Copyright © 2023 World Wide Web Consortium. W3C® liability, trademark and permissive document license rules apply.
This specification defines an API that provides the time origin, and current time in sub-millisecond resolution, such that it is not subject to system clock skew or adjustments.
This section describes the status of this document at the time of its publication. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at https://www.w3.org/TR/.
This document was published by the Web Performance Working Group as a Working Draft using the Recommendation track.
Publication as a Working Draft does not imply endorsement by W3C and its Members.
This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in progress.
This document was produced by a group operating under the W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.
This document is governed by the 2 November 2021 W3C Process Document.
This section is non-normative.
The ECMAScript Language specification [ECMA-262] defines the
Date
object as a time value
representing time in milliseconds since 01 January, 1970 UTC. For most
purposes, this definition of time is sufficient as these values
represent time to millisecond precision for any moment that is within
approximately 285,616 years from 01 January, 1970 UTC.
In practice, these definitions of time are subject to both clock skew and adjustment of the system clock. The value of time may not always be monotonically increasing and subsequent values may either decrease or remain the same.
For example, the following script may record a positive number,
negative number, or zero for computed duration
:
var mark_start = Date.now();
doTask(); // Some task
var duration = Date.now() - mark_start;
For certain tasks this definition of time may not be sufficient as it:
This specification does not propose changing the behavior of
Date.now()
[ECMA-262] as it is
genuinely useful in determining the current value of the calendar time
and has a long history of usage. The DOMHighResTimeStamp
type,
Performance
.now
()
method, and
Performance
.timeOrigin
attributes of the
Performance
interface resolve the above issues by providing
monotonically increasing time values with sub-millisecond resolution.
Providing sub-millisecond resolution is not a mandatory part of this specification. Implementations may choose to limit the timer resolution they expose for privacy and security reasons, and not expose sub-millisecond timers. Use-cases that rely on sub-millisecond resolution may not be satisfied when that happens.
This section is non-normative.
This specification defines a few different capabilities: it provides timestamps based on a stable, monotonic clock, comparable across contexts, with potential sub-millisecond resolution.
The need for a stable monotonic clock when talking about performance measurements stems from the fact that unrelated clock skew can distort measurements and render them useless. For example, when attempting to accurately measure the elapsed time of navigating to a Document, fetching of resources or execution of script, a monotonically increasing clock with sub-millisecond resolution is desired.
Comparing timestamps between contexts is essential e.g. when
synchronizing work between a Worker
and the main thread or when
instrumenting such work in order to create a unified view of the
event timeline.
Finally, the need for sub-millisecond timers revolves around the following use-cases:
This section is non-normative.
A developer may wish to construct a timeline of their entire
application, including events from Worker
or SharedWorker
,
which have different time origins. To
display such events on the same timeline, the application can
translate the DOMHighResTimeStamp
s with the help of the
Performance
.timeOrigin
attribute.
// ---- worker.js -----------------------------
// Shared worker script
onconnect = function(e) {
var port = e.ports[0];
port.onmessage = function(e) {
// Time execution in worker
var task_start = performance.now();
result = runSomeWorkerTask();
var task_end = performance.now();
}
// Send results and epoch-relative timestamps to another context
port.postMessage({
'task': 'Some worker task',
'start_time': task_start + performance.timeOrigin,
'end_time': task_end + performance.timeOrigin,
'result': result
});
}
// ---- application.js ------------------------
// Timing tasks in the document
var task_start = performance.now();
runSomeApplicationTask();
var task_end = performance.now();
// developer provided method to upload runtime performance data
reportEventToAnalytics({
'task': 'Some document task',
'start_time': task_start,
'duration': task_end - task_start
});
// Translating worker timestamps into document's time origin
var worker = new SharedWorker('worker.js');
worker.port.onmessage = function (event) {
var msg = event.data;
// translate epoch-relative timestamps into document's time origin
msg.start_time = msg.start_time - performance.timeOrigin;
msg.end_time = msg.end_time - performance.timeOrigin;
reportEventToAnalytics(msg);
}
A clock tracks the passage of time and can report the unsafe current time that an algorithm step is executing. There are many kinds of clocks. All clocks on the web platform attempt to count 1 millisecond of clock time per 1 millisecond of real-world time, but they differ in how they handle cases where they can't be exactly correct.
The monotonic clock's unsafe current time never decreases, so it can't be changed by system clock adjustments. The monotonic clock only exists within a single execution of the user agent, so it can't be used to compare events that might happen in different executions.
Since the monotonic clock can't be adjusted to match the user's notion of time, it should be used for measurement, rather than user-visible times. For any time communication with the user, use the wall clock.
The user agent can pick a new estimated monotonic time of the Unix epoch when the browser restarts, when it starts an
isolated browsing session—e.g. incognito or a similar browsing
mode—or when it creates an environment settings object that
can't communicate with any existing settings objects. As a
result, developers should not use shared timestamps as absolute
time that holds its monotonic properties across all past,
present, and future contexts; in practice, the monotonic
properties only apply for contexts that can reach each other by
exchanging messages via one of the provided messaging mechanisms
- e.g. postMessage
(message, options)
,
BroadcastChannel
, etc.
In certain scenarios (e.g. when a tab is backgrounded), the user agent may choose to throttle timers and periodic callbacks run in that context or even freeze them entirely. Any such throttling should not affect the resolution or accuracy of the time returned by the monotonic clock.
Each clock's unsafe current time returns an unsafe moment. Coarsen time converts these unsafe moments to coarsened moments or just moments. Unsafe moments and moments from different clocks are not comparable.
Moments and unsafe moments represent points in time, which means they can't be directly stored as numbers. Implementations will usually represent a moment as a duration from some other fixed point in time, but specifications ought to deal in the moments themselves.
A duration is the distance from one moment to another from the same clock. Neither endpoint can be an unsafe moment so that both durations and differences of durations mitigate the concerns in 9.1 Clock resolution. Durations are measured in milliseconds, seconds, etc. Since all clocks attempt to count at the same rate, durations don't have an associated clock, and a duration calculated from two moments on one clock can be added to a moment from a second clock, to produce another moment on that second clock.
The duration from a to b is the result of the following algorithm:
Durations can be used implicitly as DOMHighResTimeStamp
s. To
implicitly convert a duration to a timestamp, given a
duration d, return the number of milliseconds in d.
For measuring time within a single page (within the context of a single
environment settings object), use the settingsObject's current relative timestamp, defined
as the duration from settingsObject's time origin to the settingsObject's current monotonic time. This value can be exposed directly to
JavaScript using the duration's implicit conversion to DOMHighResTimeStamp
.
For measuring time within a single UA execution when an environment settings object's time origin isn't an appropriate base for comparison, create moments using an environment settings object's current monotonic time. An environment settings object settingsObject's current monotonic time is the result of the following steps:
Moments from the monotonic clock can't be directly represented in JavaScript or HTTP. Instead, expose a duration between two such moments.
For measuring time across multiple UA executions, create moments using an environment settings object's current wall time. An environment settings object settingsObject's current wall time is the result of the following steps:
When using moments from the wall clock, be sure that your design accounts for situations when the user adjusts their clock either forward or backward.
Moments from the wall clock can be represented in JavaScript by
passing the number of milliseconds from the Unix epoch to that
moment into the
constructor, or by passing the number of
nanoseconds from the Unix epoch to that moment into the
Temporal.Instant
constructor.
Date
Avoid sending similar representations between computers, as doing so will expose the user's clock skew, which is a tracking vector. Instead, use an approach similar to monotonic clock moments of sending a duration between two moments.
The time a DOM event happens can be reported using:
timeStamp
attribute to
this's relevant settings object's current relative timestamp.
The age of an error report can be computed using:
Later:
Multi-day attribution report expirations can be handled as:
value["expiry"]
Days later:
The Unix epoch is the moment on the wall clock corresponding to 1 January 1970 00:00:00 UTC.
Each group of environment settings objects that could possibly communicate in any way has an estimated monotonic time of the Unix epoch, a moment on the monotonic clock, whose value is initialized by the following steps:
monotonic time - (wall time - Unix epoch)
Worker
s.
Performance measurements report a duration from a moment early in the initialization of a relevant environment settings object. That moment is stored in that settings object's time origin.
To get time origin timestamp, given a global object global, run the following steps, which return a duration:
Let timeOrigin be global's relevant settings object's time origin.
In Window
contexts, this value represents the time when
navigation has started. In Worker
and
ServiceWorker
contents, this value represent the time when the
worker is run. [service-workers]
The value returned by get time origin timestamp is approximately
the time after the Unix epoch that global's time origin happened. It may differ from the value
returned by Date.now()
executed at the time origin, because the
former is recorded with respect to a monotonic clock that is not
subject to system and user clock adjustments, clock skew, and so on.
The current high resolution time given a global object current global must return the result of relative high resolution time given unsafe shared current time and current global.
The coarsened shared current time given an optional boolean crossOriginIsolatedCapability (default false), must return the result of calling coarsen time with the unsafe shared current time and crossOriginIsolatedCapability.
The unsafe shared current time must return the unsafe current time of the monotonic clock.
The DOMHighResTimeStamp
type is used to store a duration in
milliseconds. Depending on its context, it may represent the moment
that is this duration after a base moment like a time origin or the Unix epoch.
WebIDLtypedef double DOMHighResTimeStamp
;
A DOMHighResTimeStamp
SHOULD represent a time in milliseconds
accurate enough to allow measurement while preventing timing attacks -
see 9.1
Clock resolution for additional considerations.
A DOMHighResTimeStamp
is a double
, so it can only represent an
epoch-relative time—the number of milliseconds from the Unix epoch to a moment—to a finite resolution. For moments in
2023, that resolution is approximately 0.2 microseconds.
WebIDLtypedef unsigned long long EpochTimeStamp
;
A EpochTimeStamp
represents an integral number of milliseconds from
the Unix epoch to a given moment on the wall clock,
excluding leap seconds. Specifications that use this type define how the
number of milliseconds are interpreted.
WebIDL[Exposed=(Window,Worker)]
interface Performance
: EventTarget {
DOMHighResTimeStamp
now
();
readonly attribute DOMHighResTimeStamp
timeOrigin
;
[Default] object toJSON
();
};
The now()
method MUST return the number of milliseconds in
the current high resolution time (a duration).
The time values returned when calling the now
()
method on Performance
objects with the same time origin MUST use the same monotonic clock.
The difference between any two chronologically recorded time values
returned from the now
()
method MUST never be negative
if the two time values have the same time origin.
The timeOrigin
attribute MUST return the number of
milliseconds in the duration returned by get time origin timestamp for the relevant global object of this.
The time values returned when getting
Performance
.timeOrigin
MUST use the same
monotonic clock that is shared by time origins, and whose reference point is the [ECMA-262]
time
definition - see 9.
Security Considerations.
When toJSON()
is called, run [WEBIDL]'s default
toJSON steps.
The performance
attribute on the interface mixin
WindowOrWorkerGlobalScope
allows access to performance related
attributes and methods from the global object.
WebIDLpartial interface mixin WindowOrWorkerGlobalScope {
[Replaceable] readonly attribute Performance
performance
;
};
Access to accurate timing information, both for measurement and scheduling purposes, is a common requirement for many applications. For example, coordinating animations, sound, and other activity on the page requires access to high-resolution time to provide a good user experience. Similarly, measurement enables developers to track the performance of critical code components, detect regressions, and so on.
However, access to the same accurate timing information can sometimes be also used for malicious purposes by an attacker to guess and infer data that they can't see or access otherwise. For example, cache attacks, statistical fingerprinting and micro-architectural attacks are a privacy and security concern where a malicious web site may use high resolution timing data of various browser or application-initiated operations to differentiate between subset of users, identify a particular user or reveal unrelated but same-process user data - see [CACHE-ATTACKS] and [SPECTRE] for more background.
This specification defines an API that provides sub-millisecond time
resolution, which is more accurate than the previously available
millisecond resolution exposed by EpochTimeStamp
. However, even
without this new API an attacker may be able to obtain
high-resolution estimates through repeat execution and statistical
analysis.
To ensure that the new API does not significantly improve the
accuracy or speed of such attacks, the minimum resolution of the
DOMHighResTimeStamp
type should be inaccurate enough to prevent
attacks.
Where necessary, the user agent should set higher resolution values to time resolution in coarsen time's processing model, to address privacy and security concerns due to architecture or software constraints, or other considerations.
In order to mitigate such attacks user agents may deploy any technique they deem necessary. Deployment of those techniques may vary based on the browser's architecture, the user's device, the content and its ability to maliciously read cross-origin data, or other practical considerations.
These techniques may include:
Mitigating such timing side-channel attacks entirely is practically impossible: either all operations would have to execute in a time that does not vary based on the value of any confidential information, or the application would need to be isolated from any time-related primitives (clock, timers, counters, etc). Neither is practical due to the associated complexity for the browser and application developers and the associated negative effects on performance and responsiveness of applications.
This specification also defines an API that provides sub-millisecond time resolution of the zero time of the time origin, which requires and exposes a monotonic clock to the application, and that must be shared across all the browser contexts. The monotonic clock does not need to be tied to physical time, but is recommended to be set with respect to the [ECMA-262] definition of time to avoid exposing new fingerprint entropy about the user — e.g. this time can already be easily obtained by the application, whereas exposing a new logical clock provides new information.
However, even with the above mechanism in place, the monotonic
clock may provide additional clock drift
resolution. Today, the application can timestamp the time-of-day and
monotonic time values (via Date.now()
and
now
()
) at multiple points within the same context and
observe drift between them—e.g. due to automatic or user clock
adjustments. With the timeOrigin
attribute, the
attacker can also compare the time origin, as reported by the monotonic clock, against the
current time-of-day estimate of the time origin (i.e. the difference between
performance.timeOrigin
and Date.now() - performance.now()
) and
potentially observe clock drift between these clocks over a longer
time period.
In practice, the same time drift can be observed by an application across multiple navigations: the application can record the logical time in each context and use a client or server time synchronization mechanism to infer changes in the user's clock. Similarly, lower-layer mechanisms such as TCP timestamps may reveal the same high-resolution information to the server without the need for multiple visits. As such, the information provided by this API should not expose any significant or previously unavailable entropy about the user.
The current definition of time origin
for a Document
exposes the total time of cross-origin redirects
prior to the request arriving at the document's origin. This exposes
cross-origin information, however it's not yet decided how to mitigate
this without causing major breakages to performance metrics.
To track the discussion, refer to Navigation Timing Issue 160.
As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification are non-normative. Everything else in this specification is normative.
The key words MUST and SHOULD in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
Some conformance requirements are phrased as requirements on attributes, methods or objects. Such requirements are to be interpreted as requirements on user agents.
WebIDLtypedef double DOMHighResTimeStamp
;
typedef unsigned long long EpochTimeStamp
;
[Exposed=(Window,Worker)]
interface Performance
: EventTarget {
DOMHighResTimeStamp
now
();
readonly attribute DOMHighResTimeStamp
timeOrigin
;
[Default] object toJSON
();
};
partial interface mixin WindowOrWorkerGlobalScope {
[Replaceable] readonly attribute Performance
performance
;
};
Thanks to Arvind Jain, Angelos D. Keromytis, Boris Zbarsky, Jason Weber, Karen Anderson, Nat Duca, Philippe Le Hegaret, Ryosuke Niwa, Simha Sethumadhavan, Todd Reifsteck, Tony Gentilcore, Vasileios P. Kemerlis, Yoav Weiss, and Yossef Oren for their contributions to this work.
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in:
Referenced in: