language"].

									

										
										if item["direction"] is set and its value is not one of
												"ltr" or "rtl", validation error, remove
											item["direction"].

									

								

								
									Explanation
									This step checks that localizable strings have values, that their language
										declarations are well formed, and that their direction declarations have either
										the value "ltr" or "rtl".

								
							

								
								(§ 4.2.4.2
										Entities) If term expects an array of entities, for each
									item of value, check whether item["name"] is
									set:

								
										
										If not, validation
												error, remove
											item from value.

									

										If so, for each
										name of item["name"], if name["value"] is not
										set, or is an empty string, remove
										name from item["name"].

								

								
									Explanation
									This step ensures that all entities have a name. Entities without a name are
										removed.

								
							

								
								(§ 4.2.4.3
										Linked Resources) If term expects an array of LinkedResources, for each
									resource of value:

								
										
										if resource["url"] is not set, or its value is an empty string, validation error, remove
											resource from value, then continue.

										Otherwise, if resource["url"] is not a valid URL [url], validation error, remove
											resource from value, then continue.

									

										
										if resource["duration"] is
											set and is not a valid duration value, per [iso8601-1], validation error, remove
											resource["duration"].

									

								

								
									Explanation
									This step performs the following two checks on the terms of a
											LinkedResource:

									
											If a URL is not specified, or is invalid, the LinkedResource is
											removed.

											If the duration of the resource is specified, or is not a value ISO 8601
											duration value, the duration property is removed.

									

								
							

								
								Return value.

							

						

					

					
						7.4.2.2 Verify Value Category

						To verify value category of a property
								term's value with a context
							context, run these steps:

						
								
								If, depending on the context, term expects an array:

								
										
										if value is not a list, validation
												error, return failure.

									

										
										otherwise, for each
											item of value:

										
												
												if item does not match the expected value category of the
													array, validation error, remove
													item from value, then continue.

											

												
												if item is a map, for each
													key → keyValue of item, if
														key has an expected value category, set
														key to the result of running verify value category given key,
														keyValue, and using item["type"] as the
													context. If the result of processing item is an empty map, validation error, remove
													item from value.

											

										

										If the result of processing value is an empty array, validation error, return
											failure.

									

								

							

								
								Otherwise, if, depending on the context, term expects a map:

								
										
										if value is not a map, validation error, return
											failure.

									

										
										otherwise, for each
											key → keyValue of value, if key
											has an expected value category, set key to the result of running
												verify
												value category given key, keyValue and using
												value["type"] as the context. If the result of processing
												value is an empty map, validation error, return
											failure.

									

								

								
									
										Note
									

									This step currently only exists for use by profiles. The properties defined in this specification all accept arrays of objects.

								

							

								
								Otherwise, if, depending on the context, value does not match
									the expected value category of term, validation error, return failure.

							

								
								Return value.

							

						

						
							Explanation
							This function checks that the value of the term being processed matches its expected
								value category. The function is recursively called when the value is a list or map to
								ensure that all properties in the manifest get checked.

						
					

					
						7.4.2.3 Get Unique URLs

						To get unique URLs from resources, run the following steps:

						
								
								Let uniqueURLs be an empty ordered set.

							

								
								For each resource of resources:

								
										
										let url be the result of running URL
												serializer [url] on
												resource["url"] with exclude fragment flag
											set.

									

										
										if uniqueURLs
											contains
											url, validation
												error. Otherwise, append
											url to uniqueURLs.

									

										
										if resource["alternate"] is set, for each alternate of
												resource["alternate"]:

										
												
												let alt_url be the result of running URL
														serializer [url] on alternate["url"] with
														exclude fragment flag set.

											

												
												if uniqueURLs
													contains
													alt_url, validation error.

											

												
												otherwise, append
													alt_url to uniqueURLs.

											

										

									

								

							

								
								Return uniqueURLs.

							

						

						
							Explanation
							This function takes a list of LinkedResource objects — from either the
								reading order or resource list — and returns the set of unique URLs. If duplicates are encountered,
								warnings are issued.

						
					

					
						7.4.2.4 Remove Empty Arrays

						To remove empty arrays from a property
								term's value, run these steps:

						
								
								If value is an empty list, return failure.

							

								
								Otherwise, if value is a map, for each
									key → keyValue of value, if running remove empty arrays given
										key and keyValue returns failure, remove
									value[key].

							

						

						
							Explanation
							This function checks that the value of the term being processed is not an empty list. A
								term that initially has a list can lose entries as it gets processed (i.e., when the
								list items are invalid).

						
					
				

				
					7.4.3 Add Default Values

					To add default values for missing properties in map
						data with an optional HTML Document
							(DOM) Node [html] document, run the following steps:

					
							
							(§ 4.7.1.11 Title)
								If data["name"] is not set:

							
									
									Let title be an empty map. Set its values as
										follows:

									
											
											if document is set, if the title element [html] of document is set and is not
												empty, set title["value"] to the text content of the
													title element.

											Set title["language"] to the language [html], if
												available, and title["direction"] to the base direction [html] if that value is available and its value is
												either "ltr" or "rtl".

										

											
											otherwise, validation error, generate a value for
													title["value"] (see the separate note for details). Set title["language"]
												and title["direction"] as appropriate for the generated
												title.

										

									

								

									Set data["name"] to the list: « title ».

							

							
								Explanation
								This step adds the content of the title element of document
									when the name property is not specified in the manifest. For
									example:

								
									
										Example 63
									

									<html>
<head lang="en">
 <title>The Golden Bough</title>
 …
 <script type="application/ld+json">
 {
 "@context" : ["https://schema.org","https://www.w3.org/ns/pub-context"],
 …
 }
 </script>

								

								yields:

								
									
										Example 64
									

									«[
 …
 "name" → «
 «[
 "value" → "The Golden Bough",
 "language" → "en"
]»
 »,
 …
]»

								

							
						

							
							(§ 4.7.2.1
									Default Reading Order and § 6.1 Linking) If
									data["readingOrder"] is not set:

							
									
									if either document or document.URL is not set, fatal error, return failure.

								

									
									set data["readingOrder"] to an empty list and append the map
										«["url" → document.URL]».

								

									
									append
										document.URL to data["uniqueResources"].

								

							

							
								Explanation
								If the Digital Publication consists only of the referencing document, the default
									reading order can be omitted; it will consist, automatically, of that single
									resource.

							
						

							
							If a profile specifies default values the user agent has
								to generate, those steps are executed at this point.

						

							
							(§ 6.1
								Linking) If document.URL is set and data["uniqueResources"] does
								not contain
								document.URL, validation error.

							
								Explanation
								If the page that links to the manifest is not listed as a unique resource of the
									publication after processing core and extension default value rules, an error is
									raised as it has to be a publication resource.

							
						

							
							Return data.

						

					

				
			
		
		
			8. Modular Extensions

			The manifest format defined in this specification is designed to be implemented and extended by
				publishing communities in the production of new profiles (e.g., audiobooks and scholarly
				publications). The flexibility the manifest format offers allows it to be tailored to each community's
				specific needs while also providing a common base for user agents that need to process the profiles
				(i.e., minimizing the differences between each profile and simplifying interoperability).

			For a profile to be compatible with this specification, the following conditions MUST be met:

			
					It MUST adhere to the requirements for constructing a manifest as defined
					in § 4. Publication
					Manifest.

					It MUST define a unique conformance URL and require that conforming
					publications include this URL in their conformsTo
						property.

					One or both linking methods
					MUST be used in the discovery of the manifest.

					The generic processing steps described in § 7. Processing a Manifest
					MUST remain valid for the extended manifest. To achieve this, and if new
					terms are added to the general manifest, then:
							The term SHOULD be categorized, if applicable, to one or more of
							the general term categories used in the algorithm (e.g., array or
								localizable string). This means the relevant
							processing steps will be automatically executed for those terms

							If necessary, the profile MAY define its own processing step(s), to
							be executed at the designated extension points within the processing algorithm. Such extra steps MUST NOT invalidate
							the results of any of the steps defined for the processing
								algorithm in general.

					

				

			

			
				
					Editor's note
				

				 Adding an example of a term added by, e.g., the audiobook profile would be a good idea,
					when available.

			

		
		
			9. Security and Privacy
					Considerations

			As the manifest is expressed using JSON-LD, the privacy and security
					considerations [json-ld11] detailed in that specification are applicable to all
					profiles of the manifest.

			Some additional general considerations for profiles include:

			
					The location of resources is not defined at the manifest level, so profiles that allow references to
					remotely hosted resources will need to be concerned with Web security principles (e.g., cross-origin
					resource sharing).

					The ability to link to external resources potentially exposes users to
					malicious content.

					The manifest allows personally identifiable information about a digital publication's creator(s)
					(e.g., names, identifying URLs) to be included, so
					authoring tools could expose unexpected information if explicit author approval of metadata is not
					required.

			

			More specific security and privacy considerations are left to each profile to detail, as these will vary
				depending on the nature of the digital publication format.

		
		
			A. Internal Representation Data
					Model

			
				This section is non-normative.
			

			The manifest includes several authoring conveniences, such as default values, the ability to use strings
				where objects would normally be required, and the automatic compilation of information from other
				sources (e.g., for the title and reading
					order). The processing of the manifest normalizes these
				conveniences and results in a consistent data set for user agents (the internal representation), but this set is not easily
				visualized from the processing algorithm.

			This appendix provides an informative abstract data model using [WebIDL] that describes the
				resulting data structure. This definition expresses the expected names, datatypes, and possible
				restrictions for each member of the manifest after processing.

			
				
					Note
				

				The choice of WebIDL is only for illustrative purposes. This specification does not define
					an API for exposing the manifest data.

			

			
				A.1 The
						PublicationManifest Dictionary

				dictionary PublicationManifest {
 sequence<DOMString> type = "CreativeWork";
 required DOMString profile;
 sequence<DOMString> conformsTo;
 DOMString id;
 boolean abridged;
 sequence<DOMString> accessMode;
 sequence<DOMString> accessModeSufficient;
 sequence<DOMString> accessibilityFeature;
 sequence<DOMString> accessibilityHazard;
 sequence<LocalizableString> accessibilitySummary;
 sequence<Entity> artist;
 sequence<Entity> author;
 sequence<Entity> colorist;
 sequence<Entity> contributor;
 sequence<Entity> creator;
 sequence<Entity> editor;
 sequence<Entity> illustrator;
 sequence<Entity> inker;
 sequence<Entity> letterer;
 sequence<Entity> penciler;
 sequence<Entity> publisher;
 sequence<Entity> readBy;
 sequence<Entity> translator;
 sequence<DOMString> url;
 DOMString duration;
 sequence<DOMString> inLanguage;
 DOMString dateModified;
 DOMString datePublished;
 TextDirection readingProgression = "ltr";
 required sequence<LocalizableString> name;
 required sequence<LinkedResource> readingOrder;
 sequence<LinkedResource> resources;
 sequence<LinkedResource> links;
 sequence<DOMString> uniqueResources;
};

enum TextDirection {
 "ltr",
 "rtl"
};

				
					A.1.1 The
							LinkedResource Dictionary

					dictionary LinkedResource {
 required DOMString url;
 DOMString encodingFormat;
 sequence<LocalizableString> name;
 sequence<LocalizableString> description;
 sequence<DOMString> rel;
 DOMString integrity;
 DOMString duration;
 sequence<LinkedResource> alternate;
};

				

				
					A.1.2 The Entity
							Dictionary

					dictionary Entity {
 sequence<DOMString> type;
 required sequence<LocalizableString> name;
 DOMString id;
 DOMString url;
 sequence<DOMString> identifier;
};

				

				
					A.1.3 The
							LocalizableString Dictionary

					dictionary LocalizableString {
 required DOMString value;
 DOMString language;
 TextDirection direction;
};

				
			
		
		
			B. Selecting an Alternate Resource

			
				This appendix depends on the Infra Standard [infra].
			

			To select an alternate resource for a LinkedResource
				resource, run the following steps.

			If successful, this algorithm returns an alternate resource. Otherwise, it returns failure.

			
					
					Let possibleAlternates be an empty list.

				

					
					If resource["alternate"] is not set, return failure.

				

					
					For each
						alternate of resource["alternate"]:

					
							
							if alternate["encodingFormat"] is set and the user agent supports the
								specified media type, append to
									possibleAlternates.

						

							
							otherwise, if a profile defines additional selection criteria,
								evaluate alternate against them in this extension step.

						

							
							otherwise, optionally inspect alternate["url"] for clues about the media type.
								If the resource appears to be supported, append
								alternate to possibleAlternates.

						

					

				

					
					If possibleAlternates is an empty list, return failure.

				

					
					Otherwise, if the size of
							possibleAlternates is 1, return the resource from
						possibleAlternates.

				

					
					Otherwise, return a resource from possibleAlternates as determined by the user
						agent.

				

			

			
				Explanation
				This function iterates the alternative formats for a resource and compiles a list of possibilities.
					If more than one possibility is found, the user agent determines how to prioritize and select the
					best alternative.

				User agents are not required to add alternatives to the list of possibilities if they do not specify
					an explicit media type.

			
		
		
			C. Machine-Processable Table of
					Contents

			
				C.1 Introduction

				
					This section is non-normative.
				

				To facilitate navigation within pages and across sites, HTML uses the nav
						element [html] to express lists of links. Although generic in nature
					by default, the purpose of a nav element can be more specifically identified by use of
					the role
						attribute [html]. In particular, the doc-toc role from
					the [dpub-aria-1.0] vocabulary
					identifies the nav element as the digital
						publication's table of contents.

				Including an identifiable table of contents is an accessible way to produce any digital publication, but due to the flexibility of
					HTML markup, it also presents challenges for user agents trying to extract a meaningful hierarchy of
					links (e.g., to provide a custom view available from any page). To avoid duplicating the tables of
					contents for different uses, this section defines a syntax that is both human friendly and commonly
					used while still providing enough structure for user agent extraction.

				Authors have a choice of lists (ordered or unordered) to construct their table of contents. By
					tagging each link within these lists in anchor tags (a elements), user agents can easily differentiate the information they
					need from any peripheral content (asides) or stylistic tagging that has also been added. The table
					of contents can consist of both active links (with an href attribute) and inactive
					links (excluding the href attribute), providing additional flexibility in how the table
					of contents is constructed (e.g., to omit links to certain headings or only link to certain content
					in a preview).

				Note, however, that user agents are not required to preserve the presentational
					aspects of the table of contents (i.e., the user agent is typically extracting the information in
					order to present it in a common way across all publications). User agents are only expected to
					retain the text content of the link elements, for example, so text styling, inline images and other
					non-text content might be lost. Similarly, list styling and even how many levels deep of linking to
					display are at the discretion of the user agent. For this reason, linking to the presentational
					table of contents so that users are not limited to the machine-processed one is advised.

			

			
				C.2 HTML Structure

				The table of contents is expressed via an [html] element (typically a nav
						element). This element MUST be identified by the role
							attribute [html] value "doc-toc" [dpub-aria-1.0], and MUST be the first element in the document in document tree order [dom]
					with that role value. The element MAY be hidden from
					users.

				The manifest SHOULD
					identify the resource that contains the table of contents.

				Although the content model of the nav element is not restricted, user agents will only
					be able to extract a usable table of contents when the following markup guidelines are followed:

				
						Table of Contents Title

						
						Although a title for the table of contents is optional, to avoid having a user agent generate
							a placeholder title when one is needed, it is advised to add one. Titles are specified using
							any of the [html] h1 through h6 elements. Note that only the first such
							element is recognized as the title. If a heading element is not found before the list of links, user agents will assume that one has not been
							specified.

					

						List of Links

						
						The first [html] ol or ul list element encountered in the nav element is
							assumed to contain the list that defines the links into the content. This list will be found
							even if it is nested inside of div elements, for example, as the algorithm ignores elements that are not relevant to its
							processing. The list cannot occur inside of any skipped
								elements, however, since their internal contents are not evaluated.

						If the nav element does not contain one of these elements, then user agents will
							not register the digital publication as containing a usable table of contents (e.g., a
							machine-rendered option will not be available).

					

						Branches

						
						If the table of contents is considered as a tree of links, then each list item (li element) inside of the list of
								links represents one branch. Each of these branches has to have a name and optional
							destination in order to be presented to users, and this information is obtained from the
							first a element found within the list item, wherever it is nested (again, excluding any
								a elements inside of skipped
							elements.)

						The link destination for the branch is obtained from the a element's
								href attribute, when specified. This attribute can be omitted if a link is
							not available (e.g., in a preview) or not relevant (e.g., a grouping header). When providing
							a link into the content, it is also possible to specify the relation of the linked document
							(in a rel attribute) and the media type of the linked resource (in a
								type attribute).

						After finding the a element that labels the branch, user agents will continue to
							inspect the markup for another list element (i.e., sub-branches). If a list is found, it is
							similarly processed to extract its links, and so on, until there are no more nested branches
							left to process.

					

						Skipped Elements

						
						A small set of elements are ignored when the parsing table of contents to avoid
							misinterpretation. These are the [html] sectioning
								content elements and sectioning
								root elements. The reason they are ignored is because they can define their own
							outlines (i.e., they can represent embedded content that is self-contained and not
							necessarily related to the structure of content links).

						Any element that has its hidden attribute set is also skipped, since hidden elements are
							not intended to be directly accessed by users.

						Although these elements can be included in the nav element, care has to be taken
							not to embed important content within them (e.g., do not wrap a section element
							around the list item that contains all the links into the content).

					

						Ignored Elements

						
						All elements that are not relevant to extracting the table of contents, and are not skipped, are ignored. Unlike skipped elements, ignoring
							means that user agents will continue to search inside them for relevant content, allowing
							greater flexibility in terms of the tagging that can be used.

					

				

				
					C.2.1 Examples

					
						This section is non-normative.
					

					
						
							Example
									65
							: A basic multi-level table of contents.
						

						Note that different list types can be used for the different levels.

						<nav role="doc-toc">
 <h2>Contents</h2>

 ZARATHUSTRA'S DISCOURSES.

 THE THREE METAMORPHOSES.
 THE ACADEMIC CHAIRS OF VIRTUE.
 BACKWORLDSMEN.
 …

 …

</nav>

					

					
						
							Example 66
							: A table of contents with ignored content.
						

						The supplementary descriptive information is ignored by user agents.

						<nav role="doc-toc">
 <h2>Contents</h2>

 <div class="title">CHAPTER I</div>
 <div class="description">Biographical and Introductory.</div>

 <div class="title">CHAPTER II</div>
 <div class="description">A New System of Alternating Current Motors and Transformers.</div>

 …

</nav>

					

					
						
							Example
									67
							: A table of contents for a preview.
						

						The a elements that link to content the user does not have access to do not
							include href attributes.

						<nav role="doc-toc">
 <h2>Contents</h2>

 Marley's Ghost
 <a>The First of Three Spirits
 <a>The Second of Three Spirits
 <a>The Last of the Spirits
 <a>The End of It

 …
</nav>

					

					
						
							Example 68
							: A table of contents with unlinked headings.
						

						In this example, the author names are not relevant link locations so href
							attributes are not included on their enclosing a elements.

						<nav role="doc-toc">
 <h2>Contents</h2>

 <a>Faraday, Michael

 Experimental Researches in Electricity
 The Chemical History of a Candle

 <a>Forel, Auguste

 The Senses of Insects

 …

</nav>

					

				
			

			
				C.3 User Agent Processing

				
					This section depends on the Infra Standard [infra].
				

				This section defines an algorithm for extracting a table of contents from a nav element.
					It is defined in terms of a walk over the nodes of a DOM tree, in tree order [dom],
					with each node being visited when it is entered and when it is exited during the
					walk. Each time a node is visited, it can be seen as triggering an enter or exit
					event. In some steps, user agents are provided a choice in how to process the content to provide
					flexibility for different presentation models.

				
					
						Note
					

					This algorithm is not defined in purely event driven terms, as inspecting all descendant
						nodes is not always necessary to obtain the needed information from the DOM. In some cases, an
						element, and all its descendants, is skipped immediately after it is processed on
						enter. An event approach could be applied but would require modifying the algorithm to
						process/ignore the skipped nodes.

				

				
					
						Note
					

					User agents can process and internalize the resulting structure using any language that
						can represent the final form of the data.

				

				For the purposes of this algorithm, a list element is defined as
					either an [html] ol or ul element.

				The following algorithm MUST be applied to a walk of a DOM subtree rooted at
					the first element in document order with the role attribute value doc-toc,
					regardless of whether the element has been declaratively hidden [html] or styled by CSS not to be visible:

				
					
						Note
					

					The rules for locating the resource containing the table of contents element are defined
						in § 4.8.1.3 Table of
							Contents.

				

				If a table of contents element is not found, the publication does not have a table of contents that
					can be used for machine rendering purposes.

				
						
						Let toc be the map
							«["name" → "", "entries" → « »]» representing the table of contents.

						
							Explanation
							This step initializes the map that will store the title and the branches of the table of
								contents. In this map:

							
									toc["name"] represents the title of the table of contents.

									toc["entries"] represents the branches of the table of contents.

							

						
					

						
						Initialize the stack
							branches to hold branches of the table of contents as they are created.

						
							Explanation
							The stack is used to hold branches that are not yet complete. As a new sub-branch is
								encountered, the parent gets pushed onto the stack so it can be retrieved later.

						
					

						
						Let current_toc_node be a variable set to null.

						
							Explanation
							current_toc_node is used to hold the map that represents the branch of the
								table of contents that is currently being processed.

						
					

						
						Walk over the DOM in tree
									order [dom], starting with the element the table of
							contents is being built from, and trigger the first relevant step below for each element as
							the walk enters and exits it.

						
								
								
									When entering a heading content element:
								

								Run these steps:

								
										
										If branches is empty, and toc["name"] is an empty string, set
												toc["name"] to one of the following:

										
												the descendant content of the element (to preserve any HTML tags);

												the text string obtained from the descendant content (e.g., by
												calculating the accessible name [accname-1.1] of the element).

										

										If the resulting value of toc["name"] is an empty string (e.g., after
											removing any presentational elements and trimming all leading and trailing
											whitespace), set toc["name"] either to a placeholder value or to
												null.

									

										Skip further processing of the element and continue to the next.

								

								
									Explanation
									This step identifies the heading for the table of contents. A heading is only
										processed if the value of toc["name"] is an empty string (i.e., no
										headings have yet been encountered).

									Whether a user agent sets name to the descendant content of the
										heading element, or generates a text string from it, depends on whether it will
										re-use any descendant tagging in the presentation (e.g., to retain images,
										MathML, ruby and other content that does not translate to text easily).

									
										
											Example 69
											: Visualization of the toc object with a
												heading.
										

										«[
 "name" → "Contents",
 "entries" → « »
]»

									

									If name is not an empty string, or is null, then a
										previous heading has already been encountered or content has been encountered
										that indicates the nav element does not have a heading (e.g., a
										list has already been processed, since the heading would not follow the list of
										links).

									
										
											Example 70
											: Visualization of the toc object without a
												heading.
										

										«[
 "name" → null,
 "entries" → « »
]»

									

									If a heading is not specified, the user agent can provide its own for later
										use.

								
							

								
								
									When entering a list
										element:
								

								Run these steps:

								
										
										If the toc["name"] is an empty string, set
												toc["name"] to null.

									

										
										If current_toc_node is not null:

										
												If current_toc_node["entries"] is null or a non-empty
													list, skip further
												processing of the element and continue to the next.

												Otherwise, push
												current_toc_node onto branches and then set
													current_toc_node to null.

										

									

										
										Otherwise, if branches is empty:

										
												If toc["entries"] is null or a non-empty
													list, skip further
												processing of the element and continue to the next.

												Otherwise, do nothing.

										

									

								

								
									Explanation
									This algorithm does not process multiple lists in a single branch or at the root
										of the nav element, so if a list has already been encountered (the
											entries property contains one or more branches or is set to null), this list is
										skipped.

									If a list is encountered and the table of contents (toc) still does
										not have a name (i.e., no heading element has been encountered), the table of
										contents is assumed to not have a heading (i.e., the heading for the table of
										contents cannot appear after the first list of entries). The value of the
											name property is changed from an empty string to null as no further headings
										encountered apply, either.

								
							

								
								
									When exiting a list
										element:
								

								
										
										If branches is not empty, pop the top map from
												branches and set current_toc_node to it.

									

										
										Otherwise, if toc.entries contains an empty list, set it to null.

									

								

								
									Explanation
									This step resets current_toc_node back to the parent object after all
										of its child branches have been processed.

									If there are no branches in the stack, the toc.entries is set to null
										if it doesn't contain any items (to avoid processing any further lists at the
										root level).

								
							

								
								
									When entering a list item element, set current_toc_node to the following map:
								

								«[
 "name" → null,
 "url" → null,
 "type" → null,
 "rel" → null,
 "entries" → « »
]»

								
									Explanation
									Each list item represents a possible new branch in the table of contents, so
										whenever one is encountered a new blank object is created in
											current_toc_node.

									This object gets populated with information as a descendant a
										element and list are encountered.

								
							

								
								
									When exiting a list item element:
								

								Run these steps:

								
										
										If current_toc_node["entries"] contains an empty list, set it to null.

									

										
										If current_toc_node["name"] is null or an empty
											string:

										
												if current_toc_node["entries"] is not null, set
													current_toc_node["name"] to a placeholder value or null;

												otherwise, set current_toc_node to null and exit this
												processing step.

										

									

										
										If branches is not empty, append
											current_toc_node to the entries property of the map at the top of
												branches. Otherwise, append
											current_toc_node to toc["entries"].

									

										
										Set current_toc_node to null.

									

								

								
									Explanation
									Exiting a list item indicates that processing of the current branch is complete.
										Before adding this branch to its parent's entries array, the branch
										needs to be tested to see if it has a name and/or any sub-branches. If it does
										not have a name but has sub-branches, the branch is kept. The user agent can
										either supply a placeholder value of its own creation or set the value to null.
										If it does not have a name or any branches, it is invalid and is discarded.

									To determine where to merge the branch, the stack is checked. If there are no
										items in the stack, it is added into the entries property of the root
											toc object (i.e., it is a top-level branch). Otherwise, it gets
										added into the entries property of the object immediately preceding
										it in the stack.

									As a final step, current_toc_node is reset back to
										null.

									
										
											Example 71
											: Visualization of a branch merge.
										

										If the following map is in branches:

										«[
 "name" → "Section 1",
 "url" → "http://example.com/contents.html#s1",
 "type" → "text/html",
 "rel" → null,
 "entries" → « »
]»

										And the following map is in current_toc_node:

										«[
 "name" → "Section 1.1",
 "url" → "http://example.com/contents.html#s1.1",
 "type" → "text/html",
 "rel" → null,
 "entries" → null
]»

										Then only the following single object remains after merging:

										«[
 "name" → "Section 1",
 "url" → "http://example.com/contents.html#s1",
 "type" → "text/html",
 "rel" → null,
 "entries" → «
 «[
 "name" → "Section 1.1",
 "url" → "http://example.com/contents.html#s1.1",
 "type" → "text/html",
 "rel" → null,
 "entries" → null
]»
 »
]»

									
								
							

								
								
									When entering an anchor element and current_toc_node is not null:
								

								Run these steps:

								
										
										If current_toc_node["name"] is not null, do nothing.

									

										
										Otherwise:

										
												
												Set current_toc_node["name"] to one of the following:

												
														the descendant content of the anchor element (to preserve any
														HTML tags);

														the text string obtained from the descendant content (e.g., by
														calculating the accessible name [accname-1.1] of the element).

												

											

												If the element has an href attribute and the URL in the
												attribute resolves to a resource in uniqueResources, set current_toc_node["url"] to the
												value.

												If the element has a type attribute, and the value of the
												attribute is not an empty string after trimming leading and trailing
												white space, set current_toc_node["type"] to the trimmed
												value.

												If the element has a rel attribute, and the value of the
												attribute is not an empty string after trimming leading and trailing
												white space, split the trimmed value on whitespace and set
													current_toc_node["rel"] to the resulting list of tokens.

										

										Skip further processing of the element and continue to the next.

									

								

								
									Explanation
									This step processes anchor tags to obtain values for the name and
											url properties of a branch.

									If the name of the current branch is already defined, then processing of this
										element is terminated (i.e., to avoid processing multiple links for a single
										branch).

									Whether a user agent sets the name of the entry to the descendant
										content of the a element, or generates a text string from it,
										depends on whether it will re-use any descendant tagging in the presentation
										(e.g., to retain images, MathML, ruby and other content that does not translate
										to text easily).

									In addition to having an href attribute specified, it is necessary
										that it resolve to a resource that belongs to the digital publication to meet
										the requirements of this specification. If not, the branch is retained but the
										entry will not be linkable.

									Additional information about the target of the link — the type of resource and
										its relation — is also retained.

									
										
											Example
													72
											: Visualization of a link to an SVG
												image.
										

										«[
 "name" → "In the Beginning",
 "url" → "http://example.com/page1.svg",
 "type" → "image/svg",
 "rel" → null,
 "entries" → « »
]»

									

								
							

								
								
									When entering a sectioning content element, a sectioning root element, or an element with a hidden attribute:
								

								Skip further processing of the element and continue to the next.

								
									Explanation
									As sectioning and sectioning root elements can define their own outlines,
										descending into them poses problems for generating the table of contents (i.e.,
										they may contain content that is not directly related). As a result, they are
										skipped over when encountered to prevent their child content from being
										processed.

								
							

								
								
									Otherwise: do nothing.
								

								
									Explanation
									For all other elements, this step allows their descendant elements to continue to
										be processed.

								
							

						

					

						
						After completing the DOM walk, if toc["entries"] contains a non-empty list, return toc. Otherwise,
							return null.

						
							Explanation
							If the entries array in the root toc object does not contain any
								branches (either because no list was found in the nav element or the list
								did not contain any conforming list items), then the algorithm did not produce a usable
								table of contents.

						
					

				

			
		
		
			D. Change Log

			Substantive changes since the First Public
					Working Draft:

			
					14-Sept-2020: Several minor fixes to correct variable names in the processing algorithm. See pull
					requests 232, 233 and 234.

					4-Sept-2020: Updated the reference to ISO 8601:2004 to the revised ISO 8601-1:2019. See issue 65 (Audiobooks tracker).

					27-July-2020: Updated the reference schema URL to a W3C address. See issue
					226.

					30-Apr-2020: Noted the issue with the author and creator properties being synonyms in schema.org.
					See issue
					203.

					16-Apr-2020: Changed the recommendation that a privacy policy and accessibility report be resources
					of a publication to best practice to match with the examples where these are listed as links. Adding
					as links should not generate warnings. See issue 207.

					15-Apr-2020: Removed the bullet from the LocalizableString definition allowing an array of values,
					as this creates an invalid nesting of arrays when paired with the value categories. See issue 205.

					12-Feb-2020: The prose requirements for the resource that links to the manifest to be a publication
					resource and to be automatically added to the reading order (when one is not present) were restored
					to align with the algorithm steps. An additional check was also included in the algorithm to warn if
					the linking resource is not a publication resource. See issue 198.

					12-Feb-2020: The table of contents algorithm was fixed to capture branches without a title, not just
					those without any text content. See issue
						195.

					07-Feb-2020: Clarified that rel values are case insensitive and must be compared as such. See issue 196.

					04-Feb-2020: The note about registering the publication rel value has been removed as it is now
					officially registered with IANA. See pull
						request 194.

					28-Jan-2020: Reverted to using only role=doc-toc to identify the table of contents due to problems
					with using fragments identifiers. See issue
						176.

					28-Jan-2020: Clarified that visual hiding does not affect the selection of the table of contents.
					See issue 176.

					28-Jan-2020: Added an extension point for profiles to add processing requirements for the context.
					See issue 186.

					27-Jan-2020: The table of contents processing algorithm has been updated to fix several bugs and
					editorial issues in the expected outcomes. See issue 177 and issue 179, as well as pull request 180 and pull request 182 for more details.

			

			For a complete list of issues addressed, refer to the GitHub tracker.

		
		
			E. IANA considerations

			
				This section is non-normative.
			

			
				E.1 Link relation type
						registration

				
						Relation Name:

						publication

						Description:

						Links to a publication manifest. A manifest represents structured information
						about a publication, such as informative metadata, a list of resources, and a default reading
						order.

						Reference:

						
						https://www.w3.org/TR/pub-manifest
					

						Notes:

						Please refer to the steps in § 6. Manifest Discovery for details on how to access, and § 7. Processing a
							Manifest on how to process a manifest.

				

			

		
		
			F. Manifest Examples

			
				This section is non-normative.
			

			
				F.1 Basic Manifest

				The following is a manifest with a basic set of metadata for an example book profile.

				A JSON
						encoding of the internal representation of this manifest is also available.

				
					
						Example 73
					

					{
 "@context": [
 "https://schema.org",
 "https://www.w3.org/ns/pub-context",
 {"language" : "en"}
],
 "conformsTo": "https://example.com/publication",
 "type": "Book",
 "url": "https://publisher.example.org/mobydick",
 "author": "Herman Melville",
 "dateModified": "2018-02-10T17:00:00Z",

 "readingOrder": [
 "html/title.html",
 "html/copyright.html",
 "html/introduction.html",
 "html/epigraph.html",
 "html/c001.html",
 "html/c002.html",
 "html/c003.html",
 "html/c004.html",
 "html/c005.html",
 "html/c006.html"
],

 "resources": [
 "css/mobydick.css",
 {
 "type": "LinkedResource",
 "rel": "cover",
 "url": "images/cover.jpg",
 "encodingFormat": "image/jpeg"
 },{
 "type": "LinkedResource",
 "url": "html/toc.html",
 "rel": "contents"
 },{
 "type": "LinkedResource",
 "url": "fonts/STIXGeneral.otf",
 "encodingFormat": "application/vnd.ms-opentype"
 },{
 "type": "LinkedResource",
 "url": "fonts/STIXGeneralBol.otf",
 "encodingFormat": "application/vnd.ms-opentype"
 },{
 "type": "LinkedResource",
 "url": "fonts/STIXGeneralBolIta.otf",
 "encodingFormat": "application/vnd.ms-opentype"
 },{
 "type": "LinkedResource",
 "url": "fonts/STIXGeneralItalic.otf",
 "encodingFormat": "application/vnd.ms-opentype"
 }
]
}

				

			

			
				F.2 Single-Document Publication

				The following is a manifest for an example article profile. The article consists only of the document
					the manifest is embedded in. The title and reading order are omitted from the manifest, as these
					properties are automatically generated during processing from the
					title and URL of the containing document, respectively.

				A JSON
						encoding of the internal representation of the manifest is also available, as well as a more elaborate version for the same document.

				
					
						Example 74
					

					<!DOCTYPE html>
<html lang="en-US">
<head>
 <title>Model for Tabular Data and Metadata on the Web</title>
 <link href="#wpm" rel="publication" />
 ...
 <script id="wpm" type="application/ld+json">
 {
 "@context" : [
 "https://schema.org",
 "https://www.w3.org/ns/pub-context",
 {"language" : "en-US"}
],
 "conformsTo" : "https://example.com/article",
 "type" : "TechArticle",
 "id" : "http://www.w3.org/TR/tabular-data-model/",
 "url" : "http://www.w3.org/TR/2015/REC-tabular-data-model-20151217/",
 "copyrightYear" : "2015",
 "copyrightHolder" : "World Wide Web Consortium",
 "creator" : ["Jeni Tennison", "Gregg Kellogg", "Ivan Herman"],
 "publisher" : {
 "type" : "Organization",
 "name" : "World Wide Web Consortium",
 "id" : "https://www.w3.org/"
 },
 "datePublished" : "2015-12-17",
 "resources" : [
 "datatypes.html",
 "datatypes.svg",
 "datatypes.png",
 "diff.html",
 {
 "type" : "LinkedResource",
 "url" : "test-utf8.csv",
 "encodingFormat" : "text/csv"

 },
 {
 "type" : "LinkedResource",
 "url" : "test.xlsx",
 "encodingFormat" : "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
 }
],
 }
 </script>
</head>
<body>

 <section id="toc" role="doc-toc">
 <h2 resource="#h-toc" id="h-toc" class="introductory">Table of Contents</h2>
 <ul class="toc">
 <li class="tocline">
 1. Introduction

 ...

 </section>
 ...

</body>
</html>

				

			

			
				F.3 Audiobook

				The following example shows a manifest that conforms to the Audiobooks profile [audiobooks].

				A JSON
						encoding of the internal representation of this manifest is also available.

				
					
						Example 75
					

					{
 "@context": [
 "https://schema.org",
 "https://www.w3.org/ns/pub-context",
 {"language": "en"}
],
 "conformsTo": "https://www.w3.org/TR/audiobooks/",
 "type": "Audiobook",
 "id": "https://librivox.org/flatland-a-romance-of-many-dimensions-by-edwin-abbott-abbott/",
 "url": "https://w3c.github.io/pub-manifest/experiments/audiobook/",
 "name": "Flatland: A Romance of Many Dimensions",
 "author": "Edwin Abbott Abbott",
 "readBy": "Ruth Golding",
 "publisher": "Librivox",
 "inLanguage": "en",
 "dateModified": "2019-11-14",
 "datePublished": "2008-10-12",
 "duration": "PT13774S",
 "license": "https://creativecommons.org/publicdomain/zero/1.0/",
 "abridged": false,
 "accessMode": "auditory",
 "accessModeSufficient": [{
 "type": "ItemList",
 "itemListElement": ["auditory"],
 "description": "Audio"
 }],
 "accessibilityFeature": ["readingOrder", "unlocked"],
 "accessibilityHazard": "noSoundHazard",
 "accessibilitySummary": "This is just a test summary",
 "readingProgression": "ltr",
 "resources": [
 {
 "rel": "cover",
 "url": "http://ia800704.us.archive.org/9/items/LibrivoxCdCoverArt12/Flatland_1109.jpg",
 "encodingFormat": "image/jpeg",
 "name": "Cover page with title and author"
 },{
 "rel": "contents",
 "url": "toc.html",
 "encodingFormat": "text/html"
 },{
 "rel": "accessibility-report",
 "url": "a11y.html",
 "encodingFormat": "text/html"
 },{
 "rel": "privacy-policy,",
 "url": "privacy.html",
 "encodingFormat": "text/html"
 }
],

 "readingOrder": [
 {
 "url": "http://www.archive.org/download/flatland_rg_librivox/flatland_1_abbott.mp3",
 "encodingFormat": "audio/mpeg",
 "duration": "PT1371S",
 "name": "Part 1, Sections 1 - 3"
 },{
 "url": "http://www.archive.org/download/flatland_rg_librivox/flatland_2_abbott.mp3",
 "encodingFormat": "audio/mpeg",
 "duration": "PT1669S",
 "name": "Part 1, Sections 4 - 5"
 },{
 "url": "http://www.archive.org/download/flatland_rg_librivox/flatland_3_abbott.mp3",
 "encodingFormat": "audio/mpeg",
 "duration": "PT1506S",
 "name": "Part 1, Sections 6 - 7"
 },{
 "url": "http://www.archive.org/download/flatland_rg_librivox/flatland_4_abbott.mp3",
 "encodingFormat": "audio/mpeg",
 "duration": "PT1669S",
 "name": "Part 1, Sections 8 - 10"
 },{
 "url": "http://www.archive.org/download/flatland_rg_librivox/flatland_5_abbott.mp3",
 "encodingFormat": "audio/mpeg",
 "duration": "PT1506S",
 "name": "Part 1, Sections 11 - 12"
 },{
 "url": "http://www.archive.org/download/flatland_rg_librivox/flatland_6_abbott.mp3",
 "encodingFormat": "audio/mpeg",
 "duration": "PT1798S",
 "name": "Part 2, Sections 13 - 14"
 },{
 "url": "http://www.archive.org/download/flatland_rg_librivox/flatland_7_abbott.mp3",
 "encodingFormat": "audio/mpeg",
 "duration": "PT1225S",
 "name": "Part 2, Sections 15 - 17"
 },{
 "url": "http://www.archive.org/download/flatland_rg_librivox/flatland_8_abbott.mp3",
 "encodingFormat": "audio/mpeg",
 "duration": "PT1371S",
 "name": "Part 2, Sections 18 - 20"
 },{
 "url": "http://www.archive.org/download/flatland_rg_librivox/flatland_9_abbott.mp3",
 "encodingFormat": "audio/mpeg",
 "duration": "PT1659S",
 "name": "Part 2, Sections 21 - 22"
 }
]
}

				

			
		
		
			G. Properties Index

			
				This section is non-normative.
			

			The following table identifies where manifest properties are defined and extended.

			
				
					
							Name
							Publication Manifest
					

				
				
					
							
							abridged
						
							
							§ 4.7.1.1 Abridged
						
					

					
							
							accessMode
						
							
							§ 4.7.1.2
								Accessibility
						
					

					
							
							accessModeSufficient
						
							
							§ 4.7.1.2
								Accessibility
						
					

					
							
							accessibilityFeature
						
							
							§ 4.7.1.2
								Accessibility
						
					

					
							
							accessibilityHazard
						
							
							§ 4.7.1.2
								Accessibility
						
					

					
							
							accessibilitySummary
						
							
							§ 4.7.1.2
								Accessibility
						
					

					
							
							artist
						
							
							§ 4.7.1.5 Creators
						
					

					
							
							author
						
							
							§ 4.7.1.5 Creators
						
					

					
							
							conformsTo
						
							
							§ 4.6 Profile
								Conformance
						
					

					
							
							@context
						
							
							§ 4.3 Manifest
								Contexts
						
					

					
							
							contributor
						
							
							§ 4.7.1.5 Creators
						
					

					
							
							creator
						
							
							§ 4.7.1.5 Creators
						
					

					
							
							dateModified
						
							
							§ 4.7.1.7
								Last Modification Date
						
					

					
							
							datePublished
						
							
							§ 4.7.1.8
								Publication Date
						
					

					
							
							direction
						
							
							§ 4.4.1
								Global Declarations
						
					

					
							
							duration
						
							
							§ 4.7.1.6 Duration
						
					

					
							
							editor
						
							
							§ 4.7.1.5 Creators
						
					

					
							
							id
						
							
							§ 4.7.1.4
								Canonical Identifier
						
					

					
							
							illustrator
						
							
							§ 4.7.1.5 Creators
						
					

					
							
							inker
						
							
							§ 4.7.1.5 Creators
						
					

					
							
							inLanguage
						
							
							§ 4.7.1.9 Publication
								Language
						
					

					
							
							language
						
							
							§ 4.4.1
								Global Declarations
						
					

					
							
							letterer
						
							
							§ 4.7.1.5 Creators
						
					

					
							
							link
						
							
							§ 4.7.2.3 Links
						
					

					
							
							name
						
							
							§ 4.7.1.11 Title
						
					

					
							
							penciler
						
							
							§ 4.7.1.5 Creators
						
					

					
							
							publisher
						
							
							§ 4.7.1.5 Creators
						
					

					
							
							readBy
						
							
							§ 4.7.1.5 Creators
						
					

					
							
							readingOrder
						
							
							§ 4.7.2.1
								Default Reading Order
						
					

					
							
							readingProgression
						
							
							§ 4.7.1.10
								Reading Progression Direction
						
					

					
							
							resources
						
							
							§ 4.7.2.2 Resource
								List
						
					

					
							
							translator
						
							
							§ 4.7.1.5 Creators
						
					

					
							
							type
						
							
							§ 4.5 Publication
								Types
						
					

					
							
							url
						
							
							§ 4.7.1.3 Address
						
					

				
			

		
		
			H. Resource Relations Index

			
				This section is non-normative.
			

			The following table identifies where the use of resource relations is defined.

			
				
					
							Name
							Publication Manifest
					

				
				
					
							
							accessibility-report
						
							
							§ 4.8.2.1
								Accessibility Report
						
					

					
							
							contents
						
							
							§ 4.8.1.3 Table of
								Contents
						
					

					
							
							cover
						
							
							§ 4.8.1.1 Cover
						
					

					
							
							pagelist
						
							
							§ 4.8.1.2 Page List
						
					

					
							
							privacy-policy
						
							
							§ 4.8.2.3 Privacy
								Policy
						
					

					
							
							preview
						
							
							§ 4.8.2.2 Preview
						
					

				
			

		
		
			I. Acknowledgements

			
				This section is non-normative.
			

			The editors would like to thank the members of the Publishing Working Group for their contributions to
				this specification:

			
					Greg Albers (J. Paul Getty Trust)

					Franco Alvarado (Macmillan Learning)

					Boris Anthony (The Rebus Foundation)

					Luc Audrain (Hachette Livre)

					Baldur Bjarnason (The Rebus Foundation)

					Laura Brady (W3C Invited Expert)

					Steve Breault (Scenarex Inc.)

					Don Brutzman (Web3D Consortium)

					Kaylin Bugbee (Earth Science Data Systems Program)

					Yu-Wei Chang (Taiwan Digital Publishing Forum)

					Fred Chasen (W3C Invited Expert)

					Timothy Cole (University of Illinois at Urbana-Champaign)

					Simon Collinson (Rakuten, Inc.)

					Rachel Comerford (Macmillan Learning)

					Garth Conboy (Google, Inc., chair)

					Juan Corona (Evident Point Software)

					Christopher Cosner (Stanford University)

					Dave Cramer (Hachette Livre)

					Greg Davis (Pearson plc)

					Romain Deltour (DAISY Consortium)

					Marisa DeMeglio (DAISY Consortium)

					Vagner Diniz (NIC.br - Brazilian Network Information Center)

					Kenneth Dougherty (Pearson plc)

					Brady Duga (Google, Inc.)

					Ben Dugas (Rakuten, Inc.)

					Roger Espinosa (University of Michigan)

					Reinaldo Ferraz (NIC.br - Brazilian Network Information Center)

					Teenya Franklin (Pearson plc)

					Jun Gamo (Voyager Japan, Inc.)

					Michael Goodman (Wiley)

					Markku Hakkinen (Educational Testing Service)

					Katie Haritos-Shea (Knowbility)

					Geoff Jukes (Blackstone Audio, Inc.)

					Deborah Kaplan (W3C Invited Expert)

					Bill Kasdorf (Book Industry Study Group)

					George Kerscher (DAISY Consortium)

					Yuri Khramov (Evident Point Software)

					Masakazu Kitahara (Voyager Japan, Inc.)

					Toshiaki Koike (Voyager Japan, Inc.)

					Charles LaPierre (Benetech)

					Mustapha Lazrek (Microsoft Corporation)

					Laurent Le Meur (EDRLab)

					Vladimir Levantovsky (Monotype)

					Mia Lipner (Pearson plc)

					Phil Madans (Hachette Livre)

					Christopher Maden (University of Illinois at Urbana-Champaign)

					Dmitry Markushevich (Evident Point Software)

					Keith McFarland (Blackstone Audio, Inc.)

					Jonathan McGlone (University of Michigan)

					Hugh McGuire (The Rebus Foundation)

					Nellie McKesson (W3C Invited Expert)

					Selma Morais (NIC.br - Brazilian Network Information Center)

					Jasmine Mulliken (Stanford University)

					Cristina Mussinelli (Fondazione LIA)

					Christos Nikolakakos (Wiley)

					Gregorio Pellegrino (Fondazione LIA)

					Fernando Pinto da Silva (EDRLab)

					Nicholas Polys (Web3D Consortium)

					Chris Powell (University of Michigan)

					Jeff Printy (Macmillan Learning)

					Ryan Pugatch (Hachette Livre)

					Joshua Pyle (Wiley)

					Wendy Reid (Rakuten, Inc., chair)

					Florian Rivoal (W3C Invited Expert)

					Leonard Rosenthol (Adobe)

					Robert Sanderson (J. Paul Getty Trust)

					Jodi Schneider (University of Illinois at Urbana-Champaign)

					Ben Schroeter (Pearson plc)

					Tzviya Siegman (Wiley, chair)

					Avneesh Singh (DAISY Consortium)

					Adam Sisco (Earth Science Data Systems Program)

					David Stroup (Pearson plc)

					Mateus Teixeira (W. W. Norton & Company)

					Jonathan Thurston (Pearson plc)

					Yukio Tomikura (Kodansha, Publishers, Ltd.)

					Ben Walters (Microsoft Corporation)

					Daniel Weck (EDRLab, DAISY Consortium)

					John Weise (University of Michigan)

					Jason White (Educational Testing Service)

					Richard Wright (EDRLab)

					Jeff Xu (Rakuten, Inc.)

					Evan Yamanishi (W. W. Norton & Company)

					Maurice York (University of Michigan)

					Junichi Yoshii (Kodansha, Publishers, Ltd.)

					Benjamin Young (Wiley)

					Mohamed ZERGAOUI (INNOVIMAX)

			

			 The Working Group would also like to thank the members of the Digital Publishing Interest Group for all the hard work they did paving the road for this
				specification.

		

		
			J. References

			
				J.1 Normative references

				
						[accname-1.1]

						Accessible Name and Description Computation
								1.1. Joanmarie Diggs; Bryan Garaventa; Michael Cooper. W3C. 18 December 2018.
						W3C Recommendation. URL: https://www.w3.org/TR/accname-1.1/

						[bcp47]

						Tags for Identifying Languages. A.
						Phillips; M. Davis. IETF. September 2009. IETF Best Current Practice. URL: https://tools.ietf.org/html/bcp47

						[bibo]

						Bibliographic Ontology
								Specification. Bruce D'Arcus; Frédérick Giasson. Structured Dynamics LLC. 11
						May 2016. URL: http://bibliontology.com/specification.html

						[bibtex]

						BibTeX Format Description. URL: http://www.bibtex.org/Format/

						[bidi]

						Unicode Bidirectional
								Algorithm. Mark Davis; Aharon Lanin; Andrew Glass. Unicode Consortium. 12
						February 2020. Unicode Standard Annex #9. URL: https://www.unicode.org/reports/tr9/tr9-42.html

						[dc11]

						Dublin Core Metadata Element Set, Version
								1.1. DCMI. 14 June 2012. DCMI Recommendation. URL: http://dublincore.org/documents/dces/

						[dcterms]

						DCMI Metadata Terms. DCMI
						Usage Board. DCMI. 14 June 2012. DCMI Recommendation. URL: http://dublincore.org/documents/dcmi-terms/

						[dom]

						DOM Standard. Anne van Kesteren. WHATWG.
						Living Standard. URL: https://dom.spec.whatwg.org/

						[dpub-aria-1.0]

						Digital Publishing WAI-ARIA Module
								1.0. Matt Garrish; Tzviya Siegman; Markus Gylling; Shane McCarron. W3C. 14
						December 2017. W3C Recommendation. URL: https://www.w3.org/TR/dpub-aria-1.0/

						[ecmascript]

						ECMAScript Language Specification. Ecma
						International. URL: https://tc39.es/ecma262/

						[foaf]

						FOAF Vocabulary Specification 0.99 (Paddington
								Edition). Dan Brickley; Libby Miller. FOAF project. 14 January 2014. URL: http://xmlns.com/foaf/spec

						[html]

						HTML Standard. Anne van
						Kesteren; Domenic Denicola; Ian Hickson; Philip Jägenstedt; Simon Pieters. WHATWG. Living
						Standard. URL: https://html.spec.whatwg.org/multipage/

						[iana-link-relations]

						Link
								Relations. URL: https://www.iana.org/assignments/link-relations/link-relations.xhtml

						[infra]

						Infra Standard. Anne van Kesteren;
						Domenic Denicola. WHATWG. Living Standard. URL: https://infra.spec.whatwg.org/

						[iso8601-1]

						Date and time — Representations for
								information interchange — Part 1: Basic rules. ISO 8601-1:2019..
						International Organization for Standardization (ISO). 2019. ISO 8601-1:2019. URL: https://www.iso.org/standard/70907.html

						[json]

						The application/json Media Type for
								JavaScript Object Notation (JSON). D. Crockford. IETF. July 2006.
						Informational. URL: https://tools.ietf.org/html/rfc4627

						[json-ld11]

						JSON-LD 1.1. Gregg Kellogg;
						Pierre-Antoine Champin; Dave Longley. W3C. 16 July 2020. W3C Recommendation. URL: https://www.w3.org/TR/json-ld11/

						[mfrel]

						Microformats Wiki: existing rel values. Microformats.. URL: http://microformats.org/wiki/existing-rel-values#HTML5_link_type_extensions

						[onix]

						ONIX for Books. URL: https://www.editeur.org/83/Overview

						[rfc2046]

						Multipurpose Internet Mail Extensions (MIME)
								Part Two: Media Types. N. Freed; N. Borenstein. IETF. November 1996. Draft
						Standard. URL: https://tools.ietf.org/html/rfc2046

						[RFC2119]

						Key words for use in RFCs to Indicate
								Requirement Levels. S. Bradner. IETF. March 1997. Best Current Practice. URL:
							https://tools.ietf.org/html/rfc2119

						[rfc5988]

						Web Linking. M. Nottingham. IETF.
						October 2010. Proposed Standard. URL: https://tools.ietf.org/html/rfc5988

						[RFC8174]

						Ambiguity of Uppercase vs Lowercase in RFC
								2119 Key Words. B. Leiba. IETF. May 2017. Best Current Practice. URL: https://tools.ietf.org/html/rfc8174

						[rfc8288]

						Web Linking. M. Nottingham.
						IETF. October 2017. Proposed Standard. URL: https://httpwg.org/specs/rfc8288.html

						[schema.org]

						Schema.org. URL: https://schema.org

						[sri]

						Subresource Integrity. Devdatta Akhawe;
						Frederik Braun; Francois Marier; Joel Weinberger. W3C. 23 June 2016. W3C Recommendation. URL: https://www.w3.org/TR/SRI/

						[url]

						URL Standard. Anne van Kesteren. WHATWG.
						Living Standard. URL: https://url.spec.whatwg.org/

						[wcag21]

						Web Content Accessibility Guidelines (WCAG)
								2.1. Andrew Kirkpatrick; Joshue O Connor; Alastair Campbell; Michael Cooper.
						W3C. 5 June 2018. W3C Recommendation. URL: https://www.w3.org/TR/WCAG21/

				

			
			
				J.2 Informative references

				
						[audiobooks]

						Audiobooks. Wendy Reid; Matt
						Garrish. W3C. 10 November 2020. W3C Recommendation. URL: https://www.w3.org/TR/audiobooks/

						[ecma-404]

						The
								JSON Data Interchange Format. Ecma International. 1 October 2013. Standard.
						URL: https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

						[json-ld10]

						JSON-LD 1.0. Manu
						Sporny; Gregg Kellogg; Markus Langhaler. 2014-01-16. W3C Recommendation. URL: https://www.w3.org/TR/2014/REC-json-ld-20140116/

						[json-schema]

						JSON Schema: core definitions
								and terminology. K. Zyp. Internet Engineering Task Force (IETF). 31 January
						2013. Internet-Draft. URL: https://tools.ietf.org/html/draft-zyp-json-schema

						[link-relation]

						Identifier: A Link
								Relation to Convey a Preferred URI for Referencing. H. Van de Sompel; M.
						Nelson; G. Bilder; J. Kunze; S. Warner. IETF. URL: https://tools.ietf.org/html/draft-vandesompel-identifier-00

						[string-meta]

						Requirements for Language and Direction
								Metadata in Data Formats. Addison Phillips; Richard Ishida. 2017-12-01. URL:
							https://w3c.github.io/string-meta/

						[WebIDL]

						Web IDL. Boris Zbarsky. W3C. 15
						December 2016. W3C Editor's Draft. URL: https://heycam.github.io/webidl/

						[webschemas-a11y]

						WebSchemas
							Accessibility. URL: https://www.w3.org/wiki/WebSchemas/Accessibility

				

			
		
		
			
				↑
			
		

		
			
			
				Permalink

			

			Referenced in:
			
					
					1.2 Manifest Format
				

					
					2. Terminology
				

					
					5. Publication Resources
				

					
					7.4.2 Data Validation
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					1.2 Manifest Format
					(2)
				

					
					2. Terminology
				

					
					4.2.5 URLs
				

					
					4.2.6 Identifiers
				

					
					4.5 Publication Types
				

					
					4.6 Profile Conformance
				

					
					4.7.1.1 Abridged
				

					
					4.7.1.2 Accessibility
				

					
					4.7.1.3 Address
				

					
					4.7.1.4 Canonical Identifier
					(2)
				

					
					4.7.1.5 Creators
				

					
					4.7.1.6 Duration
				

					
					4.7.1.7 Last Modification Date
				

					
					4.7.1.8 Publication Date
				

					
					4.7.1.9 Publication Language
				

					
					4.7.1.10 Reading Progression Direction
				

					
					4.7.1.11 Title
				

					
					4.7.2.1 Default Reading Order
					(2)
				

					
					4.7.2.2 Resource List
				

					
					4.7.2.3 Links
				

					
					4.7.3 Extensibility
				

					
					4.8.1.1 Cover
				

					
					4.8.1.2 Page List
				

					
					4.8.1.3 Table of Contents
				

					
					4.8.2.1 Accessibility Report
				

					
					4.8.2.2 Preview
				

					
					4.8.2.3 Privacy Policy
				

					
					5. Publication Resources
				

					
					6.2 Embedding
				

					
					6.3 Other Discovery Methods
				

					
					7.1 Introduction
				

					
					7.4 Generate the Internal Representation
				

					
					9. Security and Privacy Considerations
				

					
					C.1 Introduction
					(2)
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					1.3 JSON-LD Authoring and Processing
				

					
					4.7.1.10 Reading Progression Direction
				

					
					4.7.2.1 Default Reading Order
				

					
					4.7.3 Extensibility
				

					
					7.1 Introduction
				

					
					7.4 Generate the Internal Representation
				

					
					A. Internal Representation Data Model
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					1.2 Manifest Format
					(2)
				

					
					2. Terminology
					(2)
				

					
					4.3 Manifest Contexts
				

					
					4.5 Publication Types
				

					
					4.7.1.7 Last Modification Date
				

					
					E.1 Link relation type registration
					(2)
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					2. Terminology
				

					
					4.2.4.3 Linked Resources
				

					
					4.2.4.4 Objects
				

					
					4.3 Manifest Contexts
				

					
					4.6 Profile Conformance
				

					
					4.7.2.1 Default Reading Order
				

					
					4.8.1.3 Table of Contents
				

					
					5. Publication Resources
				

					
					7.3 Processing Contexts
				

					
					7.4 Generate the Internal Representation
					(2)
					(3)
				

					
					7.4.1 Normalize Data
				

					
					7.4.2 Data Validation
				

					
					7.4.2.2 Verify Value Category
				

					
					7.4.3 Add Default Values
				

					
					8. Modular Extensions
				

					
					B. Selecting an Alternate Resource
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					4.2.4.1 Localizable Strings
				

					
					4.4.2 Item-Specific Declarations
				

					
					7.4.2.1 Global Data Checks
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					4.2.4.2 Entities
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					1.2 Manifest Format
				

					
					4.2.4.3 Linked Resources
				

					
					4.7.2.1 Default Reading Order
					(2)
				

					
					4.7.2.2 Resource List
					(2)
				

					
					4.7.2.3 Links
					(2)
				

					
					4.7.3.1 Linked records
				

					
					4.8.1.1 Cover
				

					
					7.4.2.1 Global Data Checks
				

					
					7.4.2.3 Get Unique URLs
				

					
					B. Selecting an Alternate Resource
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					4.2.4.3 Linked Resources
					(2)
				

					
					4.7.1.3 Address
				

					
					4.7.2.1 Default Reading Order
				

					
					4.7.2.2 Resource List
					(2)
				

					
					4.7.2.3 Links
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					7.4 Generate the Internal Representation
				

					
					7.4.1 Normalize Data
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					4.4.1 Global Declarations
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					4.7.1.9 Publication Language
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					Not referenced in this document.

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					Not referenced in this document.

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					Not referenced in this document.

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					Not referenced in this document.

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					Not referenced in this document.

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					Not referenced in this document.

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					Not referenced in this document.

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					Not referenced in this document.

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					Not referenced in this document.

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					2. Terminology
				

					
					4.7.1.9 Publication Language
				

					
					4.7.2 Resource Categorization Properties
				

					
					4.7.2.2 Resource List
					(2)
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					4.7.2 Resource Categorization Properties
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					4.7.2 Resource Categorization Properties
				

					
					5. Publication Resources
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					Not referenced in this document.

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					Not referenced in this document.

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					Not referenced in this document.

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					Not referenced in this document.

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					7.4 Generate the Internal Representation
					(2)
					(3)
				

					
					7.4.1 Normalize Data
					(2)
					(3)
					(4)
				

					
					7.4.1.1 Convert to Absolute URL
					(2)
				

					
					7.4.2 Data Validation
					(2)
					(3)
					(4)
					(5)
					(6)
					(7)
					(8)
					(9)
					(10)
					(11)
					(12)
					(13)
					(14)
				

					
					7.4.2.1 Global Data Checks
					(2)
					(3)
					(4)
					(5)
					(6)
				

					
					7.4.2.2 Verify Value Category
					(2)
					(3)
					(4)
					(5)
					(6)
					(7)
				

					
					7.4.2.3 Get Unique URLs
					(2)
				

					
					7.4.3 Add Default Values
					(2)
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					7.4 Generate the Internal Representation
					(2)
					(3)
				

					
					7.4.3 Add Default Values
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					7.4.1 Normalize Data
				

					
					7.4.2.1 Global Data Checks
				

					
					7.4.2.2 Verify Value Category
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					7.4.1 Normalize Data
					(2)
				

					
					7.4.2.1 Global Data Checks
					(2)
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					7.2 Error Handling
				

					
					7.3 Processing Contexts
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					7.3 Processing Contexts
				

					
					7.4 Generate the Internal Representation
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					7.4.1 Normalize Data
					(2)
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					7.4 Generate the Internal Representation
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					7.4.2 Data Validation
				

					
					7.4.2.1 Global Data Checks
					(2)
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					7.4.2.1 Global Data Checks
				

					
					7.4.2.2 Verify Value Category
					(2)
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					7.4.2 Data Validation
					(2)
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					7.4.2 Data Validation
				

					
					7.4.2.4 Remove Empty Arrays
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					7.4 Generate the Internal Representation
				

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					Not referenced in this document.

			

		
		
			
			
				Permalink

			

			Referenced in:
			
					
					C.3 User Agent Processing
					(2)
				

			

		
		

		
	

Icons/w3c_main.png

