Copyright © 2021 W3C® (MIT, ERCIM, Keio, Beihang). W3C liability, trademark and permissive document license rules apply.
Decentralized identifiers (DIDs) are a new type of identifier that enables verifiable, decentralized digital identity. A DID identifies any subject (e.g., a person, organization, thing, data model, abstract entity, etc.) that the controller of the DID decides that it identifies. In contrast to typical, federated identifiers, DIDs have been designed so that they may be decoupled from centralized registries, identity providers, and certificate authorities. Specifically, while other parties might be used to help enable the discovery of information related to a DID, the design enables the controller of a DID to prove control over it without requiring permission from any other party. DIDs are URIs that associate a DID subject with a DID document allowing trustable interactions associated with that subject.
Each DID document can express cryptographic material, verification methods, or services, which provide a set of mechanisms enabling a DID controller to prove control of the DID. Services enable trusted interactions associated with the DID subject. A DID might provide the means to return the DID subject itself, if the DID subject is an information resource such as a data model.
This document specifies the DID syntax, a common data model, core properties, serialized representations, DID operations, and an explanation of the process of resolving DIDs to the resources that they represent.
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at https://www.w3.org/TR/.
The W3C Decentralized Identifier Working Group has published this document as a W3C Candidate Recommendation and is requesting that software developers and DID Method specification authors provide experimental implementations designed to test the implementability of all of the features in this document.
To exit the W3C Candidate Recommendation phase, the W3C DID Working Group will require two things: 1) for normative statements that are machine testable, at least two interoperable implementations per feature, and 2) for normative statements that are not machine testable, at least two demonstrations of implementation per feature. A feature is defined as one or more functionally related normative statements in the specification.
At present, there exist 82 experimental DID Method specifications, 32 experimental DID Method driver implementations, and a Candidate Recommendation test suite that determines whether or not a given implementation is conformant with this specification. Readers are advised to heed the DID Core issues and DID Core Test Suite issues that each contain the latest list of concerns and proposed changes that might result in alterations to this specification.
Changes since the First Public Working Draft include:
Comments regarding this document are welcome. Please file issues directly on GitHub, or send them to public-did-wg@w3.org ( subscribe, archives).
This document was published by the Decentralized Identifier Working Group as a Working Draft. This document is intended to become a W3C Recommendation.
GitHub Issues are preferred for discussion of this specification. Alternatively, you can send comments to our mailing list. Please send them to public-did-wg@w3.org (subscribe, archives).
Publication as a Working Draft does not imply endorsement by the W3C Membership.
This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in progress.
This document was produced by a group operating under the W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.
This document is governed by the 15 September 2020 W3C Process Document.
This section is non-normative.
As individuals and organizations, many of us use globally unique identifiers in a wide variety of contexts. They serve as communications addresses (telephone numbers, email addresses, usernames on social media), ID numbers (for passports, drivers licenses, tax IDs, health insurance), and product identifiers (serial numbers, barcodes, RFIDs). URIs (Uniform Resource Identifiers) are used for resources on the Web and each web page you view in a browser has a globally unique URL (Uniform Resource Locator).
The vast majority of these globally unique identifiers are not under our control. They are issued by external authorities that decide who or what they identify and when they can be revoked. They are useful only in certain contexts and recognized only by certain bodies not of our choosing. They might disappear or cease to be valid with the failure of an organization. They might unnecessarily reveal personal information. In many cases, they can be fraudulently replicated and asserted by a malicious third-party, which is more commonly known as "identity theft".
The Decentralized Identifiers (DIDs) defined in this specification are a new type of globally unique identifier. They are designed to enable individuals and organizations to generate their own identifiers using systems they trust. These new identifiers enable entities to prove control over them by authenticating using cryptographic proofs such as digital signatures.
Since the generation and assertion of Decentralized Identifiers is entity-controlled, each entity can have as many DIDs as necessary to maintain their desired separation of identities, personas, and interactions. The use of these identifiers can be scoped appropriately to different contexts. They support interactions with other people, institutions, or systems that require entities to identify themselves, or things they control, while providing control over how much personal or private data should be revealed, all without depending on a central authority to guarantee the continued existence of the identifier.
This specification does not presuppose any particular technology or cryptography to underpin the generation, persistence, resolution, or interpretation of DIDs. For example, implementers can create Decentralized Identifiers based on identifiers registered in federated or centralized identity management systems. Indeed, almost all types of identifier systems can add support for DIDs. This creates an interoperability bridge between the worlds of centralized, federated, and decentralized identifiers. This also enables implementers to design specific types of DIDs to work with the computing infrastructure they trust, such as distributed ledgers, decentralized file systems, distributed databases, and peer-to-peer networks.
This specification is for:
This section is non-normative.
A DID is a simple text string consisting of three parts: 1) the
did
URI scheme identifier, 2) the identifier for the DID
method, and 3) the DID method-specific identifier.
The example DID above resolves to a DID document. A DID document contains information associated with the DID, such as ways to cryptographically authenticate a DID controller.
{
"@context": "https://www.w3.org/ns/did/v1",
"id": "did:example:123456789abcdefghi",
"authentication": [{
// used to authenticate as did:...fghi
"id": "did:example:123456789abcdefghi#keys-1",
"type": "Ed25519VerificationKey2020",
"controller": "did:example:123456789abcdefghi",
"publicKeyMultibase": "zH3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV"
}]
}
This section is non-normative.
Decentralized Identifiers are a component of larger systems, such as the Verifiable Credentials ecosystem [VC-DATA-MODEL], which influenced the design goals for this specification. The design goals for Decentralized Identifiers are summarized here.
Goal | Description |
---|---|
Decentralization | Eliminate the requirement for centralized authorities or single point failure in identifier management, including the registration of globally unique identifiers, public verification keys, services, and other information. |
Control | Give entities, both human and non-human, the power to directly control their digital identifiers without the need to rely on external authorities. |
Privacy | Enable entities to control the privacy of their information, including minimal, selective, and progressive disclosure of attributes or other data. |
Security | Enable sufficient security for requesting parties to depend on DID documents for their required level of assurance. |
Proof-based | Enable DID controllers to provide cryptographic proof when interacting with other entities. |
Discoverability | Make it possible for entities to discover DIDs for other entities, to learn more about or interact with those entities. |
Interoperability | Use interoperable standards so DID infrastructure can make use of existing tools and software libraries designed for interoperability. |
Portability | Be system- and network-independent and enable entities to use their digital identifiers with any system that supports DIDs and DID methods. |
Simplicity | Favor a reduced set of simple features to make the technology easier to understand, implement, and deploy. |
Extensibility | Where possible, enable extensibility provided it does not greatly hinder interoperability, portability, or simplicity. |
This section is non-normative.
This section provides a basic overview of the major components of Decentralized Identifier architecture.
did:
, a method identifier, and a unique,
method-specific identifier specified by the DID method. DIDs are
resolvable to DID documents. A DID URL extends the syntax of a
basic DID to incorporate other standard URI components such as
path, query, and fragment in order to locate a particular
resource—for example, a cryptographic public key inside a DID
document, or a resource external to the DID document.
These concepts are elaborated upon in § 3.1 DID Syntax and § 3.2 DID URL Syntax.
As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification are non-normative. Everything else in this specification is normative.
The key words MAY, MUST, MUST NOT, OPTIONAL, RECOMMENDED, REQUIRED, SHOULD, and SHOULD NOT in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
This document contains examples that contain JSON, CBOR, and JSON-LD content.
Some of these examples contain characters that are invalid, such as inline
comments (//
) and the use of ellipsis (...
) to denote
information that adds little value to the example. Implementers are cautioned to
remove this content if they desire to use the information as valid JSON, CBOR,
or JSON-LD.
Some examples contain terms, both property names and values, that are not
defined in this specification. These are indicated with a comment (//
external (property name|value)
). Such terms, when used in a DID
document, are expected to be registered in the DID Specification Registries
[DID-SPEC-REGISTRIES] with links to both a formal definition and a JSON-LD
context.
Interoperability of implementations for DIDs and DID documents is tested by evaluating an implementation's ability to create and parse DIDs and DID documents that conform to this specification. Interoperability for producers and consumers of DIDs and DID documents is provided by ensuring the DIDs and DID documents conform. Interoperability for DID method specifications is provided by the details in each DID method specification. It is understood that, in the same way that a web browser is not required to implement all known URI schemes, conformant software that works with DIDs is not required to implement all known DID methods. However, all implementations of a given DID method are expected to be interoperable for that method.
A conforming DID is any concrete expression of the rules specified in § 3. Identifier which complies with relevant normative statements in that section.
A conforming DID document is any concrete expression of the data model described in this specification which complies with the relevant normative statements in § 4. Data Model and § 5. Core Properties. A serialization format for the conforming document is deterministic, bi-directional, and lossless, as described in § 6. Representations.
A conforming producer is any algorithm realized as software and/or hardware that generates conforming DIDs or conforming DID Documents and complies with the relevant normative statements in § 6. Representations.
A conforming consumer is any algorithm realized as software and/or hardware that consumes conforming DIDs or conforming DID documents and complies with the relevant normative statements in § 6. Representations.
A conforming DID resolver is any algorithm realized as software and/or hardware that complies with the relevant normative statements in § 7.1 DID Resolution.
A conforming DID URL dereferencer is any algorithm realized as software and/or hardware that complies with the relevant normative statements in § 7.2 DID URL Dereferencing.
A conforming DID method is any specification that complies with the relevant normative statements in § 8. Methods.
This section is non-normative.
This section defines the terms used in this specification and throughout decentralized identifier infrastructure. A link to these terms is included whenever they appear in this specification.
controller
property at the top level of the
DID document. Note that a DID controller might be the DID
subject.
#
). DID fragment syntax is identical to URI fragment syntax.
/
) character and ends with either a question mark
(?
) character, a fragment hash sign (#
) character,
or the end of the DID URL. DID path syntax is identical to URI path syntax.
See § Path.
?
). DID query syntax is identical to URI query
syntax. See § Query.
did:
as defined in § 3.1 DID Syntax. Each DID method specification defines a specific
DID method scheme that works with that specific DID method. In a specific DID
method scheme, the DID method name follows the first colon and terminates with
the second colon, e.g., did:example:
/
character), optional DID query
(with its leading ?
character), and optional DID fragment
(with its leading #
character).
A set of parameters that can be used together with a process to independently verify a proof. For example, a cryptographic public key can be used as a verification method with respect to a digital signature; in such usage, it verifies that the signer possessed the associated cryptographic private key.
"Verification" and "proof" in this definition are intended to apply broadly. For example, a cryptographic public key might be used during Diffie-Hellman key exchange to negotiate a shared symmetric key for encryption. This guarantees the integrity of the key agreement process. It is thus another type of verification method, even though descriptions of the process might not use the words "verification" or "proof."
An expression of the relationship between the DID subject and a verification method. An example of a verification relationship is § 5.3.1 Authentication.
In addition to the terminology above, this specification also uses terminology from the [INFRA] specification to formally define the data model. When [INFRA] terminology is used, such as string, set, and map, it is linked directly to that specification.
This section describes the formal syntax for DIDs and DID URLs. The term "generic" is used to differentiate the syntax defined here from syntax defined by specific DID methods in their respective specifications.
The generic DID scheme is a URI scheme conformant with
[RFC3986]. The ABNF definition can be found below, which uses the syntax in
[RFC5234] and the corresponding definitions for ALPHA
and
DIGIT
. All other rule names not defined in the ABNF below are
defined in [RFC3986]. All DIDs MUST conform to the
DID Syntax ABNF Rules.
This ABNF does not currently permit an empty method-specific-id
string. Some DID methods have expressed an interest in providing resolution of
a DID with an empty method-specific-id
string, for example to
enable discovery of a DID document describing a verifiable data registry
by resolving the DID method name alone. The Working Group is requesting feedback
during the Candidate Recommendation stage on whether or not an empty
method-specific-id
string is of interest to implementers. This
feature may change as a result of that feedback. See also Issue 34.
The DID Syntax ABNF Rules |
---|
did = "did:" method-name ":" method-specific-id method-name = 1*method-char method-char = %x61-7A / DIGIT method-specific-id = *( *idchar ":" ) 1*idchar idchar = ALPHA / DIGIT / "." / "-" / "_" / pct-encoded pct-encoded = "%" HEXDIG HEXDIG |
For requirements on DID methods relating to the DID syntax, see Section § 8.1 Method Syntax.
A DID URL is a network location identifier for a specific resource. It can be used to retrieve things like representations of DID subjects, verification methods, services, specific parts of a DID document, or other resources.
The following is the ABNF definition using the syntax in [RFC5234]. It builds
on the did
scheme defined in § 3.1 DID Syntax. The path-abempty
, query
, and fragment
components are
defined in [RFC3986]. All DID URLs MUST conform to the
DID URL Syntax ABNF Rules. DID methods can further restrict these
rules, as described in § 8.1 Method Syntax.
The DID URL Syntax ABNF Rules |
---|
did-url = did path-abempty [ "?" query ] [ "#" fragment ] |
Although the semicolon (;
) character can be used according to the
rules of the DID URL syntax, future versions of this specification may
use it as a sub-delimiter for parameters as described in [MATRIX-URIS]]. To
avoid future conflicts, developers ought to refrain from using it.
A DID path is identical to a generic URI path and conforms to the
path-abempty
ABNF rule in RFC 3986, section 3.3. As with
URIs, path semantics can be specified by DID Methods, which in
turn might enable DID controllers to further specialize those semantics.
did:example:123456/path
A DID query is identical to a generic URI query and conforms to
the query
ABNF rule in RFC 3986, section 3.4. This syntax
feature is elaborated upon in § 3.2.1 DID Parameters.
did:example:123456?versionId=1
DID fragment syntax and semantics are identical to a generic URI
fragment and conforms to the fragment
ABNF rule in RFC 3986, section 3.5.
A DID fragment is used as a method-independent reference into a DID document or external resource. Some examples of DID fragment identifiers are shown below.
did:example:123#public-key-0
did:example:123#agent
did:example:123?service=agent&relativeRef=/credentials#degree
In order to maximize interoperability, implementers are urged to ensure that DID fragments are interpreted in the same way across representations (see § 6. Representations). For example, while JSON Pointer [RFC6901] can be used in a DID fragment, it will not be interpreted in the same way across non-JSON representations.
Additional semantics for fragment identifiers, which are compatible with and layered upon the semantics in this section, are described for JSON-LD representations in § B.2 application/did+ld+json. For information about how to dereference a DID fragment, see § 7.2 DID URL Dereferencing.
The DID URL syntax supports a simple format for parameters based on the
query
component described in § Query. Adding a DID
parameter to a DID URL means that the parameter becomes part of the
identifier for a resource.
did:example:123?versionTime=2021-05-10T17:00:00Z
did:example:123?service=files&relativeRef=/resume.pdf
Some DID parameters are completely independent of of any specific DID method and function the same way for all DIDs. Other DID parameters are not supported by all DID methods. Where optional parameters are supported, they are expected to operate uniformly across the DID methods that do support them. The following table provides common DID parameters that function the same way across all DID methods. Support for all DID Parameters is OPTIONAL.
Parameter Name | Description |
---|---|
service
|
Identifies a service from the DID document by service ID. If present, the associated value MUST be an ASCII string. |
relativeRef
|
A relative URI reference according to RFC3986 Section 4.2 that identifies a
resource at a service endpoint, which is selected from a DID
document by using the service parameter.
If present, the associated value MUST be an ASCII string and MUST use percent-encoding for
certain characters as specified in RFC3986
Section 2.1.
|
versionId
|
Identifies a specific version of a DID document to be resolved (the version ID could be sequential, or a UUID, or method-specific). If present, the associated value MUST be an ASCII string. |
versionTime
|
Identifies a certain version timestamp of a DID document to be resolved.
That is, the DID document that was valid for a DID at a certain
time. If present, the associated value
MUST be an ASCII string which is a valid XML
datetime value, as defined in section 3.3.7 of W3C XML Schema Definition Language
(XSD) 1.1 Part 2: Datatypes [XMLSCHEMA11-2]. This datetime value MUST be
normalized to UTC 00:00:00 and without sub-second decimal precision.
For example: 2020-12-20T19:17:47Z .
|
hl
|
A resource hash of the DID document to add integrity protection, as specified in [HASHLINK]. This parameter is non-normative. If present, the associated value MUST be an ASCII string. |
Implementers as well as DID method specification authors might use additional DID parameters that are not listed here. For maximum interoperability, it is RECOMMENDED that DID parameters use the DID Specification Registries mechanism [DID-SPEC-REGISTRIES], to avoid collision with other uses of the same DID parameter with different semantics.
DID parameters might be used if there is a clear use case where the parameter needs to be part of a URL that references a resource with more precision than using the DID alone. It is expected that DID parameters are not used if the same functionality can be expressed by passing input metadata to a DID resolver. Additional considerations for processing these parameters are discussed in [DID-RESOLUTION].
The DID resolution and the DID URL dereferencing functions can be influenced by passing input metadata to a DID resolver that are not part of the DID URL (see § 7.1.1 DID Resolution Options). This is comparable to HTTP, where certain parameters could either be included in an HTTP URL, or alternatively passed as HTTP headers during the dereferencing process. The important distinction is that DID parameters that are part of the DID URL should be used to specify what resource is being identified, whereas input metadata that is not part of the DID URL should be use to control how that resource is resolved or dereferenced.
A relative DID URL is any URL value in a DID document that does
not start with did:<method-name>:<method-specific-id>
. More
specifically, it is any URL value that does not start with the ABNF defined in
§ 3.1 DID Syntax. The URL is expected to reference
a resource in the same DID document. Relative DID URLs MAY
contain relative path components, query parameters, and fragment identifiers.
When resolving a relative DID URL reference, the algorithm specified in
RFC3986 Section 5: Reference Resolution
MUST be used. The base URI value is the DID that is
associated with the DID subject, see § 5.1.1 DID Subject. The
scheme is did
. The authority is a
combination of <method-name>:<method-specific-id>
, and the
path, query, and fragment
values are those defined in § Path, § Query, and § Fragment, respectively.
Relative DID URLs are often used to reference verification methods and services in a DID Document without having to use absolute URLs. DID methods where storage size is a consideration might use relative URLs to reduce the storage size of DID documents.
{ "@context": "https://www.w3.org/ns/did/v1", "id": "did:example:123456789abcdefghi", "verificationMethod": [{ "id": "did:example:123456789abcdefghi#key-1", "type": "Ed25519VerificationKey2018", // external (property value) "controller": "did:example:123456789abcdefghi", "publicKeyBase58": "H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV" }, ...], "authentication": [ // a relative DID URL used to reference a verification method above "#key-1" ] }
In the example above, the relative DID URL value will be transformed to
an absolute DID URL value of
did:example:123456789abcdefghi#key-1
.
This specification defines a data model that can be used to express DID documents and DID document data structures, which can then be serialized into multiple concrete representations. This section provides a high-level description of the data model, descriptions of the ways different types of properties are expressed in the data model, and instructions for extending the data model.
A DID document consists of a map of entries, where each entry consists of a key/value pair. The DID document data model contains at least two different classes of entries. The first class of entries is called properties, and is specified in section § 5. Core Properties. The second class is made up of representation-specific entries, and is specified in section § 6. Representations.
All entry keys in the DID document data model are strings. All entry values are expressed using one of the abstract data types in the table below, and each representation specifies the concrete serialization format of each data type.
Data Type | Considerations |
---|---|
map | A finite ordered sequence of key/value pairs, with no key appearing twice as specified in [INFRA]. A map is sometimes referred to as an ordered map in [INFRA]. |
list | A finite ordered sequence of items as specified in [INFRA]. |
set | A finite ordered sequence of items that does not contain the same item twice as specified in [INFRA]. A set is sometimes referred to as an ordered set in [INFRA]. |
datetime |
A date and time value that is capable of losslessly expressing all values
expressible by a dateTime as specified in
[XMLSCHEMA11-2].
|
string | A sequence of code units often used to represent human readable language as specified in [INFRA]. |
integer | A real number without a fractional component as specified in [XMLSCHEMA11-2]. To maximize interoperability, implementers are urged to heed the advice regarding integers in RFC8259, Section 6: Numbers. |
double | A value that is often used to approximate arbitrary real numbers as specified in [XMLSCHEMA11-2]. To maximize interoperability, implementers are urged to heed the advice regarding doubles in RFC8259, Section 6: Numbers. |
boolean | A value that is either true or false as defined in [INFRA]. |
null | A value that is used to indicate the lack of a value as defined in [INFRA]. |
As a result of the data model being defined using terminology from [INFRA], property values which can contain more than one item, such as lists, maps and sets, are explicitly ordered. All list-like value structures in [INFRA] are ordered, whether or not that order is significant. For the purposes of this specification, unless otherwise stated, map and set ordering is not important and implementations are not expected to produce or consume deterministically ordered values.
The data model supports two types of extensibility.
It is always possible for two specific implementations to agree out-of-band to use a mutually understood extension or representation that is not recorded in the DID Specification Registries [DID-SPEC-REGISTRIES]; interoperability between such implementations and the larger ecosystem will be less reliable.
A DID is associated with a DID document. DID documents are expressed using the data model and can be serialized into a representation. The following sections define the properties in a DID document, including whether these properties are required or optional. These properties describe relationships between the DID subject and the value of the property.
The following tables contain informative references for the core properties defined by this specification, with expected values, and whether or not they are required. The property names in the tables are linked to the normative definitions and more detailed descriptions of each property.
The property names id
, type
, and
controller
can be present in maps of different types
with possible differences in constraints.
Property | Required? | Value constraints |
---|---|---|
id |
yes | A string that conforms to the rules in § 3.1 DID Syntax. |
alsoKnownAs |
no | A set of strings that conform to the rules of [RFC3986] for URIs. |
controller |
no | A string or a set of strings that conform to the rules in § 3.1 DID Syntax. |
verificationMethod |
no | A set of Verification Method maps that conform to the rules in § Verification Method properties. |
authentication |
no | A set of either Verification Method maps that conform to the rules in § Verification Method properties) or strings that conform to the rules in § 3.2 DID URL Syntax. |
assertionMethod |
no | |
keyAgreement |
no | |
capabilityInvocation |
no | |
capabilityDelegation |
no | |
service |
no | A set of Service Endpoint maps that conform to the rules in § Service properties. |
Property | Required? | Value constraints |
---|---|---|
id |
yes | A string that conforms to the rules in § 3.2 DID URL Syntax. |
controller |
yes | A string that conforms to the rules in § 3.1 DID Syntax. |
type |
yes | A string. |
publicKeyJwk |
no | A map representing a JSON Web Key that conforms to [RFC7517]. See definition of publicKeyJwk for additional constraints. |
publicKeyBase58 |
no | A string that conforms to a base58btc encoded public key. |
Property | Required? | Value constraints |
---|---|---|
id |
yes | A string that conforms to the rules of [RFC3986] for URIs. |
type |
yes | A string or a set of strings. |
serviceEndpoint |
yes | A string that conforms to the rules of [RFC3986] for URIs, a map, or a set composed of a one or more strings that conform to the rules of [RFC3986] for URIs and/or maps. |
This section describes the mechanisms by which DID documents include identifiers for DID subjects and DID controllers.
The DID for a particular DID subject is expressed using the
id
property in the DID document.
id
MUST be a string that conforms to the rules in § 3.1 DID Syntax and MUST exist in the root map of the data
model for the DID document.
{ "id": "did:example:123456789abcdefghijk" }
The id
property only denotes the DID of the
DID subject when it is present in the topmost
map of the DID document.
DID method specifications can create intermediate representations of a
DID document that do not contain the id
property,
such as when a DID resolver is performing DID resolution.
However, the fully resolved DID document always contains a valid
id
property.
A DID controller is an entity that is authorized to make changes to a DID document. The process of authorizing a DID controller is defined by the DID method.
controller
property is OPTIONAL. If present, the value MUST
be a string or a set of strings that conform to the rules in § 3.1 DID Syntax. The corresponding DID document(s) SHOULD
contain verification relationships that explicitly permit the use of
certain verification methods for specific purposes.
When a controller
property is present in a DID
document, its value expresses one or more DIDs. Any verification
methods contained in the DID documents for those DIDs SHOULD
be accepted as authoritative, such that proofs that satisfy those
verification methods are to be considered equivalent to proofs provided
by the DID subject.
{ "@context": "https://www.w3.org/ns/did/v1", "id": "did:example:123456789abcdefghi", "controller": "did:example:bcehfew7h32f32h7af3", }
Note that authorization provided by the value of controller
is
separate from authentication as described in § 5.3.1 Authentication.
This is particularly important for key recovery in the case of cryptographic key
loss, where the DID subject no longer has access to their keys, or key
compromise, where the DID controller's trusted third parties need to
override malicious activity by an attacker. See § 9. Security Considerations for information related to threat models
and attack vectors.
The DID Working Group is seeking implementer feedback regarding the alsoKnownAs feature. If there is not enough implementer interest in implementing this feature, it will be removed from this specification and placed into the DID Specification Registries [DID-SPEC-REGISTRIES] as an extension.
A DID subject can have multiple identifiers for different purposes, or
at different times. The assertion that two or more DIDs (or other types
of URI) identify the same DID subject can be made using the
alsoKnownAs
property.
alsoKnownAs
property is OPTIONAL. If present, the value MUST
be a set where each item in the
set is a URI conforming to [RFC3986].
Applications might choose to consider two identifiers related by
alsoKnownAs
to be equivalent if the
alsoKnownAs
relationship is reciprocated in the reverse
direction. It is best practice not to consider them equivalent in the
absence of this inverse relationship. In other words, the presence of an
alsoKnownAs
assertion does not prove that this assertion
is true. Therefore, it is strongly advised that a requesting party obtain
independent verification of an alsoKnownAs
assertion.
Given that the DID subject might use different identifiers for different purposes, an expectation of strong equivalence between the two identifiers, or merging the information of the two corresponding DID documents, is not necessarily appropriate, even with a reciprocal relationship.
A DID document can express verification methods, such as cryptographic public keys, which can be used to authenticate or authorize interactions with the DID subject or associated parties. For example, a cryptographic public key can be used as a verification method with respect to a digital signature; in such usage, it verifies that the signer could use the associated cryptographic private key. Verification methods might take many parameters. An example of this is a set of five cryptographic keys from which any three are required to contribute to a cryptographic threshold signature.
The verificationMethod
property is OPTIONAL. If present, the value
MUST be a set of verification
methods, where each verification method is expressed using a map. The verification method map MUST include the id
,
type
, controller
, and specific verification material
properties that are determined by the value of type
and are defined
in § 5.2.1 Verification Material. A verification method MAY
include additional properties. Verification methods SHOULD be registered
in the DID Specification Registries [DID-SPEC-REGISTRIES].
The value of the id
property for a verification
method MUST be a string that conforms to the
rules in Section § 3.2 DID URL Syntax.
type
property MUST be a string that references exactly one verification
method type. In order to maximize global interoperability, the
verification method type SHOULD be registered in the DID Specification
Registries [DID-SPEC-REGISTRIES].
controller
property MUST be a string that conforms to the rules in § 3.1 DID Syntax.
{
"@context": "https://www.w3.org/ns/did/v1",
"id": "did:example:123456789abcdefghi",
...
"verificationMethod": [{
"id": ...,
"type": ...,
"controller": ...,
"publicKeyJwk": ...
}, {
"id": ...,
"type": ...,
"controller": ...,
"publicKeyBase58": ...
}]
}
The semantics of the controller
property are the same when the
subject of the relationship is the DID document as when the subject of
the relationship is a verification method, such as a cryptographic public
key. Since a key can't control itself, and the key controller cannot be inferred
from the DID document, it is necessary to explicitly express the identity
of the controller of the key. The difference is that the value of
controller
for a verification method is not
necessarily a DID controller. DID controllers are expressed
using the controller
property at the highest level of the
DID document (the topmost map in the
data model); see § 5.1.2 DID Controller.
Verification material is any information that is used by a process
that applies a verification method. The type
of a verification method is expected to be used to determine
its compatibility with such processes. Examples
of verification material properties are publicKeyJwk
or
publicKeyBase58
. A verification suite definition is
responsible for specifying the verification method type
and
its associated verification material. For example, see JSON Web Signature 2020 and Ed25519 Signature 2018.
For all registered verification method types and associated verification
material available for DIDs, please see the DID Specification Registries
[DID-SPEC-REGISTRIES].
To increase the likelihood of interoperable implementations, this specification limits the number of formats for expressing verification material in a DID document. The fewer formats that implementers have to implement, the more likely it will be that they will support all of them. This approach attempts to strike a delicate balance between ease of implementation and supporting formats that have historically had broad deployment. Two supported verification material properties are listed below:
The publicKeyBase58
property is OPTIONAL. This feature is
non-normative. If present, the value MUST be a string representation of a [BASE58] encoded
public key.
The DID Working Group is seeking implementer feedback on the preference of the
ecosystem with respect to using publicKeyBase58
[BASE58] or
publicKeyMultibase
[MULTIBASE]. The latter can be used for
encoding more base-representation formats and provides a more future proof path.
Depending on implementer feedback, one or both options might be included in the
final specification, or migrated into the DID Specification Registries as an
extension.
The publicKeyJwk
property is OPTIONAL. If present, the value MUST
be a map representing a JSON Web Key that
conforms to [RFC7517]. The map MUST NOT
contain "d", or any other members of the private information class as described
in Registration
Template. It is RECOMMENDED that verification methods that use JWKs
[RFC7517] to represent their public keys use the value of kid
as
their fragment identifier. It is RECOMMENDED that JWK
kid
values are set to the public key fingerprint [RFC7638]. See
the first key in Example 13 for
an example of a public key with a compound key identifier.
A verification method MUST NOT contain multiple verification material
properties for the same material. For example, expressing key material in a
verification method using both publicKeyJwk
and
publicKeyBase58
at the same time is prohibited.
An example of a DID document containing verification methods using both properties above is shown below.
{ "@context": "https://www.w3.org/ns/did/v1", "id": "did:example:123456789abcdefghi", ... "verificationMethod": [{ "id": "did:example:123#_Qq0UL2Fq651Q0Fjd6TvnYE-faHiOpRlPVQcY_-tA4A", "type": "JsonWebKey2020", // external (property value) "controller": "did:example:123", "publicKeyJwk": { "crv": "Ed25519", // external (property name) "x": "VCpo2LMLhn6iWku8MKvSLg2ZAoC-nlOyPVQaO3FxVeQ", // external (property name) "kty": "OKP", // external (property name) "kid": "_Qq0UL2Fq651Q0Fjd6TvnYE-faHiOpRlPVQcY_-tA4A" // external (property name) } }, { "id": "did:example:123456789abcdefghi#keys-1", "type": "Ed25519VerificationKey2018", // external (property value) "controller": "did:example:pqrstuvwxyz0987654321", "publicKeyBase58": "H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV" }], ... }
Verification methods can be embedded in or referenced from properties associated with various verification relationships as described in § 5.3 Verification Relationships. Referencing verification methods allows them to be used by more than one verification relationship.
If the value of a verification method property is a map, the verification method has been
embedded and its properties can be accessed directly. However, if the value is a
URL string, the verification method has
been included by reference and its properties will need to be retrieved from
elsewhere in the DID document or from another DID document. This
is done by dereferencing the URL and searching the resulting resource for a
verification method map with an
id
property whose value matches the URL.
{ ... "authentication": [ // this key is referenced and might be used by // more than one verification relationship "did:example:123456789abcdefghi#keys-1", // this key is embedded and may *only* be used for authentication { "id": "did:example:123456789abcdefghi#keys-2", "type": "Ed25519VerificationKey2018", // external (property value) "controller": "did:example:123456789abcdefghi", "publicKeyBase58": "H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV" } ], ... }
A verification relationship expresses the relationship between the DID subject and a verification method.
Different verification relationships enable the associated verification methods to be used for different purposes. It is up to a verifier to ascertain the validity of a verification attempt by checking that the verification method used is contained in the appropriate verification relationship property of the DID Document.
The verification relationship between the DID subject and the
verification method is explicit in the DID document.
Verification methods that are not associated with a particular
verification relationship cannot be used for that verification
relationship. For example, a verification method in the value of
the authentication
property cannot be used to engage in
key agreement protocols with the DID subject—the value of the
keyAgreement
property needs to be used for that.
The DID document does not express revoked keys using a verification relationship. If a referenced verification method is not in the latest DID Document used to dereference it, then that verification method is considered invalid or revoked. Each DID method specification is expected to detail how revocation is performed and tracked.
The following sections define several useful verification relationships. A DID document MAY include any of these, or other properties, to express a specific verification relationship. In order to maximize global interoperability, any such properties used SHOULD be registered in the DID Specification Registries [DID-SPEC-REGISTRIES].
The authentication
verification relationship is used to
specify how the DID subject is expected to be authenticated, for
purposes such as logging into a website or engaging in any sort of
challenge-response protocol.
authentication
property is OPTIONAL. If present, the associated
value MUST be a set of one or more
verification methods. Each verification method MAY be embedded or
referenced.
{ "@context": "https://www.w3.org/ns/did/v1", "id": "did:example:123456789abcdefghi", ... "authentication": [ // this method can be used to authenticate as did:...fghi "did:example:123456789abcdefghi#keys-1", // this method is *only* approved for authentication, it may not // be used for any other proof purpose, so its full description is // embedded here rather than using only a reference { "id": "did:example:123456789abcdefghi#keys-2", "type": "Ed25519VerificationKey2018", "controller": "did:example:123456789abcdefghi", "publicKeyBase58": "H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV" } ], ... }
If authentication is established, it is up to the DID method or other application to decide what to do with that information. A particular DID method could decide that authenticating as a DID controller is sufficient to, for example, update or delete the DID document. Another DID method could require different keys, or a different verification method entirely, to be presented in order to update or delete the DID document than that used to authenticate. In other words, what is done after the authentication check is out of scope for the data model; DID methods and applications are expected to define this themselves.
This is useful to any authentication verifier that needs to check to
see if an entity that is attempting to authenticate is, in fact,
presenting a valid proof of authentication. When a verifier receives
some data (in some protocol-specific format) that contains a proof that was made
for the purpose of "authentication", and that says that an entity is identified
by the DID, then that verifier checks to ensure that the proof
can be verified using a verification method (e.g., public key) listed
under authentication
in the DID Document.
Note that the verification method indicated by the
authentication
property of a DID document can only be
used to authenticate the DID subject. To authenticate a
different DID controller, the entity associated with the value of
controller
, as defined in § 5.1.2 DID Controller, needs to
authenticate with its own DID document and associated
authentication
verification relationship.
The assertionMethod
verification relationship is used to
specify how the DID subject is expected to express claims, such as for
the purposes of issuing a Verifiable Credential [VC-DATA-MODEL].
assertionMethod
property is OPTIONAL. If present, the
associated value MUST be a set of
one or more verification methods. Each verification method MAY be
embedded or referenced.
This property is useful, for example, during the processing of a verifiable
credential by a verifier. During verification, a verifier checks to see if a
verifiable credential contains a proof created by the DID subject
by checking that the verification method used to assert the proof is
associated with the assertionMethod
property in the
corresponding DID document.
{ "@context": "https://www.w3.org/ns/did/v1", "id": "did:example:123456789abcdefghi", ... "assertionMethod": [ // this method can be used to assert statements as did:...fghi "did:example:123456789abcdefghi#keys-1", // this method is *only* approved for assertion of statements, it is not // used for any other verification relationship, so its full description is // embedded here rather than using a reference { "id": "did:example:123456789abcdefghi#keys-2", "type": "Ed25519VerificationKey2018", // external (property value) "controller": "did:example:123456789abcdefghi", "publicKeyBase58": "H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV" } ], ... }
The keyAgreement
verification relationship is used to
specify how an entity can generate encryption material in order to transmit
confidential information intended for the DID subject, such as for
the purposes of establishing a secure communication channel with the recipient.
keyAgreement
property is OPTIONAL. If present, the associated
value MUST be a set of one or more
verification methods. Each verification method MAY be embedded or
referenced.
An example of when this property is useful is when encrypting a message intended for the DID subject. In this case, the counterparty uses the cryptographic public key information in the verification method to wrap a decryption key for the recipient.
{ "@context": "https://www.w3.org/ns/did/v1", "id": "did:example:123456789abcdefghi", ... "keyAgreement": [ // this method can be used to perform key agreement as did:...fghi "did:example:123456789abcdefghi#keys-1", // this method is *only* approved for key agreement usage, it will not // be used for any other verification relationship, so its full description is // embedded here rather than using only a reference { "id": "did:example:123#zC9ByQ8aJs8vrNXyDhPHHNNMSHPcaSgNpjjsBYpMMjsTdS", "type": "X25519KeyAgreementKey2019", // external (property value) "controller": "did:example:123", "publicKeyBase58": "9hFgmPVfmBZwRvFEyniQDBkz9LmV7gDEqytWyGZLmDXE" } ], ... }
The capabilityInvocation
verification relationship is used
to specify a verification method that might be used by the DID
subject to invoke a cryptographic capability, such as the authorization to
update the DID Document.
capabilityInvocation
property is OPTIONAL. If present, the
associated value MUST be a set of
one or more verification methods. Each verification method MAY be
embedded or referenced.
An example of when this property is useful is when a DID subject needs to access a protected HTTP API that requires authorization in order to use it. In order to authorize when using the HTTP API, the DID subject uses a capability that is associated with a particular URL that is exposed via the HTTP API. The invocation of the capability could be expressed in a number of ways, e.g., as a digitally signed message that is placed into the HTTP Headers.
The server providing the HTTP API is the verifier of the capability and
it would need to verify that the verification method referred to by the
invoked capability exists in the capabilityInvocation
property of the DID document. The verifier would also check to make sure
that the action being performed is valid and the capability is appropriate for
the resource being accessed. If the verification is successful, the server has
cryptographically determined that the invoker is authorized to access the
protected resource.
{ "@context": "https://www.w3.org/ns/did/v1", "id": "did:example:123456789abcdefghi", ... "capabilityInvocation": [ // this method can be used to invoke capabilities as did:...fghi "did:example:123456789abcdefghi#keys-1", // this method is *only* approved for capability invocation usage, it will not // be used for any other verification relationship, so its full description is // embedded here rather than using only a reference { "id": "did:example:123456789abcdefghi#keys-2", "type": "Ed25519VerificationKey2018", // external (property value) "controller": "did:example:123456789abcdefghi", "publicKeyBase58": "H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV" } ], ... }
The capabilityDelegation
verification relationship is used
to specify a mechanism that might be used by the DID subject to delegate
a cryptographic capability to another party, such as delegating the authority
to access a specific HTTP API to a subordinate.
capabilityDelegation
property is OPTIONAL. If present, the
associated value MUST be a set of
one or more verification methods. Each verification method MAY be
embedded or referenced.
An example of when this property is useful is when a DID controller
chooses to delegate their capability to access a protected HTTP API to a party
other than themselves. In order to delegate the capability, the DID
subject would use a verification method associated with the
capabilityDelegation
verification relationship to
cryptographically sign the capability over to another DID subject. The
delegate would then use the capability in a manner that is similar to the
example described in § 5.3.4 Capability Invocation.
{ "@context": "https://www.w3.org/ns/did/v1", "id": "did:example:123456789abcdefghi", ... "capabilityDelegation": [ // this method can be used to perform capability delegation as did:...fghi "did:example:123456789abcdefghi#keys-1", // this method is *only* approved for granting capabilities; it will not // be used for any other verification relationship, so its full description is // embedded here rather than using only a reference { "id": "did:example:123456789abcdefghi#keys-2", "type": "Ed25519VerificationKey2018", // external (property value) "controller": "did:example:123456789abcdefghi", "publicKeyBase58": "H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV" } ], ... }
Services are used in DID documents to express ways of communicating with the DID subject or associated entities. A service can be any type of service the DID subject wants to advertise, including decentralized identity management services for further discovery, authentication, authorization, or interaction.
Due to privacy concerns, revealing public information through services, such as social media accounts, personal websites, and email addresses, is discouraged. Further exploration of privacy concerns can be found in § 10.1 Keep Personal Data Private and § 10.6 Service Privacy. The information associated with services is often service specific. For example, the information associated with an encrypted messaging service can express how to initiate the encrypted link before messaging begins.
Services are expressed using the service
property,
which is described below:
The service
property is OPTIONAL. If present, the associated value
MUST be a set of services,
where each service is described by a map.
Each service map MUST contain
id
, type
, and
serviceEndpoint
properties. Each service extension MAY
include additional properties and MAY further restrict the properties associated
with the extension.
id
property MUST be a URI conforming to
[RFC3986]. A conforming producer MUST NOT produce
multiple service
entries with the same id
.
A conforming consumer MUST produce an error if it detects
multiple service
entries with the same id
.
type
property MUST be a string or a set of strings. In order to maximize interoperability,
the service type and its associated properties SHOULD be
registered in the DID Specification Registries [DID-SPEC-REGISTRIES].
serviceEndpoint
property MUST be a string, a map, or
a set composed of one or more strings and/or maps. All string
values MUST be valid URIs conforming to [RFC3986] and normalized
according to the Normalization and Comparison
rules in RFC3986 and to any normalization rules in its applicable URI
scheme specification.
For more information regarding privacy and security considerations related to services see § 10.6 Service Privacy, § 10.1 Keep Personal Data Private, § 10.3 DID Document Correlation Risks, and § 9.3 Authentication Service Endpoints.
{
"service": [{
"id":"did:example:123#linked-domain",
"type": "LinkedDomains", // external (property value)
"serviceEndpoint": "https://bar.example.com"
}]
}
A concrete serialization of a DID document in this specification is called a representation. A representation is created by serializing the data model through a process called production. A representation is transformed into the data model through a process called consumption. The production and consumption processes enable the conversion of information from one representation to another. This specification defines representations for JSON, JSON-LD, and CBOR, and developers can use any other representation, such as XML or YAML, that is capable of expressing the data model. The following sections define the general rules for production and consumption, as well as the JSON, JSON-LD, and CBOR representations.
In addition to the representations defined in this specification, implementers can use other representations, providing each such representation is properly specified (including rules for interoperable handling of properties not listed in the DID Specification Registries [DID-SPEC-REGISTRIES]). See § 4.1 Extensibility for more information.
The requirements for all representations are as follows:
dateTime
lexical serialization to represent
datetimes. A representation MAY choose to serialize the data model data types using a different lexical
serializations as long as the consumption process back into the data model is lossless. For example, some CBOR-based
representations express datetime values using integers to
represent the number of seconds since the Unix epoch.
The requirements for all conforming producers are as follows:
The requirements for all conforming consumers are as follows:
An implementation is expected to convert between representations by using the consumption rules on the source representation resulting in the data model and then using the production rules to serialize data model to the target representation, or any other mechanism that results in the same target representation.
This section defines the production and consumption rules for the JSON representation.
The DID document, DID document data structures, and representation-specific entries map MUST be serialized to the JSON representation according to the following production rules:
Data Type | JSON Representation Type |
---|---|
map | A JSON Object, where each entry is serialized as a member of the JSON Object with the entry key as a JSON String member name and the entry value according to its type, as defined in this table. |
list | A JSON Array, where each element of the list is serialized, in order, as a value of the array according to its type, as defined in this table. |
set | A JSON Array, where each element of the set is added, in order, as a value of the array according to its type, as defined in this table. |
datetime |
A JSON String serialized as an
XML Datetime normalized to
UTC 00:00:00 and without sub-second decimal precision. For example:
2020-12-20T19:17:47Z .
|
string | A JSON String. |
integer | A JSON Number without a decimal or fractional component. |
double | A JSON Number with a decimal and fractional component. |
boolean | A JSON Boolean. |
null | A JSON null literal. |
All implementers creating conforming producers that produce JSON representations are advised to ensure that their algorithms are aligned with the JSON serialization rules in the [INFRA] specification and the precision advisements regarding Numbers in the JSON [RFC8259] specification.
All entries of a DID document MUST be included in the root JSON Object. Entries MAY contain additional
data substructures subject to the value representation rules in the list above.
When serializing a DID document, a conforming producer MUST
specify a media type of application/did+json
to downstream
applications such as described in § 7.1.2 DID Resolution Metadata.
{ "id": "did:example:123456789abcdefghi", "authentication": [{ "id": "did:example:123456789abcdefghi#keys-1", "type": "Ed25519VerificationKey2018", "controller": "did:example:123456789abcdefghi", "publicKeyBase58": "H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV" }] }
The DID document and DID document data structures JSON representation MUST be deserialized into the data model according to the following consumption rules:
JSON Representation Type | Data Type |
---|---|
JSON Object | A map, where each member of the JSON Object is added as an entry to the map. Each entry key is set as the JSON Object member name. Each entry value is set by converting the JSON Object member value according to the JSON representation type as defined in this table. Since order is not specified by JSON Objects, no insertion order is guaranteed. |
JSON Array where the data model entry value is a list or unknown | A list, where each value of the JSON Array is added to the list in order, converted based on the JSON representation type of the array value, as defined in this table. |
JSON Array where the data model entry value is a set | A set, where each value of the JSON Array is added to the set in order, converted based on the JSON representation type of the array value, as defined in this table. |
JSON String where data model entry value is a datetime | A datetime. |
JSON String, where the data model entry value type is string or unknown | A string. |
JSON Number without a decimal or fractional component | An integer. |
JSON Number with a decimal and fractional component, or when entry value is a double regardless of inclusion of fractional component | A double. |
JSON Boolean | A boolean. |
JSON null literal | A null value. |
All implementers creating conforming consumers that produce JSON representations are advised to ensure that their algorithms are aligned with the JSON conversion rules in the [INFRA] specification and the precision advisements regarding Numbers in the JSON [RFC8259] specification.
If media type information is available to a conforming consumer and the
media type value is application/did+json
, then the data structure
being consumed is a DID document, and the root element MUST be a JSON Object where all members of the object
are entries of the DID document. A conforming consumer for a JSON
representation that is consuming a DID document with a root
element that is not a JSON Object MUST
report an error.
JSON-LD [JSON-LD11] is a JSON-based format used to serialize Linked Data. This section defines the production and consumption rules for the JSON-LD representation.
The JSON-LD representation defines the following representation-specific entries:
The DID document, DID document data structures, and representation-specific entries map MUST be serialized to the JSON-LD representation according to the JSON representation production rules as defined in § 6.2 JSON.
In addition to using the JSON representation production rules,
JSON-LD production MUST include the representation-specific
@context
entry. The serialized value of
@context
MUST be the JSON
String https://www.w3.org/ns/did/v1
, or a JSON Array where the first item is the JSON String
https://www.w3.org/ns/did/v1
and the subsequent items are
serialized according to the JSON representation production
rules.
{
"@context": "https://www.w3.org/ns/did/v1",
...
}
{
"@context": [
"https://www.w3.org/ns/did/v1",
"https://did-method-extension.example/v1"
],
...
}
All implementers creating conforming producers that produce JSON-LD representations are advised to ensure that their algorithms produce valid JSON-LD [JSON-LD11] documents. Invalid JSON-LD documents will cause JSON-LD processors to halt and report errors.
In order to achieve interoperability across different representations, all JSON-LD Contexts and their terms SHOULD be registered in the DID Specification Registries [DID-SPEC-REGISTRIES].
A conforming producer that generates a JSON-LD representation
SHOULD NOT produce a DID document that contains terms not defined
via the @context
as conforming consumers are expected
to remove unknown terms. When serializing a JSON-LD representation of a DID
document, a conforming producer MUST specify a media type of
application/did+ld+json
to downstream applications such as
described in § 7.1.2 DID Resolution Metadata.
Use of the media type application/did+ld+json
is pending
clarification over the registration of
media types with multiple suffixes. The alternative will be to use
application/ld+json
with an expected profile parameter of
https://www.w3.org/ns/did/json-ld-profile
if multiple suffixes
cannot be registered by the time the rest of DID Core is ready for W3C
Proposed Recommendation. See also
Issue 208.
The DID document and any DID document data structures expressed by a JSON-LD representation MUST be deserialized into the data model according to the JSON representation consumption rules as defined in § 6.2 JSON.
All implementers creating conforming consumers that consume JSON-LD representations are advised to ensure that their algorithms only accept valid JSON-LD [JSON-LD11] documents. Invalid JSON-LD documents will cause JSON-LD processors to halt and report errors.
Conforming consumers that process a JSON-LD representation SHOULD
drop all terms from a DID document that are not defined via the
@context
.
This section defines the production and consumption rules for the CBOR representation.
The Working Group is seeking volunteers to write tests for, and at least two independent and interoperable implementations of, the CBOR representation during the Candidate Recommendation phase. If these goals are not met, this section will be removed from this specification.
The DID document, DID document data structures, and representation-specific entries map MUST be serialized to the CBOR representation according to the following production rules:
Data Type | CBOR Representation Type |
---|---|
map | A CBOR map (major type 5), where each entry is represented as a member of the CBOR map. The entry key is expressed as a CBOR string (major type 3) as the key, and the entry value according to its type, as defined in this table. |
list | A CBOR array (major type 4), where each element of the list is added, in order, as a value of the array according to its type, as defined in this table. |
set | A CBOR array (major type 4), where each element of the list is added, in order, as a value of the array according to its type, as defined in this table. |
datetime |
A CBOR string (major type 3) formatted as
an XML Datetime normalized to
UTC 00:00 and without sub-second decimal precision. For example:
2020-12-20T19:17:47Z .
|
string | A CBOR string (major type 3). |
integer | A CBOR integer (major type 0 or 1), choosing the shortest byte representation. |
double | A CBOR floating-point number (major type 7). All floating point values MUST be encoded as 64-bits (additional type value 27), even for integral values. |
boolean | A CBOR simple value (major type 7, subtype 24) with a simple value of 21 (true) or 20 (false). |
null | A CBOR simple value (major type 7, subtype 24) with a simple value of 22 (null). |
In addition to the data type production rules above, the following rules apply for conforming producers that serialize CBOR representations:
All entries of a DID document MUST be included in the root CBOR map (major type 5). Entries MAY contain
additional data substructures subject to the value representation rules in the
list above. When serializing a DID document to its CBOR
representation, a conforming producer MUST specify a media type of
application/did+cbor
to downstream applications such as described
in § 7.1.2 DID Resolution Metadata.
The following examples express the CBOR representation of a DID document in hexidecimal notation, and in CBOR diagnostic notation:
A2626964781E6469643A6578616D706C653A313233343536373839616263 6465666768696E61757468656E7469636174696F6E81A462696478256469 643A6578616D706C653A313233343536373839616263646566676869236B 6579732D316474797065781A45643235353139566572696669636174696F 6E4B6579323031386A636F6E74726F6C6C6572781E6469643A6578616D70 6C653A3132333435363738396162636465666768696F7075626C69634B65 79426173653538782C483343324156764C4D7636676D4D4E616D33755641 6A5A70666B634A437744776E5A6E367A3377586D715056
A2 # map(2) 62 # text(2) 6964 # "id" 78 1E # text(30) 6469643A6578616D706C653A313233343536373839616263646566676869 # "did:example:123456789abcdefghi" 6E # text(14) 61757468656E7469636174696F6E # "authentication" 81 # array(1) A4 # map(4) 62 # text(2) 6964 # "id" 78 25 # text(37) 6469643A6578616D706C653A313233343536373839616263646566676869236B6579732D31 # "did:example:123456789abcdefghi#keys-1" 64 # text(4) 74797065 # "type" 78 1A # text(26) 45643235353139566572696669636174696F6E4B657932303138 # "Ed25519VerificationKey2018" 6A # text(10) 636F6E74726F6C6C6572 # "controller" 78 1E # text(30) 6469643A6578616D706C653A313233343536373839616263646566676869 # "did:example:123456789abcdefghi" 6F # text(15) 7075626C69634B6579426173653538 # "publicKeyBase58" 78 2C # text(44) 483343324156764C4D7636676D4D4E616D337556416A5A70666B634A437744776E5A6E367A3377586D715056 # "H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV"
The DID document and any DID document data structures expressed by the data model MUST be deserialized into the data model according to the following consumption rules:
CBOR Representation Type | Data Type |
---|---|
CBOR map (major type 5) | A map, where each data item of the CBOR map is added as an entry to the map with the entry key being the data item name and the value converted based on the CBOR type and, if available, entry definition, as defined here; as no order can be enforced for general CBOR maps, no insertion order is guaranteed. |
CBOR array (major type 4), where the data model entry value is a list or unknown | A list, where each value of the CBOR array is added to the list in order, converted based on the CBOR type of the array value, as defined in this table. |
CBOR array (major type 4), where the data model entry value is a set | A set, where each value of the CBOR array is added to the set in order, converted based on the CBOR type of the array value as defined in this table. |
CBOR string (major type 3) where the data model entry value is a datetime | A datetime. |
CBOR string (major type 3), where the data model entry value type is string or unknown | A string. |
CBOR integer (major type 0 or 1), choosing the shortest byte representation | An integer. |
CBOR floating-point number (major type 7) | A double. |
CBOR simple value (major type 7, subtype 24) with a simple value of 21 (True) or 20 (False) | A boolean. |
CBOR simple value (major type 7, subtype 24) with a simple value of 22 (Null) | A null value. |
In addition to the data type consumption rules above, the following rules apply for conforming consumers that deserialize CBOR representations:
If media type information is available to a conforming consumer and the
media type value is application/did+cbor
, then the data structure
being consumed is a DID document, and the root element MUST be a CBOR map (major type 5) where all members of
the object are entries of the DID document. A conforming consumer
for a CBOR representation that is consuming a DID document with a
root element that is not a CBOR map
(major type 5) MUST report an error.
The Working Group is unsure if there will be enough implementation experience for the DID Resolution section. We are seeking feedback from the implementation community as to whether they prefer to do all of this work now, or if they would prefer that this section is, or parts of the section are, rewritten to be non-normative, or published as a NOTE and taken up in a future W3C DID Resolution Working Group. If there is support for rewriting a subset of the DID Resolution section, or publishing any part of it as a NOTE during the W3C Candidate Recommendation process, this section will be modified and/or published as a NOTE appropriately before the DID Core specification proceeds to the W3C Proposed Recommendation stage. See also Issue 549.
This section defines the inputs and outputs of DID resolution and DID URL dereferencing. Their exact implementation is out of scope for this specification, but some considerations for implementers are discussed in [DID-RESOLUTION].
All conformant DID resolvers MUST implement the DID resolution functions for at least one DID method and MUST be able to return a DID document in at least one conformant representation.
The DID resolution functions resolve a DID into a DID document by using the "Read" operation of the applicable DID method as described in § 8.2 Method Operations. The details of how this process is accomplished are outside the scope of this specification, but all conforming DID resolvers implement the functions below, which have the following abstract forms:
resolve(did, resolutionOptions) →
« didResolutionMetadata, didDocument, didDocumentMetadata »
resolveRepresentation(did, resolutionOptions) →
« didResolutionMetadata, didDocumentStream, didDocumentMetadata »
The resolve
function returns the DID document in its
abstract form (a map). The
resolveRepresentation
function returns a byte stream of the DID
Document formatted in the corresponding representation.
The input variables
of the resolve
and resolveRepresentation
functions are
as follows:
These functions each return multiple values, and no limitations
are placed on how these values are returned together.
The return values of resolve
are
didResolutionMetadata, didDocument, and
didDocumentMetadata. The return values of
resolveRepresentation
are
didResolutionMetadata, didDocumentStream, and
didDocumentMetadata. These values are described below:
resolve
and
resolveRepresentation
functions, as it represents data about the
resolution process itself. This structure is REQUIRED, and in the case of an
error in the resolution process, this MUST NOT be empty.
This metadata is defined by § 7.1.2 DID Resolution Metadata. If
resolveRepresentation
was called, this structure MUST contain a
contentType
property containing the Media Type of the
representation found in the didDocumentStream
. If the resolution is not successful, this structure
MUST contain an error
property describing the error.
resolve
function was
called, this MUST be a DID document abstract data model (a map) as described in § 4. Data Model that
is capable of being transformed into a conforming DID Document
(representation), using the production rules specified by the representation.
The value of id
in the resolved DID document MUST
match the DID that was resolved. If the resolution is unsuccessful, this
value MUST be empty.
resolveRepresentation
function was called, this MUST be a byte stream of the resolved DID
document in one of the conformant
representations. The byte stream might then be
parsed by the caller of the resolveRepresentation
function into a
data model, which can in turn be validated and
processed. If the resolution is unsuccessful, this value MUST be an empty
stream.
didDocument
property. This metadata typically does not change between invocations of the
resolve
and resolveRepresentation
functions unless the
DID document changes, as it represents metadata about the DID
document. If the resolution is unsuccessful, this output MUST be an empty metadata structure. Properties defined by this
specification are in § 7.1.3 DID Document Metadata.
Conforming DID resolver implementations do not alter the signature of
these functions in any way. DID resolver implementations might map the
resolve
and resolveRepresentation
functions to a
method-specific internal function to perform the actual DID resolution
process. DID resolver implementations might implement and expose
additional functions with different signatures in addition to the
resolve
and resolveRepresentation
functions specified here.
The possible properties within this structure and their possible values are registered in the DID Specification Registries [DID-SPEC-REGISTRIES]. This specification defines the following common properties.
didDocumentStream
if such a representation is supported and
available. This property is OPTIONAL for the resolveRepresentation
function and MUST NOT be used with the resolve
function.
The possible properties within this structure and their possible values are registered in the DID Specification Registries [DID-SPEC-REGISTRIES]. This specification defines the following DID resolution metadata properties:
didDocumentStream
. This property is
REQUIRED if resolution is successful and if the
resolveRepresentation
function was called.
This property MUST NOT
be present if the resolve
function was called. The value of this
property MUST be an ASCII string that is the Media
Type of the conformant representations. The
caller of the resolveRepresentation
function MUST use this value
when determining how to parse and process the didDocumentStream
returned by this function into the data model.
accept
input metadata property is not supported by the DID
method and/or DID resolver implementation.
The possible properties within this structure and their possible values SHOULD be registered in the DID Specification Registries [DID-SPEC-REGISTRIES]. This specification defines the following common properties.
created
property to
indicate the timestamp of the Create operation.
The value of the property MUST be a string
formatted as an XML Datetime
normalized to UTC 00:00:00 and without sub-second decimal precision. For
example: 2020-12-20T19:17:47Z
.
updated
property to
indicate the timestamp of the last Update
operation for the document version which was resolved. The value of the
property MUST follow the same formatting rules as the created
property. The updated
property is omitted if an Update operation
has never been performed on the DID document. If an updated
property exists, it can be the same value as the created
property
when the difference between the two timestamps is less than one second.
true
. If a DID has not been deactivated, this property is OPTIONAL,
but if included, MUST have the boolean value false
.
The DID Working Group is seeking implementer feedback on this feature. If there is not enough implementation experience with this feature at the end of the Candidate Recommendation period, it will be removed from the specification.
nextUpdate
property if
the resolved document version is not the latest version of the document. It
indicates the timestamp of the next Update
operation. The value of the property MUST follow the same formatting rules
as the created
property.
versionId
property to
indicate the version of the last Update
operation for the document version which was resolved. The value of the
property MUST be an ASCII string.
The DID Working Group is seeking implementer feedback on this feature. If there is not enough implementation experience with this feature at the end of the Candidate Recommendation period, it will be removed from the specification.
nextVersionId
property
if the resolved document version is not the latest version of the document. It
indicates the version of the next Update
operation. The value of the property MUST be an ASCII string.
The DID Working Group is seeking implementer feedback on this feature. If there is not enough implementation experience with this feature at the end of the Candidate Recommendation period, it will be removed from the specification.
A DID Method can define different forms of a DID that are
logically equivalent. An example is when a DID takes one form prior to
registration in a verifiable data registry and another form after such
registration. In this case, the DID Method specification might need to
express one or more DIDs that are logically equivalent to the resolved
DID as a property of the DID document. This is the purpose of the
equivalentId
property.
The value of equivalentId
MUST be a set where each item is a
string that conforms to the rules in Section § 3.1 DID Syntax. The relationship is a statement that each
equivalentId
value is logically equivalent to the
id
property value and thus identifies the same DID subject.
Each equivalentId
DID value MUST be produced by, and a form
of, the same DID Method as the id
property value. (e.g.,
did:example:abc
== did:example:ABC
)
A conforming DID Method specification MUST guarantee that each
equivalentId
value is logically equivalent to the
id
property value.
A requesting party is expected to retain the values from the id
and
equivalentId
properties to ensure any subsequent
interactions with any of the values they contain are correctly handled as
logically equivalent (e.g., retain all variants in a database so an interaction
with any one maps to the same underlying account).
equivalentId
is a much stronger form of equivalence than
alsoKnownAs
because the equivalence MUST be guaranteed by
the governing DID method. equivalentId
represents a
full graph merge because the same DID document describes both the
equivalentId
DID and the id
property
DID.
If a requesting party does not retain the values from the id
and
equivalentId
properties and ensure any subsequent
interactions with any of the values they contain are correctly handled as
logically equivalent, there might be negative or unexpected issues that
arise. Implementers are strongly advised to observe the
directives related to this metadata property.
The DID Working Group is seeking implementer feedback on this feature. If there is not enough implementation experience with this feature at the end of the Candidate Recommendation period, it will be removed from the specification.
The canonicalId
property is identical to the
equivalentId
property except: a) it is associated with a
single value rather than a set, and b) the DID is defined to be
the canonical ID for the DID subject within the scope of the containing
DID document.
The value of canonicalId
MUST be a string that conforms to the rules in Section § 3.1 DID Syntax. The relationship is a statement that the
canonicalId
value is logically equivalent to the
id
property value and that the canonicalId
value is defined by the DID Method to be the canonical ID for the DID
subject in the scope of the containing DID document. A
canonicalId
value MUST be produced by, and a form of, the
same DID Method as the id
property value. (e.g.,
did:example:abc
== did:example:ABC
). A conforming
DID Method specification MUST guarantee that the
canonicalId
value is logically equivalent to the
id
property value.
A requesting party is expected to use the canonicalId
value
as its primary ID value for the DID subject and treat all other
equivalent values as secondary aliases (e.g., update corresponding primary
references in their systems to reflect the new canonical ID directive).
canonicalId
is the same statement of equivalence as
equivalentId
except it is constrained to a single value that
is defined to be canonical for the DID subject in the scope of the DID
document. Like equivalentId
,
canonicalId
represents a full graph merge because the same
DID document describes both the canonicalId
DID and
the id
property DID.
If a resolving party does not use the canonicalId
value as
its primary ID value for the DID subject and treat all other equivalent values
as secondary aliases, there might be negative or unexpected issues that arise
related to user experience. Implementers are strongly advised to observe the
directives related to this metadata property.
The DID URL dereferencing function dereferences a DID URL into a resource with contents depending on the DID URL's components, including the DID method, method-specific identifier, path, query, and fragment. This process depends on DID resolution of the DID contained in the DID URL. DID URL dereferencing might involve multiple steps (e.g., when the DID URL being dereferenced includes a fragment), and the function is defined to return the final resource after all steps are completed. The details of how this process is accomplished are outside the scope of this specification. The following figure depicts the relationship described above.
All conforming DID resolvers implement the following function which has the following abstract form:
dereference(didUrl, dereferenceOptions) →
« dereferencingMetadata, contentStream, contentMetadata »
The input variables of the dereference
function are as follows:
dereference
function in addition to the
didUrl
itself. Properties defined by this specification are in § 7.2.1 DID URL Dereferencing Options. This input is REQUIRED, but the
structure MAY be empty.
This function returns multiple values, and no limitations
are placed on how these values are returned together.
The return values of the dereference
include
dereferencingMetadata
, contentStream
,
and contentMetadata
:
error
property
describing the error.
dereferencing
function was called and successful, this MUST
contain a resource corresponding to the DID URL. The
contentStream
MAY be a resource such as a DID
document that is serializable in one of the conformant
representations, a Verification Method, a service, or any other resource format that can be identified via a Media Type
and obtained through the resolution process. If the
dereferencing is unsuccessful, this value MUST be empty.
contentStream
. If the contentStream
is a DID document, this MUST be a didDocumentMetadata structure as
described in DID Resolution. If the dereferencing is unsuccessful, this
output MUST be an empty metadata structure.
Conforming DID URL dereferencing implementations do not alter the
signature of these functions in any way. DID URL dereferencing
implementations might map the dereference
function to a
method-specific internal function to perform the actual DID URL
dereferencing process. DID URL dereferencing implementations might
implement and expose additional functions with different signatures in addition
to the dereference
function specified here.
The possible properties within this structure and their possible values SHOULD be registered in the DID Specification Registries [DID-SPEC-REGISTRIES]. This specification defines the following common properties for dereferencing options:
contentStream
. The Media
Type MUST be expressed as an ASCII string.
The DID URL dereferencing implementation SHOULD use this value to
determine the contentType
of the representation contained in the returned value if such a
representation is supported and available.
The possible properties within this structure and their possible values are registered in the DID Specification Registries [DID-SPEC-REGISTRIES]. This specification defines the following common properties.
contentStream
SHOULD be expressed
using this property if dereferencing is successful. The Media
Type value MUST be expressed as an ASCII string.
contentStream
resulting from this dereferencing request.
Input and output metadata is often involved during the DID Resolution, DID URL dereferencing, and other DID-related processes. The structure used to communicate this metadata MUST be a map of properties. Each property name MUST be a string. Each property value MUST be a string, map, list, set, boolean, or null. The values within any complex data structures such as maps and lists MUST be one of these data types as well. All metadata property definitions registered in the DID Specification Registries [DID-SPEC-REGISTRIES] MUST define the value type, including any additional formats or restrictions to that value (for example, a string formatted as a date or as a decimal integer). It is RECOMMENDED that property definitions use strings for values. The entire metadata structure MUST be serializable according to the JSON serialization rules in the [INFRA] specification. Implementations MAY serialize the metadata structure to other data formats.
All implementations of functions that use metadata structures as either input or output are able to fully represent all data types described here in a deterministic fashion. As inputs and outputs using metadata structures are defined in terms of data types and not their serialization, the method for representation is internal to the implementation of the function and is out of scope of this specification.
The following example demonstrates a JSON-encoded metadata structure that might be used as DID resolution input metadata.
{
"accept": "application/did+ld+json"
}
This example corresponds to a metadata structure of the following format:
«[
"accept" → "application/did+ld+json"
]»
The next example demonstrates a JSON-encoded metadata structure that might be used as DID resolution metadata if a DID was not found.
{
"error": "notFound"
}
This example corresponds to a metadata structure of the following format:
«[
"error" → "notFound"
]»
The next example demonstrates a JSON-encoded metadata structure that might be used as DID document metadata to describe timestamps associated with the DID document.
{
"created": "2019-03-23T06:35:22Z",
"updated": "2023-08-10T13:40:06Z"
}
This example corresponds to a metadata structure of the following format:
«[
"created" → "2019-03-23T06:35:22Z",
"updated" → "2023-08-10T13:40:06Z"
]»
A DID method defines how implementers can realize the features described by this specification. DID methods are often associated with a particular verifiable data registry. New DID methods are defined in their own specifications to enable interoperability between different implementations of the same DID method.
Conceptually, the relationship between this specification and a DID
method specification is similar to the relationship between the IETF generic
URI specification [RFC3986] and a specific URI scheme
[IANA-URI-SCHEMES], such as the http
scheme [RFC7230]. In
addition to defining a specific DID scheme, a DID method
specification also defines the mechanisms for creating, resolving, updating, and
deactivating DIDs and DID documents using a specific type of
verifiable data registry. It also documents all implementation
considerations related to DIDs as well as Security and Privacy
Considerations.
This section specifies the requirements for authoring DID method specifications.
The requirements for all DID method specifications when defining the method-specific DID Syntax are as follows:
method-name
rule in § 3.1 DID Syntax.
method-specific-id
component of a DID.
method-specific-id
.
method-specific-id
value MUST be unique within a DID
method. The method-specific-id
value itself might be globally
unique.
method-name
conflicts, a DID method
specification SHOULD be registered in the DID Specification Registries
[DID-SPEC-REGISTRIES].
method-specific-id
formats.
method-specific-id
format MAY include colons. The use of
colons MUST comply syntactically with the method-specific-id
ABNF
rule.
The meaning of colons in the method-specific-id
is entirely
method-specific. Colons might be used by DID methods for establishing
hierarchically partitioned namespaces, for identifying specific instances or
parts of the verifiable data registry, or for other purposes.
Implementers are advised to avoid assuming any meanings or
behaviors associated with a colon that are generically applicable to all
DID methods.
The requirements for all DID method specifications when defining the method operations are as follows:
The authority of a party that is performing authorization to carry out the operations is specific to a DID method. For example, a DID method might —
controller
property.
authentication
.
capabilityInvocation
verification relationship.
The requirements for all DID method specifications when authoring the Security Considerations section are as follows:
The requirements for all DID method specifications when authoring the Privacy Considerations section are:
This section is non-normative.
During the Working Draft stage, this section focuses on security topics that should be important in early implementations. The editors are seeking feedback on threats and threat mitigations that should be reflected in this section or elsewhere in the spec. DIDs are designed to operate under the general Internet threat model used by many IETF standards. We assume uncompromised endpoints, but anticipate that messages could be read or corrupted on the network.
The DID Method Registry (see [DID-SPEC-REGISTRIES]) contains an informative list of DID method names and their corresponding DID method specifications. Implementers need to bear in mind that there is no central authority to mandate which DID method specification is to be used with any specific DID method name, but can use the DID Method Registry to make an informed decision when choosing which DID resolver implementations to use.
The following sections describe binding identities to DIDs and DID documents.
This section is inaccurate and needs revision.
Signatures and verifiable timestamps allow DID documents to be cryptographically verifiable.
By itself, a verified signature on a self-signed DID document does not prove control of a DID. It only proves that the:
Proving control of a DID, that is, the binding between the DID and the DID document that describes it, requires a two step process:
id
property of the resulting DID
document matches the DID that was resolved.
It should be noted that this process proves control of a DID and DID document regardless of whether the DID document is signed.
Signatures on DID documents are optional. DID method specifications are expected to explain and specify their implementation if applicable.
This section is inaccurate and needs revision.
There are two methods for proving control of the private key corresponding to a public key description in the DID document: static and dynamic.
The static method is to sign the DID document with the private key. This proves control of the private key at a time no later than the DID document was registered. If the DID document is not signed, control of a public key described in the DID document can still be proven dynamically as follows:
A DID and DID document do not inherently carry any personal data.
It can be useful to express a binding of DID to a person's or company's real world identity, in a way that is provably asserted by a trusted authority such as a government. This can enable interactions that can be considered legally valid under one or more jurisdictions; establishing such bindings has to be carefully balanced against privacy considerations (see § 10. Privacy Considerations).
The process of binding a DID to something in the real world, such as a person or a company, for example using verifiable credentials with the same subject as that DID, is out of scope for this specification. For more information, see the Verifiable Credentials Data Model [VC-DATA-MODEL].
If a DID document publishes a service intended for authentication or authorization of the DID subject (see Section § 5.4 Services), it is the responsibility of the service endpoint provider, subject, or requesting party to comply with the requirements of the authentication protocols supported at that service endpoint.
Non-repudiation of DIDs and DID document updates is supported under the assumption that the subject:
Non-repudiation is further supported if timestamps are included (see Section § 7.1.3 DID Document Metadata) and the target DLT system supports timestamps.
One mitigation against unauthorized changes to a DID document is monitoring and actively notifying the DID subject when there are changes. This is analogous to helping prevent account takeover on conventional username/password accounts by sending password reset notifications to the email addresses on file.
In the case of a DID, there is no intermediary registrar or account provider to generate such notifications. However, if the verifiable data registry on which the DID is registered directly supports change notifications, a subscription service can be offered to DID controllers. Notifications could be sent directly to the relevant service endpoints listed in an existing DID.
If a DID controller chooses to rely on a third-party monitoring service (other than the verifiable data registry itself), this introduces another vector of attack.
In a decentralized identifier architecture, there are no centralized authorities to enforce key or signature expiration policies. Therefore DID resolvers and requesting parties need to validate that keys were not expired at the time they were used. Because some use cases have legitimate reasons why already-expired keys can be extended, make sure key expiration does not prevent any further use of the key. Implementations of a resolver ought to be compatible with such extension behavior.
Verification method rotation is a proactive security measure.
Verification method rotation applies only to the current or latest version of a DID Document.
When a verification method has been active for a long time, or used for many operations, a controller might wish to perform a rotation.
It is considered a best practice to perform verification method rotation on a regular basis.
Proofs or signatures that rely on verification methods that are not present in the latest version of a DID Document are not impacted by rotation, and might require additional information to mitigate compromise.
Section § 8.2 Method Operations specifies the DID operations to be supported by a DID method specification, including update which is expected to be used to perform a verification method rotation.
A controller performs a rotation when they add a new verification method that is meant to replace an existing verification method after some time.
Not all DID Methods support verification method rotation.
Rotation is a key management process that enables the private cryptographic material associated with an existing verification method to be deactivated or destroyed once a new verification method has been added to the DID Document. Going forward, any new proofs that a controller would have generated using the old cryptographic material can now instead be generated using the new material and can be verified using the new verification method.
Rotation is a useful mechanism for protecting against verification method compromise, since frequent rotation of a verification method by the controller reduces the value of a single compromised verification method to an attacker. Performing revocation immediately after rotation is useful for verification methods that a controller designates for short-lived verifications, such as those involved in encrypting messages and authentication.
Higher security environments tend to employ more frequent verification method rotation.
Frequent rotation of a verification method might be frustrating for parties that are forced to continuously renew or refresh associated credentials.
Verification method revocation is a reactive security measure.
Verification method revocation applies only to the current or latest version of a DID Document.
If a verification method is no longer exclusively accessible to the controller or parties trusted to act on behalf of the controller, it is expected to be revoked immediately to reduce the risk of masquerading, theft, and fraud.
It is considered a best practice to support key revocation.
A controller is expected to immediately revoke any verification method that is believed to be compromised.
Revocation is expected to be understood as a controller expressing that proofs or signatures associated with a revoked verification method might have been created by an attacker. Verifiers, however, might still choose to accept or reject such proofs or signatures at their own discretion.
As described in § 5.2.1 Verification Material, absence of a verification method is the only form of revocation that applies to all DID Methods.
§ 8.2 Method Operations specifies the DID operations to be supported by a DID method specification, including update and deactivate which might be used to remove verification method from a DID Document.
Not all DID Methods support verification method revocation.
Even if a verification method is present in a DID Document, additional information, such as a public key revocation certificate, or an external allow or deny list, might be used to determine whether a verification method has been revoked.
Compromise of the secrets associated with a verification method allows the attacker to use them according to the verification relationship expressed by controller in the DID Document, for example, for authentication. The attacker's use of the secrets might be indistinguishable from the legitimate controller's use starting from the time the verification method was registered, to the time it was revoked.
The day-to-day operation of any software relying on a compromised verification method, such as an individual's operating system, antivirus, or endpoint protection software, might be impacted when the verification method is publicly revoked.
Although verifiers might choose not to accept proofs or signatures from a revoked verification method,
knowing whether a verification was made with a revoked verification method is trickier than it might seem.
Some DID methods provide the ability to look back at the state of a DID at a point in time,
or at a particular version of the DID document. When such a feature is
combined with a reliable way to determine the time or DID version that existed
when a cryptographically verifiable statement was made, then revocation
does not undo that statement. This can be the basis for using DIDs to make
binding commitments (e.g., to sign a mortgage).
If these conditions are met, revocation is not retroactive; it only nullifies future use of the method.
However, in order for such semantics to be safe, the second condition —
an ability to know what the state of the DID document was at the time the
assertion was made — is expected to apply. Without that guarantee, someone
could discover a revoked key and use it to make cryptographically
verifiable statements with a simulated date in the past.
Some DID methods only allow the retrieval of the current state of a DID.
When this is true, or when the state of a DID at the time of
cryptographically verifiable statement cannot be reliably determined,
then the only safe interpretation of revocation is to make it
apply both forward and backward in time. DID ecosystems that
take this approach essentially provide cryptographically verifiable
statements as ephemeral tokens that can be invalidated at any time by
the DID controller.
Trustless systems are those where all trust is derived from cryptographically
provable assertions, and more specifically, where no metadata outside of the
cryptographic system is factored into the determination of trust in the system.
To verify a signature of proof for a verification method which has been revoked
in a trustless system, a DID method needs to support either or both of the
versionId
or versionTime
, as well as both the updated
and nextUpdate
,
DID document metadata properties. A verifier can validate a signature or proof
of a revoked key if and only if all of the following are true:
versionId
or versionTime
of the DID
document that was used at the point the signature or proof was created.
updated
timestamp is before, and
the nextUpdate
timestamp is after, the point in time at which the signature or
proof was made.
Recovery is a reactive security measure, whereby a controller is able to regain the ability to perform DID operations.
Recovery is advised when a controller or services trusted to act on their behalf no longer have the exclusive ability to perform DID operations as described in § 8.2 Method Operations.
It is considered a best practice to never reuse a verification method or key material associated with recovery for any other purposes.
Recovery is commonly performed in conjunction with verification method rotation and verification method revocation.
There are no common recovery mechanisms that apply to all DID Methods.
DID method specifications might choose to enable support for a quorum of trusted parties to facilitate recovery. Some of the facilities to do so are suggested in Section § 5.1.2 DID Controller.
Not all DID method specifications will recognize control from DIDs registered using other DID methods and they might restrict third-party control to DIDs that use the same method.
Access control and recovery in a DID method specification can also include a time lock feature to protect against key compromise by maintaining a second track of control for recovery.
Performing recovery proactively on an infrequent but regular basis, can help to ensure that control has not been lost.
DIDs achieve global uniqueness without the need for a central registration authority. This comes at the cost of human memorability. The algorithms capable of generating globally unique identifiers produce random strings of characters that have no human meaning (see also Zooko's Triangle).
There are use cases where it is desirable to discover a DID when starting from a human-friendly identifier. For example, a natural language name, a domain name, or a conventional address for a DID controller, such as a mobile telephone number, email address, social media username, or blog URL. However, the problem of mapping human-friendly identifiers to DIDs (and doing so in a way that can be verified and trusted) is outside the scope of this specification.
Solutions to this problem should be defined in separate specifications that reference this specification. It is strongly recommended that such specifications carefully consider the:
If desired by a DID controller, a DID is capable of acting as an enhanced Uniform Resource Name (URN) as defined by [RFC8141], i.e., "a persistent, location-independent resource identifier". DIDs used in this way provide a cryptographically secure, location-independent identifier for a digital resource, while also providing metadata that enables retrieval. Because of the indirection between the DID document and the DID itself, the DID controller can adjust the actual location of the resource — or even provide the resource directly — without adjusting the DID. DIDs of this type can definitively verify that the resource retrieved is, in fact, the resource identified.
A DID controller who intends to use a DID for this purpose is advised to follow the security considerations in [RFC8141]. In particular:
Many cybersecurity abuses hinge on exploiting gaps between reality and the assumptions of rational, good-faith actors. Immutability of DID documents can provide some security benefits. Individual DID methods ought to consider constraints that would eliminate behaviors or semantics they do not need. The more locked down a DID method is, while providing the same set of features, the less it can be manipulated by malicious actors.
As an example, consider that a single edit to a DID document can change
anything except the root id
property of the document. But
is it actually desirable for a service to change its
type
after it is defined? Or for a key to change its value? Or
would it be better to require a new id
when certain
fundamental properties of an object change? Malicious takeovers of a website
often aim for an outcome where the site keeps its identifier (the host name),
but is subtly changed underneath. If certain properties of the site were
required by the specification to be immutable (for example, the ASN
associated with its IP address), such attacks might be much harder and more
expensive to carry out, and anomaly detection would be easier.
For DID methods tied to a global source of truth, a direct, just-in-time lookup of the latest version of a DID document is always possible. However, it seems likely that layers of cache might eventually sit between a DID resolver and that source of truth. If they do, believing the attributes of an object in the DID document to have a given state when they are actually subtly different might invite exploits. This is particularly true if some lookups are of a full DID document, and others are of partial data where the larger context is assumed.
Encryption algorithms have been known to fail due to advances in cryptography and computing power. Implementers are advised to assume that any encrypted data placed in a DID document might eventually be made available in clear text to the same audience to which the encrypted data is available. This is particularly pertinent if the DID document is public.
Encrypting all or parts of DID documents is not an appropriate means to protect data in the long term. Similarly, placing encrypted data in DID documents is not an appropriate means to include personal data.
Given the caveats above, if encrypted data is included in a DID document, implementers are advised to not encrypt with the public keys of entities that do not wish to be correlated with the DID.
The three equivalence properties—alsoKnownAs
, equivalentId
, and
canonicalId
—are subject to special security considerations
related to attacks against DIDs that are asserted to be equivalent.
The equivalentId
and canonicalId
properties that constrain equivalence assertions to variants of a single DID
produced by the same DID method (e.g., did:foo:123
≡
did:foo:hash(123)
) can be trusted to the extent the requesting party
trusts the DID method (and a conforming producer) itself.
The alsoKnownAs
property that permits an equivalence
assertion to URIs that are not governed by the same DID method (or may
not be DIDs at all) cannot be trusted without performing verification steps
outside of the governing DID method. See additional guidance in
§ 5.1.3 Also Known As.
As with any other sensitive properties in the DID document (e.g., public key references), parties relying on any equivalence statement in a DID document should guard against the values of these properties being substituted by an attacker after the proper verification has been performed. Any write access to a DID document stored in memory or disk after verification has been performed is an attack vector that will circumvent verification unless the DID document is re-verified.
DID documents which include external JSON-LD contexts (see § 6.3 JSON-LD) or any other links to external machine-readable content are vulnerable to tampering.
DID document consumers can cache local static copies of JSON-LD contexts and/or verify the integrity of external contexts against the cryptographic hash for the context as registered in the DID Specification Registries (see the registration process for more detail) [DID-SPEC-REGISTRIES].
DIDs are designed to be persistent such that a controller need not rely upon a single trusted third party or administrator to maintain their identifiers. No administrator can take control away from the controller, nor can an administrator prevent their identifiers' use for any particular purpose such as authentication, authorization, and attestation. No third party can act on behalf of a controller to remove or render inoperable an individual's (or an organization's) identifier without the controller's consent.
However, it is important to note that in all DID Methods that enable cryptographic proof-of-control, the means of proving control can always be transferred to another party by transferring the cryptographic secrets. Therefore, it is vital that systems relying on the persistence of an identifier over time regularly check to ensure that the identifier is, in fact, still under the control of the intended party.
Unfortunately, it is impossible to determine from the cryptography alone whether or not the private key material associated with a given proof mechanism has been compromised. It might well be that the expected controller still has access to the private keys — and as such can execute a proof-of-control as part of a verification process — while at the same time, a bad actor also has access to (or a copy of) those same keys.
As such, cryptographic proof-of-control is expected to only be used as one factor in evaluating the level of identity assurance for a given service. DID-based authentication provides much greater assurance than a username and password, thanks to the ability to determine control over a secret without transmitting that secret between systems. However, it is not infallible. Services that perform sensitive, high value, or life-critical operations should use additional factors as appropriate.
In addition to potential ambiguity from use by different controllers, it is impossible to guarantee, in general, that a given DID is being used in reference to the same subject at any given point in time. It is technically possible for the controller to reuse a DID for different subjects and, more subtly, for the precise definition of the Subject to either change over time or be misunderstood.
For example, consider a DID used for a sole proprietorship, receiving various credentials used for financial transactions. To the controller, that identifier referred to the business. As the business grows, it eventually gets incorporated as an LLC. The controller continues using that same DID, because to them the DID refers to the business. However, to the state, the tax authority, and the local municipality, the DID no longer refers to the same entity. Whether or not the subtle shift in meaning matters to a credit provider or supplier is necessarily up to them to decide. In many cases, as long as the bills get paid and collections can be enforced, the shift is immaterial.
Because of these potential ambiguities, DIDs should be considered valid contextually rather than absolutely. Their persistence does not imply that they refer to the exact same Subject, nor that they are under the control of the same controller. Instead, one needs to understand the context in which the DID was created, how it is used, and consider the likely shifts in their meaning, and adopt procedures and policies to address both potential and inevitable semantic drift.
Additional information about the security context of authentication events
is often required for compliance reasons, especially in regulated areas
such as the financial and public sectors. Examples include but are not
limited to protection of secret keys, the identity proofing process, and the
form-factor of the authenticator. For example,
Payment services (PSD 2) and
eIDAS introduce such requirements to the security context. Level of
Assurance (LoA) frameworks are classified and defined by, for example,
eIDAS,
NIST 800-63-3 and
ISO/IEC 29115:2013, including their requirements for the security
context, and making recommendations on how to achieve them. This might
include strong user authentication and FIDO2/WebAuthn can be potential
implementations. A LoA represents the level of confidence that an entity is in
fact that entity. Some regulated use cases require the implementation of a
certain LoA. Since verification relationships such as
assertionMethod
and authentication
might be
used in some of these use cases, information about the applied security context
might need to be expressed and provided to a verifier.
Whether and how to encode this information in the DID document data model
is out of scope for this specification, but it should be noted that the DID
document data model can be extended if necessary (see Extensibility section). Section Privacy Considerations remains applicable for
such extensions.
This section is non-normative.
It is critically important to apply the principles of Privacy by Design [PRIVACY-BY-DESIGN] to all aspects of the decentralized identifier architecture, because DIDs and DID documents are, by design, administered directly by the DID controller(s). There is no registrar, hosting company, or other intermediate service provider to recommend or apply additional privacy safeguards. The authors of this specification have applied all seven Privacy by Design principles throughout its development. Privacy in this specification is preventative not remedial, and privacy is an embedded default.
If a DID method specification is written for a public verifiable data registry where all DIDs and DID documents are publicly available, it is critical that DID documents contain no personal data.
Personal data can instead be placed behind service endpoints under control of the DID subject or DID controller. Due diligence should be taken around the use of URLs in service endpoints to prevent leakage of personal data or correlation within a URL of a service endpoint. For example, a URL that contains a username is dangerous to include in a DID Document because the username is likely to be human-meaningful in a way that can reveal information that the DID subject did not consent to sharing. With this privacy architecture, personal data can be exchanged on a private, peer-to-peer basis using communications channels identified and secured by public key descriptions in DID documents. This also enables DID subjects and requesting parties to implement the GDPR right to be forgotten, because no personal data is written to an immutable distributed ledger.
Like any type of globally unique identifier, DIDs might be used for correlation. DID controllers can mitigate this privacy risk by using pairwise unique DIDs, that is, sharing a different private DID for every relationship. In effect, each DID acts as a pseudonym. A pseudonymous DID need only be shared with more than one party when the DID subject explicitly authorizes correlation between those parties. If pseudonymous DIDs are the default, then the only need for a public DID (a DID published openly or shared with a large number of parties) is when the DID subject explicitly desires public identification.
The anti-correlation protections of pseudonymous DIDs are easily defeated if the data in the corresponding DID documents can be correlated. For example, using same public key descriptions or bespoke service endpoints in multiple DID documents can provide as much correlation information as using the same DID. Therefore the DID document for a pseudonymous DID also needs to use pairwise unique public keys. It might seem natural to also use pairwise unique service endpoints in the DID document for a pseudonymous DID. However, unique endpoints allow all traffic between two DIDs to be isolated perfectly into unique buckets, where timing correlation and similar analysis is easy. Therefore, a better strategy for endpoint privacy might be to share an endpoint among thousands or millions of DIDs controlled by many different subjects. See also § 10.5 Herd Privacy.
It is dangerous to add properties to the DID document that can be used to indicate, explicitly or through inference, what type or nature of thing the DID subject is, particularly if the DID subject is a person.
Not only do such properties potentially result in personal data (see § 10.1 Keep Personal Data Private) or correlatable data (see § 10.2 DID Correlation Risks and Pseudonymous DIDs and § 10.3 DID Document Correlation Risks) being present in the DID document, but they can be used for grouping particular DIDs in such a way that they are included in or excluded from certain operations or functionalities.
Including type information in a DID Document can result in personal privacy harms even for DID Subjects that are non-person entities, such as IoT devices. The aggregation of such information around a DID Controller could serve as a form of digital fingerprint and this is best avoided.
To minimize these risks, all properties in a DID document ought to be for expressing cryptographic material, endpoints, or verification methods related to using the DID.
When a DID subject is indistinguishable from others in the herd, privacy is available. When the act of engaging privately with another party is by itself a recognizable flag, privacy is greatly diminished.
DIDs and DID methods need to work to improve herd privacy, particularly for those who legitimately need it most. Choose technologies and human interfaces that default to preserving anonymity and pseudonymity. To reduce digital fingerprints, share common settings across requesting party implementations, keep negotiated options to a minimum on wire protocols, use encrypted transport layers, and pad messages to standard lengths.
The ability for a controller to optionally state at least one service endpoint in the DID document increases their control and agency. Each additional endpoint in the DID document adds privacy risk either due to correlation (e.g., across endpoint descriptions) or because the services are not protected by an authorization mechanism, or both.
DID documents are often public and will be stored and indexed efficiently by their very standards-based nature. This risk is worse if DID documents are published to immutable Verifiable Data Registries. Access to a history of the DID documents referenced by a DID represents a form of traffic analysis made more efficient through the use of standards.
The degree of additional privacy risk caused by using multiple service
endpoints in one DID document can be difficult to estimate. Privacy
harms are typically unintended consequences. DIDs can identify documents,
services, schemas, and other things that may be associated
with individual people, households, clubs, and employers — and
correlation of their service endpoints could become a powerful
surveillance and inference tool. An example of this is that including multiple common country-level top level domain such as https://example.co.uk
could be used to infer the approximate location of the DID Subject with a greater degree of probability.
The variety of possible endpoints makes it particularly challenging to maintain herd privacy, in which no information about the DID subject is leaked.
First, because service endpoints may be specified as URIs, they could
unintentionally leak personal information because of the architecture of the service.
For example, a service endpoint of http://example.com/MyFirstName
is leaking the term
MyFirstName
to everyone who can access the DID Document. When linking to legacy systems,
this is an unavoidable risk and care should be taken in such cases. We encourage new,
DID-aware endpoints to use nothing more than the DID itself for any identification necessary,
e.g., http://example.com/did%3Aexample%3Aabc123
. Since that did:example:abc123
is already
exposed in the DID Document, it leaks no additional information.
Second, because a DID document can list multiple service endpoints, it is possible to irreversibly associate services that are not associated in any other context. This correlation on its own may lead to de-anonymization, revealing information about the DID subject even if the URIs used did not.
Third, because some types of DID subjects may be more or less likely to list specific endpoints, e.g., a DID for an automobile may include a pointer to a public title record at the Department of Motor Vehicles, while a DID for an individual would not. As such, the listing of a given service could, by itself, leak information that can be used to infer something about the subject.
It is the goal of herd privacy to ensure that the nature of specific subjects is obscured by the population of the whole. To maximize herd privacy, implementers need to rely on one — and only one — service endpoint, with that endpoint providing a proxy or mediator service that the controller is willing to depend on to protect such associations and that blinds requests to the ultimate service.
Toward this end, consider any of the following:
These service endpoint types continue to be an area of innovation.
This section is non-normative.
This section is non-normative.
See Verification Method Types [DID-SPEC-REGISTRIES] for optional extensions and other verification method types.
These examples are for information purposes only, it is considered a best practice to avoid using the same verification method for multiple purposes.
{
"@context": "https://www.w3.org/ns/did/v1",
"id": "did:example:123",
"authentication": [
{
"id": "did:example:123#z6MkecaLyHuYWkayBDLw5ihndj3T1m6zKTGqau3A51G7RBf3",
"type": "Ed25519VerificationKey2018", // external (property value)
"controller": "did:example:123",
"publicKeyBase58": "AKJP3f7BD6W4iWEQ9jwndVTCBq8ua2Utt8EEjJ6Vxsf"
}
],
"capabilityInvocation": [
{
"id": "did:example:123#z6MkhdmzFu659ZJ4XKj31vtEDmjvsi5yDZG5L7Caz63oP39k",
"type": "Ed25519VerificationKey2018", // external (property value)
"controller": "did:example:123",
"publicKeyBase58": "4BWwfeqdp1obQptLLMvPNgBw48p7og1ie6Hf9p5nTpNN"
}
],
"capabilityDelegation": [
{
"id": "did:example:123#z6Mkw94ByR26zMSkNdCUi6FNRsWnc2DFEeDXyBGJ5KTzSWyi",
"type": "Ed25519VerificationKey2018", // external (property value)
"controller": "did:example:123",
"publicKeyBase58": "Hgo9PAmfeoxHG8Mn2XHXamxnnSwPpkyBHAMNF3VyXJCL"
}
],
"assertionMethod": [
{
"id": "did:example:123#z6MkiukuAuQAE8ozxvmahnQGzApvtW7KT5XXKfojjwbdEomY",
"type": "Ed25519VerificationKey2018", // external (property value)
"controller": "did:example:123",
"publicKeyBase58": "5TVraf9itbKXrRvt2DSS95Gw4vqU3CHAdetoufdcKazA"
}
]
}
{
"@context": "https://www.w3.org/ns/did/v1",
"id": "did:example:123",
"verificationMethod": [
{
"id": "did:example:123#ZC2jXTO6t4R501bfCXv3RxarZyUbdP2w_psLwMuY6ec",
"type": "Ed25519VerificationKey2018", // external (property value)
"controller": "did:example:123",
"publicKeyBase58": "H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV"
},
{
"id": "did:example:123#zQ3shP2mWsZYWgvgM11nenXRTx9L1yiJKmkf9dfX7NaMKb1pX",
"type": "EcdsaSecp256k1VerificationKey2019", // external (property value)
"controller": "did:example:123",
"publicKeyBase58": "d5cW2R53NHTTkv7EQSYR8YxaKx7MVCcchjmK5EgCNXxo",
},
{
"id": "did:example:123#_Qq0UL2Fq651Q0Fjd6TvnYE-faHiOpRlPVQcY_-tA4A",
"type": "JsonWebKey2020", // external (property value)
"controller": "did:example:123",
"publicKeyJwk": {
"kty": "OKP", // external (property name)
"crv": "Ed25519", // external (property name)
"x": "VCpo2LMLhn6iWku8MKvSLg2ZAoC-nlOyPVQaO3FxVeQ" // external (property name)
}
},
{
"id": "did:example:123#z6LSnjagzhe8Df6gZmroW3wjDd7XQLwAuYfwa4ZeTBCGFoYc",
"type": "JsonWebKey2020", // external (property value)
"controller": "did:example:123",
"publicKeyJwk": {
"kty": "OKP", // external (property name)
"crv": "X25519", // external (property name)
"x": "pE_mG098rdQjY3MKK2D5SUQ6ZOEW3a6Z6T7Z4SgnzCE" // external (property name)
},
}
{
"id": "did:example:123#4SZ-StXrp5Yd4_4rxHVTCYTHyt4zyPfN1fIuYsm6k3A",
"type": "JsonWebKey2020", // external (property value)
"controller": "did:example:123",
"publicKeyJwk": {
"kty": "EC", // external (property name)
"crv": "secp256k1", // external (property name)
"x": "Z4Y3NNOxv0J6tCgqOBFnHnaZhJF6LdulT7z8A-2D5_8", // external (property name)
"y": "i5a2NtJoUKXkLm6q8nOEu9WOkso1Ag6FTUT6k_LMnGk" // external (property name)
}
},
{
"id": "did:example:123#n4cQ-I_WkHMcwXBJa7IHkYu8CMfdNcZKnKsOrnHLpFs",
"type": "JsonWebKey2020", // external (property value)
"controller": "did:example:123",
"publicKeyJwk": {
"kty": "RSA", // external (property name)
"e": "AQAB", // external (property name)
"n": "omwsC1AqEk6whvxyOltCFWheSQvv1MExu5RLCMT4jVk9khJKv8JeMXWe3bWHatjPskdf2dlaGkW5QjtOnUKL742mvr4tCldKS3ULIaT1hJInMHHxj2gcubO6eEegACQ4QSu9LO0H-LM_L3DsRABB7Qja8HecpyuspW1Tu_DbqxcSnwendamwL52V17eKhlO4uXwv2HFlxufFHM0KmCJujIKyAxjD_m3q__IiHUVHD1tDIEvLPhG9Azsn3j95d-saIgZzPLhQFiKluGvsjrSkYU5pXVWIsV-B2jtLeeLC14XcYxWDUJ0qVopxkBvdlERcNtgF4dvW4X00EHj4vCljFw" // external (property name)
}
},
{
"id": "did:example:123#_TKzHv2jFIyvdTGF1Dsgwngfdg3SH6TpDv0Ta1aOEkw",
"type": "JsonWebKey2020", // external (property value)
"controller": "did:example:123",
"publicKeyJwk": {
"kty": "EC", // external (property name)
"crv": "P-256", // external (property name)
"x": "38M1FDts7Oea7urmseiugGW7tWc3mLpJh6rKe7xINZ8", // external (property name)
"y": "nDQW6XZ7b_u2Sy9slofYLlG03sOEoug3I0aAPQ0exs4" // external (property name)
}
},
{
"id": "did:example:123#8wgRfY3sWmzoeAL-78-oALNvNj67ZlQxd1ss_NX1hZY",
"type": "JsonWebKey2020", // external (property value)
"controller": "did:example:123",
"publicKeyJwk": {
"kty": "EC", // external (property name)
"crv": "P-384", // external (property name)
"x": "GnLl6mDti7a2VUIZP5w6pcRX8q5nvEIgB3Q_5RI2p9F_QVsaAlDN7IG68Jn0dS_F", // external (property name)
"y": "jq4QoAHKiIzezDp88s_cxSPXtuXYFliuCGndgU4Qp8l91xzD1spCmFIzQgVjqvcP" // external (property name)
}
},
{
"id": "did:example:123#NjQ6Y_ZMj6IUK_XkgCDwtKHlNTUTVjEYOWZtxhp1n-E",
"type": "JsonWebKey2020", // external (property value)
"controller": "did:example:123",
"publicKeyJwk": {
"kty": "EC", // external (property name)
"crv": "P-521", // external (property name)
"x": "AVlZG23LyXYwlbjbGPMxZbHmJpDSu-IvpuKigEN2pzgWtSo--Rwd-n78nrWnZzeDc187Ln3qHlw5LRGrX4qgLQ-y", // external (property name)
"y": "ANIbFeRdPHf1WYMCUjcPz-ZhecZFybOqLIJjVOlLETH7uPlyG0gEoMWnIZXhQVypPy_HtUiUzdnSEPAylYhHBTX2" // external (property name)
}
}
]
}
This section is non-normative.
These examples are for information purposes only. See W3C Verifiable Credentials Data Model for additional examples.
{ // external (all terms in this example)
"@context": [
"https://www.w3.org/2018/credentials/v1",
"https://w3id.org/citizenship/v1"
],
"type": [
"VerifiableCredential",
"PermanentResidentCard"
],
"credentialSubject": {
"id": "did:example:123",
"type": [
"PermanentResident",
"Person"
],
"givenName": "JOHN",
"familyName": "SMITH",
"gender": "Male",
"image": "...kJggg==",
"residentSince": "2015-01-01",
"lprCategory": "C09",
"lprNumber": "000-000-204",
"commuterClassification": "C1",
"birthCountry": "Bahamas",
"birthDate": "1958-08-17"
},
"issuer": "did:example:456",
"issuanceDate": "2020-04-22T10:37:22Z",
"identifier": "83627465",
"name": "Permanent Resident Card",
"description": "Government of Example Permanent Resident Card.",
"proof": {
"type": "Ed25519Signature2018",
"created": "2020-04-22T10:37:22Z",
"proofPurpose": "assertionMethod",
"verificationMethod": "did:example:456#key-1",
"jws": "eyJjcml0IjpbImI2NCJdLCJiNjQiOmZhbHNlLCJhbGciOiJFZERTQSJ9..BhWew0x-txcroGjgdtK-yBCqoetg9DD9SgV4245TmXJi-PmqFzux6Cwaph0r-mbqzlE17yLebjfqbRT275U1AA"
}
}
{ // external (all terms in this example)
"@context": [
"https://www.w3.org/2018/credentials/v1",
"https://www.w3.org/2018/credentials/examples/v1"
],
"id": "http://example.gov/credentials/3732",
"type": ["VerifiableCredential", "UniversityDegreeCredential"],
"issuer": { "id": "did:example:123" },
"issuanceDate": "2020-03-10T04:24:12.164Z",
"credentialSubject": {
"id": "did:example:456",
"degree": {
"type": "BachelorDegree",
"name": "Bachelor of Science and Arts"
}
},
"proof": {
"type": "JsonWebSignature2020",
"created": "2020-02-15T17:13:18Z",
"verificationMethod": "did:example:123#_Qq0UL2Fq651Q0Fjd6TvnYE-faHiOpRlPVQcY_-tA4A",
"proofPurpose": "assertionMethod",
"jws": "eyJiNjQiOmZhbHNlLCJjcml0IjpbImI2NCJdLCJhbGciOiJFZERTQSJ9..Y0KqovWCPAeeFhkJxfQ22pbVl43Z7UI-X-1JX32CA9MkFHkmNprcNj9Da4Q4QOl0cY3obF8cdDRdnKr0IwNrAw"
}
}
{ // external (all terms in this example)
"@context": [
"https://www.w3.org/2018/credentials/v1",
"https://w3id.org/security/bbs/v1",
{
"name": "https://schema.org/name",
"birthDate": "https://schema.org/birthDate"
}
],
"id": "urn:uuid:c499e122-3ba9-4e95-8d4d-c0ebfcf8c51a",
"type": ["VerifiableCredential"],
"issuanceDate": "2021-02-07T16:02:08.571Z",
"issuer": {
"id": "did:example:123"
},
"credentialSubject": {
"id": "did:example:456",
"name": "John Smith",
"birthDate": "2021-02-07"
},
"proof": {
"type": "BbsBlsSignature2020",
"created": "2021-02-07T16:02:10Z",
"proofPurpose": "assertionMethod",
"proofValue": "o7zD2eNTp657YzkJLub+IO4Zqy/R3Lv/AWmtSA/kUlEAOa73BNyP1vOeoow35jkABolx4kYMKkp/ZsFDweuKwe/p9vxv9wrMJ9GpiOZjHcpjelDRRJLBiccg9Yv7608mHgH0N1Qrj14PZ2saUlfhpQ==",
"verificationMethod": "did:example:123#bls12381-g2-key"
}
}
{ // external (all terms in this example)
"@context": [
"https://www.w3.org/2018/credentials/v1",
"https://w3id.org/security/bbs/v1",
{
"name": "https://schema.org/name",
"birthDate": "https://schema.org/birthDate"
}
],
"id": "urn:uuid:c499e122-3ba9-4e95-8d4d-c0ebfcf8c51a",
"type": "VerifiableCredential",
"issuanceDate": "2021-02-07T16:02:08.571Z",
"issuer": {
"id": "did:example:123"
},
"credentialSubject": {
"id": "did:example:456",
"birthDate": "2021-02-07"
},
"proof": {
"type": "BbsBlsSignatureProof2020",
"created": "2021-02-07T16:02:10Z",
"nonce": "OqZHsV/aunS34BhLaSoxiHWK+SUaG4iozM3V+1jO06zRRNcDWID+I0uwtPJJ767Yo8Q=",
"proofPurpose": "assertionMethod",
"proofValue": "AAsH34lcKsqaqPaLQWcnLMe3mDM+K7fZM0t4Iesfj7BhD//HBtuWCmZE946BqW7OHYU106MP8mLntutqB8FyGwS7AOyK+5/7iW6JwLNVCvh4Nt3IaF3AN47fqVs2VikD9DiCsaFAUU6ISj5pbad8O+6jiT9Yw6ug8t8vJn3XHvMUhCPnDZJeBEdKD1qo4Z0LOq3L8QAAAHSEgtC9BoZL2MLjz4QuPxpwbhTTRC08MIUjdJnP4JUtz6163Lsl3rpadGu2d3Te7loAAAACZBD4YWOgV0xpPoYZ5vywNA5/NTeDHDbX36gvoV5RDJtY1SLU2LN/IDPZGrfhEiASbD1/QXqj8dod6FbjBs9m/LchBcy7z4yDBv/8DnBzDJ9dEaM4bDjpwmqtgJqha2kwtlyNog67xG9tNjnp5rrbIgAAAANMVanwWmlkg5I/f1M2QJ5GRvQiBL4lyL5sttxwIOalbTZP8VqWtFJI54xMNjTiK71aFWWN8SlNEwfVIX34HO5zBIb6fvc+Or21ubYllT9eXv1epl2o2CojuieCZyxE8/Q=",
"verificationMethod": "did:example:123#bls12381-g2-key"
}
}
{ // external (all terms in this example)
"protected": {
"kid": "did:example:123#_Qq0UL2Fq651Q0Fjd6TvnYE-faHiOpRlPVQcY_-tA4A",
"alg": "EdDSA"
},
"payload": {
"iss": "did:example:123",
"sub": "did:example:456",
"vc": {
"@context": [
"https://www.w3.org/2018/credentials/v1",
"https://www.w3.org/2018/credentials/examples/v1"
],
"id": "http://example.gov/credentials/3732",
"type": [
"VerifiableCredential",
"UniversityDegreeCredential"
],
"issuer": {
"id": "did:example:123"
},
"issuanceDate": "2020-03-10T04:24:12.164Z",
"credentialSubject": {
"id": "did:example:456",
"degree": {
"type": "BachelorDegree",
"name": "Bachelor of Science and Arts"
}
}
},
"jti": "http://example.gov/credentials/3732",
"nbf": 1583814252
},
"signature": "qSv6dpZJGFybtcifLwGf4ujzlEu-fam_M7HPxinCbVhz9iIJCg70UMeQbPa1ex6BmQ2tnSS7F11FHnMB2bJRAw"
}
This section is non-normative.
These examples are for information purposes only, it is considered a best practice to avoid dislosing unnecessary information in JWE headers.
{ // external (all terms in this example)
"ciphertext": "3SHQQJajNH6q0fyAHmw...",
"iv": "QldSPLVnFf2-VXcNLza6mbylYwphW57Q",
"protected": "eyJlbmMiOiJYQzIwUCJ9",
"recipients": [
{
"encrypted_key": "BMJ19zK12YHftJ4sr6Pz1rX1HtYni_L9DZvO1cEZfRWDN2vXeOYlwA",
"header": {
"alg": "ECDH-ES+A256KW",
"apu": "Tx9qG69ZfodhRos-8qfhTPc6ZFnNUcgNDVdHqX1UR3s",
"apv": "ZGlkOmVsZW06cm9wc3RlbjpFa...",
"epk": {
"crv": "X25519",
"kty": "OKP",
"x": "Tx9qG69ZfodhRos-8qfhTPc6ZFnNUcgNDVdHqX1UR3s"
},
"kid": "did:example:123#zC1Rnuvw9rVa6E5TKF4uQVRuQuaCpVgB81Um2u17Fu7UK"
}
}
],
"tag": "xbfwwDkzOAJfSVem0jr1bA"
}
Following is a diagram showing the relationships among § 4. Data Model, § 5. Core Properties, and § 8. Methods, and § 7. Resolution.
This section will be submitted to the Internet Engineering Steering Group (IESG) for review, approval, and registration with IANA when this specification becomes a W3C Proposed Recommendation.
Fragment identifiers used with application/did+json are treated according to the rules defined in § Fragment.
Use of the media type application/did+ld+json
is pending
clarification over the registration of
media types with multiple suffixes. The alternative will be to use
application/ld+json
with an expected profile parameter of
https://www.w3.org/ns/did/json-ld-profile
if multiple suffixes
cannot be registered by the time the rest of DID Core is ready for W3C
Proposed Recommendation. Discussion is happening in the
IETF media-types mailing list.
Fragment identifiers used with application/did+ld+json are treated according to the rules associated with the JSON-LD 1.1: application/ld+json media type [JSON-LD11].
Fragment identifiers used with application/did+cbor are treated according to the rules defined in § Fragment.
Since a DID is a specific type of URI (Uniform Resource Identifier), the answer to this question is provided by section 1.1 of the URI specification [RFC3986]:
This specification does not limit the scope of what might be a resource; rather, the term "resource" is used in a general sense for whatever might be identified by a URI. Familiar examples include an electronic document, an image, a source of information with a consistent purpose (e.g., "today's weather report for Los Angeles"), a service (e.g., an HTTP-to-SMS gateway), and a collection of other resources. A resource is not necessarily accessible via the Internet; e.g., human beings, corporations, and bound books in a library can also be resources. Likewise, abstract concepts can be resources, such as the operators and operands of a mathematical equation, the types of a relationship (e.g., "parent" or "employee"), or numeric values (e.g., zero, one, and infinity).
In other words, it does not matter whether a resource is "on" or "off" the Internet—if it can be identified, it can be assigned a URI, and therefore it can be assigned a DID.
For any DID, the DID controller determines the DID subject. It is not expected to be possible to determine the DID subject from looking at the DID itself. The reason is that, in order to satisfy several core properties of a DID as an identifier—especially decentralization and cryptographic verifiability—DIDs are generally only meaningful to machines, not humans. To illustrate, compare the following two URIs:
https://www.w3.org/2019/did-wg/WorkMode/getting-started
did:example:8uQhQMGzWxR8vw5P3UWH1j
The first is the URL of the Getting Started page of the W3C DID Working Group. This is a human-meaningful identifier (at least to someone who understands the English language). In this sense, the reader can be said to "know" what the URL identifies without having to dereference it (provided the reader trusts the publisher of the URL).
The second URI—the example DID—is meaningless to humans no matter what language you speak. What it identifies is anyone’s guess in the absence of further information describing the DID subject. So further information about the DID subject is only discoverable by resolving the DID to the DID document, obtaining a verifiable credential about the DID, or via some other description of the DID.
No. To be very precise, the DID identifies the DID subject and resolves to the DID document (by following the protocol specified by the DID method). The DID document is not a separate resource from the DID subject and does not have a URI separate from the DID. Rather the DID document is an artifact of DID resolution controlled by the DID controller for the purpose of describing the DID subject.
This distinction is illustrated by the graph model shown below.
Each property in a DID document is a statement by the DID controller that refers to:
id
and alsoKnownAs
properties)
verificationMethod
and service
properties).
@context
property for a JSON-LD representation).
There is only one required property in a DID document—the id
property—so that is the only statement guaranteed to be in a DID document.
That statement is illustrated by the solid red arrow in figure 2 asserting
that the DID identifies the DID subject.
There are two basic options for discovery of more information about the DID subject. The first option is to request more information from a service endpoint if one or more are present in the DID document. An example would be to query a service endpoint that supports verifiable credentials for one or more claims (attributes) describing the DID subject.
A second option is to use the alsoKnownAs
property if it
is present in the DID document. The DID controller can use it
to provide a list of other URIs (including other DIDs) that identify
the same DID subject. Resolving or dereferencing these URIs might yield
other descriptions or representations of the DID subject as
illustrated in the figure below.
This mechanism is how DID identification can fulfill guidance from the W3C in Cool URIs for the Semantic Web:
Given only a URI, machines and people should be able to retrieve a description about the resource identified by the URI from the Web. Such a look-up mechanism is important to establish shared understanding of what a URI identifies. Machines should get RDF data and humans should get a readable representation, such as HTML.
Note that it is not required that a DID document use an RDF-based representation; see § 6. Representations.
If the DID subject is a digital resource that can be retrieved from the Internet, then yes, the DID document can serve as a representation of the DID subject. For example, a data schema that needs a persistent, cryptographically verifiable identifier could be assigned a DID, and its DID document could be used as a standard way to retrieve a representation of that schema.
Alternately, a DID can be used to identify a digital resource that can be returned directly from a verifiable data registry if that functionality is supported by the applicable DID method.
Yes, if the controller of a web page or any other web resource wants to assign it a persistent, cryptographically verifiable identifier, the controller can give it a DID. For example, the author of a blog hosted by a blog hosting company (under that hosting company’s own URL) could create a DID for the blog. In the DID document, the author can include an alsoKnownAs property pointing to the current URL of the blog:
"alsoKnownAs": ["https://myblog.blogging-host.example/home"]
If the author subsequently moves the blog to a different hosting company (or to the author’s own domain), the author can update the DID document to point to the new URL for the blog:
"alsoKnownAs": ["https://myblog.example/"]
The DID effectively adds a layer of indirection for the blog URL. This layer of indirection is under the control of the author instead of under the control of an external administrative authority such as the blog hosting company. This is how a DID can effectively function as an enhanced URN (Uniform Resource Name)—a persistent identifier for an information resource whose network location might change over time.
To avoid confusion, it is helpful to classify DID subjects into two disjoint sets based on their relationship to the DID controller.
The first case, shown in figure 4, is the common scenario where the DID subject is also the DID controller. This is the case when an individual or organization creates a DID to self-identify.
From a graph model perspective, even though the nodes identified as the
DID controller and DID subject in figure 4 are distinct,
there is a logical arc connecting them to express a semantic equivalence
relationship. (In RDF/OWL, this is expressed using the
owl:sameAs
predicate.)
The second case is when the DID subject is a separate entity from the DID controller. This is the case when, for example, a parent creates and maintains control of a DID for a child; a corporation creates and maintains control of a DID for a subsidiary; or a manufacturer creates and maintains control of a DID for a product, an IoT device, or a digital file.
From a graph model perspective, the only difference from Set 1 that there is no equivalence arc relationship between the DID subject and DID controller nodes.
Yes. A DID document might have more than one DID controller. In this situation there are two basic options available for how control can be shared.
In the first option, shown in the figure below, each of the DID controllers might act on its own, i.e., each one has full power to update the DID document independently. From a graph model perspective, in this configuration:
In the second option, the DID controllers are expected to act together in some fashion, such as when using a cryptographic algorithm that requires multiple digital signatures ("multi-sig") or a threshold number of digital signatures ("m-of-n"). From a functional standpoint, this option is similar to a single DID controller because, although each of the DID controllers in the DID controller group has its own graph node, the actual control collapses into a single logical graph node representing the DID controller group as shown in this figure:
This configuration will often apply when the DID subject is an organization, corporation, government agency, community, or other group that is not controlled by a single individual.
The Working Group thanks the following individuals for their contributions to this specification: The final list of acknowledgements will be compiled at the end of the Candidate Recommendation phase.
Portions of the work on this specification have been funded by the United States Department of Homeland Security's (US DHS) Science and Technology Directorate under contracts HSHQDC-16-R00012-H-SB2016-1-002, and HSHQDC-17-C-00019, as well as the US DHS Silicon Valley Innovation Program under contracts 70RSAT20T00000010, 70RSAT20T00000029, 70RSAT20T00000030, 70RSAT20T00000045, 70RSAT20T00000003, and 70RSAT20T00000033. The content of this specification does not necessarily reflect the position or the policy of the U.S. Government and no official endorsement should be inferred.
Portions of the work on this specification have also been funded by the European Union's StandICT.eu program under sub-grantee contract number CALL05/19. The content of this specification does not necessarily reflect the position or the policy of the European Union and no official endorsement should be inferred.
Work on this specification has also been supported by the Rebooting the Web of Trust community facilitated by Christopher Allen, Shannon Appelcline, Kiara Robles, Brian Weller, Betty Dhamers, Kaliya Young, Kim Hamilton Duffy, Manu Sporny, Drummond Reed, Joe Andrieu, and Heather Vescent. Development of this specification has also been supported by the W3C Credentials Community Group, which has been Chaired by Kim Hamilton Duffy, Joe Andrieu, Christopher Allen, Heather Vescent, and Wayne Chang.