
 [p. ??]

Cascading Style Sheets Level 2 Revision 1
(CSS 2.1) Specification

W3C Editors Draft DD MMMMM YYYY
This version:

http://www.w3.org/TR/YYYY/ED-CSS2-YYYYMMDD [p. ??]
Latest version:

http://www.w3.org/TR/CSS2 [p. ??]
Previous versions:

http://www.w3.org/TR/2010/WD-CSS2-20101207 [p. ??]
http://www.w3.org/TR/2008/REC-CSS2-20080411/ [p. ??]

Editors:
Bert Bos [p. ??] <bert @w3.org>
Tantek Çelik [p. ??] <tantek @cs.stanford.edu>
Ian Hickson [p. ??] <ian @hixie.ch>
Håkon Wium Lie [p. ??] <howcome @opera.com>

Please refer to the errata [p. ??] for this document.

This document is also available in these non-normative formats: plain text [p. ??] ,
gzip’ed tar file [p. ??] , zip file [p. ??] , gzip’ed PostScript [p. ??] , PDF [p. ??] . See
also translations [p. ??] .

Copyright [p. ??] © 2010 World Wide Web ConsortiumW3C [p. ??] ®
(Massachusetts Institute of TechnologyMIT [p. ??] , European Research Consortium
for Informatics and MathematicsERCIM [p. ??] , Keio [p. ??]), All Rights Reserved.
W3C liability [p. ??] , trademark [p. ??] and document use [p. ??] rules apply.

Abstract
This specification defines Cascading Style Sheets, level 2 revision 1 (CSS 2.1).
CSS 2.1 is a style sheet language that allows authors and users to attach style (e.g.,
fonts and spacing) to structured documents (e.g., HTML documents and XML appli-
cations). By separating the presentation style of documents from the content of
documents, CSS 2.1 simplifies Web authoring and site maintenance.

CSS 2.1 builds on CSS2 [CSS2] which builds on CSS1 [CSS1]. It supports
media-specific style sheets so that authors may tailor the presentation of their docu-
ments to visual browsers, aural devices, printers, braille devices, handheld devices,
etc. It also supports content positioning, table layout, features for internationalization

130 Mar 2011 19:50

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

and some properties related to user interface.

CSS 2.1 corrects a few errors in CSS2 (the most important being a new definition
of the height/width of absolutely positioned elements, more influence for HTML’s
"style" attribute and a new calculation of the ’clip’ property), and adds a few highly
requested features which have already been widely implemented. But most of all
CSS 2.1 represents a "snapshot" of CSS usage: it consists of all CSS features that
are implemented interoperably at the date of publication of the Recommendation.

CSS 2.1 is derived from and is intended to replace CSS2. Some parts of CSS2
are unchanged in CSS 2.1, some parts have been altered, and some parts removed.
The removed portions may be used in a future CSS3 specification. Future specs
should refer to CSS 2.1 (unless they need features from CSS2 which have been
dropped in CSS 2.1, and then they should only reference CSS2 for those features,
or preferably reference such feature(s) in the respective CSS3 Module that includes
those feature(s)).

Status of this document
This is the editor’s draft of the next version of this specification. It is not a W3C Tech-
nical Report. The CSS working group has decided to make it available, but has not
fully reviewed it. It is very likely to contain editing errors.

Candidate Recommendation Exit Criteria
For this specification to be proposed as a W3C Recommendation, the following
conditions shall be met. There must be at least two independent, interoperable
implementations of each feature. Each feature may be implemented by a different
set of products, there is no requirement that all features be implemented by a single
product. For the purposes of this criterion, we define the following terms:

independent
each implementation must be developed by a different party and cannot share,
reuse, or derive from code used by another qualifying implementation. Sections
of code that have no bearing on the implementation of this specification are
exempt from this requirement.

interoperable
passing the respective test case(s) in the official CSS test suite, or, if the imple-
mentation is not a Web browser, an equivalent test. Every relevant test in the
test suite should have an equivalent test created if such a user agent (UA) is to
be used to claim interoperability. In addition if such a UA is to be used to claim
interoperability, then there must one or more additional UAs which can also
pass those equivalent tests in the same way for the purpose of interoperability.
The equivalent tests must be made publicly available for the purposes of peer
review.

implementation
a user agent which:

1. implements the specification.

30 Mar 2011 19:502

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

2. is available to the general public. The implementation may be a shipping
product or other publicly available version (i.e., beta version, preview
release, or “nightly build”).

3. is not experimental (i.e., a version specifically designed to pass the test
suite and is not intended for normal usage going forward).

A minimum of six months of the CR period must have elapsed. This is to ensure
that enough time is given for any remaining major errors to be caught.

Features will be dropped if two or more interoperable implementations are not
found by the end of the CR period.

Features may/will also be dropped if adequate/sufficient (by judgment of CSS WG)
tests have not been produced for those feature(s) by the end of the CR period.

Features at risk
The working group has identified the following features as being currently poorly
implemented by UAs. They are therefore most at risk of being removed from
CSS 2.1 when exiting CR. (Any changes of this nature will still result in the specifica-
tion being returned to last call.) Implementors are urged to implement these features,
or correct bugs in their implementations, if they wish to see these features remain in
this specification.

New ’list-style-type’ values
’armenian’
’georgian’
’lower-greek’

Implementors are advised to look at CSS3 Lists instead, where these and
many other new values not found in CSS1 are defined in detail. [CSS3LIST]

Support for multiple ID attributes for the ID selector

Because implementations are not expected to support multiple IDs per
element soon, this feature may be made informative. The W3C Selectors speci-
fication will continue to have this feature normatively. (Section 5.9. [p. 86])

Automatic table layout algorithm

The input to the suggested (non-normative) automatic layout algorithm for
tables is restricted to (1) the containing block width and (2) the content and
properties of the table and its children. This restriction may be lifted.

Quotes

The ’quotes’ property and the ’open-quote’, ’close-quote’, ’no-open-quote’ and
’no-close-quote’ keywords may be dropped.

BODY element in XHTML

The effect of ’overflow’ [p. 195] and ’background’ [p. 233] is different on BODY
elements in HTML than on other elements. It may be that the exceptional
handling of BODY in HTML is extended to BODY in XHTML1.

330 Mar 2011 19:50

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

Quick Table of Contents
........... 271 About the CSS 2.1 Specification
............. 352 Introduction to CSS 2.1
...... 433 Conformance: Requirements and Recommendations
............ 494 Syntax and basic data types
................. 775 Selectors
...... 996 Assigning property values, Cascading, and Inheritance
................ 1077 Media types
................ 1118 Box model
............. 1279 Visual formatting model
........... 17110 Visual formatting model details
............... 19511 Visual effects
...... 20312 Generated content, automatic numbering, and lists
............... 22313 Paged media
............. 23314 Colors and Backgrounds
................. 24115 Fonts
.................. 25716 Text
................. 26917 Tables
............... 29718 User interface
............ 305Appendix A. Aural style sheets
............. 325Appendix B. Bibliography
.............. 329Appendix C. Changes
......... 453Appendix D. Default style sheet for HTML 4
...... 455Appendix E. Elaborate description of Stacking Contexts
............ 459Appendix F. Full property table
........... 467Appendix G. Grammar of CSS 2.1
............... 475Appendix I. Index

30 Mar 2011 19:504

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

Full Table of Contents
........... 271 About the CSS 2.1 Specification
............. 271.1 CSS 2.1 vs CSS 2
........... 281.2 Reading the specification
......... 281.3 How the specification is organized
.............. 291.4 Conventions
..... 291.4.1 Document language elements and attributes
.......... 291.4.2 CSS property definitions
............. 291.4.2.1 Value
............. 311.4.2.2 Initial
............ 311.4.2.3 Applies to
............ 311.4.2.4 Inherited
.......... 311.4.2.5 Percentage values
........... 311.4.2.6 Media groups
.......... 321.4.2.7 Computed value
........... 321.4.3 Shorthand properties
........... 321.4.4 Notes and examples
......... 331.4.5 Images and long descriptions
............. 331.5 Acknowledgments
............. 352 Introduction to CSS 2.1
......... 352.1 A brief CSS 2.1 tutorial for HTML
.......... 382.2 A brief CSS 2.1 tutorial for XML
.......... 392.3 The CSS 2.1 processing model
............. 402.3.1 The canvas
......... 402.3.2 CSS 2.1 addressing model
............ 412.4 CSS design principles
...... 433 Conformance: Requirements and Recommendations
............... 433.1 Definitions
............. 473.2 UA Conformance
.............. 483.3 Error conditions
........... 483.4 The text/css content type
............ 494 Syntax and basic data types
................ 494.1 Syntax
............. 504.1.1 Tokenization
............. 534.1.2 Keywords
........ 544.1.2.1 Vendor-specific extensions
........ 544.1.2.2 Informative Historical Notes
........... 554.1.3 Characters and case
............. 564.1.4 Statements
.............. 574.1.5 At-rules
.............. 574.1.6 Blocks
..... 584.1.7 Rule sets, declaration blocks, and selectors

530 Mar 2011 19:50

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

......... 594.1.8 Declarations and properties

............. 604.1.9 Comments

......... 604.2 Rules for handling parsing errors

................ 634.3 Values

......... 634.3.1 Integers and real numbers

.............. 634.3.2 Lengths

............. 674.3.3 Percentages

............ 674.3.4 URLs and URIs

.............. 684.3.5 Counters

.............. 694.3.6 Colors

.............. 704.3.7 Strings

........... 714.3.8 Unsupported Values

.......... 714.4 CSS style sheet representation
754.4.1 Referring to characters not represented in a character encoding
................. 775 Selectors
............. 775.1 Pattern matching
.............. 795.2 Selector syntax
.............. 795.2.1 Grouping
............. 805.3 Universal selector
.............. 805.4 Type selectors
............ 805.5 Descendant selectors
.............. 815.6 Child selectors
........... 815.7 Adjacent sibling selectors
............. 825.8 Attribute selectors
...... 825.8.1 Matching attributes and attribute values
........ 845.8.2 Default attribute values in DTDs
............ 855.8.3 Class selectors
............... 865.9 ID selectors
........ 875.10 Pseudo-elements and pseudo-classes
............. 885.11 Pseudo-classes
.......... 885.11.1 :first-child pseudo-class
..... 895.11.2 The link pseudo-classes: :link and :visited
.. 895.11.3 The dynamic pseudo-classes: :hover, :active, and :focus
....... 915.11.4 The language pseudo-class: :lang
............. 925.12 Pseudo-elements
........ 925.12.1 The :first-line pseudo-element
........ 945.12.2 The :first-letter pseudo-element
...... 975.12.3 The :before and :after pseudo-elements
...... 996 Assigning property values, Cascading, and Inheritance
........ 996.1 Specified, computed, and actual values
............ 996.1.1 Specified values
............ 1006.1.2 Computed values
............. 1006.1.3 Used values

30 Mar 2011 19:506

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

............. 1006.1.4 Actual values

............... 1006.2 Inheritance

............ 1016.2.1 The ’inherit’ value

............. 1026.3 The @import rule

.............. 1026.4 The cascade

............ 1036.4.1 Cascading order

............ 1046.4.2 !important rules

........ 1046.4.3 Calculating a selector’s specificity

..... 1056.4.4 Precedence of non-CSS presentational hints

................ 1077 Media types

........... 1077.1 Introduction to media types

....... 1077.2 Specifying media-dependent style sheets

............ 1087.2.1 The @media rule

........... 1087.3 Recognized media types

............. 1107.3.1 Media groups

................ 1118 Box model

.............. 1118.1 Box dimensions

....... 1138.2 Example of margins, padding, and borders
8.3 Margin properties: ’margin-top’, ’margin-right’, ’margin-bottom’,

............ 115’margin-left’, and ’margin’

........... 1178.3.1 Collapsing margins
8.4 Padding properties: ’padding-top’, ’padding-right’, ’padding-bottom’,

............ 119’padding-left’, and ’padding’

............. 1208.5 Border properties
8.5.1 Border width: ’border-top-width’, ’border-right-width’,

... 120’border-bottom-width’, ’border-left-width’, and ’border-width’
8.5.2 Border color: ’border-top-color’, ’border-right-color’,

... 122’border-bottom-color’, ’border-left-color’, and ’border-color’
8.5.3 Border style: ’border-top-style’, ’border-right-style’,

... 123’border-bottom-style’, ’border-left-style’, and ’border-style’
8.5.4 Border shorthand properties: ’border-top’, ’border-right’,

....... 124’border-bottom’, ’border-left’, and ’border’

.... 1268.6 The box model for inline elements in bidirectional context

............. 1279 Visual formatting model

....... 1279.1 Introduction to the visual formatting model

............. 1289.1.1 The viewport

............ 1289.1.2 Containing blocks

........... 1299.2 Controlling box generation

....... 1299.2.1 Block-level elements and block boxes

........ 1299.2.1.1 Anonymous block boxes

....... 1319.2.2 Inline-level elements and inline boxes

........ 1329.2.2.1 Anonymous inline boxes

............. 1329.2.3 Run-in boxes

........... 1329.2.4 The ’display’ property

730 Mar 2011 19:50

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

............ 1349.3 Positioning schemes

.... 1349.3.1 Choosing a positioning scheme: ’position’ property

....... 1359.3.2 Box offsets: ’top’, ’right’, ’bottom’, ’left’

............... 1379.4 Normal flow

.......... 1389.4.1 Block formatting contexts

.......... 1389.4.2 Inline formatting contexts

........... 1419.4.3 Relative positioning

................ 1429.5 Floats

...... 1469.5.1 Positioning the float: the ’float’ property

.... 1489.5.2 Controlling flow next to floats: the ’clear’ property

............. 1519.6 Absolute positioning

............ 1519.6.1 Fixed positioning

..... 1539.7 Relationships between ’display’, ’position’, and ’float’

... 1549.8 Comparison of normal flow, floats, and absolute positioning

............. 1559.8.1 Normal flow

........... 1559.8.2 Relative positioning

............ 1569.8.3 Floating a box

........... 1599.8.4 Absolute positioning

............ 1639.9 Layered presentation

.... 1639.9.1 Specifying the stack level: the ’z-index’ property

... 1659.10 Text direction: the ’direction’ and ’unicode-bidi’ properties

........... 17110 Visual formatting model details

.......... 17110.1 Definition of "containing block"

......... 17410.2 Content width: the ’width’ property

.......... 17510.3 Calculating widths and margins

........ 17510.3.1 Inline, non-replaced elements

......... 17510.3.2 Inline, replaced elements

... 17610.3.3 Block-level, non-replaced elements in normal flow

..... 17610.3.4 Block-level, replaced elements in normal flow

........ 17710.3.5 Floating, non-replaced elements

......... 17710.3.6 Floating, replaced elements

.... 17710.3.7 Absolutely positioned, non-replaced elements

...... 17910.3.8 Absolutely positioned, replaced elements

... 17910.3.9 ’Inline-block’, non-replaced elements in normal flow

.... 17910.3.10 ’Inline-block’, replaced elements in normal flow

... 17910.4 Minimum and maximum widths: ’min-width’ and ’max-width’

........ 18210.5 Content height: the ’height’ property

......... 18410.6 Calculating heights and margins

........ 18410.6.1 Inline, non-replaced elements
10.6.2 Inline replaced elements, block-level replaced elements in
normal flow, ’inline-block’ replaced elements in normal flow and floating

............. 185replaced elements
10.6.3 Block-level non-replaced elements in normal flow when ’over-

30 Mar 2011 19:508

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

........... 185flow’ computes to ’visible’

.... 18610.6.4 Absolutely positioned, non-replaced elements

...... 18710.6.5 Absolutely positioned, replaced elements

........... 18710.6.6 Complicated cases

.... 18710.6.7 ’Auto’ heights for block formatting context roots

.. 18810.7 Minimum and maximum heights: ’min-height’ and ’max-height’
18910.8 Line height calculations: the ’line-height’ and ’vertical-align’ properties

.......... 19010.8.1 Leading and half-leading

............... 19511 Visual effects

............ 19511.1 Overflow and clipping

........ 19511.1.1 Overflow: the ’overflow’ property

......... 19811.1.2 Clipping: the ’clip’ property

.......... 20111.2 Visibility: the ’visibility’ property

...... 20312 Generated content, automatic numbering, and lists

....... 20312.1 The :before and :after pseudo-elements

............ 20512.2 The ’content’ property

............. 20712.3 Quotation marks

..... 20712.3.1 Specifying quotes with the ’quotes’ property

..... 20912.3.2 Inserting quotes with the ’content’ property

......... 21012.4 Automatic counters and numbering

......... 21212.4.1 Nested counters and scope

............ 21412.4.2 Counter styles

...... 21412.4.3 Counters in elements with ’display: none’

................ 21412.5 Lists
12.5.1 Lists: the ’list-style-type’, ’list-style-image’, ’list-style-position’,

........... 215and ’list-style’ properties

............... 22313 Paged media

.......... 22313.1 Introduction to paged media

.......... 22413.2 Page boxes: the @page rule

............ 22413.2.1 Page margins

... 22613.2.2 Page selectors: selecting left, right, and first pages

........ 22713.2.3 Content outside the page box

.............. 22713.3 Page breaks
13.3.1 Page break properties: ’page-break-before’, ’page-break-after’,

............. 227’page-break-inside’

..... 22913.3.2 Breaks inside elements: ’orphans’, ’widows’

.......... 22913.3.3 Allowed page breaks

........... 23013.3.4 Forced page breaks

........... 23013.3.5 "Best" page breaks

.......... 23113.4 Cascading in the page context

............. 23314 Colors and Backgrounds

........ 23314.1 Foreground color: the ’color’ property

............. 23314.2 The background

930 Mar 2011 19:50

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

14.2.1 Background properties: ’background-color’, ’background-image’,
’background-repeat’, ’background-attachment’, ’background-position’,

............. 234and ’background’

................. 24115 Fonts

.............. 24115.1 Introduction

........... 24115.2 Font matching algorithm

........ 24215.3 Font family: the ’font-family’ property

........... 24415.3.1 Generic font families

............. 24415.3.1.1 serif

............ 24515.3.1.2 sans-serif

............ 24615.3.1.3 cursive

............ 24615.3.1.4 fantasy

........... 24615.3.1.5 monospace

........ 24715.4 Font styling: the ’font-style’ property

........ 24715.5 Small-caps: the ’font-variant’ property

....... 24815.6 Font boldness: the ’font-weight’ property

......... 25115.7 Font size: the ’font-size’ property

....... 25315.8 Shorthand font property: the ’font’ property

.................. 25716 Text

........ 25716.1 Indentation: the ’text-indent’ property

......... 25816.2 Alignment: the ’text-align’ property

............... 25916.3 Decoration
16.3.1 Underlining, overlining, striking, and blinking: the ’text-decora-

.............. 259tion’ property
16.4 Letter and word spacing: the ’letter-spacing’ and ’word-spacing’ prop-

................. 262erties

....... 26316.5 Capitalization: the ’text-transform’ property

........ 26416.6 White space: the ’white-space’ property

....... 26516.6.1 The ’white-space’ processing model

.. 26616.6.2 Example of bidirectionality with white space collapsing

..... 26716.6.3 Control and combining characters’ details

................. 26917 Tables

............ 26917.1 Introduction to tables

............ 27117.2 The CSS table model

......... 27317.2.1 Anonymous table objects

............... 27517.3 Columns

........ 27617.4 Tables in the visual formatting model

........ 27717.4.1 Caption position and alignment

.......... 27817.5 Visual layout of table contents

........ 27917.5.1 Table layers and transparency

.... 28217.5.2 Table width algorithms: the ’table-layout’ property

.......... 28317.5.2.1 Fixed table layout

......... 28417.5.2.2 Automatic table layout

.......... 28517.5.3 Table height algorithms

30 Mar 2011 19:5010

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

........ 28717.5.4 Horizontal alignment in a column

........ 28717.5.5 Dynamic row and column effects

............... 28817.6 Borders

........ 28817.6.1 The separated borders model
17.6.1.1 Borders and Backgrounds around empty cells: the

........... 290’empty-cells’ property

......... 29117.6.2 The collapsing border model

........ 29217.6.2.1 Border conflict resolution

............ 29417.6.3 Border styles

............... 29718 User interface

.......... 29718.1 Cursors: the ’cursor’ property

.............. 29818.2 System Colors

........... 30018.3 User preferences for fonts

........ 30018.4 Dynamic outlines: the ’outline’ property

.......... 30218.4.1 Outlines and the focus

.............. 30318.5 Magnification

............ 305Appendix A. Aural style sheets

........ 305A.1 The media types ’aural’ and ’speech’

......... 306A.2 Introduction to aural style sheets

.............. 307A.2.1 Angles

.............. 307A.2.2 Times

............. 307A.2.3 Frequencies

........... 308A.3 Volume properties: ’volume’

.......... 309A.4 Speaking properties: ’speak’

... 310A.5 Pause properties: ’pause-before’, ’pause-after’, and ’pause’

..... 311A.6 Cue properties: ’cue-before’, ’cue-after’, and ’cue’

.......... 312A.7 Mixing properties: ’play-during’

....... 313A.8 Spatial properties: ’azimuth’ and ’elevation’
A.9 Voice characteristic properties: ’speech-rate’, ’voice-family’, ’pitch’,

.......... 316’pitch-range’, ’stress’, and ’richness’

.. 319A.10 Speech properties: ’speak-punctuation’ and ’speak-numeral’

........... 320A.11 Audio rendering of tables

.... 321A.11.1 Speaking headers: the ’speak-header’ property

.......... 323A.12 Sample style sheet for HTML

.............. 324A.13 Emacspeak

............. 325Appendix B. Bibliography

............ 325B.1 Normative references

............ 327B.2 Informative references

.............. 329Appendix C. Changes

........... 342C.1 Additional property values

........... 343C.1.1 Section 4.3.6 Colors

....... 343C.1.2 Section 9.2.4 The ’display’ property

....... 343C.1.3 Section 12.2 The ’content’ property

1130 Mar 2011 19:50

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

... 343C.1.4 Section 16.6 White space: the ’white-space’ property

..... 343C.1.5 Section 18.1 Cursors: the ’cursor’ property

............... 343C.2 Changes

........ 343C.2.1 Section 1.1 CSS 2.1 vs CSS 2

....... 343C.2.2 Section 1.2 Reading the specification

..... 343C.2.3 Section 1.3 How the specification is organized

........... 343C.2.4 Section 1.4.2.1 Value

......... 344C.2.5 Section 1.4.2.6 Media groups

........ 344C.2.6 Section 1.4.2.7 Computed value

....... 344C.2.7 Section 1.4.4 Notes and examples

........ 344C.2.8 Section 1.5 Acknowledgments

.......... 344C.2.9 Section 3.2 Conformance

......... 344C.2.10 Section 3.3 Error Conditions

......... 344C.2.11 Section 4.1.1 Tokenization

....... 345C.2.12 Section 4.1.3 Characters and case

..... 345C.2.13 Section 4.2 Rules for handling parsing errors

........... 345C.2.14 Section 4.3 Values

.......... 345C.2.15 Section 4.3.2 Lengths

........ 345C.2.16 Section 4.3.4 URLs and URIs

.......... 345C.2.17 Section 4.3.5 Counters

........... 346C.2.18 Section 4.3.6 Colors

....... 346C.2.19 Section 4.3.8 Unsupported Values

..... 346C.2.20 Section 4.4 CSS style sheet representation

.. 346C.2.21 Section 5.8.1 Matching attributes and attribute values

........ 346C.2.22 Section 5.8.3 Class selectors

.......... 347C.2.23 Section 5.9 ID selectors

... 347C.2.24 Section 5.10 Pseudo-elements and pseudo-classes

.. 347C.2.25 Section 5.11.2 The link pseudo-classes: :link and :visited

... 347C.2.26 Section 5.11.4 The language pseudo-class: :lang

.... 347C.2.27 Section 5.12.1 The :first-line pseudo-element

.... 347C.2.28 Section 5.12.2 The :first-letter pseudo-element

... 347C.2.29 Section 6.1 Specified, computed, and actual values

........ 348C.2.30 Section 6.4.1 Cascading order

.... 348C.2.31 Section 6.4.3 Calculating a selector’s specificity

.348C.2.32 Section 6.4.4 Precedence of non-CSS presentational hints

...... 348C.2.33 Section 7.3 Recognized Media Types

......... 348C.2.34 Section 7.3.1 Media Groups

........ 349C.2.35 Section 8.3 Margin properties

....... 349C.2.36 Section 8.3.1 Collapsing margins

........ 349C.2.37 Section 8.4 Padding properties

......... 349C.2.38 Section 8.5.2 Border color

......... 349C.2.39 Section 8.5.3 Border style
C.2.40 Section 8.6 The box model for inline elements in bidirectional

30 Mar 2011 19:5012

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

................ 349context

........ 350C.2.41 Section 9.1.2 Containing blocks

...... 350C.2.42 Section 9.2.1.1 Anonymous block boxes

...... 350C.2.43 Section 9.2.2.1 Anonymous inline boxes

......... 350C.2.44 Section 9.2.3 Run-in boxes

....... 350C.2.45 Section 9.2.4 The ’display’ property

.... 350C.2.46 Section 9.3.1 Choosing a positioning scheme

......... 350C.2.47 Section 9.3.2 Box offsets

...... 351C.2.48 Section 9.4.1 Block formatting contexts

...... 351C.2.49 Section 9.4.2 Inline formatting context

....... 351C.2.50 Section 9.4.3 Relative positioning

........... 351C.2.51 Section 9.5 Floats

....... 351C.2.52 Section 9.5.1 Positioning the float

..... 352C.2.53 Section 9.5.2 Controlling flow next to floats
C.2.54 Section 9.7 Relationships between ’display’, ’position’, and

................ 352’float’

....... 352C.2.55 Section 9.9 Layered presentation

......... 352C.2.56 Section 9.10 Text direction

..... 352C.2.57 Chapter 10 Visual formatting model details

..... 353C.2.58 Section 10.1 Definition of "containing block"

......... 353C.2.59 Section 10.2 Content width

..... 353C.2.60 Section 10.3 Calculating widths and margins

...... 353C.2.61 Section 10.3.2 Inline, replaced elements
C.2.62 Section 10.3.3 Block-level, non-replaced elements in normal

................ 353flow

.354C.2.63 Section 10.3.4 Block-level, replaced elements in normal flow

.... 354C.2.64 Section 10.3.5 Floating, non-replaced elements

..... 354C.2.65 Section 10.3.6 Floating, replaced elements

.354C.2.66 Section 10.3.7 Absolutely positioned, non-replaced elements

.. 354C.2.67 Section 10.3.8 Absolutely positioned, replaced elements

..... 354C.2.68 Section 10.4 Minimum and maximum widths

......... 355C.2.69 Section 10.5 Content height

.... 355C.2.70 Section 10.6 Calculating heights and margins

..... 355C.2.71 Section 10.6.1 Inline, non-replaced elements
C.2.72 Section 10.6.2 Inline replaced elements, block-level replaced
elements in normal flow, ’inline-block’ replaced elements in normal flow

.......... 355and floating replaced elements
C.2.73 Section 10.6.3 Block-level non-replaced elements in normal

....... 356flow when ’overflow’ computes to ’visible’

.356C.2.74 Section 10.6.4 Absolutely positioned, non-replaced elements

.. 356C.2.75 Section 10.6.5 Absolutely positioned, replaced elements

.... 356C.2.76 Section 10.7 Minimum and maximum heights

....... 356C.2.77 Section 10.8 Line height calculations

...... 356C.2.78 Section 10.8.1 Leading and half-leading

1330 Mar 2011 19:50

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

....... 357C.2.79 Section 11.1 Overflow and clipping

.......... 357C.2.80 Section 11.1.1 Overflow

..... 357C.2.81 Section 11.1.2 Clipping: the ’clip’ property

.......... 358C.2.82 Section 11.2 Visibility
358C.2.83 Chapter 12 Generated content, automatic numbering, and lists

... 358C.2.84 Section 12.1 The :before and :after pseudo-elements

....... 358C.2.85 Section 12.2 The ’content’ property

.358C.2.86 Section 12.3.2 Inserting quotes with the ’content’ property

.... 358C.2.87 Section 12.4 Automatic counters and numbering

..... 359C.2.88 Section 12.4.1 Nested counters and scope

........... 359C.2.89 Section 12.5 Lists

........... 359C.2.90 Section 12.5.1 Lists

......... 359C.2.91 Chapter 13 Paged media

........ 359C.2.92 Section 13.2.2 Page selectors

...... 359C.2.93 Section 13.3.1 Page break properties

....... 360C.2.94 Section 13.3.3 Allowed page breaks

...... 360C.2.95 Section 14.2.1 Background properties

........ 360C.2.96 Section 14.3 Gamma correction

........... 360C.2.97 Chapter 15 Fonts

...... 360C.2.98 Section 15.2 Font matching algorithm

......... 360C.2.99 Section 15.2.2 Font family

......... 361C.2.100 Section 15.5 Small-caps

........ 361C.2.101 Section 15.6 Font boldness

.......... 361C.2.102 Section 15.7 Font size

........... 361C.2.103 Chapter 16 Text

.......... 361C.2.104 Section 16.2 Alignment

.361C.2.105 Section 16.3.1 Underlining, over lining, striking, and blinking

...... 362C.2.106 Section 16.4 Letter and word spacing

......... 362C.2.107 Section 16.5 Capitalization

......... 362C.2.108 Section 16.6 White space

........... 362C.2.109 Chapter 17 Tables

....... 362C.2.110 Section 17.2 The CSS table model

..... 362C.2.111 Section 17.2.1 Anonymous table objects

... 363C.2.112 Section 17.4 Tables in the visual formatting model

.... 363C.2.113 Section 17.4.1 Caption position and alignment

..... 363C.2.114 Section 17.5 Visual layout of table contents

.... 363C.2.115 Section 17.5.1 Table layers and transparency

....... 363C.2.116 Section 17.5.2.1 Fixed table layout

...... 363C.2.117 Section 17.5.2.2 Automatic table layout

...... 364C.2.118 Section 17.5.3 Table height algorithms

... 364C.2.119 Section 17.5.4 Horizontal alignment in a column

.......... 364C.2.120 Section 17.6 Borders

.... 364C.2.121 Section 17.6.1 The separated borders model

30 Mar 2011 19:5014

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

364C.2.122 Section 17.6.1.1 Borders and Backgrounds around empty cells
..... 364C.2.123 Section 17.6.2 The collapsing border model
..... 365C.2.124 Section 17.6.2.1 Border conflict resolution
..... 365C.2.125 Section 18.1 Cursors: the ’cursor’ property
........ 365C.2.126 Section 18.4 Dynamic outlines

365C.2.127 Chapter 12 Generated content, automatic numbering, and lists
........ 365C.2.128 Appendix A. Aural style sheets
...... 365C.2.129 Appendix A Section 5 Pause properties
...... 365C.2.130 Appendix A Section 6 Cue properties
...... 365C.2.131 Appendix A Section 7 Mixing properties
......... 366C.2.132 Appendix B Bibliography
.............. 366C.2.133 Other
................ 366C.3 Errors
........... 366C.3.1 Shorthand properties
............. 366C.3.2 Applies to
.......... 367C.3.3 Section 4.1.1 (and G2)
....... 367C.3.4 Section 4.1.3 Characters and case
....... 367C.3.5 Section 4.3 (Double sign problem)
.......... 367C.3.6 Section 4.3.2 Lengths
......... 367C.3.7 Section 4.3.3 Percentages
......... 367C.3.8 Section 4.3.4 URLs and URIs
.......... 368C.3.9 Section 4.3.5 Counters
........... 368C.3.10 Section 4.3.6 Colors
.......... 368C.3.11 Section 4.3.7 Strings
... 368C.3.12 Section 5.10 Pseudo-elements and pseudo-classes
......... 368C.3.13 Section 6.4 The cascade
......... 368C.3.14 Section 8.1 Box Dimensions
.. 368C.3.15 Section 8.2 Example of margins, padding, and borders
..... 368C.3.16 Section 8.5.4 Border shorthand properties
... 369C.3.17 Section 9.2.1 Block-level elements and block boxes
.... 369C.3.18 Section 9.3.1 Choosing a positioning scheme
......... 369C.3.19 Section 9.3.2 Box offsets
...... 369C.3.20 Section 9.4.1 Block formatting contexts
...... 369C.3.21 Section 9.4.2 Inline formatting context
....... 369C.3.22 Section 9.4.3 Relative positioning
........... 369C.3.23 Section 9.5 Floats
....... 370C.3.24 Section 9.5.1 Positioning the float
..... 370C.3.25 Section 9.5.2 Controlling flow next to floats
........ 370C.3.26 Section 9.6 Absolute positioning

C.3.27 Section 9.7 Relationships between ’display’, ’position’, and
................ 370’float’
......... 370C.3.28 Section 9.10 Text direction
..... 370C.3.29 Section 10.1 Definition of "containing block"

1530 Mar 2011 19:50

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

C.3.30 Section 10.3.3 Block-level, non-replaced elements in normal
................ 370flow
..... 371C.3.31 Section 10.4 Minimum and maximum widths

C.3.32 Section 10.6.3 Block-level non-replaced elements in normal
....... 371flow when ’overflow’ computes to ’visible’
.... 371C.3.33 Section 10.7 Minimum and maximum heights
.......... 371C.3.34 Section 11.1.1 Overflow
..... 371C.3.35 Section 11.1.2 Clipping: the ’clip’ property
.......... 371C.3.36 Section 11.2 Visibility
........ 371C.3.37 Section 12.4.2 Counter styles
........... 372C.3.38 Section 12.6.2 Lists
........ 372C.3.39 Section 14.2 The background
...... 372C.3.40 Section 14.2.1 Background properties
...... 372C.3.41 Section 15.2 Font matching algorithm
.......... 372C.3.42 Section 15.7 Font size
.......... 373C.3.43 Section 16.1 Indentation
.......... 373C.3.44 Section 16.2 Alignment
....... 373C.3.45 Section 17.2 The CSS table model
...... 373C.3.46 Section 17.2.1 Anonymous table objects
... 373C.3.47 Section 17.4 Tables in the visual formatting model
..... 373C.3.48 Section 17.5 Visual layout of table contents
.... 374C.3.49 Section 17.5.1 Table layers and transparency
..... 374C.3.50 Section 17.6.1 The separated borders model
......... 374C.3.51 Section 18.2 System Colors
......... 374C.3.52 Section E.2 Painting order
.............. 374C.4 Clarifications
..... 374C.4.1 Section 2.1 A brief CSS 2.1 tutorial for HTML
..... 375C.4.2 Section 2.2 A brief CSS 2.1 tutorial for XML
..... 375C.4.3 Section 2.3 The CSS 2.1 processing model
.......... 375C.4.4 Section 3.1 Definitions
........... 375C.4.5 Section 4.1 Syntax
......... 375C.4.6 Section 4.1.1 Tokenization
....... 376C.4.7 Section 4.1.3 Characters and case
.. 376C.4.8 Section 4.1.7 Rule sets, declaration blocks, and selectors
..... 376C.4.9 Section 4.2 Rules for handling parsing errors
...... 376C.4.10 Section 4.3.1 Integers and real numbers
.......... 376C.4.11 Section 4.3.2 Lengths
........ 376C.4.12 Section 4.3.4 URLs and URIs
........ 376C.4.13 Section 5.1 Pattern matching
...... 376C.4.14 Section 5.7 Adjacent sibling selectors
.. 377C.4.15 Section 5.8.1 Matching attributes and attribute values
.... 377C.4.16 Section 5.8.2 Default attribute values in DTDs
.......... 377C.4.17 Section 5.9 ID selectors

30 Mar 2011 19:5016

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

C.4.18 Section 5.11.3 The dynamic pseudo-classes: :hover, :active,
............... 377and :focus
... 377C.4.19 Section 5.11.4 The language pseudo-class: :lang
.... 377C.4.20 Section 5.12.2 The :first-letter pseudo-element
.......... 377C.4.21 Section 6.2 Inheritance
........ 377C.4.22 Section 6.2.1 The ’inherit’ value
........ 377C.4.23 Section 6.3 The @import rule
......... 378C.4.24 Section 6.4 The Cascade
........ 378C.4.25 Section 6.4.1 Cascading order
.... 378C.4.26 Section 6.4.3 Calculating a selector’s specificity
........ 378C.4.27 Section 7.2.1 The @media rule
....... 378C.4.28 Section 7.3 Recognized media types
......... 378C.4.29 Section 7.3.1 Media groups
......... 378C.4.30 Section 8.1 Box dimensions
........ 379C.4.31 Section 8.3 Margin properties
....... 379C.4.32 Section 8.3.1 Collapsing margins
......... 379C.4.33 Section 8.5.3 Border style
......... 379C.4.34 Section 9.1.1 The viewport
....... 379C.4.35 Section 9.2.4 The ’display’ property
.... 379C.4.36 Section 9.3.1 Choosing a positioning scheme
......... 379C.4.37 Section 9.3.2 Box offsets
...... 380C.4.38 Section 9.4.2 Inline formatting context
....... 380C.4.39 Section 9.4.3 Relative positioning
........... 380C.4.40 Section 9.5 Floats
....... 380C.4.41 Section 9.5.1 Positioning the float
..... 381C.4.42 Section 9.5.2 Controlling flow next to floats

C.4.43 Section 9.8 Comparison of normal flow, floats, and absolute
............... 381positioning
..... 381C.4.44 Section 10.1 Definition of "containing block"
......... 381C.4.45 Section 10.2 Content width

C.4.46 Section 10.3.3 Block-level, non-replaced elements in normal
................ 381flow
.. 381C.4.47 Section 10.3.8 Absolutely positioning, replaced elements
..... 381C.4.48 Section 10.4 Minimum and maximum widths
.... 381C.4.49 Section 10.6 Calculating heights and margins
.... 381C.4.50 Section 10.7 Minimum and maximum heights
....... 382C.4.51 Section 10.8 Line height calculations
...... 382C.4.52 Section 10.8.1 Leading and half-leading
....... 382C.4.53 Section 11.1 Overflow and clipping
.......... 382C.4.54 Section 11.1.1 Overflow
.......... 382C.4.55 Section 11.1.2 Clipping
.......... 382C.4.56 Section 11.2 Visibility
... 382C.4.57 Section 12.1 The :before and :after pseudo-elements

1730 Mar 2011 19:50

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

....... 383C.4.58 Section 12.2 The ’content’ property

.383C.4.59 Section 12.3.2 Inserting quotes with the ’content’ property

.... 383C.4.60 Section 12.4 Automatic counters and numbering

.. 383C.4.61 Section 12.4.3 Counters in elements with ’display: none’

........ 383C.4.62 Section 14.2 The background

........ 384C.4.63 Section 15.1 Fonts Introduction

...... 384C.4.64 Section 15.2 Font matching algorithm

......... 384C.4.65 Section 15.2.2 Font family

....... 384C.4.66 Section 15.3.1 Generic font families

......... 384C.4.67 Section 15.4 Font styling

.......... 384C.4.68 Section 15.5 Small-caps

......... 385C.4.69 Section 15.6 Font boldness

.......... 385C.4.70 Section 15.7 Font size

.......... 385C.4.71 Section 16.1 Indentation

.......... 385C.4.72 Section 16.2 Alignment

.385C.4.73 Section 16.3.1 Underlining, over lining, striking, and blinking

......... 385C.4.74 Section 16.5 Capitalization

......... 385C.4.75 Section 16.6 White space

....... 385C.4.76 Section 17.1 Introduction to tables

....... 386C.4.77 Section 17.2 The CSS table model

...... 386C.4.78 Section 17.2.1 Anonymous table objects

... 386C.4.79 Section 17.4 Tables in the visual formatting model

..... 386C.4.80 Section 17.5 Visual layout of table contents

.... 386C.4.81 Section 17.5.1 Table layers and transparency

...... 387C.4.82 Section 17.5.2 Table width algorithms

....... 387C.4.83 Section 17.5.2.1 Fixed table layout

...... 387C.4.84 Section 17.5.2.2 Automatic table layout

.... 387C.4.85 Section 17.5.4 Horizontal alignment in a column

.... 387C.4.86 Section 17.5.5 Dynamic row and column effects

..... 387C.4.87 Section 17.6.1 The separated borders model

..... 387C.4.88 Section 17.6.2 The collapsing borders model

......... 388C.4.89 Section 18.2 System Colors

........ 388C.4.90 Section 18.4 Dynamic outlines

...... 388C.4.91 Section 18.4.1 Outlines and the focus

..... 388C.4.92 Appendix D Default style sheet for HTML 4

... 388C.5 Errata since the Candidate Recommendation of July 2007

........... 388C.5.1 Section 1.4.2.1 Value

..... 388C.5.2 Section 2.3 The CSS 2.1 processing model

.......... 388C.5.3 Section 3.1 Definitions

......... 388C.5.4 Section 4.1.1 Tokenization

..... 389C.5.5 Section 4.1.2.2 Informative Historical Notes

....... 389C.5.6 Section 4.1.3 Characters and case

....... 389C.5.7 Section 4.1.3 Characters and case

30 Mar 2011 19:5018

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

....... 389C.5.8 Section 4.1.3 Characters and case

....... 389C.5.9 Section 4.1.3 Characters and case

.......... 390C.5.10 Section 4.1.5 At-rules

.390C.5.11 Section 4.1.7 Rule sets, declaration blocks, and selectors

..... 390C.5.12 Section 4.2 Rules for handling parsing errors

..... 390C.5.13 Section 4.2 Rules for handling parsing errors

.......... 390C.5.14 Section 4.3.2 Lengths

.......... 391C.5.15 Section 4.3.5 Counters

.. 391C.5.16 Section 5.8.1 Matching attributes and attribute values

.... 391C.5.17 Section 5.8.2 Default attribute values in DTDs

... 391C.5.18 Section 5.11.4 The language pseudo-class: :lang

.. 391C.5.19 Section 5.12.3 The :before and :after pseudo-elements

........ 391C.5.20 Section 6.3 The @import rule

........ 391C.5.21 Section 6.3 The @import rule

........ 392C.5.22 Section 6.4.1 Cascading order

........ 392C.5.23 Section 6.4.1 Cascading order

........ 392C.5.24 Section 7.2.1 The @media rule

....... 392C.5.25 Section 8.3.1 Collapsing margins

....... 393C.5.26 Section 8.3.1 Collapsing margins

....... 393C.5.27 Section 8.3.1 Collapsing margins

... 393C.5.28 Section 9.2.2 Inline-level elements and inline boxes

....... 393C.5.29 Section 9.2.4 The ’display’ property

... 393C.5.30 Section 9.3.2 Box offsets: ’top’, ’right’, ’bottom’, ’left’

........... 393C.5.31 Section 9.5 Floats

........... 394C.5.32 Section 9.5 Floats
394C.5.33 Section 9.5.2 Controlling flow next to floats: the ’clear’ property

........ 394C.5.34 Section 9.6.1 Fixed positioning
394C.5.35 Section 9.9.1 Specifying the stack level: the ’z-index’ property

..... 394C.5.36 Section 10.1 Definition of "containing block"

..... 395C.5.37 Section 10.3 Calculating widths and margins

..... 395C.5.38 Section 10.3.1 Inline, non-replaced elements

...... 395C.5.39 Section 10.3.2 Inline, replaced elements

...... 395C.5.40 Section 10.3.2 Inline, replaced elements
C.5.41 Section 10.3.3 Block-level, non-replaced elements in normal

................ 395flow

.396C.5.42 Section 10.3.7 Absolutely positioned, non-replaced elements

.396C.5.43 Section 10.3.7 Absolutely positioned, non-replaced elements

.. 397C.5.44 Section 10.3.8 Absolutely positioned, replaced elements

.. 397C.5.45 Section 10.3.8 Absolutely positioned, replaced elements

.. 397C.5.46 Section 10.3.8 Absolutely positioned, replaced elements

... 397C.5.47 Section 10.5 Content height: the ’height’ property

..... 397C.5.48 Section 10.6.2 Inline replaced elements [¼]

.397C.5.49 Section 10.6.4 Absolutely positioned, non-replaced elements

1930 Mar 2011 19:50

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

.. 398C.5.50 Section 10.6.5 Absolutely positioned, replaced elements

...... 398C.5.51 Section 10.8.1 Leading and half-leading

.... 398C.5.52 Section 11.1.1 Overflow: the ’overflow’ property

..... 398C.5.53 Section 11.1.2 Clipping: the ’clip’ property

....... 398C.5.54 Section 12.2 The ’content’ property

........ 399C.5.55 Section 12.4.2 Counter styles

........... 399C.5.56 Section 12.5 Lists
C.5.57 Section 12.5.1 Lists: the ’list-style-type’, ’list-style-image’,

....... 399’list-style-position’, and ’list-style’ properties
C.5.58 Section 12.5.1 Lists: the ’list-style-type’, ’list-style-image’,

....... 399’list-style-position’, and ’list-style’ properties
C.5.59 Section 12.5.1 Lists: the ’list-style-type’, ’list-style-image’,

....... 399’list-style-position’, and ’list-style’ properties

..... 400C.5.60 Section 13.2 Page boxes: the @page rule
C.5.61 Section 13.2.1.1 Rendering page boxes that do not fit a target

................ 400sheet

..... 400C.5.62 Section 13.2.3 Content outside the page box
C.5.63 Section 13.3.1 Page break properties: ’page-break-before’,

........ 400’page-break-after’, ’page-break-inside’
C.5.64 Section 13.3.1 Page break properties: ’page-break-before’,

........ 400’page-break-after’, ’page-break-inside’

.400C.5.65 Section 13.3.2 Breaks inside elements: ’orphans’, ’widows’

.401C.5.66 Section 13.3.2 Breaks inside elements: ’orphans’, ’widows’

....... 401C.5.67 Section 13.3.3 Allowed page breaks

....... 401C.5.68 Section 13.3.3 Allowed page breaks

....... 401C.5.69 Section 13.3.3 Allowed page breaks

....... 401C.5.70 Section 13.3.5 "Best" page breaks

........ 401C.5.71 Section 14.2 The background

........ 402C.5.72 Section 14.2 The background
C.5.73 Section 14.2.1 Background properties: ’background-color’,
’background-image’, ’background-repeat’, ’background-attachment’,

........ 402’background-position’, and ’background’

.. 402C.5.74 Section 15.6 Font boldness: the ’font-weight’ property

... 403C.5.75 Section 16.6 Whitespace: the ’white-space’ property

... 403C.5.76 Section 16.6.1 The ’white-space’ processing model

...... 403C.5.77 Section 17.2.1 Anonymous table objects

...... 403C.5.78 Section 17.2.1 Anonymous table objects

... 403C.5.79 Section 17.4 Tables in the visual formatting model

.... 404C.5.80 Section 17.5.4 Horizontal alignment in a column

..... 404C.5.81 Section 18.1 Cursors: the ’cursor’ property

....... 404C.5.82 Section B.2 Informative references

..... 404C.5.83 Appendix D. Default style sheet for HTML 4

..... 404C.5.84 Appendix D. Default style sheet for HTML 4

......... 404C.5.85 Section E.2 Painting order

30 Mar 2011 19:5020

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

....... 404C.5.86 Appendix G. Grammar of CSS 2.1

.......... 405C.5.87 Section G.1 Grammar

......... 405C.5.88 Section G.2 Lexical scanner

......... 405C.5.89 Section G.2 Lexical scanner

......... 405C.5.90 Section G.2 Lexical scanner

......... 405C.5.91 Section G.2 Lexical scanner

........... 406C.5.92 Appendix I. Index

... 406C.6 Errata since the Candidate Recommendation of April 2009

..... 406C.6.1 Section 4.2 Rules for handling parsing errors

....... 406C.6.2 Section 13.3.3 Allowed page breaks

.... 406C.6.3 Section 15.3 Font family: the ’font-family’ property

........... 406C.6.4 Section 15.3.1.1 serif

..... 406C.6.5 Section 15.7 Font size: the ’font-size’ property

....... 407C.6.6 Section 17.5.2.1 Fixed table layout

....... 407C.6.7 Section 17.5.3 Table height layout

....... 407C.6.8 Appendix G. Grammar of CSS 2.1

.407C.7 Errata since the Candidate Recommendation of September 2009

........... 407C.7.1 Section 1.4.2.1 Value

.......... 407C.7.2 Section 3.1 Definitions

......... 408C.7.3 Section 4.1.1 Tokenization

......... 408C.7.4 Section 4.1.1 Tokenization

......... 408C.7.5 Section 4.1.1 Tokenization

......... 408C.7.6 Section 4.1.1 Tokenization

..... 409C.7.7 Section 4.1.2.2 Informative Historical Notes

....... 409C.7.8 Section 4.1.3 Characters and case

....... 409C.7.9 Section 4.1.3 Characters and case

..... 409C.7.10 Section 4.1.8 Declarations and properties

..... 409C.7.11 Section 4.2 Rules for handling parsing errors

.......... 409C.7.12 Section 4.3.2 Lengths

.......... 409C.7.13 Section 4.3.2 Lengths

........ 410C.7.14 Section 4.3.4 URLs and URIs

........ 410C.7.15 Section 4.3.4 URLs and URIs

.... 410C.7.16 Section 5.8.2 Default attribute values in DTDs

... 411C.7.17 Section 5.11.4 The language pseudo-class: :lang

........ 411C.7.18 Section 5.12 Pseudo-elements

.... 411C.7.19 Section 5.12.1 The :first-line pseudo-element

.... 411C.7.20 Section 5.12.2 The :first-letter pseudo-element

.......... 411C.7.21 Section 6.2 Inheritance

.411C.7.22 Section 6.4.4 Precedence of non-CSS presentational hints

....... 412C.7.23 Section 7.3 Recognized media types

....... 412C.7.24 Section 8.3.1 Collapsing margins

....... 412C.7.25 Section 8.3.1 Collapsing margins

... 412C.7.26 Section 9.2.1 Block-level elements and block boxes

2130 Mar 2011 19:50

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

...... 413C.7.27 Section 9.2.1.1 Anonymous block boxes

...... 413C.7.28 Section 9.2.1.1 Anonymous block boxes

...... 413C.7.29 Section 9.2.1.1 Anonymous block boxes

...... 413C.7.30 Section 9.2.1.1 Anonymous block boxes

... 413C.7.31 Section 9.2.2 Inline-level elements and inline boxes

......... 413C.7.32 Section 9.2.3 Run-in boxes

....... 414C.7.33 Section 9.2.4 The ’display’ property

....... 414C.7.34 Section 9.2.4 The ’display’ property

........ 415C.7.35 Section 9.3 Positioning schemes

.......... 415C.7.36 Section 9.4 Normal flow

... 415C.7.37 Section 9.3.2 Box offsets: ’top’, ’right’, ’bottom’, ’left’

........... 416C.7.38 Section 9.5 Floats

........... 416C.7.39 Section 9.5 Floats
417C.7.40 Section 9.5.2 Controlling flow next to floats: the ’clear’ property
417C.7.41 Section 9.5.2 Controlling flow next to floats: the ’clear’ property
417C.7.42 Section 9.5.2 Controlling flow next to floats: the ’clear’ property
418C.7.43 Section 9.5.2 Controlling flow next to floats: the ’clear’ property

...... 418C.7.44 Section 14.2.1 Background properties
418C.7.45 Section 9.9.1 Specifying the stack level: the ’z-index’ property

C.7.46 Section 9.10 Text direction: the ’direction’ and ’unicode-bidi’
............... 418properties

C.7.47 Section 9.10 Text direction: the ’direction’ and ’unicode-bidi’
............... 419properties

C.7.48 Section 9.10 Text direction: the ’direction’ and ’unicode-bidi’
............... 419properties
..... 419C.7.49 Section 10.1 Definition of "containing block"
.... 420C.7.50 Section 10.2 Content width: the ’width’ property
.... 420C.7.51 Section 10.2 Content width: the ’width’ property
.... 420C.7.52 Section 10.2 Content width: the ’width’ property
... 420C.7.53 Section 10.5 Content height: the ’height’ property
... 420C.7.54 Section 10.5 Content height: the ’height’ property

421C.7.55 Section 10.6.7 ’Auto’ heights for block formatting context roots
C.7.56 Section 10.7 Minimum and maximum heights: ’min-height’ and

.............. 421’max-height’
C.7.57 Section 10.8 Line height calculations: the ’line-height’ and ’verti-

............. 421cal-align’ properties
C.7.58 Section 10.8 Line height calculations: the ’line-height’ and ’verti-

............. 422cal-align’ properties

...... 422C.7.59 Section 10.8.1 Leading and half-leading

...... 423C.7.60 Section 10.8.1 Leading and half-leading

...... 423C.7.61 Section 10.8.1 Leading and half-leading

....... 423C.7.62 Section 11.1 Overflow and clipping

.... 423C.7.63 Section 11.1.1 Overflow: the ’overflow’ property

.... 424C.7.64 Section 11.1.1 Overflow: the ’overflow’ property

30 Mar 2011 19:5022

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

.... 424C.7.65 Section 11.1.1 Overflow: the ’overflow’ property

..... 424C.7.66 Section 11.1.2 Clipping: the ’clip’ property

........... 424C.7.67 Section 12.5 Lists
C.7.68 Section 12.5.1 Lists: the ’list-style-type’, ’list-style-image’,

....... 425’list-style-position’, and ’list-style’ properties
C.7.69 Section 12.5.1 Lists: the ’list-style-type’, ’list-style-image’,

....... 425’list-style-position’, and ’list-style’ properties
C.7.70 Section 12.5.1 Lists: the ’list-style-type’, ’list-style-image’,

....... 425’list-style-position’, and ’list-style’ properties
C.7.71 Section 12.5.1 Lists: the ’list-style-type’, ’list-style-image’,

....... 425’list-style-position’, and ’list-style’ properties
C.7.72 Section 12.5.1 Lists: the ’list-style-type’, ’list-style-image’,

....... 425’list-style-position’, and ’list-style’ properties

..... 426C.7.73 Section 13.2 Page boxes: the @page rule
C.7.74 Section 13.2.2 Page selectors: selecting left, right, and first

................ 426pages

.426C.7.75 Section 13.3.2 Breaks inside elements: ’orphans’, ’widows’

....... 427C.7.76 Section 13.3.3 Allowed page breaks

... 427C.7.77 Section 15.3 Font family: the ’font-family’ property

....... 427C.7.78 Section 15.3.1 Generic font families

.. 428C.7.79 Section 15.6 Font boldness: the ’font-weight’ property

.. 428C.7.80 Section 15.6 Font boldness: the ’font-weight’ property

.... 428C.7.81 Section 15.7 Font size: the ’font-size’ property

... 429C.7.82 Section 16.1 Indentation: the ’text-indent’ property

... 429C.7.83 Section 16.1 Indentation: the ’text-indent’ property

.... 429C.7.84 Section 16.2 Alignment: the ’text-align’ property

.... 429C.7.85 Section 16.2 Alignment: the ’text-align’ property
C.7.86 Section 16.3.1 Underlining, overlining, striking, and blinking: the

........... 430’text-decoration’ property
C.7.87 Section 16.3.1 Underlining, overlining, striking, and blinking: the

........... 430’text-decoration’ property
C.7.88 Section 16.4 Letter and word spacing: the ’letter-spacing’ and

........... 431’word-spacing’ properties

... 431C.7.89 Section 16.6 White space: the ’white-space’ property

... 432C.7.90 Section 16.6.1 The ’white-space’ processing model

... 432C.7.91 Section 16.6.1 The ’white-space’ processing model

... 432C.7.92 Section 16.6.1 The ’white-space’ processing model

....... 432C.7.93 Section 17.2 The CSS table model

...... 432C.7.94 Section 17.2.1 Anonymous table objects

...... 432C.7.95 Section 17.2.1 Anonymous table objects

... 432C.7.96 Section 17.4 Tables in the visual formatting model

... 433C.7.97 Section 17.4 Tables in the visual formatting model

...... 433C.7.98 Section 17.5.2.2 Automatic table layout

...... 434C.7.99 Section 17.5.3 Table height algorithms

2330 Mar 2011 19:50

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

... 434C.7.100 Section 17.5.4 Horizontal alignment in a column

....... 434C.7.101 Section B.2 Informative references

..... 434C.7.102 Section D. Default style sheet for HTML 4

......... 435C.7.103 Section E.2 Painting order

....... 435C.7.104 Appendix G Grammar of CSS 2.1

.... 435C.8 Changes since the working draft of 7 December 2010

.......... 435C.8.1 8.3.1 Collapsing margins

........ 435C.8.2 10.8.1 Leading and half-leading

....... 435C.8.3 10.3 Calculating widths and margins

.......... 435C.8.4 14.3 Gamma correction

........ 436C.8.5 11.1.2 Clipping: the ’clip’ property

........ 436C.8.6 9.4.2 Inline formatting contexts

........ 436C.8.7 10.3.2 Inline, replaced elements

....... 436C.8.8 10.1 Definition of "containing block"

.. 437C.8.9 13.2.2 Page selectors: selecting left, right, and first pages

......... 437C.8.10 8.3.1 Collapsing margins
C.8.11 10.8 Line height calculations: the ’line-height’ and ’vertical-align’

............... 437properties

........ 438C.8.12 10.8.1 Leading and half-leading

....... 438C.8.13 10.6.1 Inline, non-replaced elements

..... 438C.8.14 9.5.1 Positioning the float: the ’float’ property

........ 438C.8.15 9.2.1.1 Anonymous block boxes

...... 439C.8.16 5.12.1 The :first-line pseudo-element

..... 439C.8.17 16.6 White space: the ’white-space’ property
C.8.18 12.5.1 Lists: the ’list-style-type’, ’list-style-image’, ’list-style-posi-

.......... 439tion’, and ’list-style’ properties

.. 440C.8.19 9.7 Relationships between ’display’, ’position’, and ’float’

........ 440C.8.20 9.4.2 Inline formatting contexts

........... 440C.8.21 4.1.9 Comments
C.8.22 12.5.1 Lists: the ’list-style-type’, ’list-style-image’, ’list-style-posi-

.......... 440tion’, and ’list-style’ properties

..... 441C.8.23 9.5.1 Positioning the float: the ’float’ property

.......... 441C.8.24 9.3 Positioning schemes
441C.8.25 9.10 Text direction: the ’direction’ and ’unicode-bidi’ properties

C.8.26 16.3.1 Underlining, overlining, striking, and blinking: the
........... 442’text-decoration’ property

C.8.27 16.3.1 Underlining, overlining, striking, and blinking: the
........... 442’text-decoration’ property

C.8.28 10.4 Minimum and maximum widths: ’min-width’ and
............... 442’max-width’
..... 442C.8.29 9.3.2 Box offsets: ’top’, ’right’, ’bottom’, ’left’
........ 443C.8.30 9.2.1.1 Anonymous block boxes
..... 443C.8.31 17.4 Tables in the visual formatting model
....... 443C.8.32 11.1.2 Clipping: the ’clip’ property

30 Mar 2011 19:5024

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

....... 444C.8.33 13.2 Page boxes: the @page rule

........... 445C.8.34 4.1.1 Tokenization

....... 445C.8.35 4.2 Rules for handling parsing errors

............ 445C.8.36 3.1 Definitions

.......... 445C.8.37 4.3.4 URLs and URIs

............. 445C.8.38 9.5 Floats

...... 445C.8.39 11.1.1 Overflow: the ’overflow’ property

........ 446C.8.40 9.2.1.1 Anonymous block boxes

...... 446C.8.41 16.2 Alignment: the ’text-align’ property

............. 446C.8.42 9.5 Floats

........ 446C.8.43 9.4.2 Inline formatting contexts

.......... 447C.8.44 5.12 Pseudo-elements

............. 447C.8.45 9.5 Floats

............. 447C.8.46 9.5 Floats
C.8.47 14.2.1 Background properties: ’background-color’, ’back-
ground-image’, ’background-repeat’, ’background-attachment’, ’back-

......... 447ground-position’, and ’background’

......... 447C.8.48 9.2.4 The ’display’ property

.......... 450C.8.49 6.1.2 Computed values

........ 450C.8.50 10.3.2 Inline, replaced elements
450C.8.51 Section 9.5.2 Controlling flow next to floats: the ’clear’ property

........... 451C.8.52 G.2 Lexical scanner
451C.8.53 Section 9.5.2 Controlling flow next to floats: the ’clear’ property

............. 451C.8.54 9.5 Floats

......... 453Appendix D. Default style sheet for HTML 4

...... 455Appendix E. Elaborate description of Stacking Contexts

............... 455E.1 Definitions

.............. 455E.2 Painting order

................ 458E.3 Notes

............ 459Appendix F. Full property table

........... 467Appendix G. Grammar of CSS 2.1

............... 467G.1 Grammar

.............. 469G.2 Lexical scanner

..... 471G.3 Comparison of tokenization in CSS 2.1 and CSS1

............ 472G.4 Implementation note

............... 475Appendix I. Index

2530 Mar 2011 19:50

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

30 Mar 2011 19:5026

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification

1 About the CSS 2.1 Specification
Contents

.............. 271.1 CSS 2.1 vs CSS 2

............ 281.2 Reading the specification

.......... 281.3 How the specification is organized

................ 291.4 Conventions

...... 291.4.1 Document language elements and attributes

........... 291.4.2 CSS property definitions

.............. 291.4.2.1 Value

.............. 311.4.2.2 Initial

............. 311.4.2.3 Applies to

............. 311.4.2.4 Inherited

........... 311.4.2.5 Percentage values

............ 311.4.2.6 Media groups

........... 321.4.2.7 Computed value

............ 321.4.3 Shorthand properties

............ 321.4.4 Notes and examples

.......... 331.4.5 Images and long descriptions

.............. 331.5 Acknowledgments

1.1 CSS 2.1 vs CSS 2
The CSS community has gained significant experience with the CSS2 specification
since it became a recommendation in 1998. Errors in the CSS2 specification have
subsequently been corrected via the publication of various errata, but there has not
yet been an opportunity for the specification to be changed based on experience
gained.

While many of these issues will be addressed by the upcoming CSS3 specifica-
tions, the current state of affairs hinders the implementation and interoperability of
CSS2. The CSS 2.1 specification attempts to address this situation by:

Maintaining compatibility with those portions of CSS2 that are widely accepted
and implemented.
Incorporating all published CSS2 errata.
Where implementations overwhelmingly differ from the CSS2 specification,
modifying the specification to be in accordance with generally accepted practice.
Removing CSS2 features which, by virtue of not having been implemented,
have been rejected by the CSS community. CSS 2.1 aims to reflect what CSS
features are reasonably widely implemented for HTML and XML languages in
general (rather than only for a particular XML language, or only for HTML).
Removing CSS2 features that will be obsoleted by CSS3, thus encouraging

2730 Mar 2011 19:50

About the CSS 2.1 Specification

adoption of the proposed CSS3 features in their place.
Adding a (very) small number of new property values, [p. 342] when implemen-
tation experience has shown that they are needed for implementing CSS2.

Thus, while it is not the case that a CSS2 style sheet is necessarily
forwards-compatible with CSS 2.1, it is the case that a style sheet restricting itself to
CSS 2.1 features is more likely to find a compliant user agent today and to preserve
forwards compatibility in the future. While breaking forward compatibility is not desir-
able, we believe the advantages to the revisions in CSS 2.1 are worthwhile.

CSS 2.1 is derived from and is intended to replace CSS2. Some parts of CSS2
are unchanged in CSS 2.1, some parts have been altered, and some parts removed.
The removed portions may be used in a future CSS3 specification. Future specs
should refer to CSS 2.1 (unless they need features from CSS2 which have been
dropped in CSS 2.1, and then they should only reference CSS2 for those features,
or preferably reference such feature(s) in the respective CSS3 Module that includes
those feature(s)).

1.2 Reading the specification
This section is non-normative.

This specification has been written with two types of readers in mind: CSS authors
and CSS implementors. We hope the specification will provide authors with the tools
they need to write efficient, attractive, and accessible documents, without overexpos-
ing them to CSS’s implementation details. Implementors, however, should find all
they need to build conforming user agents [p. 47] . The specification begins with a
general presentation of CSS and becomes more and more technical and specific
towards the end. For quick access to information, a general table of contents,
specific tables of contents at the beginning of each section, and an index provide
easy navigation, in both the electronic and printed versions.

The specification has been written with two modes of presentation in mind: elec-
tronic and printed. Although the two presentations will no doubt be similar, readers
will find some differences. For example, links will not work in the printed version
(obviously), and page numbers will not appear in the electronic version. In case of a
discrepancy, the electronic version is considered the authoritative version of the
document.

1.3 How the specification is organized
This section is non-normative.

The specification is organized into the following sections:

Section 2: An introduction to CSS 2.1
The introduction includes a brief tutorial on CSS 2.1 and a discussion of design
principles behind CSS 2.1.

30 Mar 2011 19:5028

About the CSS 2.1 Specification

Sections 3 - 18: CSS 2.1 reference manual.
The bulk of the reference manual consists of the CSS 2.1 language reference.
This reference defines what may go into a CSS 2.1 style sheet (syntax, proper-
ties, property values) and how user agents must interpret these style sheets in
order to claim conformance [p. 47] .

Appendixes:
Appendixes contain information about aural properties [p. 305] (non-normative),
a sample style sheet for HTML 4 [p. 453] , changes from CSS2 [p. 329] , the
grammar of CSS 2.1 [p. 467] , a list of normative and informative references
[p. 325] , and two indexes: one for properties [p. 459] and one general index
[p. 475] .

1.4 Conventions

1.4.1 Document language elements and attributes

CSS property and pseudo-class names are delimited by single quotes.
CSS values are delimited by single quotes.
Document language attribute names are in lowercase letters and delimited by
double quotes.

1.4.2 CSS property definitions
Each CSS property definition begins with a summary of key information that resem-
bles the following:

’property-name’

Value: legal values & syntax
Initial: initial value
Applies to: elements this property applies to
Inherited: whether the property is inherited
Percentages: how percentage values are interpreted
Media: which media groups the property applies to
Computed value: how to compute the computed value

1.4.2.1 Value

This part specifies the set of valid values for the property whose name is ’prop-
erty-name’. A property value can have one or more components. Component value
types are designated in several ways:

1. keyword values (e.g., auto, disc, etc.)
2. basic data types, which appear between "<" and ">" (e.g., <length>, <percent-

age>, etc.). In the electronic version of the document, each instance of a basic
data type links to its definition.

2930 Mar 2011 19:50

About the CSS 2.1 Specification

3. types that have the same range of values as a property bearing the same name
(e.g., <’border-width’> <’background-attachment’>, etc.). In this case, the type
name is the property name (complete with quotes) between "<" and ">" (e.g.,
<’border-width’>). Such a type does not include the value ’inherit’. In the elec-
tronic version of the document, each instance of this type of non-terminal links
to the corresponding property definition.

4. non-terminals that do not share the same name as a property. In this case, the
non-terminal name appears between "<" and ">", as in <border-width>. Notice
the distinction between <border-width> and <’border-width’>; the latter is
defined in terms of the former. The definition of a non-terminal is located near its
first appearance in the specification. In the electronic version of the document,
each instance of this type of value links to the corresponding value definition.

Other words in these definitions are keywords that must appear literally, without
quotes (e.g., red). The slash (/) and the comma (,) must also appear literally.

Component values may be arranged into property values as follows:

Several juxtaposed words mean that all of them must occur, in the given order.
A bar (|) separates two or more alternatives: exactly one of them must occur.
A double bar (||) separates two or more options: one or more of them must
occur, in any order.
A double ampersand (&&) separates two or more components, all of which must
occur, in any order.
Brackets ([]) are for grouping.

Juxtaposition is stronger than the double ampersand, the double ampersand is
stronger than the double bar, and the double bar is stronger than the bar. Thus, the
following lines are equivalent:

 a b | c || d && e f
 [a b] | [c || [d && [e f]]]

Every type, keyword, or bracketed group may be followed by one of the following
modifiers:

An asterisk (*) indicates that the preceding type, word, or group occurs zero or
more times.
A plus (+) indicates that the preceding type, word, or group occurs one or more
times.
A question mark (?) indicates that the preceding type, word, or group is optional.
A pair of numbers in curly braces ({A,B}) indicates that the preceding type, word,
or group occurs at least A and at most B times.

The following examples illustrate different value types:

30 Mar 2011 19:5030

About the CSS 2.1 Specification

Value: N | NW | NE
Value: [<length> | thick | thin]{1,4}
Value: [<family-name> ,]* <family-name>
Value: <uri>? <color> [/ <color>]?
Value: <uri> || <color>
Value: inset? && [<length>{2,4} && <color>?]

Component values are specified in terms of tokens, as described in Appendix G.2
[p. 469] . As the grammar allows spaces between tokens in the components of the
expr production, spaces may appear between tokens in property values.

Note: In many cases, spaces will in fact be required between tokens in order to
distinguish them from each other. For example, the value ’1em2em’ would be parsed
as a single DIMEN token with the number ’1’ and the identifier ’em2em’, which is an
invalid unit. In this case, a space would be required before the ’2’ to get this parsed
as the two lengths ’1em’ and ’2em’.

1.4.2.2 Initial

This part specifies the property’s initial value. Please consult the section on the
cascade [p. 99] for information about the interaction between style sheet-specified,
inherited, and initial property values.

1.4.2.3 Applies to

This part lists the elements to which the property applies. All elements are consid-
ered to have all properties, but some properties have no rendering effect on some
types of elements. For example, the ’clear’ property only affects block-level
elements.

1.4.2.4 Inherited

This part indicates whether the value of the property is inherited from an ancestor
element. Please consult the section on the cascade [p. 99] for information about the
interaction between style sheet-specified, inherited, and initial property values.

1.4.2.5 Percentage values

This part indicates how percentages should be interpreted, if they occur in the value
of the property. If "N/A" appears here, it means that the property does not accept
percentages in its values.

1.4.2.6 Media groups

This part indicates the media groups [p. 110] to which the property applies. Informa-
tion about media groups is non-normative.

3130 Mar 2011 19:50

About the CSS 2.1 Specification

1.4.2.7 Computed value

This part describes the computed value for the property. See the section on
computed values [p. 100] for how this definition is used.

1.4.3 Shorthand properties
Some properties are shorthand properties, meaning that they allow authors to
specify the values of several properties with a single property.

For instance, the ’font’ property is a shorthand property for setting ’font-style’,
’font-variant’, ’font-weight’, ’font-size’, ’line-height’, and ’font-family’ all at once.

When values are omitted from a shorthand form, each "missing" property is
assigned its initial value (see the section on the cascade [p. 99]).

Example(s):

The multiple style rules of this example:

h1 {
 font-weight: bold;
 font-size: 12pt;
 line-height: 14pt;
 font-family: Helvetica;
 font-variant: normal;
 font-style: normal;
}

may be rewritten with a single shorthand property:

h1 { font: bold 12pt/14pt Helvetica }

In this example, ’font-variant’, and ’font-style’ take their initial values.

1.4.4 Notes and examples
All examples that illustrate illegal usage are clearly marked as "ILLEGAL
EXAMPLE".

HTML examples lacking DOCTYPE declarations are SGML Text Entities conform-
ing to the HTML 4.01 Strict DTD [HTML4]. Other HTML examples conform to the
DTDs given in the examples.

All notes are informative only.

Examples and notes are marked within the source HTML [p. 43] for the specifica-
tion and CSS user agents will render them specially.

30 Mar 2011 19:5032

About the CSS 2.1 Specification

1.4.5 Images and long descriptions
Most images in the electronic version of this specification are accompanied by "long
descriptions" of what they represent. A link to the long description is denoted by a
"[D]" after the image.

Images and long descriptions are informative only.

1.5 Acknowledgments
This section is non-normative.

CSS 2.1 is based on CSS2. See the acknowledgments section of CSS2 [p. ??] for
the people that contributed to CSS2.

We would like to thank the following people who, through their input and feedback
on the www-style mailing list, have helped us with the creation of this specification:
Andrew Clover, Bernd Mielke, C. Bottelier, Christian Roth, Christoph Päper, Claus
Färber, Coises, Craig Saila, Darren Ferguson, Dylan Schiemann, Etan Wexler,
George Lund, James Craig, Jan Eirik Olufsen, Jan Roland Eriksson, Joris Huizer,
Joshua Prowse, Kai Lahmann, Kevin Smith, Lachlan Cannon, Lars Knoll, Lauri Rait-
tila, Mark Gallagher, Michael Day, Peter Sheerin, Rijk van Geijtenbeek, Robin
Berjon, Scott Montgomery, Shelby Moore, Stuart Ballard, Tom Gilder, Vadim
Plessky, and the Open eBook Publication Structure Working Group Editors. We
would also like to thank Gary Schnabl, Glenn Adams and Susan Lesch who helped
proofread this document.

In addition, we would like to extend special thanks to fantasai, Ada Chan and Boris
Zbarsky who have contributed significant time to CSS 2.1, and to Kimberly Blessing
for help with the editing.

3330 Mar 2011 19:50

About the CSS 2.1 Specification

30 Mar 2011 19:5034

About the CSS 2.1 Specification

2 Introduction to CSS 2.1
Contents

.......... 352.1 A brief CSS 2.1 tutorial for HTML

........... 382.2 A brief CSS 2.1 tutorial for XML

........... 392.3 The CSS 2.1 processing model

.............. 402.3.1 The canvas

.......... 402.3.2 CSS 2.1 addressing model

............. 412.4 CSS design principles

2.1 A brief CSS 2.1 tutorial for HTML
This section is non-normative.

In this tutorial, we show how easy it can be to design simple style sheets. For this
tutorial, you will need to know a little HTML (see [HTML4]) and some basic desktop
publishing terminology.

We begin with a small HTML document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Bach’s home page</TITLE>
 </HEAD>
 <BODY>
 <H1>Bach’s home page</H1>
 <P>Johann Sebastian Bach was a prolific composer.
 </BODY>
</HTML>

To set the text color of the H1 elements to red, you can write the following CSS
rules:

 h1 { color: red }

A CSS rule consists of two main parts: selector [p. 77] (’h1’) and declaration
(’color: red’). In HTML, element names are case-insensitive so ’h1’ works just as well
as ’H1’. The declaration has two parts: property name (’color’) and property value
(’red’). While the example above tries to influence only one of the properties needed
for rendering an HTML document, it qualifies as a style sheet on its own. Combined
with other style sheets (one fundamental feature of CSS is that style sheets are
combined), the rule will determine the final presentation of the document.

The HTML 4 specification defines how style sheet rules may be specified for
HTML documents: either within the HTML document, or via an external style sheet.
To put the style sheet into the document, use the STYLE element:

3530 Mar 2011 19:50

Introduction to CSS 2.1

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Bach’s home page</TITLE>
 <STYLE type="text/css">
 h1 { color: red }
 </STYLE>
 </HEAD>
 <BODY>
 <H1>Bach’s home page</H1>
 <P>Johann Sebastian Bach was a prolific composer.
 </BODY>
</HTML>

For maximum flexibility, we recommend that authors specify external style sheets;
they may be changed without modifying the source HTML document, and they may
be shared among several documents. To link to an external style sheet, you can use
the LINK element:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Bach’s home page</TITLE>
 <LINK rel="stylesheet" href="bach.css" type="text/css">
 </HEAD>
 <BODY>
 <H1>Bach’s home page</H1>
 <P>Johann Sebastian Bach was a prolific composer.
 </BODY>
</HTML>

The LINK element specifies:

the type of link: to a "stylesheet".
the location of the style sheet via the "href" attribute.
the type of style sheet being linked: "text/css".

To show the close relationship between a style sheet and the structured markup,
we continue to use the STYLE element in this tutorial. Let’s add more colors:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Bach’s home page</TITLE>
 <STYLE type="text/css">
 body { color: black; background: white }
 h1 { color: red; background: white }
 </STYLE>
 </HEAD>
 <BODY>
 <H1>Bach’s home page</H1>
 <P>Johann Sebastian Bach was a prolific composer.
 </BODY>
</HTML>

30 Mar 2011 19:5036

Introduction to CSS 2.1

The style sheet now contains four rules: the first two set the color and background
of the BODY element (it’s a good idea to set the text color and background color
together), while the last two set the color and the background of the H1 element.
Since no color has been specified for the P element, it will inherit the color from its
parent element, namely BODY. The H1 element is also a child element of BODY but
the second rule overrides the inherited value. In CSS there are often such conflicts
between different values, and this specification describes how to resolve them.

CSS 2.1 has more than 90 properties, including ’color’. Let’s look at some of the
others:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Bach’s home page</TITLE>
 <STYLE type="text/css">
 body {
 font-family: "Gill Sans", sans-serif;
 font-size: 12pt;
 margin: 3em;
 }
 </STYLE>
 </HEAD>
 <BODY>
 <H1>Bach’s home page</H1>
 <P>Johann Sebastian Bach was a prolific composer.
 </BODY>
</HTML>

The first thing to notice is that several declarations are grouped within a block
enclosed by curly braces ({...}), and separated by semicolons, though the last decla-
ration may also be followed by a semicolon.

The first declaration on the BODY element sets the font family to "Gill Sans". If that
font is not available, the user agent (often referred to as a "browser") will use the
’sans-serif’ font family which is one of five generic font families which all users
agents know. Child elements of BODY will inherit the value of the ’font-family’ prop-
erty.

The second declaration sets the font size of the BODY element to 12 points. The
"point" unit is commonly used in print-based typography to indicate font sizes and
other length values. It’s an example of an absolute unit which does not scale relative
to the environment.

The third declaration uses a relative unit which scales with regard to its surround-
ings. The "em" unit refers to the font size of the element. In this case the result is that
the margins around the BODY element are three times wider than the font size.

3730 Mar 2011 19:50

Introduction to CSS 2.1

2.2 A brief CSS 2.1 tutorial for XML
This section is non-normative.

CSS can be used with any structured document format, for example with applica-
tions of the eXtensible Markup Language [XML10]. In fact, XML depends more on
style sheets than HTML, since authors can make up their own elements that user
agents do not know how to display.

Here is a simple XML fragment:

<ARTICLE>
 <HEADLINE>Fredrick the Great meets Bach</HEADLINE>
 <AUTHOR>Johann Nikolaus Forkel</AUTHOR>
 <PARA>
 One evening, just as he was getting his
 <INSTRUMENT>flute</INSTRUMENT> ready and his
 musicians were assembled, an officer brought him a list of
 the strangers who had arrived.
 </PARA>
</ARTICLE>

To display this fragment in a document-like fashion, we must first declare which
elements are inline-level (i.e., do not cause line breaks) and which are block-level
(i.e., cause line breaks).

INSTRUMENT { display: inline }
ARTICLE, HEADLINE, AUTHOR, PARA { display: block }

The first rule declares INSTRUMENT to be inline and the second rule, with its
comma-separated list of selectors, declares all the other elements to be block-level.
Element names in XML are case-sensitive, so a selector written in lowercase (e.g.,
’instrument’) is different from uppercase (e.g., ’INSTRUMENT’).

One way of linking a style sheet to an XML document is to use a processing
instruction:

<?xml-stylesheet type="text/css" href="bach.css"?>
<ARTICLE>
 <HEADLINE>Fredrick the Great meets Bach</HEADLINE>
 <AUTHOR>Johann Nikolaus Forkel</AUTHOR>
 <PARA>
 One evening, just as he was getting his
 <INSTRUMENT>flute</INSTRUMENT> ready and his
 musicians were assembled, an officer brought him a list of
 the strangers who had arrived.
 </PARA>
</ARTICLE>

A visual user agent could format the above example as:

30 Mar 2011 19:5038

Introduction to CSS 2.1

Fredrick the Great meets Bach
Johann Nikolaus Forkel
One evening, just as he was getting his flute ready and his
musicians were assembled, an officer brought him a list of
the strangers who had arrived.

Notice that the word "flute" remains within the paragraph since it is the content of
the inline element INSTRUMENT.

Still, the text is not formatted the way you would expect. For example, the headline
font size should be larger than then the rest of the text, and you may want to display
the author’s name in italic:

INSTRUMENT { display: inline }
ARTICLE, HEADLINE, AUTHOR, PARA { display: block }
HEADLINE { font-size: 1.3em }
AUTHOR { font-style: italic }
ARTICLE, HEADLINE, AUTHOR, PARA { margin: 0.5em }

A visual user agent could format the above example as:

Fredrick the Great meets Bach
Johann Nikolaus Forkel

One evening, just as he was getting his flute ready and his
musicians were assembled, an officer brought him a list of
the strangers who had arrived.

Adding more rules to the style sheet will allow you to further describe the presen-
tation of the document.

2.3 The CSS 2.1 processing model
This section up to but not including its subsections is non-normative.

This section presents one possible model of how user agents that support CSS
work. This is only a conceptual model; real implementations may vary.

In this model, a user agent processes a source by going through the following
steps:

1. Parse the source document and create a document tree [p. 45] .
2. Identify the target media type [p. 107] .
3. Retrieve all style sheets associated with the document that are specified for the

target media type [p. 107] .

3930 Mar 2011 19:50

Introduction to CSS 2.1

4. Annotate every element of the document tree by assigning a single value to
every property [p. 59] that is applicable to the target media type [p. 107] . Prop-
erties are assigned values according to the mechanisms described in the
section on cascading and inheritance [p. 99] .

Part of the calculation of values depends on the formatting algorithm appropri-
ate for the target media type [p. 107] . For example, if the target medium is the
screen, user agents apply the visual formatting model [p. 127] .

5. From the annotated document tree, generate a formatting structure. Often, the
formatting structure closely resembles the document tree, but it may also differ
significantly, notably when authors make use of pseudo-elements and gener-
ated content. First, the formatting structure need not be "tree-shaped" at all --
the nature of the structure depends on the implementation. Second, the format-
ting structure may contain more or less information than the document tree. For
instance, if an element in the document tree has a value of ’none’ for the
’display’ property, that element will generate nothing in the formatting structure.
A list element, on the other hand, may generate more information in the format-
ting structure: the list element’s content and list style information (e.g., a bullet
image).

Note that the CSS user agent does not alter the document tree during this
phase. In particular, content generated due to style sheets is not fed back to the
document language processor (e.g., for reparsing).

6. Transfer the formatting structure to the target medium (e.g., print the results,
display them on the screen, render them as speech, etc.).

2.3.1 The canvas
For all media, the term canvas describes "the space where the formatting structure is
rendered." The canvas is infinite for each dimension of the space, but rendering
generally occurs within a finite region of the canvas, established by the user agent
according to the target medium. For instance, user agents rendering to a screen
generally impose a minimum width and choose an initial width based on the dimen-
sions of the viewport [p. 128] . User agents rendering to a page generally impose
width and height constraints. Aural user agents may impose limits in audio space,
but not in time.

2.3.2 CSS 2.1 addressing model
CSS 2.1 selectors [p. 77] and properties allow style sheets to refer to the following
parts of a document or user agent:

Elements in the document tree and certain relationships between them (see the
section on selectors [p. 77]).
Attributes of elements in the document tree, and values of those attributes (see
the section on attribute selectors [p. 82]).
Some parts of element content (see the :first-line [p. 94] and :first-letter [p. 94]
pseudo-elements).

30 Mar 2011 19:5040

Introduction to CSS 2.1

Elements of the document tree when they are in a certain state (see the section
on pseudo-classes [p. 87]).
Some aspects of the canvas [p. 40] where the document will be rendered.
Some system information (see the section on user interface [p. 297]).

2.4 CSS design principles
This section is non-normative.

CSS 2.1, as CSS2 and CSS1 before it, is based on a set of design principles:

Forward and backward compatibility . CSS 2.1 user agents will be able to
understand CSS1 style sheets. CSS1 user agents will be able to read CSS 2.1
style sheets and discard parts they do not understand. Also, user agents with no
CSS support will be able to display style-enhanced documents. Of course, the
stylistic enhancements made possible by CSS will not be rendered, but all
content will be presented.

Complementary to structured documents . Style sheets complement struc-
tured documents (e.g., HTML and XML applications), providing stylistic informa-
tion for the marked-up text. It should be easy to change the style sheet with little
or no impact on the markup.

Vendor, platform, and device independence . Style sheets enable documents
to remain vendor, platform, and device independent. Style sheets themselves
are also vendor and platform independent, but CSS 2.1 allows you to target a
style sheet for a group of devices (e.g., printers).

Maintainability . By pointing to style sheets from documents, webmasters can
simplify site maintenance and retain consistent look and feel throughout the site.
For example, if the organization’s background color changes, only one file
needs to be changed.

Simplicity . CSS is a simple style language which is human readable and
writable. The CSS properties are kept independent of each other to the largest
extent possible and there is generally only one way to achieve a certain effect.

Network performance . CSS provides for compact encodings of how to present
content. Compared to images or audio files, which are often used by authors to
achieve certain rendering effects, style sheets most often decrease the content
size. Also, fewer network connections have to be opened which further
increases network performance.

Flexibility . CSS can be applied to content in several ways. The key feature is
the ability to cascade style information specified in the default (user agent) style
sheet, user style sheets, linked style sheets, the document head, and in
attributes for the elements forming the document body.

Richness . Providing authors with a rich set of rendering effects increases the
richness of the Web as a medium of expression. Designers have been longing
for functionality commonly found in desktop publishing and slide-show applica-

4130 Mar 2011 19:50

Introduction to CSS 2.1

tions. Some of the requested rendering effects conflict with device indepen-
dence, but CSS 2.1 goes a long way toward granting designers their requests.

Alternative language bindings . The set of CSS properties described in this
specification form a consistent formatting model for visual and aural presenta-
tions. This formatting model can be accessed through the CSS language, but
bindings to other languages are also possible. For example, a JavaScript
program may dynamically change the value of a certain element’s ’color’ prop-
erty.

Accessibility . Several CSS features will make the Web more accessible to
users with disabilities:

Properties to control font appearance allow authors to eliminate inaccessi-
ble bit-mapped text images.
Positioning properties allow authors to eliminate mark-up tricks (e.g., invisi-
ble images) to force layout.
The semantics of !important rules mean that users with particular
presentation requirements can override the author’s style sheets.
The ’inherit’ value for all properties improves cascading generality and
allows for easier and more consistent style tuning.
Improved media support, including media groups and the braille,
embossed, and tty media types, will allow users and authors to tailor pages
to those devices.

Note. For more information about designing accessible documents using CSS
and HTML, see [WAI-PAGEAUTH].

30 Mar 2011 19:5042

Introduction to CSS 2.1

3 Conformance: Requirements and Recommen-
dations
Contents

................ 433.1 Definitions

.............. 473.2 UA Conformance

............... 483.3 Error conditions

............ 483.4 The text/css content type

3.1 Definitions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 (see [RFC2119]).
However, for readability, these words do not appear in all uppercase letters in this
specification.

At times, this specification recommends good practice for authors and user
agents. These recommendations are not normative and conformance with this speci-
fication does not depend on their realization. These recommendations contain the
expression "We recommend ...", "This specification recommends ...", or some similar
wording.

The fact that a feature is marked as deprecated (namely the ’aural’ [p. 305]
keyword) or going to be deprecated in CSS3 (namely the system colors [p. 298])
also has no influence on conformance. (For example, ’aural’ is marked as
non-normative, so UAs do not need to support it; the system colors are normative,
so UAs must support them.)

All sections of this specification, including appendices, are normative unless other-
wise noted.

Examples and notes [p. 32] are not normative.

Example(s):

Examples usually have the word "example" near their start ("Example:", "The
following example¼," "For example," etc.) and are shown in the color maroon, like
this paragraph.

Notes start with the word "Note," are indented and shown in green, like this para-
graph.

Figures are for illustration only. They are not reference renderings, unless explic-
itly stated.

4330 Mar 2011 19:50

Conformance: requirements and recommendations

Style sheet
A set of statements that specify presentation of a document.

Style sheets may have three different origins: author [p. 46] , user [p. 46] , and
user agent [p. 46] . The interaction of these sources is described in the section
on cascading and inheritance [p. 99] .

Valid style sheet
The validity of a style sheet depends on the level of CSS used for the style
sheet. All valid CSS1 style sheets are valid CSS 2.1 style sheets, but some
changes from CSS1 mean that a few CSS1 style sheets will have slightly differ-
ent semantics in CSS 2.1. Some features in CSS2 are not part of CSS 2.1, so
not all CSS2 style sheets are valid CSS 2.1 style sheets.

A valid CSS 2.1 style sheet must be written according to the grammar of
CSS 2.1 [p. 467] . Furthermore, it must contain only at-rules, property names,
and property values defined in this specification. An illegal (invalid) at-rule,
property name, or property value is one that is not valid.

Source document
The document to which one or more style sheets apply. This is encoded in
some language that represents the document as a tree of elements [p. 44] .
Each element consists of a name that identifies the type of element, optionally a
number of attributes [p. 45] , and a (possibly empty) content [p. 45] . For
example, the source document could be an XML or SGML instance.

Document language
The encoding language of the source document (e.g., HTML, XHTML, or SVG).
CSS is used to describe the presentation of document languages and CSS does
not change the underlying semantics of the document languages.

Element
(An SGML term, see [ISO8879].) The primary syntactic constructs of the docu-
ment language. Most CSS style sheet rules use the names of these elements
(such as P, TABLE, and OL in HTML) to specify how the elements should be
rendered.

Replaced element

An element whose content is outside the scope of the CSS formatting model,
such as an image, embedded document, or applet. For example, the content of
the HTML IMG element is often replaced by the image that its "src" attribute
designates. Replaced elements often have intrinsic dimensions: an intrinsic
width, an intrinsic height, and an intrinsic ratio. For example, a bitmap image
has an intrinsic width and an intrinsic height specified in absolute units (from
which the intrinsic ratio can obviously be determined). On the other hand, other
documents may not have any intrinsic dimensions (for example, a blank HTML
document).

User agents may consider a replaced element to not have any intrinsic dimen-
sions if it is believed that those dimensions could leak sensitive information to a
third party. For example, if an HTML document changed intrinsic size depending
on the user’s bank balance, then the UA might want to act as if that resource
had no intrinsic dimensions.

30 Mar 2011 19:5044

Conformance: requirements and recommendations

The content of replaced elements is not considered in the CSS rendering
model.

Intrinsic dimensions
The width and height as defined by the element itself, not imposed by the
surroundings. CSS does not define how the intrinsic dimensions are found. In
CSS 2.1 only replaced elements can come with intrinsic dimensions. For raster
images without reliable resolution information, a size of 1 px unit per image
source pixel must be assumed.

Attribute
A value associated with an element, consisting of a name, and an associated
(textual) value.

Content
The content associated with an element in the source document. Some
elements have no content, in which case they are called empty . The content of
an element may include text, and it may include a number of sub-elements, in
which case the element is called the parent of those sub-elements.

Ignore
This term has two slightly different meanings in this specification. First, a CSS
parser must follow certain rules when it discovers unknown or illegal syntax in a
style sheet. The parser must then ignore certain parts of the style sheets. The
exact rules for which parts must be ignored are described in these sections
(Declarations and properties, [p. 59] Rules for handling parsing errors, [p. 60]
Unsupported Values [p. 71]) or may be explained in the text where the term
"ignore" appears. Second, a user agent may (and, in some cases must) disre-
gard certain properties or values in the style sheet, even if the syntax is legal.
For example, table-column elements cannot affect the font of the column, so the
font properties must be ignored.

Rendered content
The content of an element after the rendering that applies to it according to the
relevant style sheets has been applied. How a replaced element’s content is
rendered is not defined by this specification. Rendered content may also be
alternate text for an element (e.g., the value of the XHTML "alt" attribute), and
may include items inserted implicitly or explicitly by the style sheet, such as
bullets, numbering, etc.

Document tree
The tree of elements encoded in the source document. Each element in this tree
has exactly one parent, with the exception of the root element, which has none.

Child
An element A is called the child of element B if and only if B is the parent of A.

Descendant
An element A is called a descendant of an element B, if either (1) A is a child of
B, or (2) A is the child of some element C that is a descendant of B.

Ancestor
An element A is called an ancestor of an element B, if and only if B is a descen-
dant of A.

4530 Mar 2011 19:50

Conformance: requirements and recommendations

Sibling
An element A is called a sibling of an element B, if and only if B and A share the
same parent element. Element A is a preceding sibling if it comes before B in
the document tree. Element B is a following sibling if it comes after A in the
document tree.

Preceding element
An element A is called a preceding element of an element B, if and only if (1) A
is an ancestor of B or (2) A is a preceding sibling of B.

Following element
An element A is called a following element of an element B, if and only if B is a
preceding element of A.

Author
An author is a person who writes documents and associated style sheets. An
authoring tool is a User Agent [p. 46] that generates style sheets.

User
A user is a person who interacts with a user agent to view, hear, or otherwise
use a document and its associated style sheet. The user may provide a
personal style sheet that encodes personal preferences.

User agent (UA)
A user agent is any program that interprets a document written in the document
language and applies associated style sheets according to the terms of this
specification. A user agent may display a document, read it aloud, cause it to be
printed, convert it to another format, etc.
An HTML user agent is one that supports one or more of the HTML specifica-
tions. A user agent that supports XHTML [XHTML], but not HTML is not consid-
ered an HTML user agent for the purpose of conformance with this specification.

Property
CSS defines a finite set of parameters, called properties, that direct the render-
ing of a document. Each property has a name (e.g., ’color’, ’font’, or border’) and
a value (e.g., ’red’, ’12pt Times’, or ’dotted’). Properties are attached to various
parts of the document and to the page on which the document is to be displayed
by the mechanisms of specificity, cascading, and inheritance (see the chapter
on Assigning property values, Cascading, and Inheritance [p. 99]).

Here is an example of a source document written in HTML:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <TITLE>My home page</TITLE>
 <BODY>
 <H1>My home page</H1>
 <P>Welcome to my home page! Let me tell you about my favorite
 composers:

 Elvis Costello
 Johannes Brahms

30 Mar 2011 19:5046

Conformance: requirements and recommendations

 Georges Brassens

 </BODY>
</HTML>

This results in the following tree:

HTML

HEAD

TITLE

BODY

P UL

LI

H1

LILI

According to the definition of HTML 4, HEAD elements will be inferred during
parsing and become part of the document tree even if the "head" tags are not in the
document source. Similarly, the parser knows where the P and LI elements end,
even though there are no </p> and tags in the source.

Documents written in XHTML (and other XML-based languages) behave differ-
ently: there are no inferred elements and all elements must have end tags.

3.2 UA Conformance
This section defines conformance with the CSS 2.1 specification only. There may be
other levels of CSS in the future that may require a user agent to implement a differ-
ent set of features in order to conform.

In general, the following points must be observed by a user agent claiming confor-
mance to this specification:

1. It must recognize one or more of the CSS 2.1 media types [p. 107] .
2. For each source document, it must attempt to retrieve all associated style

sheets that are appropriate for the recognized media types. If it cannot retrieve
all associated style sheets (for instance, because of network errors), it must
display the document using those it can retrieve.

3. It must parse the style sheets according to this specification. In particular, it
must recognize all at-rules, blocks, declarations, and selectors (see the
grammar of CSS 2.1 [p. 467]). If a user agent encounters a property that
applies for a supported media type, the user agent must parse the value accord-
ing to the property definition. This means that the user agent must accept all
valid values and must ignore declarations with invalid values. User agents must
ignore rules that apply to unsupported media types [p. 107] .

4. For each element in a document tree [p. 45] , it must assign a value for every
property according to the property’s definition and the rules of cascading and
inheritance [p. 99] .

5. If the source document comes with alternate style sheet sets (such as with the

4730 Mar 2011 19:50

Conformance: requirements and recommendations

"alternate" keyword in HTML 4 [HTML4]), the UA must allow the user to select
which style sheet set the UA should apply.

6. The UA must allow the user to turn off the influence of author style sheets.

Not every user agent must observe every point, however:

An application that reads style sheets without rendering any content (e.g., a
CSS 2.1 validator) must respect points 1-3.
An authoring tool is only required to output valid style sheets [p. 44]
A user agent that renders a document with associated style sheets must respect
points 1-6 and render the document according to the media-specific require-
ments set forth in this specification. Values [p. 100] may be approximated when
required by the user agent.

The inability of a user agent to implement part of this specification due to the limi-
tations of a particular device (e.g., a user agent cannot render colors on a
monochrome monitor or page) does not imply non-conformance.

UAs must allow users to specify a file that contains the user style sheet. UAs that
run on devices without any means of writing or specifying files are exempted from
this requirement. Additionally, UAs may offer other means to specify user prefer-
ences, for example, through a GUI.

CSS 2.1 does not define which properties apply to form controls and frames, or
how CSS can be used to style them. User agents may apply CSS properties to these
elements. Authors are recommended to treat such support as experimental. A future
level of CSS may specify this further.

3.3 Error conditions
In general, this document specifies error handling behavior throughout the specifica-
tion. For example, see the rules for handling parsing errors [p. 60] .

3.4 The text/css content type
CSS style sheets that exist in separate files are sent over the Internet as a sequence
of bytes accompanied by encoding information. The structure of the transmission,
termed a message entity, is defined by RFC 2045 and RFC 2616 (see [RFC2045]
and [RFC2616]). A message entity with a content type of "text/css" represents an
independent CSS document. The "text/css" content type has been registered by
RFC 2318 ([RFC2318]).

30 Mar 2011 19:5048

Conformance: requirements and recommendations

4 Syntax and basic data types
Contents

................. 494.1 Syntax

.............. 504.1.1 Tokenization

............... 534.1.2 Keywords

......... 544.1.2.1 Vendor-specific extensions

......... 544.1.2.2 Informative Historical Notes

............ 554.1.3 Characters and case

.............. 564.1.4 Statements

............... 574.1.5 At-rules

............... 574.1.6 Blocks

...... 584.1.7 Rule sets, declaration blocks, and selectors

.......... 594.1.8 Declarations and properties

.............. 604.1.9 Comments

........... 604.2 Rules for handling parsing errors

................. 634.3 Values

........... 634.3.1 Integers and real numbers

............... 634.3.2 Lengths

.............. 674.3.3 Percentages

............. 674.3.4 URLs and URIs

............... 684.3.5 Counters

............... 694.3.6 Colors

............... 704.3.7 Strings

............ 714.3.8 Unsupported Values

........... 714.4 CSS style sheet representation

.754.4.1 Referring to characters not represented in a character encoding

4.1 Syntax
This section describes a grammar (and forward-compatible parsing rules) common
to any level of CSS (including CSS 2.1). Future updates of CSS will adhere to this
core syntax, although they may add additional syntactic constraints.

These descriptions are normative. They are also complemented by the normative
grammar rules presented in Appendix G [p. 467] .

In this specification, the expressions "immediately before" or "immediately after"
mean with no intervening white space or comments.

4930 Mar 2011 19:50

Syntax and basic data types

4.1.1 Tokenization
All levels of CSS — level 1, level 2, and any future levels — use the same core
syntax. This allows UAs to parse (though not completely understand) style sheets
written in levels of CSS that did not exist at the time the UAs were created. Design-
ers can use this feature to create style sheets that work with older user agents, while
also exercising the possibilities of the latest levels of CSS.

At the lexical level, CSS style sheets consist of a sequence of tokens. The list of
tokens for CSS is as follows. The definitions use Lex-style regular expressions. Octal
codes refer to ISO 10646 ([ISO10646]). As in Lex, in case of multiple matches, the
longest match determines the token.

30 Mar 2011 19:5050

Syntax and basic data types

Token Definition

IDENT {ident}

ATKEYWORD @{ident}

STRING {string}

BAD_STRING {badstring}

BAD_URI {baduri}

BAD_COMMENT {badcomment}

HASH #{name}

NUMBER {num}

PERCENTAGE {num}%

DIMENSION {num}{ident}

URI
url\({w}{string}{w}\)
|url\({w}([!#$%&*-\[\]-~]| {nonascii}| {escape})* {w}\)

UNICODE-RANGE u\+[0-9a-f?]{1,6}(-[0-9a-f]{1,6})?

CDO <!--

CDC -->

: :

; ;

{ \{

} \}

(\(

) \)

[\[

] \]

S [\t\r\n\f]+

COMMENT \/*[^*]**+([^/*][^*]**+)*\/

FUNCTION {ident}\(

INCLUDES ~=

DASHMATCH |=

DELIM
any other character not matched by the above rules, and neither a
single nor a double quote

5130 Mar 2011 19:50

Syntax and basic data types

The macros in curly braces ({}) above are defined as follows:

Macro Definition

ident [-]? {nmstart}{nmchar}*

name {nmchar}+

nmstart [_a-z]| {nonascii}| {escape}

nonascii [^\0-\237]

unicode \\[0-9a-f]{1,6}(\r\n|[\n\r\t\f])?

escape {unicode}|\\[^\n\r\f0-9a-f]

nmchar [_a-z0-9-]| {nonascii}| {escape}

num [0-9]+|[0-9]*\.[0-9]+

string {string1}| {string2}

string1 \"([^\n\r\f\\"]|\\{nl}| {escape})*\"

string2 \’([^\n\r\f\\’]|\\{nl}| {escape})*\’

badstring {badstring1}| {badstring2}

badstring1 \"([^\n\r\f\\"]|\\{nl}| {escape})*\\?

badstring2 \’([^\n\r\f\\’]|\\{nl}| {escape})*\\?

badcomment {badcomment1}| {badcomment2}

badcomment1 \/*[^*]**+([^/*][^*]**+)*

badcomment2 \/*[^*]*(*+[^/*][^*]*)*

baduri {baduri1}| {baduri2}| {baduri3}

baduri1 url\({w}([!#$%&*-~]| {nonascii}| {escape})* {w}

baduri2 url\({w}{string}{w}

baduri3 url\({w}{badstring}

nl \n|\r\n|\r|\f

w [\t\r\n\f]*

Example(s):

30 Mar 2011 19:5052

Syntax and basic data types

For example, the rule of the longest match means that "red--> " is tokenized as
the IDENT "red-- " followed by the DELIM ">", rather than as an IDENT followed by
a CDC.

Below is the core syntax for CSS. The sections that follow describe how to use it.
Appendix G [p. 467] describes a more restrictive grammar that is closer to the CSS
level 2 language. Parts of style sheets that can be parsed according to this grammar
but not according to the grammar in Appendix G are among the parts that will be
ignored according to the rules for handling parsing errors [p. 60] .

stylesheet : [CDO | CDC | S | statement]*;
statement : ruleset | at-rule;
at-rule : ATKEYWORD S* any* [block | ’;’ S*];
block : ’{’ S* [any | block | ATKEYWORD S* | ’;’ S*]* ’}’ S*;
ruleset : selector? ’{’ S* declaration? [’;’ S* declaration?]* ’}’ S*;
selector : any+;
declaration : property S* ’:’ S* value;
property : IDENT;
value : [any | block | ATKEYWORD S*]+;
any : [IDENT | NUMBER | PERCENTAGE | DIMENSION | STRING
 | DELIM | URI | HASH | UNICODE-RANGE | INCLUDES
 | DASHMATCH | ’:’ | FUNCTION S* [any|unused]* ’)’
 | ’(’ S* [any|unused]* ’)’ | ’[’ S* [any|unused]* ’]’
] S*;
unused : block | ATKEYWORD S* | ’;’ S* | CDO S* | CDC S*;

The "unused" production is not used in CSS and will not be used by any future
extension. It is included here only to help with error handling. (See 4.2 "Rules for
handling parsing errors." [p. 60])

COMMENT tokens do not occur in the grammar (to keep it readable), but any
number of these tokens may appear anywhere outside other tokens. (Note, however,
that a comment before or within the @charset rule disables the @charset.)

The token S in the grammar above stands for white space. Only the characters
"space" (U+0020), "tab" (U+0009), "line feed" (U+000A), "carriage return" (U+000D),
and "form feed" (U+000C) can occur in white space. Other space-like characters,
such as "em-space" (U+2003) and "ideographic space" (U+3000), are never part of
white space.

The meaning of input that cannot be tokenized or parsed is undefined in CSS 2.1.

4.1.2 Keywords
Keywords have the form of identifiers. [p. 55] Keywords must not be placed between
quotes ("..." or ’...’). Thus,

red

is a keyword, but

"red"

5330 Mar 2011 19:50

Syntax and basic data types

is not. (It is a string [p. 70] .) Other illegal examples:

Illegal example(s):

width: "auto";
border: "none";
background: "red";

4.1.2.1 Vendor-specific extensions

In CSS, identifiers may begin with ’- ’ (dash) or ’_’ (underscore). Keywords and prop-
erty names [p. 59] beginning with - ’ or ’_’ are reserved for vendor-specific exten-
sions. Such vendor-specific extensions should have one of the following formats:

’-’ + vendor identifier + ’-’ + meaningful name
’_’ + vendor identifier + ’-’ + meaningful name

Example(s):

For example, if XYZ organization added a property to describe the color of the
border on the East side of the display, they might call it -xyz-border-east-color.

Other known examples:

-moz-box-sizing
-moz-border-radius
-wap-accesskey

An initial dash or underscore is guaranteed never to be used in a property or
keyword by any current or future level of CSS. Thus typical CSS implementations
may not recognize such properties and may ignore them according to the rules for
handling parsing errors [p. 60] . However, because the initial dash or underscore is
part of the grammar, CSS 2.1 implementers should always be able to use a
CSS-conforming parser, whether or not they support any vendor-specific extensions.

Authors should avoid vendor-specific extensions

4.1.2.2 Informative Historical Notes

This section is informative.

At the time of writing, the following prefixes are known to exist:

30 Mar 2011 19:5054

Syntax and basic data types

prefix organization

-ms- , mso- Microsoft

-moz- Mozilla

-o- , -xv- Opera Software

-atsc- Advanced Television Standards Committee

-wap- The WAP Forum

-khtml- KDE

-webkit- Apple

prince- YesLogic

-ah- Antenna House

-hp- Hewlett Packard

-ro- Real Objects

-rim- Research In Motion

-tc- TallComponents

4.1.3 Characters and case
The following rules always hold:

All CSS syntax is case-insensitive within the ASCII range (i.e., [a-z] and [A-Z]
are equivalent), except for parts that are not under the control of CSS. For
example, the case-sensitivity of values of the HTML attributes "id" and "class",
of font names, and of URIs lies outside the scope of this specification. Note in
particular that element names are case-insensitive in HTML, but case-sensitive
in XML.
In CSS, identifiers (including element names, classes, and IDs in selectors
[p. 77]) can contain only the characters [a-zA-Z0-9] and ISO 10646 characters
U+00A0 and higher, plus the hyphen (-) and the underscore (_); they cannot
start with a digit, two hyphens, or a hyphen followed by a digit. Identifiers can
also contain escaped characters and any ISO 10646 character as a numeric
code (see next item). For instance, the identifier "B&W?" may be written as
"B\&W\?" or "B\26 W\3F".

Note that Unicode is code-by-code equivalent to ISO 10646 (see [UNICODE]
and [ISO10646]).

In CSS 2.1, a backslash (\) character can indicate one of three types of charac-
ter escape. Inside a CSS comment, a backslash stands for itself, and if a back-
slash is immediately followed by the end of the style sheet, it also stands for

5530 Mar 2011 19:50

Syntax and basic data types

itself (i.e., a DELIM token).

First, inside a string [p. 70] , a backslash followed by a newline is ignored (i.e.,
the string is deemed not to contain either the backslash or the newline). Outside
a string, a backslash followed by a newline stands for itself (i.e., a DELIM
followed by a newline).

Second, it cancels the meaning of special CSS characters. Any character
(except a hexadecimal digit, linefeed, carriage return, or form feed) can be
escaped with a backslash to remove its special meaning. For example, "\"" is
a string consisting of one double quote. Style sheet preprocessors must not
remove these backslashes from a style sheet since that would change the style
sheet’s meaning.

Third, backslash escapes allow authors to refer to characters they cannot
easily put in a document. In this case, the backslash is followed by at most six
hexadecimal digits (0..9A..F), which stand for the ISO 10646 ([ISO10646]) char-
acter with that number, which must not be zero. (It is undefined in CSS 2.1 what
happens if a style sheet does contain a character with Unicode codepoint zero.)
If a character in the range [0-9a-fA-F] follows the hexadecimal number, the end
of the number needs to be made clear. There are two ways to do that:

1. with a space (or other white space character): "\26 B" ("&B"). In this case,
user agents should treat a "CR/LF" pair (U+000D/U+000A) as a single
white space character.

2. by providing exactly 6 hexadecimal digits: "\000026B" ("&B")

In fact, these two methods may be combined. Only one white space character
is ignored after a hexadecimal escape. Note that this means that a "real" space
after the escape sequence must be doubled.

If the number is outside the range allowed by Unicode (e.g., "\110000" is
above the maximum 10FFFF allowed in current Unicode), the UA may replace
the escape with the "replacement character" (U+FFFD). If the character is to be
displayed, the UA should show a visible symbol, such as a "missing character"
glyph (cf. 15.2, [p. 241] point 5).
Note: Backslash escapes are always considered to be part of an identifier
[p. 55] or a string (i.e., "\7B" is not punctuation, even though "{" is, and "\32" is
allowed at the start of a class name, even though "2" is not).

The identifier "te\st" is exactly the same identifier as "test".

4.1.4 Statements
A CSS style sheet, for any level of CSS, consists of a list of statements (see the
grammar [p. 50] above). There are two kinds of statements: at-rules and rule sets.
There may be white space [p. 53] around the statements.

30 Mar 2011 19:5056

Syntax and basic data types

4.1.5 At-rules
At-rules start with an at-keyword, an ’@’ character followed immediately by an identi-
fier [p. 55] (for example, ’@import’, ’@page’).

An at-rule consists of everything up to and including the next semicolon (;) or the
next block, [p. 57] whichever comes first.

CSS 2.1 user agents must ignore [p. 60] any ’@import’ [p. 102] rule that occurs
inside a block [p. 57] or after any non-ignored statement other than an @charset or
an @import rule.

Illegal example(s):

Assume, for example, that a CSS 2.1 parser encounters this style sheet:

@import "subs.css";
h1 { color: blue }
@import "list.css";

The second ’@import’ is illegal according to CSS 2.1. The CSS 2.1 parser ignores
[p. 60] the whole at-rule, effectively reducing the style sheet to:

@import "subs.css";
h1 { color: blue }

Illegal example(s):

In the following example, the second ’@import’ rule is invalid, since it occurs inside
a ’@media’ block [p. 57] .

@import "subs.css";
@media print {
 @import "print-main.css";
 body { font-size: 10pt }
}
h1 {color: blue }

Instead, to achieve the effect of only importing a style sheet for ’print’ media, use
the @import rule with media syntax, e.g.:

@import "subs.css";
@import "print-main.css" print;
@media print {
 body { font-size: 10pt }
}
h1 {color: blue }

4.1.6 Blocks
A block starts with a left curly brace ({) and ends with the matching right curly brace
(}). In between there may be any tokens, except that parentheses (()), brackets ([]),
and braces ({ }) must always occur in matching pairs and may be nested. Single (’)
and double quotes (") must also occur in matching pairs, and characters between
them are parsed as a string. See Tokenization [p. 50] above for the definition of a

5730 Mar 2011 19:50

Syntax and basic data types

string.

Illegal example(s):

Here is an example of a block. Note that the right brace between the double
quotes does not match the opening brace of the block, and that the second single
quote is an escaped character [p. 55] , and thus does not match the first single
quote:

{ causta: "}" + ({7} * ’\’’) }

Note that the above rule is not valid CSS 2.1, but it is still a block as defined
above.

4.1.7 Rule sets, declaration blocks, and selectors
A rule set (also called "rule") consists of a selector followed by a declaration block.

A declaration block starts with a left curly brace ({) and ends with the matching
right curly brace (}). In between there must be a list of zero or more semicolon-sepa-
rated (;) declarations.

The selector (see also the section on selectors [p. 77]) consists of everything up
to (but not including) the first left curly brace ({). A selector always goes together with
a declaration block. When a user agent cannot parse the selector (i.e., it is not valid
CSS 2.1), it must ignore [p. 60] the selector and the following declaration block (if
any) as well.

CSS 2.1 gives a special meaning to the comma (,) in selectors. However, since it
is not known if the comma may acquire other meanings in future updates of CSS,
the whole statement should be ignored [p. 60] if there is an error anywhere in the
selector, even though the rest of the selector may look reasonable in CSS 2.1.

Illegal example(s):

For example, since the "&" is not a valid token in a CSS 2.1 selector, a CSS 2.1
user agent must ignore [p. 60] the whole second line, and not set the color of H3 to
red:

h1, h2 {color: green }
h3, h4 & h5 {color: red }
h6 {color: black }

Example(s):

Here is a more complex example. The first two pairs of curly braces are inside a
string, and do not mark the end of the selector. This is a valid CSS 2.1 rule.

30 Mar 2011 19:5058

Syntax and basic data types

p[example="public class foo\
{\
 private int x;\
\
 foo(int x) {\
 this.x = x;\
 }\
\
}"] { color: red }

4.1.8 Declarations and properties
A declaration is either empty or consists of a property name, followed by a colon (:),
followed by a property value. Around each of these there may be white space [p. 53]
.

Because of the way selectors work, multiple declarations for the same selector
may be organized into semicolon (;) separated groups.

Example(s):

Thus, the following rules:

h1 { font-weight: bold }
h1 { font-size: 12px }
h1 { line-height: 14px }
h1 { font-family: Helvetica }
h1 { font-variant: normal }
h1 { font-style: normal }

are equivalent to:

h1 {
 font-weight: bold;
 font-size: 12px;
 line-height: 14px;
 font-family: Helvetica;
 font-variant: normal;
 font-style: normal
}

A property name is an identifier [p. 55] . Any token may occur in the property
value. Parentheses ("()"), brackets ("[]"), braces ("{ }"), single quotes (’), and double
quotes (") must come in matching pairs, and semicolons not in strings must be
escaped [p. 55] . Parentheses, brackets, and braces may be nested. Inside the
quotes, characters are parsed as a string.

The syntax of values is specified separately for each property, but in any case,
values are built from identifiers, strings, numbers, lengths, percentages, URIs,
colors, etc.

A user agent must ignore [p. 60] a declaration with an invalid property name or an
invalid value. Every CSS property has its own syntactic and semantic restrictions on
the values it accepts.

5930 Mar 2011 19:50

Syntax and basic data types

Illegal example(s):

For example, assume a CSS 2.1 parser encounters this style sheet:

h1 { color: red; font-style: 12pt } /* Invalid value: 12pt */
p { color: blue; font-vendor: any; /* Invalid prop.: font-vendor */
 font-variant: small-caps }
em em { font-style: normal }

The second declaration on the first line has an invalid value ’12pt’. The second
declaration on the second line contains an undefined property ’font-vendor’. The
CSS 2.1 parser will ignore [p. 60] these declarations, effectively reducing the style
sheet to:

h1 { color: red; }
p { color: blue; font-variant: small-caps }
em em { font-style: normal }

4.1.9 Comments
Comments begin with the characters "/*" and end with the characters "*/". They may
occur anywhere outside other tokens, and their contents have no influence on the
rendering. Comments may not be nested.

CSS also allows the SGML comment delimiters ("<!--" and "-->") in certain places
defined by the grammar, but they do not delimit CSS comments. They are permitted
so that style rules appearing in an HTML source document (in the STYLE element)
may be hidden from pre-HTML 3.2 user agents. See the HTML 4 specification
([HTML4]) for more information.

4.2 Rules for handling parsing errors
In some cases, user agents must ignore part of an illegal style sheet. This specifica-
tion defines ignore to mean that the user agent parses the illegal part (in order to find
its beginning and end), but otherwise acts as if it had not been there. CSS 2.1
reserves for future updates of CSS all property:value combinations and @-keywords
that do not contain an identifier beginning with dash or underscore. Implementations
must ignore such combinations (other than those introduced by future updates of
CSS).

To ensure that new properties and new values for existing properties can be
added in the future, user agents are required to obey the following rules when they
encounter the following scenarios:

Unknown properties. User agents must ignore [p. 60] a declaration [p. 59] with
an unknown property. For example, if the style sheet is:

h1 { color: red; rotation: 70minutes }

30 Mar 2011 19:5060

Syntax and basic data types

the user agent will treat this as if the style sheet had been

h1 { color: red }

Illegal values. User agents must ignore a declaration with an illegal value. For
example:

img { float: left } /* correct CSS 2.1 */
img { float: left here } /* "here" is not a value of ’float’ */
img { background: "red" } /* keywords cannot be quoted */
img { border-width: 3 } /* a unit must be specified for length values */

A CSS 2.1 parser would honor the first rule and ignore [p. 60] the rest, as if the
style sheet had been:

img { float: left }
img { }
img { }
img { }

A user agent conforming to a future CSS specification may accept one or
more of the other rules as well.

Malformed declarations. User agents must handle unexpected tokens encoun-
tered while parsing a declaration by reading until the end of the declaration,
while observing the rules for matching pairs of (), [], {}, "", and ’’, and correctly
handling escapes. For example, a malformed declaration may be missing a
property name, colon (:), or property value. The following are all equivalent:

p { color:green }
p { color:green; color } /* malformed declaration missing ’:’, value */
p { color:red; color; color:green } /* same with expected recovery */
p { color:green; color: } /* malformed declaration missing value */
p { color:red; color:; color:green } /* same with expected recovery */
p { color:green; color{;color:maroon} } /* unexpected tokens { } */
p { color:red; color{;color:maroon}; color:green } /* same with recovery */

Malformed statements. User agents must handle unexpected tokens encoun-
tered while parsing a statement by reading until the end of the statement, while
observing the rules for matching pairs of (), [], {}, "", and ’’, and correctly
handling escapes. For example, a malformed statement may contain an unex-
pected closing brace or at-keyword. E.g., the following lines are all ignored:

p @here {color: red} /* ruleset with unexpected at-keyword "@here" */
@foo @bar; /* at-rule with unexpected at-keyword "@bar" */
}} {{ - }} /* ruleset with unexpected right brace */
) ({}) p {color: red } /* ruleset with unexpected right parenthesis */

At-rules with unknown at-keywords. User agents must ignore [p. 60] an
invalid at-keyword together with everything following it, up to the end of the
block that contains the invalid at-keyword, or up to and including the next semi-
colon (;), or up to and including the next block ({...}), whichever comes first. For
example, consider the following:

6130 Mar 2011 19:50

Syntax and basic data types

@three-dee {
 @background-lighting {
 azimuth: 30deg;
 elevation: 190deg;
 }
 h1 { color: red }
}
h1 { color: blue }

The ’@three-dee’ at-rule is not part of CSS 2.1. Therefore, the whole at-rule
(up to, and including, the third right curly brace) is ignored. [p. 60] A CSS 2.1
user agent ignores [p. 60] it, effectively reducing the style sheet to:

h1 { color: blue }

Something inside an at-rule that is ignored because it is invalid, such as an
invalid declaration within an @media-rule, does not make the entire at-rule
invalid.

Unexpected end of style sheet.
User agents must close all open constructs (for example: blocks, parenthe-

ses, brackets, rules, strings, and comments) at the end of the style sheet. For
example:

 @media screen {
 p:before { content: ’Hello

would be treated the same as:

 @media screen {
 p:before { content: ’Hello’; }
 }

in a conformant UA.

Unexpected end of string.
User agents must close strings upon reaching the end of a line (i.e., before an

unescaped line feed, carriage return or form feed character), but then drop the
construct (declaration or rule) in which the string was found. For example:

 p {
 color: green;
 font-family: ’Courier New Times
 color: red;
 color: green;
 }

...would be treated the same as:

 p { color: green; color: green; }

...because the second declaration (from ’font-family’ to the semicolon after
’color: red’) is invalid and is dropped.

30 Mar 2011 19:5062

Syntax and basic data types

See also Rule sets, declaration blocks, and selectors [p. 58] for parsing rules for
declaration blocks.

4.3 Values

4.3.1 Integers and real numbers
Some value types may have integer values (denoted by <integer>) or real number
values (denoted by <number>). Real numbers and integers are specified in decimal
notation only. An <integer> consists of one or more digits "0" to "9". A <number> can
either be an <integer>, or it can be zero or more digits followed by a dot (.) followed
by one or more digits. Both integers and real numbers may be preceded by a "-" or
"+" to indicate the sign. -0 is equivalent to 0 and is not a negative number.

Note that many properties that allow an integer or real number as a value actually
restrict the value to some range, often to a non-negative value.

4.3.2 Lengths
Lengths refer to distance measurements.

The format of a length value (denoted by <length> in this specification) is a
<number> (with or without a decimal point) immediately followed by a unit identifier
(e.g., px, em, etc.). After a zero length, the unit identifier is optional.

Some properties allow negative length values, but this may complicate the format-
ting model and there may be implementation-specific limits. If a negative length
value cannot be supported, it should be converted to the nearest value that can be
supported.

If a negative length value is set on a property that does not allow negative length
values, the declaration is ignored.

In cases where the used [p. 100] length cannot be supported, user agents must
approximate it in the actual value. [p. 100]

There are two types of length units: relative and absolute. Relative length units
specify a length relative to another length property. Style sheets that use relative
units can more easily scale from one output environment to another.

Relative units are:

em: the ’font-size’ of the relevant font
ex: the ’x-height’ of the relevant font

Example(s):

h1 { margin: 0.5em } /* em */
h1 { margin: 1ex } /* ex */

6330 Mar 2011 19:50

Syntax and basic data types

The ’em’ unit is equal to the computed value of the ’font-size’ property of the
element on which it is used. The exception is when ’em’ occurs in the value of the
’font-size’ property itself, in which case it refers to the font size of the parent element.
It may be used for vertical or horizontal measurement. (This unit is also sometimes
called the quad-width in typographic texts.)

The ’ex’ unit is defined by the element’s first available font. The exception is when
’ex’ occurs in the value of the ’font-size’ property, in which case it refers to the ’ex’ of
the parent element.

The ’x-height’ is so called because it is often equal to the height of the lowercase
"x". However, an ’ex’ is defined even for fonts that do not contain an "x".

The x-height of a font can be found in different ways. Some fonts contain reliable
metrics for the x-height. If reliable font metrics are not available, UAs may determine
the x-height from the height of a lowercase glyph. One possible heuristic is to look at
how far the glyph for the lowercase "o" extends below the baseline, and subtract that
value from the top of its bounding box. In the cases where it is impossible or imprac-
tical to determine the x-height, a value of 0.5em should be used.

Example(s):

The rule:

h1 { line-height: 1.2em }

means that the line height of "h1" elements will be 20% greater than the font size
of the "h1" elements. On the other hand:

h1 { font-size: 1.2em }

means that the font-size of "h1" elements will be 20% greater than the font size
inherited by "h1" elements.

When specified for the root of the document tree [p. 45] (e.g., "HTML" in HTML),
’em’ and ’ex’ refer to the property’s initial value [p. 31] .

Child elements do not inherit the relative values specified for their parent; they
inherit the computed values [p. 100] .

Example(s):

In the following rules, the computed ’text-indent’ value of "h1" elements will be
36px, not 45px, if "h1" is a child of the "body" element.

body {
 font-size: 12px;
 text-indent: 3em; /* i.e., 36px */
}
h1 { font-size: 15px }

Absolute length units are fixed in relation to each other. They are mainly useful
when the output environment is known. The absolute units consist of the physical
units (in, cm, mm, pt, pc) and the px unit:

30 Mar 2011 19:5064

Syntax and basic data types

in : inches — 1in is equal to 2.54cm.
cm : centimeters
mm : millimeters
pt : points — the points used by CSS are equal to 1/72nd of 1in.
pc : picas — 1pc is equal to 12pt.
px : pixel units — 1px is equal to 0.75pt.

For a CSS device, these dimensions are either anchored (i) by relating the physi-
cal units to their physical measurements, or (ii) by relating the pixel unit to the refer-
ence pixel. For print media and similar high-resolution devices, the anchor unit
should be one of the standard physical units (inches, centimeters, etc). For
lower-resolution devices, and devices with unusual viewing distances, it is recom-
mended instead that the anchor unit be the pixel unit. For such devices it is recom-
mended that the pixel unit refer to the whole number of device pixels that best
approximates the reference pixel.

Note that if the anchor unit is the pixel unit, the physical units might not match their
physical measurements. Alternatively if the anchor unit is a physical unit, the pixel
unit might not map to a whole number of device pixels.

Note that this definition of the pixel unit and the physical units differs from previous
versions of CSS. In particular, in previous versions of CSS the pixel unit and the
physical units were not related by a fixed ratio: the physical units were always tied to
their physical measurements while the pixel unit would vary to most closely match
the reference pixel. (This change was made because too much existing content
relies on the assumption of 96dpi, and breaking that assumption breaks the content.)

The reference pixel is the visual angle of one pixel on a device with a pixel density
of 96dpi and a distance from the reader of an arm’s length. For a nominal arm’s
length of 28 inches, the visual angle is therefore about 0.0213 degrees. For reading
at arm’s length, 1px thus corresponds to about 0.26 mm (1/96 inch).

The image below illustrates the effect of viewing distance on the size of a refer-
ence pixel: a reading distance of 71 cm (28 inches) results in a reference pixel of
0.26 mm, while a reading distance of 3.5 m (12 feet) results in a reference pixel of
1.3 mm.

6530 Mar 2011 19:50

Syntax and basic data types

28 inches
71 cm

140 inches
3.5 m

0.26 mm
1.3 mm

viewer

This second image illustrates the effect of a device’s resolution on the pixel unit:
an area of 1px by 1px is covered by a single dot in a low-resolution device (e.g. a
typical computer display), while the same area is covered by 16 dots in a higher
resolution device (such as a printer).

laserprint

monitor screen

1px
1px

= 1 device pixel

Example(s):

h1 { margin: 0.5in } /* inches */
h2 { line-height: 3cm } /* centimeters */
h3 { word-spacing: 4mm } /* millimeters */
h4 { font-size: 12pt } /* points */
h4 { font-size: 1pc } /* picas */
p { font-size: 12px } /* px */

30 Mar 2011 19:5066

Syntax and basic data types

4.3.3 Percentages
The format of a percentage value (denoted by <percentage> in this specification) is
a <number> immediately followed by ’%’.

Percentage values are always relative to another value, for example a length.
Each property that allows percentages also defines the value to which the percent-
age refers. The value may be that of another property for the same element, a prop-
erty for an ancestor element, or a value of the formatting context (e.g., the width of a
containing block [p. 128]). When a percentage value is set for a property of the root
[p. 45] element and the percentage is defined as referring to the inherited value of
some property, the resultant value is the percentage times the initial value [p. 31] of
that property.

Example(s):

Since child elements (generally) inherit the computed values [p. 100] of their
parent, in the following example, the children of the P element will inherit a value of
12px for ’line-height’, not the percentage value (120%):

p { font-size: 10px }
p { line-height: 120% } /* 120% of ’font-size’ */

4.3.4 URLs and URIs
URI values (Uniform Resource Identifiers, see [RFC3986], which includes URLs,
URNs, etc) in this specification are denoted by <uri>. The functional notation used to
designate URIs in property values is "url()", as in:

Example(s):

body { background: url("http://www.example.com/pinkish.png") }

The format of a URI value is ’url(’ followed by optional white space [p. 53] followed
by an optional single quote (’) or double quote (") character followed by the URI
itself, followed by an optional single quote (’) or double quote (") character followed
by optional white space followed by ’)’. The two quote characters must be the same.

Example(s):

An example without quotes:

li { list-style: url(http://www.example.com/redball.png) disc }

Some characters appearing in an unquoted URI, such as parentheses, white
space characters, single quotes (’) and double quotes ("), must be escaped with a
backslash so that the resulting URI value is a URI token: ’\(’, ’\)’.

Depending on the type of URI, it might also be possible to write the above charac-
ters as URI-escapes (where "(" = %28, ")" = %29, etc.) as described in [RFC3986].

6730 Mar 2011 19:50

Syntax and basic data types

Note that COMMENT tokens cannot occur within other tokens: thus,
"url(/*x*/pic.png)" denotes the URI "/*x*/pic.png", not "pic.png".

In order to create modular style sheets that are not dependent on the absolute
location of a resource, authors may use relative URIs. Relative URIs (as defined in
[RFC3986]) are resolved to full URIs using a base URI. RFC 3986, section 5, defines
the normative algorithm for this process. For CSS style sheets, the base URI is that
of the style sheet, not that of the source document.

Example(s):

For example, suppose the following rule:

body { background: url("yellow") }

is located in a style sheet designated by the URI:

http://www.example.org/style/basic.css

The background of the source document’s BODY will be tiled with whatever image
is described by the resource designated by the URI

http://www.example.org/style/yellow

User agents may vary in how they handle invalid URIs or URIs that designate
unavailable or inapplicable resources.

4.3.5 Counters
Counters are denoted by case-sensitive identifiers (see the ’counter-increment’ and
’counter-reset’ properties). To refer to the value of a counter, the notation
’counter(<identifier>)’ or ’counter(<identifier>, <’list-style-type’>)’, with optional white
space separating the tokens, is used. The default style is ’decimal’.

To refer to a sequence of nested counters of the same name, the notation is
’counters(<identifier>, <string>)’ or ’counters(<identifier>, <string>, <’list-style-type’>)’
with optional white space separating the tokens.

See "Nested counters and scope" [p. 212] in the chapter on generated content
[p. 203] for how user agents must determine the value or values of the counter. See
the definition of counter values of the ’content’ property for how it must convert these
values to a string.

In CSS 2.1, the values of counters can only be referred to from the ’content’ prop-
erty. Note that ’none’ is a possible <’list-style-type’>: ’counter(x, none)’ yields an
empty string.

Example(s):

Here is a style sheet that numbers paragraphs (p) for each chapter (h1). The para-
graphs are numbered with roman numerals, followed by a period and a space:

30 Mar 2011 19:5068

Syntax and basic data types

p {counter-increment: par-num}
h1 {counter-reset: par-num}
p:before {content: counter(par-num, upper-roman) ". "}

4.3.6 Colors
A <color> is either a keyword or a numerical RGB specification.

The list of color keywords is: aqua, black, blue, fuchsia, gray, green, lime, maroon,
navy, olive, orange, purple, red, silver, teal, white, and yellow. These 17 colors have
the following values:

maroon #800000red #ff0000orange #ffA500yellow #ffff00olive #808000
purple #800080 fuchsia #ff00ff white #ffffff lime #00ff00 green #008000
navy #000080 blue #0000ff aqua #00ffff teal #008080
black #000000 silver #c0c0c0 gray #808080

In addition to these color keywords, users may specify keywords that correspond
to the colors used by certain objects in the user’s environment. Please consult the
section on system colors [p. 298] for more information.

Example(s):

body {color: black; background: white }
h1 { color: maroon }
h2 { color: olive }

The RGB color model is used in numerical color specifications. These examples
all specify the same color:

Example(s):

em { color: #f00 } /* #rgb */
em { color: #ff0000 } /* #rrggbb */
em { color: rgb(255,0,0) }
em { color: rgb(100%, 0%, 0%) }

The format of an RGB value in hexadecimal notation is a ’#’ immediately followed
by either three or six hexadecimal characters. The three-digit RGB notation (#rgb) is
converted into six-digit form (#rrggbb) by replicating digits, not by adding zeros. For
example, #fb0 expands to #ffbb00. This ensures that white (#ffffff) can be specified
with the short notation (#fff) and removes any dependencies on the color depth of
the display.

The format of an RGB value in the functional notation is ’rgb(’ followed by a
comma-separated list of three numerical values (either three integer values or three
percentage values) followed by ’)’. The integer value 255 corresponds to 100%, and
to F or FF in the hexadecimal notation: rgb(255,255,255) = rgb(100%,100%,100%) =
#FFF. White space [p. 53] characters are allowed around the numerical values.

All RGB colors are specified in the sRGB color space (see [SRGB]). User agents
may vary in the fidelity with which they represent these colors, but using sRGB
provides an unambiguous and objectively measurable definition of what the color
should be, which can be related to international standards (see [COLORIMETRY]).

6930 Mar 2011 19:50

Syntax and basic data types

Conforming user agents [p. 47] may limit their color-displaying efforts to perform-
ing a gamma-correction on them. sRGB specifies a display gamma of 2.2 under
specified viewing conditions. User agents should adjust the colors given in CSS such
that, in combination with an output device’s "natural" display gamma, an effective
display gamma of 2.2 is produced. See the section on gamma correction [p. ??] for
further details. Note that only colors specified in CSS are affected; e.g., images are
expected to carry their own color information.

Values outside the device gamut should be clipped or mapped into the gamut
when the gamut is known: the red, green, and blue values must be changed to fall
within the range supported by the device. Users agents may perform higher quality
mapping of colors from one gamut to another. For a typical CRT monitor, whose
device gamut is the same as sRGB, the four rules below are equivalent:

Example(s):

em { color: rgb(255,0,0) } /* integer range 0 - 255 */
em { color: rgb(300,0,0) } /* clipped to rgb(255,0,0) */
em { color: rgb(255,-10,0) } /* clipped to rgb(255,0,0) */
em { color: rgb(110%, 0%, 0%) } /* clipped to rgb(100%,0%,0%) */

Other devices, such as printers, have different gamuts than sRGB; some colors
outside the 0..255 sRGB range will be representable (inside the device gamut), while
other colors inside the 0..255 sRGB range will be outside the device gamut and will
thus be mapped.

Note. Mapping or clipping of color values should be done to the actual device
gamut if known (which may be larger or smaller than 0..255).

4.3.7 Strings
Strings can either be written with double quotes or with single quotes. Double quotes
cannot occur inside double quotes, unless escaped (e.g., as ’\"’ or as ’\22’). Analo-
gously for single quotes (e.g., "\’" or "\27").

Example(s):

"this is a ’string’"
"this is a \"string\""
’this is a "string"’
’this is a \’string\’’

A string cannot directly contain a newline. To include a newline in a string, use an
escape representing the line feed character in ISO-10646 (U+000A), such as "\A" or
"\00000a". This character represents the generic notion of "newline" in CSS. See the
’content’ property for an example.

It is possible to break strings over several lines, for aesthetic or other reasons, but
in such a case the newline itself has to be escaped with a backslash (\). For
instance, the following two selectors are exactly the same:

30 Mar 2011 19:5070

Syntax and basic data types

Example(s):

a[title="a not s\
o very long title"] {/*...*/}
a[title="a not so very long title"] {/*...*/}

4.3.8 Unsupported Values
If a UA does not support a particular value, it should ignore that value when parsing
style sheets, as if that value was an illegal value [p. 61] . For example:

Example(s):

 h3 {
 display: inline;
 display: run-in;
 }

A UA that supports the ’run-in’ value for the ’display’ property will accept the first
display declaration and then "write over" that value with the second display declara-
tion. A UA that does not support the ’run-in’ value will process the first display decla-
ration and ignore the second display declaration.

4.4 CSS style sheet representation
A CSS style sheet is a sequence of characters from the Universal Character Set
(see [ISO10646]). For transmission and storage, these characters must be encoded
by a character encoding that supports the set of characters available in US-ASCII
(e.g., UTF-8, ISO 8859-x, SHIFT JIS, etc.). For a good introduction to character sets
and character encodings, please consult the HTML 4 specification ([HTML4], chapter
5). See also the XML 1.0 specification ([XML10], sections 2.2 and 4.3.3, and
Appendix F).

When a style sheet is embedded in another document, such as in the STYLE
element or "style" attribute of HTML, the style sheet shares the character encoding
of the whole document.

When a style sheet resides in a separate file, user agents must observe the follow-
ing priorities when determining a style sheet’s character encoding (from highest
priority to lowest):

1. An HTTP "charset" parameter in a "Content-Type" field (or similar parameters in
other protocols)

2. BOM and/or @charset (see below)
3. <link charset=""> or other metadata from the linking mechanism (if any)
4. charset of referring style sheet or document (if any)
5. Assume UTF-8

7130 Mar 2011 19:50

Syntax and basic data types

Authors using an @charset rule must place the rule at the very beginning of the
style sheet, preceded by no characters. (If a byte order mark is appropriate for the
encoding used, it may precede the @charset rule.)

After "@charset", authors specify the name of a character encoding (in quotes).
For example:

@charset "ISO-8859-1";

@charset must be written literally, i.e., the 10 characters ’@charset "’ (lowercase,
no backslash escapes), followed by the encoding name, followed by ’";’.

The name must be a charset name as described in the IANA registry. See
[CHARSETS] for a complete list of charsets. Authors should use the charset names
marked as "preferred MIME name" in the IANA registry.

User agents must support at least the UTF-8 encoding.

User agents must ignore any @charset rule not at the beginning of the style sheet.
When user agents detect the character encoding using the BOM and/or the
@charset rule, they should follow the following rules:

Except as specified in these rules, all @charset rules are ignored.
The encoding is detected based on the stream of bytes that begins the style
sheet. The following table gives a set of possibilities for initial byte sequences
(written in hexadecimal). The first row that matches the beginning of the style
sheet gives the result of encoding detection based on the BOM and/or @charset
rule. If no rows match, the encoding cannot be detected based on the BOM
and/or @charset rule. The notation (...)* refers to repetition for which the best
match is the one that repeats as few times as possible. The bytes marked "XX"
are those used to determine the name of the encoding, by treating them, in the
order given, as a sequence of ASCII characters. Bytes marked "YY" are similar,
but need to be transcoded into ASCII as noted. User agents may ignore entries
in the table if they do not support any encodings relevant to the entry.

Initial Bytes Result

EF BB BF 40 63 68 61 72 73 65 74 20 22
(XX)* 22 3B

as specified

EF BB BF UTF-8

40 63 68 61 72 73 65 74 20 22 (XX)* 22
3B

as specified

FE FF 00 40 00 63 00 68 00 61 00 72 00
73 00 65 00 74 00 20 00 22 (00 XX)* 00
22 00 3B

as specified (with BE endianness
if not specified)

30 Mar 2011 19:5072

Syntax and basic data types

00 40 00 63 00 68 00 61 00 72 00 73 00
65 00 74 00 20 00 22 (00 XX)* 00 22 00
3B

as specified (with BE endianness
if not specified)

FF FE 40 00 63 00 68 00 61 00 72 00 73
00 65 00 74 00 20 00 22 00 (XX 00)* 22
00 3B 00

as specified (with LE endianness
if not specified)

40 00 63 00 68 00 61 00 72 00 73 00 65
00 74 00 20 00 22 00 (XX 00)* 22 00 3B
00

as specified (with LE endianness
if not specified)

00 00 FE FF 00 00 00 40 00 00 00 63 00
00 00 68 00 00 00 61 00 00 00 72 00 00
00 73 00 00 00 65 00 00 00 74 00 00 00
20 00 00 00 22 (00 00 00 XX)* 00 00 00
22 00 00 00 3B

as specified (with BE endianness
if not specified)

00 00 00 40 00 00 00 63 00 00 00 68 00
00 00 61 00 00 00 72 00 00 00 73 00 00
00 65 00 00 00 74 00 00 00 20 00 00 00
22 (00 00 00 XX)* 00 00 00 22 00 00 00
3B

as specified (with BE endianness
if not specified)

00 00 FF FE 00 00 40 00 00 00 63 00 00
00 68 00 00 00 61 00 00 00 72 00 00 00
73 00 00 00 65 00 00 00 74 00 00 00 20
00 00 00 22 00 (00 00 XX 00)* 00 00 22
00 00 00 3B 00

as specified (with 2143 endian-
ness if not specified)

00 00 40 00 00 00 63 00 00 00 68 00 00
00 61 00 00 00 72 00 00 00 73 00 00 00
65 00 00 00 74 00 00 00 20 00 00 00 22
00 (00 00 XX 00)* 00 00 22 00 00 00 3B
00

as specified (with 2143 endian-
ness if not specified)

FE FF 00 00 00 40 00 00 00 63 00 00 00
68 00 00 00 61 00 00 00 72 00 00 00 73
00 00 00 65 00 00 00 74 00 00 00 20 00
00 00 22 00 00 (00 XX 00 00)* 00 22 00
00 00 3B 00 00

as specified (with 3412 endian-
ness if not specified)

00 40 00 00 00 63 00 00 00 68 00 00 00
61 00 00 00 72 00 00 00 73 00 00 00 65
00 00 00 74 00 00 00 20 00 00 00 22 00
00 (00 XX 00 00)* 00 22 00 00 00 3B 00
00

as specified (with 3412 endian-
ness if not specified)

7330 Mar 2011 19:50

Syntax and basic data types

FF FE 00 00 40 00 00 00 63 00 00 00 68
00 00 00 61 00 00 00 72 00 00 00 73 00
00 00 65 00 00 00 74 00 00 00 20 00 00
00 22 00 00 00 (XX 00 00 00)* 22 00 00
00 3B 00 00 00

as specified (with LE endianness
if not specified)

40 00 00 00 63 00 00 00 68 00 00 00 61
00 00 00 72 00 00 00 73 00 00 00 65 00
00 00 74 00 00 00 20 00 00 00 22 00 00
00 (XX 00 00 00)* 22 00 00 00 3B 00 00
00

as specified (with LE endianness
if not specified)

00 00 FE FF UTF-32-BE

FF FE 00 00 UTF-32-LE

00 00 FF FE UTF-32-2143

FE FF 00 00 UTF-32-3412

FE FF UTF-16-BE

FF FE UTF-16-LE

7C 83 88 81 99 A2 85 A3 40 7F (YY)* 7F
5E

as specified, transcoded from
EBCDIC to ASCII

AE 83 88 81 99 A2 85 A3 40 FC (YY)* FC
5E

as specified, transcoded from
IBM1026 to ASCII

00 63 68 61 72 73 65 74 20 22 (YY)* 22
3B

as specified, transcoded from
GSM 03.38 to ASCII

analogous patterns

User agents may support addi-
tional, analogous, patterns if they
support encodings that are not
handled by the patterns here

If the encoding is detected based on one of the entries in the table above
marked "as specified", the user agent ignores the style sheet if it does not parse
an appropriate @charset rule at the beginning of the stream of characters
resulting from decoding in the chosen @charset. This ensures that:

@charset rules should only function if they are in the encoding of the style
sheet,
byte order marks are ignored only in encodings that support a byte order
mark, and
encoding names cannot contain newlines.

30 Mar 2011 19:5074

Syntax and basic data types

User agents must ignore style sheets in unknown encodings.

4.4.1 Referring to characters not represented in a character
encoding
A style sheet may have to refer to characters that cannot be represented in the
current character encoding. These characters must be written as escaped [p. 55]
references to ISO 10646 characters. These escapes serve the same purpose as
numeric character references in HTML or XML documents (see [HTML4], chapters 5
and 25).

The character escape mechanism should be used when only a few characters
must be represented this way. If most of a style sheet requires escaping, authors
should encode it with a more appropriate encoding (e.g., if the style sheet contains a
lot of Greek characters, authors might use "ISO-8859-7" or "UTF-8").

Intermediate processors using a different character encoding may translate these
escaped sequences into byte sequences of that encoding. Intermediate processors
must not, on the other hand, alter escape sequences that cancel the special
meaning of an ASCII character.

Conforming user agents [p. 47] must correctly map to ISO-10646 all characters in
any character encodings that they recognize (or they must behave as if they did).

For example, a style sheet transmitted as ISO-8859-1 (Latin-1) cannot contain
Greek letters directly: "kouroV" (Greek: "kouros") has to be written as
"\3BA\3BF\3C5\3C1\3BF\3C2".

Note. In HTML 4, numeric character references are interpreted in "style" attribute
values but not in the content of the STYLE element. Because of this asymmetry, we
recommend that authors use the CSS character escape mechanism rather than
numeric character references for both the "style" attribute and the STYLE element.
For example, we recommend:

...

rather than:

...

7530 Mar 2011 19:50

Syntax and basic data types

30 Mar 2011 19:5076

Syntax and basic data types

5 Selectors
Contents

.............. 775.1 Pattern matching

............... 795.2 Selector syntax

............... 795.2.1 Grouping

.............. 805.3 Universal selector

............... 805.4 Type selectors

............. 805.5 Descendant selectors

............... 815.6 Child selectors

............ 815.7 Adjacent sibling selectors

.............. 825.8 Attribute selectors

....... 825.8.1 Matching attributes and attribute values

......... 845.8.2 Default attribute values in DTDs

............. 855.8.3 Class selectors

................ 865.9 ID selectors

......... 875.10 Pseudo-elements and pseudo-classes

.............. 885.11 Pseudo-classes

........... 885.11.1 :first-child pseudo-class

....... 895.11.2 The link pseudo-classes: :link and :visited

... 895.11.3 The dynamic pseudo-classes: :hover, :active, and :focus

........ 915.11.4 The language pseudo-class: :lang

.............. 925.12 Pseudo-elements

......... 925.12.1 The :first-line pseudo-element

......... 945.12.2 The :first-letter pseudo-element

....... 975.12.3 The :before and :after pseudo-elements

5.1 Pattern matching
In CSS, pattern matching rules determine which style rules apply to elements in the
document tree [p. 45] . These patterns, called selectors, may range from simple
element names to rich contextual patterns. If all conditions in the pattern are true for
a certain element, the selector matches the element.

The case-sensitivity of document language element names in selectors depends
on the document language. For example, in HTML, element names are case-insen-
sitive, but in XML they are case-sensitive.

The following table summarizes CSS 2.1 selector syntax:

Pattern Meaning
Described in

section

7730 Mar 2011 19:50

Selectors

* Matches any element.
Universal selector
[p. 80]

E
Matches any E element (i.e., an element
of type E).

Type selectors
[p. 80]

E F
Matches any F element that is a descen-
dant of an E element.

Descendant selec-
tors [p. 80]

E > F
Matches any F element that is a child of
an element E.

Child selectors
[p. 81]

E:first-child
Matches element E when E is the first
child of its parent.

The :first-child
pseudo-class
[p. 88]

E:link
E:visited

Matches element E if E is the source
anchor of a hyperlink of which the target is
not yet visited (:link) or already visited
(:visited).

The link
pseudo-classes
[p. 89]

E:active
E:hover
E:focus

Matches E during certain user actions.
The dynamic
pseudo-classes
[p. 89]

E:lang(c)

Matches element of type E if it is in
(human) language c (the document
language specifies how language is deter-
mined).

The :lang()
pseudo-class
[p. 91]

E + F
Matches any F element immediately
preceded by a sibling element E.

Adjacent selectors
[p. 81]

E[foo]
Matches any E element with the "foo"
attribute set (whatever the value).

Attribute selectors
[p. 82]

E[foo="warning"]
Matches any E element whose "foo"
attribute value is exactly equal to
"warning".

Attribute selectors
[p. 82]

E[foo~="warning"]

Matches any E element whose "foo"
attribute value is a list of space-separated
values, one of which is exactly equal to
"warning".

Attribute selectors
[p. 82]

E[lang|="en"]
Matches any E element whose "lang"
attribute has a hyphen-separated list of
values beginning (from the left) with "en".

Attribute selectors
[p. 82]

30 Mar 2011 19:5078

Selectors

DIV.warning
Language specific. (In HTML, the same as
DIV[class~="warning"].)

Class selectors
[p. 85]

E#myid
Matches any E element with ID equal to
"myid". ID selectors [p. 86]

5.2 Selector syntax
A simple selector is either a type selector [p. 80] or universal selector [p. 80] followed
immediately by zero or more attribute selectors [p. 82] , ID selectors [p. 86] , or
pseudo-classes [p. 87] , in any order. The simple selector matches if all of its compo-
nents match.

Note: the terminology used here in CSS 2.1 is different from what is used in CSS3.
For example, a "simple selector" refers to a smaller part of a selector in CSS3 than in
CSS 2.1. See the CSS3 Selectors module [CSS3SEL].

A selector is a chain of one or more simple selectors separated by combinators.
Combinators are: white space, ">", and "+". White space may appear between a
combinator and the simple selectors around it.

The elements of the document tree that match a selector are called subjects of the
selector. A selector consisting of a single simple selector matches any element satis-
fying its requirements. Prepending a simple selector and combinator to a chain
imposes additional matching constraints, so the subjects of a selector are always a
subset of the elements matching the last simple selector.

One pseudo-element [p. 87] may be appended to the last simple selector in a
chain, in which case the style information applies to a subpart of each subject.

5.2.1 Grouping
When several selectors share the same declarations, they may be grouped into a
comma-separated list.

Example(s):

In this example, we condense three rules with identical declarations into one.
Thus,

h1 { font-family: sans-serif }
h2 { font-family: sans-serif }
h3 { font-family: sans-serif }

is equivalent to:

h1, h2, h3 { font-family: sans-serif }

CSS offers other "shorthand" mechanisms as well, including multiple declarations
[p. 59] and shorthand properties [p. 32] .

7930 Mar 2011 19:50

Selectors

5.3 Universal selector
The universal selector, written "*", matches the name of any element type. It
matches any single element in the document tree. [p. 45]

If the universal selector is not the only component of a simple selector [p. 79] , the
"*" may be omitted. For example:

*[lang=fr] and [lang=fr] are equivalent.
*.warning and .warning are equivalent.
*#myid and #myid are equivalent.

5.4 Type selectors
A type selector matches the name of a document language element type. A type
selector matches every instance of the element type in the document tree.

Example(s):

The following rule matches all H1 elements in the document tree:

h1 { font-family: sans-serif }

5.5 Descendant selectors
At times, authors may want selectors to match an element that is the descendant of
another element in the document tree (e.g., "Match those EM elements that are
contained by an H1 element"). Descendant selectors express such a relationship in
a pattern. A descendant selector is made up of two or more selectors separated by
white space [p. 53] . A descendant selector of the form "A B " matches when an
element B is an arbitrary descendant of some ancestor [p. 45] element A.

Example(s):

For example, consider the following rules:

h1 { color: red }
em { color: red }

Although the intention of these rules is to add emphasis to text by changing its
color, the effect will be lost in a case such as:

<H1>This headline is very important</H1>

We address this case by supplementing the previous rules with a rule that sets the
text color to blue whenever an EM occurs anywhere within an H1:

h1 { color: red }
em { color: red }
h1 em { color: blue }

30 Mar 2011 19:5080

Selectors

The third rule will match the EM in the following fragment:

<H1>This headline
is very important</H1>

Example(s):

The following selector:

div * p

matches a P element that is a grandchild or later descendant of a DIV element.
Note the white space on either side of the "*" is not part of the universal selector; the
white space is a combinator indicating that the DIV must be the ancestor of some
element, and that that element must be an ancestor of the P.

Example(s):

The selector in the following rule, which combines descendant and attribute selec-
tors [p. 82] , matches any element that (1) has the "href" attribute set and (2) is
inside a P that is itself inside a DIV:

div p *[href]

5.6 Child selectors
A child selector matches when an element is the child [p. 45] of some element. A
child selector is made up of two or more selectors separated by ">".

Example(s):

The following rule sets the style of all P elements that are children of BODY:

body > P { line-height: 1.3 }

Example(s):

The following example combines descendant selectors and child selectors:

div ol>li p

It matches a P element that is a descendant of an LI; the LI element must be the
child of an OL element; the OL element must be a descendant of a DIV. Notice that
the optional white space around the ">" combinator has been left out.

For information on selecting the first child of an element, please see the section on
the :first-child [p. 88] pseudo-class below.

5.7 Adjacent sibling selectors
Adjacent sibling selectors have the following syntax: E1 + E2, where E2 is the
subject of the selector. The selector matches if E1 and E2 share the same parent in
the document tree and E1 immediately precedes E2, ignoring non-element nodes
(such as text nodes and comments).

8130 Mar 2011 19:50

Selectors

Example(s):

Thus, the following rule states that when a P element immediately follows a MATH
element, it should not be indented:

math + p { text-indent: 0 }

The next example reduces the vertical space separating an H1 and an H2 that
immediately follows it:

h1 + h2 { margin-top: -5mm }

Example(s):

The following rule is similar to the one in the previous example, except that it adds
a class selector. Thus, special formatting only occurs when H1 has
class="opener" :

h1.opener + h2 { margin-top: -5mm }

5.8 Attribute selectors
CSS 2.1 allows authors to specify rules that match elements which have certain
attributes defined in the source document.

5.8.1 Matching attributes and attribute values
Attribute selectors may match in four ways:

[att]
Match when the element sets the "att" attribute, whatever the value of the
attribute.

[att=val]
Match when the element’s "att" attribute value is exactly "val".

[att~=val]
Represents an element with the att attribute whose value is a white
space-separated list of words, one of which is exactly "val". If "val" contains
white space, it will never represent anything (since the words are separated by
spaces). If "val" is the empty string, it will never represent anything either.

[att|=val]
Represents an element with the att attribute, its value either being exactly "val"
or beginning with "val" immediately followed by "-" (U+002D). This is primarily
intended to allow language subcode matches (e.g., the hreflang attribute on
the a element in HTML) as described in BCP 47 ([BCP47]) or its successor. For
lang (or xml:lang) language subcode matching, please see the :lang
pseudo-class [p. 91] .

Attribute values must be identifiers or strings. The case-sensitivity of attribute
names and values in selectors depends on the document language.

30 Mar 2011 19:5082

Selectors

Example(s):

For example, the following attribute selector matches all H1 elements that specify
the "title" attribute, whatever its value:

h1[title] { color: blue; }

Example(s):

In the following example, the selector matches all SPAN elements whose "class"
attribute has exactly the value "example":

span[class=example] { color: blue; }

Multiple attribute selectors can be used to refer to several attributes of an element,
or even several times to the same attribute.

Example(s):

Here, the selector matches all SPAN elements whose "hello" attribute has exactly
the value "Cleveland" and whose "goodbye" attribute has exactly the value "Colum-
bus":

span[hello="Cleveland"][goodbye="Columbus"] { color: blue; }

Example(s):

The following selectors illustrate the differences between "=" and "~=". The first
selector will match, for example, the value "copyright copyleft copyeditor" for the "rel"
attribute. The second selector will only match when the "href" attribute has the value
"http://www.w3.org/".

a[rel~="copyright"]
a[href="http://www.w3.org/"]

Example(s):

The following rule hides all elements for which the value of the "lang" attribute is
"fr" (i.e., the language is French).

*[lang=fr] { display : none }

Example(s):

The following rule will match for values of the "lang" attribute that begin with "en",
including "en", "en-US", and "en-cockney":

*[lang|="en"] { color : red }

Example(s):

Similarly, the following aural style sheet rules allow a script to be read aloud in
different voices for each role:

8330 Mar 2011 19:50

Selectors

DIALOGUE[character=romeo]
 { voice-family: "Laurence Olivier", charles, male }

DIALOGUE[character=juliet]
 { voice-family: "Vivien Leigh", victoria, female }

5.8.2 Default attribute values in DTDs
Matching takes place on attribute values in the document tree. Default attribute
values may be defined in a DTD or elsewhere, but cannot always be selected by
attribute selectors. Style sheets should be designed so that they work even if the
default values are not included in the document tree.

More precisely, a UA may, but is not required to, read an "external subset" of the
DTD but is required to look for default attribute values in the document’s "internal
subset." (See [XML10] for definitions of these subsets.) Depending on the UA, a
default attribute value defined in the external subset of the DTD might or might not
appear in the document tree.

A UA that recognizes an XML namespace [XMLNAMESPACES] may, but is not
required to, use its knowledge of that namespace to treat default attribute values as
if they were present in the document. (E.g., an XHTML UA is not required to use its
built-in knowledge of the XHTML DTD.)

Note that, typically, implementations choose to ignore external subsets.

Example(s):

Example:

For example, consider an element EXAMPLE with an attribute "notation" that has
a default value of "decimal". The DTD fragment might be

<!ATTLIST EXAMPLE notation (decimal,octal) "decimal">

If the style sheet contains the rules

EXAMPLE[notation=decimal] { /*... default property settings ...*/ }
EXAMPLE[notation=octal] { /*... other settings...*/ }

the first rule might not match elements whose "notation" attribute is set by default,
i.e., not set explicitly. To catch all cases, the attribute selector for the default value
must be dropped:

EXAMPLE { /*... default property settings ...*/ }
EXAMPLE[notation=octal] { /*... other settings...*/ }

Here, because the selector EXAMPLE[notation=octal] is more specific
[p. 104] than the type selector alone, the style declarations in the second rule will
override those in the first for elements that have a "notation" attribute value of "octal".
Care has to be taken that all property declarations that are to apply only to the
default case are overridden in the non-default cases’ style rules.

30 Mar 2011 19:5084

Selectors

5.8.3 Class selectors
Working with HTML, authors may use the period (.) notation as an alternative to the
~= notation when representing the class attribute. Thus, for HTML, div.value
and div[class~=value] have the same meaning. The attribute value must imme-
diately follow the "period" (.). UAs may apply selectors using the period (.) notation
in XML documents if the UA has namespace specific knowledge that allows it to
determine which attribute is the "class" attribute for the respective namespace. One
such example of namespace specific knowledge is the prose in the specification for
a particular namespace (e.g., SVG 1.1 [SVG11] describes the SVG "class" attribute
[p. ??] and how a UA should interpret it, and similarly MathML 2.0 [MATH20]
describes the MathML "class" attribute [p. ??] .)

Example(s):

For example, we can assign style information to all elements with
class~="pastoral" as follows:

.pastoral { color: green } / all elements with class~=pastoral */

or just

.pastoral { color: green } /* all elements with class~=pastoral */

The following assigns style only to H1 elements with class~="pastoral" :

H1.pastoral { color: green } /* H1 elements with class~=pastoral */

Given these rules, the first H1 instance below would not have green text, while the
second would:

<H1>Not green</H1>
<H1 class="pastoral">Very green</H1>

To match a subset of "class" values, each value must be preceded by a ".".

Example(s):

For example, the following rule matches any P element whose "class" attribute has
been assigned a list of space-separated values that includes "pastoral" and "marine":

p.marine.pastoral { color: green }

This rule matches when class="pastoral blue aqua marine" but does not
match for class="pastoral blue" .

Note. CSS gives so much power to the "class" attribute, that authors could
conceivably design their own "document language" based on elements with almost
no associated presentation (such as DIV and SPAN in HTML) and assigning style
information through the "class" attribute. Authors should avoid this practice since the
structural elements of a document language often have recognized and accepted
meanings and author-defined classes may not.

8530 Mar 2011 19:50

Selectors

Note: If an element has multiple class attributes, their values must be concate-
nated with spaces between the values before searching for the class. As of this time
the working group is not aware of any manner in which this situation can be reached,
however, so this behavior is explicitly non-normative in this specification.

5.9 ID selectors
Document languages may contain attributes that are declared to be of type ID. What
makes attributes of type ID special is that no two such attributes can have the same
value; whatever the document language, an ID attribute can be used to uniquely
identify its element. In HTML all ID attributes are named "id"; XML applications may
name ID attributes differently, but the same restriction applies.

The ID attribute of a document language allows authors to assign an identifier to
one element instance in the document tree. CSS ID selectors match an element
instance based on its identifier. A CSS ID selector contains a "#" immediately
followed by the ID value, which must be an identifier.

Note that CSS does not specify how a UA knows the ID attribute of an element.
The UA may, e.g., read a document’s DTD, have the information hard-coded or ask
the user.

Example(s):

The following ID selector matches the H1 element whose ID attribute has the
value "chapter1":

h1#chapter1 { text-align: center }

In the following example, the style rule matches the element that has the ID value
"z98y". The rule will thus match for the P element:

<HEAD>
 <TITLE>Match P</TITLE>
 <STYLE type="text/css">
 *#z98y { letter-spacing: 0.3em }
 </STYLE>
</HEAD>
<BODY>
 <P id=z98y>Wide text</P>
</BODY>

In the next example, however, the style rule will only match an H1 element that
has an ID value of "z98y". The rule will not match the P element in this example:

<HEAD>
 <TITLE>Match H1 only</TITLE>
 <STYLE type="text/css">
 H1#z98y { letter-spacing: 0.5em }
 </STYLE>
</HEAD>
<BODY>
 <P id=z98y>Wide text</P>
</BODY>

30 Mar 2011 19:5086

Selectors

ID selectors have a higher specificity than attribute selectors. For example, in
HTML, the selector #p123 is more specific than [id=p123] in terms of the cascade
[p. 99] .

Note. In XML 1.0 [XML10], the information about which attribute contains an
element’s IDs is contained in a DTD. When parsing XML, UAs do not always read
the DTD, and thus may not know what the ID of an element is. If a style sheet
designer knows or suspects that this will be the case, he should use normal attribute
selectors instead: [name=p371] instead of #p371. However, the cascading order of
normal attribute selectors is different from ID selectors. It may be necessary to add
an "!important" priority to the declarations: [name=p371] {color: red !
important}.

If an element has multiple ID attributes, all of them must be treated as IDs for that
element for the purposes of the ID selector. Such a situation could be reached using
mixtures of xml:id [XMLID], DOM3 Core [DOM-LEVEL-3-CORE], XML DTDs
[XML10] and namespace-specific knowledge.

5.10 Pseudo-elements and pseudo-classes
In CSS 2.1, style is normally attached to an element based on its position in the
document tree [p. 45] . This simple model is sufficient for many cases, but some
common publishing scenarios may not be possible due to the structure of the docu-
ment tree [p. 45] . For instance, in HTML 4 (see [HTML4]), no element refers to the
first line of a paragraph, and therefore no simple CSS selector may refer to it.

CSS introduces the concepts of pseudo-elements and pseudo-classes to permit
formatting based on information that lies outside the document tree.

Pseudo-elements create abstractions about the document tree beyond those
specified by the document language. For instance, document languages do not
offer mechanisms to access the first letter or first line of an element’s content.
CSS pseudo-elements allow style sheet designers to refer to this otherwise
inaccessible information. Pseudo-elements may also provide style sheet design-
ers a way to assign style to content that does not exist in the source document
(e.g., the :before and :after [p. 203] pseudo-elements give access to generated
content).
Pseudo-classes classify elements on characteristics other than their name,
attributes or content; in principle characteristics that cannot be deduced from the
document tree. Pseudo-classes may be dynamic, in the sense that an element
may acquire or lose a pseudo-class while a user interacts with the document.
The exceptions are ’:first-child’ [p. 88] , which can be deduced from the docu-
ment tree, and ’:lang()’ [p. 91] , which can be deduced from the document tree in
some cases.

Neither pseudo-elements nor pseudo-classes appear in the document source or
document tree.

8730 Mar 2011 19:50

Selectors

Pseudo-classes are allowed anywhere in selectors while pseudo-elements may
only be appended after the last simple selector of the selector.

Pseudo-element and pseudo-class names are case-insensitive.

Some pseudo-classes are mutually exclusive, while others can be applied simulta-
neously to the same element. In case of conflicting rules, the normal cascading order
[p. 103] determines the outcome.

5.11 Pseudo-classes

5.11.1 :first-child pseudo-class
The :first-child pseudo-class matches an element that is the first child element of
some other element.

Example(s):

In the following example, the selector matches any P element that is the first child
of a DIV element. The rule suppresses indentation for the first paragraph of a DIV:

div > p:first-child { text-indent: 0 }

This selector would match the P inside the DIV of the following fragment:

<P> The last P before the note.
<DIV class="note">
 <P> The first P inside the note.
</DIV>

but would not match the second P in the following fragment:

<P> The last P before the note.
<DIV class="note">
 <H2>Note</H2>
 <P> The first P inside the note.
</DIV>

Example(s):

The following rule sets the font weight to ’bold’ for any EM element that is some
descendant of a P element that is a first child:

p:first-child em { font-weight : bold }

Note that since anonymous [p. 132] boxes are not part of the document tree, they
are not counted when calculating the first child.

For example, the EM in:

<P>abc default

is the first child of the P.

30 Mar 2011 19:5088

Selectors

The following two selectors are equivalent:

* > a:first-child /* A is first child of any element */
a:first-child /* Same */

5.11.2 The link pseudo-classes: :link and :visited
User agents commonly display unvisited links differently from previously visited
ones. CSS provides the pseudo-classes ’:link’ and ’:visited’ to distinguish them:

The :link pseudo-class applies for links that have not yet been visited.
The :visited pseudo-class applies once the link has been visited by the user.

UAs may return a visited link to the (unvisited) ’:link’ state at some point.

The two states are mutually exclusive.

The document language determines which elements are hyperlink source
anchors. For example, in HTML4, the link pseudo-classes apply to A elements with
an "href" attribute. Thus, the following two CSS 2.1 declarations have similar effect:

a:link { color: red }
:link { color: red }

Example(s):

If the following link:

external link

has been visited, this rule:

a.external:visited { color: blue }

will cause it to be blue.

Note. It is possible for style sheet authors to abuse the :link and :visited
pseudo-classes to determine which sites a user has visited without the user’s
consent.

UAs may therefore treat all links as unvisited links, or implement other measures
to preserve the user’s privacy while rendering visited and unvisited links differently.
See [P3P] for more information about handling privacy.

5.11.3 The dynamic pseudo-classes: :hover, :active, and
:focus
Interactive user agents sometimes change the rendering in response to user actions.
CSS provides three pseudo-classes for common cases:

The :hover pseudo-class applies while the user designates an element (with
some pointing device), but does not activate it. For example, a visual user agent
could apply this pseudo-class when the cursor (mouse pointer) hovers over a

8930 Mar 2011 19:50

Selectors

box generated by the element. User agents not supporting interactive media
[p. 110] do not have to support this pseudo-class. Some conforming user agents
supporting interactive media [p. 110] may not be able to support this
pseudo-class (e.g., a pen device).
The :active pseudo-class applies while an element is being activated by the
user. For example, between the times the user presses the mouse button and
releases it.
The :focus pseudo-class applies while an element has the focus (accepts
keyboard events or other forms of text input).

An element may match several pseudo-classes at the same time.

CSS does not define which elements may be in the above states, or how the
states are entered and left. Scripting may change whether elements react to user
events or not, and different devices and UAs may have different ways of pointing to,
or activating elements.

CSS 2.1 does not define if the parent of an element that is ’:active’ or ’:hover’ is
also in that state.

User agents are not required to reflow a currently displayed document due to
pseudo-class transitions. For instance, a style sheet may specify that the ’font-size’
of an :active link should be larger than that of an inactive link, but since this may
cause letters to change position when the reader selects the link, a UA may ignore
the corresponding style rule.

Example(s):

a:link { color: red } /* unvisited links */
a:visited { color: blue } /* visited links */
a:hover { color: yellow } /* user hovers */
a:active { color: lime } /* active links */

Note that the A:hover must be placed after the A:link and A:visited rules, since
otherwise the cascading rules will hide the ’color’ property of the A:hover rule. Simi-
larly, because A:active is placed after A:hover, the active color (lime) will apply when
the user both activates and hovers over the A element.

Example(s):

An example of combining dynamic pseudo-classes:

a:focus { background: yellow }
a:focus:hover { background: white }

The last selector matches A elements that are in pseudo-class :focus and in
pseudo-class :hover.

For information about the presentation of focus outlines, please consult the section
on dynamic focus outlines [p. 300] .

30 Mar 2011 19:5090

Selectors

Note. In CSS1, the ’:active’ pseudo-class was mutually exclusive with ’:link’ and
’:visited’. That is no longer the case. An element can be both ’:visited’ and ’:active’
(or ’:link’ and ’:active’) and the normal cascading rules determine which style decla-
rations apply.

Note. Also note that in CSS1, the ’:active’ pseudo-class only applied to links.

5.11.4 The language pseudo-class: :lang
If the document language specifies how the human language of an element is deter-
mined, it is possible to write selectors in CSS that match an element based on its
language. For example, in HTML [HTML4], the language is determined by a combi-
nation of the "lang" attribute, the META element, and possibly by information from
the protocol (such as HTTP headers). XML uses an attribute called xml:lang, and
there may be other document language-specific methods for determining the
language.

The pseudo-class ’:lang(C)’ matches if the element is in language C. Whether
there is a match is based solely on the identifier C being either equal to, or a
hyphen-separated substring of, the element’s language value, in the same way as if
performed by the ’|=’ [p. 82] operator. The matching of C against the element’s
language value is performed case-insensitively for characters within the ASCII
range. The identifier C does not have to be a valid language name.

C must not be empty.

Note: It is recommended that documents and protocols indicate language using
codes from BCP 47 [BCP47] or its successor, and by means of "xml:lang" attributes
in the case of XML-based documents [XML10]. See "FAQ: Two-letter or three-letter
language codes." [p. ??]

Example(s):

The following rules set the quotation marks for an HTML document that is either in
Canadian French or German:

html:lang(fr-ca) { quotes: ’« ’ ’ »’ }
html:lang(de) { quotes: ’»’ ’«’ ’\2039’ ’\203A’ }
:lang(fr) > Q { quotes: ’« ’ ’ »’ }
:lang(de) > Q { quotes: ’»’ ’«’ ’\2039’ ’\203A’ }

The second pair of rules actually set the ’quotes’ property on Q elements accord-
ing to the language of its parent. This is done because the choice of quote marks is
typically based on the language of the element around the quote, not the quote itself:
like this piece of French “à l’improviste” in the middle of an English text uses the
English quotation marks.

Note the difference between [lang|=xx] and :lang(xx). In this HTML example, only
the BODY matches [lang|=fr] (because it has a LANG attribute) but both the BODY
and the P match :lang(fr) (because both are in French).

9130 Mar 2011 19:50

Selectors

<body lang=fr>
 <p>Je suis Français.</p>
</body>

5.12 Pseudo-elements
Pseudo-elements behave just like real elements in CSS with the exceptions
described below and elsewhere. [p. 203]

Note that the sections below do not define the exact rendering of ’:first-line’ and
’:first-letter’ in all cases. A future level of CSS may define them more precisely.

5.12.1 The :first-line pseudo-element
The :first-line pseudo-element applies special styles to the contents of the first
formatted line of a paragraph. For instance:

p:first-line { text-transform: uppercase }

The above rule means "change the letters of the first line of every paragraph to
uppercase". However, the selector "P:first-line" does not match any real HTML
element. It does match a pseudo-element that conforming user agents [p. 47] will
insert at the beginning of every paragraph.

Note that the length of the first line depends on a number of factors, including the
width of the page, the font size, etc. Thus, an ordinary HTML paragraph such as:

<P>This is a somewhat long HTML
paragraph that will be broken into several
lines. The first line will be identified
by a fictional tag sequence. The other lines
will be treated as ordinary lines in the
paragraph.</P>

the lines of which happen to be broken as follows:

THIS IS A SOMEWHAT LONG HTML PARAGRAPH THAT
will be broken into several lines. The first
line will be identified by a fictional tag
sequence. The other lines will be treated as
ordinary lines in the paragraph.

might be "rewritten" by user agents to include the fictional tag sequence for
:first-line. This fictional tag sequence helps to show how properties are inherited.

<P><P:first-line> This is a somewhat long HTML
paragraph that </P:first-line> will be broken into several
lines. The first line will be identified
by a fictional tag sequence. The other lines
will be treated as ordinary lines in the
paragraph.</P>

30 Mar 2011 19:5092

Selectors

If a pseudo-element breaks up a real element, the desired effect can often be
described by a fictional tag sequence that closes and then re-opens the element.
Thus, if we mark up the previous paragraph with a SPAN element:

<P> This is a somewhat long HTML
paragraph that will be broken into several
lines. The first line will be identified
by a fictional tag sequence. The other lines
will be treated as ordinary lines in the
paragraph.</P>

the user agent could simulate start and end tags for SPAN when inserting the
fictional tag sequence for :first-line.

<P><P:first-line> This is a
somewhat long HTML
paragraph that will </P:first-line> be
broken into several
lines. The first line will be identified
by a fictional tag sequence. The other lines
will be treated as ordinary lines in the
paragraph.</P>

The :first-line pseudo-element can only be attached to a block container element.
[p. 129]

The "first formatted line" of an element may occur inside a block-level descendant
in the same flow (i.e., a block-level descendant that is not positioned and not a float).
E.g., the first line of the DIV in <DIV><P>This line...</P></DIV> is the first
line of the P (assuming that both P and DIV are block-level).

The first line of a table-cell or inline-block cannot be the first formatted line of an
ancestor element. Thus, in <DIV><P STYLE="display:
inline-block">Hello
Goodbye</P> etcetera</DIV> the first formatted
line of the DIV is not the line "Hello".

Note that the first line of the P in this fragment: <p>
First... does not
contain any letters (assuming the default style for BR in HTML 4). The word "First" is
not on the first formatted line.

A UA should act as if the fictional start tags of the first-line pseudo-elements were
nested just inside the innermost enclosing block-level element. (Since CSS1 and
CSS2 were silent on this case, authors should not rely on this behavior.) Here is an
example. The fictional tag sequence for

<DIV>
 <P>First paragraph</P>
 <P>Second paragraph</P>
</DIV>

is

9330 Mar 2011 19:50

Selectors

<DIV>
 <P><DIV:first-line><P:first-line>First paragraph</P:first-line></DIV:first-line></P>
 <P><P:first-line>Second paragraph</P:first-line></P>
</DIV>

The :first-line pseudo-element is similar to an inline-level element, but with certain
restrictions. The following properties apply to a :first-line pseudo-element: font prop-
erties, [p. 241] color property, [p. 233] background properties, [p. 234]
’word-spacing’, ’letter-spacing’, ’text-decoration’, ’text-transform’, and ’line-height’.
UAs may apply other properties as well.

5.12.2 The :first-letter pseudo-element
The :first-letter pseudo-element must select the first letter of the first line of a block, if
it is not preceded by any other content (such as images or inline tables) on its line.
The :first-letter pseudo-element may be used for "initial caps" and "drop caps", which
are common typographical effects. This type of initial letter is similar to an inline-level
element if its ’float’ property is ’none’, otherwise it is similar to a floated element.

These are the properties that apply to :first-letter pseudo-elements: font properties,
[p. 241] ’text-decoration’, ’text-transform’, ’letter-spacing’, ’word-spacing’ (when
appropriate), ’line-height’, ’float’, ’vertical-align’ (only if ’float’ is ’none’), margin prop-
erties, [p. 115] padding properties, [p. 119] border properties, [p. 120] color property,
[p. 233] background properties. [p. 234] UAs may apply other properties as well. To
allow UAs to render a typographically correct drop cap or initial cap, the UA may
choose a line-height, width and height based on the shape of the letter, unlike for
normal elements. CSS3 is expected to have specific properties that apply to
first-letter.

This example shows a possible rendering of an initial cap. Note that the
’line-height’ that is inherited by the first-letter pseudo-element is 1.1, but the UA in
this example has computed the height of the first letter differently, so that it does not
cause any unnecessary space between the first two lines. Also note that the fictional
start tag of the first letter is inside the SPAN, and thus the font weight of the first
letter is normal, not bold as the SPAN:

p { line-height: 1.1 }
p:first-letter { font-size: 3em; font-weight: normal }
span { font-weight: bold }
...
<p>Het hemelsche gerecht heeft zich ten lange lesten

Erbarremt over my en mijn benaeuwde vesten

En arme burgery, en op mijn volcx gebed

En dagelix geschrey de bange stad ontzet.

30 Mar 2011 19:5094

Selectors

The following CSS 2.1 will make a drop cap initial letter span about two lines:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Drop cap initial letter</TITLE>
 <STYLE type="text/css">
 P { font-size: 12pt; line-height: 1.2 }
 P:first-letter { font-size: 200%; font-style: italic;
 font-weight: bold; float: left }
 SPAN { text-transform: uppercase }
 </STYLE>
 </HEAD>
 <BODY>
 <P>The first few words of an article
 in The Economist.</P>
 </BODY>
</HTML>

This example might be formatted as follows:

T HE FIRST few
words of an

article in the
Economist

The fictional tag sequence is:

<P>

<P:first-letter>
T
</P:first-letter>he first

few words of an article in the Economist.
</P>

Note that the :first-letter pseudo-element tags abut the content (i.e., the initial char-
acter), while the :first-line pseudo-element start tag is inserted right after the start tag
of the block element.

In order to achieve traditional drop caps formatting, user agents may approximate
font sizes, for example to align baselines. Also, the glyph outline may be taken into
account when formatting.

Punctuation (i.e, characters defined in Unicode [UNICODE] in the "open" (Ps),
"close" (Pe), "initial" (Pi). "final" (Pf) and "other" (Po) punctuation classes), that
precedes or follows the first letter should be included, as in:

"A
bird in
the hand
is worth

two in the bush,"
says an old proverb.

9530 Mar 2011 19:50

Selectors

The ’:first-letter’ also applies if the first letter is in fact a digit, e.g., the "6" in "67
million dollars is a lot of money."

The :first-letter pseudo-element applies to block container elements. [p. 129]

The :first-letter pseudo-element can be used with all such elements that contain
text, or that have a descendant in the same flow that contains text. A UA should act
as if the fictional start tag of the first-letter pseudo-element is just before the first text
of the element, even if that first text is in a descendant.

Example(s):

Here is an example. The fictional tag sequence for this HTML fragment:

<div>
<p>The first text.

is:

<div>
<p><div:first-letter><p:first-letter>T</...></...>he first text.

The first letter of a table-cell or inline-block cannot be the first letter of an ancestor
element. Thus, in <DIV><P STYLE="display:
inline-block">Hello
Goodbye</P> etcetera</DIV> the first letter of
the DIV is not the letter "H". In fact, the DIV does not have a first letter.

The first letter must occur on the first formatted line. [p. 93] For example, in this
fragment: <p>
First... the first line does not contain any letters and
’:first-letter’ does not match anything (assuming the default style for BR in HTML 4).
In particular, it does not match the "F" of "First."

If an element is a list item [p. 214] (’display: list-item’), the ’:first-letter’ applies to
the first letter in the principal box after the marker. UAs may ignore ’:first-letter’ on list
items with ’list-style-position: inside’. If an element has ’:before’ or ’:after’ content, the
’:first-letter applies to the first letter of the element including that content.

E.g., after the rule ’p:before {content: "Note: "}’, the selector ’p:first-letter’ matches
the "N" of "Note".

Some languages may have specific rules about how to treat certain letter combi-
nations. In Dutch, for example, if the letter combination "ij" appears at the beginning
of a word, both letters should be considered within the :first-letter pseudo-element.

If the letters that would form the first-letter are not in the same element, such as
"’T" in <p>’T... , the UA may create a first-letter pseudo-element from one of
the elements, both elements, or simply not create a pseudo-element.

Similarly, if the first letter(s) of the block are not at the start of the line (for example
due to bidirectional reordering), then the UA need not create the pseudo-element(s).

Example(s):

30 Mar 2011 19:5096

Selectors

The following example illustrates how overlapping pseudo-elements may interact.
The first letter of each P element will be green with a font size of ’24pt’. The rest of
the first formatted line will be ’blue’ while the rest of the paragraph will be ’red’.

p { color: red; font-size: 12pt }
p:first-letter { color: green; font-size: 200% }
p:first-line { color: blue }

<P>Some text that ends up on two lines</P>

Assuming that a line break will occur before the word "ends", the fictional tag
sequence for this fragment might be:

<P>
<P:first-line>
<P:first-letter>
S
</P:first-letter>ome text that
</P:first-line>
ends up on two lines
</P>

Note that the :first-letter element is inside the :first-line element. Properties set on
:first-line are inherited by :first-letter, but are overridden if the same property is set on
:first-letter.

5.12.3 The :before and :after pseudo-elements
The ’:before’ and ’:after’ pseudo-elements can be used to insert generated content
before or after an element’s content. They are explained in the section on generated
text. [p. 203]

Example(s):

h1:before {content: counter(chapno, upper-roman) ". "}

When the :first-letter and :first-line pseudo-elements are applied to an element
having content generated using :before and :after, they apply to the first letter or line
of the element including the generated content.

Example(s):

p.special:before {content: "Special! "}
p.special:first-letter {color: #ffd800}

This will render the "S" of "Special!" in gold.

9730 Mar 2011 19:50

Selectors

30 Mar 2011 19:5098

Selectors

6 Assigning property values, Cascading, and
Inheritance
Contents

......... 996.1 Specified, computed, and actual values

............. 996.1.1 Specified values

............. 1006.1.2 Computed values

.............. 1006.1.3 Used values

.............. 1006.1.4 Actual values

................ 1006.2 Inheritance

............. 1016.2.1 The ’inherit’ value

.............. 1026.3 The @import rule

............... 1026.4 The cascade

............. 1036.4.1 Cascading order

............. 1046.4.2 !important rules

......... 1046.4.3 Calculating a selector’s specificity

...... 1056.4.4 Precedence of non-CSS presentational hints

6.1 Specified, computed, and actual values
Once a user agent has parsed a document and constructed a document tree [p. 45] ,
it must assign, for every element in the tree, a value to every property that applies to
the target media type [p. 107] .

The final value of a property is the result of a four-step calculation: the value is
determined through specification (the "specified value"), then resolved into a value
that is used for inheritance (the "computed value"), then converted into an absolute
value if necessary (the "used value"), and finally transformed according to the limita-
tions of the local environment (the "actual value").

6.1.1 Specified values
User agents must first assign a specified value to each property based on the follow-
ing mechanisms (in order of precedence):

1. If the cascade [p. 102] results in a value, use it.
2. Otherwise, if the property is inherited [p. 100] and the element is not the root of

the document tree, use the computed value of the parent element.
3. Otherwise use the property’s initial value. The initial value of each property is

indicated in the property’s definition.

9930 Mar 2011 19:50

Assigning property values, Cascading, and Inheritance

6.1.2 Computed values
Specified values are resolved to computed values during the cascade; for example
URIs are made absolute and ’em’ and ’ex’ units are computed to pixel or absolute
lengths. Computing a value never requires the user agent to render the document.

The computed value of URIs that the UA cannot resolve to absolute URIs is the
specified value.

The computed value of a property is determined as specified by the Computed
Value line in the definition of the property. See the section on inheritance [p. 100] for
the definition of computed values when the specified value is ’inherit’.

The computed value exists even when the property does not apply, as defined by
the ’Applies To’ [p. 31] line. However, some properties may define the computed
value of a property for an element to depend on whether the property applies to that
element.

6.1.3 Used values
Computed values are processed as far as possible without formatting the document.
Some values, however, can only be determined when the document is being laid
out. For example, if the width of an element is set to be a certain percentage of its
containing block, the width cannot be determined until the width of the containing
block has been determined. The used value is the result of taking the computed
value and resolving any remaining dependencies into an absolute value.

6.1.4 Actual values
A used value is in principle the value used for rendering, but a user agent may not
be able to make use of the value in a given environment. For example, a user agent
may only be able to render borders with integer pixel widths and may therefore have
to approximate the computed width, or the user agent may be forced to use only
black and white shades instead of full color. The actual value is the used value after
any approximations have been applied.

6.2 Inheritance
Some values are inherited by the children of an element in the document tree [p. 45]
, as described above [p. 99] . Each property defines [p. 29] whether it is inherited or
not.

Suppose there is an H1 element with an emphasizing element (EM) inside:

<H1>The headline is important!</H1>

If no color has been assigned to the EM element, the emphasized "is" will inherit
the color of the parent element, so if H1 has the color blue, the EM element will like-
wise be in blue.

30 Mar 2011 19:50100

Assigning property values, Cascading, and Inheritance

When inheritance occurs, elements inherit computed values. The computed value
from the parent element becomes both the specified value and the computed value
on the child.

Example(s):

For example, given the following style sheet:

body { font-size: 10pt }
h1 { font-size: 130% }

and this document fragment:

<BODY>
 <H1>A large heading</H1>
</BODY>

the ’font-size’ property for the H1 element will have the computed value ’13pt’
(130% times 10pt, the parent’s value). Since the computed value of ’font-size’ is
inherited, the EM element will have the computed value ’13pt’ as well. If the user
agent does not have the 13pt font available, the actual value of ’font-size’ for both H1
and EM might be, for example, ’12pt’.

Note that inheritance follows the document tree and is not intercepted by anony-
mous boxes. [p. 129]

6.2.1 The ’inherit’ value
Each property may also have a cascaded value of ’inherit’, which means that, for a
given element, the property takes the same specified value as the property for the
element’s parent. The ’inherit’ value can be used to enforce inheritance of values,
and it can also be used on properties that are not normally inherited.

If the ’inherit’ value is set on the root element, the property is assigned its initial
value.

Example(s):

In the example below, the ’color’ and ’background’ properties are set on the BODY
element. On all other elements, the ’color’ value will be inherited and the background
will be transparent. If these rules are part of the user’s style sheet, black text on a
white background will be enforced throughout the document.

body {
 color: black !important;
 background: white !important;
}

* {
 color: inherit !important;
 background: transparent !important;
}

10130 Mar 2011 19:50

Assigning property values, Cascading, and Inheritance

6.3 The @import rule
The ’@import’ rule allows users to import style rules from other style sheets. In
CSS 2.1, any @import rules must precede all other rules (except the @charset rule,
if present). See the section on parsing [p. 57] for when user agents must ignore
@import rules. The ’@import’ keyword must be followed by the URI of the style
sheet to include. A string is also allowed; it will be interpreted as if it had url(...)
around it.

Example(s):

The following lines are equivalent in meaning and illustrate both ’@import’
syntaxes (one with "url()" and one with a bare string):

@import "mystyle.css";
@import url("mystyle.css");

So that user agents can avoid retrieving resources for unsupported media types
[p. 107] , authors may specify media-dependent @import rules. These conditional
imports specify comma-separated media types after the URI.

Example(s):

The following rules illustrate how @import rules can be made media-dependent:

@import url("fineprint.css") print;
@import url("bluish.css") projection, tv;

In the absence of any media types, the import is unconditional. Specifying ’all’ for
the medium has the same effect. The import only takes effect if the target medium
matches the media list.

A target medium matches a media list if one of the items in the media list is the
target medium or ’all’.

Note that Media Queries [MEDIAQ] extends the syntax of media lists and the defi-
nition of matching.

When the same style sheet is imported or linked to a document in multiple places,
user agents must process (or act as though they do) each link as though the link
were to a separate style sheet.

6.4 The cascade
Style sheets may have three different origins: author, user, and user agent.

Author . The author specifies style sheets for a source document according to
the conventions of the document language. For instance, in HTML, style sheets
may be included in the document or linked externally.
User : The user may be able to specify style information for a particular docu-
ment. For example, the user may specify a file that contains a style sheet or the
user agent may provide an interface that generates a user style sheet (or

30 Mar 2011 19:50102

Assigning property values, Cascading, and Inheritance

behaves as if it did).
User agent : Conforming user agents [p. 47] must apply a default style sheet (or
behave as if they did). A user agent’s default style sheet should present the
elements of the document language in ways that satisfy general presentation
expectations for the document language (e.g., for visual browsers, the EM
element in HTML is presented using an italic font). See A sample style sheet for
HTML [p. 453] for a recommended default style sheet for HTML documents.

Note that the user may modify system settings (e.g., system colors) that affect
the default style sheet. However, some user agent implementations make it
impossible to change the values in the default style sheet.

Style sheets from these three origins will overlap in scope, and they interact
according to the cascade.

The CSS cascade assigns a weight to each style rule. When several rules apply,
the one with the greatest weight takes precedence.

By default, rules in author style sheets have more weight than rules in user style
sheets. Precedence is reversed, however, for "!important" rules. All user and author
rules have more weight than rules in the UA’s default style sheet.

6.4.1 Cascading order
To find the value for an element/property combination, user agents must apply the
following sorting order:

1. Find all declarations that apply to the element and property in question, for the
target media type [p. 107] . Declarations apply if the associated selector
matches [p. 77] the element in question and the target medium matches the
media list on all @media rules containing the declaration and on all links on the
path through which the style sheet was reached.

2. Sort according to importance (normal or important) and origin (author, user, or
user agent). In ascending order of precedence:

1. user agent declarations
2. user normal declarations
3. author normal declarations
4. author important declarations
5. user important declarations

3. Sort rules with the same importance and origin by specificity [p. 104] of selector:
more specific selectors will override more general ones. Pseudo-elements and
pseudo-classes are counted as normal elements and classes, respectively.

4. Finally, sort by order specified: if two declarations have the same weight, origin
and specificity, the latter specified wins. Declarations in imported style sheets
are considered to be before any declarations in the style sheet itself.

10330 Mar 2011 19:50

Assigning property values, Cascading, and Inheritance

Apart from the "!important" setting on individual declarations, this strategy gives
author’s style sheets higher weight than those of the reader. User agents must give
the user the ability to turn off the influence of specific author style sheets, e.g.,
through a pull-down menu. Conformance to UAAG 1.0 checkpoint 4.14 satisfies this
condition [UAAG10].

6.4.2 !important rules
CSS attempts to create a balance of power between author and user style sheets.
By default, rules in an author’s style sheet override those in a user’s style sheet (see
cascade rule 3).

However, for balance, an "!important" declaration (the delimiter token "!" and
keyword "important" follow the declaration) takes precedence over a normal declara-
tion. Both author and user style sheets may contain "!important" declarations, and
user "!important" rules override author "!important" rules. This CSS feature improves
accessibility of documents by giving users with special requirements (large fonts,
color combinations, etc.) control over presentation.

Declaring a shorthand property (e.g., ’background’) to be "!important" is equivalent
to declaring all of its sub-properties to be "!important".

Example(s):

The first rule in the user’s style sheet in the following example contains an "!impor-
tant" declaration, which overrides the corresponding declaration in the author’s style
sheet. The second declaration will also win due to being marked "!important".
However, the third rule in the user’s style sheet is not "!important" and will therefore
lose to the second rule in the author’s style sheet (which happens to set style on a
shorthand property). Also, the third author rule will lose to the second author rule
since the second rule is "!important". This shows that "!important" declarations have
a function also within author style sheets.

/* From the user’s style sheet */
p { text-indent: 1em ! important }
p { font-style: italic ! important }
p { font-size: 18pt }

/* From the author’s style sheet */
p { text-indent: 1.5em !important }
p { font: normal 12pt sans-serif !important }
p { font-size: 24pt }

6.4.3 Calculating a selector’s specificity
A selector’s specificity is calculated as follows:

count 1 if the declaration is from is a ’style’ attribute rather than a rule with a
selector, 0 otherwise (= a) (In HTML, values of an element’s "style" attribute are
style sheet rules. These rules have no selectors, so a=1, b=0, c=0, and d=0.)
count the number of ID attributes in the selector (= b)

30 Mar 2011 19:50104

Assigning property values, Cascading, and Inheritance

count the number of other attributes and pseudo-classes in the selector (= c)
count the number of element names and pseudo-elements in the selector (= d)

The specificity is based only on the form of the selector. In particular, a selector of
the form "[id=p33]" is counted as an attribute selector (a=0, b=0, c=1, d=0), even if
the id attribute is defined as an "ID" in the source document’s DTD.

Concatenating the four numbers a-b-c-d (in a number system with a large base)
gives the specificity.

Example(s):

Some examples:

 * {} /* a=0 b=0 c=0 d=0 -> specificity = 0,0,0,0 */
 li {} /* a=0 b=0 c=0 d=1 -> specificity = 0,0,0,1 */
 li:first-line {} /* a=0 b=0 c=0 d=2 -> specificity = 0,0,0,2 */
 ul li {} /* a=0 b=0 c=0 d=2 -> specificity = 0,0,0,2 */
 ul ol+li {} /* a=0 b=0 c=0 d=3 -> specificity = 0,0,0,3 */
 h1 + *[rel=up]{} /* a=0 b=0 c=1 d=1 -> specificity = 0,0,1,1 */
 ul ol li.red {} /* a=0 b=0 c=1 d=3 -> specificity = 0,0,1,3 */
 li.red.level {} /* a=0 b=0 c=2 d=1 -> specificity = 0,0,2,1 */
 #x34y {} /* a=0 b=1 c=0 d=0 -> specificity = 0,1,0,0 */
 style="" /* a=1 b=0 c=0 d=0 -> specificity = 1,0,0,0 */

<HEAD>
<STYLE type="text/css">
 #x97z { color: red }
</STYLE>
</HEAD>
<BODY>
<P ID=x97z style="color: green">
</BODY>

In the above example, the color of the P element would be green. The declaration
in the "style" attribute will override the one in the STYLE element because of cascad-
ing rule 3, since it has a higher specificity.

6.4.4 Precedence of non-CSS presentational hints
The UA may choose to honor presentational attributes in an HTML source docu-
ment. If so, these attributes are translated to the corresponding CSS rules with
specificity equal to 0, and are treated as if they were inserted at the start of the
author style sheet. They may therefore be overridden by subsequent style sheet
rules. In a transition phase, this policy will make it easier for stylistic attributes to
coexist with style sheets.

For HTML, any attribute that is not in the following list should be considered
presentational: abbr, accept-charset, accept, accesskey, action, alt, archive, axis,
charset, checked, cite, class, classid, code, codebase, codetype, colspan, coords,
data, datetime, declare, defer, dir, disabled, enctype, for, headers, href, hreflang,
http-equiv, id, ismap, label, lang, language, longdesc, maxlength, media, method,
multiple, name, nohref, object, onblur, onchange, onclick, ondblclick, onfocus,

10530 Mar 2011 19:50

Assigning property values, Cascading, and Inheritance

onkeydown, onkeypress, onkeyup, onload, onload, onmousedown, onmousemove,
onmouseout, onmouseover, onmouseup, onreset, onselect, onsubmit, onunload,
onunload, profile, prompt, readonly, rel, rev, rowspan, scheme, scope, selected,
shape, span, src, standby, start, style, summary, title, type (except on LI, OL and UL
elements), usemap, value, valuetype, version.

For other languages, all document language-based styling must be translated to
the corresponding CSS and either enter the cascade at the user agent level or, as
with HTML presentational hints, be treated as author level rules with a specificity of
zero placed at the start of the author style sheet.

Example(s):

The following user style sheet would override the font weight of ’b’ elements in all
documents, and the color of ’font’ elements with color attributes in XML documents.
It would not affect the color of any ’font’ elements with color attributes in HTML docu-
ments:

b { font-weight: normal; }
font[color] { color: orange; }

The following, however, would override the color of font elements in all docu-
ments:

font[color] { color: orange ! important; }

30 Mar 2011 19:50106

Assigning property values, Cascading, and Inheritance

7 Media types
Contents

............ 1077.1 Introduction to media types

........ 1077.2 Specifying media-dependent style sheets

............. 1087.2.1 The @media rule

............. 1087.3 Recognized media types

.............. 1107.3.1 Media groups

7.1 Introduction to media types
One of the most important features of style sheets is that they specify how a docu-
ment is to be presented on different media: on the screen, on paper, with a speech
synthesizer, with a braille device, etc.

Certain CSS properties are only designed for certain media (e.g., the
’page-break-before’ property only applies to paged media). On occasion, however,
style sheets for different media types may share a property, but require different
values for that property. For example, the ’font-size’ property is useful both for
screen and print media. The two media types are different enough to require differ-
ent values for the common property; a document will typically need a larger font on a
computer screen than on paper. Therefore, it is necessary to express that a style
sheet, or a section of a style sheet, applies to certain media types.

7.2 Specifying media-dependent style sheets
There are currently two ways to specify media dependencies for style sheets:

Specify the target medium from a style sheet with the @media or @import
at-rules.

Example(s):

@import url("fancyfonts.css") screen;
@media print {
 /* style sheet for print goes here */
}

Specify the target medium within the document language. For example, in
HTML 4 ([HTML4]), the "media" attribute on the LINK element specifies the
target media of an external style sheet:

10730 Mar 2011 19:50

Media types

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Link to a target medium</TITLE>
 <LINK REL="stylesheet" TYPE="text/css"
 MEDIA="print, handheld" HREF="foo.css">
 </HEAD>
 <BODY>
 <P>The body...
 </BODY>
</HTML>

The @import [p. 102] rule is defined in the chapter on the cascade [p. 99] .

7.2.1 The @media rule
An @media rule specifies the target media types [p. 108] (separated by commas) of
a set of statements [p. 50] (delimited by curly braces). Invalid statements must be
ignored per 4.1.7 "Rule sets, declaration blocks, and selectors" [p. 58] and 4.2
"Rules for handling parsing errors." [p. 60] The @media construct allows style sheet
rules for various media in the same style sheet:

 @media print {
 body { font-size: 10pt }
 }
 @media screen {
 body { font-size: 13px }
 }
 @media screen, print {
 body { line-height: 1.2 }
 }

Style rules outside of @media rules apply to all media types that the style sheet
applies to. At-rules inside @media are invalid in CSS2.1.

7.3 Recognized media types
The names chosen for CSS media types reflect target devices for which the relevant
properties make sense. In the following list of CSS media types the names of media
types are normative, but the descriptions are informative. Likewise, the "Media" field
in the description of each property is informative.

all
Suitable for all devices.

braille
Intended for braille tactile feedback devices.

embossed
Intended for paged braille printers.

handheld
Intended for handheld devices (typically small screen, limited bandwidth).

30 Mar 2011 19:50108

Media types

print
Intended for paged material and for documents viewed on screen in print
preview mode. Please consult the section on paged media [p. 223] for informa-
tion about formatting issues that are specific to paged media.

projection
Intended for projected presentations, for example projectors. Please consult the
section on paged media [p. 223] for information about formatting issues that are
specific to paged media.

screen
Intended primarily for color computer screens.

speech
Intended for speech synthesizers. Note: CSS2 had a similar media type called
’aural’ for this purpose. See the appendix on aural style sheets [p. 305] for
details.

tty
Intended for media using a fixed-pitch character grid (such as teletypes, termi-
nals, or portable devices with limited display capabilities). Authors should not
use pixel units [p. ??] with the "tty" media type.

tv
Intended for television-type devices (low resolution, color, limited-scrollability
screens, sound available).

Media type names are case-insensitive.

Media types are mutually exclusive in the sense that a user agent can only
support one media type when rendering a document. However, user agents may use
different media types on different canvases. For example, a document may (simulta-
neously) be shown in ’screen’ mode on one canvas and ’print’ mode on another
canvas.

Note that a multimodal media type is still only one media type. The ’tv’ media type,
for example, is a multimodal media type that renders both visually and aurally to a
single canvas.

@media and @import rules with unknown media types (that are nonetheless valid
identifiers) are treated as if the unknown media types are not present. If an
@media/@import rule contains a malformed media type (not an identifier) then the
statement is invalid.

Note: Media Queries supercedes this error handling.

Example(s):

For example, in the following snippet, the rule on the P element applies in ’screen’
mode (even though the ’3D’ media type is not known).

@media screen, 3D {
 P { color: green; }
}

10930 Mar 2011 19:50

Media types

Note. Future updates of CSS may extend the list of media types. Authors should
not rely on media type names that are not yet defined by a CSS specification.

7.3.1 Media groups
This section is informative, not normative.

Each CSS property definition specifies which media types the property applies to.
Since properties generally apply to several media types, the "Applies to media"
section of each property definition lists media groups rather than individual media
types. Each property applies to all media types in the media groups listed in its defi-
nition.

CSS 2.1 defines the following media groups:

continuous or paged .
visual , audio , speech , or tactile .
grid (for character grid devices), or bitmap .
interactive (for devices that allow user interaction), or static (for those that do
not).
all (includes all media types)

The following table shows the relationships between media groups and media
types:

Relationship between media groups and media types

Media
Types

Media Groups

 continuous/paged visual/audio/speech/tactile grid/bitmap interactive/static

braille continuous tactile grid both

embossed paged tactile grid static

handheld both visual, audio, speech both both

print paged visual bitmap static

projection paged visual bitmap interactive

screen continuous visual, audio bitmap both

speech continuous speech N/A both

tty continuous visual grid both

tv both visual, audio bitmap both

30 Mar 2011 19:50110

Media types

8 Box model
Contents

............... 1118.1 Box dimensions

........ 1138.2 Example of margins, padding, and borders
8.3 Margin properties: ’margin-top’, ’margin-right’, ’margin-bottom’, ’margin-left’,

................. 115and ’margin’

............ 1178.3.1 Collapsing margins
8.4 Padding properties: ’padding-top’, ’padding-right’, ’padding-bottom’,

............. 119’padding-left’, and ’padding’

.............. 1208.5 Border properties
8.5.1 Border width: ’border-top-width’, ’border-right-width’,

.... 120’border-bottom-width’, ’border-left-width’, and ’border-width’
8.5.2 Border color: ’border-top-color’, ’border-right-color’,

.... 122’border-bottom-color’, ’border-left-color’, and ’border-color’
8.5.3 Border style: ’border-top-style’, ’border-right-style’,

.... 123’border-bottom-style’, ’border-left-style’, and ’border-style’
8.5.4 Border shorthand properties: ’border-top’, ’border-right’,

........ 124’border-bottom’, ’border-left’, and ’border’

..... 1268.6 The box model for inline elements in bidirectional context

The CSS box model describes the rectangular boxes that are generated for
elements in the document tree [p. 45] and laid out according to the visual formatting
model [p. 127] .

8.1 Box dimensions
Each box has a content area (e.g., text, an image, etc.) and optional surrounding
padding, border, and margin areas; the size of each area is specified by properties
defined below. The following diagram shows how these areas relate and the termi-
nology used to refer to pieces of margin, border, and padding:

11130 Mar 2011 19:50

Box model

Margin edge

Border edge

Padding edge

Content edge

Content

Border

Margin (Transparent)

Padding

Right

TM

LM RM

BM

LB RB

TB

BB

TP

BP

RPLP

Top

Bottom

Left

The margin, border, and padding can be broken down into top, right, bottom, and
left segments (e.g., in the diagram, "LM" for left margin, "RP" for right padding, "TB"
for top border, etc.).

The perimeter of each of the four areas (content, padding, border, and margin) is
called an "edge", so each box has four edges:

content edge or inner edge
The content edge surrounds the rectangle given by the width [p. 175] and height
[p. 184] of the box, which often depend on the element’s rendered content
[p. 45] . The four content edges define the box’s content box.

padding edge
The padding edge surrounds the box padding. If the padding has 0 width, the
padding edge is the same as the content edge. The four padding edges define
the box’s padding box.

border edge
The border edge surrounds the box’s border. If the border has 0 width, the
border edge is the same as the padding edge. The four border edges define the
box’s border box.

margin edge or outer edge
The margin edge surrounds the box margin. If the margin has 0 width, the
margin edge is the same as the border edge. The four margin edges define the
box’s margin box.

30 Mar 2011 19:50112

Box model

Each edge may be broken down into a top, right, bottom, and left edge.

The dimensions of the content area of a box — the content width and content
height — depend on several factors: whether the element generating the box has the
’width’ or ’height’ property set, whether the box contains text or other boxes, whether
the box is a table, etc. Box widths and heights are discussed in the chapter on visual
formatting model details [p. 171] .

The background style of the content, padding, and border areas of a box is speci-
fied by the ’background’ property of the generating element. Margin backgrounds are
always transparent.

8.2 Example of margins, padding, and borders
This example illustrates how margins, padding, and borders interact. The example
HTML document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Examples of margins, padding, and borders</TITLE>
 <STYLE type="text/css">
 UL {
 background: yellow;
 margin: 12px 12px 12px 12px;
 padding: 3px 3px 3px 3px;
 /* No borders set */
 }
 LI {
 color: white; /* text color is white */
 background: blue; /* Content, padding will be blue */
 margin: 12px 12px 12px 12px;
 padding: 12px 0px 12px 12px; /* Note 0px padding right */
 list-style: none /* no glyphs before a list item */
 /* No borders set */
 }
 LI.withborder {
 border-style: dashed;
 border-width: medium; /* sets border width on all sides */
 border-color: lime;
 }
 </STYLE>
 </HEAD>
 <BODY>

 First element of list
 <LI class="withborder">Second element of list is
 a bit longer to illustrate wrapping.

 </BODY>
</HTML>

11330 Mar 2011 19:50

Box model

results in a document tree [p. 45] with (among other relationships) a UL element
that has two LI children.

The first of the following diagrams illustrates what this example would produce.
The second illustrates the relationship between the margins, padding, and borders of
the UL elements and those of its children LI elements. (Image is not to scale.)

Note that:

The content width [p. 113] for each LI box is calculated top-down; the containing
block [p. 128] for each LI box is established by the UL element.
The margin box height of each LI box depends on its content height [p. 113] ,

30 Mar 2011 19:50114

Box model

plus top and bottom padding, borders, and margins. Note that vertical margins
between the LI boxes collapse. [p. 117]
The right padding of the LI boxes has been set to zero width (the ’padding’ prop-
erty). The effect is apparent in the second illustration.
The margins of the LI boxes are transparent — margins are always transparent
— so the background color (yellow) of the UL padding and content areas shines
through them.
The second LI element specifies a dashed border (the ’border-style’ property).

8.3 Margin properties: ’margin-top’, ’margin-right’,
’margin-bottom’, ’margin-left’, and ’margin’
Margin properties specify the width of the margin area [p. 111] of a box. The ’margin’
shorthand property sets the margin for all four sides while the other margin proper-
ties only set their respective side. These properties apply to all elements, but vertical
margins will not have any effect on non-replaced inline elements.

The properties defined in this section refer to the <margin-width> value type,
which may take one of the following values:

<length>
Specifies a fixed width.

<percentage>
The percentage is calculated with respect to the width of the generated box’s
containing block [p. 128] . Note that this is true for ’margin-top’ and
’margin-bottom’ as well. If the containing block’s width depends on this element,
then the resulting layout is undefined in CSS 2.1.

auto
See the section on calculating widths and margins [p. 175] for behavior.

Negative values for margin properties are allowed, but there may be implementa-
tion-specific limits.

’margin-top’ , ’margin-bottom’

Value: <margin-width> | inherit
Initial: 0
Applies to: all elements except elements with table display types other

than table-caption, table and inline-table
Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: the percentage as specified or the absolute length

11530 Mar 2011 19:50

Box model

These properties have no effect on non-replaced inline elements.

’margin-right’ , ’margin-left’

Value: <margin-width> | inherit
Initial: 0
Applies to: all elements except elements with table display types other

than table-caption, table and inline-table
Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: the percentage as specified or the absolute length

These properties set the top, right, bottom, and left margin of a box.

Example(s):

h1 { margin-top: 2em }

’margin’

Value: <margin-width>{1,4} | inherit
Initial: see individual properties
Applies to: all elements except elements with table display types other

than table-caption, table and inline-table
Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: see individual properties

The ’margin’ property is a shorthand property for setting ’margin-top’,
’margin-right’, ’margin-bottom’, and ’margin-left’ at the same place in the style sheet.

If there is only one component value, it applies to all sides. If there are two values,
the top and bottom margins are set to the first value and the right and left margins
are set to the second. If there are three values, the top is set to the first value, the
left and right are set to the second, and the bottom is set to the third. If there are four
values, they apply to the top, right, bottom, and left, respectively.

Example(s):

body { margin: 2em } /* all margins set to 2em */
body { margin: 1em 2em } /* top & bottom = 1em, right & left = 2em */
body { margin: 1em 2em 3em } /* top=1em, right=2em, bottom=3em, left=2em */

The last rule of the example above is equivalent to the example below:

30 Mar 2011 19:50116

Box model

body {
 margin-top: 1em;
 margin-right: 2em;
 margin-bottom: 3em;
 margin-left: 2em; /* copied from opposite side (right) */
}

8.3.1 Collapsing margins
In CSS, the adjoining margins of two or more boxes (which might or might not be
siblings) can combine to form a single margin. Margins that combine this way are
said to collapse, and the resulting combined margin is called a collapsed margin.

Adjoining vertical margins collapse, except:

Margins of the root element’s box do not collapse.
If the top and bottom margins of an element with clearance [p. 149] are adjoin-
ing, its margins collapse with the adjoining margins of following siblings but that
resulting margin does not collapse with the bottom margin of the parent block.

Horizontal margins never collapse.

Two margins are adjoining if and only if:

both belong to in-flow block-level boxes [p. 129] that participate in the same
block formatting context [p. 138]
no line boxes, no clearance, no padding and no border separate them (Note that
certain zero-height line boxes [p. 139] (see 9.4.2 [p. 138]) are ignored for this
purpose.)
both belong to vertically-adjacent box edges, i.e. form one of the following pairs:

top margin of a box and top margin of its first in-flow child
bottom margin of box and top margin of its next in-flow following sibling
bottom margin of a last in-flow child and bottom margin of its parent if the
parent has ’auto’ computed height
top and bottom margins of a box that does not establish a new block
formatting context and that has zero computed ’min-height’, zero or ’auto’
computed ’height’, and no in-flow children

A collapsed margin is considered adjoining to another margin if any of its compo-
nent margins is adjoining to that margin.

Note. Adjoining margins can be generated by elements that are not related as
siblings or ancestors.

Note the above rules imply that:

Margins between a floated [p. 142] box and any other box do not collapse (not
even between a float and its in-flow children).
Margins of elements that establish new block formatting contexts (such as floats
and elements with ’overflow’ other than ’visible’) do not collapse with their

11730 Mar 2011 19:50

Box model

in-flow children.
Margins of absolutely positioned [p. 151] boxes do not collapse (not even with
their in-flow children).
Margins of inline-block boxes do not collapse (not even with their in-flow chil-
dren).
The bottom margin of an in-flow block-level element always collapses with the
top margin of its next in-flow block-level sibling, unless that sibling has clear-
ance.
The top margin of an in-flow block element collapses with its first in-flow
block-level child’s top margin if the element has no top border, no top padding,
and the child has no clearance.
The bottom margin of an in-flow block box with a ’height’ of ’auto’ and a
’min-height’ of zero collapses with its last in-flow block-level child’s bottom
margin if the box has no bottom padding and no bottom border and the child’s
bottom margin does not collapse with a top margin that has clearance.
A box’s own margins collapse if the ’min-height’ property is zero, and it has
neither top or bottom borders nor top or bottom padding, and it has a ’height’ of
either 0 or ’auto’, and it does not contain a line box, and all of its in-flow chil-
dren’s margins (if any) collapse.

When two or more margins collapse, the resulting margin width is the maximum of
the collapsing margins’ widths. In the case of negative margins, the maximum of the
absolute values of the negative adjoining margins is deducted from the maximum of
the positive adjoining margins. If there are no positive margins, the maximum of the
absolute values of the adjoining margins is deducted from zero.

If the top and bottom margins of a box are adjoining, then it is possible for margins
to collapse through it. In this case, the position of the element depends on its rela-
tionship with the other elements whose margins are being collapsed.

If the element’s margins are collapsed with its parent’s top margin, the top
border edge of the box is defined to be the same as the parent’s.
Otherwise, either the element’s parent is not taking part in the margin collaps-
ing, or only the parent’s bottom margin is involved. The position of the element’s
top border edge is the same as it would have been if the element had a
non-zero bottom border.

Note that the positions of elements that have been collapsed through have no
effect on the positions of the other elements with whose margins they are being
collapsed; the top border edge position is only required for laying out descendants of
these elements.

30 Mar 2011 19:50118

Box model

8.4 Padding properties: ’padding-top’, ’padding-right’,
’padding-bottom’, ’padding-left’, and ’padding’
The padding properties specify the width of the padding area [p. 111] of a box. The
’padding’ shorthand property sets the padding for all four sides while the other
padding properties only set their respective side.

The properties defined in this section refer to the <padding-width> value type,
which may take one of the following values:

<length>
Specifies a fixed width.

<percentage>
The percentage is calculated with respect to the width of the generated box’s
containing block [p. 128] , even for ’padding-top’ and ’padding-bottom’. If the
containing block’s width depends on this element, then the resulting layout is
undefined in CSS 2.1.

Unlike margin properties, values for padding values cannot be negative. Like
margin properties, percentage values for padding properties refer to the width of the
generated box’s containing block.

’padding-top’ , ’padding-right’ , ’padding-bottom’ , ’padding-left’

Value: <padding-width> | inherit
Initial: 0
Applies to: all elements except table-row-group, table-header-group,

table-footer-group, table-row, table-column-group and
table-column

Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: the percentage as specified or the absolute length

These properties set the top, right, bottom, and left padding of a box.

Example(s):

blockquote { padding-top: 0.3em }

’padding’

11930 Mar 2011 19:50

Box model

Value: <padding-width>{1,4} | inherit
Initial: see individual properties
Applies to: all elements except table-row-group, table-header-group,

table-footer-group, table-row, table-column-group and
table-column

Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: see individual properties

The ’padding’ property is a shorthand property for setting ’padding-top’,
’padding-right’, ’padding-bottom’, and ’padding-left’ at the same place in the style
sheet.

If there is only one component value, it applies to all sides. If there are two values,
the top and bottom paddings are set to the first value and the right and left paddings
are set to the second. If there are three values, the top is set to the first value, the
left and right are set to the second, and the bottom is set to the third. If there are four
values, they apply to the top, right, bottom, and left, respectively.

The surface color or image of the padding area is specified via the ’background’
property:

Example(s):

h1 {
 background: white;
 padding: 1em 2em;
}

The example above specifies a ’1em’ vertical padding (’padding-top’ and
’padding-bottom’) and a ’2em’ horizontal padding (’padding-right’ and ’padding-left’).
The ’em’ unit is relative [p. 63] to the element’s font size: ’1em’ is equal to the size of
the font in use.

8.5 Border properties
The border properties specify the width, color, and style of the border area [p. 111] of
a box. These properties apply to all elements.

Note. Notably for HTML, user agents may render borders for certain user interface
elements (e.g., buttons, menus, etc.) differently than for "ordinary" elements.

8.5.1 Border width: ’border-top-width’, ’border-right-width’,
’border-bottom-width’, ’border-left-width’, and ’border-width’
The border width properties specify the width of the border area [p. 111] . The prop-
erties defined in this section refer to the <border-width> value type, which may take
one of the following values:

30 Mar 2011 19:50120

Box model

thin
A thin border.

medium
A medium border.

thick
A thick border.

<length>
The border’s thickness has an explicit value. Explicit border widths cannot be
negative.

The interpretation of the first three values depends on the user agent. The follow-
ing relationships must hold, however:

’thin’ <=’medium’ <= ’thick’.

Furthermore, these widths must be constant throughout a document.

’border-top-width’ , ’border-right-width’ , ’border-bottom-width’ ,
’border-left-width’

Value: <border-width> | inherit
Initial: medium
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: absolute length; ’0’ if the border style is ’none’ or ’hidden’

These properties set the width of the top, right, bottom, and left border of a box.

’border-width’

Value: <border-width>{1,4} | inherit
Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: see individual properties

This property is a shorthand property for setting ’border-top-width’,
’border-right-width’, ’border-bottom-width’, and ’border-left-width’ at the same place
in the style sheet.

If there is only one component value, it applies to all sides. If there are two values,
the top and bottom borders are set to the first value and the right and left are set to
the second. If there are three values, the top is set to the first value, the left and right
are set to the second, and the bottom is set to the third. If there are four values, they

12130 Mar 2011 19:50

Box model

apply to the top, right, bottom, and left, respectively.

Example(s):

In the examples below, the comments indicate the resulting widths of the top,
right, bottom, and left borders:

h1 { border-width: thin } /* thin thin thin thin */
h1 { border-width: thin thick } /* thin thick thin thick */
h1 { border-width: thin thick medium } /* thin thick medium thick */

8.5.2 Border color: ’border-top-color’, ’border-right-color’,
’border-bottom-color’, ’border-left-color’, and ’border-color’
The border color properties specify the color of a box’s border.

’border-top-color’ , ’border-right-color’ , ’border-bottom-color’ ,
’border-left-color’

Value: <color> | transparent | inherit
Initial: the value of the ’color’ property
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: when taken from the ’color’ property, the computed value of

’color’; otherwise, as specified

’border-color’

Value: [<color> | transparent]{1,4} | inherit
Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: see individual properties

The ’border-color’ property sets the color of the four borders. Values have the
following meanings:

<color>
Specifies a color value.

transparent
The border is transparent (though it may have width).

30 Mar 2011 19:50122

Box model

The ’border-color’ property can have from one to four component values, and the
values are set on the different sides as for ’border-width’.

If an element’s border color is not specified with a border property, user agents
must use the value of the element’s ’color’ property as the computed value [p. 100]
for the border color.

Example(s):

In this example, the border will be a solid black line.

p {
 color: black;
 background: white;
 border: solid;
}

8.5.3 Border style: ’border-top-style’, ’border-right-style’,
’border-bottom-style’, ’border-left-style’, and ’border-style’
The border style properties specify the line style of a box’s border (solid, double,
dashed, etc.). The properties defined in this section refer to the <border-style>
value type, which may take one of the following values:

none
No border; the computed border width is zero.

hidden
Same as ’none’, except in terms of border conflict resolution [p. 292] for table
elements [p. 269] .

dotted
The border is a series of dots.

dashed
The border is a series of short line segments.

solid
The border is a single line segment.

double
The border is two solid lines. The sum of the two lines and the space between
them equals the value of ’border-width’.

groove
The border looks as though it were carved into the canvas.

ridge
The opposite of ’groove’: the border looks as though it were coming out of the
canvas.

inset
The border makes the box look as though it were embedded in the canvas.

outset
The opposite of ’inset’: the border makes the box look as though it were coming
out of the canvas.

12330 Mar 2011 19:50

Box model

All borders are drawn on top of the box’s background. The color of borders drawn
for values of ’groove’, ’ridge’, ’inset’, and ’outset’ depends on the element’s border
color properties [p. 122] , but UAs may choose their own algorithm to calculate the
actual colors used. For instance, if the ’border-color’ has the value ’silver’, then a UA
could use a gradient of colors from white to dark gray to indicate a sloping border.

’border-top-style’ , ’border-right-style’ , ’border-bottom-style’ , ’border-left-style’

Value: <border-style> | inherit
Initial: none
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

’border-style’

Value: <border-style>{1,4} | inherit
Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: see individual properties

The ’border-style’ property sets the style of the four borders. It can have from one
to four component values, and the values are set on the different sides as for
’border-width’ above.

Example(s):

#xy34 { border-style: solid dotted }

In the above example, the horizontal borders will be ’solid’ and the vertical borders
will be ’dotted’.

Since the initial value of the border styles is ’none’, no borders will be visible
unless the border style is set.

8.5.4 Border shorthand properties: ’border-top’, ’border-right’,
’border-bottom’, ’border-left’, and ’border’

’border-top’ , ’border-right’ , ’border-bottom’ , ’border-left’

30 Mar 2011 19:50124

Box model

Value: [<border-width> || <border-style> || <’border-top-color’>] |
inherit

Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: see individual properties

This is a shorthand property for setting the width, style, and color of the top, right,
bottom, and left border of a box.

Example(s):

h1 { border-bottom: thick solid red }

The above rule will set the width, style, and color of the border below the H1
element. Omitted values are set to their initial values [p. 31] . Since the following rule
does not specify a border color, the border will have the color specified by the ’color’
property:

H1 { border-bottom: thick solid }

’border’

Value: [<border-width> || <border-style> || <’border-top-color’>] |
inherit

Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: see individual properties

The ’border’ property is a shorthand property for setting the same width, color, and
style for all four borders of a box. Unlike the shorthand ’margin’ and ’padding’ proper-
ties, the ’border’ property cannot set different values on the four borders. To do so,
one or more of the other border properties must be used.

Example(s):

For example, the first rule below is equivalent to the set of four rules shown after it:

p { border: solid red }
p {
 border-top: solid red;
 border-right: solid red;
 border-bottom: solid red;
 border-left: solid red
}

12530 Mar 2011 19:50

Box model

Since, to some extent, the properties have overlapping functionality, the order in
which the rules are specified is important.

Example(s):

Consider this example:

blockquote {
 border: solid red;
 border-left: double;
 color: black;
}

In the above example, the color of the left border is black, while the other borders
are red. This is due to ’border-left’ setting the width, style, and color. Since the color
value is not given by the ’border-left’ property, it will be taken from the ’color’ prop-
erty. The fact that the ’color’ property is set after the ’border-left’ property is not rele-
vant.

8.6 The box model for inline elements in bidirectional
context
For each line box, UAs must take the inline boxes generated for each element and
render the margins, borders and padding in visual order (not logical order).

When the element’s ’direction’ property is ’ltr’, the left-most generated box of the
first line box in which the element appears has the left margin, left border and left
padding, and the right-most generated box of the last line box in which the element
appears has the right padding, right border and right margin.

When the element’s ’direction’ property is ’rtl’, the right-most generated box of the
first line box in which the element appears has the right padding, right border and
right margin, and the left-most generated box of the last line box in which the
element appears has the left margin, left border and left padding.

30 Mar 2011 19:50126

Box model

9 Visual formatting model
Contents

........ 1279.1 Introduction to the visual formatting model

.............. 1289.1.1 The viewport

............. 1289.1.2 Containing blocks

............ 1299.2 Controlling box generation

........ 1299.2.1 Block-level elements and block boxes

......... 1299.2.1.1 Anonymous block boxes

........ 1319.2.2 Inline-level elements and inline boxes

......... 1329.2.2.1 Anonymous inline boxes

.............. 1329.2.3 Run-in boxes

............ 1329.2.4 The ’display’ property

.............. 1349.3 Positioning schemes

..... 1349.3.1 Choosing a positioning scheme: ’position’ property

........ 1359.3.2 Box offsets: ’top’, ’right’, ’bottom’, ’left’

................ 1379.4 Normal flow

........... 1389.4.1 Block formatting contexts

........... 1389.4.2 Inline formatting contexts

............ 1419.4.3 Relative positioning

................. 1429.5 Floats

....... 1469.5.1 Positioning the float: the ’float’ property

..... 1489.5.2 Controlling flow next to floats: the ’clear’ property

.............. 1519.6 Absolute positioning

............. 1519.6.1 Fixed positioning

...... 1539.7 Relationships between ’display’, ’position’, and ’float’

.... 1549.8 Comparison of normal flow, floats, and absolute positioning

.............. 1559.8.1 Normal flow

............ 1559.8.2 Relative positioning

.............. 1569.8.3 Floating a box

............ 1599.8.4 Absolute positioning

............. 1639.9 Layered presentation

..... 1639.9.1 Specifying the stack level: the ’z-index’ property

.... 1659.10 Text direction: the ’direction’ and ’unicode-bidi’ properties

9.1 Introduction to the visual formatting model
This chapter and the next describe the visual formatting model: how user agents
process the document tree [p. 45] for visual media [p. 107] .

12730 Mar 2011 19:50

Visual formatting model

In the visual formatting model, each element in the document tree generates zero
or more boxes according to the box model [p. 111] . The layout of these boxes is
governed by:

box dimensions [p. 111] and type [p. 129] .
positioning scheme [p. 134] (normal flow, float, and absolute positioning).
relationships between elements in the document tree. [p. 45]
external information (e.g., viewport size, intrinsic [p. 45] dimensions of images,
etc.).

The properties defined in this chapter and the next apply to both continuous media
[p. 110] and paged media [p. 110] . However, the meanings of the margin properties
[p. 115] vary when applied to paged media (see the page model [p. 224] for details).

The visual formatting model does not specify all aspects of formatting (e.g., it does
not specify a letter-spacing algorithm). Conforming user agents [p. 47] may behave
differently for those formatting issues not covered by this specification.

9.1.1 The viewport
User agents for continuous media [p. 110] generally offer users a viewport (a window
or other viewing area on the screen) through which users consult a document. User
agents may change the document’s layout when the viewport is resized (see the
initial containing block [p. 171]).

When the viewport is smaller than the area of the canvas on which the document
is rendered, the user agent should offer a scrolling mechanism. There is at most one
viewport per canvas [p. 40] , but user agents may render to more than one canvas
(i.e., provide different views of the same document).

9.1.2 Containing blocks
In CSS 2.1, many box positions and sizes are calculated with respect to the edges of
a rectangular box called a containing block. In general, generated boxes act as
containing blocks for descendant boxes; we say that a box "establishes" the contain-
ing block for its descendants. The phrase "a box’s containing block" means "the
containing block in which the box lives," not the one it generates.

Each box is given a position with respect to its containing block, but it is not
confined by this containing block; it may overflow [p. 195] .

The details [p. 171] of how a containing block’s dimensions are calculated are
described in the next chapter [p. 171] .

30 Mar 2011 19:50128

Visual formatting model

9.2 Controlling box generation
The following sections describe the types of boxes that may be generated in
CSS 2.1. A box’s type affects, in part, its behavior in the visual formatting model. The
’display’ property, described below, specifies a box’s type.

9.2.1 Block-level elements and block boxes
Block-level elements are those elements of the source document that are formatted
visually as blocks (e.g., paragraphs). The following values of the ’display’ property
make an element block-level: ’block’, ’list-item’, and ’table’.

Block-level boxes are boxes that participate in a block formatting context. [p. 138]
Each block-level element generates a principal block-level box that contains descen-
dant boxes and generated content and is also the box involved in any positioning
scheme. Some block-level elements may generate additional boxes in addition to the
principal box: ’list-item’ elements. These additional boxes are placed with respect to
the principal box.

Except for table boxes, which are described in a later chapter, and replaced
elements, a block-level box is also a block container box. A block container box
either contains only block-level boxes or establishes an inline formatting context and
thus contains only inline-level boxes. Not all block container boxes are block-level
boxes: non-replaced inline blocks and non-replaced table cells are block containers
but not block-level boxes. Block-level boxes that are also block containers are called
block boxes.

The three terms "block-level box," "block container box," and "block box" are
sometimes abbreviated as "block" where unambiguous.

9.2.1.1 Anonymous block boxes

In a document like this:

<DIV>
 Some text
 <P>More text
</DIV>

(and assuming the DIV and the P both have ’display: block’), the DIV appears to
have both inline content and block content. To make it easier to define the format-
ting, we assume that there is an anonymous block box around "Some text".

12930 Mar 2011 19:50

Visual formatting model

Some text

More text

DIV box
anonymous box

P box

Diagram showing the three boxes, of which one is anonymous, for the example
above.

In other words: if a block container box (such as that generated for the DIV above)
has a block-level box inside it (such as the P above), then we force it to have only
block-level boxes inside it.

When an inline box contains an in-flow block-level box, the inline box (and its
inline ancestors within the same line box) are broken around the block-level box (and
any block-level siblings that are consecutive or separated only by collapsible whites-
pace and/or out-of-flow elements), splitting the inline box into two boxes (even if
either side is empty), one on each side of the block-level box(es). The line boxes
before the break and after the break are enclosed in anonymous block boxes, and
the block-level box becomes a sibling of those anonymous boxes. When such an
inline box is affected by relative positioning, any resulting translation also affects the
block-level box contained in the inline box.

Example(s):

This model would apply in the following example if the following rules:

p { display: inline }
span { display: block }

were used with this HTML document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HEAD>
<TITLE>Anonymous text interrupted by a block</TITLE>
</HEAD>
<BODY>
<P>
This is anonymous text before the SPAN.
This is the content of SPAN.
This is anonymous text after the SPAN.
</P>
</BODY>

30 Mar 2011 19:50130

Visual formatting model

The P element contains a chunk (C1) of anonymous text followed by a block-level
element followed by another chunk (C2) of anonymous text. The resulting boxes
would be a block box representing the BODY, containing an anonymous block box
around C1, the SPAN block box, and another anonymous block box around C2.

The properties of anonymous boxes are inherited from the enclosing non-anony-
mous box (e.g., in the example just below the subsection heading "Anonymous block
boxes", the one for DIV). Non-inherited properties have their initial value. For
example, the font of the anonymous box is inherited from the DIV, but the margins
will be 0.

Properties set on elements that cause anonymous block boxes to be generated
still apply to the boxes and content of that element. For example, if a border had
been set on the P element in the above example, the border would be drawn around
C1 (open at the end of the line) and C2 (open at the start of the line).

Some user agents have implemented borders on inlines containing blocks in other
ways, e.g., by wrapping such nested blocks inside "anonymous line boxes" and thus
drawing inline borders around such boxes. As CSS1 and CSS2 did not define this
behavior, CSS1-only and CSS2-only user agents may implement this alternative
model and still claim conformance to this part of CSS 2.1. This does not apply to
UAs developed after this specification was released.

Anonymous block boxes are ignored when resolving percentage values that would
refer to it: the closest non-anonymous ancestor box is used instead. For example, if
the child of the anonymous block box inside the DIV above needs to know the height
of its containing block to resolve a percentage height, then it will use the height of
the containing block formed by the DIV, not of the anonymous block box.

9.2.2 Inline-level elements and inline boxes
Inline-level elements are those elements of the source document that do not form
new blocks of content; the content is distributed in lines (e.g., emphasized pieces of
text within a paragraph, inline images, etc.). The following values of the ’display’
property make an element inline-level: ’inline’, ’inline-table’, and ’inline-block’.
Inline-level elements generate inline-level boxes, which are boxes that participate in
an inline formatting context.

An inline box is one that is both inline-level and whose contents participate in its
containing inline formatting context. A non-replaced element with a ’display’ value of
’inline’ generates an inline box. Inline-level boxes that are not inline boxes (such as
replaced inline-level elements, inline-block elements, and inline-table elements) are
called atomic inline-level boxes because they participate in their inline formatting
context as a single opaque box.

13130 Mar 2011 19:50

Visual formatting model

9.2.2.1 Anonymous inline boxes

Any text that is directly contained inside a block container element (not inside an
inline element) must be treated as an anonymous inline element.

In a document with HTML markup like this:

<p>Some emphasized text</p>

the <p> generates a block box, with several inline boxes inside it. The box for
"emphasized" is an inline box generated by an inline element (), but the other
boxes ("Some" and "text") are inline boxes generated by a block-level element
(<p>). The latter are called anonymous inline boxes, because they do not have an
associated inline-level element.

Such anonymous inline boxes inherit inheritable properties from their block parent
box. Non-inherited properties have their initial value. In the example, the color of the
anonymous inline boxes is inherited from the P, but the background is transparent.

White space content that would subsequently be collapsed away according to the
’white-space’ property does not generate any anonymous inline boxes.

If it is clear from the context which type of anonymous box is meant, both anony-
mous inline boxes and anonymous block boxes are simply called anonymous boxes
in this specification.

There are more types of anonymous boxes that arise when formatting tables
[p. 273] .

9.2.3 Run-in boxes
[This section exists so that the section numbers are the same as in previous drafts.
’Display: run-in’ is now defined in CSS level 3 (see CSS basic box model [p. ??]).]

9.2.4 The ’display’ property

’display’

Value: inline | block | list-item | inline-block | table | inline-table |
table-row-group | table-header-group | table-footer-group |
table-row | table-column-group | table-column | table-cell |
table-caption | none | inherit

Initial: inline
Applies to: all elements
Inherited: no
Percentages: N/A
Media: all
Computed value: see text

30 Mar 2011 19:50132

Visual formatting model

The values of this property have the following meanings:

block
This value causes an element to generate a block box.

inline-block
This value causes an element to generate an inline-level block container. The
inside of an inline-block is formatted as a block box, and the element itself is
formatted as an atomic inline-level box.

inline
This value causes an element to generate one or more inline boxes.

list-item
This value causes an element (e.g., LI in HTML) to generate a principal block
box and a marker box. For information about lists and examples of list format-
ting, please consult the section on lists [p. 214] .

none
This value causes an element to not appear in the formatting structure [p. 40]
(i.e., in visual media the element generates no boxes and has no effect on
layout). Descendant elements do not generate any boxes either; the element
and its content are removed from the formatting structure entirely. This behavior
cannot be overridden by setting the ’display’ property on the descendants.

Please note that a display of ’none’ does not create an invisible box; it creates
no box at all. CSS includes mechanisms that enable an element to generate
boxes in the formatting structure that affect formatting but are not visible them-
selves. Please consult the section on visibility [p. 201] for details.

table, inline-table, table-row-group, table-column, table-column-group,
table-header-group, table-footer-group, table-row, table-cell, and table-caption

These values cause an element to behave like a table element (subject to
restrictions described in the chapter on tables [p. 269]).

The computed value is the same as the specified value, except for positioned and
floating elements (see Relationships between ’display’, ’position’, and ’float’ [p. 153])
and for the root element. For the root element, the computed value is changed as
described in the section on the relationships between ’display’, ’position’, and ’float’
[p. 153] .

Note that although the initial value [p. 31] of ’display’ is ’inline’, rules in the user
agent’s default style sheet [p. 103] may override [p. 99] this value. See the sample
style sheet [p. 453] for HTML 4 in the appendix.

Example(s):

Here are some examples of the ’display’ property:

p { display: block }
em { display: inline }
li { display: list-item }
img { display: none } /* Do not display images */

13330 Mar 2011 19:50

Visual formatting model

9.3 Positioning schemes
In CSS 2.1, a box may be laid out according to three positioning schemes:

1. Normal flow [p. 137] . In CSS 2.1, normal flow includes block formatting [p. 138]
of block-level boxes, inline formatting [p. 138] of inline-level boxes, and relative
positioning [p. 141] of block-level and inline-level boxes.

2. Floats [p. 142] . In the float model, a box is first laid out according to the normal
flow, then taken out of the flow and shifted to the left or right as far as possible.
Content may flow along the side of a float.

3. Absolute positioning [p. 151] . In the absolute positioning model, a box is
removed from the normal flow entirely (it has no impact on later siblings) and
assigned a position with respect to a containing block.

An element is called out of flow if it is floated, absolutely positioned, or is the root
element. An element is called in-flow if it is not out-of-flow. The flow of an element A
is the set consisting of A and all in-flow elements whose nearest out-of-flow ancestor
is A.
Note. CSS 2.1’s positioning schemes help authors make their documents more
accessible by allowing them to avoid mark-up tricks (e.g., invisible images) used for
layout effects.

9.3.1 Choosing a positioning scheme: ’position’ property
The ’position’ and ’float’ properties determine which of the CSS 2.1 positioning algo-
rithms is used to calculate the position of a box.

’position’

Value: static | relative | absolute | fixed | inherit
Initial: static
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

The values of this property have the following meanings:

static
The box is a normal box, laid out according to the normal flow [p. 137] . The
’top’, ’right’, ’bottom’, and ’left’ properties do not apply.

relative
The box’s position is calculated according to the normal flow [p. 137] (this is
called the position in normal flow). Then the box is offset relative [p. 141] to its
normal position. When a box B is relatively positioned, the position of the follow-
ing box is calculated as though B were not offset. The effect of ’position:relative’

30 Mar 2011 19:50134

Visual formatting model

on table-row-group, table-header-group, table-footer-group, table-row,
table-column-group, table-column, table-cell, and table-caption elements is
undefined.

absolute
The box’s position (and possibly size) is specified with the ’top’, ’right’, ’bottom’,
and ’left’ properties. These properties specify offsets with respect to the box’s
containing block [p. 128] . Absolutely positioned boxes are taken out of the
normal flow. This means they have no impact on the layout of later siblings.
Also, though absolutely positioned [p. 151] boxes have margins, they do not
collapse [p. 117] with any other margins.

fixed
The box’s position is calculated according to the ’absolute’ model, but in addi-
tion, the box is fixed [p. 151] with respect to some reference. As with the ’abso-
lute’ model, the box’s margins do not collapse with any other margins. In the
case of handheld, projection, screen, tty, and tv media types, the box is fixed
with respect to the viewport [p. 128] and does not move when scrolled. In the
case of the print media type, the box is rendered on every page, and is fixed
with respect to the page box, even if the page is seen through a viewport
[p. 128] (in the case of a print-preview, for example). For other media types, the
presentation is undefined. Authors may wish to specify ’fixed’ in a media-depen-
dent way. For instance, an author may want a box to remain at the top of the
viewport [p. 128] on the screen, but not at the top of each printed page. The two
specifications may be separated by using an @media rule [p. 108] , as in:

Example(s):

@media screen {
 h1#first { position: fixed }
}
@media print {
 h1#first { position: static }
}

UAs must not paginate the content of fixed boxes. Note that UAs may print
invisible content in other ways. See "Content outside the page box" [p. 227] in
chapter 13.

User agents may treat position as ’static’ on the root element.

9.3.2 Box offsets: ’top’, ’right’, ’bottom’, ’left’
An element is said to be positioned if its ’position’ property has a value other than
’static’. Positioned elements generate positioned boxes, laid out according to four
properties:

’top’

13530 Mar 2011 19:50

Visual formatting model

Value: <length> | <percentage> | auto | inherit
Initial: auto
Applies to: positioned elements
Inherited: no
Percentages: refer to height of containing block
Media: visual
Computed value: if specified as a length, the corresponding absolute length; if

specified as a percentage, the specified value; otherwise,
’auto’.

This property specifies how far an absolutely positioned [p. 151] box’s top margin
edge is offset below the top edge of the box’s containing block [p. 128] . For rela-
tively positioned boxes, the offset is with respect to the top edges of the box itself
(i.e., the box is given a position in the normal flow, then offset from that position
according to these properties).

’right’

Value: <length> | <percentage> | auto | inherit
Initial: auto
Applies to: positioned elements
Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: if specified as a length, the corresponding absolute length; if

specified as a percentage, the specified value; otherwise,
’auto’.

Like ’top’, but specifies how far a box’s right margin edge is offset to the left of the
right edge of the box’s containing block [p. 128] . For relatively positioned boxes, the
offset is with respect to the right edge of the box itself.

’bottom’

Value: <length> | <percentage> | auto | inherit
Initial: auto
Applies to: positioned elements
Inherited: no
Percentages: refer to height of containing block
Media: visual
Computed value: if specified as a length, the corresponding absolute length; if

specified as a percentage, the specified value; otherwise,
’auto’.

30 Mar 2011 19:50136

Visual formatting model

Like ’top’, but specifies how far a box’s bottom margin edge is offset above the
bottom of the box’s containing block [p. 128] . For relatively positioned boxes, the
offset is with respect to the bottom edge of the box itself.

’left’

Value: <length> | <percentage> | auto | inherit
Initial: auto
Applies to: positioned elements
Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: if specified as a length, the corresponding absolute length; if

specified as a percentage, the specified value; otherwise,
’auto’.

Like ’top’, but specifies how far a box’s left margin edge is offset to the right of the
left edge of the box’s containing block [p. 128] . For relatively positioned boxes, the
offset is with respect to the left edge of the box itself.

The values for the four properties have the following meanings:

<length>
The offset is a fixed distance from the reference edge. Negative values are
allowed.

<percentage>
The offset is a percentage of the containing block’s width (for ’left’ or ’right’) or
height (for ’top’ and ’bottom’). Negative values are allowed.

auto
For non-replaced elements, the effect of this value depends on which of related
properties have the value ’auto’ as well. See the sections on the width [p. 177]
and height [p. 186] of absolutely positioned [p. 151] , non-replaced elements for
details. For replaced elements, the effect of this value depends only on the
intrinsic dimensions of the replaced content. See the sections on the width
[p. 179] and height [p. 187] of absolutely positioned, replaced elements for
details.

9.4 Normal flow
Boxes in the normal flow belong to a formatting context, which may be block or
inline, but not both simultaneously. Block-level [p. 129] boxes participate in a block
formatting [p. 138] context. Inline-level boxes [p. 131] participate in an inline format-
ting [p. 138] context.

13730 Mar 2011 19:50

Visual formatting model

9.4.1 Block formatting contexts
Floats, absolutely positioned elements, block containers (such as inline-blocks,
table-cells, and table-captions) that are not block boxes, and block boxes with ’over-
flow’ other than ’visible’ (except when that value has been propagated to the view-
port) establish new block formatting contexts for their contents.

In a block formatting context, boxes are laid out one after the other, vertically,
beginning at the top of a containing block. The vertical distance between two sibling
boxes is determined by the ’margin’ properties. Vertical margins between adjacent
block-level boxes in a block formatting context collapse [p. 117] .

In a block formatting context, each box’s left outer edge touches the left edge of
the containing block (for right-to-left formatting, right edges touch). This is true even
in the presence of floats (although a box’s line boxes may shrink due to the floats),
unless the box establishes a new block formatting context (in which case the box
itself may become narrower [p. 142] due to the floats).

For information about page breaks in paged media, please consult the section on
allowed page breaks [p. 229] .

9.4.2 Inline formatting contexts
In an inline formatting context, boxes are laid out horizontally, one after the other,
beginning at the top of a containing block. Horizontal margins, borders, and padding
are respected between these boxes. The boxes may be aligned vertically in different
ways: their bottoms or tops may be aligned, or the baselines of text within them may
be aligned. The rectangular area that contains the boxes that form a line is called a
line box.

The width of a line box is determined by a containing block [p. 128] and the pres-
ence of floats. The height of a line box is determined by the rules given in the section
on line height calculations [p. 189] .

A line box is always tall enough for all of the boxes it contains. However, it may be
taller than the tallest box it contains (if, for example, boxes are aligned so that base-
lines line up). When the height of a box B is less than the height of the line box
containing it, the vertical alignment of B within the line box is determined by the
’vertical-align’ property. When several inline-level boxes cannot fit horizontally within
a single line box, they are distributed among two or more vertically-stacked line
boxes. Thus, a paragraph is a vertical stack of line boxes. Line boxes are stacked
with no vertical separation (except as specified elsewhere) and they never overlap.

In general, the left edge of a line box touches the left edge of its containing block
and the right edge touches the right edge of its containing block. However, floating
boxes may come between the containing block edge and the line box edge. Thus,
although line boxes in the same inline formatting context generally have the same
width (that of the containing block), they may vary in width if available horizontal
space is reduced due to floats [p. 142] . Line boxes in the same inline formatting
context generally vary in height (e.g., one line might contain a tall image while the

30 Mar 2011 19:50138

Visual formatting model

others contain only text).

When the total width of the inline-level boxes on a line is less than the width of the
line box containing them, their horizontal distribution within the line box is determined
by the ’text-align’ property. If that property has the value ’justify’, the user agent may
stretch spaces and words in inline boxes (but not inline-table and inline-block boxes)
as well.

When an inline box exceeds the width of a line box, it is split into several boxes
and these boxes are distributed across several line boxes. If an inline box cannot be
split (e.g., if the inline box contains a single character, or language specific word
breaking rules disallow a break within the inline box, or if the inline box is affected by
a white-space value of nowrap or pre), then the inline box overflows the line box.

When an inline box is split, margins, borders, and padding have no visual effect
where the split occurs (or at any split, when there are several).

Inline boxes may also be split into several boxes within the same line box due to
bidirectional text processing [p. 165] .

Line boxes are created as needed to hold inline-level content within an inline
formatting context. Line boxes that contain no text, no preserved white space,
[p. 264] no inline elements with non-zero margins, padding, or borders, and no other
in-flow [p. 134] content (such as images, inline blocks or inline tables), and do not
end with a preserved newline must be treated as zero-height line boxes for the
purposes of determining the positions of any elements inside of them, and must be
treated as not existing for any other purpose.

Here is an example of inline box construction. The following paragraph (created by
the HTML block-level element P) contains anonymous text interspersed with the
elements EM and STRONG:

<P>Several emphasized words appear
in this sentence, dear.</P>

The P element generates a block box that contains five inline boxes, three of
which are anonymous:

Anonymous: "Several"
EM: "emphasized words"
Anonymous: "appear"
STRONG: "in this"
Anonymous: "sentence, dear."

To format the paragraph, the user agent flows the five boxes into line boxes. In
this example, the box generated for the P element establishes the containing block
for the line boxes. If the containing block is sufficiently wide, all the inline boxes will
fit into a single line box:

13930 Mar 2011 19:50

Visual formatting model

 Several emphasized words appear in this sentence, dear.

If not, the inline boxes will be split up and distributed across several line boxes.
The previous paragraph might be split as follows:

Several emphasized words appear
in this sentence, dear.

or like this:

Several emphasized
words appear in this
sentence, dear.

In the previous example, the EM box was split into two EM boxes (call them
"split1" and "split2"). Margins, borders, padding, or text decorations have no visible
effect after split1 or before split2.

Consider the following example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Example of inline flow on several lines</TITLE>
 <STYLE type="text/css">
 EM {
 padding: 2px;
 margin: 1em;
 border-width: medium;
 border-style: dashed;
 line-height: 2.4em;
 }
 </STYLE>
 </HEAD>
 <BODY>
 <P>Several emphasized words appear here.</P>
 </BODY>
</HTML>

Depending on the width of the P, the boxes may be distributed as follows:

Several emphasized

words appear here.

Width of paragraph

Line height 2.4em

The margin is inserted before "emphasized" and after "words".
The padding is inserted before, above, and below "emphasized" and after,
above, and below "words". A dashed border is rendered on three sides in each
case.

30 Mar 2011 19:50140

Visual formatting model

9.4.3 Relative positioning
Once a box has been laid out according to the normal flow [p. 137] or floated, it may
be shifted relative to this position. This is called relative positioning. Offsetting a box
(B1) in this way has no effect on the box (B2) that follows: B2 is given a position as if
B1 were not offset and B2 is not re-positioned after B1’s offset is applied. This
implies that relative positioning may cause boxes to overlap. However, if relative
positioning causes an ’overflow:auto’ or ’overflow:scroll’ box to have overflow, the
UA must allow the user to access this content (at its offset position), which, through
the creation of scrollbars, may affect layout.

A relatively positioned box keeps its normal flow size, including line breaks and the
space originally reserved for it. The section on containing blocks [p. 128] explains
when a relatively positioned box establishes a new containing block.

For relatively positioned elements, ’left’ and ’right’ move the box(es) horizontally,
without changing their size. ’Left’ moves the boxes to the right, and ’right’ moves
them to the left. Since boxes are not split or stretched as a result of ’left’ or ’right’, the
used values are always: left = -right.

If both ’left’ and ’right’ are ’auto’ (their initial values), the used values are ’0’ (i.e.,
the boxes stay in their original position).

If ’left’ is ’auto’, its used value is minus the value of ’right’ (i.e., the boxes move to
the left by the value of ’right’).

If ’right’ is specified as ’auto’, its used value is minus the value of ’left’.

If neither ’left’ nor ’right’ is ’auto’, the position is over-constrained, and one of them
has to be ignored. If the ’direction’ property of the containing block is ’ltr’, the value of
’left’ wins and ’right’ becomes -’left’. If ’direction’ of the containing block is ’rtl’, ’right’
wins and ’left’ is ignored.

Example(s):

Example. The following three rules are equivalent:

div.a8 { position: relative; direction: ltr; left: -1em; right: auto }
div.a8 { position: relative; direction: ltr; left: auto; right: 1em }
div.a8 { position: relative; direction: ltr; left: -1em; right: 5em }

The ’top’ and ’bottom’ properties move relatively positioned element(s) up or down
without changing their size. ’Top’ moves the boxes down, and ’bottom’ moves them
up. Since boxes are not split or stretched as a result of ’top’ or ’bottom’, the used
values are always: top = -bottom. If both are ’auto’, their used values are both ’0’. If
one of them is ’auto’, it becomes the negative of the other. If neither is ’auto’,
’bottom’ is ignored (i.e., the used value of ’bottom’ will be minus the value of ’top’).

Note. Dynamic movement of relatively positioned boxes can produce animation
effects in scripting environments (see also the ’visibility’ property). Although relative
positioning may be used as a form of superscripting and subscripting, the line height
is not automatically adjusted to take the positioning into consideration. See the
description of line height calculations [p. 189] for more information.

14130 Mar 2011 19:50

Visual formatting model

Examples of relative positioning are provided in the section comparing normal
flow, floats, and absolute positioning [p. 154] .

9.5 Floats
A float is a box that is shifted to the left or right on the current line. The most interest-
ing characteristic of a float (or "floated" or "floating" box) is that content may flow
along its side (or be prohibited from doing so by the ’clear’ property). Content flows
down the right side of a left-floated box and down the left side of a right-floated box.
The following is an introduction to float positioning and content flow; the exact rules
[p. 147] governing float behavior are given in the description of the ’float’ property.

A floated box is shifted to the left or right until its outer edge touches the contain-
ing block edge or the outer edge of another float. If there is a line box, the outer top
of the floated box is aligned with the top of the current line box.

If there is not enough horizontal room for the float, it is shifted downward until
either it fits or there are no more floats present.

Since a float is not in the flow, non-positioned block boxes created before and
after the float box flow vertically as if the float did not exist. However, the current and
subsequent line boxes created next to the float are shortened as necessary to make
room for the margin box of the float.

A line box is next to a float when there exists a vertical position that satisfies all of
these four conditions: (a) at or below the top of the line box, (b) at or above the
bottom of the line box, (c) below the top margin edge of the float, and (d) above the
bottom margin edge of the float.

Note: this means that floats with zero outer height or negative outer height do not
shorten line boxes.

If a shortened line box is too small to contain any content, then the line box is
shifted downward (and its width recomputed) until either some content fits or there
are no more floats present. Any content in the current line before a floated box is
reflowed in the same line on the other side of the float. In other words, if inline-level
boxes are placed on the line before a left float is encountered that fits in the remain-
ing line box space, the left float is placed on that line, aligned with the top of the line
box, and then the inline-level boxes already on the line are moved accordingly to the
right of the float (the right being the other side of the left float) and vice versa for rtl
and right floats.

The border box of a table, a block-level replaced element, or an element in the
normal flow that establishes a new block formatting context [p. 138] (such as an
element with ’overflow’ other than ’visible’) must not overlap the margin box of any
floats in the same block formatting context as the element itself. If necessary, imple-
mentations should clear the said element by placing it below any preceding floats,
but may place it adjacent to such floats if there is sufficient space. They may even
make the border box of said element narrower than defined by section 10.3.3.
[p. 176] CSS2 does not define when a UA may put said element next to the float or

30 Mar 2011 19:50142

Visual formatting model

by how much said element may become narrower.

Example(s):

Example. In the following document fragment, the containing block is too narrow
to contain the content next to the float, so the content gets moved to below the floats
where it is aligned in the line box according to the text-align property.

p { width: 10em; border: solid aqua; }
span { float: left; width: 5em; height: 5em; border: solid blue; }

...

<p>

 Supercalifragilisticexpialidocious
</p>

This fragment might look like this:

Several floats may be adjacent, and this model also applies to adjacent floats in
the same line.

Example(s):

The following rule floats all IMG boxes with class="icon" to the left (and sets
the left margin to ’0’):

img.icon {
 float: left;
 margin-left: 0;
}

Consider the following HTML source and style sheet:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Float example</TITLE>
 <STYLE type="text/css">
 IMG { float: left }
 BODY, P, IMG { margin: 2em }
 </STYLE>
 </HEAD>

14330 Mar 2011 19:50

Visual formatting model

 <BODY>
 <P>
 Some sample text that has no other...
 </BODY>
</HTML>

The IMG box is floated to the left. The content that follows is formatted to the right
of the float, starting on the same line as the float. The line boxes to the right of the
float are shortened due to the float’s presence, but resume their "normal" width (that
of the containing block established by the P element) after the float. This document
might be formatted as:

IMG

Some sample text
that has no other
purpose than to
show how floating
elements are moved
to the side of the
parent element
while honoring
margins, borders,
and padding. Note

how adjacent vertical margins are collapsed
between non−floating block−level elements.

IMG margins

max (BODY margin, P margin)

B
O
D
Y

m
a
r
g
i
n

P

m
a
r
g
i
n

P

m
a
r
g
i
n

B
O
D
Y

m
a
r
g
i
n

Formatting would have been exactly the same if the document had been:

<BODY>
 <P>Some sample text

 that has no other...
</BODY>

because the content to the left of the float is displaced by the float and reflowed
down its right side.

As stated in section 8.3.1 [p. 117] , the margins of floating boxes never collapse
[p. 117] with margins of adjacent boxes. Thus, in the previous example, vertical
margins do not collapse [p. 117] between the P box and the floated IMG box.

The contents of floats are stacked as if floats generated new stacking contexts,
except that any positioned elements and elements that actually create new stacking
contexts take part in the float’s parent stacking context. A float can overlap other
boxes in the normal flow (e.g., when a normal flow box next to a float has negative
margins). When this happens, floats are rendered in front of non-positioned in-flow
blocks, but behind in-flow inlines.

30 Mar 2011 19:50144

Visual formatting model

Example(s):

Here is another illustration, showing what happens when a float overlaps borders
of elements in the normal flow.

A floating image obscures borders of block boxes it overlaps.

The following example illustrates the use of the ’clear’ property to prevent content
from flowing next to a float.

Example(s):

Assuming a rule such as this:

p { clear: left }

formatting might look like this:

14530 Mar 2011 19:50

Visual formatting model

Both paragraphs have set ’clear: left’, which causes the second paragraph to be
"pushed down" to a position below the float — "clearance" is added above its top
margin to accomplish this (see the ’clear’ property).

9.5.1 Positioning the float: the ’float’ property

’float’

Value: left | right | none | inherit
Initial: none
Applies to: all, but see 9.7 [p. 153]
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

This property specifies whether a box should float to the left, right, or not at all. It
may be set for any element, but only applies to elements that generate boxes that
are not absolutely positioned [p. 151] . The values of this property have the following
meanings:

left
The element generates a block [p. 129] box that is floated to the left. Content
flows on the right side of the box, starting at the top (subject to the ’clear’ prop-
erty).

right
Similar to ’left’, except the box is floated to the right, and content flows on the
left side of the box, starting at the top.

30 Mar 2011 19:50146

Visual formatting model

none
The box is not floated.

User agents may treat float as ’none’ on the root element.

Here are the precise rules that govern the behavior of floats:

1. The left outer edge [p. 112] of a left-floating box may not be to the left of the left
edge of its containing block [p. 128] . An analogous rule holds for right-floating
elements.

2. If the current box is left-floating, and there are any left-floating boxes generated
by elements earlier in the source document, then for each such earlier box,
either the left outer edge [p. 112] of the current box must be to the right of the
right outer edge [p. 112] of the earlier box, or its top must be lower than the
bottom of the earlier box. Analogous rules hold for right-floating boxes.

3. The right outer edge [p. 112] of a left-floating box may not be to the right of the
left outer edge [p. 112] of any right-floating box that is next to it. Analogous rules
hold for right-floating elements.

4. A floating box’s outer top [p. 112] may not be higher than the top of its contain-
ing block [p. 128] . When the float occurs between two collapsing margins, the
float is positioned as if it had an otherwise empty anonymous block parent
[p. 129] taking part in the flow. The position of such a parent is defined by the
rules [p. 118] in the section on margin collapsing.

5. The outer top [p. 112] of a floating box may not be higher than the outer top of
any block [p. 129] or floated [p. 142] box generated by an element earlier in the
source document.

6. The outer top [p. 112] of an element’s floating box may not be higher than the
top of any line-box [p. 138] containing a box generated by an element earlier in
the source document.

7. A left-floating box that has another left-floating box to its left may not have its
right outer edge to the right of its containing block’s right edge. (Loosely: a left
float may not stick out at the right edge, unless it is already as far to the left as
possible.) An analogous rule holds for right-floating elements.

8. A floating box must be placed as high as possible.
9. A left-floating box must be put as far to the left as possible, a right-floating box

as far to the right as possible. A higher position is preferred over one that is
further to the left/right.

But in CSS 2.1, if, within the block formatting context, there is an in-flow negative
vertical margin such that the float’s position is above the position it would be at were
the negative margin set to zero, the position of the float is undefined.

References to other elements in these rules refer only to other elements in the
same block formatting context [p. 138] as the float.

Example(s):

14730 Mar 2011 19:50

Visual formatting model

This HTML fragment results in the b floating to the right.

<P>ab</P>

If the P element’s width is enough, the a and the b will be side by side. It might
look like this:

9.5.2 Controlling flow next to floats: the ’clear’ property

’clear’

Value: none | left | right | both | inherit
Initial: none
Applies to: block-level elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

This property indicates which sides of an element’s box(es) may not be adjacent
to an earlier floating box. The ’clear’ property does not consider floats inside the
element itself or in other block formatting contexts. [p. 138]

Values have the following meanings when applied to non-floating block-level
boxes:

left
Requires that the top border edge of the box be below the bottom outer edge of
any left-floating boxes that resulted from elements earlier in the source docu-
ment.

right
Requires that the top border edge of the box be below the bottom outer edge of
any right-floating boxes that resulted from elements earlier in the source docu-
ment.

both
Requires that the top border edge of the box be below the bottom outer edge of
any right-floating and left-floating boxes that resulted from elements earlier in
the source document.

none
No constraint on the box’s position with respect to floats.

30 Mar 2011 19:50148

Visual formatting model

Values other than ’none’ potentially introduce clearance. Clearance inhibits margin
collapsing and acts as spacing above the margin-top of an element. It is used to
push the element vertically past the float.

Computing the clearance of an element on which ’clear’ is set is done by first
determining the hypothetical position of the element’s top border edge. This position
is where the actual top border edge would have been if the element’s ’clear’ property
had been ’none’.

If this hypothetical position of the element’s top border edge is not past the rele-
vant floats, then clearance is introduced, and margins collapse according to the rules
in 8.3.1.

Then the amount of clearance is set to the greater of:

1. The amount necessary to place the border edge of the block even with the
bottom outer edge of the lowest float that is to be cleared.

2. The amount necessary to place the top border edge of the block at its hypotheti-
cal position.

Alternatively, clearance is set exactly to the amount necessary to place the border
edge of the block even with the bottom outer edge of the lowest float that is to be
cleared.

Note: Both behaviors are allowed pending evaluation of their compatibility with
existing Web content. A future CSS specification will require either one or the other.

Note: The clearance can be negative or zero.

Example(s):

Example 1. Assume (for the sake of simplicity), that we have just three boxes, in
this order: block B1 with a bottom margin of M1 (B1 has no children and no padding
or border), floating block F with a height H, and block B2 with a top margin of M2 (no
padding or border, no children). B2 has ’clear’ set to ’both’. We also assume B2 is
not empty.

Without considering the ’clear’ property on B2, we have the situation in the
diagram below. The margins of B1 and B2 collapse. Let’s say the bottom border
edge of B1 is at y = 0, then the top of F is at y = M1, the top border edge of B2 is at y
= max(M1,M2), and the bottom of F is at y = M1 + H.

Float F extends into the margin above M2.

We also assume that B2 is not below F, i.e., we are in the situation described in
the spec where we need to add clearance. That means:

max(M1,M2) < M1 + H

We need to compute clearance C twice, C1 and C2, and keep the greater of the
two: C = max(C1,C2). The first way is to put the top of B2 flush with the bottom of F,
i.e., at y = M1 + H. That means, because the margins no longer collapse with a
clearance between them:

14930 Mar 2011 19:50

Visual formatting model

bottom of F = top border edge of B2 Û

M1 + H = M1 + C1 + M2 Û

C1 = M1 + H - M1 - M2

= H - M2

The second computation is to keep the top of B2 where it is, i.e., at y =
max(M1,M2). That means:

max(M1,M2) = M1 + C2 + M2 Û

C2 = max(M1,M2) - M1 - M2

We assumed that max(M1,M2) < M1 + H, which implies

C2 = max(M1,M2) - M1 - M2 < M1 + H - M1 - M2 = H - M2 Þ

C2 < H - M2

And, as C1 = H - M2, it follows that

C2 < C1

and hence

C = max(C1,C2) = C1

Example(s):

Example 2. An example of negative clearance is this situation, in which the clear-
ance is -1em. (Assume none of the elements have borders or padding):

<p style=" margin-bottom: 4em">
 First paragraph.

<p style=" float: left; height: 2em; margin: 0">
 Floating paragraph.

<p style=" clear: left; margin-top: 3em">
 Last paragraph.

Explanation: Without the ’clear’, the first and last paragraphs’ margins would
collapse and the last paragraph’s top border edge would be flush with the top of the
floating paragraph. But the ’clear’ requires the top border edge to be below the float,
i.e., 2em lower. This means that clearance must be introduced. Accordingly, the
margins no longer collapse and the amount of clearance is set so that clearance +
margin-top = 2em, i.e., clearance = 2em - margin-top = 2em - 3em = -1em.

When the property is set on floating elements, it results in a modification of the
rules [p. 147] for positioning the float. An extra constraint (#10) is added:

30 Mar 2011 19:50150

Visual formatting model

The top outer edge [p. 112] of the float must be below the bottom outer edge of
all earlier left-floating boxes (in the case of ’clear: left’), or all earlier right-floating
boxes (in the case of ’clear: right’), or both (’clear: both’).

Note. This property applied to all elements in CSS1 [p. ??] . Implementations may
therefore have supported this property on all elements. In CSS2 and CSS 2.1 the
’clear’ property only applies to block-level elements. Therefore authors should only
use this property on block-level elements. If an implementation does support clear
on inline elements, rather than setting a clearance as explained above, the imple-
mentation should force a break and effectively insert one or more empty line boxes
(or shifting the new line box downward as described in section 9.5 [p. 142]) to move
the top of the cleared inline’s line box to below the respective floating box(es).

9.6 Absolute positioning
In the absolute positioning model, a box is explicitly offset with respect to its contain-
ing block. It is removed from the normal flow entirely (it has no impact on later
siblings). An absolutely positioned box establishes a new containing block for normal
flow children and absolutely (but not fixed) positioned descendants. However, the
contents of an absolutely positioned element do not flow around any other boxes.
They may obscure the contents of another box (or be obscured themselves),
depending on the stack levels [p. 164] of the overlapping boxes.

References in this specification to an absolutely positioned element (or its box)
imply that the element’s ’position’ property has the value ’absolute’ or ’fixed’.

9.6.1 Fixed positioning
Fixed positioning is a subcategory of absolute positioning. The only difference is that
for a fixed positioned box, the containing block is established by the viewport [p. 128]
. For continuous media [p. 110] , fixed boxes do not move when the document is
scrolled. In this respect, they are similar to fixed background images [p. 234] . For
paged media [p. 223] , boxes with fixed positions are repeated on every page. This
is useful for placing, for instance, a signature at the bottom of each page. Boxes with
fixed position that are larger than the page area are clipped. Parts of the fixed posi-
tion box that are not visible in the initial containing block will not print.

Authors may use fixed positioning to create frame-like presentations. Consider the
following frame layout:

15130 Mar 2011 19:50

Visual formatting model

10em

header

main

s
i
d
e
b
a
r

footer 100px

15%

This might be achieved with the following HTML document and style rules:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>A frame document with CSS 2.1</TITLE>
 <STYLE type="text/css" media="screen">
 BODY { height: 8.5in } /* Required for percentage heights below */
 #header {
 position: fixed;
 width: 100%;
 height: 15%;
 top: 0;
 right: 0;
 bottom: auto;
 left: 0;
 }
 #sidebar {
 position: fixed;
 width: 10em;
 height: auto;
 top: 15%;
 right: auto;
 bottom: 100px;
 left: 0;
 }
 #main {
 position: fixed;
 width: auto;
 height: auto;
 top: 15%;
 right: 0;
 bottom: 100px;
 left: 10em;

30 Mar 2011 19:50152

Visual formatting model

 }
 #footer {
 position: fixed;
 width: 100%;
 height: 100px;
 top: auto;
 right: 0;
 bottom: 0;
 left: 0;
 }
 </STYLE>
 </HEAD>
 <BODY>
 <DIV id="header"> ... </DIV>
 <DIV id="sidebar"> ... </DIV>
 <DIV id="main"> ... </DIV>
 <DIV id="footer"> ... </DIV>
 </BODY>
</HTML>

9.7 Relationships between ’display’, ’position’, and
’float’
The three properties that affect box generation and layout — ’display’, ’position’, and
’float’ — interact as follows:

1. If ’display’ has the value ’none’, then ’position’ and ’float’ do not apply. In this
case, the element generates no box.

2. Otherwise, if ’position’ has the value ’absolute’ or ’fixed’, the box is absolutely
positioned, the computed value of ’float’ is ’none’, and display is set according to
the table below. The position of the box will be determined by the ’top’, ’right’,
’bottom’ and ’left’ properties and the box’s containing block.

3. Otherwise, if ’float’ has a value other than ’none’, the box is floated and ’display’
is set according to the table below.

4. Otherwise, if the element is the root element, ’display’ is set according to the
table below, except that it is undefined in CSS 2.1 whether a specified value of
’list-item’ becomes a computed value of ’block’ or ’list-item’.

5. Otherwise, the remaining ’display’ property values apply as specified.

15330 Mar 2011 19:50

Visual formatting model

Specified value
Computed

value

inline-table table

inline, table-row-group, table-column, table-column-group,
table-header-group, table-footer-group, table-row, table-cell,
table-caption, inline-block

block

others
same as
specified

9.8 Comparison of normal flow, floats, and absolute
positioning
To illustrate the differences between normal flow, relative positioning, floats, and
absolute positioning, we provide a series of examples based on the following HTML:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Comparison of positioning schemes</TITLE>
 </HEAD>
 <BODY>
 <P>Beginning of body contents.
 Start of outer contents.
 Inner contents.
 End of outer contents.
 End of body contents.
 </P>
 </BODY>
</HTML>

In this document, we assume the following rules:

body { display: block; font-size:12px; line-height: 200%;
 width: 400px; height: 400px }
p { display: block }
span { display: inline }

The final positions of boxes generated by the outer and inner elements vary in
each example. In each illustration, the numbers to the left of the illustration indicate
the normal flow [p. 137] position of the double-spaced (for clarity) lines.

Note. The diagrams in this section are illustrative and not to scale. They are meant
to highlight the differences between the various positioning schemes in CSS 2.1, and
are not intended to be reference renderings of the examples given.

30 Mar 2011 19:50154

Visual formatting model

9.8.1 Normal flow
Consider the following CSS declarations for outer and inner that do not alter the
normal flow [p. 137] of boxes:

#outer { color: red }
#inner { color: blue }

The P element contains all inline content: anonymous inline text [p. 132] and two
SPAN elements. Therefore, all of the content will be laid out in an inline formatting
context, within a containing block established by the P element, producing some-
thing like:

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

contents.

Beginning of body contents. Start

Inner contents.

 End of body

of outer contents.

End of outer contents.

24 px

9.8.2 Relative positioning
To see the effect of relative positioning [p. 141] , we specify:

#outer { position: relative; top: -12px; color: red }
#inner { position: relative; top: 12px; color: blue }

Text flows normally up to the outer element. The outer text is then flowed into its
normal flow position and dimensions at the end of line 1. Then, the inline boxes
containing the text (distributed over three lines) are shifted as a unit by ’-12px’

15530 Mar 2011 19:50

Visual formatting model

(upwards).

The contents of inner, as a child of outer, would normally flow immediately after
the words "of outer contents" (on line 1.5). However, the inner contents are them-
selves offset relative to the outer contents by ’12px’ (downwards), back to their origi-
nal position on line 2.

Note that the content following outer is not affected by the relative positioning of
outer.

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

contents.

Beginning of body contents.
Start

Inner contents.

 End of body

of outer contents.

End of outer contents.

24 px

= −12px

= +12px

Note also that had the offset of outer been ’-24px’, the text of outer and the body
text would have overlapped.

9.8.3 Floating a box
Now consider the effect of floating [p. 142] the inner element’s text to the right by
means of the following rules:

#outer { color: red }
#inner { float: right; width: 130px; color: blue }

Text flows normally up to the inner box, which is pulled out of the flow and floated
to the right margin (its ’width’ has been assigned explicitly). Line boxes to the left of
the float are shortened, and the document’s remaining text flows into them.

30 Mar 2011 19:50156

Visual formatting model

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

Beginning of body contents. Start

24 px

of outer contents.

of outer contents. End

End

of body contents.

Inner

contents.
width= 130 px

To show the effect of the ’clear’ property, we add a sibling element to the example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Comparison of positioning schemes II</TITLE>
 </HEAD>
 <BODY>
 <P>Beginning of body contents.
 Start of outer contents.
 Inner contents.
 Sibling contents.
 End of outer contents.
 End of body contents.
 </P>
 </BODY>
</HTML>

The following rules:

#inner { float: right; width: 130px; color: blue }
#sibling { color: red }

15730 Mar 2011 19:50

Visual formatting model

cause the inner box to float to the right as before and the document’s remaining
text to flow into the vacated space:

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

Beginning of body contents. Start

24 px
Inner

contents.
width= 130 px

of outer contents.

of outer contents.

Sibling contents. End

End of body

contents.

However, if the ’clear’ property on the sibling element is set to ’right’ (i.e., the
generated sibling box will not accept a position next to floating boxes to its right), the
sibling content begins to flow below the float:

#inner { float: right; width: 130px; color: blue }
#sibling { clear: right; color: red }

30 Mar 2011 19:50158

Visual formatting model

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

Beginning of body contents. Start

24 px
Inner

contents.
width= 130 px

of outer contents.

contents. End of body contents.

Sibling contents. End of outer

9.8.4 Absolute positioning
Finally, we consider the effect of absolute positioning [p. 151] . Consider the follow-
ing CSS declarations for outer and inner:

#outer {
 position: absolute;
 top: 200px; left: 200px;
 width: 200px;
 color: red;
}
#inner { color: blue }

which cause the top of the outer box to be positioned with respect to its containing
block. The containing block for a positioned box is established by the nearest posi-
tioned ancestor (or, if none exists, the initial containing block [p. 171] , as in our
example). The top side of the outer box is ’200px’ below the top of the containing
block and the left side is ’200px’ from the left side. The child box of outer is flowed
normally with respect to its parent.

15930 Mar 2011 19:50

Visual formatting model

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

24 px

Beginning of body contents. End of

body contents.

(200, 200)

Start of outer

contents. Inner

contents. End of

outer contents.

The following example shows an absolutely positioned box that is a child of a rela-
tively positioned box. Although the parent outer box is not actually offset, setting its
’position’ property to ’relative’ means that its box may serve as the containing block
for positioned descendants. Since the outer box is an inline box that is split across
several lines, the first inline box’s top and left edges (depicted by thick dashed lines
in the illustration below) serve as references for ’top’ and ’left’ offsets.

#outer {
 position: relative;
 color: red
}
#inner {
 position: absolute;
 top: 200px; left: -100px;
 height: 130px; width: 130px;
 color: blue;
}

This results in something like the following:

30 Mar 2011 19:50160

Visual formatting model

1

2

3

4

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

Beginning of body contents. Start

24 px
of outer contents. End of outer

contents.

Inner

Contents.

width = 130 px

height = 130px

(+200, −100)

End of body contents.

If we do not position the outer box:

#outer { color: red }
#inner {
 position: absolute;
 top: 200px; left: -100px;
 height: 130px; width: 130px;
 color: blue;
}

the containing block for inner becomes the initial containing block [p. 171] (in our
example). The following illustration shows where the inner box would end up in this
case.

16130 Mar 2011 19:50

Visual formatting model

1

2

3

5

6

7

8

Document Window(0,0) (0, 400)

(400, 0) (400, 400)

Beginning of body contents. Start

24 px
of outer contents. End of outer

contents. End of body contents.

nts.

Inner

Conte

(−100, 200)

Relative and absolute positioning may be used to implement change bars, as
shown in the following example. The following fragment:

<P style="position: relative; margin-right: 10px; left: 10px;">
I used two red hyphens to serve as a change bar. They
will "float" to the left of the line containing THIS
--
word.</P>

might result in something like:

I used two red hyphens to serve
as a change bar. They will "float"
to the left of the line containing
THIS word.−−

10px

30 Mar 2011 19:50162

Visual formatting model

First, the paragraph (whose containing block sides are shown in the illustration) is
flowed normally. Then it is offset ’10px’ from the left edge of the containing block
(thus, a right margin of ’10px’ has been reserved in anticipation of the offset). The
two hyphens acting as change bars are taken out of the flow and positioned at the
current line (due to ’top: auto’), ’-1em’ from the left edge of its containing block
(established by the P in its final position). The result is that the change bars seem to
"float" to the left of the current line.

9.9 Layered presentation

9.9.1 Specifying the stack level: the ’z-index’ property

’z-index’

Value: auto | <integer> | inherit
Initial: auto
Applies to: positioned elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

For a positioned box, the ’z-index’ property specifies:

1. The stack level of the box in the current stacking context.
2. Whether the box establishes a stacking context.

Values have the following meanings:

<integer>
This integer is the stack level of the generated box in the current stacking
context. The box also establishes a new stacking context.

auto
The stack level of the generated box in the current stacking context is 0. The
box does not establish a new stacking context unless it is the root element.

In this section, the expression "in front of" means closer to the user as the user
faces the screen.

In CSS 2.1, each box has a position in three dimensions. In addition to their hori-
zontal and vertical positions, boxes lie along a "z-axis" and are formatted one on top
of the other. Z-axis positions are particularly relevant when boxes overlap visually.
This section discusses how boxes may be positioned along the z-axis.

The order in which the rendering tree is painted onto the canvas is described in
terms of stacking contexts. Stacking contexts can contain further stacking contexts.
A stacking context is atomic from the point of view of its parent stacking context;

16330 Mar 2011 19:50

Visual formatting model

boxes in other stacking contexts may not come between any of its boxes.

Each box belongs to one stacking context. Each positioned box in a given stacking
context has an integer stack level, which is its position on the z-axis relative other
stack levels within the same stacking context. Boxes with greater stack levels are
always formatted in front of boxes with lower stack levels. Boxes may have negative
stack levels. Boxes with the same stack level in a stacking context are stacked
back-to-front according to document tree order.

The root element forms the root stacking context. Other stacking contexts are
generated by any positioned element (including relatively positioned elements)
having a computed value of ’z-index’ other than ’auto’. Stacking contexts are not
necessarily related to containing blocks. In future levels of CSS, other properties
may introduce stacking contexts, for example ’opacity [p. ??] ’ [CSS3COLOR].

Within each stacking context, the following layers are painted in back-to-front
order:

1. the background and borders of the element forming the stacking context.
2. the child stacking contexts with negative stack levels (most negative first).
3. the in-flow, non-inline-level, non-positioned descendants.
4. the non-positioned floats.
5. the in-flow, inline-level, non-positioned descendants, including inline tables and

inline blocks.
6. the child stacking contexts with stack level 0 and the positioned descendants

with stack level 0.
7. the child stacking contexts with positive stack levels (least positive first).

Within each stacking context, positioned elements with stack level 0 (in layer 6),
non-positioned floats (layer 4), inline blocks (layer 5), and inline tables (layer 5), are
painted as if those elements themselves generated new stacking contexts, except
that their positioned descendants and any would-be child stacking contexts take part
in the current stacking context.

This painting order is applied recursively to each stacking context. This description
of stacking context painting order constitutes an overview of the detailed normative
definition in Appendix E. [p. 455]

In the following example, the stack levels of the boxes (named with their "id"
attributes) are: "text2"=0, "image"=1, "text3"=2, and "text1"=3. The "text2" stack level
is inherited from the root box. The others are specified with the ’z-index’ property.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Z-order positioning</TITLE>
 <STYLE type="text/css">
 .pile {
 position: absolute;
 left: 2in;
 top: 2in;

30 Mar 2011 19:50164

Visual formatting model

 width: 3in;
 height: 3in;
 }
 </STYLE>
 </HEAD>
 <BODY>
 <P>
 <IMG id="image" class="pile"
 src="butterfly.png" alt="A butterfly image"
 style="z-index: 1">

 <DIV id="text1" class="pile"
 style="z-index: 3">
 This text will overlay the butterfly image.
 </DIV>

 <DIV id="text2">
 This text will be beneath everything.
 </DIV>

 <DIV id="text3" class="pile"
 style="z-index: 2">
 This text will underlay text1, but overlay the butterfly image
 </DIV>
 </BODY>
</HTML>

This example demonstrates the notion of transparency. The default behavior of
the background is to allow boxes behind it to be visible. In the example, each box
transparently overlays the boxes below it. This behavior can be overridden by using
one of the existing background properties [p. 234] .

9.10 Text direction: the ’direction’ and ’unicode-bidi’
properties
Conforming [p. 47] user agents that do not support bidirectional text may ignore the
’direction’ and ’unicode-bidi’ properties described in this section. This exception
includes UAs that render right-to-left characters simply because a font on the system
contains them but do not support the concept of right-to-left text direction.

The characters in certain scripts are written from right to left. In some documents,
in particular those written with the Arabic or Hebrew script, and in some
mixed-language contexts, text in a single (visually displayed) block may appear with
mixed directionality. This phenomenon is called bidirectionality, or "bidi" for short.

The Unicode standard ([UNICODE], [UAX9]) defines a complex algorithm for
determining the proper directionality of text. The algorithm consists of an implicit part
based on character properties, as well as explicit controls for embeddings and over-
rides. CSS 2.1 relies on this algorithm to achieve proper bidirectional rendering. The
’direction’ and ’unicode-bidi’ properties allow authors to specify how the elements
and attributes of a document language map to this algorithm.

16530 Mar 2011 19:50

Visual formatting model

User agents that support bidirectional text must apply the Unicode bidirectional
algorithm to every sequence of inline-level boxes uninterrupted by a forced (bidi
class B [p. ??]) break or block boundary. This sequence forms the "paragraph" unit
in the bidirectional algorithm. The paragraph embedding level is set according to the
value of the ’direction’ property of the containing block rather than by the heuristic
given in steps P2 and P3 of the Unicode algorithm.

Because the directionality of a text depends on the structure and semantics of the
document language, these properties should in most cases be used only by design-
ers of document type descriptions (DTDs), or authors of special documents. If a
default style sheet specifies these properties, authors and users should not specify
rules to override them.

The HTML 4 specification ([HTML4], section 8.2) defines bidirectionality behavior
for HTML elements. The style sheet rules that would achieve the bidi behavior speci-
fied in [HTML4] are given in the sample style sheet [p. 454] . The HTML 4 specifica-
tion also contains more information on bidirectionality issues.

’direction’

Value: ltr | rtl | inherit
Initial: ltr
Applies to: all elements, but see prose
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

This property specifies the base writing direction of blocks and the direction of
embeddings and overrides (see ’unicode-bidi’) for the Unicode bidirectional algo-
rithm. In addition, it specifies such things as the direction of table [p. 269] column
layout, the direction of horizontal overflow [p. 195] , the position of an incomplete last
line in a block in case of ’text-align: justify’.

Values for this property have the following meanings:

ltr
Left-to-right direction.

rtl
Right-to-left direction.

For the ’direction’ property to affect reordering in inline elements, the ’unicode-bidi’
property’s value must be ’embed’ or ’override’.

Note. The ’direction’ property, when specified for table column elements, is not
inherited by cells in the column since columns are not the ancestors of the cells in
the document tree. Thus, CSS cannot easily capture the "dir" attribute inheritance
rules described in [HTML4], section 11.3.2.1.

30 Mar 2011 19:50166

Visual formatting model

’unicode-bidi’

Value: normal | embed | bidi-override | inherit
Initial: normal
Applies to: all elements, but see prose
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

Values for this property have the following meanings:

normal
The element does not open an additional level of embedding with respect to the
bidirectional algorithm. For inline elements, implicit reordering works across
element boundaries.

embed
If the element is inline, this value opens an additional level of embedding with
respect to the bidirectional algorithm. The direction of this embedding level is
given by the ’direction’ property. Inside the element, reordering is done implicitly.
This corresponds to adding a LRE (U+202A; for ’direction: ltr’) or RLE (U+202B;
for ’direction: rtl’) at the start of the element and a PDF (U+202C) at the end of
the element.

bidi-override
For inline elements this creates an override. For block container elements this
creates an override for inline-level descendants not within another block
container element. This means that inside the element, reordering is strictly in
sequence according to the ’direction’ property; the implicit part of the bidirec-
tional algorithm is ignored. This corresponds to adding a LRO (U+202D; for
’direction: ltr’) or RLO (U+202E; for ’direction: rtl’) at the start of the element or at
the start of each anonymous child block box, if any, and a PDF (U+202C) at the
end of the element.

The final order of characters in each block container is the same as if the bidi
control codes had been added as described above, markup had been stripped, and
the resulting character sequence had been passed to an implementation of the
Unicode bidirectional algorithm for plain text that produced the same line-breaks as
the styled text. In this process, replaced elements with ’display: inline’ are treated as
neutral characters, unless their ’unicode-bidi’ property has a value other than
’normal’, in which case they are treated as strong characters in the ’direction’ speci-
fied for the element. All other atomic inline-level boxes are treated as neutral charac-
ters always.

Please note that in order to be able to flow inline boxes in a uniform direction
(either entirely left-to-right or entirely right-to-left), more inline boxes (including
anonymous inline boxes) may have to be created, and some inline boxes may have
to be split up and reordered before flowing.

16730 Mar 2011 19:50

Visual formatting model

Because the Unicode algorithm has a limit of 61 levels of embedding, care should
be taken not to use ’unicode-bidi’ with a value other than ’normal’ unless appropriate.
In particular, a value of ’inherit’ should be used with extreme caution. However, for
elements that are, in general, intended to be displayed as blocks, a setting of
’unicode-bidi: embed’ is preferred to keep the element together in case display is
changed to inline (see example below).

The following example shows an XML document with bidirectional text. It illus-
trates an important design principle: DTD designers should take bidi into account
both in the language proper (elements and attributes) and in any accompanying style
sheets. The style sheets should be designed so that bidi rules are separate from
other style rules. The bidi rules should not be overridden by other style sheets so
that the document language’s or DTD’s bidi behavior is preserved.

Example(s):

In this example, lowercase letters stand for inherently left-to-right characters and
uppercase letters represent inherently right-to-left characters:

<HEBREW>
 <PAR>HEBREW1 HEBREW2 english3 HEBREW4 HEBREW5</PAR>
 <PAR>HEBREW6 <EMPH>HEBREW7</EMPH> HEBREW8</PAR>
</HEBREW>
<ENGLISH>
 <PAR>english9 english10 english11 HEBREW12 HEBREW13</PAR>
 <PAR>english14 english15 english16</PAR>
 <PAR>english17 <HE-QUO>HEBREW18 english19 HEBREW20</HE-QUO></PAR>
</ENGLISH>

Since this is XML, the style sheet is responsible for setting the writing direction.
This is the style sheet:

/* Rules for bidi */
HEBREW, HE-QUO {direction: rtl; unicode-bidi: embed}
ENGLISH {direction: ltr; unicode-bidi: embed}

/* Rules for presentation */
HEBREW, ENGLISH, PAR {display: block}
EMPH {font-weight: bold}

The HEBREW element is a block with a right-to-left base direction, the ENGLISH
element is a block with a left-to-right base direction. The PARs are blocks that inherit
the base direction from their parents. Thus, the first two PARs are read starting at
the top right, the final three are read starting at the top left. Please note that
HEBREW and ENGLISH are chosen as element names for explicitness only; in
general, element names should convey structure without reference to language.

The EMPH element is inline-level, and since its value for ’unicode-bidi’ is ’normal’
(the initial value), it has no effect on the ordering of the text. The HE-QUO element,
on the other hand, creates an embedding.

30 Mar 2011 19:50168

Visual formatting model

The formatting of this text might look like this if the line length is long:

 5WERBEH 4WERBEH english3 2WERBEH 1WERBEH

 8WERBEH 7WERBEH 6WERBEH

english9 english10 english11 13WERBEH 12WERBEH

english14 english15 english16

english17 20WERBEH english19 18WERBEH

Note that the HE-QUO embedding causes HEBREW18 to be to the right of
english19.

If lines have to be broken, it might be more like this:

 2WERBEH 1WERBEH
 -EH 4WERBEH english3
 5WERB

 -EH 7WERBEH 6WERBEH
 8WERB

english9 english10 en-
glish11 12WERBEH
13WERBEH

english14 english15
english16

english17 18WERBEH
20WERBEH english19

Because HEBREW18 must be read before english19, it is on the line above
english19. Just breaking the long line from the earlier formatting would not have
worked. Note also that the first syllable from english19 might have fit on the previous
line, but hyphenation of left-to-right words in a right-to-left context, and vice versa, is
usually suppressed to avoid having to display a hyphen in the middle of a line.

16930 Mar 2011 19:50

Visual formatting model

30 Mar 2011 19:50170

Visual formatting model

10 Visual formatting model details
Contents

........... 17110.1 Definition of "containing block"

.......... 17410.2 Content width: the ’width’ property

........... 17510.3 Calculating widths and margins

......... 17510.3.1 Inline, non-replaced elements

........... 17510.3.2 Inline, replaced elements

..... 17610.3.3 Block-level, non-replaced elements in normal flow

...... 17610.3.4 Block-level, replaced elements in normal flow

......... 17710.3.5 Floating, non-replaced elements

.......... 17710.3.6 Floating, replaced elements

...... 17710.3.7 Absolutely positioned, non-replaced elements

....... 17910.3.8 Absolutely positioned, replaced elements

.... 17910.3.9 ’Inline-block’, non-replaced elements in normal flow

..... 17910.3.10 ’Inline-block’, replaced elements in normal flow

.... 17910.4 Minimum and maximum widths: ’min-width’ and ’max-width’

.......... 18210.5 Content height: the ’height’ property

.......... 18410.6 Calculating heights and margins

......... 18410.6.1 Inline, non-replaced elements
10.6.2 Inline replaced elements, block-level replaced elements in normal
flow, ’inline-block’ replaced elements in normal flow and floating replaced

................ 185elements
10.6.3 Block-level non-replaced elements in normal flow when ’overflow’

............. 185computes to ’visible’

...... 18610.6.4 Absolutely positioned, non-replaced elements

....... 18710.6.5 Absolutely positioned, replaced elements

............ 18710.6.6 Complicated cases

..... 18710.6.7 ’Auto’ heights for block formatting context roots

... 18810.7 Minimum and maximum heights: ’min-height’ and ’max-height’

.18910.8 Line height calculations: the ’line-height’ and ’vertical-align’ properties

........... 19010.8.1 Leading and half-leading

10.1 Definition of "containing block"
The position and size of an element’s box(es) are sometimes calculated relative to a
certain rectangle, called the containing block of the element. The containing block of
an element is defined as follows:

1. The containing block in which the root element [p. 45] lives is a rectangle called
the initial containing block. For continuous media, it has the dimensions of the
viewport [p. 128] and is anchored at the canvas origin; it is the page area

17130 Mar 2011 19:50

Visual formatting model details

[p. 224] for paged media. The ’direction’ property of the initial containing block is
the same as for the root element.

2. For other elements, if the element’s position is ’relative’ or ’static’, the containing
block is formed by the content edge of the nearest block container [p. 129]
ancestor box.

3. If the element has ’position: fixed’, the containing block is established by the
viewport [p. 128] in the case of continuous media or the page area in the case of
paged media.

4. If the element has ’position: absolute’, the containing block is established by the
nearest ancestor with a ’position’ of ’absolute’, ’relative’ or ’fixed’, in the following
way:

1. In the case that the ancestor is an inline element, the containing block is the
bounding box around the padding boxes of the first and the last inline boxes
generated for that element. In CSS 2.1, if the inline element is split across
multiple lines, the containing block is undefined.

2. Otherwise, the containing block is formed by the padding edge [p. 112] of
the ancestor.

If there is no such ancestor, the containing block is the initial containing block.

In paged media, an absolutely positioned element is positioned relative to its
containing block ignoring any page breaks (as if the document were continuous).
The element may subsequently be broken over several pages.

For absolutely positioned content that resolves to a position on a page other than
the page being laid out (the current page), or resolves to a position on the current
page which has already been rendered for printing, printers may place the content

on another location on the current page,
on a subsequent page, or
may omit it.

Note that a block-level element that is split over several pages may have a differ-
ent width on each page and that there may be device-specific limits.

Example(s):

With no positioning, the containing blocks (C.B.) in the following document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Illustration of containing blocks</TITLE>
 </HEAD>
 <BODY id="body">
 <DIV id="div1">
 <P id="p1">This is text in the first paragraph...</P>
 <P id="p2">This is text <EM id="em1"> in the

30 Mar 2011 19:50172

Visual formatting model details

 <STRONG id="strong1">second paragraph.</P>
 </DIV>
 </BODY>
</HTML>

are established as follows:

For box generated by C.B. is established by

html initial C.B. (UA-dependent)

body html

div1 body

p1 div1

p2 div1

em1 p2

strong1 p2

If we position "div1":

 #div1 { position: absolute; left: 50px; top: 50px }

its containing block is no longer "body"; it becomes the initial containing block
(since there are no other positioned ancestor boxes).

If we position "em1" as well:

 #div1 { position: absolute; left: 50px; top: 50px }
 #em1 { position: absolute; left: 100px; top: 100px }

the table of containing blocks becomes:

For box generated by C.B. is established by

html initial C.B. (UA-dependent)

body html

div1 initial C.B.

p1 div1

p2 div1

em1 div1

strong1 em1

17330 Mar 2011 19:50

Visual formatting model details

By positioning "em1", its containing block becomes the nearest positioned ances-
tor box (i.e., that generated by "div1").

10.2 Content width: the ’width’ property
’width’

Value: <length> | <percentage> | auto | inherit
Initial: auto
Applies to: all elements but non-replaced inline elements, table rows, and

row groups
Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: the percentage or ’auto’ as specified or the absolute length

This property specifies the content width [p. 113] of boxes.

This property does not apply to non-replaced inline [p. 131] elements. The content
width of a non-replaced inline element’s boxes is that of the rendered content within
them (before any relative offset of children). Recall that inline boxes flow into line
boxes [p. 138] . The width of line boxes is given by the their containing block [p. 128]
, but may be shorted by the presence of floats [p. 142] .

Values have the following meanings:

<length>
Specifies the width of the content area using a length unit.

<percentage>
Specifies a percentage width. The percentage is calculated with respect to the
width of the generated box’s containing block [p. 128] . If the containing block’s
width depends on this element’s width, then the resulting layout is undefined in
CSS 2.1. Note: For absolutely positioned elements whose containing block is
based on a block container element, the percentage is calculated with respect to
the width of the padding box of that element. This is a change from CSS1,
where the percentage width was always calculated with respect to the content
box of the parent element.

auto
The width depends on the values of other properties. See the sections below.

Negative values for ’width’ are illegal.

Example(s):

For example, the following rule fixes the content width of paragraphs at 100 pixels:

p { width: 100px }

30 Mar 2011 19:50174

Visual formatting model details

10.3 Calculating widths and margins
The values of an element’s ’width’, ’margin-left’, ’margin-right’, ’left’ and ’right’ proper-
ties as used for layout depend on the type of box generated and on each other. (The
value used for layout is sometimes referred to as the used value [p. 100] .) In princi-
ple, the values used are the same as the computed values, with ’auto’ replaced by
some suitable value, and percentages calculated based on the containing block, but
there are exceptions. The following situations need to be distinguished:

1. inline, non-replaced elements
2. inline, replaced elements
3. block-level, non-replaced elements in normal flow
4. block-level, replaced elements in normal flow
5. floating, non-replaced elements
6. floating, replaced elements
7. absolutely positioned, non-replaced elements
8. absolutely positioned, replaced elements
9. ’inline-block’, non-replaced elements in normal flow

10. ’inline-block’, replaced elements in normal flow

For Points 1-6 and 9-10, the values of ’left’ and ’right’ in the case of relatively posi-
tioned elements are determined by the rules in section 9.4.3. [p. 141]

Note. The used value of ’width’ calculated below is a tentative value, and may
have to be calculated multiple times, depending on ’min-width’ and ’max-width’, see
the section Minimum and maximum widths [p. 179] below.

10.3.1 Inline, non-replaced elements
The ’width’ property does not apply. A computed value of ’auto’ for ’margin-left’ or
’margin-right’ becomes a used value of ’0’.

10.3.2 Inline, replaced elements
A computed value of ’auto’ for ’margin-left’ or ’margin-right’ becomes a used value of
’0’.

If ’height’ and ’width’ both have computed values of ’auto’ and the element also
has an intrinsic width, then that intrinsic width is the used value of ’width’.

If ’height’ and ’width’ both have computed values of ’auto’ and the element has no
intrinsic width, but does have an intrinsic height and intrinsic ratio; or if ’width’ has a
computed value of ’auto’, ’height’ has some other computed value, and the element
does have an intrinsic ratio; then the used value of ’width’ is:

(used height) * (intrinsic ratio)

17530 Mar 2011 19:50

Visual formatting model details

If ’height’ and ’width’ both have computed values of ’auto’ and the element has an
intrinsic ratio but no intrinsic height or width, then the used value of ’width’ is unde-
fined in CSS 2.1. However, it is suggested that, if the containing block’s width does
not itself depend on the replaced element’s width, then the used value of ’width’ is
calculated from the constraint equation used for block-level, non-replaced elements
in normal flow.

Otherwise, if ’width’ has a computed value of ’auto’, and the element has an intrin-
sic width, then that intrinsic width is the used value of ’width’.

Otherwise, if ’width’ has a computed value of ’auto’, but none of the conditions
above are met, then the used value of ’width’ becomes 300px. If 300px is too wide to
fit the device, UAs should use the width of the largest rectangle that has a 2:1 ratio
and fits the device instead.

10.3.3 Block-level, non-replaced elements in normal flow
The following constraints must hold among the used values of the other properties:

’margin-left’ + ’border-left-width’ + ’padding-left’ + ’width’ + ’padding-right’ +
’border-right-width’ + ’margin-right’ = width of containing block [p. 171]

If ’width’ is not ’auto’ and ’border-left-width’ + ’padding-left’ + ’width’ +
’padding-right’ + ’border-right-width’ (plus any of ’margin-left’ or ’margin-right’ that are
not ’auto’) is larger than the width of the containing block, then any ’auto’ values for
’margin-left’ or ’margin-right’ are, for the following rules, treated as zero.

If all of the above have a computed value other than ’auto’, the values are said to
be "over-constrained" and one of the used values will have to be different from its
computed value. If the ’direction’ property of the containing block has the value ’ltr’,
the specified value of ’margin-right’ is ignored and the value is calculated so as to
make the equality true. If the value of ’direction’ is ’rtl’, this happens to ’margin-left’
instead.

If there is exactly one value specified as ’auto’, its used value follows from the
equality.

If ’width’ is set to ’auto’, any other ’auto’ values become ’0’ and ’width’ follows from
the resulting equality.

If both ’margin-left’ and ’margin-right’ are ’auto’, their used values are equal. This
horizontally centers the element with respect to the edges of the containing block.

10.3.4 Block-level, replaced elements in normal flow
The used value of ’width’ is determined as for inline replaced elements [p. 175] .
Then the rules for non-replaced block-level elements [p. 176] are applied to deter-
mine the margins.

30 Mar 2011 19:50176

Visual formatting model details

10.3.5 Floating, non-replaced elements
If ’margin-left’, or ’margin-right’ are computed as ’auto’, their used value is ’0’.

If ’width’ is computed as ’auto’, the used value is the "shrink-to-fit" width.

Calculation of the shrink-to-fit width is similar to calculating the width of a table cell
using the automatic table layout algorithm. Roughly: calculate the preferred width by
formatting the content without breaking lines other than where explicit line breaks
occur, and also calculate the preferred minimum width, e.g., by trying all possible
line breaks. CSS 2.1 does not define the exact algorithm. Thirdly, find the available
width: in this case, this is the width of the containing block minus the used values of
’margin-left’, ’border-left-width’, ’padding-left’, ’padding-right’, ’border-right-width’,
’margin-right’, and the widths of any relevant scroll bars.

Then the shrink-to-fit width is: min(max(preferred minimum width, available width),
preferred width).

10.3.6 Floating, replaced elements
If ’margin-left’ or ’margin-right’ are computed as ’auto’, their used value is ’0’. The
used value of ’width’ is determined as for inline replaced elements [p. 175] .

10.3.7 Absolutely positioned, non-replaced elements
For the purposes of this section and the next, the term "static position" (of an
element) refers, roughly, to the position an element would have had in the normal
flow. More precisely:

The static-position containing block is the containing block of a hypothetical box
that would have been the first box of the element if its specified ’position’ value
had been ’static’ and its specified ’float’ had been ’none’. (Note that due to the
rules in section 9.7 [p. 153] this hypothetical calculation might require also
assuming a different computed value for ’display’.)
The static position for ’left’ is the distance from the left edge of the containing
block to the left margin edge of a hypothetical box that would have been the first
box of the element if its ’position’ property had been ’static’ and ’float’ had been
’none’. The value is negative if the hypothetical box is to the left of the contain-
ing block.
The static position for ’right’ is the distance from the right edge of the containing
block to the right margin edge of the same hypothetical box as above. The value
is positive if the hypothetical box is to the left of the containing block’s edge.

But rather than actually calculating the dimensions of that hypothetical box, user
agents are free to make a guess at its probable position.

For the purposes of calculating the static position, the containing block of fixed
positioned elements is the initial containing block instead of the viewport, and all
scrollable boxes should be assumed to be scrolled to their origin.

17730 Mar 2011 19:50

Visual formatting model details

The constraint that determines the used values for these elements is:

’left’ + ’margin-left’ + ’border-left-width’ + ’padding-left’ + ’width’ +
’padding-right’ + ’border-right-width’ + ’margin-right’ + ’right’ = width of containing
block

If all three of ’left’, ’width’, and ’right’ are ’auto’: First set any ’auto’ values for
’margin-left’ and ’margin-right’ to 0. Then, if the ’direction’ property of the element
establishing the static-position containing block is ’ltr’ set ’left’ to the static position
[p. 177] and apply rule number three below; otherwise, set ’right’ to the static position
[p. 177] and apply rule number one below.

If none of the three is ’auto’: If both ’margin-left’ and ’margin-right’ are ’auto’, solve
the equation under the extra constraint that the two margins get equal values, unless
this would make them negative, in which case when direction of the containing block
is ’ltr’ (’rtl’), set ’margin-left’ (’margin-right’) to zero and solve for ’margin-right’
(’margin-left’). If one of ’margin-left’ or ’margin-right’ is ’auto’, solve the equation for
that value. If the values are over-constrained, ignore the value for ’left’ (in case the
’direction’ property of the containing block is ’rtl’) or ’right’ (in case ’direction’ is ’ltr’)
and solve for that value.

Otherwise, set ’auto’ values for ’margin-left’ and ’margin-right’ to 0, and pick the
one of the following six rules that applies.

1. ’left’ and ’width’ are ’auto’ and ’right’ is not ’auto’, then the width is shrink-to-fit.
Then solve for ’left’

2. ’left’ and ’right’ are ’auto’ and ’width’ is not ’auto’, then if the ’direction’ property
of the element establishing the static-position containing block is ’ltr’ set ’left’ to
the static position [p. 177] , otherwise set ’right’ to the static position [p. 177] .
Then solve for ’left’ (if ’direction is ’rtl’) or ’right’ (if ’direction’ is ’ltr’).

3. ’width’ and ’right’ are ’auto’ and ’left’ is not ’auto’, then the width is shrink-to-fit .
Then solve for ’right’

4. ’left’ is ’auto’, ’width’ and ’right’ are not ’auto’, then solve for ’left’
5. ’width’ is ’auto’, ’left’ and ’right’ are not ’auto’, then solve for ’width’
6. ’right’ is ’auto’, ’left’ and ’width’ are not ’auto’, then solve for ’right’

Calculation of the shrink-to-fit width is similar to calculating the width of a table cell
using the automatic table layout algorithm. Roughly: calculate the preferred width by
formatting the content without breaking lines other than where explicit line breaks
occur, and also calculate the preferred minimum width, e.g., by trying all possible
line breaks. CSS 2.1 does not define the exact algorithm. Thirdly, calculate the avail-
able width: this is found by solving for ’width’ after setting ’left’ (in case 1) or ’right’ (in
case 3) to 0.

Then the shrink-to-fit width is: min(max(preferred minimum width, available width),
preferred width).

30 Mar 2011 19:50178

Visual formatting model details

10.3.8 Absolutely positioned, replaced elements
In this case, section 10.3.7 [p. 177] applies up through and including the constraint
equation, but the rest of section 10.3.7 [p. 177] is replaced by the following rules:

1. The used value of ’width’ is determined as for inline replaced elements [p. 175] .
If ’margin-left’ or ’margin-right’ is specified as ’auto’ its used value is determined
by the rules below.

2. If both ’left’ and ’right’ have the value ’auto’, then if the ’direction’ property of the
element establishing the static-position containing block is ’ltr’, set ’left’ to the
static position; else if ’direction’ is ’rtl’, set ’right’ to the static position.

3. If ’left’ or ’right’ are ’auto’, replace any ’auto’ on ’margin-left’ or ’margin-right’ with
’0’.

4. If at this point both ’margin-left’ and ’margin-right’ are still ’auto’, solve the equa-
tion under the extra constraint that the two margins must get equal values,
unless this would make them negative, in which case when the direction of the
containing block is ’ltr’ (’rtl’), set ’margin-left’ (’margin-right’) to zero and solve for
’margin-right’ (’margin-left’).

5. If at this point there is an ’auto’ left, solve the equation for that value.
6. If at this point the values are over-constrained, ignore the value for either ’left’

(in case the ’direction’ property of the containing block is ’rtl’) or ’right’ (in case
’direction’ is ’ltr’) and solve for that value.

10.3.9 ’Inline-block’, non-replaced elements in normal flow
If ’width’ is ’auto’, the used value is the shrink-to-fit [p. 177] width as for floating
elements.

A computed value of ’auto’ for ’margin-left’ or ’margin-right’ becomes a used value
of ’0’.

10.3.10 ’Inline-block’, replaced elements in normal flow
Exactly as inline replaced elements. [p. 175]

10.4 Minimum and maximum widths: ’min-width’ and
’max-width’
’min-width’

17930 Mar 2011 19:50

Visual formatting model details

Value: <length> | <percentage> | inherit
Initial: 0
Applies to: all elements but non-replaced inline elements, table rows, and

row groups
Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: the percentage as specified or the absolute length

’max-width’

Value: <length> | <percentage> | none | inherit
Initial: none
Applies to: all elements but non-replaced inline elements, table rows, and

row groups
Inherited: no
Percentages: refer to width of containing block
Media: visual
Computed value: the percentage as specified or the absolute length or ’none’

These two properties allow authors to constrain content widths to a certain range.
Values have the following meanings:

<length>
Specifies a fixed minimum or maximum used width.

<percentage>
Specifies a percentage for determining the used value. The percentage is calcu-
lated with respect to the width of the generated box’s containing block [p. 128] .
If the containing block’s width is negative, the used value is zero. If the contain-
ing block’s width depends on this element’s width, then the resulting layout is
undefined in CSS 2.1.

none
(Only on ’max-width’) No limit on the width of the box.

Negative values for ’min-width’ and ’max-width’ are illegal.

In CSS 2.1, the effect of ’min-width’ and ’max-width’ on tables, inline tables, table
cells, table columns, and column groups is undefined.

The following algorithm describes how the two properties influence the used value
[p. 100] of the ’width’ property:

1. The tentative used width is calculated (without ’min-width’ and ’max-width’)
following the rules under "Calculating widths and margins" [p. 175] above.

2. If the tentative used width is greater than ’max-width’, the rules above [p. 175]
are applied again, but this time using the computed value of ’max-width’ as the
computed value for ’width’.

3. If the resulting width is smaller than ’min-width’, the rules above [p. 175] are

30 Mar 2011 19:50180

Visual formatting model details

applied again, but this time using the value of ’min-width’ as the computed value
for ’width’.

These steps do not affect the real computed values of the above properties.

However, for replaced elements with an intrinsic ratio and both ’width’ and ’height’
specified as ’auto’, the algorithm is as follows:

Select from the table the resolved height and width values for the appropriate
constraint violation. Take the max-width and max-height as max(min, max) so that
min £ max holds true. In this table w and h stand for the results of the width and
height computations ignoring the ’min-width’, ’min-height’, ’max-width’ and
’max-height’ properties. Normally these are the intrinsic width and height, but they
may not be in the case of replaced elements with intrinsic ratios.

Note: In cases where an explicit width or height is set and the other dimension is
auto, applying a minimum or maximum constraint on the auto side can cause an
over-constrained situation. The spec is clear in the behavior but it might not be what
the author expects. The CSS3 object-fit property can be used to obtain different
results in this situation.

18130 Mar 2011 19:50

Visual formatting model details

Constraint Violation Resolved Width Resolved Height

none w h

w > max-width max-width
max(max-width * h/w,
min-height)

w < min-width min-width
min(min-width * h/w,
max-height)

h > max-height
max(max-height * w/h,
min-width)

max-height

h < min-height
min(min-height * w/h,
max-width)

min-height

(w > max-width) and
(h > max-height), where
(max-width/w £ max-height/h)

max-width
max(min-height,
max-width * h/w)

(w > max-width) and
(h > max-height), where
(max-width/w > max-height/h)

max(min-width,
max-height * w/h)

max-height

(w < min-width) and
(h < min-height), where
(min-width/w £ min-height/h)

min(max-width,
min-height * w/h)

min-height

(w < min-width) and
(h < min-height), where
(min-width/w > min-height/h)

min-width
min(max-height,
min-width * h/w)

(w < min-width) and
(h > max-height)

min-width max-height

(w > max-width) and
(h < min-height)

max-width min-height

Then apply the rules under "Calculating widths and margins" [p. 175] above, as if
’width’ were computed as this value.

10.5 Content height: the ’height’ property
’height’

30 Mar 2011 19:50182

Visual formatting model details

Value: <length> | <percentage> | auto | inherit
Initial: auto
Applies to: all elements but non-replaced inline elements, table columns,

and column groups
Inherited: no
Percentages: see prose
Media: visual
Computed value: the percentage or ’auto’ (see prose under <percentage>) or

the absolute length

This property specifies the content height [p. 113] of boxes.

This property does not apply to non-replaced inline [p. 131] elements. See the
section on computing heights and margins for non-replaced inline elements [p. 184]
for the rules used instead.

Values have the following meanings:

<length>
Specifies the height of the content area using a length value.

<percentage>
Specifies a percentage height. The percentage is calculated with respect to the
height of the generated box’s containing block [p. 128] . If the height of the
containing block is not specified explicitly (i.e., it depends on content height),
and this element is not absolutely positioned, the value computes to ’auto’. A
percentage height on the root element [p. 45] is relative to the initial containing
block [p. 171] . Note: For absolutely positioned elements whose containing block
is based on a block-level element, the percentage is calculated with respect to
the height of the padding box of that element. This is a change from CSS1,
where the percentage was always calculated with respect to the content box of
the parent element.

auto
The height depends on the values of other properties. See the prose below.

Note that the height of the containing block of an absolutely positioned element is
independent of the size of the element itself, and thus a percentage height on such
an element can always be resolved. However, it may be that the height is not known
until elements that come later in the document have been processed.

Negative values for ’height’ are illegal.

Example(s):

For example, the following rule sets the content height of paragraphs to 100
pixels:

p { height: 100px }

18330 Mar 2011 19:50

Visual formatting model details

Paragraphs of which the height of the contents exceeds 100 pixels will overflow
[p. 195] according to the ’overflow’ property.

10.6 Calculating heights and margins
For calculating the values of ’top’, ’margin-top’, ’height’, ’margin-bottom’, and ’bottom’
a distinction must be made between various kinds of boxes:

1. inline, non-replaced elements
2. inline, replaced elements
3. block-level, non-replaced elements in normal flow
4. block-level, replaced elements in normal flow
5. floating, non-replaced elements
6. floating, replaced elements
7. absolutely positioned, non-replaced elements
8. absolutely positioned, replaced elements
9. ’inline-block’, non-replaced elements in normal flow

10. ’inline-block’, replaced elements in normal flow

For Points 1-6 and 9-10, the used values of ’top’ and ’bottom’ are determined by
the rules in section 9.4.3.

Note: these rules apply to the root element just as to any other element.

Note. The used value of ’height’ calculated below is a tentative value, and may
have to be calculated multiple times, depending on ’min-height’ and ’max-height’,
see the section Minimum and maximum heights [p. 188] below.

10.6.1 Inline, non-replaced elements
The ’height’ property does not apply. The height of the content area should be based
on the font, but this specification does not specify how. A UA may, e.g., use the
em-box or the maximum ascender and descender of the font. (The latter would
ensure that glyphs with parts above or below the em-box still fall within the content
area, but leads to differently sized boxes for different fonts; the former would ensure
authors can control background styling relative to the ’line-height’, but leads to
glyphs painting outside their content area.)

Note: level 3 of CSS will probably include a property to select which measure of
the font is used for the content height.

The vertical padding, border and margin of an inline, non-replaced box start at the
top and bottom of the content area, and has nothing to do with the ’line-height’. But
only the ’line-height’ is used when calculating the height of the line box.

If more than one font is used (this could happen when glyphs are found in different
fonts), the height of the content area is not defined by this specification. However,
we suggest that the height is chosen such that the content area is just high enough
for either (1) the em-boxes, or (2) the maximum ascenders and descenders, of all

30 Mar 2011 19:50184

Visual formatting model details

the fonts in the element. Note that this may be larger than any of the font sizes
involved, depending on the baseline alignment of the fonts.

10.6.2 Inline replaced elements, block-level replaced
elements in normal flow, ’inline-block’ replaced elements in
normal flow and floating replaced elements
If ’margin-top’, or ’margin-bottom’ are ’auto’, their used value is 0.

If ’height’ and ’width’ both have computed values of ’auto’ and the element also
has an intrinsic height, then that intrinsic height is the used value of ’height’.

Otherwise, if ’height’ has a computed value of ’auto’, and the element has an
intrinsic ratio then the used value of ’height’ is:

(used width) / (intrinsic ratio)

Otherwise, if ’height’ has a computed value of ’auto’, and the element has an
intrinsic height, then that intrinsic height is the used value of ’height’.

Otherwise, if ’height’ has a computed value of ’auto’, but none of the conditions
above are met, then the used value of ’height’ must be set to the height of the largest
rectangle that has a 2:1 ratio, has a height not greater than 150px, and has a width
not greater than the device width.

10.6.3 Block-level non-replaced elements in normal flow when
’overflow’ computes to ’visible’
This section also applies to block-level non-replaced elements in normal flow when
’overflow’ does not compute to ’visible’ but has been propagated to the viewport.

If ’margin-top’, or ’margin-bottom’ are ’auto’, their used value is 0. If ’height’ is
’auto’, the height depends on whether the element has any block-level children and
whether it has padding or borders:

If it only has inline-level children, the height is the distance between the top of the
topmost line box and the bottom of the bottommost line box.

If it has block-level children, the height is the distance between the top
border-edge of the topmost block-level child box that does not have margins
collapsed through it [p. 118] and the bottom border-edge of the bottommost
block-level child box that does not have margins collapsed through it. However, if the
element has a non-zero top padding and/or top border, or is the root element, then
the content starts at the top margin edge of the topmost child. (The first case
expresses the fact that the top and bottom margins of the element collapse [p. 117]
with those of the topmost and bottommost children, while in the second case the
presence of the padding/border prevents the top margins from collapsing [p. 117] .)
Similarly, if the bottom margin of the block does not collapse with the bottom margin
of its last in-flow child, then the content ends at the bottom margin edge of the
bottommost child.

18530 Mar 2011 19:50

Visual formatting model details

Only children in the normal flow are taken into account (i.e., floating boxes and
absolutely positioned boxes are ignored, and relatively positioned boxes are consid-
ered without their offset). Note that the child box may be an anonymous block box.
[p. 129]

10.6.4 Absolutely positioned, non-replaced elements
For the purposes of this section and the next, the term "static position" (of an
element) refers, roughly, to the position an element would have had in the normal
flow. More precisely, the static position for ’top’ is the distance from the top edge of
the containing block to the top margin edge of a hypothetical box that would have
been the first box of the element if its specified ’position’ value had been ’static’ and
its specified ’float’ had been ’none’ and its specified ’clear’ had been ’none’. (Note
that due to the rules in section 9.7 [p. 153] this might require also assuming a differ-
ent computed value for ’display’.) The value is negative if the hypothetical box is
above the containing block.

But rather than actually calculating the dimensions of that hypothetical box, user
agents are free to make a guess at its probable position.

For the purposes of calculating the static position, the containing block of fixed
positioned elements is the initial containing block instead of the viewport.

For absolutely positioned elements, the used values of the vertical dimensions
must satisfy this constraint:

’top’ + ’margin-top’ + ’border-top-width’ + ’padding-top’ + ’height’ +
’padding-bottom’ + ’border-bottom-width’ + ’margin-bottom’ + ’bottom’ = height of
containing block

If all three of ’top’, ’height’, and ’bottom’ are auto, set ’top’ to the static position and
apply rule number three below.

If none of the three are ’auto’: If both ’margin-top’ and ’margin-bottom’ are ’auto’,
solve the equation under the extra constraint that the two margins get equal values.
If one of ’margin-top’ or ’margin-bottom’ is ’auto’, solve the equation for that value. If
the values are over-constrained, ignore the value for ’bottom’ and solve for that
value.

Otherwise, pick the one of the following six rules that applies.

1. ’top’ and ’height’ are ’auto’ and ’bottom’ is not ’auto’, then the height is based on
the content per 10.6.7 [p. 187] , set ’auto’ values for ’margin-top’ and
’margin-bottom’ to 0, and solve for ’top’

2. ’top’ and ’bottom’ are ’auto’ and ’height’ is not ’auto’, then set ’top’ to the static
position, set ’auto’ values for ’margin-top’ and ’margin-bottom’ to 0, and solve for
’bottom’

3. ’height’ and ’bottom’ are ’auto’ and ’top’ is not ’auto’, then the height is based on
the content per 10.6.7 [p. 187] , set ’auto’ values for ’margin-top’ and
’margin-bottom’ to 0, and solve for ’bottom’

30 Mar 2011 19:50186

Visual formatting model details

4. ’top’ is ’auto’, ’height’ and ’bottom’ are not ’auto’, then set ’auto’ values for
’margin-top’ and ’margin-bottom’ to 0, and solve for ’top’

5. ’height’ is ’auto’, ’top’ and ’bottom’ are not ’auto’, then ’auto’ values for
’margin-top’ and ’margin-bottom’ are set to 0 and solve for ’height’

6. ’bottom’ is ’auto’, ’top’ and ’height’ are not ’auto’, then set ’auto’ values for
’margin-top’ and ’margin-bottom’ to 0 and solve for ’bottom’

10.6.5 Absolutely positioned, replaced elements
This situation is similar to the previous one, except that the element has an intrinsic
[p. 45] height. The sequence of substitutions is now:

1. The used value of ’height’ is determined as for inline replaced elements [p. 185]
. If ’margin-top’ or ’margin-bottom’ is specified as ’auto’ its used value is deter-
mined by the rules below.

2. If both ’top’ and ’bottom’ have the value ’auto’, replace ’top’ with the element’s
static position [p. 177] .

3. If ’bottom’ is ’auto’, replace any ’auto’ on ’margin-top’ or ’margin-bottom’ with ’0’.
4. If at this point both ’margin-top’ and ’margin-bottom’ are still ’auto’, solve the

equation under the extra constraint that the two margins must get equal values.
5. If at this point there is only one ’auto’ left, solve the equation for that value.
6. If at this point the values are over-constrained, ignore the value for ’bottom’ and

solve for that value.

10.6.6 Complicated cases
This section applies to:

Block-level, non-replaced elements in normal flow when ’overflow’ does not
compute to ’visible’ (except if the ’overflow’ property’s value has been propa-
gated to the viewport).
’Inline-block’, non-replaced elements.
Floating, non-replaced elements.

If ’margin-top’, or ’margin-bottom’ are ’auto’, their used value is 0. If ’height’ is
’auto’, the height depends on the element’s descendants per 10.6.7 [p. 187] .

For ’inline-block’ elements, the margin box is used when calculating the height of
the line box.

10.6.7 ’Auto’ heights for block formatting context roots
In certain cases (see, e.g., sections 10.6.4 [p. 186] and 10.6.6 [p. 187] above), the
height of an element that establishes a block formatting context is computed as
follows:

18730 Mar 2011 19:50

Visual formatting model details

If it only has inline-level children, the height is the distance between the top of the
topmost line box and the bottom of the bottommost line box.

If it has block-level children, the height is the distance between the top
margin-edge of the topmost block-level child box and the bottom margin-edge of the
bottommost block-level child box.

Absolutely positioned children are ignored, and relatively positioned boxes are
considered without their offset. Note that the child box may be an anonymous block
box. [p. 129]

In addition, if the element has any floating descendants whose bottom margin
edge is below the element’s bottom content edge, then the height is increased to
include those edges. Only floats that participate in this block formatting context are
taken into account, e.g., floats inside absolutely positioned descendants or other
floats are not.

10.7 Minimum and maximum heights: ’min-height’ and
’max-height’
It is sometimes useful to constrain the height of elements to a certain range. Two
properties offer this functionality:

’min-height’

Value: <length> | <percentage> | inherit
Initial: 0
Applies to: all elements but non-replaced inline elements, table columns,

and column groups
Inherited: no
Percentages: see prose
Media: visual
Computed value: the percentage as specified or the absolute length

’max-height’

Value: <length> | <percentage> | none | inherit
Initial: none
Applies to: all elements but non-replaced inline elements, table columns,

and column groups
Inherited: no
Percentages: see prose
Media: visual
Computed value: the percentage as specified or the absolute length or ’none’

30 Mar 2011 19:50188

Visual formatting model details

These two properties allow authors to constrain box heights to a certain range.
Values have the following meanings:

<length>
Specifies a fixed minimum or maximum computed height.

<percentage>
Specifies a percentage for determining the used value. The percentage is calcu-
lated with respect to the height of the generated box’s containing block [p. 128] .
If the height of the containing block is not specified explicitly (i.e., it depends on
content height), and this element is not absolutely positioned, the percentage
value is treated as ’0’ (for ’min-height’) or ’none’ (for ’max-height’).

none
(Only on ’max-height’) No limit on the height of the box.

Negative values for ’min-height’ and ’max-height’ are illegal.

In CSS 2.1, the effect of ’min-height’ and ’max-height’ on tables, inline tables, table
cells, table rows, and row groups is undefined.

The following algorithm describes how the two properties influence the used value
[p. 100] of the ’height’ property:

1. The tentative used height is calculated (without ’min-height’ and ’max-height’)
following the rules under "Calculating heights and margins" [p. 184] above.

2. If this tentative height is greater than ’max-height’, the rules above [p. 184] are
applied again, but this time using the value of ’max-height’ as the computed
value for ’height’.

3. If the resulting height is smaller than ’min-height’, the rules above [p. 184] are
applied again, but this time using the value of ’min-height’ as the computed
value for ’height’.

These steps do not affect the real computed values of the above properties. The
change of used ’height’ has no effect on margin collapsing except as specifically
required by rules for ’min-height’ or ’max-height’ in "Collapsing margins" (8.3.1).
[p. 117]

However, for replaced elements with both ’width’ and ’height’ computed as ’auto’,
use the algorithm under Minimum and maximum widths [p. 179] above to find the
used width and height. Then apply the rules under "Computing heights and margins"
[p. 184] above, using the resulting width and height as if they were the computed
values.

10.8 Line height calculations: the ’line-height’ and
’vertical-align’ properties
As described in the section on inline formatting contexts [p. 138] , user agents flow
inline-level boxes into a vertical stack of line boxes [p. 138] . The height of a line box
is determined as follows:

18930 Mar 2011 19:50

Visual formatting model details

1. The height of each inline-level box in the line box is calculated. For replaced
elements, inline-block elements, and inline-table elements, this is the height of
their margin box; for inline boxes, this is their ’line-height’. (See "Calculating
heights and margins" [p. 184] and the height of inline boxes [p. 190] in "Leading
and half-leading" [p. 190] .)

2. The inline-level boxes are aligned vertically according to their ’vertical-align’
property. In case they are aligned ’top’ or ’bottom’, they must be aligned so as to
minimize the line box height. If such boxes are tall enough, there are multiple
solutions and CSS 2.1 does not define the position of the line box’s baseline
(i.e., the position of the strut, see below [p. 191]).

3. The line box height is the distance between the uppermost box top and the
lowermost box bottom. (This includes the strut, [p. 191] as explained under
’line-height’ below.)

Empty inline elements generate empty inline boxes, but these boxes still have
margins, padding, borders and a line height, and thus influence these calculations
just like elements with content.

10.8.1 Leading and half-leading
CSS assumes that every font has font metrics that specify a characteristic height
above the baseline and a depth below it. In this section we use A to mean that height
(for a given font at a given size) and D the depth. We also define AD = A + D, the
distance from the top to the bottom. (See the note below for how to find A and D for
TrueType and OpenType fonts. [p. 191]) Note that these are metrics of the font as a
whole and need not correspond to the ascender and descender of any individual
glyph.

User agent must align the glyphs in a non-replaced inline box to each other by
their relevant baselines. Then, for each glyph, determine the A and D. Note that
glyphs in a single element may come from different fonts and thus need not all have
the same A and D. If the inline box contains no glyphs at all, it is considered to
contain a strut [p. 191] (an invisible glyph of zero width) with the A and D of the
element’s first available font.

Still for each glyph, determine the leading L to add, where L = line-height - AD.
Half the leading is added above A and the other half below D, giving the glyph and
its leading a total height above the baseline of A’ = A + L/2 and a total depth of D’ =
D + L/2.

Note. L may be negative.

The height of the inline box encloses all glyphs and their half-leading on each side
and is thus exactly ’line-height’. Boxes of child elements do not influence this height.

Although margins, borders, and padding of non-replaced elements do not enter
into the line box calculation, they are still rendered around inline boxes. This means
that if the height specified by ’line-height’ is less than the content height of contained
boxes, backgrounds and colors of padding and borders may "bleed" into adjoining
line boxes. User agents should render the boxes in document order. This will cause

30 Mar 2011 19:50190

Visual formatting model details

the borders on subsequent lines to paint over the borders and text of previous lines.

Note. CSS 2.1 does not define what the content area of an inline box is (see
10.6.1 [p. 184] above) and thus different UAs may draw the backgrounds and
borders in different places.

Note. It is recommended that implementations that use OpenType or TrueType
fonts use the metrics "sTypoAscender" and "sTypoDescender" from the font’s OS/2
table for A and D (after scaling to the current element’s font size). In the absence of
these metrics, the "Ascent" and "Descent" metrics from the HHEA table should be
used.

’line-height’

Value: normal | <number> | <length> | <percentage> | inherit
Initial: normal
Applies to: all elements
Inherited: yes
Percentages: refer to the font size of the element itself
Media: visual
Computed value: for <length> and <percentage> the absolute value; otherwise

as specified

On a block container element [p. 129] whose content is composed of inline-level
[p. 131] elements, ’line-height’ specifies the minimal height of line boxes within the
element. The minimum height consists of a minimum height above the baseline and
a minimum depth below it, exactly as if each line box starts with a zero-width inline
box with the element’s font and line height properties. We call that imaginary box a
"strut." (The name is inspired by TeX.).

The height and depth of the font above and below the baseline are assumed to be
metrics that are contained in the font. (For more details, see CSS level 3.)

On a non-replaced inline [p. 131] element, ’line-height’ specifies the height that is
used in the calculation of the line box height.

Values for this property have the following meanings:

normal
Tells user agents to set the used value to a "reasonable" value based on the
font of the element. The value has the same meaning as <number>. We recom-
mend a used value for ’normal’ between 1.0 to 1.2. The computed value [p. 100]
is ’normal’.

<length>
The specified length is used in the calculation of the line box height. Negative
values are illegal.

<number>
The used value of the property is this number multiplied by the element’s font
size. Negative values are illegal. The computed value [p. 100] is the same as
the specified value.

19130 Mar 2011 19:50

Visual formatting model details

<percentage>
The computed value [p. 100] of the property is this percentage multiplied by the
element’s computed font size. Negative values are illegal.

Example(s):

The three rules in the example below have the same resultant line height:

div { line-height: 1.2; font-size: 10pt } /* number */
div { line-height: 1.2em; font-size: 10pt } /* length */
div { line-height: 120%; font-size: 10pt } /* percentage */

When an element contains text that is rendered in more than one font, user agents
may determine the ’normal’ ’line-height’ value according to the largest font size.

Note. When there is only one value of ’line-height’ for all inline boxes in a block
container box and they are all in the same font (and there are no replaced elements,
inline-block elements, etc.), the above will ensure that baselines of successive lines
are exactly ’line-height’ apart. This is important when columns of text in different
fonts have to be aligned, for example in a table.

’vertical-align’

Value: baseline | sub | super | top | text-top | middle | bottom |
text-bottom | <percentage> | <length> | inherit

Initial: baseline
Applies to: inline-level and ’table-cell’ elements
Inherited: no
Percentages: refer to the ’line-height’ of the element itself
Media: visual
Computed value: for <percentage> and <length> the absolute length, otherwise

as specified

This property affects the vertical positioning inside a line box of the boxes gener-
ated by an inline-level element.

Note. Values of this property have different meanings in the context of tables.
Please consult the section on table height algorithms [p. 285] for details.

The following values only have meaning with respect to a parent inline element, or
to the strut [p. 191] of a parent block container element.

In the following definitions, for inline non-replaced elements, the box used for
alignment is the box whose height is the ’line-height’ (containing the box’s glyphs
and the half-leading on each side, see above [p. 190]). For all other elements, the
box used for alignment is the margin box.

baseline
Align the baseline of the box with the baseline of the parent box. If the box does
not have a baseline, align the bottom margin edge with the parent’s baseline.

30 Mar 2011 19:50192

Visual formatting model details

middle
Align the vertical midpoint of the box with the baseline of the parent box plus
half the x-height of the parent.

sub
Lower the baseline of the box to the proper position for subscripts of the
parent’s box. (This value has no effect on the font size of the element’s text.)

super
Raise the baseline of the box to the proper position for superscripts of the
parent’s box. (This value has no effect on the font size of the element’s text.)

text-top
Align the top of the box with the top of the parent’s content area (see 10.6.1
[p. 184]).

text-bottom
Align the bottom of the box with the bottom of the parent’s content area (see
10.6.1 [p. 184]).

<percentage>
Raise (positive value) or lower (negative value) the box by this distance (a
percentage of the ’line-height’ value). The value ’0%’ means the same as ’base-
line’.

<length>
Raise (positive value) or lower (negative value) the box by this distance. The
value ’0cm’ means the same as ’baseline’.

The following values align the element relative to the line box. Since the element
may have children aligned relative to it (which in turn may have descendants aligned
relative to them), these values use the bounds of the aligned subtree. The aligned
subtree of an inline element contains that element and the aligned subtrees of all
children inline elements whose computed ’vertical-align’ value is not ’top’ or ’bottom’.
The top of the aligned subtree is the highest of the tops of the boxes in the subtree,
and the bottom is analogous.

top
Align the top of the aligned subtree with the top of the line box.

bottom
Align the bottom of the aligned subtree with the bottom of the line box.

The baseline of an ’inline-table’ is the baseline of the first row of the table.

The baseline of an ’inline-block’ is the baseline of its last line box in the normal
flow, unless it has either no in-flow line boxes or if its ’overflow’ property has a
computed value other than ’visible’, in which case the baseline is the bottom margin
edge.

19330 Mar 2011 19:50

Visual formatting model details

30 Mar 2011 19:50194

Visual formatting model details

11 Visual effects
Contents

............. 19511.1 Overflow and clipping

......... 19511.1.1 Overflow: the ’overflow’ property

.......... 19811.1.2 Clipping: the ’clip’ property

........... 20111.2 Visibility: the ’visibility’ property

11.1 Overflow and clipping
Generally, the content of a block box is confined to the content edges of the box. In
certain cases, a box may overflow, meaning its content lies partly or entirely outside
of the box, e.g.:

A line cannot be broken, causing the line box to be wider than the block box.
A block-level box is too wide for the containing block. This may happen when an
element’s ’width’ property has a value that causes the generated block box to
spill over sides of the containing block.
An element’s height exceeds an explicit height assigned to the containing block
(i.e., the containing block’s height is determined by the ’height’ property, not by
content height).
A descendant box is positioned absolutely [p. 151] , partly outside the box. Such
boxes are not always clipped by the overflow property on their ancestors; specif-
ically, they are not clipped by the overflow of any ancestor between themselves
and their containing block
A descendant box has negative margins [p. 115] , causing it to be positioned
partly outside the box.
The ’text-indent’ property causes an inline box to hang off either the left or right
edge of the block box.

Whenever overflow occurs, the ’overflow’ property specifies whether a box is
clipped to its padding edge, and if so, whether a scrolling mechanism is provided to
access any clipped out content.

11.1.1 Overflow: the ’overflow’ property

’overflow’

19530 Mar 2011 19:50

Visual effects

Value: visible | hidden | scroll | auto | inherit
Initial: visible
Applies to: block containers
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

This property specifies whether content of a block container element is clipped
when it overflows the element’s box. It affects the clipping of all of the element’s
content except any descendant elements (and their respective content and descen-
dants) whose containing block is the viewport or an ancestor of the element. Values
have the following meanings:

visible
This value indicates that content is not clipped, i.e., it may be rendered outside
the block box.

hidden
This value indicates that the content is clipped and that no scrolling user inter-
face should be provided to view the content outside the clipping region.

scroll
This value indicates that the content is clipped and that if the user agent uses a
scrolling mechanism that is visible on the screen (such as a scroll bar or a
panner), that mechanism should be displayed for a box whether or not any of its
content is clipped. This avoids any problem with scrollbars appearing and disap-
pearing in a dynamic environment. When this value is specified and the target
medium is ’print’, overflowing content may be printed.

auto
The behavior of the ’auto’ value is user agent-dependent, but should cause a
scrolling mechanism to be provided for overflowing boxes.

Even if ’overflow’ is set to ’visible’, content may be clipped to a UA’s document
window by the native operating environment.

UAs must apply the ’overflow’ property set on the root element to the viewport.
When the root element is an HTML "HTML" element or an XHTML "html" element,
and that element has an HTML "BODY" element or an XHTML "body" element as a
child, user agents must instead apply the ’overflow’ property from the first such child
element to the viewport, if the value on the root element is ’visible’. The ’visible’
value when used for the viewport must be interpreted as ’auto’. The element from
which the value is propagated must have a used value for ’overflow’ of ’visible’.

In the case of a scrollbar being placed on an edge of the element’s box, it should
be inserted between the inner border edge and the outer padding edge. Any space
taken up by the scrollbars should be taken out of (subtracted from the dimensions of)
the containing block formed by the element with the scrollbars.

30 Mar 2011 19:50196

Visual effects

Example(s):

Consider the following example of a block quotation (<blockquote>) that is too
big for its containing block (established by a <div>). Here is the source:

<div>
<blockquote>
<p>I didn’t like the play, but then I saw
it under adverse conditions - the curtain was up.</p>
<cite>- Groucho Marx</cite>
</blockquote>
</div>

Here is the style sheet controlling the sizes and style of the generated boxes:

div { width : 100px; height: 100px;
 border: thin solid red;
 }

blockquote { width : 125px; height : 100px;
 margin-top: 50px; margin-left: 50px;
 border: thin dashed black
 }

cite { display: block;
 text-align : right;
 border: none
 }

The initial value of ’overflow’ is ’visible’, so the <blockquote> would be formatted
without clipping, something like this:

DIV

BLOCKQUOTE

I didn’t like the play,
but then I saw it
under adverse
conditions − the
curtain was up.
 − Groucho Marx

Setting ’overflow’ to ’hidden’ for the <div> , on the other hand, causes the
<blockquote> to be clipped by the containing <div> :

19730 Mar 2011 19:50

Visual effects

I didn’t li
but then
under ad
condition

A value of ’scroll’ would tell UAs that support a visible scrolling mechanism to
display one so that users could access the clipped content.

Finally, consider this case where an absolutely positioned element is mixed with
an overflow parent.

Style sheet:

 container { position: relative; border: solid; }
 scroller { overflow: scroll; height: 5em; margin: 5em; }
 satellite { position: absolute; top: 0; }
 body { height: 10em; }

Document fragment:

 <container>
 <scroller>
 <satellite/>
 <body/>
 </scroller>
 </container>

In this example, the "scroller" element will not scroll the "satellite" element,
because the latter’s containing block is outside the element whose overflow is being
clipped and scrolled.

11.1.2 Clipping: the ’clip’ property
A clipping region defines what portion of an element’s border box is visible. By
default, the element is not clipped. However, the clipping region may be explicitly set
with the ’clip’ property.

’clip’

30 Mar 2011 19:50198

Visual effects

Value: <shape> | auto | inherit
Initial: auto
Applies to: absolutely positioned elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: ’auto’ if specified as ’auto’, otherwise a rectangle with four

values, each of which is ’auto’ if specified as ’auto’ and the
computed length otherwise

The ’clip’ property applies only to absolutely positioned elements. Values have the
following meanings:

auto
The element does not clip.

<shape>
In CSS 2.1, the only valid <shape> value is: rect(<top>, <right>, <bottom>,
<left>) where <top> and <bottom> specify offsets from the top border edge of
the box, and <right>, and <left> specify offsets from the left border edge of the
box. Authors should separate offset values with commas. User agents must
support separation with commas, but may also support separation without
commas (but not a combination), because a previous revision of this specifica-
tion was ambiguous in this respect.

<top>, <right>, <bottom>, and <left> may either have a <length> value or
’auto’. Negative lengths are permitted. The value ’auto’ means that a given edge
of the clipping region will be the same as the edge of the element’s generated
border box (i.e., ’auto’ means the same as ’0’ for <top> and <left>, the same as
the used value of the height plus the sum of vertical padding and border widths
for <bottom>, and the same as the used value of the width plus the sum of the
horizontal padding and border widths for <right>, such that four ’auto’ values
result in the clipping region being the same as the element’s border box).

When coordinates are rounded to pixel coordinates, care should be taken that
no pixels remain visible when <left> and <right> have the same value (or <top>
and <bottom> have the same value), and conversely that no pixels within the
element’s border box remain hidden when these values are ’auto’.

An element’s clipping region clips out any aspect of the element (e.g., content,
children, background, borders, text decoration, outline and visible scrolling mecha-
nism — if any) that is outside the clipping region. Content that has been clipped does
not cause overflow.

The element’s ancestors may also clip portions of their content (e.g., via their own
’clip’ property and/or if their ’overflow’ property is not ’visible’); what is rendered is the
cumulative intersection.

19930 Mar 2011 19:50

Visual effects

If the clipping region exceeds the bounds of the UA’s document window, content
may be clipped to that window by the native operating environment.

Example(s):

Example: The following two rules:

p#one { clip: rect(5px, 40px, 45px, 5px); }
p#two { clip: rect(5px, 55px, 45px, 5px); }

and assuming both Ps are 50 by 55 px, will create, respectively, the rectangular
clipping regions delimited by the dashed lines in the following illustrations:

(0, 0) (50, 0)

(0, 55)

clip region

(0, 0) (50, 0)

(0, 55)

clip region

P’s block box

P’s block box

Note. In CSS 2.1, all clipping regions are rectangular. We anticipate future exten-
sions to permit non-rectangular clipping. Future updates may also reintroduce a
syntax for offsetting shapes from each edge instead of offsetting from a point.

30 Mar 2011 19:50200

Visual effects

11.2 Visibility: the ’visibility’ property
’visibility’

Value: visible | hidden | collapse | inherit
Initial: visible
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

The ’visibility’ property specifies whether the boxes generated by an element are
rendered. Invisible boxes still affect layout (set the ’display’ property to ’none’ to
suppress box generation altogether). Values have the following meanings:

visible
The generated box is visible.

hidden
The generated box is invisible (fully transparent, nothing is drawn), but still
affects layout. Furthermore, descendants of the element will be visible if they
have ’visibility: visible’.

collapse
Please consult the section on dynamic row and column effects [p. 287] in tables.
If used on elements other than rows, row groups, columns, or column groups,
’collapse’ has the same meaning as ’hidden’.

This property may be used in conjunction with scripts to create dynamic effects.

In the following example, pressing either form button invokes an author-defined
script function that causes the corresponding box to become visible and the other to
be hidden. Since these boxes have the same size and position, the effect is that one
replaces the other. (The script code is in a hypothetical script language. It may or
may not have any effect in a CSS-capable UA.)

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
<HEAD><TITLE>Dynamic visibility example</TITLE>
<META
 http-equiv="Content-Script-Type"
 content="application/x-hypothetical-scripting-language">
<STYLE type="text/css">
<!--
 #container1 { position: absolute;
 top: 2in; left: 2in; width: 2in }
 #container2 { position: absolute;
 top: 2in; left: 2in; width: 2in;
 visibility: hidden; }
-->
</STYLE>

20130 Mar 2011 19:50

Visual effects

</HEAD>
<BODY>
<P>Choose a suspect:</P>
<DIV id="container1">
 <IMG alt="Al Capone"
 width="100" height="100"
 src="suspect1.png">
 <P>Name: Al Capone</P>
 <P>Residence: Chicago</P>
</DIV>

<DIV id="container2">
 <IMG alt="Lucky Luciano"
 width="100" height="100"
 src="suspect2.png">
 <P>Name: Lucky Luciano</P>
 <P>Residence: New York</P>
</DIV>

<FORM method="post"
 action="http://www.suspect.org/process-bums">
 <P>
 <INPUT name="Capone" type="button"
 value="Capone"
 onclick=’show("container1");hide("container2")’>
 <INPUT name="Luciano" type="button"
 value="Luciano"
 onclick=’show("container2");hide("container1")’>
</FORM>
</BODY>
</HTML>

30 Mar 2011 19:50202

Visual effects

12 Generated content, automatic numbering,
and lists
Contents

......... 20312.1 The :before and :after pseudo-elements

............. 20512.2 The ’content’ property

.............. 20712.3 Quotation marks

...... 20712.3.1 Specifying quotes with the ’quotes’ property

...... 20912.3.2 Inserting quotes with the ’content’ property

.......... 21012.4 Automatic counters and numbering

.......... 21212.4.1 Nested counters and scope

............. 21412.4.2 Counter styles

....... 21412.4.3 Counters in elements with ’display: none’

................. 21412.5 Lists
12.5.1 Lists: the ’list-style-type’, ’list-style-image’, ’list-style-position’, and

.............. 215’list-style’ properties

In some cases, authors may want user agents to render content that does not
come from the document tree [p. 45] . One familiar example of this is a numbered
list; the author does not want to list the numbers explicitly, he or she wants the user
agent to generate them automatically. Similarly, authors may want the user agent to
insert the word "Figure" before the caption of a figure, or "Chapter 7" before the
seventh chapter title. For audio or braille in particular, user agents should be able to
insert these strings.

In CSS 2.1, content may be generated by two mechanisms:

The ’content’ property, in conjunction with the :before and :after
pseudo-elements.
Elements with a value of ’list-item’ for the ’display’ property.

12.1 The :before and :after pseudo-elements
Authors specify the style and location of generated content with the :before and
:after pseudo-elements. As their names indicate, the :before and :after
pseudo-elements specify the location of content before and after an element’s docu-
ment tree [p. 45] content. The ’content’ property, in conjunction with these
pseudo-elements, specifies what is inserted.

Example(s):

For example, the following rule inserts the string "Note: " before the content of
every P element whose "class" attribute has the value "note":

20330 Mar 2011 19:50

Generated content, automatic numbering, and lists

p.note:before { content: "Note: " }

The formatting objects (e.g., boxes) generated by an element include generated
content. So, for example, changing the above style sheet to:

p.note:before { content: "Note: " }
p.note { border: solid green }

would cause a solid green border to be rendered around the entire paragraph,
including the initial string.

The :before and :after pseudo-elements inherit [p. 100] any inheritable properties
from the element in the document tree to which they are attached.

Example(s):

For example, the following rules insert an open quote mark before every Q
element. The color of the quote mark will be red, but the font will be the same as the
font of the rest of the Q element:

q:before {
 content: open-quote;
 color: red
}

In a :before or :after pseudo-element declaration, non-inherited properties take
their initial values [p. 31] .

Example(s):

So, for example, because the initial value of the ’display’ property is ’inline’, the
quote in the previous example is inserted as an inline box (i.e., on the same line as
the element’s initial text content). The next example explicitly sets the ’display’ prop-
erty to ’block’, so that the inserted text becomes a block:

body:after {
 content: "The End";
 display: block;
 margin-top: 2em;
 text-align: center;
}

The :before and :after pseudo-elements interact with other boxes as if they were
real elements inserted just inside their associated element.

Example(s):

For example, the following document fragment and style sheet:

<p> Text </p> p:before { display: block; content: ’Some’; }

...would render in exactly the same way as the following document fragment and
style sheet:

30 Mar 2011 19:50204

Generated content, automatic numbering, and lists

<p>Some Text </p> span { display: block }

Similarly, the following document fragment and style sheet:

<h2> Header </h2> h2:after { display: block; content: ’Thing’; }

...would render in exactly the same way as the following document fragment and
style sheet:

<h2> Header Thing</h2> h2 { display: block; }
 span { display: block; }

Note. This specification does not fully define the interaction of :before and :after
with replaced elements (such as IMG in HTML). This will be defined in more detail in
a future specification.

12.2 The ’content’ property
’content’

Value: normal | none | [<string> | <uri> | <counter> | attr(<identifier>)
| open-quote | close-quote | no-open-quote | no-close-quote
]+ | inherit

Initial: normal
Applies to: :before and :after pseudo-elements
Inherited: no
Percentages: N/A
Media: all
Computed value: On elements, always computes to ’normal’. On :before and

:after, if ’normal’ is specified, computes to ’none’. Otherwise,
for URI values, the absolute URI; for attr() values, the result-
ing string; for other keywords, as specified.

This property is used with the :before and :after pseudo-elements to generate
content in a document. Values have the following meanings:

none
The pseudo-element is not generated.

normal
Computes to ’none’ for the :before and :after pseudo-elements.

<string>
Text content (see the section on strings [p. 70]).

<uri>
The value is a URI that designates an external resource (such as an image). If
the user agent cannot display the resource it must either leave it out as if it were
not specified or display some indication that the resource cannot be displayed.

20530 Mar 2011 19:50

Generated content, automatic numbering, and lists

<counter>
Counters [p. 68] may be specified with two different functions: ’counter()’ or
’counters()’. The former has two forms: ’counter(name)’ or ’counter(name,
style)’. The generated text is the value of the innermost counter of the given
name in scope at this pseudo-element; it is formatted in the indicated style
[p. 214] (’decimal’ by default). The latter function also has two forms: ’coun-
ters(name, string)’ or ’counters(name, string, style)’. The generated text is the
value of all counters with the given name in scope at this pseudo-element, from
outermost to innermost separated by the specified string. The counters are
rendered in the indicated style [p. 214] (’decimal’ by default). See the section on
automatic counters and numbering [p. 210] for more information. The name
must not be ’none’, ’inherit’ or ’initial’. Such a name causes the declaration to be
ignored.

open-quote and close-quote
These values are replaced by the appropriate string from the ’quotes’ property.

no-open-quote and no-close-quote
Introduces no content, but increments (decrements) the level of nesting for
quotes.

attr(X)
This function returns as a string the value of attribute X for the subject of the
selector. The string is not parsed by the CSS processor. If the subject of the
selector does not have an attribute X, an empty string is returned. The
case-sensitivity of attribute names depends on the document language.

Note. In CSS 2.1, it is not possible to refer to attribute values for other elements than
the subject of the selector.

The ’display’ property controls whether the content is placed in a block or inline
box.

Example(s):

The following rule causes the string "Chapter: " to be generated before each H1
element:

H1:before {
 content: "Chapter: ";
 display: inline;
}

Authors may include newlines in the generated content by writing the "\A" escape
sequence in one of the strings after the ’content’ property. This inserted line break is
still subject to the ’white-space’ property. See "Strings" [p. 70] and "Characters and
case" [p. 55] for more information on the "\A" escape sequence.

Example(s):

30 Mar 2011 19:50206

Generated content, automatic numbering, and lists

h1:before {
 display: block;
 text-align: center;
 white-space: pre;
 content: "chapter\A hoofdstuk\A chapitre"
}

Generated content does not alter the document tree. In particular, it is not fed back
to the document language processor (e.g., for reparsing).

12.3 Quotation marks
In CSS 2.1, authors may specify, in a style-sensitive and context-dependent manner,
how user agents should render quotation marks. The ’quotes’ property specifies
pairs of quotation marks for each level of embedded quotation. The ’content’ prop-
erty gives access to those quotation marks and causes them to be inserted before
and after a quotation.

12.3.1 Specifying quotes with the ’quotes’ property

’quotes’

Value: [<string> <string>]+ | none | inherit
Initial: depends on user agent
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

This property specifies quotation marks for any number of embedded quotations.
Values have the following meanings:

none
The ’open-quote’ and ’close-quote’ values of the ’content’ property produce no
quotation marks.

[<string> <string>]+
Values for the ’open-quote’ and ’close-quote’ values of the ’content’ property are
taken from this list of pairs of quotation marks (opening and closing). The first
(leftmost) pair represents the outermost level of quotation, the second pair the
first level of embedding, etc. The user agent must apply the appropriate pair of
quotation marks according to the level of embedding.

Example(s):

For example, applying the following style sheet:

20730 Mar 2011 19:50

Generated content, automatic numbering, and lists

/* Specify pairs of quotes for two levels in two languages */
q:lang(en) { quotes: ’"’ ’"’ "’" "’" }
q:lang(no) { quotes: "«" "»" ’"’ ’"’ }

/* Insert quotes before and after Q element content */
q:before { content: open-quote }
q:after { content: close-quote }

to the following HTML fragment:

<HTML lang="en">
 <HEAD>
 <TITLE>Quotes</TITLE>
 </HEAD>
 <BODY>
 <P><Q>Quote me!</Q>
 </BODY>
</HTML>

would allow a user agent to produce:

"Quote me!"

while this HTML fragment:

<HTML lang="no">
 <HEAD>
 <TITLE>Quotes</TITLE>
 </HEAD>
 <BODY>
 <P><Q>Trøndere gråter når <Q>Vinsjan på kaia</Q> blir deklamert.</Q>
 </BODY>
</HTML>

would produce:

«Trøndere gråter når "Vinsjan på kaia" blir deklamert.»

Note. While the quotation marks specified by ’quotes’ in the previous examples
are conveniently located on computer keyboards, high quality typesetting would
require different ISO 10646 characters. The following informative table lists some of
the ISO 10646 quotation mark characters:

30 Mar 2011 19:50208

Generated content, automatic numbering, and lists

Character
Approximate

rendering
ISO 10646
code (hex)

Description

" " 0022
QUOTATION MARK [the ASCII
double quotation mark]

’ ’ 0027
APOSTROPHE [the ASCII single
quotation mark]

‹ < 2039
SINGLE LEFT-POINTING ANGLE
QUOTATION MARK

› > 203A
SINGLE RIGHT-POINTING
ANGLE QUOTATION MARK

« « 00AB
LEFT-POINTING DOUBLE ANGLE
QUOTATION MARK

» » 00BB
RIGHT-POINTING DOUBLE
ANGLE QUOTATION MARK

‘ ‘ 2018
LEFT SINGLE QUOTATION MARK
[single high-6]

’ ’ 2019
RIGHT SINGLE QUOTATION
MARK [single high-9]

“ ‘‘ 201C
LEFT DOUBLE QUOTATION
MARK [double high-6]

” ’’ 201D
RIGHT DOUBLE QUOTATION
MARK [double high-9]

„ ,, 201E
DOUBLE LOW-9 QUOTATION
MARK [double low-9]

12.3.2 Inserting quotes with the ’content’ property
Quotation marks are inserted in appropriate places in a document with the
’open-quote’ and ’close-quote’ values of the ’content’ property. Each occurrence of
’open-quote’ or ’close-quote’ is replaced by one of the strings from the value of
’quotes’, based on the depth of nesting.

’Open-quote’ refers to the first of a pair of quotes, ’close-quote’ refers to the
second. Which pair of quotes is used depends on the nesting level of quotes: the
number of occurrences of ’open-quote’ in all generated text before the current occur-
rence, minus the number of occurrences of ’close-quote’. If the depth is 0, the first
pair is used, if the depth is 1, the second pair is used, etc. If the depth is greater than
the number of pairs, the last pair is repeated. A ’close-quote’ or ’no-close-quote’ that
would make the depth negative is in error and is ignored (at rendering time): the

20930 Mar 2011 19:50

Generated content, automatic numbering, and lists

depth stays at 0 and no quote mark is rendered (although the rest of the ’content’
property’s value is still inserted).

Note. The quoting depth is independent of the nesting of the source document or
the formatting structure.

Some typographic styles require open quotation marks to be repeated before
every paragraph of a quote spanning several paragraphs, but only the last para-
graph ends with a closing quotation mark. In CSS, this can be achieved by inserting
"phantom" closing quotes. The keyword ’no-close-quote’ decrements the quoting
level, but does not insert a quotation mark.

Example(s):

The following style sheet puts opening quotation marks on every paragraph in a
BLOCKQUOTE, and inserts a single closing quote at the end:

blockquote p:before { content: open-quote }
blockquote p:after { content: no-close-quote }
blockquote p.last:after { content: close-quote }

This relies on the last paragraph being marked with a class "last".

For symmetry, there is also a ’no-open-quote’ keyword, which inserts nothing, but
increments the quotation depth by one.

12.4 Automatic counters and numbering
Automatic numbering in CSS 2.1 is controlled with two properties, ’counter-incre-
ment’ and ’counter-reset’. The counters defined by these properties are used with
the counter() and counters() functions of the the ’content’ property.

’counter-reset’

Value: [<identifier> <integer>?]+ | none | inherit
Initial: none
Applies to: all elements
Inherited: no
Percentages: N/A
Media: all
Computed value: as specified

’counter-increment’

30 Mar 2011 19:50210

Generated content, automatic numbering, and lists

Value: [<identifier> <integer>?]+ | none | inherit
Initial: none
Applies to: all elements
Inherited: no
Percentages: N/A
Media: all
Computed value: as specified

The ’counter-increment’ property accepts one or more names of counters (identi-
fiers), each one optionally followed by an integer. The integer indicates by how much
the counter is incremented for every occurrence of the element. The default incre-
ment is 1. Zero and negative integers are allowed.

The ’counter-reset’ property also contains a list of one or more names of counters,
each one optionally followed by an integer. The integer gives the value that the
counter is set to on each occurrence of the element. The default is 0.

The keywords ’none’, ’inherit’ and ’initial’ must not be used as counter names. A
value of ’none’ on its own means no counters are reset, resp. incremented. ’Inherit’
on its own has its usual meaning (see 6.2.1 [p. 101]). ’Initial’ is reserved for future
use.

Example(s):

This example shows a way to number chapters and sections with "Chapter 1",
"1.1", "1.2", etc.

BODY {
 counter-reset: chapter; /* Create a chapter counter scope */
}
H1:before {
 content: "Chapter " counter(chapter) ". ";
 counter-increment: chapter; /* Add 1 to chapter */
}
H1 {
 counter-reset: section; /* Set section to 0 */
}
H2:before {
 content: counter(chapter) "." counter(section) " ";
 counter-increment: section;
}

If an element increments/resets a counter and also uses it (in the ’content’ prop-
erty of its :before or :after pseudo-element), the counter is used after being incre-
mented/reset.

If an element both resets and increments a counter, the counter is reset first and
then incremented.

If the same counter is specified more than once in the value of the ’counter-reset’
and ’counter-increment’ properties, each reset/increment of the counter is processed
in the order specified.

21130 Mar 2011 19:50

Generated content, automatic numbering, and lists

Example(s):

The following example will reset the ’section’ counter to 0:

H1 { counter-reset: section 2 section }

The following example will increment the ’chapter’ counter by 3:

H1 { counter-increment: chapter chapter 2 }

The ’counter-reset’ property follows the cascading rules. Thus, due to cascading,
the following style sheet:

H1 { counter-reset: section -1 }
H1 { counter-reset: imagenum 99 }

will only reset ’imagenum’. To reset both counters, they have to be specified
together:

H1 { counter-reset: section -1 imagenum 99 }

12.4.1 Nested counters and scope
Counters are "self-nesting", in the sense that resetting a counter in a descendant
element or pseudo-element automatically creates a new instance of the counter.
This is important for situations like lists in HTML, where elements can be nested
inside themselves to arbitrary depth. It would be impossible to define uniquely
named counters for each level.

Example(s):

Thus, the following suffices to number nested list items. The result is very similar
to that of setting ’display:list-item’ and ’list-style: inside’ on the LI element:

OL { counter-reset: item }
LI { display: block }
LI:before { content: counter(item) ". "; counter-increment: item }

The scope of a counter starts at the first element in the document that has a
’counter-reset’ for that counter and includes the element’s descendants and its
following siblings with their descendants. However, it does not include any elements
in the scope of a counter with the same name created by a ’counter-reset’ on a later
sibling of the element or by a later ’counter-reset’ on the same element.

If ’counter-increment’ or ’content’ on an element or pseudo-element refers to a
counter that is not in the scope of any ’counter-reset’, implementations should
behave as though a ’counter-reset’ had reset the counter to 0 on that element or
pseudo-element.

In the example above, an OL will create a counter, and all children of the OL will
refer to that counter.

30 Mar 2011 19:50212

Generated content, automatic numbering, and lists

If we denote by item[n] the n th instance of the "item" counter, and by "{" and "}" the
beginning and end of a scope, then the following HTML fragment will use the indi-
cated counters. (We assume the style sheet as given in the example above).

 <!-- {item[0]=0 -->
 item <!-- item[0]++ (=1) -->
 item <!-- item[0]++ (=2) -->
 <!-- {item[1]=0 -->
 item <!-- item[1]++ (=1) -->
 item <!-- item[1]++ (=2) -->
 item <!-- item[1]++ (=3) -->
 <!-- {item[2]=0 -->
 item <!-- item[2]++ (=1) -->
 <!-- -->
 <!-- }{item[2]=0 -->
 item <!-- item[2]++ (=1) -->
 <!-- -->
 <!-- } -->
 item <!-- item[1]++ (=4) -->
 <!-- -->
 <!-- } -->
 item <!-- item[0]++ (=3) -->
 item <!-- item[0]++ (=4) -->
 <!-- -->
 <!-- }{item[0]=0 -->
 item <!-- item[0]++ (=1) -->
 item <!-- item[0]++ (=2) -->
 <!-- -->

Example(s):

Another example, showing how scope works when counters are used on elements
that are not nested, is the following. This shows how the style rules given above to
number chapters and sections would apply to the markup given.

 <!--"chapter" counter|"section" counter -->
<body> <!-- {chapter=0 | -->
 <h1>About CSS</h1> <!-- chapter++ (=1) | {section=0 -->
 <h2>CSS 2</h2> <!-- | section++ (=1) -->
 <h2>CSS 2.1</h2> <!-- | section++ (=2) -->
 <h1>Style</h1> <!-- chapter++ (=2) |}{ section=0 -->
</body> <!-- | } -->

The ’counters()’ function generates a string composed of all of the counters with
the same name that are in scope, separated by a given string.

Example(s):

The following style sheet numbers nested list items as "1", "1.1", "1.1.1", etc.

OL { counter-reset: item }
LI { display: block }
LI:before { content: counters(item, ".") " "; counter-increment: item }

21330 Mar 2011 19:50

Generated content, automatic numbering, and lists

12.4.2 Counter styles
By default, counters are formatted with decimal numbers, but all the styles available
for the ’list-style-type’ property are also available for counters. The notation is:

counter(name)

for the default style, or:

counter(name, <’list-style-type’>)

All the styles are allowed, including ’disc’, ’circle’, ’square’, and ’none’.

Example(s):

H1:before { content: counter(chno, upper-latin) ". " }
H2:before { content: counter(section, upper-roman) " - " }
BLOCKQUOTE:after { content: " [" counter(bq, lower-greek) "]" }
DIV.note:before { content: counter(notecntr, disc) " " }
P:before { content: counter(p, none) }

12.4.3 Counters in elements with ’display: none’
An element that is not displayed (’display’ set to ’none’) cannot increment or reset a
counter.

Example(s):

For example, with the following style sheet, H2s with class "secret" do not incre-
ment ’count2’.

H2.secret {counter-increment: count2; display: none}

Pseudo-elements that are not generated also cannot increment or reset a counter.

Example(s):

For example, the following does not increment ’heading’:

h1::before {
 content: normal;
 counter-increment: heading;
}

Elements with ’visibility’ set to ’hidden’, on the other hand, do increment counters.

12.5 Lists
CSS 2.1 offers basic visual formatting of lists. An element with ’display: list-item’
generates a principal block box [p. 129] for the element’s content and, depending on
the values of ’list-style-type’ and ’list-style-image’, possibly also a marker box as a
visual indication that the element is a list item.

30 Mar 2011 19:50214

Generated content, automatic numbering, and lists

The list properties describe basic visual formatting of lists: they allow style sheets
to specify the marker type (image, glyph, or number), and the marker position with
respect to the principal box (outside it or within it before content). They do not allow
authors to specify distinct style (colors, fonts, alignment, etc.) for the list marker or
adjust its position with respect to the principal box; these may be derived from the
principal box.

The background properties [p. 234] apply to the principal box only; an ’outside’
marker box is transparent.

12.5.1 Lists: the ’list-style-type’, ’list-style-image’,
’list-style-position’, and ’list-style’ properties

’list-style-type’

Value: disc | circle | square | decimal | decimal-leading-zero |
lower-roman | upper-roman | lower-greek | lower-latin |
upper-latin | armenian | georgian | lower-alpha | upper-alpha |
none | inherit

Initial: disc
Applies to: elements with ’display: list-item’
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

This property specifies appearance of the list item marker if ’list-style-image’ has
the value ’none’ or if the image pointed to by the URI cannot be displayed. The value
’none’ specifies no marker, otherwise there are three types of marker: glyphs,
numbering systems, and alphabetic systems.

Glyphs are specified with disc , circle , and square . Their exact rendering depends
on the user agent.

Numbering systems are specified with:

decimal
Decimal numbers, beginning with 1.

decimal-leading-zero
Decimal numbers padded by initial zeros (e.g., 01, 02, 03, ..., 98, 99).

lower-roman
Lowercase roman numerals (i, ii, iii, iv, v, etc.).

upper-roman
Uppercase roman numerals (I, II, III, IV, V, etc.).

georgian
Traditional Georgian numbering (an, ban, gan, ..., he, tan, in, in-an, ...).

21530 Mar 2011 19:50

Generated content, automatic numbering, and lists

armenian
Traditional uppercase Armenian numbering.

Alphabetic systems are specified with:

lower-latin or lower-alpha
Lowercase ascii letters (a, b, c, ... z).

upper-latin or upper-alpha
Uppercase ascii letters (A, B, C, ... Z).

lower-greek
Lowercase classical Greek alpha, beta, gamma, ... (a, b, g, ...)

This specification does not define how alphabetic systems wrap at the end of the
alphabet. For instance, after 26 list items, ’lower-latin’ rendering is undefined. There-
fore, for long lists, we recommend that authors specify true numbers.

CSS 2.1 does not define how the list numbering is reset and incremented. This is
expected to be defined in the CSS List Module [CSS3LIST].

For example, the following HTML document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Lowercase latin numbering</TITLE>
 <STYLE type="text/css">
 ol { list-style-type: lower-roman }
 </STYLE>
 </HEAD>
 <BODY>

 This is the first item.
 This is the second item.
 This is the third item.

 </BODY>
</HTML>

might produce something like this:

 i This is the first item.
 ii This is the second item.
iii This is the third item.

The list marker alignment (here, right justified) depends on the user agent.

’list-style-image’

30 Mar 2011 19:50216

Generated content, automatic numbering, and lists

Value: <uri> | none | inherit
Initial: none
Applies to: elements with ’display: list-item’
Inherited: yes
Percentages: N/A
Media: visual
Computed value: absolute URI or ’none’

This property sets the image that will be used as the list item marker. When the
image is available, it will replace the marker set with the ’list-style-type’ marker.

The size of the image is calculated from the following rules:

1. If the image has a intrinsic width and height, the used width and height are the
intrinsic width and height.

2. Otherwise, if the image has an intrinsic ratio and either an intrinsic width or an
intrinsic height, the used width/height is the same as the provided intrinsic
width/height, and the used value of the missing dimension is calculated from the
provided dimension and the ratio.

3. Otherwise, if the image has an intrinsic ratio, the used width is 1em and the
used height is calculated from this width and the intrinsic ratio. If this would
produce a height larger than 1em, then the used height is instead set to 1em
and the used width is calculated from this height and the intrinsic ratio.

4. Otherwise, the image’s used width is its intrinsic width if it has one, or else 1em.
The image’s used height is its intrinsic height if it has one, or else 1em.

Example(s):

The following example sets the marker at the beginning of each list item to be the
image "ellipse.png".

ul { list-style-image: url("http://png.com/ellipse.png") }

’list-style-position’

Value: inside | outside | inherit
Initial: outside
Applies to: elements with ’display: list-item’
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

This property specifies the position of the marker box with respect to the principal
block box. Values have the following meanings:

21730 Mar 2011 19:50

Generated content, automatic numbering, and lists

outside
The marker box is outside the principal block box. The position of the list-item
marker adjacent to floats is undefined in CSS 2.1. CSS 2.1 does not specify the
precise location of the marker box or its position in the painting order, but does
require that for list items whose ’direction’ property is ’ltr’ the marker box be on
the left side of the content and for elements whose ’direction’ property is ’rtl’ the
marker box be on the right side of the content. The marker box is fixed with
respect to the principal block box’s border and does not scroll with the principal
block box’s content. In CSS 2.1, a UA may hide the marker if the element’s
’overflow’ is other than ’visible’. (This is expected to change in the future.) The
size or contents of the marker box may affect the height of the principal block
box and/or the height of its first line box, and in some cases may cause the
creation of a new line box. Note: This interaction may be more precisely defined
in a future level of CSS.

inside
The marker box is placed as the first inline box in the principal block box, before
the element’s content and before any :before pseudo-elements. CSS 2.1 does
not specify the precise location of the marker box.

For example:

<HTML>
 <HEAD>
 <TITLE>Comparison of inside/outside position</TITLE>
 <STYLE type="text/css">
 ul { list-style: outside }
 ul.compact { list-style: inside }
 </STYLE>
 </HEAD>
 <BODY>

 first list item comes first
 second list item comes second

 <UL class="compact">
 first list item comes first
 second list item comes second

 </BODY>
</HTML>

The above example may be formatted as:

30 Mar 2011 19:50218

Generated content, automatic numbering, and lists

first list item
comes first

second list item
comes second

 first list
item comes first

 second list
item comes second

The left sides of the
list item boxes are not
affected by marker placement

In right-to-left text, the markers would have been on the right side of the box.

’list-style’

Value: [<’list-style-type’> || <’list-style-position’> || <’list-style-image’>
] | inherit

Initial: see individual properties
Applies to: elements with ’display: list-item’
Inherited: yes
Percentages: N/A
Media: visual
Computed value: see individual properties

The ’list-style’ property is a shorthand notation for setting the three properties
’list-style-type’, ’list-style-image’, and ’list-style-position’ at the same place in the style
sheet.

Example(s):

ul { list-style: upper-roman inside } /* Any "ul" element */
ul > li > ul { list-style: circle outside } /* Any "ul" child
 of an "li" child
 of a "ul" element */

Although authors may specify ’list-style’ information directly on list item elements
(e.g., "li" in HTML), they should do so with care. The following rules look similar, but
the first declares a descendant selector [p. 80] and the second a (more specific)
child selector. [p. 81]

ol.alpha li { list-style: lower-alpha } /* Any "li" descendant of an "ol" */
ol.alpha > li { list-style: lower-alpha } /* Any "li" child of an "ol" */

21930 Mar 2011 19:50

Generated content, automatic numbering, and lists

Authors who use only the descendant selector [p. 80] may not achieve the results
they expect. Consider the following rules:

<HTML>
 <HEAD>
 <TITLE>WARNING: Unexpected results due to cascade</TITLE>
 <STYLE type="text/css">
 ol.alpha li { list-style: lower-alpha }
 ul li { list-style: disc }
 </STYLE>
 </HEAD>
 <BODY>
 <OL class="alpha">
 level 1

 level 2

 </BODY>
</HTML>

The desired rendering would have level 1 list items with ’lower-alpha’ labels and
level 2 items with ’disc’ labels. However, the cascading order [p. 103] will cause the
first style rule (which includes specific class information) to mask the second. The
following rules solve the problem by employing a child selector [p. 81] instead:

ol.alpha > li { list-style: lower-alpha }
ul li { list-style: disc }

Another solution would be to specify ’list-style’ information only on the list type
elements:

ol.alpha { list-style: lower-alpha }
ul { list-style: disc }

Inheritance will transfer the ’list-style’ values from OL and UL elements to LI
elements. This is the recommended way to specify list style information.

Example(s):

A URI value may be combined with any other value, as in:

ul { list-style: url("http://png.com/ellipse.png") disc }

In the example above, the ’disc’ will be used when the image is unavailable.

A value of ’none’ within the ’list-style’ property sets whichever of ’list-style-type’
and ’list-style-image’ are not otherwise specified to ’none’. However, if both are
otherwise specified, the declaration is in error (and thus ignored).

Example(s):

For example, a value of ’none’ for the ’list-style’ property sets both ’list-style-type’
and ’list-style-image’ to ’none’:

30 Mar 2011 19:50220

Generated content, automatic numbering, and lists

ul { list-style: none }

The result is that no list-item marker is displayed.

22130 Mar 2011 19:50

Generated content, automatic numbering, and lists

30 Mar 2011 19:50222

Generated content, automatic numbering, and lists

13 Paged media
Contents

........... 22313.1 Introduction to paged media

........... 22413.2 Page boxes: the @page rule

............. 22413.2.1 Page margins

.... 22613.2.2 Page selectors: selecting left, right, and first pages

......... 22713.2.3 Content outside the page box

............... 22713.3 Page breaks
13.3.1 Page break properties: ’page-break-before’, ’page-break-after’,

.............. 227’page-break-inside’

...... 22913.3.2 Breaks inside elements: ’orphans’, ’widows’

............ 22913.3.3 Allowed page breaks

............ 23013.3.4 Forced page breaks

............ 23013.3.5 "Best" page breaks

........... 23113.4 Cascading in the page context

13.1 Introduction to paged media
Paged media (e.g., paper, transparencies, pages that are displayed on computer
screens, etc.) differ from continuous media [p. 110] in that the content of the docu-
ment is split into one or more discrete pages. To handle pages, CSS 2.1 describes
how page margins are set on page boxes [p. 224] , and how page breaks [p. 227]
are declared.

The user agent is responsible for transferring the page boxes of a document onto
the real sheets where the document will ultimately be rendered (paper, transparency,
screen, etc.). There is often a 1-to-1 relationship between a page box and a sheet,
but this is not always the case. Transfer possibilities include:

Transferring one page box to one sheet (e.g., single-sided printing).
Transferring two page boxes to both sides of the same sheet (e.g., double-sided
printing).
Transferring N (small) page boxes to one sheet (called "n-up").
Transferring one (large) page box to N x M sheets (called "tiling").
Creating signatures. A signature is a group of pages printed on a sheet, which,
when folded and trimmed like a book, appear in their proper sequence.
Printing one document to several output trays.
Outputting to a file.

22330 Mar 2011 19:50

Paged media

13.2 Page boxes: the @page rule
The page box is a rectangular region that contains two areas:

The page area. The page area includes the boxes laid out on that page. The
edges of the first page area establish the rectangle that is the initial containing
block [p. 171] of the document. The canvas background is painted within and
covers the page area.
The margin area, which surrounds the page area. The page margin area is
transparent.

The size of a page box cannot be specified in CSS 2.1.

Authors can specify the margins of a page box inside an @page rule. An @page
rule consists of the keyword "@page", followed by an optional page selector,
followed by a block containing declarations and at-rules. Comments and white space
are allowed, but optional, between the @page token and the page selector and
between the page selector and the block. The declarations in an @page rule are
said to be in the page context.

Note: CSS level 2 has no at-rules that may appear inside @page, but such
at-rules are expected to be defined in level 3.

The page selector specifies for which pages the declarations apply. In CSS 2.1,
page selectors may designate the first page, all left pages, or all right pages

The rules for handling malformed declarations, malformed statements, and invalid
at-rules inside @page are as defined in section 4.2, [p. 60] with the following addi-
tion: when the UA expects the start of a declaration or at-rule (i.e., an IDENT token
or an ATKEYWORD token) but finds an unexpected token instead, that token is
considered to be the first token of a malformed declaration. I.e., the rule for
malformed declarations, rather than malformed statements is used to determine
which tokens to ignore in that case.

13.2.1 Page margins
In CSS 2.1, only the margin properties [p. 115] (’margin-top’, ’margin-right’,
’margin-bottom’, ’margin-left’, and ’margin’) apply within the page context [p. 224] .
The following diagram shows the relationships between the sheet, page box, and
page margins:

30 Mar 2011 19:50224

Paged media

Page box

Page area

Margin area

Sheet

Sheet

transfer

transfer

transfer

Sheet

Example(s):

Here is a simple example which sets all page margins on all pages:

@page {
 margin: 3cm;
}

The page context [p. 224] has no notion of fonts, so ’em’ and ’ex’ units are not
allowed. Percentage values on the margin properties are relative to the dimensions
of the page box [p. 224] ; for left and right margins, they refer to the width of the
page box while for top and bottom margins, they refer to the height of the page box.
All other units associated with the respective CSS 2.1 properties are allowed.

Due to negative margin values (either on the page box or on elements) or absolute
positioning [p. 151] content may end up outside the page box, but this content may
be "cut" — by the user agent, the printer, or ultimately, the paper cutter.

22530 Mar 2011 19:50

Paged media

13.2.2 Page selectors: selecting left, right, and first pages
When printing double-sided documents, the page boxes [p. 224] on left and right
pages may be different. This can be expressed through two CSS pseudo-classes
that may be used in page selectors.

All pages are automatically classified by user agents into either the :left or :right
pseudo-class. Whether the first page of a document is :left or :right depends on the
major writing direction of the root element. For example, the first page of a document
with a left-to-right major writing direction would be a :right page, and the first page of
a document with a right-to-left major writing direction would be a :left page. To
explicitly force a document to begin printing on a left or right page, authors can insert
a page break [p. 227] before the first generated box.

Example(s):

@page :left {
 margin-left: 4cm;
 margin-right: 3cm;
}

@page :right {
 margin-left: 3cm;
 margin-right: 4cm;
}

If different declarations have been given for left and right pages, the user agent
must honor these declarations even if the user agent does not transfer the page
boxes to left and right sheets (e.g., a printer that only prints single-sided).

Authors may also specify style for the first page of a document with the :first
pseudo-class:

Example(s):

@page { margin: 2cm } /* All margins set to 2cm */

@page :first {
 margin-top: 10cm /* Top margin on first page 10cm */
}

Properties specified in a :left or :right @page rule override those specified in an
@page rule that has no pseudo-class specified. Properties specified in a :first
@page rule override those specified in :left or :right @page rules.

If a forced break [p. 230] occurs before the first generated box, it is undefined in
CSS 2.1 whether ’:first’ applies to the blank page before the break or to the page
after it.

Margin declarations on left, right, and first pages may result in different page area
[p. 224] widths. To simplify implementations, user agents may use a single page
area width on left, right, and first pages. In this case, the page area width of the first
page should be used.

30 Mar 2011 19:50226

Paged media

13.2.3 Content outside the page box
When formatting content in the page model, some content may end up outside the
current page box. For example, an element whose ’white-space’ property has the
value ’pre’ may generate a box that is wider than the page box. As another example,
when boxes are positioned absolutely or relatively, they may end up in "inconve-
nient" locations. For example, images may be placed on the edge of the page box or
100,000 meters below the page box.

The exact formatting of such elements lies outside the scope of this specification.
However, we recommend that authors and user agents observe the following
general principles concerning content outside the page box:

Content should be allowed slightly beyond the page box to allow pages to
"bleed".
User agents should avoid generating a large number of empty page boxes to
honor the positioning of elements (e.g., you do not want to print 100 blank
pages).
Authors should not position elements in inconvenient locations just to avoid
rendering them.
User agents may handle boxes positioned outside the page box in several
ways, including discarding them or creating page boxes for them at the end of
the document.

13.3 Page breaks
This section describes page breaks in CSS 2.1. Five properties indicate where the
user agent may or should break pages, and on what page (left or right) the subse-
quent content should resume. Each page break ends layout in the current page box
[p. 224] and causes remaining pieces of the document tree [p. 45] to be laid out in a
new page box.

13.3.1 Page break properties: ’page-break-before’,
’page-break-after’, ’page-break-inside’

’page-break-before’

Value: auto | always | avoid | left | right | inherit
Initial: auto
Applies to: block-level elements (but see text)
Inherited: no
Percentages: N/A
Media: visual, paged
Computed value: as specified

22730 Mar 2011 19:50

Paged media

’page-break-after’

Value: auto | always | avoid | left | right | inherit
Initial: auto
Applies to: block-level elements (but see text)
Inherited: no
Percentages: N/A
Media: visual, paged
Computed value: as specified

’page-break-inside’

Value: avoid | auto | inherit
Initial: auto
Applies to: block-level elements (but see text)
Inherited: no
Percentages: N/A
Media: visual, paged
Computed value: as specified

Values for these properties have the following meanings:

auto
Neither force nor forbid a page break before (after, inside) the generated box.

always
Always force a page break before (after) the generated box.

avoid
Avoid a page break before (after, inside) the generated box.

left
Force one or two page breaks before (after) the generated box so that the next
page is formatted as a left page.

right
Force one or two page breaks before (after) the generated box so that the next
page is formatted as a right page.

A conforming user agent may interpret the values ’left’ and ’right’ as ’always’.

A potential page break location is typically under the influence of the parent
element’s ’page-break-inside’ property, the ’page-break-after’ property of the preced-
ing element, and the ’page-break-before’ property of the following element. When
these properties have values other than ’auto’, the values ’always’, ’left’, and ’right’
take precedence over ’avoid’.

User Agents must apply these properties to block-level elements in the normal
flow of the root element. User agents may also apply these properties to other
elements, e.g., ’table-row’ elements.

30 Mar 2011 19:50228

Paged media

When a page break splits a box, the box’s margins, borders, and padding have no
visual effect where the split occurs.

13.3.2 Breaks inside elements: ’orphans’, ’widows’

’orphans’

Value: <integer> | inherit
Initial: 2
Applies to: block container elements
Inherited: yes
Percentages: N/A
Media: visual, paged
Computed value: as specified

’widows’

Value: <integer> | inherit
Initial: 2
Applies to: block container elements
Inherited: yes
Percentages: N/A
Media: visual, paged
Computed value: as specified

The ’orphans’ property specifies the minimum number of lines in a block container
that must be left at the bottom of a page. The ’widows’ property specifies the
minimum number of lines in a block container that must be left at the top of a page.
Examples of how they are used to control page breaks are given below.

Only positive values are allowed.

For information about paragraph formatting, please consult the section on line
boxes [p. 138] .

13.3.3 Allowed page breaks
In the normal flow, page breaks can occur at the following places:

1. In the vertical margin between block-level boxes. When an unforced page break
occurs here, the used values [p. 100] of the relevant ’margin-top’ and
’margin-bottom’ properties are set to ’0’. When a forced page break occurs here,
the used value of the relevant ’margin-bottom’ property is set to ’0’; the relevant
’margin-top’ used value may either be set to ’0’ or retained.

2. Between line boxes [p. 138] inside a block container [p. 129] box.
3. Between the content edge of a block container box and the outer edges of its

child content (margin edges of block-level children or line box edges for

22930 Mar 2011 19:50

Paged media

inline-level children) if there is a (non-zero) gap between them.

Note: It is expected that CSS3 will specify that the relevant ’margin-top’ applies
(i.e., is not set to ’0’) after a forced page break.

These breaks are subject to the following rules:

Rule A: Breaking at (1) is allowed only if the ’page-break-after’ and
’page-break-before’ properties of all the elements generating boxes that meet at
this margin allow it, which is when at least one of them has the value ’always’,
’left’, or ’right’, or when all of them are ’auto’.
Rule B: However, if all of them are ’auto’ and a common ancestor of all the
elements has a ’page-break-inside’ value of ’avoid’, then breaking here is not
allowed.
Rule C: Breaking at (2) is allowed only if the number of line boxes [p. 138]
between the break and the start of the enclosing block box is the value of
’orphans’ or more, and the number of line boxes between the break and the end
of the box is the value of ’widows’ or more.
Rule D: In addition, breaking at (2) or (3) is allowed only if the
’page-break-inside’ property of the element and all its ancestors is ’auto’.

If the above does not provide enough break points to keep content from overflow-
ing the page boxes, then rules A, B and D are dropped in order to find additional
breakpoints.

If that still does not lead to sufficient break points, rule C is dropped as well, to find
still more break points.

13.3.4 Forced page breaks
A page break must occur at (1) if, among the ’page-break-after’ and
’page-break-before’ properties of all the elements generating boxes that meet at this
margin, there is at least one with the value ’always’, ’left’, or ’right’.

13.3.5 "Best" page breaks
CSS 2.1 does not define which of a set of allowed page breaks must be used;
CSS 2.1 does not forbid a user agent from breaking at every possible break point, or
not to break at all. But CSS 2.1 does recommend that user agents observe the
following heuristics (while recognizing that they are sometimes contradictory):

Break as few times as possible.
Make all pages that do not end with a forced break appear to have about the
same height.
Avoid breaking inside a replaced element.

30 Mar 2011 19:50230

Paged media

Example(s):

Suppose, for example, that the style sheet contains ’orphans: 4’, ’widows: 2’, and
there are 20 lines (line boxes [p. 138]) available at the bottom of the current page:

If a paragraph at the end of the current page contains 20 lines or fewer, it should
be placed on the current page.
If the paragraph contains 21 or 22 lines, the second part of the paragraph must
not violate the ’widows’ constraint, and so the second part must contain exactly
two lines
If the paragraph contains 23 lines or more, the first part should contain 20 lines
and the second part the remaining lines.

Now suppose that ’orphans’ is ’10’, ’widows’ is ’20’, and there are 8 lines available
at the bottom of the current page:

If a paragraph at the end of the current page contains 8 lines or fewer, it should
be placed on the current page.
If the paragraph contains 9 lines or more, it cannot be split (that would violate
the orphan constraint), so it should move as a block to the next page.

13.4 Cascading in the page context
Declarations in the page context [p. 224] obey the cascade [p. 99] just like normal
CSS declarations.

Example(s):

Consider the following example:

@page {
 margin-left: 3cm;
}

@page :left {
 margin-left: 4cm;
}

Due to the higher specificity [p. 103] of the pseudo-class selector, the left margin
on left pages will be ’4cm’ and all other pages (i.e., the right pages) will have a left
margin of ’3cm’.

23130 Mar 2011 19:50

Paged media

30 Mar 2011 19:50232

Paged media

14 Colors and Backgrounds
Contents

......... 23314.1 Foreground color: the ’color’ property

.............. 23314.2 The background
14.2.1 Background properties: ’background-color’, ’background-image’,
’background-repeat’, ’background-attachment’, ’background-position’, and

............... 234’background’

CSS properties allow authors to specify the foreground color and background of
an element. Backgrounds may be colors or images. Background properties allow
authors to position a background image, repeat it, and declare whether it should be
fixed with respect to the viewport [p. 128] or scrolled along with the document.

See the section on color units [p. 69] for the syntax of valid color values.

14.1 Foreground color: the ’color’ property
’color’

Value: <color> | inherit
Initial: depends on user agent
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

This property describes the foreground color of an element’s text content. There
are different ways to specify red:

Example(s):

em { color: red } /* predefined color name */
em { color: rgb(255,0,0) } /* RGB range 0-255 */

14.2 The background
Authors may specify the background of an element (i.e., its rendering surface) as
either a color or an image. In terms of the box model [p. 111] , "background" refers to
the background of the content [p. 111] , padding [p. 111] and border [p. 111] areas.
Border colors and styles are set with the border properties [p. 120] . Margins are
always transparent.

23330 Mar 2011 19:50

Colors and backgrounds

Background properties are not inherited, but the parent box’s background will
shine through by default because of the initial ’transparent’ value on ’back-
ground-color’.

The background of the root element becomes the background of the canvas and
covers the entire canvas [p. 40] , anchored (for ’background-position’) at the same
point as it would be if it was painted only for the root element itself. The root element
does not paint this background again.

For HTML documents, however, we recommend that authors specify the back-
ground for the BODY element rather than the HTML element. For documents whose
root element is an HTML "HTML" element or an XHTML "html" element that has
computed values of ’transparent’ for ’background-color’ and ’none’ for ’back-
ground-image’, user agents must instead use the computed value of the background
properties from that element’s first HTML "BODY" element or XHTML "body"
element child when painting backgrounds for the canvas, and must not paint a back-
ground for that child element. Such backgrounds must also be anchored at the same
point as they would be if they were painted only for the root element.

According to these rules, the canvas underlying the following HTML document will
have a "marble" background:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
 <TITLE>Setting the canvas background</TITLE>
 <STYLE type="text/css">
 BODY { background: url("http://example.com/marble.png") }
 </STYLE>
 <P>My background is marble.

Note that the rule for the BODY element will work even though the BODY tag has
been omitted in the HTML source since the HTML parser will infer the missing tag.

Backgrounds of elements that form a stacking context (see the ’z-index’ property)
are painted at the bottom of the element’s stacking context, below anything in that
stacking context.

14.2.1 Background properties: ’background-color’, ’back-
ground-image’, ’background-repeat’, ’background-attach-
ment’, ’background-position’, and ’background’

’background-color’

Value: <color> | transparent | inherit
Initial: transparent
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

30 Mar 2011 19:50234

Colors and backgrounds

This property sets the background color of an element, either a <color> value or
the keyword ’transparent’, to make the underlying colors shine through.

Example(s):

h1 { background-color: #F00 }

’background-image’

Value: <uri> | none | inherit
Initial: none
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: absolute URI or none

This property sets the background image of an element. When setting a back-
ground image, authors should also specify a background color that will be used
when the image is unavailable. When the image is available, it is rendered on top of
the background color. (Thus, the color is visible in the transparent parts of the
image).

Values for this property are either <uri>, to specify the image, or ’none’, when no
image is used.

Example(s):

body { background-image: url("marble.png") }
p { background-image: none }

Intrinsic dimensions expressed as percentages must be resolved relative to the
dimensions of the rectangle that establishes the coordinate system for the ’back-
ground-position’ property.

If the image has one of either an intrinsic width or an intrinsic height and an intrin-
sic aspect ratio, then the missing dimension is calculated from the given dimension
and the ratio.

If the image has one of either an intrinsic width or an intrinsic height and no intrin-
sic aspect ratio, then the missing dimension is assumed to be the size of the rectan-
gle that establishes the coordinate system for the ’background-position’ property.

If the image has no intrinsic dimensions and has an intrinsic ratio the dimensions
must be assumed to be the largest dimensions at that ratio such that neither dimen-
sion exceeds the dimensions of the rectangle that establishes the coordinate system
for the ’background-position’ property.

If the image has no intrinsic ratio either, then the dimensions must be assumed to
be the rectangle that establishes the coordinate system for the ’background-position’
property.

23530 Mar 2011 19:50

Colors and backgrounds

’background-repeat’

Value: repeat | repeat-x | repeat-y | no-repeat | inherit
Initial: repeat
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

If a background image is specified, this property specifies whether the image is
repeated (tiled), and how. All tiling covers the content [p. 111] , padding [p. 111] and
border [p. 111] areas of a box.

The tiling and positioning of the background-image on inline elements is undefined
in this specification. A future level of CSS may define the tiling and positioning of the
background-image on inline elements.

Values have the following meanings:

repeat
The image is repeated both horizontally and vertically.

repeat-x
The image is repeated horizontally only.

repeat-y
The image is repeated vertically only.

no-repeat
The image is not repeated: only one copy of the image is drawn.

Example(s):

body {
 background: white url("pendant.png");
 background-repeat: repeat-y;
 background-position: center;
}

30 Mar 2011 19:50236

Colors and backgrounds

body text body text body text body text body
text body text body text.

body text body text body text body text
body text

body text body text body text body text body
text body text body text body text body text
body text body text

body text body text body text body text body
text body text body text.

body text body text body text body text
body text

body text body text body text body text body
text body text body text body text body text
body text body text

body text body text body text body text body
text body text body text.

body text body text body text body text
body text

body text body text body text body text body
text body text body text body text body text
body text body text

center image

One copy of the background image is centered, and other copies are put above
and below it to make a vertical band behind the element.

’background-attachment’

Value: scroll | fixed | inherit
Initial: scroll
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

If a background image is specified, this property specifies whether it is fixed with
regard to the viewport [p. 128] (’fixed’) or scrolls along with the containing block
(’scroll’).

Note that there is only one viewport per view. If an element has a scrolling mecha-
nism (see ’overflow’), a ’fixed’ background does not move with the element, and a
’scroll’ background does not move with the scrolling mechanism.

23730 Mar 2011 19:50

Colors and backgrounds

Even if the image is fixed, it is still only visible when it is in the content, padding or
border area of the element. Thus, unless the image is tiled (’background-repeat:
repeat’), it may be invisible.

In paged media, where there is no viewport, a ’fixed’ background is fixed with
respect to the page box and is therefore replicated on every page.

Example(s):

This example creates an infinite vertical band that remains "glued" to the viewport
when the element is scrolled.

body {
 background: red url("pendant.png");
 background-repeat: repeat-y;
 background-attachment: fixed;
}

User agents that do not support ’fixed’ backgrounds (for example due to limitations
of the hardware platform) should ignore declarations with the keyword ’fixed’. For
example:

body {
 background: white url(paper.png) scroll; /* for all UAs */
 background: white url(ledger.png) fixed; /* for UAs that do fixed backgrounds */
}

See the section on conformance [p. 47] for details.

’background-position’

Value: [[<percentage> | <length> | left | center | right] [<percent-
age> | <length> | top | center | bottom]?] | [[left | center |
right] || [top | center | bottom]] | inherit

Initial: 0% 0%
Applies to: all elements
Inherited: no
Percentages: refer to the size of the box itself
Media: visual
Computed value: for <length> the absolute value, otherwise a percentage

If a background image has been specified, this property specifies its initial posi-
tion. If only one value is specified, the second value is assumed to be ’center’. If at
least one value is not a keyword, then the first value represents the horizontal posi-
tion and the second represents the vertical position. Negative <percentage> and
<length> values are allowed.

<percentage>
A percentage X aligns the point X% across (for horizontal) or down (for vertical)
the image with the point X% across (for horizontal) or down (for vertical) the
element’s padding box. For example, with a value pair of ’0% 0%’,the upper left
corner of the image is aligned with the upper left corner of the padding box. A

30 Mar 2011 19:50238

Colors and backgrounds

value pair of ’100% 100%’ places the lower right corner of the image in the
lower right corner of the padding box. With a value pair of ’14% 84%’, the point
14% across and 84% down the image is to be placed at the point 14% across
and 84% down the padding box.

<length>
A length L aligns the top left corner of the image a distance L to the right of (for
horizontal) or below (for vertical) the top left corner of the element’s padding
box. For example, with a value pair of ’2cm 1cm’, the upper left corner of the
image is placed 2cm to the right and 1cm below the upper left corner of the
padding box.

top
Equivalent to ’0%’ for the vertical position.

right
Equivalent to ’100%’ for the horizontal position.

bottom
Equivalent to ’100%’ for the vertical position.

left
Equivalent to ’0%’ for the horizontal position.

center
Equivalent to ’50%’ for the horizontal position if it is not otherwise given, or
’50%’ for the vertical position if it is.

However, the position is undefined in CSS 2.1 if the image has an intrinsic ratio,
but no intrinsic size.

Example(s):

body { background: url("banner.jpeg") right top } /* 100% 0% */
body { background: url("banner.jpeg") top center } /* 50% 0% */
body { background: url("banner.jpeg") center } /* 50% 50% */
body { background: url("banner.jpeg") bottom } /* 50% 100% */

The tiling and positioning of the background-image on inline elements is undefined
in this specification. A future level of CSS may define the tiling and positioning of the
background-image on inline elements.

If the background image is fixed within the viewport (see the ’background-attach-
ment’ property), the image is placed relative to the viewport instead of the element’s
padding box. For example,

Example(s):

body {
 background-image: url("logo.png");
 background-attachment: fixed;
 background-position: 100% 100%;
 background-repeat: no-repeat;
}

23930 Mar 2011 19:50

Colors and backgrounds

In the example above, the (single) image is placed in the lower-right corner of the
viewport.

’background’

Value: [<’background-color’> || <’background-image’> || <’back-
ground-repeat’> || <’background-attachment’> || <’back-
ground-position’>] | inherit

Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: allowed on ’background-position’
Media: visual
Computed value: see individual properties

The ’background’ property is a shorthand property for setting the individual back-
ground properties (i.e., ’background-color’, ’background-image’, ’background-repeat’,
’background-attachment’ and ’background-position’) at the same place in the style
sheet.

Given a valid declaration, the ’background’ property first sets all the individual
background properties to their initial values, then assigns explicit values given in the
declaration.

Example(s):

In the first rule of the following example, only a value for ’background-color’ has
been given and the other individual properties are set to their initial value. In the
second rule, all individual properties have been specified.

BODY { background: red }
P { background: url("chess.png") gray 50% repeat fixed }

30 Mar 2011 19:50240

Colors and backgrounds

15 Fonts
Contents

............... 24115.1 Introduction

............ 24115.2 Font matching algorithm

......... 24215.3 Font family: the ’font-family’ property

............ 24415.3.1 Generic font families

.............. 24415.3.1.1 serif

............. 24515.3.1.2 sans-serif

............. 24615.3.1.3 cursive

............. 24615.3.1.4 fantasy

............ 24615.3.1.5 monospace

.......... 24715.4 Font styling: the ’font-style’ property

......... 24715.5 Small-caps: the ’font-variant’ property

........ 24815.6 Font boldness: the ’font-weight’ property

.......... 25115.7 Font size: the ’font-size’ property

........ 25315.8 Shorthand font property: the ’font’ property

15.1 Introduction
Setting font properties will be among the most common uses of style sheets. Unfor-
tunately, there exists no well-defined and universally accepted taxonomy for classify-
ing fonts, and terms that apply to one font family may not be appropriate for others.
E.g., ’italic’ is commonly used to label slanted text, but slanted text may also be
labeled as being Oblique, Slanted, Incline, Cursive or Kursiv. Therefore it is not a
simple problem to map typical font selection properties to a specific font.

15.2 Font matching algorithm
Because there is no accepted, universal taxonomy of font properties, matching of
properties to font faces must be done carefully. The properties are matched in a
well-defined order to insure that the results of this matching process are as consis-
tent as possible across UAs (assuming that the same library of font faces is
presented to each of them).

1. The User Agent makes (or accesses) a database of relevant CSS 2.1 properties
of all the fonts of which the UA is aware. If there are two fonts with exactly the
same properties, the user agent selects one of them.

2. At a given element and for each character in that element, the UA assembles
the font properties applicable to that element. Using the complete set of proper-
ties, the UA uses the ’font-family’ property to choose a tentative font family. The
remaining properties are tested against the family according to the matching
criteria described with each property. If there are matches for all the remaining

24130 Mar 2011 19:50

Fonts

properties, then that is the matching font face for the given element or character.
3. If there is no matching font face within the ’font-family’ being processed by step

2, and if there is a next alternative ’font-family’ in the font set, then repeat step 2
with the next alternative ’font-family’.

4. If there is a matching font face, but it does not contain a glyph for the current
character, and if there is a next alternative ’font-family’ in the font sets, then
repeat step 2 with the next alternative ’font-family’.

5. If there is no font within the family selected in 2, then use a UA-dependent
default ’font-family’ and repeat step 2, using the best match that can be obtained
within the default font. If a particular character cannot be displayed using this
font, then the UA may use other means to determine a suitable font for that
character. The UA should map each character for which it has no suitable font
to a visible symbol chosen by the UA, preferably a "missing character" glyph
from one of the font faces available to the UA.

(The above algorithm can be optimized to avoid having to revisit the CSS 2.1
properties for each character.)

The per-property matching rules from (2) above are as follows:

1. ’font-style’ is tried first. ’Italic’ will be satisfied if there is either a face in the UA’s
font database labeled with the CSS keyword ’italic’ (preferred) or ’oblique’.
Otherwise the values must be matched exactly or font-style will fail.

2. ’font-variant’ is tried next. ’Small-caps’ matches (1) a font labeled as
’small-caps’, (2) a font in which the small caps are synthesized, or (3) a font
where all lowercase letters are replaced by upper case letters. A small-caps font
may be synthesized by electronically scaling uppercase letters from a normal
font. ’normal’ matches a font’s normal (non-small-caps) variant. A font cannot
fail to have a normal variant. A font that is only available as small-caps shall be
selectable as either a ’normal’ face or a ’small-caps’ face.

3. ’font-weight’ is matched next, it will never fail. (See ’font-weight’ below.)
4. ’font-size’ must be matched within a UA-dependent margin of tolerance. (Typi-

cally, sizes for scalable fonts are rounded to the nearest whole pixel, while the
tolerance for bitmapped fonts could be as large as 20%.) Further computations,
e.g., by ’em’ values in other properties, are based on the computed value of
’font-size’.

15.3 Font family: the ’font-family’ property
’font-family’

30 Mar 2011 19:50242

Fonts

Value: [[<family-name> | <generic-family>] [, <family-name>|
<generic-family>]*] | inherit

Initial: depends on user agent
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

The property value is a prioritized list of font family names and/or generic family
names. [p. 244] Unlike most other CSS properties, component values are separated
by a comma to indicate that they are alternatives:

body { font-family: Gill, Helvetica, sans-serif }

Although many fonts provide the "missing character" glyph, typically an open box,
as its name implies this should not be considered a match for characters that cannot
be found in the font. (It should, however, be considered a match for U+FFFD, the
"missing character" character’s code point).

There are two types of font family names:

<family-name>
The name of a font family of choice. In the last example, "Gill" and "Helvetica"
are font families.

<generic-family>
In the example above, the last value is a generic family name. The following
generic families are defined:

’serif’ (e.g., Times)
’sans-serif’ (e.g., Helvetica)
’cursive’ (e.g., Zapf-Chancery)
’fantasy’ (e.g., Western)
’monospace’ (e.g., Courier)

Style sheet designers are encouraged to offer a generic font family as a last
alternative. Generic font family names are keywords and must NOT be quoted.

Font family names must either be given quoted as strings, [p. 70] or unquoted as a
sequence of one or more identifiers. [p. 55] This means most punctuation characters
and digits at the start of each token must be escaped in unquoted font family names.

For example, the following declarations are invalid:

font-family: Red/Black, sans-serif;
font-family: "Lucida" Grande, sans-serif;
font-family: Ahem!, sans-serif;
font-family: test@foo, sans-serif;
font-family: #POUND, sans-serif;
font-family: Hawaii 5-0, sans-serif;

24330 Mar 2011 19:50

Fonts

If a sequence of identifiers is given as a font family name, the computed value is
the name converted to a string by joining all the identifiers in the sequence by single
spaces.

To avoid mistakes in escaping, it is recommended to quote font family names that
contain white space, digits, or punctuation characters other than hyphens:

body { font-family: "New Century Schoolbook", serif }

<BODY STYLE="font-family: ’21st Century’, fantasy">

Font family names that happen to be the same as a keyword value (’inherit’, ’serif’,
’sans-serif’, ’monospace’, ’fantasy’, and ’cursive’) must be quoted to prevent confu-
sion with the keywords with the same names. The keywords ’initial’ and ’default’ are
reserved for future use and must also be quoted when used as font names. UAs
must not consider these keywords as matching the ’<family-name>’ type.

15.3.1 Generic font families
Generic font families are a fallback mechanism, a means of preserving some of the
style sheet author’s intent in the worst case when none of the specified fonts can be
selected. For optimum typographic control, particular named fonts should be used in
style sheets.

All five generic font families are defined to exist in all CSS implementations (they
need not necessarily map to five distinct actual fonts). User agents should provide
reasonable default choices for the generic font families, which express the character-
istics of each family as well as possible within the limits allowed by the underlying
technology.

User agents are encouraged to allow users to select alternative choices for the
generic fonts.

15.3.1.1 serif

Glyphs of serif fonts, as the term is used in CSS, tend to have finishing strokes,
flared or tapering ends, or have actual serifed endings (including slab serifs). Serif
fonts are typically proportionately-spaced. They often display a greater variation
between thick and thin strokes than fonts from the ’sans-serif’ generic font family.
CSS uses the term ’serif’ to apply to a font for any script, although other names may
be more familiar for particular scripts, such as Mincho (Japanese), Sung or Song
(Chinese), Totum or Kodig (Korean). Any font that is so described may be used to
represent the generic ’serif’ family.

Examples of fonts that fit this description include:

30 Mar 2011 19:50244

Fonts

Latin fonts
Times New Roman, Bodoni, Garamond, Minion Web, ITC Stone
Serif, MS Georgia, Bitstream Cyberbit

Greek fonts Bitstream Cyberbit

Cyrillic fonts
Adobe Minion Cyrillic, Excelsior Cyrillic Upright, Monotype Albion
70, Bitstream Cyberbit, ER Bukinist

Hebrew
fonts

New Peninim, Raanana, Bitstream Cyberbit

Japanese
fonts

Ryumin Light-KL, Kyokasho ICA, Futo Min A101

Arabic fonts Bitstream Cyberbit

Cherokee
fonts

Lo Cicero Cherokee

15.3.1.2 sans-serif

Glyphs in sans-serif fonts, as the term is used in CSS, tend to have stroke endings
that are plain -- with little or no flaring, cross stroke, or other ornamentation.
Sans-serif fonts are typically proportionately-spaced. They often have little variation
between thick and thin strokes, compared to fonts from the ’serif’ family. CSS uses
the term ’sans-serif’ to apply to a font for any script, although other names may be
more familiar for particular scripts, such as Gothic (Japanese), Kai (Chinese), or
Pathang (Korean). Any font that is so described may be used to represent the
generic ’sans-serif’ family.

Examples of fonts that fit this description include:

Latin fonts
MS Trebuchet, ITC Avant Garde Gothic, MS Arial, MS Verdana,
Univers, Futura, ITC Stone Sans, Gill Sans, Akzidenz Grotesk,
Helvetica

Greek fonts
Attika, Typiko New Era, MS Tahoma, Monotype Gill Sans 571,
Helvetica Greek

Cyrillic fonts Helvetica Cyrillic, ER Univers, Lucida Sans Unicode, Bastion

Hebrew
fonts

Arial Hebrew, MS Tahoma

Japanese
fonts

Shin Go, Heisei Kaku Gothic W5

Arabic fonts MS Tahoma

24530 Mar 2011 19:50

Fonts

15.3.1.3 cursive

Glyphs in cursive fonts, as the term is used in CSS, generally have either joining
strokes or other cursive characteristics beyond those of italic typefaces. The glyphs
are partially or completely connected, and the result looks more like handwritten pen
or brush writing than printed letterwork. Fonts for some scripts, such as Arabic, are
almost always cursive. CSS uses the term ’cursive’ to apply to a font for any script,
although other names such as Chancery, Brush, Swing and Script are also used in
font names.

Examples of fonts that fit this description include:

Latin fonts
Caflisch Script, Adobe Poetica, Sanvito, Ex Ponto, Snell Round-
hand, Zapf-Chancery

Cyrillic
fonts

ER Architekt

Hebrew
fonts

Corsiva

Arabic
fonts

DecoType Naskh, Monotype Urdu 507

15.3.1.4 fantasy

Fantasy fonts, as used in CSS, are primarily decorative while still containing repre-
sentations of characters (as opposed to Pi or Picture fonts, which do not represent
characters). Examples include:

Latin fonts Alpha Geometrique, Critter, Cottonwood, FB Reactor, Studz

15.3.1.5 monospace

The sole criterion of a monospace font is that all glyphs have the same fixed width.
(This can make some scripts, such as Arabic, look most peculiar.) The effect is
similar to a manual typewriter, and is often used to set samples of computer code.

Examples of fonts which fit this description include:

Latin fonts Courier, MS Courier New, Prestige, Everson Mono

Greek Fonts MS Courier New, Everson Mono

Cyrillic fonts ER Kurier, Everson Mono

Japanese fonts Osaka Monospaced

Cherokee fonts Everson Mono

30 Mar 2011 19:50246

Fonts

15.4 Font styling: the ’font-style’ property
’font-style’

Value: normal | italic | oblique | inherit
Initial: normal
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

The ’font-style’ property selects between normal (sometimes referred to as
"roman" or "upright"), italic and oblique faces within a font family.

A value of ’normal’ selects a font that is classified as ’normal’ in the UA’s font
database, while ’oblique’ selects a font that is labeled ’oblique’. A value of ’italic’
selects a font that is labeled ’italic’, or, if that is not available, one labeled ’oblique’.

The font that is labeled ’oblique’ in the UA’s font database may actually have been
generated by electronically slanting a normal font.

Fonts with Oblique, Slanted or Incline in their names will typically be labeled
’oblique’ in the UA’s font database. Fonts with Italic, Cursive or Kursiv in their names
will typically be labeled ’italic’.

h1, h2, h3 { font-style: italic }
h1 em { font-style: normal }

In the example above, emphasized text within ’H1’ will appear in a normal face.

15.5 Small-caps: the ’font-variant’ property
’font-variant’

Value: normal | small-caps | inherit
Initial: normal
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

Another type of variation within a font family is the small-caps. In a small-caps font
the lower case letters look similar to the uppercase ones, but in a smaller size and
with slightly different proportions. The ’font-variant’ property selects that font.

24730 Mar 2011 19:50

Fonts

A value of ’normal’ selects a font that is not a small-caps font, ’small-caps’ selects
a small-caps font. It is acceptable (but not required) in CSS 2.1 if the small-caps font
is a created by taking a normal font and replacing the lower case letters by scaled
uppercase characters. As a last resort, uppercase letters will be used as replace-
ment for a small-caps font.

The following example results in an ’H3’ element in small-caps, with any empha-
sized words in oblique, and any emphasized words within an ’H3’ oblique
small-caps:

h3 { font-variant: small-caps }
em { font-style: oblique }

There may be other variants in the font family as well, such as fonts with old-style
numerals, small-caps numerals, condensed or expanded letters, etc. CSS 2.1 has
no properties that select those.

Note: insofar as this property causes text to be transformed to uppercase, the
same considerations as for ’text-transform’ apply.

15.6 Font boldness: the ’font-weight’ property
’font-weight’

Value: normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 |
600 | 700 | 800 | 900 | inherit

Initial: normal
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: see text

The ’font-weight’ property selects the weight of the font. The values ’100’ to ’900’
form an ordered sequence, where each number indicates a weight that is at least as
dark as its predecessor. The keyword ’normal’ is synonymous with ’400’, and ’bold’
is synonymous with ’700’. Keywords other than ’normal’ and ’bold’ have been shown
to be often confused with font names and a numerical scale was therefore chosen
for the 9-value list.

p { font-weight: normal } /* 400 */
h1 { font-weight: 700 } /* bold */

The ’bolder’ and ’lighter’ values select font weights that are relative to the weight
inherited from the parent:

strong { font-weight: bolder }

30 Mar 2011 19:50248

Fonts

Fonts (the font data) typically have one or more properties whose values are
names that are descriptive of the "weight" of a font. There is no accepted, universal
meaning to these weight names. Their primary role is to distinguish faces of differing
darkness within a single font family. Usage across font families is quite variant; for
example, a font that one might think of as being bold might be described as being
Regular, Roman, Book, Medium, Semi- or DemiBold, Bold, or Black, depending on
how black the "normal" face of the font is within the design. Because there is no
standard usage of names, the weight property values in CSS 2.1 are given on a
numerical scale in which the value ’400’ (or ’normal’) corresponds to the "normal"
text face for that family. The weight name associated with that face will typically be
Book, Regular, Roman, Normal or sometimes Medium.

The association of other weights within a family to the numerical weight values is
intended only to preserve the ordering of darkness within that family. However, the
following heuristics tell how the assignment is done in this case:

If the font family already uses a numerical scale with nine values (like e.g.,
OpenType does), the font weights should be mapped directly.
If there is both a face labeled Medium and one labeled Book, Regular, Roman
or Normal, then the Medium is normally assigned to the ’500’.
The font labeled "Bold" will often correspond to the weight value ’700’.

Once the font family’s weights are mapped onto the CSS scale, missing weights
are selected as follows:

If the desired weight is less than 400, weights below the desired weight are
checked in descending order followed by weights above the desired weight in
ascending order until a match is found.
If the desired weight is greater than 500, weights above desired weight are
checked in ascending order followed by weights below the desired weight in
descending order until a match is found.
If the desired weight is 400, 500 is checked first and then the rule for desired
weights less than 400 is used.
If the desired weight is 500, 400 is checked first and then the rule for desired
weights less than 400 is used.

The following two examples show typical mappings.

Assume four weights in the "Rattlesnake" family, from lightest to darkest: Regular,
Medium, Bold, Heavy.

24930 Mar 2011 19:50

Fonts

First example of font-weight mapping

Available faces Assignments Filling the holes

"Rattlesnake Regular" 400 100, 200, 300

"Rattlesnake Medium" 500

"Rattlesnake Bold" 700 600

"Rattlesnake Heavy" 800 900

Assume six weights in the "Ice Prawn" family: Book, Medium, Bold, Heavy, Black,
ExtraBlack. Note that in this instance the user agent has decided not to assign a
numeric value to "Ice Prawn ExtraBlack".

Second example of font-weight mapping

Available faces Assignments Filling the holes

"Ice Prawn Book" 400 100, 200, 300

"Ice Prawn Medium" 500

"Ice Prawn Bold" 700 600

"Ice Prawn Heavy" 800

"Ice Prawn Black" 900

"Ice Prawn ExtraBlack" (none)

Values of ’bolder’ and ’lighter’ indicate values relative to the weight of the parent
element. Based on the inherited weight value, the weight used is calculated using
the chart below. Child elements inherit the calculated weight, not a value of ’bolder’
or ’lighter’.

30 Mar 2011 19:50250

Fonts

The meaning of ’bolder’ and ’lighter’

Inherited value bolder lighter

100 400 100

200 400 100

300 400 100

400 700 100

500 700 100

600 900 400

700 900 400

800 900 700

900 900 700

The table above is equivalent to selecting the next relative bolder or lighter face,
given a font family containing normal and bold faces along with a thin and a heavy
face. Authors who desire finer control over the exact weight values used for a given
element should use numerical values instead of relative weights.

There is no guarantee that there will be a darker face for each of the ’font-weight’
values; for example, some fonts may have only a normal and a bold face, while
others may have eight face weights. There is no guarantee on how a UA will map
font faces within a family to weight values. The only guarantee is that a face of a
given value will be no less dark than the faces of lighter values.

15.7 Font size: the ’font-size’ property
’font-size’

Value: <absolute-size> | <relative-size> | <length> | <percentage> |
inherit

Initial: medium
Applies to: all elements
Inherited: yes
Percentages: refer to inherited font size
Media: visual
Computed value: absolute length

The font size corresponds to the em square, a concept used in typography. Note
that certain glyphs may bleed outside their em squares. Values have the following
meanings:

25130 Mar 2011 19:50

Fonts

<absolute-size>
An <absolute-size> keyword is an index to a table of font sizes computed and
kept by the UA. Possible values are:

[xx-small | x-small | small | medium | large | x-large | xx-large]

The following table provides user agent guidelines for the absolute-size
mapping to HTML heading and absolute font-sizes. The ’medium’ value is the
user’s preferred font size and is used as the reference middle value.

CSS abso-
lute-size
values

xx-small x-small small medium large x-large xx-large

HTML font
sizes

1 2 3 4 5 6 7

Implementors should build a table of scaling factors for absolute-size
keywords relative to the ’medium’ font size and the particular device and its
characteristics (e.g., the resolution of the device).

Different media may need different scaling factors. Also, the UA should take
the quality and availability of fonts into account when computing the table. The
table may be different from one font family to another.

Note 1. To preserve readability, a UA applying these guidelines should never-
theless avoid creating font-size resulting in less than 9 pixels per EM unit on a
computer display.

Note 2. In CSS1, the suggested scaling factor between adjacent indexes was
1.5, which user experience proved to be too large. In CSS2, the suggested
scaling factor for a computer screen between adjacent indexes was 1.2, which
still created issues for the small sizes. Implementation experience has demon-
strated that a fixed ratio between adjacent absolute-size keywords is problem-
atic, and this specification does not recommend such a fixed ratio.

<relative-size>
A <relative-size> keyword is interpreted relative to the table of font sizes and the
font size of the parent element. Possible values are: [larger | smaller]. For
example, if the parent element has a font size of ’medium’, a value of ’larger’ will
make the font size of the current element be ’large’. If the parent element’s size
is not close to a table entry, the UA is free to interpolate between table entries or
round off to the closest one. The UA may have to extrapolate table values if the
numerical value goes beyond the keywords.

Length and percentage values should not take the font size table into account
when calculating the font size of the element.

30 Mar 2011 19:50252

Fonts

Negative values are not allowed.

On all other properties, ’em’ and ’ex’ length values refer to the computed font size
of the current element. On the ’font-size’ property, these length units refer to the
computed font size of the parent element.

Note that an application may reinterpret an explicit size, depending on the context.
E.g., inside a VR scene a font may get a different size because of perspective distor-
tion.

Examples:

p { font-size: 16px; }
@media print {
 p { font-size: 12pt; }
}
blockquote { font-size: larger }
em { font-size: 150% }
em { font-size: 1.5em }

15.8 Shorthand font property: the ’font’ property
’font’

Value: [[<’font-style’> || <’font-variant’> || <’font-weight’>]?
<’font-size’> [/ <’line-height’>]? <’font-family’>] | caption |
icon | menu | message-box | small-caption | status-bar |
inherit

Initial: see individual properties
Applies to: all elements
Inherited: yes
Percentages: see individual properties
Media: visual
Computed value: see individual properties

The ’font’ property is, except as described below [p. 254] , a shorthand property for
setting ’font-style’, ’font-variant’, ’font-weight’, ’font-size’, ’line-height’ and ’font-family’
at the same place in the style sheet. The syntax of this property is based on a tradi-
tional typographical shorthand notation to set multiple properties related to fonts.

All font-related properties are first reset to their initial values, including those listed
in the preceding paragraph. Then, those properties that are given explicit values in
the ’font’ shorthand are set to those values. For a definition of allowed and initial
values, see the previously defined properties.

p { font: 12px/14px sans-serif }
p { font: 80% sans-serif }
p { font: x-large/110% "New Century Schoolbook", serif }
p { font: bold italic large Palatino, serif }
p { font: normal small-caps 120%/120% fantasy }

25330 Mar 2011 19:50

Fonts

In the second rule, the font size percentage value (’80%’) refers to the font size of
the parent element. In the third rule, the line height percentage refers to the font size
of the element itself.

In the first three rules above, the ’font-style’, ’font-variant’ and ’font-weight’ are not
explicitly mentioned, which means they are all three set to their initial value
(’normal’). The fourth rule sets the ’font-weight’ to ’bold’, the ’font-style’ to ’italic’ and
implicitly sets ’font-variant’ to ’normal’.

The fifth rule sets the ’font-variant’ (’small-caps’), the ’font-size’ (120% of the
parent’s font), the ’line-height’ (120% times the font size) and the ’font-family’
(’fantasy’). It follows that the keyword ’normal’ applies to the two remaining proper-
ties: ’font-style’ and ’font-weight’.

The following values refer to system fonts:

caption
The font used for captioned controls (e.g., buttons, drop-downs, etc.).

icon
The font used to label icons.

menu
The font used in menus (e.g., dropdown menus and menu lists).

message-box
The font used in dialog boxes.

small-caption
The font used for labeling small controls.

status-bar
The font used in window status bars.

System fonts may only be set as a whole; that is, the font family, size, weight,
style, etc. are all set at the same time. These values may then be altered individually
if desired. If no font with the indicated characteristics exists on a given platform, the
user agent should either intelligently substitute (e.g., a smaller version of the
’caption’ font might be used for the ’small-caption’ font), or substitute a user agent
default font. As for regular fonts, if, for a system font, any of the individual properties
are not part of the operating system’s available user preferences, those properties
should be set to their initial values.

That is why this property is "almost" a shorthand property: system fonts can only
be specified with this property, not with ’font-family’ itself, so ’font’ allows authors to
do more than the sum of its subproperties. However, the individual properties such
as ’font-weight’ are still given values taken from the system font, which can be inde-
pendently varied.

Example(s):

button { font: 300 italic 1.3em/1.7em "FB Armada", sans-serif }
button p { font: menu }
button p em { font-weight: bolder }

30 Mar 2011 19:50254

Fonts

If the font used for dropdown menus on a particular system happened to be, for
example, 9-point Charcoal, with a weight of 600, then P elements that were descen-
dants of BUTTON would be displayed as if this rule were in effect:

button p { font: 600 9px Charcoal }

Because the ’font’ shorthand property resets any property not explicitly given a
value to its initial value, this has the same effect as this declaration:

button p {
 font-family: Charcoal;
 font-style: normal;
 font-variant: normal;
 font-weight: 600;
 font-size: 9px;
 line-height: normal;
}

25530 Mar 2011 19:50

Fonts

30 Mar 2011 19:50256

Fonts

16 Text
Contents

......... 25716.1 Indentation: the ’text-indent’ property

.......... 25816.2 Alignment: the ’text-align’ property

................ 25916.3 Decoration
16.3.1 Underlining, overlining, striking, and blinking: the ’text-decoration’

................ 259property
26216.4 Letter and word spacing: the ’letter-spacing’ and ’word-spacing’ properties

........ 26316.5 Capitalization: the ’text-transform’ property

......... 26416.6 White space: the ’white-space’ property

........ 26516.6.1 The ’white-space’ processing model

... 26616.6.2 Example of bidirectionality with white space collapsing

....... 26716.6.3 Control and combining characters’ details

The properties defined in the following sections affect the visual presentation of
characters, spaces, words, and paragraphs.

16.1 Indentation: the ’text-indent’ property
’text-indent’

Value: <length> | <percentage> | inherit
Initial: 0
Applies to: block containers
Inherited: yes
Percentages: refer to width of containing block
Media: visual
Computed value: the percentage as specified or the absolute length

This property specifies the indentation of the first line of text in a block container.
More precisely, it specifies the indentation of the first box that flows into the block’s
first line box [p. 138] . The box is indented with respect to the left (or right, for
right-to-left layout) edge of the line box. User agents must render this indentation as
blank space.

’Text-indent’ only affects a line if it is the first formatted line [p. 92] of an element.
For example, the first line of an anonymous block box is only affected if it is the first
child of its parent element.

Values have the following meanings:

25730 Mar 2011 19:50

Text

<length>
The indentation is a fixed length.

<percentage>
The indentation is a percentage of the containing block width.

The value of ’text-indent’ may be negative, but there may be implementa-
tion-specific limits. If the value of ’text-indent’ is either negative or exceeds the width
of the block, that first box, described above, can overflow the block. The value of
’overflow’ will affect whether such text that overflows the block is visible.

Example(s):

The following example causes a ’3em’ text indent.

p { text-indent: 3em }

Note: Since the ’text-indent’ property inherits, when specified on a block element,
it will affect descendant inline-block elements. For this reason, it is often wise to
specify ’text-indent: 0 ’ on elements that are specified
’display:inline-block ’.

16.2 Alignment: the ’text-align’ property
’text-align’

Value: left | right | center | justify | inherit
Initial: a nameless value that acts as ’left’ if ’direction’ is ’ltr’, ’right’ if

’direction’ is ’rtl’
Applies to: block containers
Inherited: yes
Percentages: N/A
Media: visual
Computed value: the initial value or as specified

This property describes how inline-level content of a block container is aligned.
Values have the following meanings:

left, right, center, justify
Left, right, center, and justify text, respectively, as described in the section on
inline formatting [p. 138] .

A block of text is a stack of line boxes [p. 138] . In the case of ’left’, ’right’ and
’center’, this property specifies how the inline-level boxes within each line box align
with respect to the line box’s left and right sides; alignment is not with respect to the
viewport [p. 128] . In the case of ’justify’, this property specifies that the inline-level
boxes are to be made flush with both sides of the line box if possible, by expanding
or contracting the contents of inline boxes, else aligned as for the initial value. (See
also ’letter-spacing’ and ’word-spacing’.)

30 Mar 2011 19:50258

Text

If an element has a computed value for ’white-space’ of ’pre’ or ’pre-wrap’, then
neither the glyphs of that element’s text content nor its white space may be altered
for the purpose of justification.

Note: CSS may add a way to justify text with ’white-space: pre-wrap’ in the future.

Example(s):

In this example, note that since ’text-align’ is inherited, all block-level elements
inside DIV elements with a class name of ’important’ will have their inline content
centered.

div.important { text-align: center }

Note. The actual justification algorithm used depends on the user-agent and the
language/script of the text.

Conforming user agents [p. 47] may interpret the value ’justify’ as ’left’ or ’right’,
depending on whether the element’s default writing direction is left-to-right or
right-to-left, respectively.

16.3 Decoration

16.3.1 Underlining, overlining, striking, and blinking: the
’text-decoration’ property

’text-decoration’

Value: none | [underline || overline || line-through || blink] | inherit
Initial: none
Applies to: all elements
Inherited: no (see prose)
Percentages: N/A
Media: visual
Computed value: as specified

This property describes decorations that are added to the text of an element using
the element’s color. When specified on or propagated to an inline element, it affects
all the boxes generated by that element, and is further propagated to any in-flow
block-level boxes that split the inline (see section 9.2.1.1 [p. 129]). But, in CSS 2.1,
it is undefined whether the decoration propagates into block-level tables. For block
containers that establish an inline formatting context, [p. 138] the decorations are
propagated to an anonymous inline element that wraps all the in-flow inline-level
children of the block container. For all other elements it is propagated to any in-flow
children. Note that text decorations are not propagated to floating and absolutely
positioned descendants, nor to the contents of atomic inline-level descendants such
as inline blocks and inline tables.

25930 Mar 2011 19:50

Text

Underlines, overlines, and line-throughs are applied only to text (including white
space, letter spacing, and word spacing): margins, borders, and padding are
skipped. User agents must not render these text decorations on content that is not
text. For example, images and inline blocks must not be underlined.

Note. If an element E has both ’visibility: hidden’ and ’text-decoration: underline’,
the underline is invisible (although any decoration of E’s parent is visible.) However,
CSS 2.1 does not specify if the underline is visible or invisible in E’s children:

 underlined or not?

This is expected to be specified in level 3 of CSS.

The ’text-decoration’ property on descendant elements cannot have any effect on
the decoration of the ancestor. In determining the position of and thickness of text
decoration lines, user agents may consider the font sizes of and dominant baselines
of descendants, but must use the same baseline and thickness on each line. Rela-
tively positioning a descendant moves all text decorations affecting it along with the
descendant’s text; it does not affect calculation of the decoration’s initial position on
that line.

Values have the following meanings:

none
Produces no text decoration.

underline
Each line of text is underlined.

overline
Each line of text has a line above it.

line-through
Each line of text has a line through the middle.

blink
Text blinks (alternates between visible and invisible). Conforming user agents
[p. 47] may simply not blink the text. Note that not blinking the text is one tech-
nique to satisfy checkpoint 3.3 of WAI-UAAG [p. ??] .

The color(s) required for the text decoration must be derived from the ’color’ prop-
erty value of the element on which ’text-decoration’ is set. The color of decorations
must remain the same even if descendant elements have different ’color’ values.

Some user agents have implemented text-decoration by propagating the decora-
tion to the descendant elements as opposed to preserving a constant thickness and
line position as described above. This was arguably allowed by the looser wording in
CSS2. SVG1, CSS1-only, and CSS2-only user agents may implement the older
model and still claim conformance to this part of CSS 2.1. (This does not apply to
UAs developed after this specification was released.)

30 Mar 2011 19:50260

Text

Example(s):

In the following example for HTML, the text content of all A elements acting as
hyperlinks (whether visited or not) will be underlined:

a:visited,a:link { text-decoration: underline }

Example(s):

In the following style sheet and document fragment:

 blockquote { text-decoration: underline; color: blue; }
 em { display: block; }
 cite { color: fuchsia; }

 <blockquote>
 <p>

 Help, help!
 I am under a hat!
 <cite> —GwieF </cite>

 </p>
 </blockquote>

...the underlining for the blockquote element is propagated to an anonymous inline
element that surrounds the span element, causing the text "Help, help!" to be blue,
with the blue underlining from the anonymous inline underneath it, the color being
taken from the blockquote element. The text in the em block is also
underlined, as it is in an in-flow block to which the underline is propagated. The final
line of text is fuchsia, but the underline underneath it is still the blue underline from
the anonymous inline element.

This diagram shows the boxes involved in the example above. The rounded aqua
line represents the anonymous inline element wrapping the inline contents of the
paragraph element, the rounded blue line represents the span element, and the
orange lines represent the blocks.

26130 Mar 2011 19:50

Text

16.4 Letter and word spacing: the ’letter-spacing’ and
’word-spacing’ properties
’letter-spacing’

Value: normal | <length> | inherit
Initial: normal
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: ’normal’ or absolute length

This property specifies spacing behavior between text characters. Values have the
following meanings:

normal
The spacing is the normal spacing for the current font. This value allows the
user agent to alter the space between characters in order to justify text.

<length>
This value indicates inter-character space in addition to the default space
between characters. Values may be negative, but there may be implementa-
tion-specific limits. User agents may not further increase or decrease the
inter-character space in order to justify text.

Character spacing algorithms are user agent-dependent.

Example(s):

In this example, the space between characters in BLOCKQUOTE elements is
increased by ’0.1em’.

blockquote { letter-spacing: 0.1em }

In the following example, the user agent is not permitted to alter inter-character
space:

blockquote { letter-spacing: 0cm } /* Same as ’0’ */

When the resultant space between two characters is not the same as the default
space, user agents should not use ligatures.

’word-spacing’

30 Mar 2011 19:50262

Text

Value: normal | <length> | inherit
Initial: normal
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: for ’normal’ the value ’0’; otherwise the absolute length

This property specifies spacing behavior between words. Values have the follow-
ing meanings:

normal
The normal inter-word space, as defined by the current font and/or the UA.

<length>
This value indicates inter-word space in addition to the default space between
words. Values may be negative, but there may be implementation-specific limits.

Word spacing algorithms are user agent-dependent. Word spacing is also influ-
enced by justification (see the ’text-align’ property). Word spacing affects each space
(U+0020) and non-breaking space (U+00A0), left in the text after the white space
processing rules have been applied. The effect of the property on other word-sepa-
rator characters is undefined. However general punctuation, characters with zero
advance width (such as the zero with space U+200B) and fixed-width spaces (such
as U+3000 and U+2000 through U+200A) are not affected.

Example(s):

In this example, the word-spacing between each word in H1 elements is increased
by ’1em’.

h1 { word-spacing: 1em }

16.5 Capitalization: the ’text-transform’ property
’text-transform’

Value: capitalize | uppercase | lowercase | none | inherit
Initial: none
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

This property controls capitalization effects of an element’s text. Values have the
following meanings:

26330 Mar 2011 19:50

Text

capitalize
Puts the first character of each word in uppercase; other characters are unaf-
fected.

uppercase
Puts all characters of each word in uppercase.

lowercase
Puts all characters of each word in lowercase.

none
No capitalization effects.

The actual transformation in each case is written language dependent. See
BCP 47 ([BCP47]) for ways to find the language of an element.

Only characters belonging to "bicameral scripts" [UNICODE] are affected.

Example(s):

In this example, all text in an H1 element is transformed to uppercase text.

h1 { text-transform: uppercase }

16.6 White space: the ’white-space’ property
’white-space’

Value: normal | pre | nowrap | pre-wrap | pre-line | inherit
Initial: normal
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

This property declares how white space inside the element is handled. Values
have the following meanings:

normal
This value directs user agents to collapse sequences of white space, and break
lines as necessary to fill line boxes.

pre
This value prevents user agents from collapsing sequences of white space.
Lines are only broken at preserved newline characters.

nowrap
This value collapses white space as for ’normal’, but suppresses line breaks
within text.

pre-wrap
This value prevents user agents from collapsing sequences of white space.
Lines are broken at preserved newline characters, and as necessary to fill line

30 Mar 2011 19:50264

Text

boxes.
pre-line

This value directs user agents to collapse sequences of white space. Lines are
broken at preserved newline characters, and as necessary to fill line boxes.

Newlines in the source can be represented by a carriage return (U+000D), a line-
feed (U+000A) or both (U+000D U+000A) or by some other mechanism that identi-
fies the beginning and end of document segments, such as the SGML
RECORD-START and RECORD-END tokens. The CSS ’white-space’ processing
model assumes all newlines have been normalized to line feeds. UAs that recognize
other newline representations must apply the white space processing rules as if this
normalization has taken place. If no newline rules are specified for the document
language, each carriage return (U+000D) and CRLF sequence (U+000D U+000A) in
the document text is treated as single line feed character. This default normalization
rule also applies to generated content.

UAs must recognize line feeds (U+000A) as newline characters. UAs may addi-
tionally treat other forced break characters as newline characters per UAX14.

Example(s):

The following examples show what white space [p. 53] behavior is expected from
the PRE and P elements and the "nowrap" attribute in HTML.

pre { white-space: pre }
p { white-space: normal }
td[nowrap] { white-space: nowrap }

In addition, the effect of an HTML PRE element with the non-standard "wrap"
attribute is demonstrated by the following example:

pre[wrap] { white-space: pre-wrap }

16.6.1 The ’white-space’ processing model
For each inline element (including anonymous inline elements), the following steps
are performed, treating bidi formatting characters as if they were not there:

1. Each tab (U+0009), carriage return (U+000D), or space (U+0020) character
surrounding a linefeed (U+000A) character is removed if ’white-space’ is set to
’normal’, ’nowrap’, or ’pre-line’.

2. If ’white-space’ is set to ’pre’ or ’pre-wrap’, any sequence of spaces (U+0020)
unbroken by an element boundary is treated as a sequence of non-breaking
spaces. However, for ’pre-wrap’, a line breaking opportunity exists at the end of
the sequence.

3. If ’white-space’ is set to ’normal’ or ’nowrap’, linefeed characters are trans-
formed for rendering purpose into one of the following characters: a space char-
acter, a zero width space character (U+200B), or no character (i.e., not
rendered), according to UA-specific algorithms based on the content script.

4. If ’white-space’ is set to ’normal’, ’nowrap’, or ’pre-line’,

26530 Mar 2011 19:50

Text

1. every tab (U+0009) is converted to a space (U+0020)
2. any space (U+0020) following another space (U+0020) — even a space

before the inline, if that space also has ’white-space’ set to ’normal’,
’nowrap’ or ’pre-line’ — is removed.

Then, the block container’s inlines are laid out. Inlines are laid out, taking bidi
reordering into account, and wrapping as specified by the ’white-space’ property.
When wrapping, line breaking opportunities are determined based on the text prior to
the white space collapsing steps above.

As each line is laid out,

1. If a space (U+0020) at the beginning of a line has ’white-space’ set to ’normal’,
’nowrap’, or ’pre-line’, it is removed.

2. All tabs (U+0009) are rendered as a horizontal shift that lines up the start edge
of the next glyph with the next tab stop. Tab stops occur at points that are multi-
ples of 8 times the width of a space (U+0020) rendered in the block’s font from
the block’s starting content edge.

3. If a space (U+0020) at the end of a line has ’white-space’ set to ’normal’,
’nowrap’, or ’pre-line’, it is also removed.

4. If spaces (U+0020) or tabs (U+0009) at the end of a line have ’white-space’ set
to ’pre-wrap’, UAs may visually collapse them.

Floated and absolutely-positioned elements do not introduce a line breaking
opportunity.

Note. CSS 2.1 does not fully define where line breaking opportunities occur.

16.6.2 Example of bidirectionality with white space collapsing
Given the following markup fragment, taking special note of spaces (with varied
backgrounds and borders for emphasis and identification):

 <ltr>A <rtl> B </rtl> C</ltr>

...where the <ltr> element represents a left-to-right embedding and the <rtl>
element represents a right-to-left embedding, and assuming that the ’white-space’
property is set to ’normal’, the above processing model would result in the following:

The space before the B () would collapse with the space after the A ().
The space before the C () would collapse with the space after the B ().

This would leave two spaces, one after the A in the left-to-right embedding level,
and one after the B in the right-to-left embedding level. This is then rendered accord-
ing to the Unicode bidirectional algorithm, with the end result being:

30 Mar 2011 19:50266

Text

 A BC

Note that there are two spaces between A and B, and none between B and C.
This can sometimes be avoided by using the natural bidirectionality of characters
instead of explicit embedding levels. Also, it is good to avoid spaces immediately
inside start and end tags, as these tend to do weird things when dealing with white
space collapsing.

16.6.3 Control and combining characters’ details
Control characters other than U+0009 (tab), U+000A (line feed), U+0020 (space),
and U+202x (bidi formatting characters) are treated as characters to render in the
same way as any normal character.

Combining characters should be treated as part of the character with which they
are supposed to combine. For example, :first-letter styles the entire glyph if you have
content like "ö "; it does not just match the base character.

26730 Mar 2011 19:50

Text

30 Mar 2011 19:50268

Text

17 Tables
Contents

............. 26917.1 Introduction to tables

............. 27117.2 The CSS table model

........... 27317.2.1 Anonymous table objects

................ 27517.3 Columns

......... 27617.4 Tables in the visual formatting model

......... 27717.4.1 Caption position and alignment

........... 27817.5 Visual layout of table contents

......... 27917.5.1 Table layers and transparency

..... 28217.5.2 Table width algorithms: the ’table-layout’ property

........... 28317.5.2.1 Fixed table layout

.......... 28417.5.2.2 Automatic table layout

........... 28517.5.3 Table height algorithms

......... 28717.5.4 Horizontal alignment in a column

......... 28717.5.5 Dynamic row and column effects

................ 28817.6 Borders

......... 28817.6.1 The separated borders model
17.6.1.1 Borders and Backgrounds around empty cells: the

............ 290’empty-cells’ property

.......... 29117.6.2 The collapsing border model

......... 29217.6.2.1 Border conflict resolution

............. 29417.6.3 Border styles

17.1 Introduction to tables
This chapter defines the processing model for tables in CSS. Part of this processing
model is the layout. For the layout, this chapter introduces two algorithms; the first,
the fixed table layout algorithm, is well-defined, but the second, the automatic table
layout algorithm, is not fully defined by this specification.

For the automatic table layout algorithm, some widely deployed implementations
have achieved relatively close interoperability.

Table layout can be used to represent tabular relationships between data. Authors
specify these relationships in the document language [p. 44] and can specify their
presentation using CSS 2.1.

In a visual medium, CSS tables can also be used to achieve specific layouts. In
this case, authors should not use table-related elements in the document language,
but should apply the CSS to the relevant structural elements to achieve the desired
layout.

26930 Mar 2011 19:50

Tables

Authors may specify the visual formatting of a table as a rectangular grid of cells.
Rows and columns of cells may be organized into row groups and column groups.
Rows, columns, row groups, column groups, and cells may have borders drawn
around them (there are two border models in CSS 2.1). Authors may align data verti-
cally or horizontally within a cell and align data in all cells of a row or column.

Example(s):

Here is a simple three-row, three-column table described in HTML 4:

<TABLE>
<CAPTION>This is a simple 3x3 table</CAPTION>
<TR id="row1">
 <TH>Header 1 <TD>Cell 1 <TD>Cell 2
<TR id="row2">
 <TH>Header 2 <TD>Cell 3 <TD>Cell 4
<TR id="row3">
 <TH>Header 3 <TD>Cell 5 <TD>Cell 6
</TABLE>

This code creates one table (the TABLE element), three rows (the TR elements),
three header cells (the TH elements), and six data cells (the TD elements). Note that
the three columns of this example are specified implicitly: there are as many
columns in the table as required by header and data cells.

The following CSS rule centers the text horizontally in the header cells and
presents the text in the header cells with a bold font weight:

th { text-align: center; font-weight: bold }

The next rules align the text of the header cells on their baseline and vertically
center the text in each data cell:

th { vertical-align: baseline }
td { vertical-align: middle }

The next rules specify that the top row will be surrounded by a 3px solid blue
border and each of the other rows will be surrounded by a 1px solid black border:

table { border-collapse: collapse }
tr#row1 { border: 3px solid blue }
tr#row2 { border: 1px solid black }
tr#row3 { border: 1px solid black }

Note, however, that the borders around the rows overlap where the rows meet.
What color (black or blue) and thickness (1px or 3px) will the border between row1
and row2 be? We discuss this in the section on border conflict resolution. [p. 292]

The following rule puts the table caption above the table:

caption { caption-side: top }

The preceding example shows how CSS works with HTML 4 elements; in HTML
4, the semantics of the various table elements (TABLE, CAPTION, THEAD, TBODY,
TFOOT, COL, COLGROUP, TH, and TD) are well-defined. In other document

30 Mar 2011 19:50270

Tables

languages (such as XML applications), there may not be pre-defined table elements.
Therefore, CSS 2.1 allows authors to "map" document language elements to table
elements via the ’display’ property. For example, the following rule makes the FOO
element act like an HTML TABLE element and the BAR element act like a CAPTION
element:

FOO { display : table }
BAR { display : table-caption }

We discuss the various table elements in the following section. In this specifica-
tion, the term table element refers to any element involved in the creation of a table.
An internal table element is one that produces a row, row group, column, column
group, or cell.

17.2 The CSS table model
The CSS table model is based on the HTML4 table model, in which the structure of a
table closely parallels the visual layout of the table. In this model, a table consists of
an optional caption and any number of rows of cells. The table model is said to be
"row primary" since authors specify rows, not columns, explicitly in the document
language. Columns are derived once all the rows have been specified -- the first cell
of each row belongs to the first column, the second to the second column, etc.).
Rows and columns may be grouped structurally and this grouping reflected in
presentation (e.g., a border may be drawn around a group of rows).

Thus, the table model consists of tables, captions, rows, row groups (including
header groups and footer groups), columns, column groups, and cells.

The CSS model does not require that the document language [p. 44] include
elements that correspond to each of these components. For document languages
(such as XML applications) that do not have pre-defined table elements, authors
must map document language elements to table elements; this is done with the
’display’ property. The following ’display’ values assign table formatting rules to an
arbitrary element:

table (In HTML: TABLE)
Specifies that an element defines a block-level [p. 129] table: it is a rectangular
block that participates in a block formatting context [p. 138] .

inline-table (In HTML: TABLE)
Specifies that an element defines an inline-level [p. 131] table: it is a rectangular
block that participates in an inline formatting context [p. 138]).

table-row (In HTML: TR)
Specifies that an element is a row of cells.

table-row-group (In HTML: TBODY)
Specifies that an element groups one or more rows.

table-header-group (In HTML: THEAD)
Like ’table-row-group’, but for visual formatting, the row group is always
displayed before all other rows and row groups and after any top captions. Print
user agents may repeat header rows on each page spanned by a table. If a

27130 Mar 2011 19:50

Tables

table contains multiple elements with ’display: table-header-group’, only the first
is rendered as a header; the others are treated as if they had ’display:
table-row-group’.

table-footer-group (In HTML: TFOOT)
Like ’table-row-group’, but for visual formatting, the row group is always
displayed after all other rows and row groups and before any bottom captions.
Print user agents may repeat footer rows on each page spanned by a table. If a
table contains multiple elements with ’display: table-footer-group’, only the first
is rendered as a footer; the others are treated as if they had ’display:
table-row-group’.

table-column (In HTML: COL)
Specifies that an element describes a column of cells.

table-column-group (In HTML: COLGROUP)
Specifies that an element groups one or more columns.

table-cell (In HTML: TD, TH)
Specifies that an element represents a table cell.

table-caption (In HTML: CAPTION)
Specifies a caption for the table. All elements with ’display: table-caption’ must
be rendered, as described in section 17.4. [p. 276]

Replaced elements with these ’display’ values are treated as their given display
types during layout. For example, an image that is set to ’display: table-cell’ will fill
the available cell space, and its dimensions might contribute towards the table sizing
algorithms, as with an ordinary cell.

Elements with ’display’ set to ’table-column’ or ’table-column-group’ are not
rendered (exactly as if they had ’display: none’), but they are useful, because they
may have attributes which induce a certain style for the columns they represent.

The default style sheet for HTML4 [p. 453] in the appendix illustrates the use of
these values for HTML4:

table { display: table }
tr { display: table-row }
thead { display: table-header-group }
tbody { display: table-row-group }
tfoot { display: table-footer-group }
col { display: table-column }
colgroup { display: table-column-group }
td, th { display: table-cell }
caption { display: table-caption }

User agents may ignore [p. 60] these ’display’ property values for HTML table
elements, since HTML tables may be rendered using other algorithms intended for
backwards compatible rendering. However, this is not meant to discourage the use
of ’display: table’ on other, non-table elements in HTML.

30 Mar 2011 19:50272

Tables

17.2.1 Anonymous table objects
Document languages other than HTML may not contain all the elements in the
CSS 2.1 table model. In these cases, the "missing" elements must be assumed in
order for the table model to work. Any table element will automatically generate
necessary anonymous table objects around itself, consisting of at least three nested
objects corresponding to a ’table’/’inline-table’ element, a ’table-row’ element, and a
’table-cell’ element. Missing elements generate anonymous [p. 132] objects (e.g.,
anonymous boxes in visual table layout) according to the following rules:

For the purposes of these rules, the following terms are defined:

row group box
A ’table-row-group’, ’table-header-group’, or ’table-footer-group’

proper table child
A ’table-row’ box, row group box, ’table-column’ box, ’table-column-group’ box,
or ’table-caption’ box.

proper table row parent
A ’table’ or ’inline-table’ box or row group box

internal table box
A ’table-cell’ box, ’table-row’ box, row group box, ’table-column’ box, or
’table-column-group’ box.

tabular container
A ’table-row’ box or proper table row parent

consecutive
Two sibling boxes are consecutive if they have no intervening siblings other
than, optionally, an anonymous inline containing only white spaces. A sequence
of sibling boxes is consecutive if each box in the sequence is consecutive to the
one before it in the sequence.

For the purposes of these rules, out-of-flow elements are represented as inline
elements of zero width and height. Their containing blocks are chosen accordingly.

The following steps are performed in three stages.

1. Remove irrelevant boxes:
1. All child boxes of a ’table-column’ parent are treated as if they had ’display:

none’.
2. If a child C of a ’table-column-group’ parent is not a ’table-column’ box, then

it is treated as if it had ’display: none’.
3. If a child C of a tabular container P is an anonymous inline box that

contains only white space, and its immediately preceding and following
siblings, if any, are proper table descendants of P and are either
’table-caption’ or internal table boxes, then it is treated as if it had ’display:
none’. A box D is a proper table descendant of A if D can be a descendant
of A without causing the generation of any intervening ’table’ or ’inline-table’
boxes.

4. If a box B is an anonymous inline containing only white space, and is

27330 Mar 2011 19:50

Tables

between two immediate siblings each of which is either an internal table
box or a ’table-caption’ box then B is treated as if it had ’display: none’.

2. Generate missing child wrappers:
1. If a child C of a ’table’ or ’inline-table’ box is not a proper table child, then

generate an anonymous ’table-row’ box around C and all consecutive
siblings of C that are not proper table children.

2. If a child C of a row group box is not a ’table-row’ box, then generate an
anonymous ’table-row’ box around C and all consecutive siblings of C that
are not ’table-row’ boxes.

3. If a child C of a ’table-row’ box is not a ’table-cell’, then generate an anony-
mous ’table-cell’ box around C and all consecutive siblings of C that are not
’table-cell’ boxes.

3. Generate missing parents:
1. For each ’table-cell’ box C in a sequence of consecutive internal table and

’table-caption’ siblings, if C’s parent is not a ’table-row’ then generate an
anonymous ’table-row’ box around C and all consecutive siblings of C that
are ’table-cell’ boxes.

2. For each proper table child C in a sequence of consecutive proper table
children, if C is misparented then generate an anonymous ’table’ or
’inline-table’ box T around C and all consecutive siblings of C that are
proper table children. (If C’s parent is an ’inline’ box, then T must be an
’inline-table’ box; otherwise it must be a ’table’ box.)

A ’table-row’ is misparented if its parent is neither a row group box nor
a ’table’ or ’inline-table’ box.
A ’table-column’ box is misparented if its parent is neither a
’table-column-group’ box nor a ’table’ or ’inline-table’ box.
A row group box, ’table-column-group’ box, or ’table-caption’ box is
misparented if its parent is neither a ’table’ box nor an ’inline-table’ box.

Example(s):

In this XML example, a ’table’ element is assumed to contain the HBOX element:

<HBOX>
 <VBOX>George</VBOX>
 <VBOX>4287</VBOX>
 <VBOX>1998</VBOX>
</HBOX>

because the associated style sheet is:

HBOX { display: table-row }
VBOX { display: table-cell }

Example(s):

In this example, three ’table-cell’ elements are assumed to contain the text in the
ROWs. Note that the text is further encapsulated in anonymous inline boxes, as
explained in visual formatting model [p. 132] :

30 Mar 2011 19:50274

Tables

<STACK>
 <ROW>This is the <D>top</D> row.</ROW>
 <ROW>This is the <D>middle</D> row.</ROW>
 <ROW>This is the <D>bottom</D> row.</ROW>
</STACK>

The style sheet is:

STACK { display: inline-table }
ROW { display: table-row }
D { display: inline; font-weight: bolder }

17.3 Columns
Table cells may belong to two contexts: rows and columns. However, in the source
document cells are descendants of rows, never of columns. Nevertheless, some
aspects of cells can be influenced by setting properties on columns.

The following properties apply to column and column-group elements:

’border’
The various border properties apply to columns only if ’border-collapse’ is set to
’collapse’ on the table element. In that case, borders set on columns and
column groups are input to the conflict resolution algorithm [p. 292] that selects
the border styles at every cell edge.

’background’
The background properties set the background for cells in the column, but only if
both the cell and row have transparent backgrounds. See "Table layers and
transparency." [p. 279]

’width’
The ’width’ property gives the minimum width for the column.

’visibility’
If the ’visibility’ of a column is set to ’collapse’, none of the cells in the column
are rendered, and cells that span into other columns are clipped. In addition, the
width of the table is diminished by the width the column would have taken up.
See "Dynamic effects" [p. 287] below. Other values for ’visibility’ have no effect.

Example(s):

Here are some examples of style rules that set properties on columns. The first
two rules together implement the "rules" attribute of HTML 4 with a value of "cols".
The third rule makes the "totals" column blue, the final two rules shows how to make
a column a fixed size, by using the fixed layout algorithm [p. 283] .

col { border-style: none solid }
table { border-style: hidden }
col.totals { background: blue }
table { table-layout: fixed }
col.totals { width: 5em }

27530 Mar 2011 19:50

Tables

17.4 Tables in the visual formatting model
In terms of the visual formatting model, a table can behave like a block-level [p. 129]
(for ’display: table’) or inline-level [p. 131] (for ’display: inline-table’) element.

In both cases, the table generates a principal block box called the table wrapper
box that contains the table box itself and any caption boxes (in document order). The
table box is a block-level box that contains the table’s internal table boxes. The
caption boxes are block-level boxes that retain their own content, padding, margin,
and border areas, and are rendered as normal block boxes inside the table wrapper
box. Whether the caption boxes are placed before or after the table box is decided
by the ’caption-side’ property, as described below.

The table wrapper box is a ’block’ box if the table is block-level, and an
’inline-block’ box if the table is inline-level. The table wrapper box establishes a block
formatting context. The table box (not the table wrapper box) is used when doing
baseline vertical alignment for an ’inline-table’. The width of the table wrapper box is
the border-edge width of the table box inside it, as described by section 17.5.2.
Percentages on ’width’ and ’height’ on the table are relative to the table wrapper
box’s containing block, not the table wrapper box itself.

The computed values of properties ’position’, ’float’, ’margin-*’, ’top’, ’right’,
’bottom’, and ’left’ on the table element are used on the table wrapper box and not
the table box; all other values of non-inheritable properties are used on the table box
and not the table wrapper box. (Where the table element’s values are not used on
the table and table wrapper boxes, the initial values are used instead.)

30 Mar 2011 19:50276

Tables

Diagram of a table with a caption above it.

17.4.1 Caption position and alignment

’caption-side’

Value: top | bottom | inherit
Initial: top
Applies to: ’table-caption’ elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

This property specifies the position of the caption box with respect to the table
box. Values have the following meanings:

27730 Mar 2011 19:50

Tables

top
Positions the caption box above the table box.

bottom
Positions the caption box below the table box.

Note: CSS2 described a different width and horizontal alignment behavior. That
behavior will be introduced in CSS3 using the values ’top-outside’ and
’bottom-outside’ on this property.

To align caption content horizontally within the caption box, use the ’text-align’
property.

Example(s):

In this example, the ’caption-side’ property places captions below tables. The
caption will be as wide as the parent of the table, and caption text will be left-justi-
fied.

caption { caption-side: bottom;
 width: auto;
 text-align: left }

17.5 Visual layout of table contents
Internal table elements generate rectangular boxes [p. 111] with content and
borders. Cells have padding as well. Internal table elements do not have margins.

The visual layout of these boxes is governed by a rectangular, irregular grid of
rows and columns. Each box occupies a whole number of grid cells, determined
according to the following rules. These rules do not apply to HTML 4 or earlier HTML
versions; HTML imposes its own limitations on row and column spans.

1. Each row box occupies one row of grid cells. Together, the row boxes fill the
table from top to bottom in the order they occur in the source document (i.e., the
table occupies exactly as many grid rows as there are row elements).

2. A row group occupies the same grid cells as the rows it contains.
3. A column box occupies one or more columns of grid cells. Column boxes are

placed next to each other in the order they occur. The first column box may be
either on the left or on the right, depending on the value of the ’direction’ prop-
erty of the table.

4. A column group box occupies the same grid cells as the columns it contains.
5. Cells may span several rows or columns. (Although CSS 2.1 does not define

how the number of spanned rows or columns is determined, a user agent may
have special knowledge about the source document; a future update of CSS
may provide a way to express this knowledge in CSS syntax.) Each cell is thus
a rectangular box, one or more grid cells wide and high. The top row of this rect-
angle is in the row specified by the cell’s parent. The rectangle must be as far to
the left as possible, but the part of the cell in the first column it occupies must
not overlap with any other cell box (i.e., a row-spanning cell starting in a prior

30 Mar 2011 19:50278

Tables

row), and the cell must be to the right of all cells in the same row that are earlier
in the source document. If this position would cause a column-spanning cell to
overlap a row-spanning cell from a prior row, CSS does not define the results:
implementations may either overlap the cells (as is done in many HTML imple-
mentations) or may shift the later cell to the right to avoid such overlap. (This
constraint holds if the ’direction’ property of the table is ’ltr’; if the ’direction’ is
’rtl’, interchange "left" and "right" in the previous two sentences.)

6. A cell box cannot extend beyond the last row box of a table or row group; the
user agents must shorten it until it fits.

The edges of the rows, columns, row groups and column groups in the collapsing
borders model [p. 291] coincide with the hypothetical grid lines on which the borders
of the cells are centered. (And thus, in this model, the rows together exactly cover
the table, leaving no gaps; ditto for the columns.) In the separated borders model,
[p. 288] the edges coincide with the border edges [p. 112] of cells. (And thus, in this
model, there may be gaps between the rows, columns, row groups or column
groups, corresponding to the ’border-spacing’ property.)

Note. Positioning and floating of table cells can cause them not to be table cells
anymore, according to the rules in section 9.7 [p. 153] . When floating is used, the
rules on anonymous table objects may cause an anonymous cell object to be
created as well.

Here is an example illustrating rule 5. The following illegal (X)HTML snippet
defines conflicting cells:

<table>
<tr><td>1 </td><td rowspan="2">2 </td><td>3 </td><td>4 </td></tr>
<tr><td colspan="2">5 </td></tr>
</table>

User agents are free to visually overlap the cells, as in the figure on the left, or to
shift the cell to avoid the visual overlap, as in the figure on the right.

1 2 3 4

5

1 2 3 4

5

Two possible renderings of an erroneous HTML table.

17.5.1 Table layers and transparency
For the purposes of finding the background of each table cell, the different table
elements may be thought of as being on six superimposed layers. The background
set on an element in one of the layers will only be visible if the layers above it have a
transparent background.

27930 Mar 2011 19:50

Tables

cells

rows

row groups

columns

table

column groups

Schema of table layers.

1. The lowest layer is a single plane, representing the table box itself. Like all
boxes, it may be transparent.

2. The next layer contains the column groups. Each column group extends from
the top of the cells in the top row to the bottom of the cells on the bottom row
and from the left edge of its leftmost column to the right edge of its rightmost
column. The background covers exactly the full area of all cells that originate in
the column group, even if they span outside the column group, but this differ-
ence in area does not affect background image positioning.

3. On top of the column groups are the areas representing the column boxes.
Each column is as tall as the column groups and as wide as a normal
(single-column-spanning) cell in the column. The background covers exactly the
full area of all cells that originate in the column, even if they span outside the
column, but this difference in area does not affect background image position-
ing.

4. Next is the layer containing the row groups. Each row group extends from the
top left corner of its topmost cell in the first column to the bottom right corner of
its bottommost cell in the last column.

5. The next to last layer contains the rows. Each row is as wide as the row groups
and as tall as a normal (single-row-spanning) cell in the row. As with columns,

30 Mar 2011 19:50280

Tables

the background covers exactly the full area of all cells that originate in the row,
even if they span outside the row, but this difference in area does not affect
background image positioning.

6. The topmost layer contains the cells themselves. As the figure shows, although
all rows contain the same number of cells, not every cell may have specified
content. In the separated borders model [p. 288] (’border-collapse’ is ’separate’),
if the value of their ’empty-cells’ property is ’hide’ these "empty" cells are trans-
parent through the cell, row, row group, column and column group backgrounds,
letting the table background show through.

A "missing cell" is a cell in the row/column grid that is not occupied by an element
or pseudo-element. Missing cells are rendered as if an anonymous table-cell box
occupied their position in the grid.

In the following example, the first row contains four non-empty cells, but the
second row contains only one non-empty cell, and thus the table background shines
through, except where a cell from the first row spans into this row. The following
HTML code and style rules

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
 <HEAD>
 <TITLE>Table example</TITLE>
 <STYLE type="text/css">
 TABLE { background: #ff0; border: solid black;
 empty-cells: hide }
 TR.top { background: red }
 TD { border: solid black }
 </STYLE>
 </HEAD>
 <BODY>
 <TABLE>
 <TR CLASS="top">
 <TD> 1
 <TD rowspan="2"> 2
 <TD> 3
 <TD> 4
 <TR>
 <TD> 5
 <TD>
 </TABLE>
 </BODY>
</HTML>

might be formatted as follows:

1 2 3 4

28130 Mar 2011 19:50

Tables

Table with empty cells in the bottom row.

Note that if the table has ’border-collapse: separate’, the background of the area
given by the ’border-spacing’ property is always the background of the table
element. See the separated borders model [p. 288] .

17.5.2 Table width algorithms: the ’table-layout’ property
CSS does not define an "optimal" layout for tables since, in many cases, what is
optimal is a matter of taste. CSS does define constraints that user agents must
respect when laying out a table. User agents may use any algorithm they wish to do
so, and are free to prefer rendering speed over precision, except when the "fixed
layout algorithm" is selected.

Note that this section overrides the rules that apply to calculating widths as
described in section 10.3 [p. 175] . In particular, if the margins of a table are set to ’0’
and the width to ’auto’, the table will not automatically size to fill its containing block.
However, once the calculated value of ’width’ for the table is found (using the algo-
rithms given below or, when appropriate, some other UA dependent algorithm) then
the other parts of section 10.3 do apply. Therefore a table can be centered using left
and right ’auto’ margins, for instance.

Future updates of CSS may introduce ways of making tables automatically fit their
containing blocks.

’table-layout’

Value: auto | fixed | inherit
Initial: auto
Applies to: ’table’ and ’inline-table’ elements
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

The ’table-layout’ property controls the algorithm used to lay out the table cells,
rows, and columns. Values have the following meaning:

fixed
Use the fixed table layout algorithm

auto
Use any automatic table layout algorithm

The two algorithms are described below.

30 Mar 2011 19:50282

Tables

17.5.2.1 Fixed table layout

With this (fast) algorithm, the horizontal layout of the table does not depend on the
contents of the cells; it only depends on the table’s width, the width of the columns,
and borders or cell spacing.

The table’s width may be specified explicitly with the ’width’ property. A value of
’auto’ (for both ’display: table’ and ’display: inline-table’) means use the automatic
table layout [p. 284] algorithm. However, if the table is a block-level table (’display:
table’) in normal flow, a UA may (but does not have to) use the algorithm of 10.3.3
[p. 176] to compute a width and apply fixed table layout even if the specified width is
’auto’.

Example(s):

If a UA supports fixed table layout when ’width’ is ’auto’, the following will create a
table that is 4em narrower than its containing block:

table { table-layout: fixed;
 margin-left: 2em;
 margin-right: 2em }

In the fixed table layout algorithm, the width of each column is determined as
follows:

1. A column element with a value other than ’auto’ for the ’width’ property sets the
width for that column.

2. Otherwise, a cell in the first row with a value other than ’auto’ for the ’width’
property determines the width for that column. If the cell spans more than one
column, the width is divided over the columns.

3. Any remaining columns equally divide the remaining horizontal table space
(minus borders or cell spacing).

The width of the table is then the greater of the value of the ’width’ property for the
table element and the sum of the column widths (plus cell spacing or borders). If the
table is wider than the columns, the extra space should be distributed over the
columns.

If a subsequent row has more columns than the greater of the number determined
by the table-column elements and the number determined by the first row, then addi-
tional columns may not be rendered. CSS 2.1 does not define the width of the
columns and the table if they are rendered. When using ’table-layout: fixed’, authors
should not omit columns from the first row.

In this manner, the user agent can begin to lay out the table once the entire first
row has been received. Cells in subsequent rows do not affect column widths. Any
cell that has content that overflows uses the ’overflow’ property to determine whether
to clip the overflow content.

28330 Mar 2011 19:50

Tables

17.5.2.2 Automatic table layout

In this algorithm (which generally requires no more than two passes), the table’s
width is given by the width of its columns (and intervening borders [p. 288]). This
algorithm reflects the behavior of several popular HTML user agents at the writing of
this specification. UAs are not required to implement this algorithm to determine the
table layout in the case that ’table-layout’ is ’auto’; they can use any other algorithm
even if it results in different behavior.

Input to the automatic table layout must only include the width of the containing
block and the content of, and any CSS properties set on, the table and any of its
descendants.

Note. This may be defined in more detail in CSS3.

The remainder of this section is non-normative.

This algorithm may be inefficient since it requires the user agent to have access to
all the content in the table before determining the final layout and may demand more
than one pass.

Column widths are determined as follows:

1. Calculate the minimum content width (MCW) of each cell: the formatted content
may span any number of lines but may not overflow the cell box. If the specified
’width’ (W) of the cell is greater than MCW, W is the minimum cell width. A value
of ’auto’ means that MCW is the minimum cell width.

Also, calculate the "maximum" cell width of each cell: formatting the content
without breaking lines other than where explicit line breaks occur.

2. For each column, determine a maximum and minimum column width from the
cells that span only that column. The minimum is that required by the cell with
the largest minimum cell width (or the column ’width’, whichever is larger). The
maximum is that required by the cell with the largest maximum cell width (or the
column ’width’, whichever is larger).

3. For each cell that spans more than one column, increase the minimum widths of
the columns it spans so that together, they are at least as wide as the cell. Do
the same for the maximum widths. If possible, widen all spanned columns by
approximately the same amount.

4. For each column group element with a ’width’ other than ’auto’, increase the
minimum widths of the columns it spans, so that together they are at least as
wide as the column group’s ’width’.

This gives a maximum and minimum width for each column.

The caption width minimum (CAPMIN) is determined by calculating for each
caption the minimum caption outer width as the MCW of a hypothetical table cell that
contains the caption formatted as "display: block". The greatest of the minimum
caption outer widths is CAPMIN.

30 Mar 2011 19:50284

Tables

Column and caption widths influence the final table width as follows:

1. If the ’table’ or ’inline-table’ element’s ’width’ property has a computed value (W)
other than ’auto’, the used width is the greater of W, CAPMIN, and the minimum
width required by all the columns plus cell spacing or borders (MIN). If the used
width is greater than MIN, the extra width should be distributed over the
columns.

2. If the ’table’ or ’inline-table’ element has ’width: auto’, the used width is the
greater of the table’s containing block width, CAPMIN, and MIN. However, if
either CAPMIN or the maximum width required by the columns plus cell spacing
or borders (MAX) is less than that of the containing block, use max(MAX,
CAPMIN).

A percentage value for a column width is relative to the table width. If the table has
’width: auto’, a percentage represents a constraint on the column’s width, which a
UA should try to satisfy. (Obviously, this is not always possible: if the column’s width
is ’110%’, the constraint cannot be satisfied.)

Note. In this algorithm, rows (and row groups) and columns (and column groups)
both constrain and are constrained by the dimensions of the cells they contain.
Setting the width of a column may indirectly influence the height of a row, and vice
versa.

17.5.3 Table height algorithms
The height of a table is given by the ’height’ property for the ’table’ or ’inline-table’
element. A value of ’auto’ means that the height is the sum of the row heights plus
any cell spacing or borders. Any other value is treated as a minimum height. CSS
2.1 does not define how extra space is distributed when the ’height’ property causes
the table to be taller than it otherwise would be.

Note. Future updates of CSS may specify this further.

The height of a ’table-row’ element’s box is calculated once the user agent has all
the cells in the row available: it is the maximum of the row’s computed ’height’, the
computed ’height’ of each cell in the row, and the minimum height (MIN) required by
the cells. A ’height’ value of ’auto’ for a ’table-row’ means the row height used for
layout is MIN. MIN depends on cell box heights and cell box alignment (much like
the calculation of a line box [p. 189] height). CSS 2.1 does not define how the height
of table cells and table rows is calculated when their height is specified using
percentage values. CSS 2.1 does not define the meaning of ’height’ on row groups.

In CSS 2.1, the height of a cell box is the minimum height required by the content.
The table cell’s ’height’ property can influence the height of the row (see above), but
it does not increase the height of the cell box.

CSS 2.1 does not specify how cells that span more than one row affect row height
calculations except that the sum of the row heights involved must be great enough to
encompass the cell spanning the rows.

28530 Mar 2011 19:50

Tables

The ’vertical-align’ property of each table cell determines its alignment within the
row. Each cell’s content has a baseline, a top, a middle, and a bottom, as does the
row itself. In the context of tables, values for ’vertical-align’ have the following mean-
ings:

baseline
The baseline of the cell is put at the same height as the baseline of the first of
the rows it spans (see below for the definition of baselines of cells and rows).

top
The top of the cell box is aligned with the top of the first row it spans.

bottom
The bottom of the cell box is aligned with the bottom of the last row it spans.

middle
The center of the cell is aligned with the center of the rows it spans.

sub, super, text-top, text-bottom, <length>, <percentage>
These values do not apply to cells; the cell is aligned at the baseline instead.

The baseline of a cell is the baseline of the first in-flow line box [p. 138] in the cell,
or the first in-flow table-row in the cell, whichever comes first. If there is no such line
box or table-row, the baseline is the bottom of content edge of the cell box. For the
purposes of finding a baseline, in-flow boxes with a scrolling mechanisms (see the
’overflow’ property) must be considered as if scrolled to their origin position. Note
that the baseline of a cell may end up below its bottom border, see the example
[p. 287] below.

The maximum distance between the top of the cell box and the baseline over all
cells that have ’vertical-align: baseline’ is used to set the baseline of the row. Here is
an example:

middle

baseline

top

bottom

Text

 border

 content
 padding

’baseline’ ’baseline’ ’top’ ’bottom’

= added padding (to make cell as high as the row)

Text

2

3

4

’middle’

5

1

30 Mar 2011 19:50286

Tables

Diagram showing the effect of various values of ’vertical-align’ on table cells.

Cell boxes 1 and 2 are aligned at their baselines. Cell box 2 has the largest height
above the baseline, so that determines the baseline of the row.

If a row has no cell box aligned to its baseline, the baseline of that row is the
bottom content edge of the lowest cell in the row.

To avoid ambiguous situations, the alignment of cells proceeds in the following
order:

1. First the cells that are aligned on their baseline are positioned. This will estab-
lish the baseline of the row. Next the cells with ’vertical-align: top’ are posi-
tioned.

2. The row now has a top, possibly a baseline, and a provisional height, which is
the distance from the top to the lowest bottom of the cells positioned so far.
(See conditions on the cell padding below.)

3. If any of the remaining cells, those aligned at the bottom or the middle, have a
height that is larger than the current height of the row, the height of the row will
be increased to the maximum of those cells, by lowering the bottom.

4. Finally the remaining cells are positioned.

Cell boxes that are smaller than the height of the row receive extra top or bottom
padding.

The cell in this example has a baseline below its bottom border:

div { height: 0; overflow: hidden; }

<table>
 <tr>
 <td>
 <div> Test </div>
 </td>
 </tr>
</table>

17.5.4 Horizontal alignment in a column
The horizontal alignment of inline-level content within a cell box can be specified by
the value of the ’text-align’ property on the cell.

17.5.5 Dynamic row and column effects
The ’visibility’ property takes the value ’collapse’ for row, row group, column, and
column group elements. This value causes the entire row or column to be removed
from the display, and the space normally taken up by the row or column to be made
available for other content. Contents of spanned rows and columns that intersect the
collapsed column or row are clipped. The suppression of the row or column,
however, does not otherwise affect the layout of the table. This allows dynamic
effects to remove table rows or columns without forcing a re-layout of the table in

28730 Mar 2011 19:50

Tables

order to account for the potential change in column constraints.

17.6 Borders
There are two distinct models for setting borders on table cells in CSS. One is most
suitable for so-called separated borders around individual cells, the other is suitable
for borders that are continuous from one end of the table to the other. Many border
styles can be achieved with either model, so it is often a matter of taste which one is
used.

’border-collapse’

Value: collapse | separate | inherit
Initial: separate
Applies to: ’table’ and ’inline-table’ elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

This property selects a table’s border model. The value ’separate’ selects the
separated borders border model. The value ’collapse’ selects the collapsing borders
model. The models are described below.

17.6.1 The separated borders model

’border-spacing’

Value: <length> <length>? | inherit
Initial: 0
Applies to: ’table’ and ’inline-table’ elements*
Inherited: yes
Percentages: N/A
Media: visual
Computed value: two absolute lengths

*) Note: user agents may also apply the ’border-spacing’ property to ’frameset’
elements. Which elements are ’frameset’ elements is not defined by this specifica-
tion and is up to the document language. For example, HTML4 defines a <FRAME-
SET> element, and XHTML 1.0 defines a <frameset> element. The ’border-spacing’
property on a ’frameset’ element can be thus used as a valid substitute for the
non-standard ’framespacing’ attribute.

The lengths specify the distance that separates adjoining cell borders. If one
length is specified, it gives both the horizontal and vertical spacing. If two are speci-
fied, the first gives the horizontal spacing and the second the vertical spacing.

30 Mar 2011 19:50288

Tables

Lengths may not be negative.

The distance between the table border and the borders of the cells on the edge of
the table is the table’s padding for that side, plus the relevant border spacing
distance. For example, on the right hand side, the distance is padding-right + hori-
zontal border-spacing.

The width of the table is the distance from the left inner padding edge to the right
inner padding edge (including the border spacing but excluding padding and border).

However, in HTML and XHTML1, the width of the <table> element is the distance
from the left border edge to the right border edge.

Note: In CSS3 this peculiar requirement will be defined in terms of UA style sheet
rules and the ’box-sizing’ property.

In this model, each cell has an individual border. The ’border-spacing’ property
specifies the distance between the borders of adjoining cells. In this space, the row,
column, row group, and column group backgrounds are invisible, allowing the table
background to show through. Rows, columns, row groups, and column groups
cannot have borders (i.e., user agents must ignore [p. 60] the border properties for
those elements).

Example(s):

The table in the figure below could be the result of a style sheet like this:

table { border: outset 10pt;
 border-collapse: separate;
 border-spacing: 15pt }
td { border: inset 5pt }
td.special { border: inset 10pt } /* The top-left cell */

28930 Mar 2011 19:50

Tables

table width

vertical
border−spacing

border−spacing
horizontal

table border
(outset)

cell width

cell border
(inset)

vertical
border−spacing
and padding

A table with ’border-spacing’ set to a length value. Note that each cell has its own
border, and the table has a separate border as well.

17.6.1.1 Borders and Backgrounds around empty cells: the
’empty-cells’ property

’empty-cells’

Value: show | hide | inherit
Initial: show
Applies to: ’table-cell’ elements
Inherited: yes
Percentages: N/A
Media: visual
Computed value: as specified

In the separated borders model, this property controls the rendering of borders
and backgrounds around cells that have no visible content. Empty cells and cells
with the ’visibility’ property set to ’hidden’ are considered to have no visible content.
Cells are empty unless they contain one or more of the following:

floating content (including empty elements),
in-flow content (including empty elements) other than white space that has been
collapsed away by the ’white-space’ property handling.

30 Mar 2011 19:50290

Tables

When this property has the value ’show’, borders and backgrounds are drawn
around/behind empty cells (like normal cells).

A value of ’hide’ means that no borders or backgrounds are drawn around/behind
empty cells (see point 6 in 17.5.1 [p. 279]). Furthermore, if all the cells in a row have
a value of ’hide’ and have no visible content, then the row has zero height and there
is vertical border-spacing on only one side of the row.

Example(s):

The following rule causes borders and backgrounds to be drawn around all cells:

table { empty-cells: show }

17.6.2 The collapsing border model
In the collapsing border model, it is possible to specify borders that surround all or
part of a cell, row, row group, column, and column group. Borders for HTML’s "rules"
attribute can be specified this way.

Borders are centered on the grid lines between the cells. User agents must find a
consistent rule for rounding off in the case of an odd number of discrete units
(screen pixels, printer dots).

The diagram below shows how the width of the table, the widths of the borders,
the padding, and the cell width interact. Their relation is given by the following equa-
tion, which holds for every row of the table:

row-width = (0.5 * border-width0) + padding-left1 + width1 + padding-right1 +
border-width1 + padding-left2 +...+ padding-rightn + (0.5 * border-widthn)

Here n is the number of cells in the row, padding-left i and padding-right i refer to
the left (resp., right) padding of cell i, and border-width i refers to the border between
cells i and i + 1.

UAs must compute an initial left and right border width for the table by examining
the first and last cells in the first row of the table. The left border width of the table is
half of the first cell’s collapsed left border, and the right border width of the table is
half of the last cell’s collapsed right border. If subsequent rows have larger collapsed
left and right borders, then any excess spills into the margin area of the table.

The top border width of the table is computed by examining all cells who collapse
their top borders with the top border of the table. The top border width of the table is
equal to half of the maximum collapsed top border. The bottom border width is
computed by examining all cells whose bottom borders collapse with the bottom of
the table. The bottom border width is equal to half of the maximum collapsed bottom
border.

Any borders that spill into the margin are taken into account when determining if
the table overflows some ancestor (see ’overflow’).

29130 Mar 2011 19:50

Tables

Schema showing the widths of cells and borders and the padding of cells.

Note that in this model, the width of the table includes half the table border. Also,
in this model, a table does not have padding (but does have margins).

CSS 2.1 does not define where the edge of a background on a table element lies.

17.6.2.1 Border conflict resolution

In the collapsing border model, borders at every edge of every cell may be specified
by border properties on a variety of elements that meet at that edge (cells, rows, row
groups, columns, column groups, and the table itself), and these borders may vary in
width, style, and color. The rule of thumb is that at each edge the most "eye catch-
ing" border style is chosen, except that any occurrence of the style ’hidden’ uncondi-
tionally turns the border off.

The following rules determine which border style "wins" in case of a conflict:

1. Borders with the ’border-style’ of ’hidden’ take precedence over all other conflict-
ing borders. Any border with this value suppresses all borders at this location.

2. Borders with a style of ’none’ have the lowest priority. Only if the border proper-
ties of all the elements meeting at this edge are ’none’ will the border be omitted
(but note that ’none’ is the default value for the border style.)

3. If none of the styles are ’hidden’ and at least one of them is not ’none’, then
narrow borders are discarded in favor of wider ones. If several have the same
’border-width’ then styles are preferred in this order: ’double’, ’solid’, ’dashed’,

30 Mar 2011 19:50292

Tables

’dotted’, ’ridge’, ’outset’, ’groove’, and the lowest: ’inset’.
4. If border styles differ only in color, then a style set on a cell wins over one on a

row, which wins over a row group, column, column group and, lastly, table.
When two elements of the same type conflict, then the one further to the left (if
the table’s ’direction’ is ’ltr’; right, if it is ’rtl’) and further to the top wins.

Example(s):

The following example illustrates the application of these precedence rules. This
style sheet:

table { border-collapse: collapse;
 border: 5px solid yellow; }
*#col1 { border: 3px solid black; }
td { border: 1px solid red; padding: 1em; }
td.cell5 { border: 5px dashed blue; }
td.cell6 { border: 5px solid green; }

with this HTML source:

<TABLE>
<COL id="col1"><COL id="col2"><COL id="col3">
<TR id="row1">
 <TD> 1
 <TD> 2
 <TD> 3
</TR>
<TR id="row2">
 <TD> 4
 <TD class="cell5"> 5
 <TD class="cell6"> 6
</TR>
<TR id="row3">
 <TD> 7
 <TD> 8
 <TD> 9
</TR>
<TR id="row4">
 <TD> 10
 <TD> 11
 <TD> 12
</TR>
<TR id="row5">
 <TD> 13
 <TD> 14
 <TD> 15
</TR>
</TABLE>

would produce something like this:

29330 Mar 2011 19:50

Tables

11

4

2

15

12

9

14

8

13

10

7

1

5

3

6

An example of a table with collapsed borders.

Example(s):

Here is an example of hidden collapsing borders:

Table with two omitted internal borders.

HTML source:

<TABLE style="border-collapse: collapse; border: solid;">
<TR><TD style="border-right: hidden; border-bottom: hidden">foo</TD>
 <TD style="border: solid">bar</TD></TR>
<TR><TD style="border: none">foo</TD>
 <TD style="border: solid">bar</TD></TR>
</TABLE>

17.6.3 Border styles
Some of the values of the ’border-style’ have different meanings in tables than for
other elements. In the list below they are marked with an asterisk.

none
No border.

*hidden
Same as ’none’, but in the collapsing border model [p. 291] , also inhibits any
other border (see the section on border conflicts [p. 292]).

dotted
The border is a series of dots.

dashed
The border is a series of short line segments.

30 Mar 2011 19:50294

Tables

solid
The border is a single line segment.

double
The border is two solid lines. The sum of the two lines and the space between
them equals the value of ’border-width’.

groove
The border looks as though it were carved into the canvas.

ridge
The opposite of ’groove’: the border looks as though it were coming out of the
canvas.

*inset
In the separated borders model [p. 288] , the border makes the entire box look
as though it were embedded in the canvas. In the collapsing border model
[p. 291] , drawn the same as ’ridge’.

*outset
In the separated borders model [p. 288] , the border makes the entire box look
as though it were coming out of the canvas. In the collapsing border model
[p. 291] , drawn the same as ’groove’.

29530 Mar 2011 19:50

Tables

30 Mar 2011 19:50296

Tables

18 User interface
Contents

........... 29718.1 Cursors: the ’cursor’ property

............... 29818.2 System Colors

............ 30018.3 User preferences for fonts

......... 30018.4 Dynamic outlines: the ’outline’ property

........... 30218.4.1 Outlines and the focus

............... 30318.5 Magnification

18.1 Cursors: the ’cursor’ property
’cursor’

Value: [[<uri> ,]* [auto | crosshair | default | pointer | move | e-resize
| ne-resize | nw-resize | n-resize | se-resize | sw-resize |
s-resize | w-resize | text | wait | help | progress]] | inherit

Initial: auto
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: visual, interactive
Computed value: as specified, except with any relative URLs converted to

absolute

This property specifies the type of cursor to be displayed for the pointing device.
Values have the following meanings:

auto
The UA determines the cursor to display based on the current context.

crosshair
A simple crosshair (e.g., short line segments resembling a "+" sign).

default
The platform-dependent default cursor. Often rendered as an arrow.

pointer
The cursor is a pointer that indicates a link.

move
Indicates something is to be moved.

e-resize, ne-resize, nw-resize, n-resize, se-resize, sw-resize, s-resize, w-resize
Indicate that some edge is to be moved. For example, the ’se-resize’ cursor is
used when the movement starts from the south-east corner of the box.

29730 Mar 2011 19:50

User interface

text
Indicates text that may be selected. Often rendered as an I-beam.

wait
Indicates that the program is busy and the user should wait. Often rendered as
a watch or hourglass.

progress
A progress indicator. The program is performing some processing, but is differ-
ent from ’wait’ in that the user may still interact with the program. Often rendered
as a spinning beach ball, or an arrow with a watch or hourglass.

help
Help is available for the object under the cursor. Often rendered as a question
mark or a balloon.

<uri>
The user agent retrieves the cursor from the resource designated by the URI. If
the user agent cannot handle the first cursor of a list of cursors, it should
attempt to handle the second, etc. If the user agent cannot handle any
user-defined cursor, it must use the generic cursor at the end of the list. Intrinsic
sizes for cursors are calculated as for background images, [p. 234] except that a
UA-defined rectangle is used in place of the rectangle that establishes the coor-
dinate system for the ’background-image’ property. This UA-defined rectangle
should be based on the size of a typical cursor on the UA’s operating system. If
the resulting cursor size does not fit within this rectangle, the UA may propor-
tionally scale the resulting cursor down until it fits within the rectangle.

Example(s):

:link,:visited { cursor: url(example.svg#linkcursor), url(hyper.cur), pointer }

This example sets the cursor on all hyperlinks (whether visited or not) to an exter-
nal SVG cursor [p. ??] . User agents that do not support SVG cursors would simply
skip to the next value and attempt to use the "hyper.cur" cursor. If that cursor format
was also not supported, the UA would skip to the next value and simply render the
’pointer’ cursor.

18.2 System Colors
Note. The System Colors are deprecated in the CSS3 Color Module [CSS3COLOR].

In addition to being able to assign pre-defined color values [p. 69] to text, back-
grounds, etc., CSS2 introduced a set of named color values that allows authors to
specify colors in a manner that integrates them into the operating system’s graphic
environment.

For systems that do not have a corresponding value, the specified value should be
mapped to the nearest system value, or to a default color.

The following lists additional values for color-related CSS properties and their
general meaning. Any color property (e.g., ’color’ or ’background-color’) can take one
of the following names. Although these are case-insensitive, it is recommended that

30 Mar 2011 19:50298

User interface

the mixed capitalization shown below be used, to make the names more legible.

ActiveBorder
Active window border.

ActiveCaption
Active window caption.

AppWorkspace
Background color of multiple document interface.

Background
Desktop background.

ButtonFace
Face color for three-dimensional display elements.

ButtonHighlight
Highlight color for three-dimensional display elements (for edges facing away
from the light source).

ButtonShadow
Shadow color for three-dimensional display elements.

ButtonText
Text on push buttons.

CaptionText
Text in caption, size box, and scrollbar arrow box.

GrayText
Grayed (disabled) text. This color is set to #000 if the current display driver does
not support a solid gray color.

Highlight
Item(s) selected in a control.

HighlightText
Text of item(s) selected in a control.

InactiveBorder
Inactive window border.

InactiveCaption
Inactive window caption.

InactiveCaptionText
Color of text in an inactive caption.

InfoBackground
Background color for tooltip controls.

InfoText
Text color for tooltip controls.

Menu
Menu background.

MenuText
Text in menus.

Scrollbar
Scroll bar gray area.

ThreeDDarkShadow
Dark shadow for three-dimensional display elements.

29930 Mar 2011 19:50

User interface

ThreeDFace
Face color for three-dimensional display elements.

ThreeDHighlight
Highlight color for three-dimensional display elements.

ThreeDLightShadow
Light color for three-dimensional display elements (for edges facing the light
source).

ThreeDShadow
Dark shadow for three-dimensional display elements.

Window
Window background.

WindowFrame
Window frame.

WindowText
Text in windows.

Example(s):

For example, to set the foreground and background colors of a paragraph to the
same foreground and background colors of the user’s window, write the following:

p { color: WindowText; background-color: Window }

18.3 User preferences for fonts
As for colors, authors may specify fonts in a way that makes use of a user’s system
resources. Please consult the ’font’ property for details.

18.4 Dynamic outlines: the ’outline’ property
At times, style sheet authors may want to create outlines around visual objects such
as buttons, active form fields, image maps, etc., to make them stand out. CSS 2.1
outlines differ from borders [p. 120] in the following ways:

1. Outlines do not take up space.
2. Outlines may be non-rectangular.

The outline properties control the style of these dynamic outlines.

’outline’

30 Mar 2011 19:50300

User interface

Value: [<’outline-color’> || <’outline-style’> || <’outline-width’>] |
inherit

Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual, interactive
Computed value: see individual properties

’outline-width’

Value: <border-width> | inherit
Initial: medium
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual, interactive
Computed value: absolute length; ’0’ if the outline style is ’none’

’outline-style’

Value: <border-style> | inherit
Initial: none
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual, interactive
Computed value: as specified

’outline-color’

Value: <color> | invert | inherit
Initial: invert
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visual, interactive
Computed value: as specified

The outline created with the outline properties is drawn "over" a box, i.e., the
outline is always on top, and does not influence the position or size of the box, or of
any other boxes. Therefore, displaying or suppressing outlines does not cause
reflow or overflow.

30130 Mar 2011 19:50

User interface

The outline may be drawn starting just outside the border edge [p. 112] .

Outlines may be non-rectangular. For example, if the element is broken across
several lines, the outline is the minimum outline that encloses all the element’s
boxes. In contrast to borders [p. 120] , the outline is not open at the line box’s end or
start, but is always fully connected if possible.

The ’outline-width’ property accepts the same values as ’border-width’.

The ’outline-style’ property accepts the same values as ’border-style’, except that
’hidden’ is not a legal outline style.

The ’outline-color’ accepts all colors, as well as the keyword ’invert’. ’Invert’ is
expected to perform a color inversion on the pixels on the screen. This is a common
trick to ensure the focus border is visible, regardless of color background.

Conformant UAs may ignore the ’invert’ value on platforms that do not support
color inversion of the pixels on the screen. If the UA does not support the ’invert’
value then the initial value of the ’outline-color’ property is the value of the ’color’
property, similar to the initial value of the ’border-top-color’ property.

The ’outline’ property is a shorthand property, and sets all three of ’outline-style’,
’outline-width’, and ’outline-color’.

Note. The outline is the same on all sides. In contrast to borders, there is no
’outline-top’ or ’outline-left’ property.

This specification does not define how multiple overlapping outlines are drawn, or
how outlines are drawn for boxes that are partially obscured behind other elements.

Note. Since the outline does not affect formatting (i.e., no space is left for it in the
box model), it may well overlap other elements on the page.

Example(s):

Here’s an example of drawing a thick outline around a BUTTON element:

button { outline : thick solid}

Scripts may be used to dynamically change the width of the outline, without
provoking a reflow.

18.4.1 Outlines and the focus
Graphical user interfaces may use outlines around elements to tell the user which
element on the page has the focus. These outlines are in addition to any borders,
and switching outlines on and off should not cause the document to reflow. The
focus is the subject of user interaction in a document (e.g., for entering text, select-
ing a button, etc.). User agents supporting the interactive media group [p. 110] must
keep track of where the focus lies and must also represent the focus. This may be
done by using dynamic outlines in conjunction with the :focus pseudo-class.

30 Mar 2011 19:50302

User interface

Example(s):

For example, to draw a thick black line around an element when it has the focus,
and a thick red line when it is active, the following rules can be used:

:focus { outline: thick solid black }
:active { outline: thick solid red }

18.5 Magnification
The CSS working group considers that the magnification of a document or portions
of a document should not be specified through style sheets. User agents may
support such magnification in different ways (e.g., larger images, louder sounds,
etc.)

When magnifying a page, UAs should preserve the relationships between posi-
tioned elements. For example, a comic strip may be composed of images with over-
laid text elements. When magnifying this page, a user agent should keep the text
within the comic strip balloon.

30330 Mar 2011 19:50

User interface

30 Mar 2011 19:50304

User interface

Appendix A. Aural style sheets
Contents

.......... 305A.1 The media types ’aural’ and ’speech’

........... 306A.2 Introduction to aural style sheets

............... 307A.2.1 Angles

............... 307A.2.2 Times

.............. 307A.2.3 Frequencies

............ 308A.3 Volume properties: ’volume’

............ 309A.4 Speaking properties: ’speak’

.... 310A.5 Pause properties: ’pause-before’, ’pause-after’, and ’pause’

...... 311A.6 Cue properties: ’cue-before’, ’cue-after’, and ’cue’

........... 312A.7 Mixing properties: ’play-during’

........ 313A.8 Spatial properties: ’azimuth’ and ’elevation’
A.9 Voice characteristic properties: ’speech-rate’, ’voice-family’, ’pitch’,

........... 316’pitch-range’, ’stress’, and ’richness’

... 319A.10 Speech properties: ’speak-punctuation’ and ’speak-numeral’

............ 320A.11 Audio rendering of tables

..... 321A.11.1 Speaking headers: the ’speak-header’ property

........... 323A.12 Sample style sheet for HTML

............... 324A.13 Emacspeak

This chapter is informative. UAs are not required to implement the properties of
this chapter in order to conform to CSS 2.1.

A.1 The media types ’aural’ and ’speech’
We expect that in a future level of CSS there will be new properties and values
defined for speech output. Therefore CSS 2.1 reserves the ’speech’ media type (see
chapter 7, "Media types" [p. 107]), but does not yet define which properties do or do
not apply to it.

The properties in this appendix apply to a media type ’aural’, that was introduced
in CSS2. The type ’aural’ is now deprecated.

This means that a style sheet such as

@media speech {
 body { voice-family: Paul }
}

is valid, but that its meaning is not defined by CSS 2.1, while

30530 Mar 2011 19:50

Aural style sheets

@media aural {
 body { voice-family: Paul }
}

is deprecated, but defined by this appendix.

A.2 Introduction to aural style sheets
The aural rendering of a document, already commonly used by the blind and
print-impaired communities, combines speech synthesis and "auditory icons." Often
such aural presentation occurs by converting the document to plain text and feeding
this to a screen reader -- software or hardware that simply reads all the characters
on the screen. This results in less effective presentation than would be the case if
the document structure were retained. Style sheet properties for aural presentation
may be used together with visual properties (mixed media) or as an aural alternative
to visual presentation.

Besides the obvious accessibility advantages, there are other large markets for
listening to information, including in-car use, industrial and medical documentation
systems (intranets), home entertainment, and to help users learning to read or who
have difficulty reading.

When using aural properties, the canvas consists of a three-dimensional physical
space (sound surrounds) and a temporal space (one may specify sounds before,
during, and after other sounds). The CSS properties also allow authors to vary the
quality of synthesized speech (voice type, frequency, inflection, etc.).

Example(s):

h1, h2, h3, h4, h5, h6 {
 voice-family: paul;
 stress: 20;
 richness: 90;
 cue-before: url("ping.au")
}
p.heidi { azimuth: center-left }
p.peter { azimuth: right }
p.goat { volume: x-soft }

This will direct the speech synthesizer to speak headers in a voice (a kind of
"audio font") called "paul", on a flat tone, but in a very rich voice. Before speaking the
headers, a sound sample will be played from the given URL. Paragraphs with class
"heidi" will appear to come from front left (if the sound system is capable of spatial
audio), and paragraphs of class "peter" from the right. Paragraphs with class "goat"
will be very soft.

30 Mar 2011 19:50306

Aural style sheets

A.2.1 Angles
Angle values are denoted by <angle> in the text. Their format is a <number> imme-
diately followed by an angle unit identifier.

Angle unit identifiers are:

deg : degrees
grad : grads
rad : radians

Angle values may be negative. They should be normalized to the range 0-360deg
by the user agent. For example, -10deg and 350deg are equivalent.

For example, a right angle is ’90deg’ or ’100grad’ or ’1.570796326794897rad’.

Like for <length>, the unit may be omitted, if the value is zero: ’0deg’ may be
written as ’0’.

A.2.2 Times
Time values are denoted by <time> in the text. Their format is a <number> immedi-
ately followed by a time unit identifier.

Time unit identifiers are:

ms : milliseconds
s: seconds

Time values may not be negative.

Like for <length>, the unit may be omitted, if the value is zero: ’0s’ may be written
as ’0’.

A.2.3 Frequencies
Frequency values are denoted by <frequency> in the text. Their format is a
<number> immediately followed by a frequency unit identifier.

Frequency unit identifiers are:

Hz: Hertz
kHz: kilohertz

Frequency values may not be negative.

For example, 200Hz (or 200hz) is a bass sound, and 6kHz is a treble sound.

Like for <length>, the unit may be omitted, if the value is zero: ’0Hz’ may be
written as ’0’.

30730 Mar 2011 19:50

Aural style sheets

A.3 Volume properties: ’volume’
’volume’

Value: <number> | <percentage> | silent | x-soft | soft | medium |
loud | x-loud | inherit

Initial: medium
Applies to: all elements
Inherited: yes
Percentages: refer to inherited value
Media: aural
Computed value: number

Volume refers to the median volume of the waveform. In other words, a highly
inflected voice at a volume of 50 might peak well above that. The overall values are
likely to be human adjustable for comfort, for example with a physical volume control
(which would increase both the 0 and 100 values proportionately); what this property
does is adjust the dynamic range.

Values have the following meanings:

<number>
Any number between ’0’ and ’100’. ’0’ represents the minimum audible volume
level and 100 corresponds to the maximum comfortable level.

<percentage>
Percentage values are calculated relative to the inherited value, and are then
clipped to the range ’0’ to ’100’.

silent
No sound at all. The value ’0’ does not mean the same as ’silent’.

x-soft
Same as ’0’.

soft
Same as ’25’.

medium
Same as ’50’.

loud
Same as ’75’.

x-loud
Same as ’100’.

User agents should allow the values corresponding to ’0’ and ’100’ to be set by the
listener. No one setting is universally applicable; suitable values depend on the
equipment in use (speakers, headphones), the environment (in car, home theater,
library) and personal preferences. Some examples:

30 Mar 2011 19:50308

Aural style sheets

A browser for in-car use has a setting for when there is lots of background
noise. ’0’ would map to a fairly high level and ’100’ to a quite high level. The
speech is easily audible over the road noise but the overall dynamic range is
compressed. Cars with better insulation might allow a wider dynamic range.
Another speech browser is being used in an apartment, late at night, or in a
shared study room. ’0’ is set to a very quiet level and ’100’ to a fairly quiet level,
too. As with the first example, there is a low slope; the dynamic range is
reduced. The actual volumes are low here, whereas they were high in the first
example.
In a quiet and isolated house, an expensive hi-fi home theater setup. ’0’ is set
fairly low and ’100’ to quite high; there is wide dynamic range.

The same author style sheet could be used in all cases, simply by mapping the ’0’
and ’100’ points suitably at the client side.

A.4 Speaking properties: ’speak’
’speak’

Value: normal | none | spell-out | inherit
Initial: normal
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: as specified

This property specifies whether text will be rendered aurally and if so, in what
manner. The possible values are:

none
Suppresses aural rendering so that the element requires no time to render.
Note, however, that descendants may override this value and will be spoken.
(To be sure to suppress rendering of an element and its descendants, use the
’display’ property).

normal
Uses language-dependent pronunciation rules for rendering an element and its
children.

spell-out
Spells the text one letter at a time (useful for acronyms and abbreviations).

Note the difference between an element whose ’volume’ property has a value of
’silent’ and an element whose ’speak’ property has the value ’none’. The former
takes up the same time as if it had been spoken, including any pause before and
after the element, but no sound is generated. The latter requires no time and is not
rendered (though its descendants may be).

30930 Mar 2011 19:50

Aural style sheets

A.5 Pause properties: ’pause-before’, ’pause-after’,
and ’pause’
’pause-before’

Value: <time> | <percentage> | inherit
Initial: 0
Applies to: all elements
Inherited: no
Percentages: see prose
Media: aural
Computed value: time

’pause-after’

Value: <time> | <percentage> | inherit
Initial: 0
Applies to: all elements
Inherited: no
Percentages: see prose
Media: aural
Computed value: time;;

These properties specify a pause to be observed before (or after) speaking an
element’s content. Values have the following meanings:

Note. In CSS3 pauses are inserted around the cues and content rather than
between them. See [CSS3SPEECH] for details.

<time>
Expresses the pause in absolute time units (seconds and milliseconds).

<percentage>
Refers to the inverse of the value of the ’speech-rate’ property. For example, if
the speech-rate is 120 words per minute (i.e., a word takes half a second, or
500ms) then a ’pause-before’ of 100% means a pause of 500 ms and a
’pause-before’ of 20% means 100ms.

The pause is inserted between the element’s content and any ’cue-before’ or
’cue-after’ content.

Authors should use relative units to create more robust style sheets in the face of
large changes in speech-rate.

’pause’

30 Mar 2011 19:50310

Aural style sheets

Value: [[<time> | <percentage>]{1,2}] | inherit
Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: see descriptions of ’pause-before’ and ’pause-after’
Media: aural
Computed value: see individual properties

The ’pause’ property is a shorthand for setting ’pause-before’ and ’pause-after’. If
two values are given, the first value is ’pause-before’ and the second is ’pause-after’.
If only one value is given, it applies to both properties.

Example(s):

h1 { pause: 20ms } /* pause-before: 20ms; pause-after: 20ms */
h2 { pause: 30ms 40ms } /* pause-before: 30ms; pause-after: 40ms */
h3 { pause-after: 10ms } /* pause-before unspecified; pause-after: 10ms */

A.6 Cue properties: ’cue-before’, ’cue-after’, and ’cue’
’cue-before’

Value: <uri> | none | inherit
Initial: none
Applies to: all elements
Inherited: no
Percentages: N/A
Media: aural
Computed value: absolute URI or ’none’

’cue-after’

Value: <uri> | none | inherit
Initial: none
Applies to: all elements
Inherited: no
Percentages: N/A
Media: aural
Computed value: absolute URI or ’none’

Auditory icons are another way to distinguish semantic elements. Sounds may be
played before and/or after the element to delimit it. Values have the following mean-
ings:

<uri>
The URI must designate an auditory icon resource. If the URI resolves to some-
thing other than an audio file, such as an image, the resource should be ignored

31130 Mar 2011 19:50

Aural style sheets

and the property treated as if it had the value ’none’.
none

No auditory icon is specified.

Example(s):

a {cue-before: url("bell.aiff"); cue-after: url("dong.wav") }
h1 {cue-before: url("pop.au"); cue-after: url("pop.au") }

’cue’

Value: [<’cue-before’> || <’cue-after’>] | inherit
Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: N/A
Media: aural
Computed value: see individual properties

The ’cue’ property is a shorthand for setting ’cue-before’ and ’cue-after’. If two
values are given, the first value is ’cue-before’ and the second is ’cue-after’. If only
one value is given, it applies to both properties.

Example(s):

The following two rules are equivalent:

h1 {cue-before: url("pop.au"); cue-after: url("pop.au") }
h1 {cue: url("pop.au") }

If a user agent cannot render an auditory icon (e.g., the user’s environment does
not permit it), we recommend that it produce an alternative cue.

Please see the sections on the :before and :after pseudo-elements [p. 203] for
information on other content generation techniques. ’Cue-before’ sounds and
’pause-before’ gaps are inserted before content from the ’:before’ pseudo-element.
Similarly, ’pause-after’ gaps and ’cue-after’ sounds are inserted after content from
the ’:after’ pseudo-element.

A.7 Mixing properties: ’play-during’
’play-during’

30 Mar 2011 19:50312

Aural style sheets

Value: <uri> [mix || repeat]? | auto | none | inherit
Initial: auto
Applies to: all elements
Inherited: no
Percentages: N/A
Media: aural
Computed value: absolute URI, rest as specified

Similar to the ’cue-before’ and ’cue-after’ properties, this property specifies a
sound to be played as a background while an element’s content is spoken. Values
have the following meanings:

<uri>
The sound designated by this <uri> is played as a background while the
element’s content is spoken.

mix
When present, this keyword means that the sound inherited from the parent
element’s ’play-during’ property continues to play and the sound designated by
the <uri> is mixed with it. If ’mix’ is not specified, the element’s background
sound replaces the parent’s.

repeat
When present, this keyword means that the sound will repeat if it is too short to
fill the entire duration of the element. Otherwise, the sound plays once and then
stops. This is similar to the ’background-repeat’ property. If the sound is too long
for the element, it is clipped once the element has been spoken.

auto
The sound of the parent element continues to play (it is not restarted, which
would have been the case if this property had been inherited).

none
This keyword means that there is silence. The sound of the parent element (if
any) is silent during the current element and continues after the current element.

Example(s):

blockquote.sad { play-during: url("violins.aiff") }
blockquote Q { play-during: url("harp.wav") mix }
span.quiet { play-during: none }

A.8 Spatial properties: ’azimuth’ and ’elevation’
Spatial audio is an important stylistic property for aural presentation. It provides a
natural way to tell several voices apart, as in real life (people rarely all stand in the
same spot in a room). Stereo speakers produce a lateral sound stage. Binaural
headphones or the increasingly popular 5-speaker home theater setups can gener-
ate full surround sound, and multi-speaker setups can create a true three-dimen-
sional sound stage. VRML 2.0 also includes spatial audio, which implies that in time
consumer-priced spatial audio hardware will become more widely available.

31330 Mar 2011 19:50

Aural style sheets

’azimuth’

Value: <angle> | [[left-side | far-left | left | center-left | center |
center-right | right | far-right | right-side] || behind] | leftwards
| rightwards | inherit

Initial: center
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: normalized angle

Values have the following meanings:

<angle>
Position is described in terms of an angle within the range ’-360deg’ to ’360deg’.
The value ’0deg’ means directly ahead in the center of the sound stage. ’90deg’
is to the right, ’180deg’ behind, and ’270deg’ (or, equivalently and more conve-
niently, ’-90deg’) to the left.

left-side
Same as ’270deg’. With ’behind’, ’270deg’.

far-left
Same as ’300deg’. With ’behind’, ’240deg’.

left
Same as ’320deg’. With ’behind’, ’220deg’.

center-left
Same as ’340deg’. With ’behind’, ’200deg’.

center
Same as ’0deg’. With ’behind’, ’180deg’.

center-right
Same as ’20deg’. With ’behind’, ’160deg’.

right
Same as ’40deg’. With ’behind’, ’140deg’.

far-right
Same as ’60deg’. With ’behind’, ’120deg’.

right-side
Same as ’90deg’. With ’behind’, ’90deg’.

leftwards
Moves the sound to the left, relative to the current angle. More precisely,
subtracts 20 degrees. Arithmetic is carried out modulo 360 degrees. Note that
’leftwards’ is more accurately described as "turned counter-clockwise," since it
always subtracts 20 degrees, even if the inherited azimuth is already behind the
listener (in which case the sound actually appears to move to the right).

rightwards
Moves the sound to the right, relative to the current angle. More precisely, adds
20 degrees. See ’leftwards’ for arithmetic.

30 Mar 2011 19:50314

Aural style sheets

This property is most likely to be implemented by mixing the same signal into
different channels at differing volumes. It might also use phase shifting, digital delay,
and other such techniques to provide the illusion of a sound stage. The precise
means used to achieve this effect and the number of speakers used to do so are
user agent-dependent; this property merely identifies the desired end result.

Example(s):

h1 { azimuth: 30deg }
td.a { azimuth: far-right } /* 60deg */
#12 { azimuth: behind far-right } /* 120deg */
p.comment { azimuth: behind } /* 180deg */

If spatial-azimuth is specified and the output device cannot produce sounds
behind the listening position, user agents should convert values in the rearwards
hemisphere to forwards hemisphere values. One method is as follows:

if 90deg < x <= 180deg then x := 180deg - x
if 180deg < x <= 270deg then x := 540deg - x

’elevation’

Value: <angle> | below | level | above | higher | lower | inherit
Initial: level
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: normalized angle

Values of this property have the following meanings:

<angle>
Specifies the elevation as an angle, between ’-90deg’ and ’90deg’. ’0deg’
means on the forward horizon, which loosely means level with the listener.
’90deg’ means directly overhead and ’-90deg’ means directly below.

below
Same as ’-90deg’.

level
Same as ’0deg’.

above
Same as ’90deg’.

higher
Adds 10 degrees to the current elevation.

lower
Subtracts 10 degrees from the current elevation.

31530 Mar 2011 19:50

Aural style sheets

The precise means used to achieve this effect and the number of speakers used
to do so are undefined. This property merely identifies the desired end result.

Example(s):

h1 { elevation: above }
tr.a { elevation: 60deg }
tr.b { elevation: 30deg }
tr.c { elevation: level }

A.9 Voice characteristic properties: ’speech-rate’,
’voice-family’, ’pitch’, ’pitch-range’, ’stress’, and ’rich-
ness’
’speech-rate’

Value: <number> | x-slow | slow | medium | fast | x-fast | faster |
slower | inherit

Initial: medium
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: number

This property specifies the speaking rate. Note that both absolute and relative
keyword values are allowed (compare with ’font-size’). Values have the following
meanings:

<number>
Specifies the speaking rate in words per minute, a quantity that varies some-
what by language but is nevertheless widely supported by speech synthesizers.

x-slow
Same as 80 words per minute.

slow
Same as 120 words per minute

medium
Same as 180 - 200 words per minute.

fast
Same as 300 words per minute.

x-fast
Same as 500 words per minute.

faster
Adds 40 words per minute to the current speech rate.

slower
Subtracts 40 words per minutes from the current speech rate.

30 Mar 2011 19:50316

Aural style sheets

’voice-family’

Value: [[<specific-voice> | <generic-voice>],]* [<specific-voice> |
<generic-voice>] | inherit

Initial: depends on user agent
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: as specified

The value is a comma-separated, prioritized list of voice family names (compare
with ’font-family’). Values have the following meanings:

<generic-voice>
Values are voice families. Possible values are ’male’, ’female’, and ’child’.

<specific-voice>
Values are specific instances (e.g., comedian, trinoids, carlos, lani).

Example(s):

h1 { voice-family: announcer, male }
p.part.romeo { voice-family: romeo, male }
p.part.juliet { voice-family: juliet, female }

Names of specific voices may be quoted, and indeed must be quoted if any of the
words that make up the name does not conform to the syntax rules for identifiers
[p. 50] . It is also recommended to quote specific voices with a name consisting of
more than one word. If quoting is omitted, any white space [p. 53] characters before
and after the voice family name are ignored and any sequence of white space char-
acters inside the voice family name is converted to a single space.

’pitch’

Value: <frequency> | x-low | low | medium | high | x-high | inherit
Initial: medium
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: frequency

Specifies the average pitch (a frequency) of the speaking voice. The average pitch
of a voice depends on the voice family. For example, the average pitch for a stan-
dard male voice is around 120Hz, but for a female voice, it’s around 210Hz.

31730 Mar 2011 19:50

Aural style sheets

Values have the following meanings:

<frequency>
Specifies the average pitch of the speaking voice in hertz (Hz).

x-low , low , medium , high , x-high
These values do not map to absolute frequencies since these values depend on
the voice family. User agents should map these values to appropriate frequen-
cies based on the voice family and user environment. However, user agents
must map these values in order (i.e., ’x-low’ is a lower frequency than ’low’,
etc.).

’pitch-range’

Value: <number> | inherit
Initial: 50
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: as specified

Specifies variation in average pitch. The perceived pitch of a human voice is deter-
mined by the fundamental frequency and typically has a value of 120Hz for a male
voice and 210Hz for a female voice. Human languages are spoken with varying
inflection and pitch; these variations convey additional meaning and emphasis. Thus,
a highly animated voice, i.e., one that is heavily inflected, displays a high pitch
range. This property specifies the range over which these variations occur, i.e., how
much the fundamental frequency may deviate from the average pitch.

Values have the following meanings:

<number>
A value between ’0’ and ’100’. A pitch range of ’0’ produces a flat, monotonic
voice. A pitch range of 50 produces normal inflection. Pitch ranges greater than
50 produce animated voices.

’stress’

Value: <number> | inherit
Initial: 50
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: as specified

30 Mar 2011 19:50318

Aural style sheets

Specifies the height of "local peaks" in the intonation contour of a voice. For
example, English is a stressed language, and different parts of a sentence are
assigned primary, secondary, or tertiary stress. The value of ’stress’ controls the
amount of inflection that results from these stress markers. This property is a
companion to the ’pitch-range’ property and is provided to allow developers to exploit
higher-end auditory displays.

Values have the following meanings:

<number>
A value, between ’0’ and ’100’. The meaning of values depends on the language
being spoken. For example, a level of ’50’ for a standard, English-speaking male
voice (average pitch = 122Hz), speaking with normal intonation and emphasis
would have a different meaning than ’50’ for an Italian voice.

’richness’

Value: <number> | inherit
Initial: 50
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: as specified

Specifies the richness, or brightness, of the speaking voice. A rich voice will
"carry" in a large room, a smooth voice will not. (The term "smooth" refers to how the
wave form looks when drawn.)

Values have the following meanings:

<number>
A value between ’0’ and ’100’. The higher the value, the more the voice will
carry. A lower value will produce a soft, mellifluous voice.

A.10 Speech properties: ’speak-punctuation’ and
’speak-numeral’
An additional speech property, ’speak-header’, is described below.

’speak-punctuation’

31930 Mar 2011 19:50

Aural style sheets

Value: code | none | inherit
Initial: none
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: as specified

This property specifies how punctuation is spoken. Values have the following
meanings:

code
Punctuation such as semicolons, braces, and so on are to be spoken literally.

none
Punctuation is not to be spoken, but instead rendered naturally as various
pauses.

’speak-numeral’

Value: digits | continuous | inherit
Initial: continuous
Applies to: all elements
Inherited: yes
Percentages: N/A
Media: aural
Computed value: as specified

This property controls how numerals are spoken. Values have the following mean-
ings:

digits
Speak the numeral as individual digits. Thus, "237" is spoken "Two Three
Seven".

continuous
Speak the numeral as a full number. Thus, "237" is spoken "Two hundred thirty
seven". Word representations are language-dependent.

A.11 Audio rendering of tables
When a table is spoken by a speech generator, the relation between the data cells
and the header cells must be expressed in a different way than by horizontal and
vertical alignment. Some speech browsers may allow a user to move around in the
2-dimensional space, thus giving them the opportunity to map out the spatially repre-
sented relations. When that is not possible, the style sheet must specify at which
points the headers are spoken.

30 Mar 2011 19:50320

Aural style sheets

A.11.1 Speaking headers: the ’speak-header’ property

’speak-header’

Value: once | always | inherit
Initial: once
Applies to: elements that have table header information
Inherited: yes
Percentages: N/A
Media: aural
Computed value: as specified

This property specifies whether table headers are spoken before every cell, or
only before a cell when that cell is associated with a different header than the previ-
ous cell. Values have the following meanings:

once
The header is spoken one time, before a series of cells.

always
The header is spoken before every pertinent cell.

Each document language may have different mechanisms that allow authors to
specify headers. For example, in HTML 4 ([HTML4]), it is possible to specify header
information with three different attributes ("headers", "scope", and "axis"), and the
specification gives an algorithm for determining header information when these
attributes have not been specified.

Image of a table with header cells ("San Jose" and "Seattle") that are not in the
same column or row as the data they apply to.

This HTML example presents the money spent on meals, hotels and transport in
two locations (San Jose and Seattle) for successive days. Conceptually, you can
think of the table in terms of an n-dimensional space. The headers of this space are:
location, day, category and subtotal. Some cells define marks along an axis while

32130 Mar 2011 19:50

Aural style sheets

others give money spent at points within this space. The markup for this table is:

<TABLE>
<CAPTION>Travel Expense Report</CAPTION>
<TR>
 <TH></TH>
 <TH>Meals</TH>
 <TH>Hotels</TH>
 <TH>Transport</TH>
 <TH>subtotal</TH>
</TR>
<TR>
 <TH id="san-jose" axis="san-jose">San Jose</TH>
</TR>
<TR>
 <TH headers="san-jose">25-Aug-97</TH>
 <TD>37.74</TD>
 <TD>112.00</TD>
 <TD>45.00</TD>
 <TD></TD>
</TR>
<TR>
 <TH headers="san-jose">26-Aug-97</TH>
 <TD>27.28</TD>
 <TD>112.00</TD>
 <TD>45.00</TD>
 <TD></TD>
</TR>
<TR>
 <TH headers="san-jose">subtotal</TH>
 <TD>65.02</TD>
 <TD>224.00</TD>
 <TD>90.00</TD>
 <TD>379.02</TD>
</TR>
<TR>
 <TH id="seattle" axis="seattle">Seattle</TH>
</TR>
<TR>
 <TH headers="seattle">27-Aug-97</TH>
 <TD>96.25</TD>
 <TD>109.00</TD>
 <TD>36.00</TD>
 <TD></TD>
</TR>
<TR>
 <TH headers="seattle">28-Aug-97</TH>
 <TD>35.00</TD>
 <TD>109.00</TD>
 <TD>36.00</TD>
 <TD></TD>
</TR>
<TR>
 <TH headers="seattle">subtotal</TH>
 <TD>131.25</TD>
 <TD>218.00</TD>
 <TD>72.00</TD>

30 Mar 2011 19:50322

Aural style sheets

 <TD>421.25</TD>
</TR>
<TR>
 <TH>Totals</TH>
 <TD>196.27</TD>
 <TD>442.00</TD>
 <TD>162.00</TD>
 <TD>800.27</TD>
</TR>
</TABLE>

By providing the data model in this way, authors make it possible for speech
enabled-browsers to explore the table in rich ways, e.g., each cell could be spoken
as a list, repeating the applicable headers before each data cell:

 San Jose, 25-Aug-97, Meals: 37.74
 San Jose, 25-Aug-97, Hotels: 112.00
 San Jose, 25-Aug-97, Transport: 45.00
 ...

The browser could also speak the headers only when they change:

San Jose, 25-Aug-97, Meals: 37.74
 Hotels: 112.00
 Transport: 45.00
 26-Aug-97, Meals: 27.28
 Hotels: 112.00
...

A.12 Sample style sheet for HTML
This style sheet describes a possible rendering of HTML 4:

@media aural {
h1, h2, h3,
h4, h5, h6 { voice-family: paul, male; stress: 20; richness: 90 }
h1 { pitch: x-low; pitch-range: 90 }
h2 { pitch: x-low; pitch-range: 80 }
h3 { pitch: low; pitch-range: 70 }
h4 { pitch: medium; pitch-range: 60 }
h5 { pitch: medium; pitch-range: 50 }
h6 { pitch: medium; pitch-range: 40 }
li, dt, dd { pitch: medium; richness: 60 }
dt { stress: 80 }
pre, code, tt { pitch: medium; pitch-range: 0; stress: 0; richness: 80 }
em { pitch: medium; pitch-range: 60; stress: 60; richness: 50 }
strong { pitch: medium; pitch-range: 60; stress: 90; richness: 90 }
dfn { pitch: high; pitch-range: 60; stress: 60 }
s, strike { richness: 0 }
i { pitch: medium; pitch-range: 60; stress: 60; richness: 50 }
b { pitch: medium; pitch-range: 60; stress: 90; richness: 90 }
u { richness: 0 }
a:link { voice-family: harry, male }
a:visited { voice-family: betty, female }
a:active { voice-family: betty, female; pitch-range: 80; pitch: x-high }
}

32330 Mar 2011 19:50

Aural style sheets

A.13 Emacspeak
For information, here is the list of properties implemented by Emacspeak, a speech
subsystem for the Emacs editor.

voice-family
stress (but with a different range of values)
richness (but with a different range of values)
pitch (but with differently named values)
pitch-range (but with a different range of values)

(We thank T. V. Raman for the information about implementation status of aural
properties.)

30 Mar 2011 19:50324

Aural style sheets

Appendix B. Bibliography
Contents

............. 325B.1 Normative references

............. 327B.2 Informative references

B.1 Normative references
[COLORIMETRY]

"Colorimetry", Third Edition, Commission Internationale de l’Eclairage, CIE
Publication 15:2004, ISBN 3-901-906-33-9.
Available at http://www.cie.co.at/publ/abst/15-2004.html [p. ??]

[FLEX]
"Flex: The Lexical Scanner Generator", Version 2.3.7, ISBN 1882114213.

[HTML4]
"HTML 4.01 Specification", D. Raggett, A. Le Hors, I. Jacobs, 24 December
1999.
The latest version of the specification is available at
http://www.w3.org/TR/html4/ [p. ??] . The Recommendation defines three docu-
ment type definitions: Strict, Transitional, and Frameset, all reachable from the
Recommendation.

[ICC42]
Specification ICC.1:2004-10 (Profile version 4.2.0.0) Image technology colour
management – Architecture, profile format, and data structure.
Available at http://www.color.org/icc_specs2.html [p. ??]

[ISO8879]
"ISO 8879:1986(E): Information processing - Text and Office Systems - Stan-
dard Generalized Markup Language (SGML)", International Organization for
Standardization (ISO), 15 October 1986.

[ISO10646]
"Information Technology - Universal Multiple- Octet Coded Character Set (UCS)
- Part 1: Architecture and Basic Multilingual Plane", ISO/IEC 10646-1:2003.
Useful roadmap of the BMP and plane 1 [p. ??] documents show which scripts
sit at which numeric ranges.

[PNG]
"Portable Network Graphics (PNG) Specification (Second Edition)", David Duce,
ed., 10 November 2003.
Available at http://www.w3.org/TR/PNG/ [p. ??] .

[RFC3986]
"Uniform Resource Identifier (URI): Generic Syntax," T. Berners-Lee, R. Field-
ing, L. Masinter, January 2005.
Available at http://www.ietf.org/rfc/rfc3986 [p. ??] .

32530 Mar 2011 19:50

Bibliography

[RFC2045]
"Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies", N. Freed and N. Borenstein, November 1996.
Available at http://www.ietf.org/rfc/rfc2045.txt [p. ??] . Note that this RFC obso-
letes RFC1521, RFC1522, and RFC1590.

[RFC2616]
"HTTP Version 1.1 ", R. Fielding, J. Gettys, J. Mogul, et al., June 1999.
Available at http://www.ietf.org/rfc/rfc2616.txt [p. ??] .

[RFC2119]
"Key words for use in RFCs to Indicate Requirement Levels", S. Bradner, March
1997.
Available at http://www.ietf.org/rfc/rfc2119.txt [p. ??] .

[RFC2318]
"The text/css Media Type", H. Lie, B. Bos, C. Lilley, March 1998.
Available at http://www.ietf.org/rfc/rfc2318.txt [p. ??] .

[SRGB]
IEC 61966-2-1 (1999-10) - "Multimedia systems and equipment - Colour
measurement and management - Part 2-1: Colour management - Default RGB
colour space - sRGB, ISBN: 2-8318-4989-6 - ICS codes: 33.160.60, 37.080 -
TC 100 - 51 pp.
Available at http://domino.iec.ch/webstore/webstore.nsf/artnum/025408 [p. ??]

[UAAG10]
"User Agent Accessibility Guidelines 1.0." Ian Jacobs, Jon Gunderson, Eric
Hansen (editors). 17 December 2002.
Available at http://www.w3.org/TR/2002/REC-UAAG10-20021217 [p. ??]

[UAX9]
"Unicode Bidirectional Algorithm", Mark Davis. (Unicode Standard Annex #9.) 22
September 2009.
Available at http://www.unicode.org/reports/tr9/ [p. ??]

[UNICODE]
The Unicode Consortium. The Unicode Standard, Version 4.1.0, defined by: The
Unicode Standard, Version 4.0 (Boston, MA, Addison-Wesley, 2003. ISBN
0-321-18578-1), as amended by Unicode 4.0.1 [p. ??] and Unicode 4.1.0 [p. ??]
and as updated from time to time by the publication of new versions. (See
http://www.unicode.org/unicode/standard/versions/ [p. ??] for the latest version
and additional information on versions of the standard and of the Unicode Char-
acter Database).
Available at http://www.unicode.org/versions/Unicode4.1.0/ [p. ??]

[XML10]
"Extensible Markup Language (XML) 1.0 (third edition)" T. Bray, J. Paoli, C.M.
Sperberg-McQueen, Eve Maler, François Yergeau, editors, 4 February 2004.
Available at http://www.w3.org/TR/REC-xml/ [p. ??] .

[YACC]
"YACC - Yet another compiler compiler", S. C. Johnson, Technical Report,
Murray Hill, 1975.

30 Mar 2011 19:50326

Bibliography

B.2 Informative references
[CHARSETS]

Registered charset values. Download a list of registered charset values from
http://www.iana.org/assignments/character-sets [p. ??] .

[CSS1]
"Cascading Style Sheets, level 1", H. W. Lie and B. Bos, 17 December 1996,
revised 11 January 1999
The latest version is available at http://www.w3.org/TR/CSS1 [p. ??]

[CSS2]
"Cascading Style Sheets, level 2, CSS2 Specification", B. Bos, H. W. Lie, C.
Lilley and I. Jacobs, 12 May 1998 (revised 11 April 2008),
http://www.w3.org/TR/2008/REC-CSS2-20080411/ [p. ??]

[CSS3COLOR]
"CSS3 Color Module," Tantek Çelik, Chris Lilley, 14 May 2003, W3C Candidate
Recommendation. Available at
http://www.w3.org/TR/2003/CR-css3-color-20030514/ [p. ??]

[CSS3LIST]
"CSS3 module: lists," Tantek Çelik, Ian Hickson, 7 November 2002, W3C
working draft (work in progress). Available at
http://www.w3.org/TR/2002/WD-css3-lists-20021107 [p. ??]

[CSS3SEL]
"Selectors", D. Glazman, T. Çelik, I. Hickson, 13 November 2001
Available at http://www.w3.org/TR/2001/CR-css3-selectors-20011113 [p. ??]

[CSS3SPEECH]
"CSS3 Speech Module", David Raggett, Daniel Glazman, Claudio Santambro-
gio, 14 May 2003, W3C Working Draft (work in progress). Available at
http://www.w3.org/TR/2004/WD-css3-speech-20041216 [p. ??]

[DOM-LEVEL-3-CORE]
"Document Object Model (DOM) Level 3 Core Specification", A. Le Hors, P. Le
Hégaret, et al. (eds.), 7 April 2004, W3C Recommendation. Available at
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/ [p. ??] .

[MATH20]
"Mathematical Markup Language (MathML) Version 2.0", D. Carlisle, P. Ion, R.
Miner, N. Poppelier, 21 February 2001
Available at http://www.w3.org/TR/2001/REC-MathML2-20010221 [p. ??]

[MEDIAQ]
"Media Queries", Håkon Wium Lie, Tantek Çelik, Daniel Glazman, Anne van
Kesteren, 23 April 2009
(Work in progress.) Available at http://www.w3.org/TR/2009/CR-css3-mediaque-
ries-20090423/ [p. ??]

[P3P]
"The Platform for Privacy Preferences 1.0 (P3P1.0) Specification", L. Cranor, M.
Langheinrich, M. Marchiori, M. Presler-Marshall, J. Reagle, 16 April 2002
Available at http://www.w3.org/TR/2002/REC-P3P-20020416 [p. ??]

32730 Mar 2011 19:50

Bibliography

[BCP47]
"Tags for Identifying Languages", A. Phillips, M. Davis, September 2009.
Available at http://www.rfc-editor.org/rfc/bcp/bcp47.txt [p. ??] .

[SVG11]
"Scalable Vector Graphics (SVG) 1.1 Specification", J. Ferraiolo, et.al. 14
January 2003
Available at http://www.w3.org/TR/2003/REC-SVG11-20030114 [p. ??]

[WAI-PAGEAUTH]
"Web Content Accessibility Guidelines", W. Chisholm, G. Vanderheiden, I.
Jacobs eds.
Available at: http://www.w3.org/TR/WAI-WEBCONTENT/ [p. ??] .

[XHTML]
"XHTML 1.0 The Extensible HyperText Markup Language", various authors,
Available at: http://www.w3.org/TR/xhtml1/ [p. ??] .

[XMLID]
"xml:id Version 1.0", J. Marsh, D. Veillard N. Walsh, 9 November 2004, W3C
working draft (work in progress). Available at:
http://www.w3.org/TR/2004/WD-xml-id-20041109/ [p. ??] .

[XMLNAMESPACES]
"Namespaces in XML", T. Bray, D. Hollander, A. Layman,
Available at: http://www.w3.org/TR/1999/REC-xml-names-19990114 [p. ??] .

30 Mar 2011 19:50328

Bibliography

Appendix C. Changes
Contents

............ 342C.1 Additional property values

............ 343C.1.1 Section 4.3.6 Colors

........ 343C.1.2 Section 9.2.4 The ’display’ property

........ 343C.1.3 Section 12.2 The ’content’ property

.... 343C.1.4 Section 16.6 White space: the ’white-space’ property

....... 343C.1.5 Section 18.1 Cursors: the ’cursor’ property

................ 343C.2 Changes

......... 343C.2.1 Section 1.1 CSS 2.1 vs CSS 2

........ 343C.2.2 Section 1.2 Reading the specification

...... 343C.2.3 Section 1.3 How the specification is organized

............ 343C.2.4 Section 1.4.2.1 Value

.......... 344C.2.5 Section 1.4.2.6 Media groups

......... 344C.2.6 Section 1.4.2.7 Computed value

........ 344C.2.7 Section 1.4.4 Notes and examples

.......... 344C.2.8 Section 1.5 Acknowledgments

........... 344C.2.9 Section 3.2 Conformance

.......... 344C.2.10 Section 3.3 Error Conditions

.......... 344C.2.11 Section 4.1.1 Tokenization

........ 345C.2.12 Section 4.1.3 Characters and case

...... 345C.2.13 Section 4.2 Rules for handling parsing errors

............ 345C.2.14 Section 4.3 Values

........... 345C.2.15 Section 4.3.2 Lengths

......... 345C.2.16 Section 4.3.4 URLs and URIs

........... 345C.2.17 Section 4.3.5 Counters

............ 346C.2.18 Section 4.3.6 Colors

........ 346C.2.19 Section 4.3.8 Unsupported Values

...... 346C.2.20 Section 4.4 CSS style sheet representation

.... 346C.2.21 Section 5.8.1 Matching attributes and attribute values

......... 346C.2.22 Section 5.8.3 Class selectors

........... 347C.2.23 Section 5.9 ID selectors

.... 347C.2.24 Section 5.10 Pseudo-elements and pseudo-classes

... 347C.2.25 Section 5.11.2 The link pseudo-classes: :link and :visited

..... 347C.2.26 Section 5.11.4 The language pseudo-class: :lang

...... 347C.2.27 Section 5.12.1 The :first-line pseudo-element

..... 347C.2.28 Section 5.12.2 The :first-letter pseudo-element

.... 347C.2.29 Section 6.1 Specified, computed, and actual values

......... 348C.2.30 Section 6.4.1 Cascading order

..... 348C.2.31 Section 6.4.3 Calculating a selector’s specificity

32930 Mar 2011 19:50

Changes

.. 348C.2.32 Section 6.4.4 Precedence of non-CSS presentational hints

....... 348C.2.33 Section 7.3 Recognized Media Types

.......... 348C.2.34 Section 7.3.1 Media Groups

......... 349C.2.35 Section 8.3 Margin properties

......... 349C.2.36 Section 8.3.1 Collapsing margins

......... 349C.2.37 Section 8.4 Padding properties

.......... 349C.2.38 Section 8.5.2 Border color

.......... 349C.2.39 Section 8.5.3 Border style
C.2.40 Section 8.6 The box model for inline elements in bidirectional

................. 349context

......... 350C.2.41 Section 9.1.2 Containing blocks

....... 350C.2.42 Section 9.2.1.1 Anonymous block boxes

....... 350C.2.43 Section 9.2.2.1 Anonymous inline boxes

.......... 350C.2.44 Section 9.2.3 Run-in boxes

........ 350C.2.45 Section 9.2.4 The ’display’ property

...... 350C.2.46 Section 9.3.1 Choosing a positioning scheme

.......... 350C.2.47 Section 9.3.2 Box offsets

....... 351C.2.48 Section 9.4.1 Block formatting contexts

....... 351C.2.49 Section 9.4.2 Inline formatting context

........ 351C.2.50 Section 9.4.3 Relative positioning

............ 351C.2.51 Section 9.5 Floats

........ 351C.2.52 Section 9.5.1 Positioning the float

...... 352C.2.53 Section 9.5.2 Controlling flow next to floats

.352C.2.54 Section 9.7 Relationships between ’display’, ’position’, and ’float’

........ 352C.2.55 Section 9.9 Layered presentation

.......... 352C.2.56 Section 9.10 Text direction

...... 352C.2.57 Chapter 10 Visual formatting model details

...... 353C.2.58 Section 10.1 Definition of "containing block"

.......... 353C.2.59 Section 10.2 Content width

...... 353C.2.60 Section 10.3 Calculating widths and margins

....... 353C.2.61 Section 10.3.2 Inline, replaced elements

.353C.2.62 Section 10.3.3 Block-level, non-replaced elements in normal flow

.. 354C.2.63 Section 10.3.4 Block-level, replaced elements in normal flow

..... 354C.2.64 Section 10.3.5 Floating, non-replaced elements

...... 354C.2.65 Section 10.3.6 Floating, replaced elements

.. 354C.2.66 Section 10.3.7 Absolutely positioned, non-replaced elements

... 354C.2.67 Section 10.3.8 Absolutely positioned, replaced elements

...... 354C.2.68 Section 10.4 Minimum and maximum widths

.......... 355C.2.69 Section 10.5 Content height

..... 355C.2.70 Section 10.6 Calculating heights and margins

...... 355C.2.71 Section 10.6.1 Inline, non-replaced elements
C.2.72 Section 10.6.2 Inline replaced elements, block-level replaced
elements in normal flow, ’inline-block’ replaced elements in normal flow and

30 Mar 2011 19:50330

Changes

............ 355floating replaced elements
C.2.73 Section 10.6.3 Block-level non-replaced elements in normal flow

.......... 356when ’overflow’ computes to ’visible’

.. 356C.2.74 Section 10.6.4 Absolutely positioned, non-replaced elements

... 356C.2.75 Section 10.6.5 Absolutely positioned, replaced elements

...... 356C.2.76 Section 10.7 Minimum and maximum heights

........ 356C.2.77 Section 10.8 Line height calculations

....... 356C.2.78 Section 10.8.1 Leading and half-leading

........ 357C.2.79 Section 11.1 Overflow and clipping

........... 357C.2.80 Section 11.1.1 Overflow

...... 357C.2.81 Section 11.1.2 Clipping: the ’clip’ property

........... 358C.2.82 Section 11.2 Visibility

.358C.2.83 Chapter 12 Generated content, automatic numbering, and lists

.... 358C.2.84 Section 12.1 The :before and :after pseudo-elements

........ 358C.2.85 Section 12.2 The ’content’ property

... 358C.2.86 Section 12.3.2 Inserting quotes with the ’content’ property

..... 358C.2.87 Section 12.4 Automatic counters and numbering

...... 359C.2.88 Section 12.4.1 Nested counters and scope

............ 359C.2.89 Section 12.5 Lists

............ 359C.2.90 Section 12.5.1 Lists

.......... 359C.2.91 Chapter 13 Paged media

......... 359C.2.92 Section 13.2.2 Page selectors

....... 359C.2.93 Section 13.3.1 Page break properties

........ 360C.2.94 Section 13.3.3 Allowed page breaks

....... 360C.2.95 Section 14.2.1 Background properties

......... 360C.2.96 Section 14.3 Gamma correction

............ 360C.2.97 Chapter 15 Fonts

....... 360C.2.98 Section 15.2 Font matching algorithm

.......... 360C.2.99 Section 15.2.2 Font family

.......... 361C.2.100 Section 15.5 Small-caps

.......... 361C.2.101 Section 15.6 Font boldness

........... 361C.2.102 Section 15.7 Font size

............ 361C.2.103 Chapter 16 Text

........... 361C.2.104 Section 16.2 Alignment

.. 361C.2.105 Section 16.3.1 Underlining, over lining, striking, and blinking

....... 362C.2.106 Section 16.4 Letter and word spacing

.......... 362C.2.107 Section 16.5 Capitalization

.......... 362C.2.108 Section 16.6 White space

............ 362C.2.109 Chapter 17 Tables

........ 362C.2.110 Section 17.2 The CSS table model

...... 362C.2.111 Section 17.2.1 Anonymous table objects

.... 363C.2.112 Section 17.4 Tables in the visual formatting model

..... 363C.2.113 Section 17.4.1 Caption position and alignment

33130 Mar 2011 19:50

Changes

...... 363C.2.114 Section 17.5 Visual layout of table contents

..... 363C.2.115 Section 17.5.1 Table layers and transparency

........ 363C.2.116 Section 17.5.2.1 Fixed table layout

....... 363C.2.117 Section 17.5.2.2 Automatic table layout

....... 364C.2.118 Section 17.5.3 Table height algorithms

..... 364C.2.119 Section 17.5.4 Horizontal alignment in a column

........... 364C.2.120 Section 17.6 Borders

..... 364C.2.121 Section 17.6.1 The separated borders model

.364C.2.122 Section 17.6.1.1 Borders and Backgrounds around empty cells

...... 364C.2.123 Section 17.6.2 The collapsing border model

...... 365C.2.124 Section 17.6.2.1 Border conflict resolution

...... 365C.2.125 Section 18.1 Cursors: the ’cursor’ property

......... 365C.2.126 Section 18.4 Dynamic outlines

.365C.2.127 Chapter 12 Generated content, automatic numbering, and lists

......... 365C.2.128 Appendix A. Aural style sheets

....... 365C.2.129 Appendix A Section 5 Pause properties

....... 365C.2.130 Appendix A Section 6 Cue properties

....... 365C.2.131 Appendix A Section 7 Mixing properties

.......... 366C.2.132 Appendix B Bibliography

............... 366C.2.133 Other

................. 366C.3 Errors

............ 366C.3.1 Shorthand properties

............... 366C.3.2 Applies to

........... 367C.3.3 Section 4.1.1 (and G2)

........ 367C.3.4 Section 4.1.3 Characters and case

......... 367C.3.5 Section 4.3 (Double sign problem)

............ 367C.3.6 Section 4.3.2 Lengths

.......... 367C.3.7 Section 4.3.3 Percentages

.......... 367C.3.8 Section 4.3.4 URLs and URIs

........... 368C.3.9 Section 4.3.5 Counters

............ 368C.3.10 Section 4.3.6 Colors

............ 368C.3.11 Section 4.3.7 Strings

.... 368C.3.12 Section 5.10 Pseudo-elements and pseudo-classes

........... 368C.3.13 Section 6.4 The cascade

.......... 368C.3.14 Section 8.1 Box Dimensions

... 368C.3.15 Section 8.2 Example of margins, padding, and borders

...... 368C.3.16 Section 8.5.4 Border shorthand properties

.... 369C.3.17 Section 9.2.1 Block-level elements and block boxes

...... 369C.3.18 Section 9.3.1 Choosing a positioning scheme

.......... 369C.3.19 Section 9.3.2 Box offsets

....... 369C.3.20 Section 9.4.1 Block formatting contexts

....... 369C.3.21 Section 9.4.2 Inline formatting context

........ 369C.3.22 Section 9.4.3 Relative positioning

30 Mar 2011 19:50332

Changes

............ 369C.3.23 Section 9.5 Floats

........ 370C.3.24 Section 9.5.1 Positioning the float

...... 370C.3.25 Section 9.5.2 Controlling flow next to floats

......... 370C.3.26 Section 9.6 Absolute positioning

.370C.3.27 Section 9.7 Relationships between ’display’, ’position’, and ’float’

.......... 370C.3.28 Section 9.10 Text direction

...... 370C.3.29 Section 10.1 Definition of "containing block"

.370C.3.30 Section 10.3.3 Block-level, non-replaced elements in normal flow

...... 371C.3.31 Section 10.4 Minimum and maximum widths
C.3.32 Section 10.6.3 Block-level non-replaced elements in normal flow

.......... 371when ’overflow’ computes to ’visible’

...... 371C.3.33 Section 10.7 Minimum and maximum heights

........... 371C.3.34 Section 11.1.1 Overflow

...... 371C.3.35 Section 11.1.2 Clipping: the ’clip’ property

........... 371C.3.36 Section 11.2 Visibility

......... 371C.3.37 Section 12.4.2 Counter styles

............ 372C.3.38 Section 12.6.2 Lists

......... 372C.3.39 Section 14.2 The background

....... 372C.3.40 Section 14.2.1 Background properties

....... 372C.3.41 Section 15.2 Font matching algorithm

........... 372C.3.42 Section 15.7 Font size

........... 373C.3.43 Section 16.1 Indentation

........... 373C.3.44 Section 16.2 Alignment

........ 373C.3.45 Section 17.2 The CSS table model

....... 373C.3.46 Section 17.2.1 Anonymous table objects

.... 373C.3.47 Section 17.4 Tables in the visual formatting model

...... 373C.3.48 Section 17.5 Visual layout of table contents

..... 374C.3.49 Section 17.5.1 Table layers and transparency

...... 374C.3.50 Section 17.6.1 The separated borders model

.......... 374C.3.51 Section 18.2 System Colors

.......... 374C.3.52 Section E.2 Painting order

............... 374C.4 Clarifications

...... 374C.4.1 Section 2.1 A brief CSS 2.1 tutorial for HTML

...... 375C.4.2 Section 2.2 A brief CSS 2.1 tutorial for XML

...... 375C.4.3 Section 2.3 The CSS 2.1 processing model

........... 375C.4.4 Section 3.1 Definitions

............ 375C.4.5 Section 4.1 Syntax

.......... 375C.4.6 Section 4.1.1 Tokenization

........ 376C.4.7 Section 4.1.3 Characters and case

... 376C.4.8 Section 4.1.7 Rule sets, declaration blocks, and selectors

...... 376C.4.9 Section 4.2 Rules for handling parsing errors

....... 376C.4.10 Section 4.3.1 Integers and real numbers

........... 376C.4.11 Section 4.3.2 Lengths

33330 Mar 2011 19:50

Changes

......... 376C.4.12 Section 4.3.4 URLs and URIs

.......... 376C.4.13 Section 5.1 Pattern matching

....... 376C.4.14 Section 5.7 Adjacent sibling selectors

.... 377C.4.15 Section 5.8.1 Matching attributes and attribute values

..... 377C.4.16 Section 5.8.2 Default attribute values in DTDs

........... 377C.4.17 Section 5.9 ID selectors
C.4.18 Section 5.11.3 The dynamic pseudo-classes: :hover, :active, and

................. 377:focus

..... 377C.4.19 Section 5.11.4 The language pseudo-class: :lang

..... 377C.4.20 Section 5.12.2 The :first-letter pseudo-element

........... 377C.4.21 Section 6.2 Inheritance

......... 377C.4.22 Section 6.2.1 The ’inherit’ value

......... 377C.4.23 Section 6.3 The @import rule

.......... 378C.4.24 Section 6.4 The Cascade

......... 378C.4.25 Section 6.4.1 Cascading order

..... 378C.4.26 Section 6.4.3 Calculating a selector’s specificity

......... 378C.4.27 Section 7.2.1 The @media rule

........ 378C.4.28 Section 7.3 Recognized media types

.......... 378C.4.29 Section 7.3.1 Media groups

.......... 378C.4.30 Section 8.1 Box dimensions

......... 379C.4.31 Section 8.3 Margin properties

......... 379C.4.32 Section 8.3.1 Collapsing margins

.......... 379C.4.33 Section 8.5.3 Border style

.......... 379C.4.34 Section 9.1.1 The viewport

........ 379C.4.35 Section 9.2.4 The ’display’ property

...... 379C.4.36 Section 9.3.1 Choosing a positioning scheme

.......... 379C.4.37 Section 9.3.2 Box offsets

....... 380C.4.38 Section 9.4.2 Inline formatting context

........ 380C.4.39 Section 9.4.3 Relative positioning

............ 380C.4.40 Section 9.5 Floats

........ 380C.4.41 Section 9.5.1 Positioning the float

...... 381C.4.42 Section 9.5.2 Controlling flow next to floats
C.4.43 Section 9.8 Comparison of normal flow, floats, and absolute posi-

................. 381tioning

...... 381C.4.44 Section 10.1 Definition of "containing block"

.......... 381C.4.45 Section 10.2 Content width

.381C.4.46 Section 10.3.3 Block-level, non-replaced elements in normal flow

... 381C.4.47 Section 10.3.8 Absolutely positioning, replaced elements

...... 381C.4.48 Section 10.4 Minimum and maximum widths

..... 381C.4.49 Section 10.6 Calculating heights and margins

...... 381C.4.50 Section 10.7 Minimum and maximum heights

........ 382C.4.51 Section 10.8 Line height calculations

....... 382C.4.52 Section 10.8.1 Leading and half-leading

30 Mar 2011 19:50334

Changes

........ 382C.4.53 Section 11.1 Overflow and clipping

........... 382C.4.54 Section 11.1.1 Overflow

........... 382C.4.55 Section 11.1.2 Clipping

........... 382C.4.56 Section 11.2 Visibility

.... 382C.4.57 Section 12.1 The :before and :after pseudo-elements

........ 383C.4.58 Section 12.2 The ’content’ property

... 383C.4.59 Section 12.3.2 Inserting quotes with the ’content’ property

..... 383C.4.60 Section 12.4 Automatic counters and numbering

... 383C.4.61 Section 12.4.3 Counters in elements with ’display: none’

......... 383C.4.62 Section 14.2 The background

......... 384C.4.63 Section 15.1 Fonts Introduction

....... 384C.4.64 Section 15.2 Font matching algorithm

.......... 384C.4.65 Section 15.2.2 Font family

........ 384C.4.66 Section 15.3.1 Generic font families

........... 384C.4.67 Section 15.4 Font styling

........... 384C.4.68 Section 15.5 Small-caps

.......... 385C.4.69 Section 15.6 Font boldness

........... 385C.4.70 Section 15.7 Font size

........... 385C.4.71 Section 16.1 Indentation

........... 385C.4.72 Section 16.2 Alignment

.. 385C.4.73 Section 16.3.1 Underlining, over lining, striking, and blinking

.......... 385C.4.74 Section 16.5 Capitalization

.......... 385C.4.75 Section 16.6 White space

........ 385C.4.76 Section 17.1 Introduction to tables

........ 386C.4.77 Section 17.2 The CSS table model

....... 386C.4.78 Section 17.2.1 Anonymous table objects

.... 386C.4.79 Section 17.4 Tables in the visual formatting model

...... 386C.4.80 Section 17.5 Visual layout of table contents

..... 386C.4.81 Section 17.5.1 Table layers and transparency

....... 387C.4.82 Section 17.5.2 Table width algorithms

........ 387C.4.83 Section 17.5.2.1 Fixed table layout

....... 387C.4.84 Section 17.5.2.2 Automatic table layout

..... 387C.4.85 Section 17.5.4 Horizontal alignment in a column

..... 387C.4.86 Section 17.5.5 Dynamic row and column effects

...... 387C.4.87 Section 17.6.1 The separated borders model

...... 387C.4.88 Section 17.6.2 The collapsing borders model

.......... 388C.4.89 Section 18.2 System Colors

......... 388C.4.90 Section 18.4 Dynamic outlines

....... 388C.4.91 Section 18.4.1 Outlines and the focus

...... 388C.4.92 Appendix D Default style sheet for HTML 4

.... 388C.5 Errata since the Candidate Recommendation of July 2007

............ 388C.5.1 Section 1.4.2.1 Value

...... 388C.5.2 Section 2.3 The CSS 2.1 processing model

33530 Mar 2011 19:50

Changes

........... 388C.5.3 Section 3.1 Definitions

.......... 388C.5.4 Section 4.1.1 Tokenization

...... 389C.5.5 Section 4.1.2.2 Informative Historical Notes

........ 389C.5.6 Section 4.1.3 Characters and case

........ 389C.5.7 Section 4.1.3 Characters and case

........ 389C.5.8 Section 4.1.3 Characters and case

........ 389C.5.9 Section 4.1.3 Characters and case

........... 390C.5.10 Section 4.1.5 At-rules

... 390C.5.11 Section 4.1.7 Rule sets, declaration blocks, and selectors

...... 390C.5.12 Section 4.2 Rules for handling parsing errors

...... 390C.5.13 Section 4.2 Rules for handling parsing errors

........... 390C.5.14 Section 4.3.2 Lengths

........... 391C.5.15 Section 4.3.5 Counters

.... 391C.5.16 Section 5.8.1 Matching attributes and attribute values

..... 391C.5.17 Section 5.8.2 Default attribute values in DTDs

..... 391C.5.18 Section 5.11.4 The language pseudo-class: :lang

... 391C.5.19 Section 5.12.3 The :before and :after pseudo-elements

......... 391C.5.20 Section 6.3 The @import rule

......... 391C.5.21 Section 6.3 The @import rule

......... 392C.5.22 Section 6.4.1 Cascading order

......... 392C.5.23 Section 6.4.1 Cascading order

......... 392C.5.24 Section 7.2.1 The @media rule

......... 392C.5.25 Section 8.3.1 Collapsing margins

......... 393C.5.26 Section 8.3.1 Collapsing margins

......... 393C.5.27 Section 8.3.1 Collapsing margins

.... 393C.5.28 Section 9.2.2 Inline-level elements and inline boxes

........ 393C.5.29 Section 9.2.4 The ’display’ property

.... 393C.5.30 Section 9.3.2 Box offsets: ’top’, ’right’, ’bottom’, ’left’

............ 393C.5.31 Section 9.5 Floats

............ 394C.5.32 Section 9.5 Floats

.394C.5.33 Section 9.5.2 Controlling flow next to floats: the ’clear’ property

......... 394C.5.34 Section 9.6.1 Fixed positioning

.. 394C.5.35 Section 9.9.1 Specifying the stack level: the ’z-index’ property

...... 394C.5.36 Section 10.1 Definition of "containing block"

...... 395C.5.37 Section 10.3 Calculating widths and margins

...... 395C.5.38 Section 10.3.1 Inline, non-replaced elements

....... 395C.5.39 Section 10.3.2 Inline, replaced elements

....... 395C.5.40 Section 10.3.2 Inline, replaced elements

.395C.5.41 Section 10.3.3 Block-level, non-replaced elements in normal flow

.. 396C.5.42 Section 10.3.7 Absolutely positioned, non-replaced elements

.. 396C.5.43 Section 10.3.7 Absolutely positioned, non-replaced elements

... 397C.5.44 Section 10.3.8 Absolutely positioned, replaced elements

... 397C.5.45 Section 10.3.8 Absolutely positioned, replaced elements

30 Mar 2011 19:50336

Changes

... 397C.5.46 Section 10.3.8 Absolutely positioned, replaced elements

..... 397C.5.47 Section 10.5 Content height: the ’height’ property

...... 397C.5.48 Section 10.6.2 Inline replaced elements [¼]

.. 397C.5.49 Section 10.6.4 Absolutely positioned, non-replaced elements

... 398C.5.50 Section 10.6.5 Absolutely positioned, replaced elements

....... 398C.5.51 Section 10.8.1 Leading and half-leading

..... 398C.5.52 Section 11.1.1 Overflow: the ’overflow’ property

...... 398C.5.53 Section 11.1.2 Clipping: the ’clip’ property

........ 398C.5.54 Section 12.2 The ’content’ property

......... 399C.5.55 Section 12.4.2 Counter styles

............ 399C.5.56 Section 12.5 Lists
C.5.57 Section 12.5.1 Lists: the ’list-style-type’, ’list-style-image’,

........ 399’list-style-position’, and ’list-style’ properties
C.5.58 Section 12.5.1 Lists: the ’list-style-type’, ’list-style-image’,

........ 399’list-style-position’, and ’list-style’ properties
C.5.59 Section 12.5.1 Lists: the ’list-style-type’, ’list-style-image’,

........ 399’list-style-position’, and ’list-style’ properties

...... 400C.5.60 Section 13.2 Page boxes: the @page rule
400C.5.61 Section 13.2.1.1 Rendering page boxes that do not fit a target sheet

...... 400C.5.62 Section 13.2.3 Content outside the page box
C.5.63 Section 13.3.1 Page break properties: ’page-break-before’,

......... 400’page-break-after’, ’page-break-inside’
C.5.64 Section 13.3.1 Page break properties: ’page-break-before’,

......... 400’page-break-after’, ’page-break-inside’

.. 400C.5.65 Section 13.3.2 Breaks inside elements: ’orphans’, ’widows’

.. 401C.5.66 Section 13.3.2 Breaks inside elements: ’orphans’, ’widows’

........ 401C.5.67 Section 13.3.3 Allowed page breaks

........ 401C.5.68 Section 13.3.3 Allowed page breaks

........ 401C.5.69 Section 13.3.3 Allowed page breaks

........ 401C.5.70 Section 13.3.5 "Best" page breaks

......... 401C.5.71 Section 14.2 The background

......... 402C.5.72 Section 14.2 The background
C.5.73 Section 14.2.1 Background properties: ’background-color’, ’back-
ground-image’, ’background-repeat’, ’background-attachment’, ’back-

.......... 402ground-position’, and ’background’

.... 402C.5.74 Section 15.6 Font boldness: the ’font-weight’ property

.... 403C.5.75 Section 16.6 Whitespace: the ’white-space’ property

.... 403C.5.76 Section 16.6.1 The ’white-space’ processing model

....... 403C.5.77 Section 17.2.1 Anonymous table objects

....... 403C.5.78 Section 17.2.1 Anonymous table objects

.... 403C.5.79 Section 17.4 Tables in the visual formatting model

..... 404C.5.80 Section 17.5.4 Horizontal alignment in a column

...... 404C.5.81 Section 18.1 Cursors: the ’cursor’ property

........ 404C.5.82 Section B.2 Informative references

33730 Mar 2011 19:50

Changes

...... 404C.5.83 Appendix D. Default style sheet for HTML 4

...... 404C.5.84 Appendix D. Default style sheet for HTML 4

.......... 404C.5.85 Section E.2 Painting order

........ 404C.5.86 Appendix G. Grammar of CSS 2.1

........... 405C.5.87 Section G.1 Grammar

.......... 405C.5.88 Section G.2 Lexical scanner

.......... 405C.5.89 Section G.2 Lexical scanner

.......... 405C.5.90 Section G.2 Lexical scanner

.......... 405C.5.91 Section G.2 Lexical scanner

............ 406C.5.92 Appendix I. Index

.... 406C.6 Errata since the Candidate Recommendation of April 2009

...... 406C.6.1 Section 4.2 Rules for handling parsing errors

........ 406C.6.2 Section 13.3.3 Allowed page breaks

..... 406C.6.3 Section 15.3 Font family: the ’font-family’ property

............ 406C.6.4 Section 15.3.1.1 serif

...... 406C.6.5 Section 15.7 Font size: the ’font-size’ property

........ 407C.6.6 Section 17.5.2.1 Fixed table layout

......... 407C.6.7 Section 17.5.3 Table height layout

......... 407C.6.8 Appendix G. Grammar of CSS 2.1

... 407C.7 Errata since the Candidate Recommendation of September 2009

............ 407C.7.1 Section 1.4.2.1 Value

........... 407C.7.2 Section 3.1 Definitions

.......... 408C.7.3 Section 4.1.1 Tokenization

.......... 408C.7.4 Section 4.1.1 Tokenization

.......... 408C.7.5 Section 4.1.1 Tokenization

.......... 408C.7.6 Section 4.1.1 Tokenization

...... 409C.7.7 Section 4.1.2.2 Informative Historical Notes

........ 409C.7.8 Section 4.1.3 Characters and case

........ 409C.7.9 Section 4.1.3 Characters and case

...... 409C.7.10 Section 4.1.8 Declarations and properties

...... 409C.7.11 Section 4.2 Rules for handling parsing errors

........... 409C.7.12 Section 4.3.2 Lengths

........... 409C.7.13 Section 4.3.2 Lengths

......... 410C.7.14 Section 4.3.4 URLs and URIs

......... 410C.7.15 Section 4.3.4 URLs and URIs

..... 410C.7.16 Section 5.8.2 Default attribute values in DTDs

..... 411C.7.17 Section 5.11.4 The language pseudo-class: :lang

......... 411C.7.18 Section 5.12 Pseudo-elements

...... 411C.7.19 Section 5.12.1 The :first-line pseudo-element

..... 411C.7.20 Section 5.12.2 The :first-letter pseudo-element

........... 411C.7.21 Section 6.2 Inheritance

.. 411C.7.22 Section 6.4.4 Precedence of non-CSS presentational hints

........ 412C.7.23 Section 7.3 Recognized media types

30 Mar 2011 19:50338

Changes

......... 412C.7.24 Section 8.3.1 Collapsing margins

......... 412C.7.25 Section 8.3.1 Collapsing margins

.... 412C.7.26 Section 9.2.1 Block-level elements and block boxes

....... 413C.7.27 Section 9.2.1.1 Anonymous block boxes

....... 413C.7.28 Section 9.2.1.1 Anonymous block boxes

....... 413C.7.29 Section 9.2.1.1 Anonymous block boxes

....... 413C.7.30 Section 9.2.1.1 Anonymous block boxes

.... 413C.7.31 Section 9.2.2 Inline-level elements and inline boxes

.......... 413C.7.32 Section 9.2.3 Run-in boxes

........ 414C.7.33 Section 9.2.4 The ’display’ property

........ 414C.7.34 Section 9.2.4 The ’display’ property

......... 415C.7.35 Section 9.3 Positioning schemes

........... 415C.7.36 Section 9.4 Normal flow

.... 415C.7.37 Section 9.3.2 Box offsets: ’top’, ’right’, ’bottom’, ’left’

............ 416C.7.38 Section 9.5 Floats

............ 416C.7.39 Section 9.5 Floats

.417C.7.40 Section 9.5.2 Controlling flow next to floats: the ’clear’ property

.417C.7.41 Section 9.5.2 Controlling flow next to floats: the ’clear’ property

.417C.7.42 Section 9.5.2 Controlling flow next to floats: the ’clear’ property

.418C.7.43 Section 9.5.2 Controlling flow next to floats: the ’clear’ property

....... 418C.7.44 Section 14.2.1 Background properties

.. 418C.7.45 Section 9.9.1 Specifying the stack level: the ’z-index’ property
C.7.46 Section 9.10 Text direction: the ’direction’ and ’unicode-bidi’ proper-

.................. 418ties
C.7.47 Section 9.10 Text direction: the ’direction’ and ’unicode-bidi’ proper-

.................. 419ties
C.7.48 Section 9.10 Text direction: the ’direction’ and ’unicode-bidi’ proper-

.................. 419ties

...... 419C.7.49 Section 10.1 Definition of "containing block"

..... 420C.7.50 Section 10.2 Content width: the ’width’ property

..... 420C.7.51 Section 10.2 Content width: the ’width’ property

..... 420C.7.52 Section 10.2 Content width: the ’width’ property

..... 420C.7.53 Section 10.5 Content height: the ’height’ property

..... 420C.7.54 Section 10.5 Content height: the ’height’ property

.421C.7.55 Section 10.6.7 ’Auto’ heights for block formatting context roots
C.7.56 Section 10.7 Minimum and maximum heights: ’min-height’ and

............... 421’max-height’
C.7.57 Section 10.8 Line height calculations: the ’line-height’ and ’verti-

.............. 421cal-align’ properties
C.7.58 Section 10.8 Line height calculations: the ’line-height’ and ’verti-

.............. 422cal-align’ properties

....... 422C.7.59 Section 10.8.1 Leading and half-leading

....... 423C.7.60 Section 10.8.1 Leading and half-leading

....... 423C.7.61 Section 10.8.1 Leading and half-leading

33930 Mar 2011 19:50

Changes

........ 423C.7.62 Section 11.1 Overflow and clipping

..... 423C.7.63 Section 11.1.1 Overflow: the ’overflow’ property

..... 424C.7.64 Section 11.1.1 Overflow: the ’overflow’ property

..... 424C.7.65 Section 11.1.1 Overflow: the ’overflow’ property

...... 424C.7.66 Section 11.1.2 Clipping: the ’clip’ property

............ 424C.7.67 Section 12.5 Lists
C.7.68 Section 12.5.1 Lists: the ’list-style-type’, ’list-style-image’,

........ 425’list-style-position’, and ’list-style’ properties
C.7.69 Section 12.5.1 Lists: the ’list-style-type’, ’list-style-image’,

........ 425’list-style-position’, and ’list-style’ properties
C.7.70 Section 12.5.1 Lists: the ’list-style-type’, ’list-style-image’,

........ 425’list-style-position’, and ’list-style’ properties
C.7.71 Section 12.5.1 Lists: the ’list-style-type’, ’list-style-image’,

........ 425’list-style-position’, and ’list-style’ properties
C.7.72 Section 12.5.1 Lists: the ’list-style-type’, ’list-style-image’,

........ 425’list-style-position’, and ’list-style’ properties

...... 426C.7.73 Section 13.2 Page boxes: the @page rule

.426C.7.74 Section 13.2.2 Page selectors: selecting left, right, and first pages

.. 426C.7.75 Section 13.3.2 Breaks inside elements: ’orphans’, ’widows’

........ 427C.7.76 Section 13.3.3 Allowed page breaks

.... 427C.7.77 Section 15.3 Font family: the ’font-family’ property

........ 427C.7.78 Section 15.3.1 Generic font families

.... 428C.7.79 Section 15.6 Font boldness: the ’font-weight’ property

.... 428C.7.80 Section 15.6 Font boldness: the ’font-weight’ property

..... 428C.7.81 Section 15.7 Font size: the ’font-size’ property

.... 429C.7.82 Section 16.1 Indentation: the ’text-indent’ property

.... 429C.7.83 Section 16.1 Indentation: the ’text-indent’ property

..... 429C.7.84 Section 16.2 Alignment: the ’text-align’ property

..... 429C.7.85 Section 16.2 Alignment: the ’text-align’ property
C.7.86 Section 16.3.1 Underlining, overlining, striking, and blinking: the

............ 430’text-decoration’ property
C.7.87 Section 16.3.1 Underlining, overlining, striking, and blinking: the

............ 430’text-decoration’ property
C.7.88 Section 16.4 Letter and word spacing: the ’letter-spacing’ and

............ 431’word-spacing’ properties

.... 431C.7.89 Section 16.6 White space: the ’white-space’ property

.... 432C.7.90 Section 16.6.1 The ’white-space’ processing model

.... 432C.7.91 Section 16.6.1 The ’white-space’ processing model

.... 432C.7.92 Section 16.6.1 The ’white-space’ processing model

........ 432C.7.93 Section 17.2 The CSS table model

....... 432C.7.94 Section 17.2.1 Anonymous table objects

....... 432C.7.95 Section 17.2.1 Anonymous table objects

.... 432C.7.96 Section 17.4 Tables in the visual formatting model

.... 433C.7.97 Section 17.4 Tables in the visual formatting model

30 Mar 2011 19:50340

Changes

....... 433C.7.98 Section 17.5.2.2 Automatic table layout

....... 434C.7.99 Section 17.5.3 Table height algorithms

..... 434C.7.100 Section 17.5.4 Horizontal alignment in a column

........ 434C.7.101 Section B.2 Informative references

...... 434C.7.102 Section D. Default style sheet for HTML 4

.......... 435C.7.103 Section E.2 Painting order

........ 435C.7.104 Appendix G Grammar of CSS 2.1

..... 435C.8 Changes since the working draft of 7 December 2010

........... 435C.8.1 8.3.1 Collapsing margins

......... 435C.8.2 10.8.1 Leading and half-leading

........ 435C.8.3 10.3 Calculating widths and margins

........... 435C.8.4 14.3 Gamma correction

......... 436C.8.5 11.1.2 Clipping: the ’clip’ property

......... 436C.8.6 9.4.2 Inline formatting contexts

......... 436C.8.7 10.3.2 Inline, replaced elements

........ 436C.8.8 10.1 Definition of "containing block"

... 437C.8.9 13.2.2 Page selectors: selecting left, right, and first pages

........... 437C.8.10 8.3.1 Collapsing margins
C.8.11 10.8 Line height calculations: the ’line-height’ and ’vertical-align’

................ 437properties

......... 438C.8.12 10.8.1 Leading and half-leading

........ 438C.8.13 10.6.1 Inline, non-replaced elements

...... 438C.8.14 9.5.1 Positioning the float: the ’float’ property

......... 438C.8.15 9.2.1.1 Anonymous block boxes

........ 439C.8.16 5.12.1 The :first-line pseudo-element

...... 439C.8.17 16.6 White space: the ’white-space’ property
C.8.18 12.5.1 Lists: the ’list-style-type’, ’list-style-image’, ’list-style-position’,

............ 439and ’list-style’ properties

... 440C.8.19 9.7 Relationships between ’display’, ’position’, and ’float’

......... 440C.8.20 9.4.2 Inline formatting contexts

............. 440C.8.21 4.1.9 Comments
C.8.22 12.5.1 Lists: the ’list-style-type’, ’list-style-image’, ’list-style-position’,

............ 440and ’list-style’ properties

...... 441C.8.23 9.5.1 Positioning the float: the ’float’ property

........... 441C.8.24 9.3 Positioning schemes

.441C.8.25 9.10 Text direction: the ’direction’ and ’unicode-bidi’ properties
C.8.26 16.3.1 Underlining, overlining, striking, and blinking: the ’text-deco-

............... 442ration’ property
C.8.27 16.3.1 Underlining, overlining, striking, and blinking: the ’text-deco-

............... 442ration’ property

.442C.8.28 10.4 Minimum and maximum widths: ’min-width’ and ’max-width’

...... 442C.8.29 9.3.2 Box offsets: ’top’, ’right’, ’bottom’, ’left’

......... 443C.8.30 9.2.1.1 Anonymous block boxes

...... 443C.8.31 17.4 Tables in the visual formatting model

34130 Mar 2011 19:50

Changes

........ 443C.8.32 11.1.2 Clipping: the ’clip’ property

........ 444C.8.33 13.2 Page boxes: the @page rule

............ 445C.8.34 4.1.1 Tokenization

........ 445C.8.35 4.2 Rules for handling parsing errors

............. 445C.8.36 3.1 Definitions

........... 445C.8.37 4.3.4 URLs and URIs

.............. 445C.8.38 9.5 Floats

....... 445C.8.39 11.1.1 Overflow: the ’overflow’ property

......... 446C.8.40 9.2.1.1 Anonymous block boxes

....... 446C.8.41 16.2 Alignment: the ’text-align’ property

.............. 446C.8.42 9.5 Floats

......... 446C.8.43 9.4.2 Inline formatting contexts

........... 447C.8.44 5.12 Pseudo-elements

.............. 447C.8.45 9.5 Floats

.............. 447C.8.46 9.5 Floats
C.8.47 14.2.1 Background properties: ’background-color’, ’back-
ground-image’, ’background-repeat’, ’background-attachment’, ’back-

.......... 447ground-position’, and ’background’

.......... 447C.8.48 9.2.4 The ’display’ property

........... 450C.8.49 6.1.2 Computed values

......... 450C.8.50 10.3.2 Inline, replaced elements

.450C.8.51 Section 9.5.2 Controlling flow next to floats: the ’clear’ property

............ 451C.8.52 G.2 Lexical scanner

.451C.8.53 Section 9.5.2 Controlling flow next to floats: the ’clear’ property

.............. 451C.8.54 9.5 Floats

This appendix is informative, not normative.

CSS 2.1 is an updated revision of CSS2. The changes between the CSS2 specifi-
cation (see [CSS2]) and this specification fall into five groups: known errors, [p. 366]
typographical errors, clarifications, [p. 374] changes [p. 343] and additions. [p. 342]
Typographical errors are not listed here.

In addition, this chapter lists the errata (part 1 [p. 388] and part 2) [p. 406] that
were subsequently applied to CSS 2.1 since it became a Candidate Recommenda-
tion in July 2007.

This chapter is not a complete list of changes. Minor editorial changes and most
changes to examples are also not listed here.

C.1 Additional property values

30 Mar 2011 19:50342

Changes

C.1.1 Section 4.3.6 Colors
New color value: ’orange’

C.1.2 Section 9.2.4 The ’display’ property
New ’display’ value: ’inline-block’

C.1.3 Section 12.2 The ’content’ property
New ’content’ values ’none’ and ’normal’. (The values ’none’ and ’normal’ are equiva-
lent in CSS 2.1, but may have different functions in CSS3.)

C.1.4 Section 16.6 White space: the ’white-space’ property
New ’white-space’ values: ’pre-wrap’ and ’pre-line’

C.1.5 Section 18.1 Cursors: the ’cursor’ property
New ’cursor’ value: ’progress’

C.2 Changes

C.2.1 Section 1.1 CSS 2.1 vs CSS 2
This new section is added to explain the motivation for CSS2.1 and its relation to
CSS2.

C.2.2 Section 1.2 Reading the specification
This section (formerly Section 1.1) has been marked non-normative.

C.2.3 Section 1.3 How the specification is organized
This section (formerly Section 1.2) has been marked non-normative.

C.2.4 Section 1.4.2.1 Value
This section (formerly unnumbered under 1.3.2) notes that value types are specified
in terms of tokens and that spaces may appear between tokens in values. A note
explains that spaces are required between some tokens.

34330 Mar 2011 19:50

Changes

C.2.5 Section 1.4.2.6 Media groups
This section (formerly unnumbered under 1.3.2) now declares the Media line in prop-
erty definitions to be non-normative.

C.2.6 Section 1.4.2.7 Computed value
A new line is added to each property definition specifying what the computed values
are for the property. (This defines what level of computation is done to a property
value before inheritance and before certain other calculations.)

C.2.7 Section 1.4.4 Notes and examples
This section (formerly 1.3.4) now specifies that HTML examples lacking DOCTYPE
declarations are SGML Text Entities conforming to the HTML 4.01 Strict DTD
[HTML4]. The markup for many examples has been reformulated to either include a
DOCTYPE or conform to this definition.

C.2.8 Section 1.5 Acknowledgments
This section (formerly 1.4) has been updated to reflect contributions to CSS2.1 and
has been marked non-normative.

C.2.9 Section 3.2 Conformance
Support for user style sheets is now required (in most cases), rather than just recom-
mended.

Support for turning of author style sheets is now required.

Application of CSS properties to form controls is explicitly undefined. Authors are
recommended to treat form control styling capabilities in UAs as experimental.

C.2.10 Section 3.3 Error Conditions
This section changed to say that error handling is specified in most cases.

C.2.11 Section 4.1.1 Tokenization
Added INVALID token and rules for its definition.

An optional hyphen, "-", is now allowed at the beginning of an "ident" for vendor
extensions. (See section 4.1.2.1)

The underscore character ("_") is allowed in identifiers. The definitions of the
lexical macros "nmstart" and "nmchar" now include it. See also section 4.1.2.1
(Vendor extensions).

30 Mar 2011 19:50344

Changes

The "escape" macro has been modified to allow the escaping of any character
except newlines, form feeds, and hex digits (to avoid conflict with Unicode escapes).

Modified "string1" and "string2" macros by defining allowed characters through
excluding disallowed characters. This allows invisible ASCII characters to be
included in a string.

C.2.12 Section 4.1.3 Characters and case
Updated prose about identifiers (second bullet point) to match changes in the
tokenization (above).

Excluded null (0x0) character from CSS numerical escapes and indicate that it is
undefined in CSS2.1 what happens if such a character is encountered.

Allowed the use of U+FFFD as a replacement for characters outside the range
allowed by Unicode.

CSS is no longer case-insensitive, but case-sensitive with exceptions. Changed
"All CSS style sheets are case-insensitive, except for parts that are not under the
control of CSS" to "All CSS syntax is case-insensitive within the ASCII range (i.e.,
[a-z] and [A-Z] are equivalent), except for parts that are not under the control of
CSS." See also the change to case-sensitivity of counters in 4.3.5. [p. 345]

C.2.13 Section 4.2 Rules for handling parsing errors
Defined parsing in the cases of Malformed Declarations, Unexpected End of
Stylesheet, and Unexpected End of String.

C.2.14 Section 4.3 Values
Sections 4.3.7 (Angles), 4.3.8 (Times), and 4.3.9 (Frequencies) have been moved to
the informative Appendix A.

C.2.15 Section 4.3.2 Lengths
Added a paragraph on heuristics for finding the x-height of a font.

C.2.16 Section 4.3.4 URLs and URIs
Updated URI references to RFC3986.

C.2.17 Section 4.3.5 Counters
Changed "Counters are denoted by identifiers" to "Counters are denoted by
case-sensitive identifiers" (see also the change to case-sensitivity in 4.1.3 [p. 345]).

34530 Mar 2011 19:50

Changes

C.2.18 Section 4.3.6 Colors
Defined the numeric values corresponding to color keywords instead of referencing
HTML4 for those values.

UAs are now allowed to intelligently map colors outside the gamut into the gamut
instead of simply clipping them into the range of the gamut.

C.2.19 Section 4.3.8 Unsupported Values
Added this section to recommend that unsupported properties and values be ignored
as if they were invalid.

C.2.20 Section 4.4 CSS style sheet representation
Changed character encoding detection rule 2 to include a BOM and referred to addi-
tional rules below.

Added rule 4 to provide for use of the referring style sheet or document’s character
encoding.

Added rule 5 to require falling back to UTF-8.

Removed the restriction on using @charset in embedded style sheets.

Allowed a BOM to precede the @charset rule.

Added requirement that @charset rule must be a literal ’@charset"...";’, not a
CSS-syntax equivalent.

Added requirement to support for UTF-8 at minimum.

Specified that any @charset rule not at the beginning of the style sheet must be
ignored.

Removed note on theoretical problem with @charset problem and precisely
defined rules for character encoding detection based on @charset and/or BOM.

Specified that UAs must ignore style sheets in unknown encodings.

C.2.21 Section 5.8.1 Matching attributes and attribute values
BCP 47 replaces RFC 1766.

C.2.22 Section 5.8.3 Class selectors
Class selectors are allowed for other formats than HTML.

Added a note about matching classes in formats with multiple class attributes per
element. The behavior is non-normative, because, at the time of writing, there exist
no such formats.

30 Mar 2011 19:50346

Changes

C.2.23 Section 5.9 ID selectors
Specified how to match elements with two or more ID attributes.

C.2.24 Section 5.10 Pseudo-elements and pseudo-classes
Removed exception for HTML UAs that allowed them (and only them) to ignore
’:first-letter’ and ’:first-line’.

C.2.25 Section 5.11.2 The link pseudo-classes: :link and
:visited
UAs may return a :visited link to :link status at some point. (This was previously a
note, but is now normative.)

Added a note about privacy concerns with link pseudo classes and allowed UAs to
treat :visited as :link.

C.2.26 Section 5.11.4 The language pseudo-class: :lang
The identifier C in ’:lang(C)’ need not be a valid language code, but it must not be
empty.

C.2.27 Section 5.12.1 The :first-line pseudo-element
’:first-line’ also applies to inline blocks, table captions and table cells. Added a defini-
tion of "first formatted line" to make the rules about which line is the first line more
precise.

UAs are no longer forbidden from applying more properties than the given list.

C.2.28 Section 5.12.2 The :first-letter pseudo-element
More precise definition of first letter. Added rules for cases where the first letter is in
an inline block or table cell. Added rules for cases when preceding punctuation is in
a different element from the first letter itself.

UAs may apply other properties to first letters than the given list.

Unicode character classes Pi and Pf added to the definition of punctuation.

C.2.29 Section 6.1 Specified, computed, and actual values
Redefined "computed value" and created the concept of "used value" so that inheri-
tance can be performed without laying out the document. This change has the effect
of allowing (requiring) percentages to be inherited as percentages and affects many
other layout calculations throughout the spec.

34730 Mar 2011 19:50

Changes

Since computed value of a property can now also be a percentage. In particular,
the following properties now inherit the percentage if the specified value is a percent-
age:

background-position
bottom, left, right, top
height, width
margin-bottom, margin-left, margin-right, margin-top,
min-height, min-width
padding-bottom, padding-left, padding-right, padding-top
text-indent

Note that only ’text-indent’ inherits by default, the others only inherit if the ’inherit’
keyword is specified.

C.2.30 Section 6.4.1 Cascading order
Changed suggestion that user be able to turn off author styles to a requirement.

C.2.31 Section 6.4.3 Calculating a selector’s specificity
The "style" attribute now has a higher specificity than any style rule.

Pseudo-elements are now counted with elements in calculating a a selector’s
specificity.

C.2.32 Section 6.4.4 Precedence of non-CSS presentational
hints
"Non-CSS presentational hints" no longer exist, with the exception of a small set of
attributes in HTML.

C.2.33 Section 7.3 Recognized Media Types
Added ’speech’ media type.

Marked "Media" field in property descriptions informative.

C.2.34 Section 7.3.1 Media Groups
Marked this section informative.

Added sound to ’handheld’ in media type/media group table.

Changed ’tactile’ to be both ’static’ and ’interactive’.

30 Mar 2011 19:50348

Changes

C.2.35 Section 8.3 Margin properties
If the containing block’s width depends on an element with percentage margins, then
the resulting layout is undefined in CSS 2.1.

C.2.36 Section 8.3.1 Collapsing margins
In the definition of "collapsing margins", added "non-empty content" and "clearance"
to the parenthetical list of things that prevent consecutive margins from being adjoin-
ing.

Vertical margins of elements with ’overflow’ other than ’visible’ no longer collapse
with their in-flow children.

Defined how margins collapse through an element with adjoining top and bottom
margins.

Added that margins of the root element’s box do not collapse.

More rigorously defined "adjoining" for margin collapsing [p. 117] .

Sixth bullet, second sub-bullet: to find the position of the top border edge, assume
the element has a bottom (rather than top) border.

Margins of relatively positioned elements do sometimes collapse.

C.2.37 Section 8.4 Padding properties
If the containing block’s width depends on an element with percentage padding, then
the resulting layout is undefined in CSS 2.1.

C.2.38 Section 8.5.2 Border color
’transparent’ can now be specified independently for each border side, on par with
<color>.

C.2.39 Section 8.5.3 Border style
3D border styles (’groove’, ’ridge’, ’inset’, ’outset’) now depend on the corresponding
border-color rather than on ’color’.

C.2.40 Section 8.6 The box model for inline elements in bidi-
rectional context
Added this new section to specify layout of inline boxes when affected by bidi.

34930 Mar 2011 19:50

Changes

C.2.41 Section 9.1.2 Containing blocks
Removed paragraphs about the initial containing block, as this is now defined differ-
ently. (See changes to section 10.1 [p. 353] .)

C.2.42 Section 9.2.1.1 Anonymous block boxes
Added a paragraph to define formatting when an inline box contains a block box.

Specified what property values are applied to anonymous boxes.

C.2.43 Section 9.2.2.1 Anonymous inline boxes
Specified that collapsed white space does not generate anonymous inline boxes.

C.2.44 Section 9.2.3 Run-in boxes
Changed run-in rules so that a) run-ins that contain blocks become blocks b) run-ins
can only run into sibling blocks and c) run-ins cannot run into other run-ins.

C.2.45 Section 9.2.4 The ’display’ property
The ’marker’ and ’compact’ values of the ’display’ property are not part of CSS 2.1.
Text relating to these values has been removed throughout the specification.

Defined the computed value of ’display’ as the specified value except for posi-
tioned and floating elements and for the root element. The computed value of
’display’ for these elements is defined in section 9.7 [p. 153] and is slightly different
from the definition in CSS2.

Conforming HTML UAs are no longer allowed to ignore the ’display’ property.

C.2.46 Section 9.3.1 Choosing a positioning scheme
The ’position’ property now applies to all elements, including generated content.

The effect of relative positioning on table captions and internal table elements is
undefined in CSS 2.1.

For fixed positioning, introduced a conflict between this section and section 10.1
rule 3. See howcome [p. ??] [member-only] for rationale.

Forbid UAs from paginating the content of fixed boxes.

UAs are allowed to treat all values of ’position’ as ’static’ on the root element.

C.2.47 Section 9.3.2 Box offsets
Defined computed values of ’top’, ’right’, ’bottom’, ’left’ based on the value of ’posi-
tion’.

30 Mar 2011 19:50350

Changes

Percentage offsets are no longer undefined for containing blocks without an
explicit height.

C.2.48 Section 9.4.1 Block formatting contexts
Specified that floats, absolutely positioned elements, inline-blocks, table-cells,
table-captions, and elements with ’overflow’ other than ’visible’ establish new block
formatting contexts.

In the paragraph about the position of a box’s outer edge with respect to its
containing block, except boxes that establish a new block formatting context, as they
may become narrower due to floats.

C.2.49 Section 9.4.2 Inline formatting context
Specified that the effect of ’justify’ on the content of a line box does not affect the
contents of inline-table and inline-block boxes.

Empty line boxes are now required to be treated as zero-height and ignored in
margin collapsing.

C.2.50 Section 9.4.3 Relative positioning
Added several paragraphs and an example to explain exactly what the computed
values of relatively-positioned offsets are, how they affect each other, and what
happens when the positioning is overconstrained. (These were not previously
defined.)

C.2.51 Section 9.5 Floats
Floats are no longer required to have an explicit width.

Floats outside of line boxes no longer align to the bottom of the preceding block
box; it is implied that they are initially aligned with their non-floated position.

Specified that "If a shortened line box is too small to contain any further content,
then it is shifted downward until either it fits or there are no more floats present."

Specified that the border box of a table, block-level replaced element, or element
in the normal flow that establishes a new block formatting context must not overlap
any floats in the same block formatting context.

C.2.52 Section 9.5.1 Positioning the float
The ’float’ property now also applies to :before/:after and generated content.

UAs are now allowed to treat all values of float as ’none’ on the root element.

Added to rule 4 prose to define the position of a float when it occurs between two
collapsing margins.

35130 Mar 2011 19:50

Changes

C.2.53 Section 9.5.2 Controlling flow next to floats
Defined clearance to precisely detail the ’clear’ property’s effect on margin collapsing
and the block’s cleared position.

Added note to explain effect of ’clear’ on inline elements since CSS1 (but not
CSS2 or CSS 2.1) allows ’clear’ on inline elements.

C.2.54 Section 9.7 Relationships between ’display’, ’position’,
and ’float’
Changed rules to convert ’display’ not always to ’block’, but to an appropriate
block-level display value as given by a mapping table.

Added rule 4 to convert root element’s ’display’ value according to the mapping.

C.2.55 Section 9.9 Layered presentation
Specified that the background and borders of an element that forms a stacking
context are behind all of its descendants, altered stacking context prose to be more
precise, and added a normative Appendix E: Elaborate description of Stacking
Contexts [p. 455] to be even more precise about the position of borders, back-
grounds, and content on the z-axis.

C.2.56 Section 9.10 Text direction
Conforming UAs are now allowed to not support bidirectional text; in this case they
must ignore the ’direction’ and ’unicode-bidi’ properties. However since applying bidi
can have an effect even when a document does not contain right-to-left characters,
UAs that do support bidi are no longer permitted to not apply the algorithm just
because the document lacks right-to-left characters.

Added a paragraph to define precisely how the Unicode bidirectional algorithm
applies to text in the CSS formatting model and how the CSS ’direction’ property on
blocks maps into the algorithm.

Conforming HTML UAs are no longer exempt from supporting ’direction’ and
’unicode-bidi’.

C.2.57 Chapter 10 Visual formatting model details
Updated prose to use the terms "specified", "computed" and "used" as appropriate
when referencing values. This affects many calculations in this section. (See
changes to section 6.1 [p. 347] .)

30 Mar 2011 19:50352

Changes

C.2.58 Section 10.1 Definition of "containing block"
In rule 1, defined the initial containing block as the viewport for continuous media
and the page area for paged media. (It was previously undefined.)

In rule 2, defined the page area as the containing block for fixed positioned
elements in paged media.

In rule 4.1, when the containing block of an absolutely-positioned element is
formed by an inline-level element, it is now formed by that element’s padding edges,
not its content edges.

In rule 4, changed the containing block for absolutely positioned elements with
only statically positioned elements from the root’s content box to the initial containing
block.

Specified the positioning and breaking behavior of absolutely-positioned elements
in paged media.

C.2.59 Section 10.2 Content width
Declared that if the containing block’s width depends on an element’s percentage
width, then the resulting layout is undefined in CSS 2.1.

C.2.60 Section 10.3 Calculating widths and margins
The computed values of ’left’ and ’right’ for are now defined in section 9.3.2 [p. 135] .
The value ’auto’ does not always compute to zero.

Added sections 10.3.9 and 10.3.10 to define calculations for inline blocks.

C.2.61 Section 10.3.2 Inline, replaced elements
The sizing algorithm for replaced elements now takes into account and attempts to
preserve the replaced content’s intrinsic ratio. Sizing of replaced elements with
percentage intrinsic sizes and without intrinsic sizes is now also defined.

The effect of percentage intrinsic widths is now undefined for CSS level 2, rather
than ignored.

C.2.62 Section 10.3.3 Block-level, non-replaced elements in
normal flow
Specified that a computed total of the width, padding, and borders that is greater
than the containing block width causes auto margins to be treated as zero in the rest
of the rules. This avoids ’auto’ margins being negative on the start edge.

35330 Mar 2011 19:50

Changes

C.2.63 Section 10.3.4 Block-level, replaced elements in
normal flow
Applied changes to section 10.3.2 and section 10.3.3 to block-level replaced
elements in normal flow by referring to the calculations in those sections.

C.2.64 Section 10.3.5 Floating, non-replaced elements
Defined computations for ’auto’ width floats as shrink-to-fit. (Floats were previously
required to have fixed widths.)

C.2.65 Section 10.3.6 Floating, replaced elements
Applied changes to section 10.3.2 to this section by referencing it for ’auto’ width
calculations.

C.2.66 Section 10.3.7 Absolutely positioned, non-replaced
elements
Defined the static position of an element more precisely.

Rewrote constraint rules.

The ’direction’ property of the containing block of the static position determines
which side is clamped to the static position, not the ’direction’ property of the contain-
ing block of the absolutely positioned element.

C.2.67 Section 10.3.8 Absolutely positioned, replaced
elements
In rule 1, applied sizing rules from section 10.3.2.

In rule 2 (formerly rules 2 and 3), referred to new definition of ’static position’ in
section 10.3.7.

Also in rule 2, the ’direction’ property of the containing block of the static position
determines which side is clamped to the static position, not the ’direction’ property of
the containing block of the absolutely positioned element.

In rule 4 (formerly rule 5), prevented ’auto’ left and right margins in resulting in a
negative margin on the start edge.

C.2.68 Section 10.4 Minimum and maximum widths
Specified that if the containing block’s width is negative, the used value of a percent-
age min/max width is zero.

30 Mar 2011 19:50354

Changes

Specified that if the min/max width is specified in percentages and the containing
block’s width depends on this element’s width, then the resulting layout is undefined
in CSS 2.1.

The UA is no longer allowed to select an arbitrary minimum width.

The used width of replaced elements with an intrinsic ratio and both ’width’ and
’height’ specified as ’auto’ is now calculated according to a table designed to
preserve the intrinsic ratio as much as possible within the given constraints.

C.2.69 Section 10.5 Content height
Removed mention of ’line-height’ for inline elements since their content box height
no longer depends on ’line-height’.

Percentage heights on absolutely-positioned elements are no longer treated as
’auto’ when the containing block’s height is not explicitly specified. Added a note to
explain why this is possible.

Specified that a percentage height on the root element is relative to the initial
containing block.

C.2.70 Section 10.6 Calculating heights and margins
The computed values of ’top’ and ’bottom’ for are now defined in section 9.3.2
[p. 135] . The value ’auto’ does not always compute to zero.

Added section 10.6.6 to cover cases that are no longer covered under the previ-
ous sections.

Added section 10.6.7 to define ’auto’ heights for block formatting context roots.
(Unlike other block boxes, the height of these boxes increases to accommodate any
normal-flow descendant floats.)

C.2.71 Section 10.6.1 Inline, non-replaced elements
The height of an inline box is no longer given by the ’line-height’ property and is now
undefined. This section now suggests that the height of the box can be based on the
font.

C.2.72 Section 10.6.2 Inline replaced elements, block-level
replaced elements in normal flow, ’inline-block’ replaced
elements in normal flow and floating replaced elements
The sizing algorithm for replaced elements now takes into account and attempts to
preserve the replaced content’s intrinsic ratio. Sizing of replaced elements with
percentage intrinsic sizes and without intrinsic sizes is now also defined.

35530 Mar 2011 19:50

Changes

Specified that for inline elements, the margin box is used when calculating the
height of the line box.

C.2.73 Section 10.6.3 Block-level non-replaced elements in
normal flow when ’overflow’ computes to ’visible’
This section now only applies to elements whose ’overflow’ value computes to
’visible’; elements with other values of ’overflow’ are discussed in the new section
10.6.7 (’Auto’ heights for block formatting context roots).

C.2.74 Section 10.6.4 Absolutely positioned, non-replaced
elements
Defined the static position of an element more precisely.

Rewrote constraint rules.

C.2.75 Section 10.6.5 Absolutely positioned, replaced
elements
In rule 1, applied sizing rules from section 10.6.2.

C.2.76 Section 10.7 Minimum and maximum heights
Percentage min/max heights on absolutely-positioned elements are no longer
treated as ’0’/’none’ when the containing block’s height is not explicitly specified.
However if the containing block’s width depends on an element’s percentage width,
then the resulting layout is undefined in CSS 2.1.

The used width of replaced elements with an intrinsic ratio and both ’width’ and
’height’ specified as ’auto’ is now calculated according to a table designed to
preserve the intrinsic ratio as much as possible within the given constraints.

C.2.77 Section 10.8 Line height calculations
Added rule 4 to specify that the height of the line box must be at least as much as
that specified by the ’line-height’ property on the this block.

C.2.78 Section 10.8.1 Leading and half-leading
UAs are no longer permitted to clip content to the line box, and are instead asked to
render overlapping boxes in document order.

’line-height’ set on a block no longer specifies the minimal height of each inline
box; instead it specifies the minimal height of each line box. The exact effect of this
requirement is expressed in terms of struts; it is affected by vertical-alignment.

30 Mar 2011 19:50356

Changes

Adjusted text to reflect that the content box height of an inline is no longer dictated
by the ’line-height’ property.

Since the content box is now defined by the font and not by the line-height,
’text-top’ and ’text-bottom’ refer to the content area instead of the font.

Defined ’top’ and ’bottom’ alignment in terms of aligned subtrees to take into
account any protruding descendants.

Defined the baseline of inline tables and inline blocks.

C.2.79 Section 11.1 Overflow and clipping
Specified that ’overflow’ clips to the padding edge.

C.2.80 Section 11.1.1 Overflow
’projection’ media are no longer permitted to print overflowing content for ’overflow:
scroll’. ’Print’ media now may, as opposed to should.

UAs are now required to apply the ’overflow’ property set on the root element to
the viewport. Additionally, HTML UAs must use the ’overflow’ property on the HTML
BODY element instead if the root element’s ’overflow’ value is ’visible’.

Specified placement of scrollbar in the box model.

The width of any scrollbars is no longer included in the width of the containing
block. (And consequently, all text in section 10.3 that subtracts the scrollbar width
from the containing block width has been removed.)

C.2.81 Section 11.1.2 Clipping: the ’clip’ property
The ’clip’ property now applies only to absolutely positioned elements. Furthermore,
it applies to those elements even when their ’overflow’ is ’visible’.

The default value of ’clip’, ’auto’, now indicates no clipping rather than clipping to
the element’s border box.

Values of "rect()" should be separated by commas. UAs are required to support
this syntax, but may also support a space-separated syntax since CSS2 was not
clear about this.

While CSS2 specified that values of "rect()" give offsets from the respective sides
of the box, current implementations interpret values with respect to the top and left
edges for all four values (top, right, bottom, and left). This is now the specified inter-
pretation.

35730 Mar 2011 19:50

Changes

C.2.82 Section 11.2 Visibility
The ’visibility’ property is now defined to inherit, and descendant elements can over-
ride an ancestor’s hidden visibility.

C.2.83 Chapter 12 Generated content, automatic numbering,
and lists
Moved all discussion of aural rendering to Appendix A.

C.2.84 Section 12.1 The :before and :after pseudo-elements
Removed restrictions on which properties and property values are allowed on
’:before’ and ’:after’ pseudo-elements.

C.2.85 Section 12.2 The ’content’ property
The initial value of ’content’ is now ’normal’, not the empty string.

The ’content’ property now distinguishes between the empty string, which creates
an empty box; and ’normal’/’none’, which create no box at all. (There is no distinction
between ’normal’ and ’none’ in level 2.)

A UA is now allowed to report a URI that fails to download.

Removed recommendation to authors to put rules with media-sensitive ’content’
properties inside ’@media’.

Whether ’\A’ escapes in generated content create line breaks is now subject to the
’white-space’ property.

The former section 12.3 on interaction between ’:before’, ’:after’ and elements with
’display: compact’ or ’display: run-in’ has been removed. (The interaction is already
fully defined, because generated content consists of boxes in the tree, no different
from other boxes.)

C.2.86 Section 12.3.2 Inserting quotes with the ’content’ prop-
erty
Specified that extra ’close-quote’s and ’no-close-quote’s (those without a matching
’open-quote’ or ’no-open-quote’) are not rendered, and that neither ’close-quote’ nor
’no-close-quote’ cause the quoting depth to be negative.

C.2.87 Section 12.4 Automatic counters and numbering
Defined what a rule with duplicate counters, such as ’counter-reset: section 2
section’, means.

30 Mar 2011 19:50358

Changes

C.2.88 Section 12.4.1 Nested counters and scope
The scope of a counter no longer defaults to the whole document, but starts at the
first element that uses the counter. (This affects counters that are used without a
prior ’counter-reset’ to set the scope explicitly.)

C.2.89 Section 12.5 Lists
Removed text in section 12.5 (formerly 12.6) relating to the ’marker’ display value.

Removed the ’marker-offset’ property (and thus former section 12.6.1).

C.2.90 Section 12.5.1 Lists
The list styles ’hebrew’, ’armenian’, ’georgian’, ’cjk-ideographic’, ’hiragana’,
’katakana’, ’hiragana-iroha’ and ’katakana-iroha’ have been removed due to lack of
implementation experience. (They are expected to return in the CSS3 Lists module.)

Removed the sentence that said that an unknown value for ’list-style-type’ should
cause the value ’decimal’ to be used instead. Instead, normal parsing rules apply
and cause the rule to be ignored.

The size of list style markers without an intrinsic size is now defined.

C.2.91 Chapter 13 Paged media
The ’size’, ’marks’, and ’page’ properties are not part of CSS 2.1.

C.2.92 Section 13.2.2 Page selectors
The requirement for UA’s to honor different declarations for :left, :right, and :first
pages has been softened to simplify implementations: the page area of the :first
page may be used for :left and :right pages as well.

C.2.93 Section 13.3.1 Page break properties
UAs are now only required to apply the page break properties to block-level
elements in the normal flow of the root element, not to other blocks.However, UAs
are now permitted to apply these properties to elements other than block-level
elements.

Defined treatment of margins, borders, and padding when a page break splits a
box.

The ’page-break-inside’ property no longer inherits.

35930 Mar 2011 19:50

Changes

C.2.94 Section 13.3.3 Allowed page breaks
The ’page-break-inside’ property of all ancestors is checked for page-breaking
restrictions, not just that of the breakpoint’s parent.

When dropping restrictions to find a page breaking opportunity, rule A is dropped
together with B and D rather than together with C.

Removed restriction on breaking within absolutely positioned boxes.

C.2.95 Section 14.2.1 Background properties
For ’background-position’, the restriction that keywords cannot be combined with
percentage or length values is removed. I.e., a value like: ’25% top’ is now allowed.
Also, ’background-position’ now applies to all elements, not just to block-level and
replaced elements.

User agents are no longer allowed to treat a value of ’fixed’ for ’back-
ground-attachment’ as ’scroll’. Instead they must ignore all such declarations as if
’fixed’ were an invalid value.

The size of background images without an intrinsic size is now defined.

C.2.96 Section 14.3 Gamma correction
The contents of this section is now a non-normative note.

C.2.97 Chapter 15 Fonts
The ’font-stretch’ and ’font-size-adjust’ properties have been removed in CSS 2.1.

Font descriptors, the ’@font-face’ declaration, and all associated parts of the font
matching algorithm have been removed in CSS 2.1.

C.2.98 Section 15.2 Font matching algorithm
In this section (previously 15.5), in step 5 (previously 8) of the font matching algo-
rithm, the UA is now allowed to use multiple default fallback fonts to find a glyph for a
given character.

In the per-property rule 2, specified that if there is only a small-caps font in a given
family, then that font will be selected by ’normal’.

C.2.99 Section 15.2.2 Font family
The "missing character" glyph is no longer considered a match for the last font in a
font set, but is now considered a match for U+FFFD.

Certain punctuation characters when appearing in unquoted font family names are
now required to be escaped.

30 Mar 2011 19:50360

Changes

C.2.100 Section 15.5 Small-caps
The ’font-variant’ property’s effect is no longer restricted to bicameral scripts.

C.2.101 Section 15.6 Font boldness
The computed value of ’font-weight’ has been defined more precisely such that the
’bolder’ and ’lighter’ values have an appropriate effect when inheriting through
elements with different font-families.

C.2.102 Section 15.7 Font size
Removed suggestion of 1.2 fixed ratio between keyword font sizes in favor of notes
recommending a variable ratio and a smallest font-size no less than 9 pixels per EM
unit.

Added table mapping CSS font-size keywords to HTML font size numbers.

C.2.103 Chapter 16 Text
The ’text-shadow’ property is not in CSS 2.1.

C.2.104 Section 16.2 Alignment
The initial value of ’text-align’ is no longer UA-defined but a nameless value that acts
as ’left’ if ’direction’ is ’ltr’, ’right’ if ’direction’ is ’rtl’.

The <string> value for ’text-align’ is not part of CSS 2.1.

For ’text-align’, specified that ’justify’ is treated as the initial value when computed
value of ’white-space’ is ’pre’ or ’pre-line’.

C.2.105 Section 16.3.1 Underlining, over lining, striking, and
blinking
More precisely defined what boxes are affected by text decorations specified on a
given element.

Specified that underlines, overlines, and line-throughs apply only to text.

Specified that an underline, overline, or line-through applied across a line must be
at a constant vertical position and with a constant thickness across the entire line.

Specified how text decorations are affected by relative positioning on descen-
dants.

User agents are now allowed to recognize the ’blink’ value but not blink, whereas
before they were required to ignore the ’blink’ value if they chose not to support
blinking text.

36130 Mar 2011 19:50

Changes

Added text to allow older UAs to conform to this section if they follow CSS2’s
’text-decoration’ requirements but not the additional requirements in CSS2.1.

C.2.106 Section 16.4 Letter and word spacing
Support for the various values of ’letter-spacing’ and ’word-spacing’ is no longer
optional.

Specified that word spacing affects each space, non-breaking space, and ideo-
graphic space left in the text after white space processing rules have been applied.

C.2.107 Section 16.5 Capitalization
UAs are no longer allowed to not transform characters for which there is an appropri-
ate transformation but which are outside of Latin-1.

C.2.108 Section 16.6 White space
The ’white-space’ property now applies to all elements, not just to block-level
elements.

"\A" in generated content no longer forces a break for ’normal’ and ’nowrap’ values
of ’white-space’.

Specified that the CSS white space processing model assumes all newlines have
been normalized to line feeds.

Added section 16.6.1 [p. 265] to precisely define white space handling.

Added section 16.6.3 [p. 267] to specify handling of control and combining charac-
ters.

C.2.109 Chapter 17 Tables
Moved all discussion of aural rendering and related properties to Appendix A.

Updated prose to use the terms "specified", "computed" and "used" as appropriate
when referencing values. (See changes to section 6.1 [p. 347] .)

C.2.110 Section 17.2 The CSS table model
Defined handling of multiple ’table-header-group’ and ’table-footer-group’ elements.

UAs are no longer allowed to ignore the table display values on arbitrary HTML
elements, only on HTML table elements.

C.2.111 Section 17.2.1 Anonymous table objects
Changed rules so that internal table elements without an enclosing ’table’ or
’inline-table’ box generate an anonymous ’inline-table’ rather than an anonymous
’table’ when inside a "display: inline" parent element.

30 Mar 2011 19:50362

Changes

The anonymous table object rules now treat anonymous boxes as equal to
elements’ boxes. Replaced several instances of the term "element" with "box",
removed several instances of "(in the document tree)" and clarified that anonymous
boxes generated in earlier rules are part of the input to later rules. Also replaced the
term "object" with "box", as is used throughout the rest of the specification.

HTML UAs are no longer exempt from the anonymous box generation rules.

C.2.112 Section 17.4 Tables in the visual formatting model
The relationship of the caption box, table box, and outer anonymous table box has
been changed as follows:

The margins of the table box now apply to the outer (anonymous) table box that
encloses both the table box and the caption(s), not to the inner table box.
The width of the anonymous box is now equal to the border-box width of the
table box inside it instead of adapting to the widths and positions of both the
table box and its captions.

C.2.113 Section 17.4.1 Caption position and alignment
The ’left’ and ’right’ values on ’caption-side’ have been removed.

C.2.114 Section 17.5 Visual layout of table contents
Changed rule 5 in grid layout rules to allow overlapping of table cells instead of
leaving skipping a gap in the grid to avoid overlap.

C.2.115 Section 17.5.1 Table layers and transparency
In point 6, changed ’These "empty" cells are transparent’ to:

If the value of their ’empty-cells’ property is ’hide’ these "empty" cells are
transparent through the cell, row, row group, column, and column group back-
grounds, letting the table background show through.

C.2.116 Section 17.5.2.1 Fixed table layout
Specified that in fixed table layout, extra columns in rows after the first must not be
rendered.

C.2.117 Section 17.5.2.2 Automatic table layout
Restricted inputs to the table layout algorithm for ’table-layout: auto’, whether or not
the algorithm described in this section is used, to the width of the containing block
and the content of, and any CSS properties set on, the table and any of its descen-
dants.

36330 Mar 2011 19:50

Changes

Added rule 4 to include the column group’s width in the algorithm for determining
column widths.

C.2.118 Section 17.5.3 Table height algorithms
The ’height’ property on tables is now treated as a minimum height; the UA no longer
has the option of using ’height’ to constrain the size of the table to be smaller than its
contents.

The baseline of a cell is now defined much more precisely.

Defined the baseline of a row with no baseline-aligned cells.

C.2.119 Section 17.5.4 Horizontal alignment in a column
The <string> value for ’text-align’ is not part of CSS 2.1.

C.2.120 Section 17.6 Borders
Several popular browsers assume an initial value for ’border-collapse’ of ’separate’
rather than ’collapse’ or exhibit behavior that is close to that value, even if they do
not actually implement the CSS table model. ’Separate’ is now the initial value.

C.2.121 Section 17.6.1 The separated borders model
Specified the effect of padding on the table element.

Specified which parts of the table are included in the width measurement.

C.2.122 Section 17.6.1.1 Borders and Backgrounds around
empty cells
Refined definition of "empty" when used as a condition for the ’empty-cells’ property
so that it is not triggered when the cell includes any child elements, even if they are
empty.

The ’empty-cells’ property now hides both borders and backgrounds, not just
borders.

Changed behavior of a row when it collapses due to ’empty-cells’: it is no longer
treated as "display: none". Instead it is given zero height and its associated
border-spacing is eliminated.

C.2.123 Section 17.6.2 The collapsing border model
The outer half of the table borders no longer lie in the margin area. Specified which
part of the table is considered the border are in the collapsed borders model and
how its width is calculated. The edges of the box in which the table background is
painted is, however left explicitly undefined.

30 Mar 2011 19:50364

Changes

C.2.124 Section 17.6.2.1 Border conflict resolution
Defined in rule 4 what happens when two elements of the same type conflict and
their borders have the same width and style.

C.2.125 Section 18.1 Cursors: the ’cursor’ property
The size of cursors without an intrinsic size is now defined.

C.2.126 Section 18.4 Dynamic outlines
Position of outline with respect to the border edge is now only suggested, not
required.

Conformant UAs are now allowed to ignore the ’invert’ value. In such UAs the
initial value of ’outline-color’ is the value of the ’color’ property.

C.2.127 Chapter 12 Generated content, automatic numbering,
and lists
The ’marker’ value for ’display’ does not exist in CSS 2.1

C.2.128 Appendix A. Aural style sheets
Chapter 19 on aural style sheets has become appendix A and is not normative in
CSS 2.1. Related units (deg, grad, rad, ms, s, Hz, kHz) are also moved to this
appendix, as is the ’speak-header’ property from the "tables" chapter and other notes
on aural table rendering. The ’aural’ media type is deprecated in favor of the new
’speech’ media type.

C.2.129 Appendix A Section 5 Pause properties
Changed the initial value of ’pause-before’ and ’pause-after’ to be 0 instead of
UA-defined.

A note has been added to this section (formerly 19.4) about the change in position
and behavior of pauses in CSS3 Speech compared to this appendix.

C.2.130 Appendix A Section 6 Cue properties
This section (formerly Section 19.5) now specifies the placement of cues and pauses
with respect to the :before and :after pseudo-elements.

C.2.131 Appendix A Section 7 Mixing properties
The keywords ’mix’ and ’repeat’ may now appear in either order.

36530 Mar 2011 19:50

Changes

C.2.132 Appendix B Bibliography
Various references in Appendix B (formerly Appendix E) have been updated as
appropriate.

Switched [CSS1] from Normative to Informative.

Updated URI reference from [RFC1808] and the draft-fielding-uri-syntax-01.txt to
[RFC3986].

Updated HTTP reference from [RFC2068] to [RFC2616].

Removed normative references to [IANA] and [ICC32].

Added normative references to [ICC42], [RFC3986], [RFC2070], [UAAG10].

Added informative references to CSS2, CSS3 Color, CSS3 Lists, Selectors, CSS3
Speech, DOM 3 Core, MathML 2, P3P, RFC1630, SVG 1.1, XHTML 1, XML ID, and
XML Namespaces.

Removed informative references to [ISO10179] (DSSSL), [INFINIFONT],
[ISO9899] (C), [MONOTYPE], [NEGOT], [OPENTYPE], [PANOSE], [PANOSE2],
[POSTSCRIPT], [RFC1866] (HTML 2), [RFC1942] (HTML Tables), [TRUETYPEGX],
[W3CStyle].

Updated language tags references from [RFC1766] to [BCP47].

C.2.133 Other
The former informative appendix C, "Implementation and performance notes for
fonts," is left out of CSS 2.1.

C.3 Errors

C.3.1 Shorthand properties
Shorthand properties take a list of subproperty values or the value ’inherit’. One
cannot mix ’inherit’ with other subproperty values as it would not be possible to
specify the subproperty to which ’inherit’ applied. The definitions of a number of
shorthand properties did not enforce this rule: ’border-top’, ’border-right’,
’border-bottom’, ’border-left’, ’border’, ’background’, ’font’, ’list-style’, ’cue’, and
’outline’.

C.3.2 Applies to
The "applies to" line of many property definitions has been made more accurate by
excluding or including table display types where appropriate.

30 Mar 2011 19:50366

Changes

C.3.3 Section 4.1.1 (and G2)
DELIM should not have included single or double quote. Refer also to section 4.1.6
on strings, which must have matching single or double quotes around them.

Removed "A-Z" from the "nmchar" token: as CSS is case insensitive anyway, it
was redundant.

Corrected "unicode" macro to treat CRLF as a single character.

Corrected "block" production to allow white space between declarations.

In the rule for "any" (in the core syntax), corrected "FUNCTION" to "FUNCTION
any* ’)’".

C.3.4 Section 4.1.3 Characters and case
Corrected third paragraph to say that an ’@import’ rule can only be preceded by an
’@charset’ rule or other ’@import’ rules.

C.3.5 Section 4.3 (Double sign problem)
Several values described in subsections of this section incorrectly allowed two "+" or
"-" signs at their beginnings.

C.3.6 Section 4.3.2 Lengths
Fixed double sign error in definition of <length>. (<number> already has a sign.)

Corrected the suggested reference pixel to be based on a 96 dpi device, not
90 dpi. The visual angle is thus about 0.0213 degrees instead of 0.0227, and a pixel
at arm’s length is about 0.26 mm instead of 0.28

Corrected last sentence to refer to a unsupported used length, not an unsupported
specified length.

C.3.7 Section 4.3.3 Percentages
Fixed double sign error in definition of <percentage>. (<number> already has a
sign.)

C.3.8 Section 4.3.4 URLs and URIs
Defined escaping requirements in terms of the URI token so that no escaping
requirements are missing from the prose.

Included invalid URIs in last paragraph about URI error handling.

36730 Mar 2011 19:50

Changes

C.3.9 Section 4.3.5 Counters
Corrected syntax of counter() and counters() notation to allow white space between
tokens.

C.3.10 Section 4.3.6 Colors
Deleted the comments about range restriction after the following examples:

em { color: rgb(255,0,0) }
em { color: rgb(100%, 0%, 0%) }

C.3.11 Section 4.3.7 Strings
(Formerly section 4.3.10) Corrected text to allow all forms of Unicode escapes for
U+000A, not just the "\A" form, for including newlines in strings.

C.3.12 Section 5.10 Pseudo-elements and pseudo-classes
In the second bullet, added that the ’:lang()’ pseudo-class can also be deduced from
the document in some cases.

C.3.13 Section 6.4 The cascade
Removed paragraph about imported style sheets being overridden by rules in the
importing style sheet: imported style rules follow the cascade as specified in 6.4.1
Cascading order [p. 103] , exactly as if they were inserted in place of the @import
rule.

C.3.14 Section 8.1 Box Dimensions
The definition of "content edge" has been changed to depend on ’width’ and ’height’
rather than directly on ’rendered content’.

From the definition of "padding edge", deleted the sentence "The padding edge of
a box defines the edges of the containing block established by the box." For informa-
tion about containing blocks, consult Section 10.1 [p. 171] .

C.3.15 Section 8.2 Example of margins, padding, and borders
The colors in the example HTML did not match the colors in the image.

C.3.16 Section 8.5.4 Border shorthand properties
Changed various border shorthands’ syntax definitions to use the <border-width>,
<border-style> and <’border-top-color’> value types as appropriate.

30 Mar 2011 19:50368

Changes

C.3.17 Section 9.2.1 Block-level elements and block boxes
Excepted table elements from second paragraph about principal block boxes and
their contents.

Corrected sentence to say "either only block boxes or only inline boxes" instead of
"only block boxes".

C.3.18 Section 9.3.1 Choosing a positioning scheme
In the definition of "position: static", added ’right’ and ’bottom’ to the sentence saying
that ’top’ and ’left’ do not apply.

C.3.19 Section 9.3.2 Box offsets
The properties ’top’, ’right’, ’bottom’, and ’left’, incorrectly referred to offsets with
respect to a box’s content edge. The proper edge is the margin edge. Thus, for ’top’,
the description now reads: "This property specifies how far a box’s top margin edge
is offset below the top edge of the box’s containing block."

Corrected text under property definitions to say that for relatively-positioned
elements, ’top’, ’right’, ’bottom’, and ’left’ define the offset from the box’s position in
the normal flow, not from the edges of the containing block. (The previous definition
conflicted with that was further down; since that text is now redundant, it has been
removed.)

C.3.20 Section 9.4.1 Block formatting contexts
In paragraph about relationship of a box’s outer edges to its containing block’s
edges, corrected parenthetical to say that line boxes, not the content area, may
shrink due to floats.

C.3.21 Section 9.4.2 Inline formatting context
Added "and the presence of floats" to "The width of a line box is determined by a
containing block".

C.3.22 Section 9.4.3 Relative positioning
In the first paragraph, added "or floated" to the phrase "laid out according to the
normal flow" as floated elements can be relatively positioned but are not part of the
normal flow.

C.3.23 Section 9.5 Floats
Corrected sentence about not enough horizontal room for the float to say that it is
shifted downward until either it fits or there are no more floats present.

36930 Mar 2011 19:50

Changes

C.3.24 Section 9.5.1 Positioning the float
Correct "Applies to" line and prose to say that the ’float’ property can be set for any
element but only applies to elements that are not absolutely positioned.

C.3.25 Section 9.5.2 Controlling flow next to floats
Removed sentence saying that ’clear’ may only be specified for block-level
elements: it can be specified for any element, it only applies to block-level elements.

C.3.26 Section 9.6 Absolute positioning
Corrected sentence that said absolutely positioned boxes establish a new containing
block for absolutely positioned descendants to except fixed positioned descendants.

C.3.27 Section 9.7 Relationships between ’display’, ’position’,
and ’float’
In rule 1, corrected "user agents must ignore ’position’ and ’float" to "’position’ and
’float’ do not apply".

C.3.28 Section 9.10 Text direction
Corrected note about ’direction’ on table column elements to say that "columns are
not the ancestors of the cells in the document tree" rather than saying "columns do
not exist in the document tree".

Added table cells, table captions, and inline blocks alongside block-level elements
in description of ’bidi-override’ value. Also corrected the prose to handle anonymous
child blocks.

Updated mention of Unicode’s embedding limit from 15 to 61.

C.3.29 Section 10.1 Definition of "containing block"
Included table cells (and inline blocks) together with block-level elements in rule 2
defining the containing block of non-absolutely-positioned elements.

C.3.30 Section 10.3.3 Block-level, non-replaced elements in
normal flow
In the last sentence of the paragraph following the equation ("If the value of ’direc-
tion’ is ’ltr’, this happens to ’margin-left’ instead") substituted ’rtl’ for ’ltr’.

30 Mar 2011 19:50370

Changes

C.3.31 Section 10.4 Minimum and maximum widths
The initial value for ’min-width’ is now ’0’ rather than UA-dependent.

Corrected "applies to" exception for both ’min-width’ and ’max-width’ from "table
elements" to "table rows and row groups".

Specified that negative values for ’min-width’ and ’max-width’ are illegal.

C.3.32 Section 10.6.3 Block-level non-replaced elements in
normal flow when ’overflow’ computes to ’visible’
Added that ’auto’ height also depends on whether the element has padding or
borders, as these influence margin-collapsing behavior.

Added text to correctly account for margin collapsing behavior.

C.3.33 Section 10.7 Minimum and maximum heights
Corrected "applies to" exception for both ’min-width’ and ’max-width’ from "table
elements" to "table columns and column groups".

Specified that negative values for ’min-height’ and ’max-height’ are illegal.

C.3.34 Section 11.1.1 Overflow
Corrected "applies to" line for ’overflow’ from "block-level and replaced elements" to
"non-replaced block-level elements, table cells, and inline-block elements".

The example of a DIV element containing a BLOCKQUOTE containing another
DIV was not rendered correctly. The first style rule applied to both DIVs, so the
second DIV box should have been rendered with a red border as well. The second
DIV has now been changed to a CITE, which does not have a red border.

C.3.35 Section 11.1.2 Clipping: the ’clip’ property
Corrected "rect (<top> <right> <bottom> <left>)" to "rect(<top>, <right>, <bottom>,
<left>)".

C.3.36 Section 11.2 Visibility
Corrected initial value of ’visibility’ to ’visible’.

C.3.37 Section 12.4.2 Counter styles
The example used the style ’hebrew’, which does not exist in CSS level 2. Changed
to ’lower-greek’.

37130 Mar 2011 19:50

Changes

C.3.38 Section 12.6.2 Lists
Under the ’list-style’ property, the example:

ul > ul { list-style: circle outside } /* Any UL child of a UL */

could never match valid HTML markup (since a UL element cannot be a child of
another UL element). An LI has been inserted in between.

C.3.39 Section 14.2 The background
Second sentence: "In terms of the box model, ’background’ refers to the background
of the content and the padding areas" now also mentions the border area. (See also
errata to section 8.1 [p. 368] above.) Thus:

In terms of the box model, "background" refers to the background of the
content, padding and border areas.

C.3.40 Section 14.2.1 Background properties
Under ’background-image’, defined the image tile size used when the background
image has intrinsic sizes specified in percentages or no intrinsic size.

Under ’background-repeat’, the sentence "All tiling covers the content and padding
areas [...]" has been corrected to

"All tiling covers the content, padding and border areas [...]".

Under ’background-attachment’, the value ’scroll’ is defined to scroll with the
"containing block" rather than with the "document". Also the sentence "Even if the
image is fixed [...] background or padding area of the element" has been corrected to

Even if the image is fixed, it is still only visible when it is in the background,
padding or border area of the element.

C.3.41 Section 15.2 Font matching algorithm
In bullet 2, changed "the UA uses the ’font-family’ descriptor" to "the UA uses the
’font-family’ property".

C.3.42 Section 15.7 Font size
The statement "Negative values are not allowed" for ’font-size’ now applies to
percentages as well as lengths.

30 Mar 2011 19:50372

Changes

C.3.43 Section 16.1 Indentation
Corrected ’text-indent’ to apply to table cells (and inline blocks) as well as block-level
elements.

C.3.44 Section 16.2 Alignment
Corrected ’text-align’ to apply to table cells (and inline blocks) as well as block-level
elements.

Changed prose about the effect of ’justify’ to be less correct.

Corrected the note to say that justification is also dependent on the script, not just
the language, of the text.

C.3.45 Section 17.2 The CSS table model
In the definition of table-header-group , changed "footer" to "header" in "Print user
agents may repeat footer rows on each page spanned by a table."

C.3.46 Section 17.2.1 Anonymous table objects
Added ’table-header-group’ and ’table-footer-group’ alongside mentions of
’table-row-group’ where missing.

Corrected ’caption’ to ’table-caption’.

Added missing rule (#3) for ’table-column’ boxes.

Added ’table-caption’ and ’table-column-group’ to list of boxes requiring a ’table’ or
’inline-table’ parent in rule 4.

Added rules 5 and 6 to generate ’table-row’ boxes where necessary for children of
’table’/’inline-table’ and ’table-row-group’/’table-header-group’/’table-footer-group’
boxes.

C.3.47 Section 17.4 Tables in the visual formatting model
Specified handling of multiple caption boxes.

Specified that the anonymous outer table box is a ’block’ box if the table is
block-level and an ’inline-block’ box if the table is inline-level but that the anonymous
outer table box cannot accept run-ins.

C.3.48 Section 17.5 Visual layout of table contents
Correct text that said all internal table elements have padding; change to say that of
these only table cells have padding.

The following note:

37330 Mar 2011 19:50

Changes

Note. Table cells may be relatively and absolutely positioned, but this is not
recommended: positioning and floating remove a box from the flow, affecting
table alignment.

has been amended as follows:

Note. Table cells may be positioned, but this is not recommended: absolute
and fixed positioning, as well as floating, remove a box from the flow, affecting
table size.

C.3.49 Section 17.5.1 Table layers and transparency
The rows and columns only cover the whole table in the collapsed borders model,
not in the separated borders model.

The points 2, 3, 4 and 5 have been corrected to define the area covered by rows,
columns, row groups and column groups and thus the positioning and painting of
backgrounds on those elements.

Specify the handling of "missing cells".

C.3.50 Section 17.6.1 The separated borders model
In the image, changed "cell-spacing" to "border-spacing".

C.3.51 Section 18.2 System Colors
For the ’ButtonHighlight’ value, changed the description from "Dark shadow" to
"Highlight color".

C.3.52 Section E.2 Painting order
Changed "but any descendants which actually create a new stacking context" to "but
any positioned descendants and descendants which actually create a new stacking
context" (3 times).

This change also occurred once in section 9.5 (Floats) [p. 142] and once in section
section 9.9 (Layered presentation). [p. 163]

C.4 Clarifications

C.4.1 Section 2.1 A brief CSS 2.1 tutorial for HTML
This section has been marked non-normative.

30 Mar 2011 19:50374

Changes

C.4.2 Section 2.2 A brief CSS 2.1 tutorial for XML
This section has been marked non-normative.

Added a statement about case-sensitivity of selectors for XML.

The specification for the XML style sheet PI [p. ??] was written after CSS2 was
finalized. The first line of the full XML example should not have been be
<?XML:stylesheet type="text/css" href="bach.css"?> , but

<?xml-stylesheet type="text/css" href="bach.css"?>

C.4.3 Section 2.3 The CSS 2.1 processing model
This section has been marked non-normative.

C.4.4 Section 3.1 Definitions
Added a note to clarify that the deprecated/non-deprecated status of a feature is
distinct from its normative/non-normative status.

Under ’document language’ clarified that CSS only describes the presentation of a
document language, and has no effect on its semantics.

Changed definition of ’replaced element’ to "an element whose content is outside
the scope of the CSS formatting model" and added further clarifying text. This clari-
fies that e.g., SVG images embedded in an XML document are also considered
replaced elements, not just those linked in from an outside file. Also changed defini-
tion of ’rendered content’ to be consistent with this clarification.

Added under "Intrinsic dimension" that raster images without reliable resolution
information are assumed to have a size of 1 px unit per image source pixel.

Added definition for ’ignore’.

Added definition for ’HTML user agent’.

Added definition for ’property’.

C.4.5 Section 4.1 Syntax
Moved definitions of "immediately before" and "immediately after" forward so they
apply to the whole Syntax section.

Added sections 4.1.2.1 and 4.1.2.2 to defined vendor-specific extensions.

C.4.6 Section 4.1.1 Tokenization
Clarified that input that cannot be parsed according to the core syntax is ignored
according to the rules for handling parsing errors.

37530 Mar 2011 19:50

Changes

Clarified that input that cannot be tokenized or parsed has no meaning in CSS2.1.

C.4.7 Section 4.1.3 Characters and case
Clarified that when a CRLF pair terminates an escape sequence, the pair is treated
as a single white space character as corrected [p. 367] in the tokenization rules.

Replaced "[a-z0-9]" by "[a-zA-Z0-9]" as an extra reminder that CSS identifiers are
case-insensitive.

C.4.8 Section 4.1.7 Rule sets, declaration blocks, and selec-
tors
Replaced the term "{}-block" with "declaration block".

C.4.9 Section 4.2 Rules for handling parsing errors
Clarified that all property:value combinations and @-keywords that do not contain an
identifier beginning with dash or underscore are reserved by CSS for future use.

Clarified that when something inside an at-rule is ignored because it is invalid, this
does not make the entire at-rule invalid.

Referenced section 4.1.7 for parsing invalid bits inside declaration blocks.

C.4.10 Section 4.3.1 Integers and real numbers
Clarified that ’-0’ is equivalent to ’0’ and is not a negative number.

C.4.11 Section 4.3.2 Lengths
Clarified that negative length values on properties that do not allow them cause the
declaration to be ignored.

C.4.12 Section 4.3.4 URLs and URIs
Reduced unnecessary discussion of what a URI is.

C.4.13 Section 5.1 Pattern matching
Added note about terminology change ("simple selector") between CSS2 and CSS3.

C.4.14 Section 5.7 Adjacent sibling selectors
Clarified that text nodes and comments do not affect whether a sibling selector
matches.

30 Mar 2011 19:50376

Changes

C.4.15 Section 5.8.1 Matching attributes and attribute values
Clarified ~= and |= by using the definitions from the Selectors module.

C.4.16 Section 5.8.2 Default attribute values in DTDs
Clarified that rules about default attribute values are the same, whether the default is
specified in a DTD or by other means.

C.4.17 Section 5.9 ID selectors
Added a note that it depends on the document format which attributes are ID
attributes.

C.4.18 Section 5.11.3 The dynamic pseudo-classes: :hover,
:active, and :focus
Clarified that CSS 2.1 does not define if the parent of an element that matches
’:active’ or ’:hover’ itself also matches ’:active’ or ’:hover’.

Added note that, in CSS1, ’:active’ only applies to links.

C.4.19 Section 5.11.4 The language pseudo-class: :lang
Added a note to show the differences between ’:lang(xx)’ and ’[lang=xx]’.

C.4.20 Section 5.12.2 The :first-letter pseudo-element
Clarified that digits can also be first letter.

C.4.21 Section 6.2 Inheritance
Clarified that computed values are inherited (not specified values) and that they
become the specified value on the inheritor.

Removed discussion of "default" styles for a document.

C.4.22 Section 6.2.1 The ’inherit’ value
Clarify that ’inherit’ can be used on properties that are not normally inherited and that
when set on the root element, it has the effect of assigning the property’s initial
value.

C.4.23 Section 6.3 The @import rule
Except @charset from the statement that @imports must precede all other rules.

37730 Mar 2011 19:50

Changes

C.4.24 Section 6.4 The Cascade
Obfuscated note about system settings and UA limitations.

C.4.25 Section 6.4.1 Cascading order
Various editorial changes to clarify sort order.

C.4.26 Section 6.4.3 Calculating a selector’s specificity
Added a note:

The specificity is based only on the form of the selector. In particular, a selec-
tor of the form "[id=p33] " is counted as an attribute selector (a=0, b=1, c=0),
even if the id attribute is defined as an "ID" in the source document’s DTD.

C.4.27 Section 7.2.1 The @media rule
Clarify that Style rules outside of @media rules apply to the same media types that
the style sheet itself applies to.

C.4.28 Section 7.3 Recognized media types
Added text to clarify that media types are mutually exclusive, but a UA can render
simultaneously to canvases with different media types.

C.4.29 Section 7.3.1 Media groups
Split "aural" media group into "audio" and "speech".

C.4.30 Section 8.1 Box dimensions

The terms "content box", "padding box", "border box", and "margin box" have
been defined.
Border backgrounds are not specified by border properties. Changed the last
paragraph of 8.1 to:

The background style of the content, padding, and border areas of a box
is specified by the ’background’ property of the generating element. Margin
backgrounds are always transparent.

Removed definition of "box width" and "height".

30 Mar 2011 19:50378

Changes

C.4.31 Section 8.3 Margin properties
Added a sentence to note that vertical margins have no effect on non-replaced inline
elements.

C.4.32 Section 8.3.1 Collapsing margins
Changed "absolute maximum" to "maximum of the absolute values" in sentence
about negative margins collapsing.

Added this clarifying note to the first bullet of the explanation of vertical collapsing
of margins:

Note. Adjoining boxes may be generated by elements that are not related as
siblings or ancestors.

Emphasized that floating elements’ margins do not collapse even between a float
and its in-flow children.

Emphasized that absolutely positioned elements’ margins do not collapse even
between the positioned element and its in-flow children.

C.4.33 Section 8.5.3 Border style
Changed description of ’none’ value to not imply that all four border widths are set to
zero.

C.4.34 Section 9.1.1 The viewport
Changed the sentence "When the viewport is smaller than the ..., the user agent
should offer a scrolling mechanism" to use "area of the canvas on which the docu-
ment is rendered" instead of "document’s initial containing block".

C.4.35 Section 9.2.4 The ’display’ property
Clarified that ’display: none’ also applies to non-visual media.

C.4.36 Section 9.3.1 Choosing a positioning scheme
Clarified that the margins of fixed positioned boxes do not collapse with any other
margins.

Clarified that in print media fixed boxes are rendered on every page.

C.4.37 Section 9.3.2 Box offsets
Clarified that negative lengths and percentages are allowed as values of ’top’, ’right’,
’bottom’, and ’left’.

37930 Mar 2011 19:50

Changes

Added "For replaced elements, the effect of this value depends only on the intrin-
sic dimensions of the replaced content. See the sections on the width and height of
absolutely positioned, replaced elements for details." to the definition of ’auto’
because that’s not what chapter 10 says at all.

C.4.38 Section 9.4.2 Inline formatting context
Clarified that ’justify’ stretches "spaces and words in inline boxes"; previous text
simply said that it stretches "inline boxes".

The statement "When an inline box is split, margins, borders, and padding have no
visual effect where the split occurs." has been generalized. Margins, borders, and
padding have no visual effect where one or more splits occur.

Clarified that an inline box that exceeds the width of a line box and cannot be split
therefore overflows the line box.

Removed sentence about formatting of margins, borders, and padding for split
inline boxes not being fully defined when affected by bidi as that situation is now
defined in section 8.6 [p. 126] .

C.4.39 Section 9.4.3 Relative positioning
Clarified that although relative positioning normally does not directly affect layout, it
may affect layout indirectly through the creation of scrollbars.

Relatively positioned boxes do not always establish new containing blocks.
Changed the second paragraph to refer to the section on containing blocks accord-
ingly.

The paragraph about dynamic movement and superscripting has been shifted into
a non-normative note.

C.4.40 Section 9.5 Floats
Clarified that line boxes are shortened to make room for the margin box of the float.

Added some text to clarify what "Any content in the current line before a floated
box is reflowed in the first available line on the other side of the float" means.

Clarified floats’ position in the stacking order.

C.4.41 Section 9.5.1 Positioning the float
Clarified that the elements referenced in the float behavior rules are in the same
block formatting context as the float.

30 Mar 2011 19:50380

Changes

C.4.42 Section 9.5.2 Controlling flow next to floats
Clarified that the effects of ’clear’ do not consider floats in other block formatting
contexts.

C.4.43 Section 9.8 Comparison of normal flow, floats, and
absolute positioning
Added a note to clarify that the images in this section are not drawn to scale and are
illustrations, not reference renderings.

C.4.44 Section 10.1 Definition of "containing block"
Noted that a containing block formed by inline elements may wind up with a negative
containing block width.

C.4.45 Section 10.2 Content width
In the definition of <length> values for the ’width’ property, changed "Specifies a
fixed width" to "Specifies the width of the content area using a length unit".

C.4.46 Section 10.3.3 Block-level, non-replaced elements in
normal flow
Clarified that setting both left and right margins to ’auto’ horizontally centers the
element within its containing block.

C.4.47 Section 10.3.8 Absolutely positioning, replaced
elements
Clarified which part of the text of section 10.3.7 is re-used.

C.4.48 Section 10.4 Minimum and maximum widths
Clarified that ’min-width’ and ’max-width’ do not affect the computed values of any
properties. (They only affect the used value.)

C.4.49 Section 10.6 Calculating heights and margins
Clarified that these rules apply to the root element just as to any other element.

C.4.50 Section 10.7 Minimum and maximum heights
Clarified that ’min-width’ and ’max-width’ do not affect the computed values of any
properties. (They only affect the used value.)

38130 Mar 2011 19:50

Changes

C.4.51 Section 10.8 Line height calculations
Removed clarifying note about line height being taller than tallest single inline box
due to vertical alignment.

C.4.52 Section 10.8.1 Leading and half-leading
Removed "slightly" from the note "Values of this property have slightly different
meanings in the context of tables."

C.4.53 Section 11.1 Overflow and clipping
Clarified when absolute positioning and negative margins cause overflow.

Added ’text-indent’ to the list of things that can cause overflow.

Removed mention of ’clip’ since it no longer affects most elements; mentioned that
the ’overflow’ property also specifies whether a scrolling mechanism is provided to
access clipped content.

C.4.54 Section 11.1.1 Overflow
Clarified that descendant elements whose containing block is the viewport or an
ancestor of the element are not affected by overflow clipping.

Removed unnecessary mentions of the ’clip’ property from the ’hidden’ value defi-
nition.

C.4.55 Section 11.1.2 Clipping
Changed "portion of an element’s rendered content" to "portion of an element’s
border box" since clipping also affects the element’s backgrounds and borders.

Clarified what parts of the element are affected by clipping.

Clarified that clipped content does not cause overflow.

Clarified that arguments of clip() can be separated by spaces or by commas, but
not a combination.

C.4.56 Section 11.2 Visibility
Clarified that descendants of a ’visibility: hidden’ element will be visible if they have
’visibility: visible’.

C.4.57 Section 12.1 The :before and :after pseudo-elements
Clarified that :before and :after pseudo-elements interact with other boxes as if they
were real elements just inside their associated element.

30 Mar 2011 19:50382

Changes

Noted that the interaction of :before and :after with replaced elements is left unde-
fined for now.

C.4.58 Section 12.2 The ’content’ property
Clarified which counters are used for counter() and counters() in case there are
multiple counters of the same name.

C.4.59 Section 12.3.2 Inserting quotes with the ’content’ prop-
erty
Removed note about common typographic practices when quotes in different
languages are mixed.

C.4.60 Section 12.4 Automatic counters and numbering
In the "self-nesting" behavior of counters, clarified that merely using a counter in a
child element does not create a new instance of it: only resetting it does.

Clarified that the scope of a counter does not include any elements in the scope of
a counter with the same name created by a ’counter-reset’ on a later sibling or a
later ’counter-reset’ on the same element.

Removed sentence about scope of ’counter-increment’ without prior
’counter-reset’ as that is now defined (differently) under "12.4.1 Nested counters and
scope."

C.4.61 Section 12.4.3 Counters in elements with ’display:
none’
Clarified that pseudo-elements that generate no boxes also do not increment coun-
ters.

C.4.62 Section 14.2 The background
Clarified that the root background image, although painted over the entire canvas, is
anchored as if painted only for the root element, and that the root’s background is
only painted once.

Clarified rules for propagation of background settings on HTML’s <body> element
to the root.

Added statement about z-index of backgrounds for elements that form a stacking
context and referred to z-index property for details.

Added this note after the first paragraph after ’background-attachment’:

38330 Mar 2011 19:50

Changes

Note that there is only one viewport per document. I.e., even if an element
has a scrolling mechanism (see ’overflow’), a ’fixed’ background does not move
with it.

Definition of ’background-position’ has been rewritten as normative rules rather
than just examples.

Stated that the tiling and positioning of background images for inline elements is
undefined in CSS2.1.

C.4.63 Section 15.1 Fonts Introduction
Drastically shortened introduction.

C.4.64 Section 15.2 Font matching algorithm
In the per-property rule 2, clarified that ’normal’ matches the non-small-caps variant
(if there is one).

C.4.65 Section 15.2.2 Font family
Removed discussion of font-matching algorithm. (It is already covered in the
font-matching algorithm’s own section [p. 241] .

Clarified that quoted strings that are the same as a keyword value must be treated
as font family names and not as the keyword value (which must be unquoted).

C.4.66 Section 15.3.1 Generic font families
This section, previously section 15.2.6, has been moved but no other change was
made.

C.4.67 Section 15.4 Font styling
The text for this section (formerly part of 15.2.3) has been reverted to its CSS1
format.

C.4.68 Section 15.5 Small-caps
The text for this section (formerly part of 15.2.3) has been reverted to its CSS1
format.

Clarified that CSS2.1 cannot select font variants besides small-caps.

Clarified that when "font-variant: small-caps" results in the substitution of full-caps,
the behavior is the same as for text-transform.

30 Mar 2011 19:50384

Changes

C.4.69 Section 15.6 Font boldness
The text for this section (formerly part of 15.2.3) has been reverted to its CSS1
format. Also, discussion of font-weight from other parts of the Fonts chapter has
been aggregated under this section.

Removed statement that says "User agents must map names to values in a way
that preserves visual order; a face mapped to a value must not be lighter than faces
mapped to lower values." This is otherwise implied by "The only guarantee is that a
face of a given value will be no less dark than the faces of lighter values."

C.4.70 Section 15.7 Font size
Clarified relationship of font size to em squares.

Added a totally irrelevant note about font sizes virtual reality scenes.

C.4.71 Section 16.1 Indentation
Clarified that text overflowing due to text-indent is affected by the ’overflow’ property.

Added a note about text-indents inheriting behavior and suggesting ’text-indent: 0’
on inline-blocks.

C.4.72 Section 16.2 Alignment
Changed "double justify" to "justify" under "left, right, center, and justify".

C.4.73 Section 16.3.1 Underlining, over lining, striking, and
blinking
Added an example to illustrate how underlining affects descendant boxes.

C.4.74 Section 16.5 Capitalization
Switched language reference from RFC2070 to BCP47.

C.4.75 Section 16.6 White space
Added section 16.6.1 [p. 266] as an example to illustrate the interaction of white
space collapsing and bidi.

C.4.76 Section 17.1 Introduction to tables
Expanded introduction to include a brief discussion of the two table layout models.
Mentioned that the automatic table algorithm is not fully defined in CSS 2.1 but that
some implementations have achieved relatively close interoperability.

38530 Mar 2011 19:50

Changes

C.4.77 Section 17.2 The CSS table model
Clarify that all table captions must be rendered if more than one exists.

Specified that replaced elements with table display values are treated as table
elements in table layout.

C.4.78 Section 17.2.1 Anonymous table objects
Moved the first bullet text to the prose before the list of generation rules as it is a
general statement of what the rules are supposed to accomplish.

C.4.79 Section 17.4 Tables in the visual formatting model
Clarified that "display: table" elements behave as block-level elements and "display:
inline-table" elements behave as inline-level elements and not the other way around.

Clarified that ’table-caption’ boxes behave as normal block boxes within the outer
anonymous table box.

Clarified that percentage ’width’ and ’height’ on the table box is relative to the
anonymous box’s containing block, not the anonymous box itself.

Clarified that the ’position’, ’float’, ’top’, ’right’, ’bottom’, and ’left’ values on the
table box are used on the anonymous outer box instead of the table box and that the
table box itself uses the initial values of those properties.

C.4.80 Section 17.5 Visual layout of table contents
To remove ambiguity about the position of extent of internal table boxes, the follow-
ing paragraph was added after point 6:

the edges of the rows, columns, row groups and column groups in the
collapsing borders model [p. 291] coincide with the hypothetical grid lines on
which the borders of the cells are centered. (And thus, in this model, the rows
together exactly cover the table, leaving no gaps; ditto for the columns.) In the
separated borders model, [p. 288] the edges coincide with the border edges
[p. 112] of cells. (And thus, in this model, there may be gaps between the rows
and columns, corresponding to the ’border-spacing’ property.)

Changed warning note about positioning of table cells to be more precise about
the possibly unintended effects.

C.4.81 Section 17.5.1 Table layers and transparency
At the end of the section added the following paragraph:

Note that if the table has ’border-collapse: separate’, the background of the
area given by the ’border-spacing’ property is always the background of the
table element. See 17.6.1

30 Mar 2011 19:50386

Changes

C.4.82 Section 17.5.2 Table width algorithms
Added a paragraph to clarify the interaction of the table width algorithms with the
rules in section 10.3 [p. 175] (Calculating widths and margins).

C.4.83 Section 17.5.2.1 Fixed table layout
Explicitly mentioned that the fixed table layout algorithm may be used with the algo-
rithm of section 10.3.3 [p. 176] when ’table-layout’ is ’fixed’ but ’width’ is ’auto’.

C.4.84 Section 17.5.2.2 Automatic table layout
Clarified that UAs can use other algorithms besides the one in this section even if it
results in different behavior. Also marked the rest of the section non-normative in
accordance with that statement.

C.4.85 Section 17.5.4 Horizontal alignment in a column
Changed "The horizontal alignment of a cell’s content within a cell box is specified
with the ’text-align’ property" to "The horizontal alignment of a cell’s inline content
within a cell box can be specified with the ’text-align’ property."

C.4.86 Section 17.5.5 Dynamic row and column effects
Clarified that not affecting layout means that ’visibility: collapse’ causes the part of
row- and column-spanning cells that span into the collapsed row to be clipped.

C.4.87 Section 17.6.1 The separated borders model
Added a note explaining that ’border-spacing’ can be used as a substitute for the
non-standard ’framespacing’ attribute on frameset elements (which are out-of-scope
for CSS2.1).

Added clarification about backgrounds: the sentence "This space is filled with the
background of the table element" was replaced by:

In this space, the row, column, row group, and column group backgrounds are
invisible, allowing the table background to show through.

C.4.88 Section 17.6.2 The collapsing borders model
In the sentence after the question, added "and padding-left i and padding-right i refer
to the left (resp., right) padding of cell i."

38730 Mar 2011 19:50

Changes

C.4.89 Section 18.2 System Colors
Noted that system colors are deprecated in CSS3.

C.4.90 Section 18.4 Dynamic outlines
Clarified that outlines do not cause overflow.

Clarified that outlines are only fully connected "if possible".

C.4.91 Section 18.4.1 Outlines and the focus
Clarify that changing outlines in response to focus should not cause a document to
reflow.

C.4.92 Appendix D Default style sheet for HTML 4
Added paragraph clarifying that some presentational markup in HTML can be
replaced with CSS, but it requires different markup.

C.5 Errata since the Candidate Recommendation of
July 2007
Errata to CSS 2.1 since CR version of July 19, 2007. [p. ??]

C.5.1 Section 1.4.2.1 Value
[2009-04-15] The notation “&&” may be used in syntax definitions in future CSS
specifications.

C.5.2 Section 2.3 The CSS 2.1 processing model
[2008-08-19] The first part of the section is not normative.

C.5.3 Section 3.1 Definitions
[2007-11-14] Append “For raster images without reliable resolution information, a
size of 1 px unit per image source pixel must be assumed.” to the definition of “intrin-
sic dimensions.”

C.5.4 Section 4.1.1 Tokenization
[2007-09-27] Remove “DELIM?” from the grammar rule

declaration : DELIM? property S* ’:’ S* value;

30 Mar 2011 19:50388

Changes

The DELIM was allowed there so that unofficial properties could start with a dash
(-), but the dash was already allowed because of the definition of “IDENT.”

[2009-02-02] Change U to u in token UNICODE-RANGE. (It means the same, but
seems to avoid confusion.)

[2009-02-02] Clarify where comments are allowed:

COMMENT tokens do not occur in the grammar (to keep it readable), but any
number of these tokens may appear anywhere between outside other tokens.
(Note, however, that a comment before or within the @charset rule disables the
@charset.)

C.5.5 Section 4.1.2.2 Informative Historical Notes
[2008-12-09] Other known vendor prefixes are: -xv-, -ah-, prince-, -webkit-, and
-khtml-.

C.5.6 Section 4.1.3 Characters and case
[2007-11-14] In the second bullet, change “[a-z0-9]” to “[a-zA-Z0-9]”; in the third
bullet, change “[0-9a-f]” to “[0-9a-fA-F]”.

Although the preceding bullet already says that CSS is case-insensitive, the
explicit mention of upper and lower case letters helps avoid mistakes.

C.5.7 Section 4.1.3 Characters and case
[2008-03-05] CSS is now case-sensitive, except for certain parts:

All CSS syntax is case-insensitive within the ASCII range (i.e., [a-z] and [A-Z]
are equivalent), except for parts that are not under the control of CSS.

C.5.8 Section 4.1.3 Characters and case
[2008-12-02] The pair “*/” ends a comment, even if preceded by a backslash.
Change this sentence in the third bullet:

Except within CSS comments, any character (except a hexadecimal digit) can
be escaped with a backslash to remove its special meaning.

C.5.9 Section 4.1.3 Characters and case
[2009-04-15] Text added to match the grammar:

[¼] any character (except a hexadecimal digit , linefeed, carriage return or
form feed) can be escaped [¼]

38930 Mar 2011 19:50

Changes

C.5.10 Section 4.1.5 At-rules
[2009-04-15] Clarified that unknown statements are ignored when looking for
@import:

CSS 2.1 user agents must ignore any ’@import’ rule that occurs inside a
block or after any valid non-ignored statement other than an @charset or an
@import rule.

C.5.11 Section 4.1.7 Rule sets, declaration blocks, and selec-
tors
[2008-11-26] More precise statement of what is ignored:

When a user agent cannot parse the selector (i.e., it is not valid CSS 2.1), it
must ignore the selector and the following declaration block (if any) as well.

C.5.12 Section 4.2 Rules for handling parsing errors
[2009-04-15] Added error recovery rule for unexpected tokens at the top level:

Malformed statements. User agents must handle unexpected tokens
encountered while parsing a statement by reading until the end of the state-
ment, while observing the rules for matching pairs of (), [], {}, "", and ’’, and
correctly handling escapes. For example, a malformed statement may contain
an unexpected closing brace or at-keyword. E.g., the following lines are all
ignored:

p @here {color: red} /* ruleset with unexpected at-keyword "@here" */
@foo @bar; /* at-rule with unexpected at-keyword "@bar" */
}} {{ - }} /* ruleset with unexpected right brace */
) [{}] p {color: red } /* ruleset with unexpected right parenthesis */

C.5.13 Section 4.2 Rules for handling parsing errors
[2008-11-26] Change “or block” as follows:

User agents must ignore an invalid at-keyword together with everything
following it, up to and including the next semicolon (;), or block ({...}) the next
block ({...}), or the end of the block (}) that contains the invalid at-keyword,
whichever comes first.

C.5.14 Section 4.3.2 Lengths
[2008-08-19] Add recommendation about size of px:

30 Mar 2011 19:50390

Changes

[¼] the user agent should rescale pixel values. It is recommended that the
pixel unit refer to the whole number of device pixels that best approximates the
reference pixel.

C.5.15 Section 4.3.5 Counters
[2008-03-05] Insert “case-sensitive” in “Counters are denoted by case-sensitive iden-
tifiers”.

C.5.16 Section 5.8.1 Matching attributes and attribute values
[2008-04-07] Clarified ~= and |= by using the definitions from the Selectors [p. ??]
module.

[2008-11-03] Clarified that [foo~=""] (i.e., with an empty value) will not match
anything.

C.5.17 Section 5.8.2 Default attribute values in DTDs
[2007-11-14] Replace “tag selector” by “type selector”.

C.5.18 Section 5.11.4 The language pseudo-class: :lang
[2009-04-15] The language code is case-insensitive.

C.5.19 Section 5.12.3 The :before and :after pseudo-elements
[2008-11-03] Clarified text:

When the :first-letter and :first-line pseudo-elements are combined with
applied to an element having content generated using :before and :after, they
apply to the first letter or line of the element including the inserted text gener-
ated content.

C.5.20 Section 6.3 The @import rule
[2008-08-19] Add “In CSS 2.1” and “See the section on parsing for when user agents
must ignore @import rules” to

In CSS 2.1, any @import rules must precede all other rules (except the
@charset rule, if present). See the section on parsing for when user agents
must ignore @import rules.

C.5.21 Section 6.3 The @import rule
[2008-11-26] Define what it means to import a style sheet twice and how the media
list is matched. Add at the end:

39130 Mar 2011 19:50

Changes

In the absence of any media types, the import is unconditional. Specifying ’all’
for the medium has the same effect. The import only takes effect if the target
medium matches the media list.

A target medium matches a media list if one of the items in the media list is
the target medium or ’all’.

Note that Media Queries [MEDIAQ] extends the syntax of media lists and the
definition of matching.

When the same style sheet is imported or linked to a document in multiple
places, user agents must process (or act as though they do) each link as though
the link were to a separate style sheet.

C.5.22 Section 6.4.1 Cascading order
[2007-11-22] Spelling error: “precendence”.

C.5.23 Section 6.4.1 Cascading order
[2008-11-26] Define the meaning of a media list:

Find all declarations that apply to the element and property in question, for the
target media type. Declarations apply if the associated selector matches the
element in question and the target medium matches the media list on all
@media rules containing the declaration and on all links on the path through
which the style sheet was reached.

C.5.24 Section 7.2.1 The @media rule
[2008-12-02] The rules for parsing unknown statements inside @media blocks were
ambiguous. Change the first sentence as follows:

An @media rule specifies the target media types (separated by commas) of a
set of rules statements (delimited by curly braces). Invalid statements must be
ignored per 4.1.7 "Rule sets, declaration blocks, and selectors" and 4.2 "Rules
for handling parsing errors."

Also make it explicit that CSS level 2 (unlike higher levels) has no nested @-rules.
Add at the end of the section: “At-rules inside @media are invalid in CSS 2.1.”

C.5.25 Section 8.3.1 Collapsing margins
[2008-08-18] In bullet 6, sub-bullet 2, the position of the top border edge is deter-
mined by assuming the element has a non-zero bottom (not: top) border.

30 Mar 2011 19:50392

Changes

C.5.26 Section 8.3.1 Collapsing margins
[2009-02-02] Rephrased the rule for adjoining margins so that the ’min-height’ and
’max-height’ of an element have no influence over whether the element’s bottom
margin is adjoining to its last child’s bottom margin.

C.5.27 Section 8.3.1 Collapsing margins
[2008-12-02] Not only elements with ’overflow’ other than ’visible’, but all block
formatting contexts avoid collapsing their margins with their children. Change the
third bullet as follows:

Vertical margins of elements with ’overflow’ other than ’visible’ that estab-
lish new block formatting contexts (such as floats and elements with ’over-
flow’ other than ’visible’) do not collapse with their in-flow children.

C.5.28 Section 9.2.2 Inline-level elements and inline boxes
[2008-12-02] Added missing ’inline-block’ in: “Several values of the ’display’ property
make an element inline: ’inline’, ’inline-table’, ’inline-block’ and ’run-in’ (part of the
time; see run-in boxes).”

C.5.29 Section 9.2.4 The ’display’ property
[2008-04-07] Clarified that ’display: none’ also applies to non-visual media.

C.5.30 Section 9.3.2 Box offsets: ’top’, ’right’, ’bottom’, ’left’
[2008-08-19] Remove true but confusing note (occurs 4×):

Note: For absolutely positioned elements whose containing block is based on
a block-level element, this property is an offset from the padding edge of that
element.

C.5.31 Section 9.5 Floats
[2008-08-19] Positioned descendants of a float are in the stacking context of the
float’s parent. Add “positioned elements and” to

[¼] except that any positioned elements and elements that actually create new
stacking contexts take part in the float’s parent’s stacking context.

Same change in Section 9.9 Layered presentation [p. ??] :

[¼] except that any positioned elements and any elements that actually create
new stacking contexts take part in the parent stacking context.”

39330 Mar 2011 19:50

Changes

C.5.32 Section 9.5 Floats
[2008-12-02] Remove “’s” that may be misinterpreted: “the float’s parent’s stacking
context.”

C.5.33 Section 9.5.2 Controlling flow next to floats: the ’clear’
property
[2009-02-02] Add an example of negative clearance after the first note.

C.5.34 Section 9.6.1 Fixed positioning
[2008-11-03] Added:

Boxes with fixed position that are larger than the page box are clipped. Parts
of the fixed position box that are not visible in the initial containing block will not
print.

C.5.35 Section 9.9.1 Specifying the stack level: the ’z-index’
property
[2008-12-02] The list of stacking levels is ambiguous: relatively positioned elements
could fall under items 3/4/5 or under item 6. Meant is item 6, so exclude them from
3/4/5 as follows:

1. the background and borders of the element forming the stacking context.
2. the stacking contexts of descendants with negative stack levels.
3. a stacking level containing in-flow non-inline-level non-positioned descen-

dants.
4. a stacking level for non-positioned floats and their contents.
5. a stacking level for in-flow inline-level non-positioned descendants.
6. a stacking level for positioned descendants with ’z-index: auto’, and any

descendant stacking contexts with ’z-index: 0’.
7. the stacking contexts of descendants with positive stack levels.

C.5.36 Section 10.1 Definition of "containing block"
[2009-02-02] Rephrase first bullet point to make easier to read:

The containing block in which the root element lives is a rectangle with the
dimensions of the viewport, anchored at the canvas origin for continuous media,
and the page area for paged media. This containing block is called the initial
containing block.

30 Mar 2011 19:50394

Changes

The containing block in which the root element lives is a rectangle called the
initial containing block. For continuous media, it has the dimensions of the view-
port and is anchored at the canvas origin; it is the page area for paged media.

C.5.37 Section 10.3 Calculating widths and margins
[2009-04-15] The values of ’left’ and ’right’ are only determined by section 9.4.3 in
the case of relatively positioned elements:

For Points 1-6 and 9-10, the values of ’left’ and ’right’ used for layout in the
case of relatively positioned elements are determined by the rules in section
9.4.3. [p. 141]

C.5.38 Section 10.3.1 Inline, non-replaced elements
[2009-04-15] The only case in which ’left’ or ’right’ can be ’auto’ is when the element
is statically positioned. In that case ’left’ and ’right are ignored and there is thus no
need to determine a used value:

A computed value of ’auto’ for ’left’, ’right’, ’margin-left’ or ’margin-right’
becomes a used value of ’0’.

C.5.39 Section 10.3.2 Inline, replaced elements
[2007-11-14] Add the following paragraph:

Otherwise, if ’width’ has a computed value of ’auto’, and the element has an
intrinsic width, then that intrinsic width is the used value of ’width’.

just before the paragraph beginning “Otherwise, if ’width’ has a computed value of
’auto’, but none of the conditions above are met, [¼]”.

C.5.40 Section 10.3.2 Inline, replaced elements
[2008-03-05] Change the last paragraph as follows:

If it does, then a percentage intrinsic width on that element cannot be
resolved and the element is assumed to have no intrinsic width then the result-
ing layout is undefined in CSS2.1.

C.5.41 Section 10.3.3 Block-level, non-replaced elements in
normal flow
[2008-03-05] Scrollbar widths are no longer included in the containing block width.
Remove scrollbar width from:

39530 Mar 2011 19:50

Changes

’margin-left’ + ’border-left-width’ + ’padding-left’ + ’width’ + ’padding-right’ +
’border-right-width’ + ’margin-right’ + scrollbar width (if any) = width of containing
block

and from:

If ’width’ is not ’auto’ and ’border-left-width’ + ’padding-left’ + ’width’ +
’padding-right’ + ’border-right-width’ + scrollbar width (if any) [...]

and remove the paragraph:

The "scrollbar width" value is only relevant if the user agent uses a scrollbar
as its scrolling mechanism. See the definition of the ’overflow’ property.

C.5.42 Section 10.3.7 Absolutely positioned, non-replaced
elements
[2008-03-05] Scrollbar widths are no longer included in the containing block width.
Remove scrollbar width from:

’left’ + ’margin-left’ + ’border-left-width’ + ’padding-left’ + ’width’ +
’padding-right’ + ’border-right-width’ + ’margin-right’ + ’right’ + scrollbar width (if
any) = width of containing block

and remove the paragraph:

The "scrollbar width" value is only relevant if the user agent uses a scrollbar
as its scrolling mechanism. See the definition of the ’overflow’ property.

C.5.43 Section 10.3.7 Absolutely positioned, non-replaced
elements
[2008-03-05] Add the following definition.

[2008-08-19] Add the following note to that definition.

The static-position containing block is the containing block of a hypothetical
box that would have been the first box of the element if its specified ’position’
property had been ’static’ and its ’float’ had been ’none’. (Note that due to the
rules in section 9.7 this hypothetical calculation might require also assuming a
different computed value for ’display’.)

And change which ’direction’ property is used as follows (two occurrences):

[...] if the ’direction’ property of the element establishing the static-position
containing block is [...]

30 Mar 2011 19:50396

Changes

C.5.44 Section 10.3.8 Absolutely positioned, replaced
elements
[2008-03-05] Change bullet 2 as follows:

[...] if the ’direction’ property of the element establishing the static-position
containing block is [...]

C.5.45 Section 10.3.8 Absolutely positioned, replaced
elements
[2008-03-05] Clarification. Replace

This situation is similar to the previous one, except that the element has an
intrinsic width. The sequence of substitutions is now:

by

In this case, section 10.3.7 applies up through and including the constraint
equation, but the rest of section 10.3.7 is replaced by the following rules:

C.5.46 Section 10.3.8 Absolutely positioned, replaced
elements
[2008-04-07] Clarified that margins are not calculated as for inline elements.

C.5.47 Section 10.5 Content height: the ’height’ property
Under “<percentage>,” add the same note as under “<percentage>,” in section 10.2
(“Content width: the ’width’ property”).

C.5.48 Section 10.6.2 Inline replaced elements [¼]
[2007-11-14] Add the following paragraph:

Otherwise, if ’height’ has a computed value of ’auto’, and the element has an
intrinsic height, then that intrinsic height is the used value of ’height’.

just before the paragraph beginning “Otherwise, if ’height’ has a computed value
of ’auto’, but none of the conditions above are met [¼]”.

C.5.49 Section 10.6.4 Absolutely positioned, non-replaced
elements
[2008-11-26] The static position is determined considering neither float nor clear.
Add this:

39730 Mar 2011 19:50

Changes

[¼] and its specified ’float’ had been ’none’ and ’clear’ had been ’none’.

C.5.50 Section 10.6.5 Absolutely positioned, replaced
elements
[2008-04-07] Clarified that margins are not calculated as for inline elements.

C.5.51 Section 10.8.1 Leading and half-leading
[2007-11-14] In the Note under ’vertical-align’, remove “slightly” from “Values of this
property have slightly different meanings in the context of tables.”

C.5.52 Section 11.1.1 Overflow: the ’overflow’ property
[2008-03-05] Scrollbar widths are no longer included in the containing block width.
Replace

The space taken up by the scrollbars affects the computation of the dimen-
sions in the rendering model.

by

Any space taken up by the scrollbars should be taken out of (subtracted from
the dimensions of) the containing block formed by the element with the scroll-
bars.

[2008-11-03] ’Overflow’ on BODY is special not only in HTML but also in XHTML.
Change the sentence “HTML UAs must instead apply the ’overflow’ property from
the BODY element to the viewport, if the value on the HTML element is ’visible’.” to:

When the root element is an HTML "HTML" element or an XHTML "html"
element, and that element has an HTML "BODY" element or an XHTML "body"
element as a child, user agents must instead apply the ’overflow’ property from
the first such child element to the viewport, if the value on the root element is
’visible’.

C.5.53 Section 11.1.2 Clipping: the ’clip’ property
[2008-03-05] Insert “(but not a combination)” in “User agents must support separa-
tion with commas, but may also support separation without commas (but not a
combination)”.

C.5.54 Section 12.2 The ’content’ property
[2009-04-15] (And also in section 12.4:) certain keywords, in particular ’none’,
’inherit’ and ’initial’ (the latter being reserved for future use) cannot be used as
names for counters.

30 Mar 2011 19:50398

Changes

C.5.55 Section 12.4.2 Counter styles
[2008-03-05] Error in example. Replace hebrew by lower-greek:

BLOCKQUOTE:after { content: " [" counter(bq, hebrew lower-greek) "]" }

C.5.56 Section 12.5 Lists
[2008-12-01] Change “in” to “with respect to” in

The list properties describe basic visual formatting of lists: they allow style
sheets to specify the marker type (image, glyph, or number), and the marker
position in with respect to the principal box (outside it or within it before content).

because the marker is, as the rest of the sentence itself makes clear, not neces-
sarily in the principal box.

C.5.57 Section 12.5.1 Lists: the ’list-style-type’,
’list-style-image’, ’list-style-position’, and ’list-style’ properties
[2008-04-07] The size of list style markers without an intrinsic size is now defined.

C.5.58 Section 12.5.1 Lists: the ’list-style-type’,
’list-style-image’, ’list-style-position’, and ’list-style’ properties
[2008-12-01] CSS 2.1 does not specify the position of the list item marker, but does
require it to be on the left or right of the content. Also, the marker is not affected by
’overflow’, but may influence the height of the principal box. Add to the definition of
’outside’:

¼ but does require that for list items whose ’direction’ property is ’ltr’ the
marker box be on the left side of the content and for elements whose ’direction’
property is ’rtl’ the marker box be on the right side of the content. ’Overflow’ on
the element does not clip the marker box. The marker box is fixed with respect
to the principal block box’s border and does not scroll with the principal block
box’s content. The size or contents of the marker box may affect the height of
the principal block box and/or the height of its first line box, and in some cases
may cause the creation of a new line box. Note: This interaction may be more
precisely defined in a future level of CSS.

C.5.59 Section 12.5.1 Lists: the ’list-style-type’,
’list-style-image’, ’list-style-position’, and ’list-style’ properties
[2009-04-015] Meaning of ’none’ for ’list-style’ was only defined by an example.

39930 Mar 2011 19:50

Changes

C.5.60 Section 13.2 Page boxes: the @page rule
[2008-08-19] Add rules for drawing canvas to:

The page area. The page area includes the boxes laid out on that page.
The edges of the first page area establish the rectangle that is the initial
containing block of the document. The canvas background is painted within
and covers the page area.
The margin area, which surrounds the page area. The page margin area is
transparent.

C.5.61 Section 13.2.1.1 Rendering page boxes that do not fit
a target sheet
[2009-02-02]

Remove sections 13.2.1.1 and 13.2.1.2. (The described situations cannot occur in
CSS 2.1, because CSS 2.1 does not have a ’size’ property.)

C.5.62 Section 13.2.3 Content outside the page box
[2008-11-03] Clarified what locations are inconvenient for printing:

When formatting content in the page model, some content may end up
outside the current page box. For example, an element whose ’white-space’
property has the value ’pre’ may generate a box that is wider than the page box.
As another example, when boxes are positioned absolutely or relatively, they
may end up in “inconvenient” locations. For example, images may be placed on
the edge of the page box or 100,000 meters below the page box.

C.5.63 Section 13.3.1 Page break properties:
’page-break-before’, ’page-break-after’, ’page-break-inside’
[2008-04-30] The ’page-break-inside’ property no longer inherits.

C.5.64 Section 13.3.1 Page break properties:
’page-break-before’, ’page-break-after’, ’page-break-inside’
[2008-12-01] UAs may apply ’page-break-before’, ’page-break-after’ and
’page-break-inside’ to other elements than block-level ones.

C.5.65 Section 13.3.2 Breaks inside elements: ’orphans’,
’widows’

30 Mar 2011 19:50400

Changes

[2009-02-02] “Paragraph” is not a defined term. Change of a paragraph to in a block
element (twice).

C.5.66 Section 13.3.2 Breaks inside elements: ’orphans’,
’widows’
[2009-04-15] ’Widows’ and ’orphans’ only accept positive values.

C.5.67 Section 13.3.3 Allowed page breaks
[2008-04-30] The ’page-break-inside’ property of all ancestors is checked for
page-breaking restrictions, not just that of the breakpoint’s parent.

C.5.68 Section 13.3.3 Allowed page breaks
[2009-02-02] Remove possible confusion:

Rule D: In addition, breaking at (2) is allowed only if the ’page-break-inside’
property of the element and all its ancestors is ’auto’.

C.5.69 Section 13.3.3 Allowed page breaks
[2009-02-02] Top margins do not disappear at a page break that is forced by a
’page-break-after’ or ’page-break-before’. Correct the first bullet to:

When an unforced page break occurs here, the used values of the relevant
’margin-top’ and ’margin-bottom’ properties are set to ’0’. When a forced page
break occurs here, the used value of the relevant ’margin-bottom’ property is set
to ’0’; the relevant ’margin-top’ used value may either be set to ’0’ or retained.

And add the following note:

Note: It is expected that CSS3 will specify that the relevant ’margin-top’
applies (i.e., is not set to ’0’) after a forced page break.

C.5.70 Section 13.3.5 "Best" page breaks
[2009-02-02] Remove the advice to user agents to avoid breaking inside elements
with borders, inside tables or inside floating elements; add the advice to avoid break-
ing inside replaced elements.

C.5.71 Section 14.2 The background
[2008-11-03] The ’background’ property is special on BODY not only in HTML but
also in XHTML.

40130 Mar 2011 19:50

Changes

C.5.72 Section 14.2 The background
[2009-04-15] The whole ’background’ property is used for the canvas, not just the
color and the image:

For documents whose root element is an HTML "HTML" element or an
XHTML "html" element that has computed values of ’transparent’ for ’back-
ground-color’ and ’none’ for ’background-image’, user agents must instead use
the computed value of those the background properties from that element’s first
HTML "BODY" element or XHTML "body" element child [¼]

C.5.73 Section 14.2.1 Background properties: ’back-
ground-color’, ’background-image’, ’background-repeat’,
’background-attachment’, ’background-position’, and ’back-
ground’
[2008-04-07] The size of background images without an intrinsic size is now defined.

C.5.74 Section 15.6 Font boldness: the ’font-weight’ property
[2008-11-26] Remove incorrect text:

’bolder’ selects the next weight that is assigned to a font that is darker than
the inherited one. If there is no such weight, it simply results in the next
darker numerical value (and the font remains unchanged), unless the inher-
ited value was ’900’ in which case the resulting weight is also ’900’.
’lighter’ is similar, but works in the opposite direction: it selects the next
lighter keyword with a different font from the inherited one, unless there is
no such font, in which case it selects the next lighter numerical value (and
keeps the font unchanged).

and:

The computed value of "font-weight" is either:
one of the legal number values, or
one of the legal number values combined with one or more of the relative
values (bolder or lighter). This type of computed values is necessary to use
when the font in question does not have all weight variations that are
needed.

And instead add this note:

Note: A set of nested elements that mix ’bolder’ and ’lighter’ will give unpre-
dictable results depending on the UA, OS, and font availability. This behavior
will be more precisely defined in CSS3.

30 Mar 2011 19:50402

Changes

C.5.75 Section 16.6 Whitespace: the ’white-space’ property
[2008-08-19] Remove rules about generated text from:

The following examples show what whitespace behavior is expected from the
PRE and P elements, the “nowrap” attribute in HTML, and in generated content.

pre { white-space: pre }
p { white-space: normal }
td[nowrap] { white-space: nowrap }
:before,:after { white-space: pre-line }

C.5.76 Section 16.6.1 The ’white-space’ processing model
[2009-02-02] Collapsing of white space does not remove any line breaking opportu-
nities. Add the following clarification:

Then, the entire block is rendered. Inlines are laid out, taking bidi reordering
into account, and wrapping as specified by the ’white-space’ property. When
wrapping, line breaking opportunities are determined based on the text prior to
the white space collapsing steps above.

C.5.77 Section 17.2.1 Anonymous table objects
[2007-11-14] Spelling error: “boxess”.

C.5.78 Section 17.2.1 Anonymous table objects
[2008-10-13] Added new rule after bullet 4:

5. If a child T of a ’table’, ’inline-table’, ’table-row-group’, ’table-header-group’,
’table-footer-group’, or ’table-row’ box is an anonymous inline box that contains
only white space, then it is treated as if it has ’display: none’.

C.5.79 Section 17.4 Tables in the visual formatting model
[2009-02-02] The anonymous block containing the table and its caption establishes a
block formatting context:

The anonymous box is a ’block’ box if the table is block-level, and an
’inline-block’ box if the table is inline-level except that this block is never consid-
ered as a block for ’run-in’ interaction, and that The anonymous box establishes
a block formatting context. The table box (not the anonymous box) is used when
doing baseline vertical alignment for an ’inline-table’.

The diagram now shows the caption’s margins inside the anonymous box.

40330 Mar 2011 19:50

Changes

C.5.80 Section 17.5.4 Horizontal alignment in a column
[2008-04-07] Clarification:

The horizontal alignment of a cell’s inline content within a cell box is can be
specified with the ’text-align’ property by the value of the ’text-align’ property on
the cell.

C.5.81 Section 18.1 Cursors: the ’cursor’ property
[2008-04-07] The size of cursors without an intrinsic size is now defined.

C.5.82 Section B.2 Informative references
[2007-11-14] Spelling error: change “?lik” to “Çelik” (2×).

C.5.83 Appendix D. Default style sheet for HTML 4
[2008-08-19] Replace

br:before { content: "\A" }
:before, :after { white-space: pre-line }

with

br:before { content: "\A"; white-space: pre-line }

C.5.84 Appendix D. Default style sheet for HTML 4
[2008-08-19] Add tr to:

td, th, tr { vertical-align: inherit }

C.5.85 Section E.2 Painting order
[2007-11-14] Replace “but any descendants which actually create a new stacking
context” by “but any positioned descendants and descendants which actually create
a new stacking context”.

C.5.86 Appendix G. Grammar of CSS 2.1
[2007-09-27] Change the last “S” in the grammar rule for “combinator” to “S+”:

combinator
 : PLUS S*
 | GREATER S*
 | S+

and remove the rule

30 Mar 2011 19:50404

Changes

{s}+\/*[^*]**+([^/*][^*]**+)*\/ {unput(’ ’); /*replace by space*/}

in the tokenizer. The resulting language is the same, but the grammar is easier to
read and relies less on specific notations of Flex.

C.5.87 Section G.1 Grammar
[2007-09-27] Changes to remove ambiguity with respect to the S token and avoid
nullable non-terminals.

C.5.88 Section G.2 Lexical scanner
[2007-09-27] Change the tokenizer rule

@{C}{H}{A}{R}{S}{E}{T} {return CHARSET_SYM;}

to

"@charset " {return CHARSET_SYM;}

The @charset must be in lowercase and must have a space after it (as defined in
section 4.4 CSS style sheet representation [p. ??]).

C.5.89 Section G.2 Lexical scanner
[2008-03-05] Change the tokenizer rules

"url ("{w}{string}{w}")" {return URI;}
"url ("{w}{url}{w}")" {return URI;}

to

{U}{R}{L}" ("{w}{string}{w}")" {return URI;}
{U}{R}{L}" ("{w}{url}{w}")" {return URI;}

C.5.90 Section G.2 Lexical scanner
[2008-04-07] The definition of the macro “O” is wrong. The letters O and o can be
written with hexadecimal escapes as “\4f ” and “\6f ” respectively (not as “\51 ” and
“\71 ”). The macro should therefore be

O o|\\0{0,4}(4f|6f)(\r\n|[\t\r\n\f])?|\\o

C.5.91 Section G.2 Lexical scanner
“The two occurrences of "\377"¼”: There is in fact only one occurrence.

40530 Mar 2011 19:50

Changes

C.5.92 Appendix I. Index
Add a TITLE attribute to all links and which is equal to the lemma.

C.6 Errata since the Candidate Recommendation of
April 2009
These are the errata for CSS level 2 revision 1, CR version of 23 April 2009. [p. ??]
These corrections have the status of a draft.

C.6.1 Section 4.2 Rules for handling parsing errors
[2009-08-06] Clarified the rules for ignoring invalid at-keywords:

Invalid at-keywords. User agents must ignore an invalid at-keyword together
with everything following it, up to the end of the block that contains the invalid
at-keyword, or up to and including the next semicolon (;), or up to and including
the next block ({...}), or the end of the block (}) that contains the invalid
at-keyword, whichever comes first.

C.6.2 Section 13.3.3 Allowed page breaks
[2009-08-06] Page breaks are also allowed when there is a gap after the last content
of a block. Added the following to the first list:

3. Between the content edge of a block box and the outer edges of its child
content (margin edges of block-level children or line box edges for inline-level
children) if there is a (non-zero) gap between them.

C.6.3 Section 15.3 Font family: the ’font-family’ property
[2009-08-31] The list of keywords in “(e.g., ’initial’, ’inherit’, ’default’, ’serif’,
’sans-serif’, ’monospace’, ’fantasy’, and ’cursive’)” isn’t an example, but is in fact the
complete and normative list.

C.6.4 Section 15.3.1.1 serif
[2009-08-31] Spelling errors in font names. The correct names are “Excelsior Cyrillic
Upright” and “ER Bukinist.”

C.6.5 Section 15.7 Font size: the ’font-size’ property
[2009-08-31] The two notes “Note: implementation experience has demonstrated¼”
and “Note 2. In CSS1, the suggested scaling factor¼ say essentially the same thing.
They are replaced by a single note:

30 Mar 2011 19:50406

Changes

Note 2. In CSS1, the suggested scaling factor between adjacent indexes was
1.5, which user experience proved to be too large. In CSS2, the suggested
scaling factor for a computer screen between adjacent indexes was 1.2, which
still created issues for the small sizes. Implementation experience has demon-
strated that a fixed ratio between adjacent absolute-size keywords is problem-
atic, and this specification does not recommend such a fixed ratio.

C.6.6 Section 17.5.2.1 Fixed table layout
[2009-05-20] UAs may render extra columns if there are unexpected columns in later
rows of a ’fixed’ table layout. In that case, the width of the columns and of the table is
undefined.

C.6.7 Section 17.5.3 Table height layout
[2009-08-06] Replaced “Percentage heights on table cells, table rows, and table row
groups compute to ’auto’ by

CSS 2.1 does not define how the height of table cells and table rows is calcu-
lated when their height is specified using percentage values. CSS 2.1 does not
define the meaning of ’height’ on row groups.

C.6.8 Appendix G. Grammar of CSS 2.1
[2009-08-06] Removed ambiguities from the grammar. (The ambiguities only
affected spaces and were harmless.)

C.7 Errata since the Candidate Recommendation of
September 2009
These are the errata for CSS level 2 revision 1, CR version of 8 September 2009.
[p. ??] These corrections have the status of a draft.

C.7.1 Section 1.4.2.1 Value
[2010-08-06] (Also in various other sections throughout the specification.) Distin-
guished all cases where the word value referred to a whole property value from
where it referred to only part of such a value (such as a component in a
comma-separated list). The former is now property value, the latter component
value.

C.7.2 Section 3.1 Definitions
[2010-04-19] Add a clarification to the definition of replaced element:

40730 Mar 2011 19:50

Changes

The content of replaced elements is not considered in the CSS rendering
model.

(Previously, the definition only said that the content was “outside the scope of
CSS.”)

C.7.3 Section 4.1.1 Tokenization
[2010-04-19] The definition of “identifier” in 4.1.3 (2nd bullet) and in the grammar
were contradictory w.r.t. whether no-break space (U+00A0) was allowed in identifiers
or not. Change the text in 4.1.3 to allow no-break space: “characters U+00A1
U+00A0 and higher.”

Also, change the macro “nonascii” in the token definition from “[^\0-\177]” to
[^\0-\237]”. (When CSS was first written, Unicode didn’t have code points U+0080 to
U+009F, i.e., \200-\237 in octal.)

C.7.4 Section 4.1.1 Tokenization
[2010-09-29] The tokenizer has been modified so that it can be implemented as a
state machine without back-up (e.g., with Lex). This changes the meaning of an
input of the form “url(¼(¼)¼)”, i.e., input that starts like a URI token but then contains
a parenthesis (which is not allowed in a URI token). Previously, such input was
re-parsed to yield a FUNCTION token followed by other things; now it yields a
BAD_URI token. Given that CSS has never used a FUNCTION token of the form
“url(” this should not affect any existing CSS style sheets.

A non-normative section has been added to appendix G with an explanation of
how to make a tokenizer without back-up.

C.7.5 Section 4.1.1 Tokenization
[2010-09-29] The definition of the URI token was ambiguous: it allowed a backslash
to be either parsed on its own or as part of an escape. A backslash in a URI token
must always be interpreted as part of an escape.

C.7.6 Section 4.1.1 Tokenization
[2010-09-29] Error handling for illegal tokens (braces, at-keywords, and SGML
comment tokens) inside parenthesized expressions was not well defined. Change
the production for “any” as follows

any : [IDENT | NUMBER | PERCENTAGE | DIMENSION | STRING
 | DELIM | URI | HASH | UNICODE-RANGE | INCLUDES
 | DASHMATCH | ’:’ | FUNCTION S* [any|unsused] * ’)’
 | ’(’ S* [any|unused] * ’)’ | ’[’ S* [any|unused] * ’]’
] S*;
unused : block | ATKEYWORD S* | ’;’ S* | CDO S* | CDC S*;

30 Mar 2011 19:50408

Changes

and add the following explanation:

The "unused" production is not used in CSS and will not be used by any
future extension. It is included here only to help with error handling. (See 4.2
"Rules for handling parsing errors.")

C.7.7 Section 4.1.2.2 Informative Historical Notes
[2010-04-19] Add “-tc-” to the list of existing vendor prefixes.

C.7.8 Section 4.1.3 Characters and case
[2010-08-06] The handling of a backslash before a newline or at the end of a file is
no longer undefined: it is parsed as a DELIM.

C.7.9 Section 4.1.3 Characters and case
[2010-08-06] Make text and formal grammar the same:

In CSS, identifiers [¼]; they cannot start with a digit, two hyphens, or a hyphen
followed by a digit.

C.7.10 Section 4.1.8 Declarations and properties
[2010-05-12] Remove “2.1” from

Every CSS 2.1 property has its own syntactic and semantic restrictions

C.7.11 Section 4.2 Rules for handling parsing errors
[2010-07-07] Clarify that the fifth bullet only applies to at-rules. (At-keywords in other
constructs are already handled in the preceding bullets.)

Invalid at-keywords At-rules with unknown at-keywords . User agents
must ignore¼

C.7.12 Section 4.3.2 Lengths
[2010-04-19] Make explicit that ’ex’, when used in the ’font-size’ property, refers to
the parent element’s ’ex’ (just as ’em’ refers to the parent’s ’em’ in that case.)

C.7.13 Section 4.3.2 Lengths
[2010-10-28] A UA must now either display absolute lengths (cm, in, pt, etc.) at their
real size or make px align with device pixel boundaries near the 0.0213 degrees
viewing angle, but not both. In either case, 3px must equal 4pt.

40930 Mar 2011 19:50

Changes

(Until now, authors could use absolute lengths for physical sizes and px for align-
ing to device pixels, but couldn’t know the number of pt in a px, except in combina-
tion with Media Queries. Authors can no longer choose between absolute or
device-related units, but can use px and pt interchangeably. This should only affect
relatively low-resolution devices: above 300 dots per inch, the maximum error is
about 16%.)

C.7.14 Section 4.3.4 URLs and URIs
[2010-05-12] Commas do not have to be escaped in <uri> tokens:

Some characters appearing in an unquoted URI, such as parentheses,
commas, white space characters, single quotes (’) and double quotes ("), must
be escaped

C.7.15 Section 4.3.4 URLs and URIs
[2010-04-21] Describe in English what was only expressed through the grammar:

Note. Since URIs may contain characters that would otherwise be used as
delimiters in CSS, the entire URI value must be treated as a single unit by the
tokenizer and normal tokenization behavior does not apply within a URI value.
Therefore comments are not allowed within a URI value.

C.7.16 Section 5.8.2 Default attribute values in DTDs
[2010-09-29] Clarify what is meant by “is not required”:

More precisely, a UA may, but is not required to, read an "external subset" of
the DTD but is required to look for default attribute values in the document’s
"internal subset." (See [XML10] for definitions of these subsets.) Depending on
the UA, a default attribute value defined in the external subset of the DTD might
or might not appear in the document tree.

A UA that recognizes an XML namespace [XMLNAMESPACES] may, but is
not required to, use its knowledge of that namespace to treat default attribute
values as if they were present in the document. (E.g., an XHTML UA is not
required to use its built-in knowledge of the XHTML DTD.)

and:

the first rule will might not match elements whose "notation" attribute is set by
default, i.e., not set explicitly. To catch all cases, the attribute selector for the
default value must be dropped:

30 Mar 2011 19:50410

Changes

C.7.17 Section 5.11.4 The language pseudo-class: :lang
[2010-08-06] The argument of ’:lang()’ is only case-insensitive for characters in
ASCII.

C.7.18 Section 5.12 Pseudo-elements
[2010-08-06] Clarify that pseudo-elements behave like elements for the aspects not
explicitly mentioned:

Pseudo-elements behave just like real elements in CSS with the exceptions
described below and elsewhere. [p. ??]

C.7.19 Section 5.12.1 The :first-line pseudo-element
[2010-08-24] More consistent use of “block” and “block-level.” Change:

The :first-line pseudo-element can only be attached to a block-level element,
inline-block, table-caption or a table-cell block container element.

C.7.20 Section 5.12.2 The :first-letter pseudo-element
[2010-08-24] More consistent use of “block” and “block-level.” Change:

The :first-letter pseudo-element applies to block, list-item, table-cell,
table-caption and inline-block elements block container elements.

C.7.21 Section 6.2 Inheritance
[2010-08-06] Add a note that, because it follows the document tree, inheritance is
not intercepted by anonymous boxes

C.7.22 Section 6.4.4 Precedence of non-CSS presentational
hints
[2010-10-05] Give other languages than HTML (such as SVG) the possibility to
define certain attributes as “presentational attributes”:

For other languages, all document language-based styling should be handled
in the user agent style sheet must be translated to the corresponding CSS and
either enter the cascade at the user agent level or, as with HTML presentational
hints, be treated as author level rules with a specificity of zero placed at the start
of the author style sheet.

41130 Mar 2011 19:50

Changes

C.7.23 Section 7.3 Recognized media types
[2010-09-08] Clarify what is ignored. Change:

@media and @import rules with unknown media types (that are nonetheless
valid identifiers) are treated as if the unknown media types are not present. If an
@media/@import rule contains a malformed media type (not an identifier) then
the statement is invalid.

Note: Media Queries supercedes this error handling.

C.7.24 Section 8.3.1 Collapsing margins
[2010-05-12] Simplify/clarify text:

An element that has had clearance applied to it never collapses

and:

When an element’s own margins collapse, and that element has had clear-
ance applied to it

C.7.25 Section 8.3.1 Collapsing margins
[2010-08-24] More consistent use of “block box” vs “block-level element.” Include
table captions in the set of block-level elements. See also changes to 9.2.1 [p. 412]
and to 9.2.1.1. [p. 413]

Two or more adjoining vertical margins of block-level boxes in the normal flow
collapse.

and

The top margin of an in-flow block-level element block box is adjoining to its
first in-flow block-level child’s top margin

and

The bottom margin of an in-flow block-level element block box with a ’height’
of ’auto’

C.7.26 Section 9.2.1 Block-level elements and block boxes
[2010-08-24] Define the term “block-level element” more precisely. Also define auxil-
iary terms “block container box” and “block box”:

More consistent use of block box vs block-level element in section 9.2.1.1. See
also changes to section 8.3.1 [p. 412] and 9.4. [p. 415]

30 Mar 2011 19:50412

Changes

C.7.27 Section 9.2.1.1 Anonymous block boxes
[2010-05-12] The example has invalid HTML mark-up. Change it to use P and SPAN
elements instead of BODY and P.

[2010-08-06] Also clarify that “block box” only refers to boxes in the same flow.

C.7.28 Section 9.2.1.1 Anonymous block boxes
[2010-09-29] Percentage values that refer to dimensions of parent boxes ignore any
intervening anonymous boxes. Add this paragraph:

Anonymous block boxes are ignored when resolving percentage values that
would refer to it: the closest non-anonymous ancestor box is used instead. For
example, if the child of the anonymous block box inside the DIV above needs to
know the height of its containing block to resolve a percentage height, then it will
use the height of the containing block formed by the DIV, not of the anonymous
block box.

C.7.29 Section 9.2.1.1 Anonymous block boxes
[2010-09-29] Clarify the wording:

When an inline box contains an in-flow block box [¼] When such an inline box
is affected by relative positioning, the relative positioning also affects the
block-level box contained in the block box.

C.7.30 Section 9.2.1.1 Anonymous block boxes
[2010-10-13] Clarify that an inline box that is broken around a block-level box is
always broken into two pieces, even if one or both are empty:

When an inline box contains an in-flow block-level box, the inline box (and its
inline ancestors within the same line box) are broken around the block-level box,
dividing the inline box into two pieces, even if either side is empty..

C.7.31 Section 9.2.2 Inline-level elements and inline boxes
[2010-08-24] Better define the term “inline-level element/box” and define the auxiliary
terms “inline box” and “atomic inline-level box.”

C.7.32 Section 9.2.3 Run-in boxes
[2010-04-19] Make the definition of ’run-in’ more precise:

A run-in box behaves as follows:
1. If the run-in box contains a block box, the run-in box becomes a block box.
2. If a sibling block box (that does not float and is not absolutely positioned)

41330 Mar 2011 19:50

Changes

follows the run-in box, the run-in box becomes the first inline box of the
block box. A run-in cannot run in to a block that already starts with a run-in
or that itself is a run-in.

3. Otherwise, the run-in box becomes a block box.

A run-in element (or pseudo-element) A behaves as follows:
1. If A has any children that inhibit run-in behavior (see below), then A is

rendered as if it had ’display: block’.
2. Let B be the first of A’s following siblings that is neither floating nor abso-

lutely positioned nor has ’display: none’. If B exists and has a specified
value for ’display’ of ’block’ or ’list-item’ and is not replaced, then A is
rendered as an ’inline’ element at the start of B’s principal box. Note: A is
rendered before B’s ’:before’ pseudo-element, if any. See 12.1.

3. Otherwise, A is rendered as if it had ’display: block’.

In the above, "siblings" and "children" include both normal elements and
:before/:after pseudo-elements.

An element or pseudo-element C inhibits run-in behavior if one of the follow-
ing is true. (Note that the definition is recursive.)

1. C is not floating and not absolutely positioned and the computed value of its
’display’ is one of ’block’, ’list-item’, ’table’ or ’run-in’.

2. C has a computed value for ’display’ of ’inline’ and it has one or more chil-
dren that inhibit run-in behavior. (Where "children" includes both normal
elements and :before/:after pseudo-elements.)

It remains undefined how ’run-in’ and ’:first-line’ interact:

It is undefined in CSS 2.1 if a run-in inherits from a ’:first-line’
pseudo-element.

C.7.33 Section 9.2.4 The ’display’ property
[2010-08-06] Use the same terminology as in chapter 12:

list-item
This value causes an element (e.g., LI in HTML) to generate a principal
block box and a list-item inline marker box.

C.7.34 Section 9.2.4 The ’display’ property
[2010-08-24] More consistent use of “inline-level.”

inline-block
This value causes an element to generate a block box, which itself is flowed
as a single inline box, similar to a replaced element an inline-level block
container. The inside of an inline-block is formatted as a block box, and the
element itself is formatted as an inline replaced element an atomic
inline-level box.

30 Mar 2011 19:50414

Changes

C.7.35 Section 9.3 Positioning schemes
[2010-08-24] More consistent use of “inline-level” and “block-level.”

1. Normal flow. In CSS 2.1, normal flow includes block formatting of
block-level boxes, inline formatting of inline-level boxes, relative positioning
of block-level or and inline-level boxes, and positioning formatting of run-in
boxes.

C.7.36 Section 9.4 Normal flow
[2010-08-24] More consistent use of “inline-level” and “block-level.”

Boxes in the normal flow belong to a formatting context, which may be block
or inline, but not both simultaneously. Block-level boxes participate in a block
formatting context. Inline-level boxes participate in an inline formatting context.

In 9.4.1:

Floats, absolutely positioned elements, inline-blocks, table-cells,
table-captions, and elements with ’overflow’ other than ’visible’ (except when
that value has been propagated to the viewport) establish new block formatting
contexts block containers (such as inline-blocks, table-cells, and table-captions)
that are not block boxes, and block boxes with ’overflow’ other than ’visible’.

In a block formatting context, boxes are laid out one after the other, vertically,
beginning at the top of a containing block. The vertical distance between two
sibling boxes is determined by the ’margin’ properties. Vertical margins between
adjacent block-level boxes in a block formatting context collapse.

In 9.4.2:

[¼] When several inline-level boxes cannot fit horizontally within a single line
box, they are distributed among two or more vertically-stacked line boxes.

When the total width of the inline-level boxes on a line [¼]is less than the width
of the line box containing them, their horizontal distribution within the line box is
determined by the ’text-align’ property. If that property has the value ’justify’, the
user agent may stretch spaces and words in inline boxes (except for but not
inline-table and inline-block boxes) as well.

C.7.37 Section 9.3.2 Box offsets: ’top’, ’right’, ’bottom’, ’left’
[2010-07-19] If ’top’, ’right’, ’bottom’ or ’left’ is specified as ’auto’, the used value
rather than the computed value is set to the negative of the opposite side. For all
four, change:

41530 Mar 2011 19:50

Changes

Computed
value:

for ’position:relative’, see section Relative Positioning. For ’posi-
tion:static’, ’auto’. Otherwise: if specified as a length, the corre-
sponding absolute length; if specified as a percentage, the
specified value; otherwise, ’auto’.

And in section 9.4.3:

[¼] Since boxes are not split or stretched as a result of ’left’ or ’right’, the
computed used values are always: left = -right.

If both ’left’ and ’right’ are ’auto’ (their initial values), the computed used
values are ’0’ (i.e., the boxes stay in their original position).

If ’left’ is ’auto’, its computed used value is minus the value of ’right’ (i.e., the
boxes move to the left by the value of ’right’).

If ’right’ is specified as ’auto’, its computed used value is minus the value of
’left’.

[¼] Since boxes are not split or stretched as a result of ’top’ or ’bottom’, the
computed used values are always: top = -bottom. If both are ’auto’, their
computed used values are both ’0’. If one of them is ’auto’, it becomes the nega-
tive of the other. If neither is ’auto’, ’bottom’ is ignored (i.e., the computed used
value of ’bottom’ will be minus the value of ’top’).

C.7.38 Section 9.5 Floats
[2010-08-24] More consistent use of “inline-level” and “block-level.”

[¼] In other words, if inline-level boxes are placed on the line before a left float
is encountered that fits in the remaining line box space, the left float is placed on
that line, aligned with the top of the line box, and then the inline-level boxes
already on the line are moved accordingly to the right of the float (the right being
the other side of the left float) and vice versa for rtl and right floats.

In 9.5.2:

Values have the following meanings when applied to non-floating block-level
boxes:

C.7.39 Section 9.5 Floats
[2010-10-25] Define exactly what it means for a line box to be next to a float:

[¼] However, line boxes created next to the float are shortened to make room
for the margin box of the float.

A line box is next to a float when there exists a vertical position that satisfies
all of these four conditions: (a) at or below the top of the line box, (b) at or above
the bottom of the line box, (c) below the top margin edge of the float, and (d)

30 Mar 2011 19:50416

Changes

above the bottom margin edge of the float.

Note: this means that floats with zero height or negative height do not move
line boxes.

C.7.40 Section 9.5.2 Controlling flow next to floats: the ’clear’
property
[2010-05-12] Clarify that ’clear’ only introduces clearance above an element if neces-
sary; and that clearance may have zero height.

C.7.41 Section 9.5.2 Controlling flow next to floats: the ’clear’
property
[2010-10-13] Added an example of calculating clearance from two collapsing
margins M1 and M2 and the height H of a float.

C.7.42 Section 9.5.2 Controlling flow next to floats: the ’clear’
property
[2010-10-13] Clarify the language:

Computing the clearance of an element on which ’clear’ is set is done by first
determining the hypothetical position of the element’s top border edge within its
parent block. This position is determined after the top margin of the element has
been collapsed with previous adjacent margins (including the top margin of the
parent block). This position where the actual top border edge would have been if
the element had a non-zero top border and its ’clear’ property had been ’none’.

If this hypothetical position of the element’s top border edge is not past the
relevant floats, then clearance must be is introduced, and margins collapse
according to the rules in 8.3.1.

Then the amount of clearance is set to the greater of:
1. The amount necessary to place the border edge of the block even with the

bottom outer edge of the lowest float that is to be cleared.
2. The amount necessary to make the sum of the following equal to the

distance to which these margins collapsed when the hypothetical position
was calculated:

the margins collapsing above the clearance
the clearance itself
if the block’s own margins collapse together: the block’s top margin
if the block’s own margins do not collapse together: the margins
collapsing below the clearance

The amount necessary to place the top border edge of the block at its
hypothetical position.

41730 Mar 2011 19:50

Changes

C.7.43 Section 9.5.2 Controlling flow next to floats: the ’clear’
property
[2010-10-13] Correction: The hypothetical position is determined by assuming the
box has a non-zero bottom border (see section 8.3.1):

This position is where the actual top border edge would have been if the
element had a non-zero top bottom border and its ’clear’ property had been
’none’.

C.7.44 Section 14.2.1 Background properties
[2010-04-19] ’Fixed’ backgrounds in paged media are positioned relative to the page
box (and thus repeat on every page, just like ’fixed’ elements). The position of fixed
backgrounds in paged media was previously undefined.

C.7.45 Section 9.9.1 Specifying the stack level: the ’z-index’
property
[2010-07-07] Some ambiguities in the description of stacking contexts are fixed and
the description is clearly marked as non-normative. (Appendix E holds the normative
description.)

C.7.46 Section 9.10 Text direction: the ’direction’ and
’unicode-bidi’ properties
[2010-08-24] More consistent use of “inline-level” and “block-level.”

User agents that support bidirectional text must apply the Unicode bidirec-
tional algorithm to every sequence of inline-level boxes uninterrupted by a
forced line break or block boundary. This sequence forms the "paragraph" unit
in the bidirectional algorithm. The paragraph embedding level is set according to
the value of the ’direction’ property of the containing block rather than by the
heuristic given in steps P2 and P3 of the Unicode algorithm.

[¼]

For the ’direction’ property to affect reordering in inline-level elements, the
’unicode-bidi’ property’s value must be ’embed’ or ’override’.

[¼]
normal

The element does not open an additional level of embedding with respect to
the bidirectional algorithm. For inline-level elements, implicit reordering
works across element boundaries.

embed
If the element is inline-level, this value opens an additional level of embed-
ding with respect to the bidirectional algorithm. The direction of this embed-

30 Mar 2011 19:50418

Changes

ding level is given by the ’direction’ property. Inside the element, reordering
is done implicitly. This corresponds to adding a LRE (U+202A; for ’direction:
ltr’) or RLE (U+202B; for ’direction: rtl’) at the start of the element and a
PDF (U+202C) at the end of the element.

bidi-override
For inline-level elements this creates an override. For block-level, table-cell,
table-caption, or inline-block block container elements this creates an over-
ride for inline-level descendants not within another block container element.
This means that inside the element, reordering is strictly in sequence
according to the ’direction’ property; the implicit part of the bidirectional
algorithm is ignored. This corresponds to adding a LRO (U+202D; for ’direc-
tion: ltr’) or RLO (U+202E; for ’direction: rtl’) at the start of the element or at
the start of each anonymous child block box, if any, and a PDF (U+202C) at
the end of the element.

The final order of characters in each block-level element block container is [¼]

C.7.47 Section 9.10 Text direction: the ’direction’ and
’unicode-bidi’ properties
[2010-10-05] Add a reference to bidi class B [p. ??] in Unicode TR 9 to clarify what a
“forced break” is in the context of the Unicode bidi algorithm:

[¼] inline-level boxes uninterrupted by a forced line (bidi class B [p. ??]) break
or block boundary

C.7.48 Section 9.10 Text direction: the ’direction’ and
’unicode-bidi’ properties
[2010-10-25] clarify “non-textual entities”:

In this process, non-textual entities such as images replaced elements with
’display: inline’ (and replaced elements with ’display: run-in’, when they generate
inline-level boxes) are treated as neutral characters, unless their ’unicode-bidi’
property has a value other than ’normal’, in which case they are treated as
strong characters in the ’direction’ specified for the element. All other atomic
inline-level boxes are treated as neutral characters always.

C.7.49 Section 10.1 Definition of "containing block"
[2010-08-24] More consistent use of “inline-level” and “block-level.”

1. [¼]
2. For other elements, if the element’s position is ’relative’ or ’static’, the

containing block is formed by the content edge of the nearest block-level,
table cell or inline-block block container ancestor box.

3. [¼]

41930 Mar 2011 19:50

Changes

4. [¼]
1. In the case that the ancestor is inline-level an inline box, the containing

block depends on the ’direction’ property of the ancestor:

C.7.50 Section 10.2 Content width: the ’width’ property
[2010-05-12] The computed value of ’width’ doesn’t depend on whether the property
applies or not:

Computed value: the percentage or ’auto’ as specified or the absolute length;
’auto’ if the property does not apply

C.7.51 Section 10.2 Content width: the ’width’ property
[2010-08-24] More consistent use of “inline-level” and “block-level.”

This property specifies the content width of boxes generated by block-level
and replaced elements.

This property does not apply to non-replaced inline-level elements.

C.7.52 Section 10.2 Content width: the ’width’ property
[2010-10-05] Remove unclear and redundant sentence:

The width of a replaced element’s box is intrinsic and may be scaled by the
user agent if the value of this property is different than ’auto’.

C.7.53 Section 10.5 Content height: the ’height’ property
[2010-05-12] The computed value of ’height’ doesn’t depend on whether the property
applies or not:

Computed value: the percentage or ’auto’ (see prose under <percentage>) or
the absolute length; ’auto’ if the property does not apply

C.7.54 Section 10.5 Content height: the ’height’ property
[2010-08-24] More consistent use of “inline-level” and “block-level.”

This property specifies the content height of boxes generated by block-level,
inline-block and replaced elements.

This property does not apply to non-replaced inline-level elements. See the
section on computing heights and margins for non-replaced inline elements for
the rules used instead.

30 Mar 2011 19:50420

Changes

C.7.55 Section 10.6.7 ’Auto’ heights for block formatting
context roots
[2010-08-06] Clarify “bottom” and “preceding”:

In certain cases (see the preceding sections e.g., sections 10.6.4 and 10.6.6),
the height of an element that establishes a block formatting context is computed
as follows:

[¼]

In addition, if the element has any floating descendants whose bottom margin
edge is below the bottom the element’s bottom content edge, then the height is
increased to include those edges. Only floats that are children of the element
itself or of descendants in the normal flow are taken into account, e.g., floats
inside absolutely positioned descendants or other floats are not.

C.7.56 Section 10.7 Minimum and maximum heights:
’min-height’ and ’max-height’
[2010-10-26] The effect of ’min-height’ and ’max-height’ on table cells is still unde-
fined in CSS:

In CSS 2.1, the effect of ’min-height’ and ’max-height’ on tables, inline tables,
table cells, table rows, and row groups is undefined.

C.7.57 Section 10.8 Line height calculations: the ’line-height’
and ’vertical-align’ properties
[2010-06-02] Clarifications to the calculation of the line boxes and the minimum line
height ("strut"). Item 2 in the bulleted list is expanded and items 3 and 4 are merged,
as follows:

1. The height of each inline box in the line box is calculated (see "Calculating
heights and margins" and the ’line-height’ property).

2. The inline boxes are aligned vertically according to their ’vertical-align’
property. In case they are aligned ’top’ or ’bottom’, they must be aligned so
as to minimize the line box height. If such boxes are tall enough, there are
multiple solutions and CSS 2.1 does not define the position of the line box’s
baseline (i.e., the position of the strut, see below).

3. The line box height is the distance between the uppermost box top and the
lowermost box bottom. (This includes the strut, as explained under
’line-height’ below.)

4. If the resulting height is smaller than the minimal height of line boxes for
this block, as specified by the ’line-height’ property, the height is increased
to be that minimal height.

42130 Mar 2011 19:50

Changes

Furthermore, in 10.8.1, after the definition of “strut,” clarify that the font determines
the initial baseline:

The height and depth of the font above and below the baseline are assumed
to be metrics that are contained in the font. (For more details, see CSS level 3.)

C.7.58 Section 10.8 Line height calculations: the ’line-height’
and ’vertical-align’ properties
[2010-08-24] More consistent use of “inline-level” and “block-level.”

As described in the section on inline formatting contexts, user agents flow
inline-level boxes into a vertical stack of line boxes. The height of a line box is
determined as follows:

1. The height of each inline-level box in the line box is calculated (see "Calcu-
lating heights and margins" and the ’line-height’ property).

2. The inline-level boxes are aligned vertically according to their ’vertical-align’
property.

In 10.8.1:

On a block-level, table-cell, table-caption or inline-block block container
element whose content is composed of inline-level elements, ’line-height’ speci-
fies the minimal height of line boxes within the element. [¼]

On an inline-level element, ’line-height’ specifies the height that is used in the
calculation of the line box height [¼]

After the definition of ’vertical-align’:

The following values only have meaning with respect to a parent inline-level
element, or to the strut of a parent block-level, table-cell, table-caption or
inline-block block container element.

C.7.59 Section 10.8.1 Leading and half-leading
[2010-07-19] Clarify text:

On a block-level, table-cell, table-caption or inline-block element whose
content is composed of inline-level elements, ’line-height’ specifies the minimal
height of line boxes within the element. The minimum height consists of a
minimum height above the block’s baseline and a minimum depth below it,
exactly as if each line box starts with a zero-width inline box with the block’s
element’s font and line height properties. (what TEX calls a "strut"). We call that
imaginary box a "strut." (The name is inspired by TeX.).

30 Mar 2011 19:50422

Changes

C.7.60 Section 10.8.1 Leading and half-leading
[2010-08-20] Remove text that talks about the “content area” of an inline box and
about “center vertically” and instead make it more explicit how leading is added to a
glyph: leading is added above and below a hypothetical box around each glyph that
represents the (normal or ideal) height of a line of text in that font, as given in the
font metrics.

Add a note referring to 10.6.1 (which defines that the content area is undefined)
and explaining that the exact position of backgrounds and borders relative to the line
box is undefined.

Also add a note about how to find the relevant metrics in OpenType and TrueType
fonts.

C.7.61 Section 10.8.1 Leading and half-leading
[2010-08-20] Clarify some imprecise terms:

When an element contains text that is rendered in more than one font, user
agents may determine the ’normal’ ’line-height’ value according to the largest
font size.

Generally, when there is only one value of ’line-height’ for all inline boxes in a
paragraph block container box (and no tall images replaced elements,
inline-block elements, etc.), the above will ensure that baselines of successive
lines are exactly ’line-height’ apart. This is important when columns of text in
different fonts have to be aligned, for example in a table.

C.7.62 Section 11.1 Overflow and clipping
[2010-10-25] Clarify which ancestors are meant:

A descendant box is positioned absolutely [p. 151] , partly outside the box.
Such boxes are not always clipped by the overflow property on their ances-
tors; specifically, they are not clipped by the overflow of any ancestor
between themselves and their containing block

C.7.63 Section 11.1.1 Overflow: the ’overflow’ property
[2010-08-06] The phrase “containing block” in the example doesn’t refer to the tech-
nical term “containing block” [p. ??] but simply to the containing box. Change
“containing block” to “containing div.”

42330 Mar 2011 19:50

Changes

C.7.64 Section 11.1.1 Overflow: the ’overflow’ property
[2010-08-24] More consistent use of “inline-level” and “block-level.”

This property specifies whether content of a block-level block container
element is clipped when it overflows the element’s box.

C.7.65 Section 11.1.1 Overflow: the ’overflow’ property
[2010-10-25] Add missing inline-table:

Applies
to:

non-replaced block-level elements, table cells, inline-table, and
inline-block elements

C.7.66 Section 11.1.2 Clipping: the ’clip’ property
[2010-10-25] The computed value of ’auto’ is ’auto’ also when ’auto’ is specified
inside ’rect()’:

Computed
value:

For rectangle values, a rectangle consisting of four computed
lengths; otherwise, as specified ’auto’ if specified as ’auto’,
otherwise a rectangle with four values, each of which is ’auto’ if
specified as ’auto’ and the computed length otherwise

And:

<top>, <right>, <bottom>, and <left> may either have a <length> value or
’auto’. Negative lengths are permitted. The value ’auto’ means that a given edge
of the clipping region will be the same as the edge of the element’s generated
border box (i.e., ’auto’ means the same as ’0’ for <top> and <left> (in left-to-right
text, <right> in right-to-left text), the same as the computed used value of the
height plus the sum of vertical padding and border widths for <bottom>, and the
same as the computed used value of the width plus the sum of the horizontal
padding and border widths for <right> (in left-to-right text, <left> in right-to-left
text), such that four ’auto’ values result in the clipping region being the same as
the element’s border box).

C.7.67 Section 12.5 Lists
[2010-10-05] Improve wording: the marker box of a list item isn’t “optional,” it is
sometimes absent. Change:

CSS 2.1 offers basic visual formatting of lists. An element with ’display:
list-item’ generates a principal box for the element’s content and an optional
marker box and, depending on the values of ’list-style-type’ and
’list-style-image’, possibly also a marker box as a visual indication that the

30 Mar 2011 19:50424

Changes

element is a list item.

C.7.68 Section 12.5.1 Lists: the ’list-style-type’,
’list-style-image’, ’list-style-position’, and ’list-style’ properties
[2010-07-14] Because of persistent incompatibilites between implementations, the
constraints on the position of ’outside’ markers are relaxed in the presence of floats.
This will be fixed in a future specification.

C.7.69 Section 12.5.1 Lists: the ’list-style-type’,
’list-style-image’, ’list-style-position’, and ’list-style’ properties
[2010-08-06] The ’armenian’ list-style-type refers to uppercase Armenian numbering.

C.7.70 Section 12.5.1 Lists: the ’list-style-type’,
’list-style-image’, ’list-style-position’, and ’list-style’ properties
[2010-08-06] Define the order of ’inside’ marker boxes and ’:before’
pseudo-elements:

inside
The marker box is placed as the first inline box in the principal block box,
after which the element’s content flows before the element’s content and
before any :before pseudo-elements.

C.7.71 Section 12.5.1 Lists: the ’list-style-type’,
’list-style-image’, ’list-style-position’, and ’list-style’ properties
[2010-08-06] CSS 2.1 does not specify the precise location of an ’outside’ marker
box, including its z-order. Append:

CSS 2.1 does not specify the precise location of the marker box or its position
in the painting order

C.7.72 Section 12.5.1 Lists: the ’list-style-type’,
’list-style-image’, ’list-style-position’, and ’list-style’ properties
[2010-11-25] Because of historical ambiguity, CSS level 2 does not yet require the
marker to be visible when ’list-style-position’ is ’outside’ and ’overflow’ is other than
’visible’. Insert in the definition of ’outside’:

In CSS 2.1, a UA may hide the marker if the element’s ’overflow’ is other than
’visible’. (This is expected to change in the future.)

42530 Mar 2011 19:50

Changes

C.7.73 Section 13.2 Page boxes: the @page rule
[2010-07-07] The @page rule can contain not just declarations but also other
@-rules. (There aren’t any such nested @-rules defined in level 2, but there are in
level 3.)

An @page rule consists of the keyword "@page", followed by an optional
page selector, followed by a block of declarations containing declarations and
at-rules.

Note: CSS level 2 has no at-rules that may appear inside @page, but such
at-rules are expected to be defined in level 3.

And add just above section 13.2.1:

The rules for handling malformed declarations, malformed statements, and
invalid at-rules inside @page are as defined in section 4.2, with the following
addition: when the UA expects the start of a declaration or at-rule (i.e., an
IDENT token or an ATKEYWORD token) but finds an unexpected token instead,
that token is considered to be the first token of a malformed declaration. I.e., the
rule for malformed declarations, rather than malformed statements is used to
determine which tokens to ignore in that case.

C.7.74 Section 13.2.2 Page selectors: selecting left, right, and
first pages
[2010-10-25] Whether the first page of a document is :left or :right depends on the
major writing direction. Give an example of how:

All pages are automatically classified by user agents into either the :left or
:right pseudo-class. Whether the first page of a document is :left or :right
depends on the major writing direction of the root element. For example, the first
page of a document with a left-to-right major writing direction would be a :right
page, and the first page of a document with a right-to-left major writing direction
would be a :left page. To explicitly force a document to begin printing on a left or
right page, authors can insert a page break before the first generated box.

And in 13.3.1:

Whether the first page of a document is :left or :right depends on the major
writing direction of the document.

C.7.75 Section 13.3.2 Breaks inside elements: ’orphans’,
’widows’

30 Mar 2011 19:50426

Changes

[2010-08-24] More consistent use of “inline-level” and “block-level.” Change for both
’orphans’ and ’widows’:

Applies to: block-level block container elements

And change:

The ’orphans’ property specifies the minimum number of lines in a block
element container that must be left at the bottom of a page. The ’widows’ prop-
erty specifies the minimum number of lines in a block element container that
must be left at the top of a page. Examples of how they are used to control page
breaks are given below.

C.7.76 Section 13.3.3 Allowed page breaks
[2010-08-24] More consistent use of “inline-level” and “block-level.” Change:

1. In the vertical margin between block-level boxes. [¼]
2. Between line boxes inside a block container box.
3. Between the content edge of a block container box and the outer edges of

its child content [¼]

C.7.77 Section 15.3 Font family: the ’font-family’ property
[2010-07-19] The specification was ambiguous as to whether parentheses, brackets
and braces in font names must always be escaped, or only when needed to conform
to the syntax for declarations. Because of that, and because of the many bugs in
implementations, all font names must now either be quoted, or be escaped so as to
consist of only identifiers.

C.7.78 Section 15.3.1 Generic font families
[2010-08-26] Make it clearer that CSS does not try to define what fonts are serif or
sans-serif:

15.3.1.1 serif

Glyphs of serif fonts, as the term is used in CSS, tend to have finishing
strokes, flared or tapering ends, or have actual serifed endings (including slab
serifs). [¼]

15.3.1.2 sans-serif

Glyphs in sans-serif fonts, as the term is used in CSS, tend to have stroke
endings that are plain – without any with little or no flaring, cross stroke, or other
ornamentation. [¼]

42730 Mar 2011 19:50

Changes

C.7.79 Section 15.6 Font boldness: the ’font-weight’ property
[2010-04-19] The meaning of the keywords ’bolder’ and ’lighter’ no longer depends
on both the inherited weight and the actually used font, but only on the inherited
weight.

C.7.80 Section 15.6 Font boldness: the ’font-weight’ property
[2010-10-13] Clarify the algorithm for mapping CSS font weight values to the actual
weights of a font and make it normative:

The association of other weights within a family to the numerical weight
values is intended only to preserve the ordering of darkness within that family.
However, the following heuristics tell how the assignment is done in typical
cases:

If the font family already uses a numerical scale with nine values (like e.g.,
OpenType does), the font weights should be mapped directly.
If there is both a face labeled Medium and one labeled Book, Regular,
Roman or Normal, then the Medium is normally assigned to the ’500’.
The font labeled "Bold" will often correspond to the weight value ’700’.

Once the font family’s weights are mapped onto the CSS scale, missing
weights are selected as follows:

If there are fewer then 9 weights in the family, the default algorithm for filling
the "holes" is as follows. If ’500’ is unassigned, it will be assigned the same
font as ’400’. If any of the values ’600’, ’700’, ’800’ or ’900’ remains unas-
signed, they are assigned to the same face as the next darker assigned
keyword, if any, or the next lighter one otherwise. If any of ’300’, ’200’ or
’100’ remains unassigned, it is assigned to the next lighter assigned
keyword, if any, or the next darker otherwise.
If the desired weight is less than 400, weights below the desired weight are
checked in descending order followed by weights above the desired weight
in ascending order until a match is found.
If the desired weight is greater than 500, weights above desired weight are
checked in ascending order followed by weights below the desired weight in
descending order until a match is found.
If the desired weight is 400, 500 is checked first and then the rule for
desired weights less than 400 is used.
If the desired weight is 500, 400 is checked first and then the rule for
desired weights less than 400 is used.

C.7.81 Section 15.7 Font size: the ’font-size’ property
[2010-08-06] Changed “Percentages: refer to parent element’s font size” to “Percent-
ages: refer to inherited font size” so that it uses the same terminology as
Section 4.3.3. [p. ??]

30 Mar 2011 19:50428

Changes

C.7.82 Section 16.1 Indentation: the ’text-indent’ property
[2010-08-24] More consistent use of “inline-level” and “block-level.” Change:

Applies
to:

block-level elements, table cells and inline blocks block contain-
ers

[¼]

This property specifies the indentation of the first line of text in a block
container.

C.7.83 Section 16.1 Indentation: the ’text-indent’ property
[2010-10-25] Clarify that the “first line” of the “first box,” etc., is the same as the “first
formatted line” of chapter 5:

’Text-indent’ only affects a line if it is the first formatted line of an element. For
example, the first line of an anonymous block box is only affected if it is the first
child of its parent element.

C.7.84 Section 16.2 Alignment: the ’text-align’ property
[2010-07-19] The value ’pre-line’ of ’white-space’ does not inhibit justification. (Only
lines that end with an explicit newline aren’t justified, as is the case for any value of
’white-space’.) But, ’pre-wrap’ does inhibit justification. Replace

If the computed value of text-align is ’justify’ while the computed value of
white-space is ’pre’ or ’pre-line’, the actual value of text-align is set to the initial
value.

with

If an element has a computed value for ’white-space’ of ’pre’ or ’pre-wrap’,
then neither the glyphs of that element’s text content nor its white space may be
altered for the purpose of justification.

C.7.85 Section 16.2 Alignment: the ’text-align’ property
[2010-08-24] More consistent use of “inline-level” and “block-level.” Change:

Applies
to:

block-level elements, table cells and inline blocks block contain-
ers

This property describes how inline-level content of a block container is
aligned.

42930 Mar 2011 19:50

Changes

And:

[¼] In the case of ’left’, ’right’ and ’center’, this property specifies how the
inline-level boxes within each line box align with respect to the line box’s left and
right sides; alignment is not with respect to the viewport. In the case of ’justify’,
this property specifies that the inline-level boxes are to be made flush with both
sides of the block container if possible, by expanding or contracting the contents
of inline boxes, else aligned as for the initial value.

C.7.86 Section 16.3.1 Underlining, overlining, striking, and
blinking: the ’text-decoration’ property
[2010-08-24] Clarify that ’text-decoration’ does not propagate to inline-table and
inline-block elements. Change:

This property describes decorations that are added to the text of an element
using the element’s color. When specified on an inline element, it affects all the
boxes generated by that element; for all other elements, the decorations are
propagated to an anonymous inline box that wraps all the in-flow inline children
of the element, and to any block-level in-flow descendants. It is not, however,
further propagated to floating and absolutely positioned descendants, nor to the
contents of ’inline-table’ and ’inline-block’ descendants. or propagated to an
inline element, it affects all the boxes generated by that element, and is further
propagated to any in-flow block-level boxes that split the inline (see
section 9.2.1.1). For block containers that establish an inline formatting context,
the decorations are propagated to an anonymous inline element that wraps all
the in-flow inline-level children of the block container. For all other elements it is
propagated to any in-flow children. Note that text decorations are not propa-
gated to floating and absolutely positioned descendants, nor to the contents of
atomic inline-level descendants such as inline blocks and inline tables.

and:

If an element contains no text, user agents must refrain from rendering these
text decorations on the element. For example, images will not be underlined.
User agents must not render these text decorations on content that is not text.
For example, images and inline blocks must not be underlined.

C.7.87 Section 16.3.1 Underlining, overlining, striking, and
blinking: the ’text-decoration’ property
[2010-10-05] CSS 2.1 does not specify if a text decoration that is specified on a
transparent element (’visibility: hidden’) is itself transparent, or only transparent
where the text is transparent. Add this note:

30 Mar 2011 19:50430

Changes

Note. If an element E has both ’visibility: hidden’ and ’text-decoration: under-
line’, the underline is invisible (although any decoration of E’s parent is visible.)
However, CSS 2.1 does not specify if the underline is visible or invisible in E’s
children:

 underlined or not?

This is expected to be specified in level 3 of CSS.

C.7.88 Section 16.4 Letter and word spacing: the
’letter-spacing’ and ’word-spacing’ properties
[2010-04-19] Word spacing does not affect fixed-width spaces. Change:

Word spacing affects each space (U+0020), and non-breaking space
(U+00A0) and ideographic space (U+3000), left in the text after the white space
processing rules have been applied. The effect of the property on other
word-separator characters is undefined. However general punctuation, charac-
ters with zero advance width (such as the zero with space U+200B) and
fixed-width spaces (such as U+3000 and U+2000 through U+200A) are not
affected.

C.7.89 Section 16.6 White space: the ’white-space’ property
[2010-10-25] If the document language specifies how newlines are represented,
those newlines must be passed to the CSS UA as line feed (LF) characters. If the
document language does not define how newlines are expressed (e.g., if text is
inserted with the ’content’ property), the CSS UA must treat CR, and CRLF as if they
were LF:

Newlines in the source can be represented by a carriage return (U+000D), a
linefeed (U+000A) or both (U+000D U+000A) or by some other mechanism that
identifies the beginning and end of document segments, such as the SGML
RECORD-START and RECORD-END tokens. The CSS ’white-space’ process-
ing model assumes all newlines have been normalized to line feeds. UAs that
recognize other newline representations must apply the white space processing
rules as if this normalization has taken place. If no newline rules are specified
for the document language, each carriage return (U+000D) and CRLF sequence
(U+000D U+000A) in the document text is treated as single line feed character.
This default normalization rule also applies to generated content.

[¼]
1. Each tab (U+0009), carriage return (U+000D), or space (U+0020) character

surrounding a linefeed (U+000A) character is removed if ’white-space’ is set
to ’normal’, ’nowrap’, or ’pre-line’.

43130 Mar 2011 19:50

Changes

C.7.90 Section 16.6.1 The ’white-space’ processing model
[2010-08-06] The sentence that absolutely positioned elements do not create line
breaking opportunities is normative, not informative.

C.7.91 Section 16.6.1 The ’white-space’ processing model
[2010-08-06] The first paragraph is moved to 9.2.2.1. Also, as is clear from the latter
section, the “should” is a “must”:

Any text that is directly contained inside a block container element (not inside
an inline element) should must be treated as an anonymous inline element.

C.7.92 Section 16.6.1 The ’white-space’ processing model
[2010-08-24] More consistent use of “inline-level” and “block-level.” Change:

Then, the entire block is rendered block container’s inlines are laid out.

C.7.93 Section 17.2 The CSS table model
[2010-08-04] Clarify that the term “row group” includes header groups and footer
groups as well:

Thus, the table model consists of tables, captions, rows, row groups (includ-
ing header groups and footer groups), columns, column groups, and cells.

C.7.94 Section 17.2.1 Anonymous table objects
[2010-08-24] XML and HTML5, unlike SGML, do not automatically remove insignifi-
cant white space. Change the rules for generating anonymous table elements to
suppress most white space between elements, rather than consider it the content of
an anonymous table cell.

C.7.95 Section 17.2.1 Anonymous table objects
[2010-08-24] The static position of absolutely positioned elements between table
cells or rows was not very useful. Define that the static position of such an element is
found not just as if the element had ’position: static’, but also had ’display: inline’ and
zero width and height.

C.7.96 Section 17.4 Tables in the visual formatting model
[2010-04-19] The caption of the image still describes the image as it was in the
previous version. Change:

30 Mar 2011 19:50432

Changes

Diagram of a table with a caption above it; the top margin of the caption is
collapsed with the top margin of the table.

C.7.97 Section 17.4 Tables in the visual formatting model
[2010-10-13] Clarify which of the two boxes generated by a table element is the prin-
cipal box:

In both cases, the table box generates an anonymous box a principal block
box called the table wrapper box that contains the table box itself and any
caption boxes (in document order). The table box is a block-level box that
contains the table’s internal table boxes. The caption boxes are block-level
boxes that retain their own content, padding, margin, and border areas, and are
rendered as normal blocks block boxes inside the anonymous table wrapper
box. Whether the caption boxes are placed before or after the table box is
decided by the ’caption-side’ property, as described below.

The anonymous table wrapper box is a ’block’ box if the table is block-level,
and an ’inline-block’ box if the table is inline-level. The anonymous table
wrapper box establishes a block formatting context. The table box (not the
anonymous table wrapper box) is used when doing baseline vertical alignment
for an ’inline-table’. The width of the anonymous table wrapper box is the
border-edge width of the table box inside it, as described by section 17.5.2.
Percentages on ’width’ and ’height’ on the table are relative to the anonymous
table wrapper box’s containing block, not the anonymous table wrapper box
itself.

The computed values of properties ’position’, ’float’, ’margin-*’, ’top’, ’right’,
’bottom’, and ’left’ on the table box are used on the anonymous table wrapper
box instead of the table box. The table box uses the initial values for those prop-
erties.

C.7.98 Section 17.5.2.2 Automatic table layout
[2010-10-25] The width of the table caption contributes to the width of the table if
’table-layout’ is ’auto’:

This gives a maximum and minimum width for each column.

The caption width minimum (CAPMIN) is determined by calculating for each
caption the minimum caption outer width as the MCW of a hypothetical table cell
that contains the caption formatted as "display: block". The greatest of the
minimum caption outer widths is CAPMIN.

Column and caption widths influence the final table width as follows:
1. If the ’table’ or ’inline-table’ element’s ’width’ property has a computed value

(W) other than ’auto’, the property’s value as used for layout used width is
the greater of W, CAPMIN, and the minimum width required by all the
columns plus cell spacing or borders (MIN). If W the used widthis greater

43330 Mar 2011 19:50

Changes

than MIN, the extra width should be distributed over the columns.
2. If the ’table’ or ’inline-table’ element has ’width: auto’, the table width used

for layout used width is the greater of the table’s containing block width,
CAPMIN, and MIN. However, if either CAPMIN or the maximum width
required by the columns plus cell spacing or borders (MAX) is less than that
of the containing block, use MAX max(MAX, CAPMIN).

C.7.99 Section 17.5.3 Table height algorithms
[2010-07-15] Clarify that the height of a table row can be influenced by ’vertical-align’
and ’height’, but the content box of the table cell is not affected.

[¼] it is the maximum of the row’s specified ’height’, the specified ’height’ of
each cell in the row, and the minimum height (MIN) required by the cells

and

In CSS 2.1, the height of a cell box is the maximum of the table cell’s ’height’
property and the minimum height required by the content (MIN). minimum height
required by the content. The table cell’s ’height’ property can influence the
height of the row, but it does not increase the height of the cell box. A value of
’auto’ for ’height’ implies that the value MIN will be used for layout.

C.7.100 Section 17.5.4 Horizontal alignment in a column
[2010-08-24] More consistent use of “inline-level.” Change:

The horizontal alignment of a cell’s inline content inline-level content within a
cell box

C.7.101 Section B.2 Informative references
[2010-08-06] BCP 47 replaces RFC 3066.

C.7.102 Section D. Default style sheet for HTML 4
[2010-10-05] HTML defines that HTML’s block elements represent a Unicode
embedding even if they are displayed inline by means of a style sheet. The default
style sheet for HTML didn’t yet express that. Add:

html, address,
blockquote,
body, dd, div,
dl, dt, fieldset, form,
frame, frameset,
h1, h2, h3, h4,
h5, h6, noframes,
ol, p, ul, center,
dir, hr, menu, pre { display: block; unicode-bidi: embed }

30 Mar 2011 19:50434

Changes

C.7.103 Section E.2 Painting order
[2010-07-07] Clarification:

The stacking order for painting order for the descendants of an element
generating a stacking context (see the ’z-index’ property) is: [¼]

C.7.104 Appendix G Grammar of CSS 2.1
[2010-10-25] The appendix is not normative.

C.8 Changes since the working draft of 7 December
2010

C.8.1 8.3.1 Collapsing margins
The section is completely rewritten to make the normative text shorter and clearer.

C.8.2 10.8.1 Leading and half-leading
The remark about equal line spacing is made more precise and put in green, to
make it clearer that it is a note:

Generally, Note. when there is only one value of ’line-height’ for all inline
boxes in a block container box and they are all in the same font (and there are
no replaced elements, inline-block elements, etc.), the above will ensure that
baselines of successive lines are exactly ’line-height’ apart. This is important
when columns of text in different fonts have to be aligned, for example in a
table.

C.8.3 10.3 Calculating widths and margins
Added a note that the width calculation only yields a tentative value, still to be
compared to ’min-width’ and ’max-width’

Note. The used value of ’width’ calculated below is a tentative value, and may
have to be calculated multiple times, depending on ’min-width’ and ’max-width’,
see the section Minimum and maximum widths below.

A similar note is added to section 10.6 about calculating heights.

C.8.4 14.3 Gamma correction
The section on gamma correction was removed. It existed only to help implementa-
tions on certain operating systems of the 1990s.

43530 Mar 2011 19:50

Changes

C.8.5 11.1.2 Clipping: the ’clip’ property
The 2nd and 4th offsets of the clip rectangle are offsets from the left edge of the
element. The ’direction’ property no longer has an influence.

C.8.6 9.4.2 Inline formatting contexts
The words "line feed" were a typing error. The intended words are "forced line
break."

(The sentence was subsequently changed further as a result of another issue.
[p. 440])

C.8.7 10.3.2 Inline, replaced elements
No image formats were found that allow an intrinsic size to be expressed as a
percentage. The relevant definitions are removed:

Percentage intrinsic widths are first evaluated with respect to the containing
block’s width, if that width does not itself depend on the replaced element’s
width. If it does, then the resulting layout is undefined in CSS 2.1.

Similarly in 10.6.2 [p. ??] :

Percentage intrinsic heights are evaluated with respect to the containing
block’s height, if that height is specified explicitly, or if the replaced element is
absolutely positioned. If neither of these conditions is met, then percentage
values on such replaced elements cannot be resolved and such elements are
assumed to have no intrinsic height.

And in 12.5.1 [p. ??] :

2. If the image’s intrinsic width or height is given as a percentage, then that
percentage is resolved against 1em.

C.8.8 10.1 Definition of "containing block"
In CSS 2.1, it is undefined what the containing block of an absolutely positioned
element is, if its nearest positioned ancestor is inline and split over multiple lines:

4. If the element has ’position: absolute’ [¼] following way;
1. In the case that the ancestor is an inline box inline-level element, the

containing block depends on the ’direction’ property of the ancestor: is the
bounding box around the padding boxes of the first and the last inline boxes
generated for that element. In CSS 2.1, if the inline element is split across
multiple lines, the containing block is undefined.

1. If the ’direction’ is ’ltr’, the top and left of the containing block are the
top and left padding edges of the first box generated by the ancestor,

30 Mar 2011 19:50436

Changes

and the bottom and right are the bottom and right padding edges of the
last box of the ancestor.

2. If the ’direction’ is ’rtl’, the top and right are the top and right padding
edges of the first box generated by the ancestor, and the bottom and
left are the bottom and left padding edges of the last box of the ances-
tor.

Note: This may cause the containing block’s width to be negative.

C.8.9 13.2.2 Page selectors: selecting left, right, and first
pages
CSS 2.1 does not define if ’:first’ applies to the first page or the first non-blank page:

If a forced break occurs before the first generated box, it is undefined in
CSS 2.1 whether ’:first’ applies to the blank page before the break or to the
page after it.

C.8.10 8.3.1 Collapsing margins
Added a note with a link to 9.4.2, which defines types of line boxes that exist but do
not interfere with collapsing margins.

no line boxes, no clearance, no padding and no border separate them
(Note that certain zero-height line boxes [p. 139] (see 9.4.2 [p. 138]) are
ignored for this purpose.)

C.8.11 10.8 Line height calculations: the ’line-height’ and
’vertical-align’ properties
The definition of which height is used for the different kinds of inline-level boxes is
made explicit, rather than linked:

1. The height of each inline-level box in the line box is calculated. For
replaced elements, inline-block elements, and inline-table elements, this is
the height of their margin box; for inline boxes, this is their ’line-height’.
(See "Calculating heights and margins" [p. 184] and the ’line-height’ prop-
erty height of inline boxes [p. 190] in "Leading and half-leading" [p. 190] .)

The part of the definition that was in 10.6.2 [p. 185] is removed:

For ’inline’ and ’inline-block’ elements, the margin box is used when calculat-
ing the height of the line box.

43730 Mar 2011 19:50

Changes

C.8.12 10.8.1 Leading and half-leading
Inserted the following before the definitions of the keywords of ’vertical-align’ to
define precisely which box is aligned:

In the following definitions, for inline non-replaced elements, the box used for
alignment is the box whose height is the ’line-height’ (containing the box’s
glyphs and the half-leading on each side, see above [p. 190]). For all other
elements, the box used for alignment is the margin box.

Also, to make sure there always is a box whose height is ’line-height’, a phrase
earlier in the same section was removed:

User agent must align the glyphs in a non-replaced inline box to each other by
their relevant baselines, and to nested inline boxes according to ’vertical-align’.

And another modified:

The height of the inline box is then the smallest such that it encloses all
glyphs and their leading, as well as all nested inline boxes. encloses all glyphs
and their half-leading on each side and is thus exactly ’line-height’. Boxes of
child elements do not influence this height.

C.8.13 10.6.1 Inline, non-replaced elements
Improve language:

The vertical padding, border and margin of an inline, non-replaced box start at
the top and bottom of the content area, not and has nothing to do with the
’line-height’. But only the ’line-height’ is used when calculating the height of the
line box.

C.8.14 9.5.1 Positioning the float: the ’float’ property
A left float must not only not overlap a right float, but must also not be completely to
the right of it.

3. The right outer edge [p. 112] of a left-floating box may not be to the right of
the left outer edge [p. 112] of any right-floating box that is to the right of next to
it. Analogous rules hold for right-floating elements.

C.8.15 9.2.1.1 Anonymous block boxes
An error in the description of the example:

The resulting boxes would be an anonymous block box around a block box
representing the BODY, containing an anonymous block box around C1, the
SPAN block box, and another anonymous block box around C2.

30 Mar 2011 19:50438

Changes

C.8.16 5.12.1 The :first-line pseudo-element
UAs are not required to support ’vertical-align’ on ’::first-line’.

The following properties apply to a :first-line pseudo-element: font properties,
color property, background properties, ’word-spacing’, ’letter-spacing’,
’text-decoration’, ’vertical-align’, ’text-transform’, and ’line-height’. UAs may
apply other properties as well.

C.8.17 16.6 White space: the ’white-space’ property
CSS 2.1 does not define whether the Line Separator character in Unicode and other
forced line break characters (other than LF) cause a line break. (Level 3 will probably
define this in detail.)

pre
This value prevents user agents from collapsing sequences of white space.
Lines are only broken at newlines in the source, or at occurrences of "\A" in
generated content preserved newline characters.

and

pre-wrap
This value prevents user agents from collapsing sequences of white space.
Lines are broken at newlines in the source, at occurrences of "\A" in gener-
ated content, preserved newline characters, and as necessary to fill line
boxes.

pre-line
This value directs user agents to collapse sequences of white space. Lines
are broken at newlines in the source, at occurrences of "\A" in generated
content, preserved newline characters, and as necessary to fill line boxes.

and add this paragraph:

UAs must recognize line feeds (U+000A) as newline characters. UAs may
additionally treat other forced break characters as newline characters per
UAX14.

C.8.18 12.5.1 Lists: the ’list-style-type’, ’list-style-image’,
’list-style-position’, and ’list-style’ properties
CSS 2.1 omits to define how the implicit counters of ’list-item’ are reset and incre-
mented. This will be specified in level 3.

CSS 2.1 does not define how the list numbering is reset and incremented.
This is expected to be defined in the CSS List Module [CSS3LIST].

43930 Mar 2011 19:50

Changes

C.8.19 9.7 Relationships between ’display’, ’position’, and
’float’
Some UAs treat ’display: list-item’ on the root element as ’block’. Allow that behavior
for now:

4. Otherwise, if the element is the root element, ’display’ is set according to
the table below, except that it is undefined in CSS 2.1 whether a specified value
of ’list-item’ becomes a computed value of ’block’ or ’list-item’.

C.8.20 9.4.2 Inline formatting contexts
Empty line boxes aren’t generated at all, rather than just ignored for margin collaps-
ing. But their virtual position must still be calculated if they contain empty inlines with
absolutely positioned or floating descendants:

Line boxes are created as needed to hold inline-level content within an inline
formatting context. Line boxes that contain no text, no preserved white space,
[p. 264] no inline elements with non-zero margins, padding, or borders, and no
other in-flow [p. ??] content (such as images, inline blocks or inline tables), and
do not end with a line feed preserved newline must be treated as zero-height
line boxes for the purposes of determining the positions of any elements inside
of them, and treated as not existing for any other purpose. For the purposes of
margin collapsing, this line box must be ignored.

C.8.21 4.1.9 Comments
Use same phrasing for comment tokens as in section 4.1.1: [p. 60]

They may occur anywhere between outside other tokens

C.8.22 12.5.1 Lists: the ’list-style-type’, ’list-style-image’,
’list-style-position’, and ’list-style’ properties
The size computation of list marker images without an intrinsic size is modified to be
consistent with how image sizes are computed in other places, using 1em for the
available width and 1:1 for the default aspect ratio:

1. If the image has an intrinsic width or height, then that intrinsic width/height
becomes the image’s used width/height. If the image has a intrinsic width
and height, the used width and height are the intrinsic width and height.

2. If the image has no intrinsic ratio and a ratio cannot be calculated from its
width and height, then its intrinsic ratio is assumed to be 1:1. Otherwise, if
the image has an intrinsic ratio and either an intrinsic width or an intrinsic
height, the used width/height is the same as the provided intrinsic
width/height, and the used value of the missing dimension is calculated
from the provided dimension and the ratio.

30 Mar 2011 19:50440

Changes

3. If the image has a width but no height, its height is calculated from the
intrinsic ratio. Otherwise, if the image has an intrinsic ratio, the used width
is 1em and the used height is calculated from this width and the intrinsic
ratio. If this would produce a height larger than 1em, then the used height is
instead set to 1em and the used width is calculated from this height and the
intrinsic ratio.

4. If the image’s height cannot be resolved from the rules above, then the
image’s height is assumed to be 1em. Otherwise, the image’s used width is
its intrinsic width if it has one, or else 1em. The image’s used height is its
intrinsic height if it has one, or else 1em.

5. If the image has no intrinsic width, then its width is calculated from the
resolved height and the intrinsic ratio.

C.8.23 9.5.1 Positioning the float: the ’float’ property
Because of lack of sufficient implementations, the top of a floating box is allowed to
be above the top of earlier boxes in certain difficult cases. Add after the numbered
list:

But in CSS 2.1, if, within the block formatting context, there is an in-flow nega-
tive vertical margin such that the float’s position is above the position it would be
at were the negative margin set to zero, the position of the float is undefined.

C.8.24 9.3 Positioning schemes
Add formal definitions of the terms “out of flow,” “in-flow” and “flow of an element”:

An element is called out of flow if it is floated, absolutely positioned, or is the
root element. An element is called in-flow if it is not out-of-flow. The flow of an
element A is the set consisting of A and all in-flow elements whose nearest
out-of-flow ancestor is A.

C.8.25 9.10 Text direction: the ’direction’ and ’unicode-bidi’
properties
The list of features affected by ’direction’ is not meant to be exclusive:

This property specifies the base writing direction of blocks and the direction of
embeddings and overrides (see ’unicode-bidi’) for the Unicode bidirectional
algorithm. In addition, it specifies such things as the direction of table [p. 269]
column layout, the direction of horizontal overflow [p. 195] , the position of an
incomplete last line in a block in case of ’text-align: justify’.

44130 Mar 2011 19:50

Changes

C.8.26 16.3.1 Underlining, overlining, striking, and blinking:
the ’text-decoration’ property
Whether the effect of ’text-decoration’ propagates into tables may be the subject of a
separate property in level 3:

[¼] When specified on or propagated to an inline element, it affects all the
boxes generated by that element, and is further propagated to any in-flow
block-level boxes that split the inline (see section 9.2.1.1 [p. 129]). But, in
CSS 2.1, it is undefined whether the decoration propagates into block-level
tables.

C.8.27 16.3.1 Underlining, overlining, striking, and blinking:
the ’text-decoration’ property
Clarify that the text for ’inset’ and ’outset’ only talks about how the border styles look
(and not, e.g., about which style takes priority):

*inset
In the separated borders model, the border makes the entire box look as
though it were embedded in the canvas. In the collapsing border model,
drawn the same as ’ridge’.

*outset
In the separated borders model, the border makes the entire box look as
though it were coming out of the canvas. In the collapsing border model,
drawn the same as ’groove’.

C.8.28 10.4 Minimum and maximum widths: ’min-width’ and
’max-width’
Added:

In CSS 2.1, the effect of ’min-width’ and ’max-width’ on tables, inline tables,
table cells, table columns, and column groups is undefined.

C.8.29 9.3.2 Box offsets: ’top’, ’right’, ’bottom’, ’left’
’Top’, right’, ’bottom’ and ’left’ are always computed, independent of the value of
other properties:

’top’

30 Mar 2011 19:50442

Changes

Value: <length> | <percentage> | auto | inherit
Initial: auto
Applies to: positioned elements
Inherited: no
Percentages: refer to height of containing block
Media: visual
Computed value: for ’position:static’, ’auto’. Otherwise: if specified as a

length, the corresponding absolute length; if specified as a
percentage, the specified value; otherwise, ’auto’.

Analogously for ’right’, ’bottom’ and ’left’.

C.8.30 9.2.1.1 Anonymous block boxes
Clarify that the two parts of an inline that is split by a block are on opposite sides of
the block:

When an inline box contains an in-flow block-level box, the inline box (and its
inline ancestors within the same line box) are broken around the block-level box
(and any block-level siblings that are consecutive or separated only by collapsi-
ble whitespace and/or out-of-flow elements), dividing splitting the inline box into
two pieces (even if either side is empty), one on each side of the block-level
box(es).

C.8.31 17.4 Tables in the visual formatting model
More precise rule for which properties apply to the table box and which to the table
wrapper box:

The computed values of properties ’position’, ’float’, ’margin-*’, ’top’, ’right’,
’bottom’, and ’left’ on the table box element are used on the table wrapper box
instead of and not the table box. The table box uses the initial values for those
properties. ; all other values of non-inheritable properties are used on the table
box and not the table wrapper box. (Where the table element’s values are not
used on the table and table wrapper boxes, the initial values are used instead.)

C.8.32 11.1.2 Clipping: the ’clip’ property
Some text and arrows were added to the example to make it easier to see where the
four offsets of the clip rectangle are applied:

44330 Mar 2011 19:50

Changes

(0, 0) (50, 0)

(0, 55)

clip region

(0, 0) (50, 0)

(0, 55)

clip region

P’s block box

P’s block box

C.8.33 13.2 Page boxes: the @page rule
The definition of the @page rule didn’t mention explicitly (except with examples) that
white space is allowed:

An @page rule consists of the keyword "@page", followed by an optional
page selector, followed by a block containing declarations and at-rules.
Comments and white space are allowed, but optional, between the @page
token and the page selector and between the page selector and the block.

30 Mar 2011 19:50444

Changes

C.8.34 4.1.1 Tokenization
Added an example to illustrate what is meant by “the longest match” in the tokenizer:

Example(s):

For example, the rule of the longest match means that "red--> " is tokenized
as the IDENT "red-- " followed by the DELIM ">", rather than as an IDENT
followed by a CDC.

C.8.35 4.2 Rules for handling parsing errors
Clarify that “end of line” means an end of line character, i.e., the end of file is not an
end of line:

User agents must close strings upon reaching the end of a line (i.e., before an
unescaped line feed, carriage return or form feed character), but then drop the
construct (declaration or rule) in which the string was found.

C.8.36 3.1 Definitions
There may soon be a newer version of HTML then HTML4:

An HTML user agent is one that supports one or more of the HTML 2.x,
HTML 3.x, or HTML 4.x specifications. A user agent that supports XHTML
[XHTML], but not HTML (as listed in the previous sentence) is not considered an
HTML user agent for the purpose of conformance with this specification.

C.8.37 4.3.4 URLs and URIs
Make the note about parsing URLs shorter and clearer:

Note that COMMENT tokens cannot occur within other tokens: thus,
"url(/*x*/pic.png)" denotes the URI "/*x*/pic.png", not "pic.png".

C.8.38 9.5 Floats
Clarify the note:

Note: this means that floats with zero outer height or negative outer height do
not shorten line boxes.

C.8.39 11.1.1 Overflow: the ’overflow’ property
Shorten the “applies to” line:

’overflow’

44530 Mar 2011 19:50

Changes

Value: visible | hidden | scroll | auto | inherit
Initial: visible
Applies to: non-replaced block-level elements, table cells, inline-table,

and inline-block elements block containers
Inherited: no
Percentages: N/A
Media: visual
Computed value: as specified

C.8.40 9.2.1.1 Anonymous block boxes
Clarify how block-level elements inside inline elements are affected by relative posi-
tioning:

When such an inline box is affected by relative positioning, the relative posi-
tioning any resulting translation also affects the block-level box contained in the
inline box.

C.8.41 16.2 Alignment: the ’text-align’ property
Text is justified within the line box, which may be narrower than the block box:

In the case of ’justify’, this property specifies that the inline-level boxes are to
be made flush with both sides of the block container line box if possible, [¼]

C.8.42 9.5 Floats
Only the current and later line boxes can be shortened by a float. Earlier line boxes,
if the float ends up next to them, will overlap the float instead:

Since a float is not in the flow, non-positioned block boxes created before and
after the float box flow vertically as if the float did not exist. However, the current
and subsequent line boxes created next to the float are shortened to make room
for the margin box of the float.

C.8.43 9.4.2 Inline formatting contexts
A float may cause a gap between line boxes:

[¼] Thus, a paragraph is a vertical stack of line boxes. Line boxes are stacked
with no vertical separation (except as specified elsewhere) and they never
overlap.

30 Mar 2011 19:50446

Changes

C.8.44 5.12 Pseudo-elements
Added a note to make it explicit that CSS 2.1 does not define ’:first-line’ and
’:first-letter’ completely:

Note that the sections below do not define the exact rendering of ’:first-line’
and ’:first-letter’ in all cases. A future level of CSS may define them more
precisely.

C.8.45 9.5 Floats
Clarify that “overlap a float” means overlap the margin box of the float:

The border box of a table, a block-level replaced element, or an element in
the normal flow that establishes a new block formatting context [p. 138] (such as
an element with ’overflow’ other than ’visible’) must not overlap the margin box
of any floats in the same block formatting context as the element itself.

C.8.46 9.5 Floats
A line box next to a float is not shortened if it already doesn’t overlap the float:

[¼] However, the current and subsequent line boxes created next to the float
are shortened as necessary to make room for the margin box of the float.

C.8.47 14.2.1 Background properties: ’background-color’,
’background-image’, ’background-repeat’, ’background-attach-
ment’, ’background-position’, and ’background’
Because of insufficient implementations of background images with an intrinsic ratio
but no intrinsic size, add this note:

However, the position is undefined in CSS 2.1 if the image has an intrinsic
ratio, but no intrinsic size.

C.8.48 9.2.4 The ’display’ property
Because some aspects of ’run-in’ (most notably if and how ’clear’ should apply to
run-in elements when they are inline) are still under discussion, ’run-in’ has been
reclassified as a level 3 feature.

Change in section 9.2.4:

44730 Mar 2011 19:50

Changes

Value: inline | block | list-item | run-in | inline-block | table | inline-table | inline
| block | list-item | run-in | inline-block | table | inline-table |
table-row-group | table-header-group | table-footer-group | table-row |
table-column-group | table-column | table-cell | table-caption | none |
inherit

and

run-in
This value creates either block or inline boxes, depending on context. Prop-
erties apply to run-in boxes based on their final status (inline-level or
block-level).

Remove ’run-in’ from section 9.2.1 “Block-level elements and block boxes” [p. ??] :

[¼] The following values of the ’display’ property make an element block-level:
’block’, ’list-item’, and ’run-in’ (part of the time; see run-in boxes), and ’table’.

Remove ’run-in’ from section 9.2.2 “Inline-level elements and inline boxes” [p. ??] :

[¼] The following values of the ’display’ property make an element inline-level:
’inline’, ’inline-table’, and ’inline-block’ and ’run-in’ (part of the time; see run-in
boxes). [¼]

[¼] A non-replaced element with a ’display’ value of ’inline’ generates an inline
box. An element with a ’display’ value of ’run-in’ can also generate an inline box;
see run-in boxes.

Replace section 9.2.3 “Run-in boxes” [p. ??] by this:

9.2.3 Run-in boxes

[This section exists so that the section numbers are the same as in previous
drafts. ’Display: run-in’ is now defined in CSS level 3 (see CSS basic box model
[p. ??]).]

Remove ’run-in’ from section 9.3 “Positioning schemes” [p. ??] :

1. Normal flow. In CSS 2.1, normal flow includes block formatting of
block-level boxes, inline formatting of inline-level boxes, and relative posi-
tioning of block-level and inline-level boxes, and formatting of run-in boxes.

Remove ’run-in’ from section 9.5.2 “Controlling flow next to floats: the ’clear’ prop-
erty” [p. ??] :

For run-in boxes, this property applies to the final block box to which the
run-in box belongs.

30 Mar 2011 19:50448

Changes

Remove ’run-in’ from section 9.7 “Relationships between ’display’, ’position’, and
’float’” [p. ??] :

Specified value
Computed

value

inline-table table

inline, run-in, table-row-group, table-column, table-column-group,
table-header-group, table-footer-group, table-row, table-cell,
table-caption, inline-block

block

others
same as
specified

Remove ’run-in’ from section 9.10 “Text direction: the ’direction’ and ’unicode-bidi’
properties” [p. ??] :

The final order of characters in each block container is the same as if the bidi
control codes had been added as described above, markup had been stripped,
and the resulting character sequence had been passed to an implementation of
the Unicode bidirectional algorithm for plain text that produced the same
line-breaks as the styled text. In this process, replaced elements with ’display:
inline’ (and replaced elements with ’display: run-in’, when they generate
inline-level boxes) are treated as neutral characters, unless their ’unicode-bidi’
property has a value other than ’normal’, in which case they are treated as
strong characters in the ’direction’ specified for the element. All other atomic
inline-level boxes are treated as neutral characters always.

Remove ’run-in’ from section E.1 “Definitions” [p. ??] :

Tree Order
Preorder depth-first traversal of the rendering tree, in logical (not visual)
order for bidirectional content, after taking into account properties that move
boxes around such as the ’run-in’ value of ’display’.

Remove ’run-in’ from section 12.1 “The :before and :after pseudo-elements” [p. ??]
:

The :before and :after pseudo-elements interact with other boxes, such as
run-in boxes, as if they were real elements inserted just inside their associated
element.

and also from the subsequent example.

44930 Mar 2011 19:50

Changes

C.8.49 6.1.2 Computed values
Clarify that the keyword ’inherit’ means that the specified value is the inherited value.
The value is not the keyword itself.

When the specified value is not ’inherit’, the computed value of a property is
determined as specified by the Computed Value line in the definition of the prop-
erty. See the section on inheritance [p. ??] for the definition of computed values
when the specified value is ’inherit’.

And in 6.2.1: [p. ??]

Each property may also have a specified cascaded value of ’inherit’, which
means that, for a given element, the property takes the same computed speci-
fied value as the property for the element’s parent. The ’inherit’ value can be
used to strengthen inherited enforce inheritance of values, and it can also be
used on properties that are not normally inherited.

C.8.50 10.3.2 Inline, replaced elements
Because of lack of implementations, the width of a replaced element with an intrinsic
ratio but neither intrinsic with nor intrinsic height is left undefined:

If ’height’ and ’width’ both have computed values of ’auto’ and the element
has an intrinsic ratio but no intrinsic height or width, and then the used value of
’width’ is undefined in CSS 2.1. However, it is suggested that, if the containing
block’s width does not itself depend on the replaced element’s width, then the
used value of ’width’ is calculated from the constraint equation used for
block-level, non-replaced elements in normal flow.

C.8.51 Section 9.5.2 Controlling flow next to floats: the ’clear’
property
Because of lack of implementations, also allow ’clear’ to work in a different way for
now:

Computing the clearance of an element on which ’clear’ is set is done by first
determining the hypothetical position of the element’s top border edge within its
parent block. This position is where the actual top border edge would have been
if the element had a non-zero bottom border and its ’clear’ property had been
’none’.

If this hypothetical position of the element’s top border edge is not past the
relevant floats, then clearance is introduced, and margins collapse according to
the rules in 8.3.1.

30 Mar 2011 19:50450

Changes

Then the amount of clearance is set to the greater of:
1. The amount necessary to place the border edge of the block even with the

bottom outer edge of the lowest float that is to be cleared.
2. The amount necessary to place the top border edge of the block at its hypo-

thetical position.

Alternatively, clearance is set exactly to the amount necessary to place the
border edge of the block even with the bottom outer edge of the lowest float that
is to be cleared.

Note: Both behaviors are allowed pending evaluation of their compatibility
with existing Web content. A future CSS specification will require either one or
the other.

C.8.52 G.2 Lexical scanner
The tokenizer in the appendix allowed backslashes in the URI token, in contradiction
with the same token in the core grammar and the error recovery token {baduri}:

{U}{R}{L}"("{w}{string}{w}")" {return URI;}
{U}{R}{L}"("{w}{url}{w}")" {return URI;}
"url("{w}{string}{w}")" {return URI;}
"url("{w}{url}{w}")" {return URI;}

C.8.53 Section 9.5.2 Controlling flow next to floats: the ’clear’
property
The top border edge is now well-defined in the section on collapsing margins. That is
the hypothetical position to use for clearance:

This position is where the actual top border edge would have been if the
element had a non-zero bottom border and its ’s ’clear’ property had been
’none’.

C.8.54 9.5 Floats
Remove ambiguities:

If a shortened line box is too small to contain any content after the float, then
that content the line box is shifted downward (and its width recomputed) until
either it some content fits or there are no more floats present. Any content in the
current line before a floated box is reflowed in the first available same line on
the other side of the float.

45130 Mar 2011 19:50

Changes

30 Mar 2011 19:50452

Changes

Appendix D. Default style sheet for HTML 4
This appendix is informative, not normative.

This style sheet describes the typical formatting of all HTML 4 ([HTML4]) elements
based on extensive research into current UA practice. Developers are encouraged to
use it as a default style sheet in their implementations.

The full presentation of some HTML elements cannot be expressed in CSS 2.1,
including replaced [p. 44] elements ("img", "object"), scripting elements ("script",
"applet"), form control elements, and frame elements.

For other elements, the legacy presentation can be described in CSS but the solu-
tion removes the element. For example, the FONT element can be replaced by
attaching CSS declarations to other elements (e.g., DIV). Likewise, legacy presenta-
tion of presentational attributes (e.g., the "border" attribute on TABLE) can be
described in CSS, but the markup in the source document must be changed.

html, address,
blockquote,
body, dd, div,
dl, dt, fieldset, form,
frame, frameset,
h1, h2, h3, h4,
h5, h6, noframes,
ol, p, ul, center,
dir, hr, menu, pre { display: block; unicode-bidi: embed }
li { display: list-item }
head { display: none }
table { display: table }
tr { display: table-row }
thead { display: table-header-group }
tbody { display: table-row-group }
tfoot { display: table-footer-group }
col { display: table-column }
colgroup { display: table-column-group }
td, th { display: table-cell }
caption { display: table-caption }
th { font-weight: bolder; text-align: center }
caption { text-align: center }
body { margin: 8px }
h1 { font-size: 2em; margin: .67em 0 }
h2 { font-size: 1.5em; margin: .75em 0 }
h3 { font-size: 1.17em; margin: .83em 0 }
h4, p,
blockquote, ul,
fieldset, form,
ol, dl, dir,
menu { margin: 1.12em 0 }
h5 { font-size: .83em; margin: 1.5em 0 }
h6 { font-size: .75em; margin: 1.67em 0 }
h1, h2, h3, h4,
h5, h6, b,

45330 Mar 2011 19:50

Default style sheet for HTML 4

strong { font-weight: bolder }
blockquote { margin-left: 40px; margin-right: 40px }
i, cite, em,
var, address { font-style: italic }
pre, tt, code,
kbd, samp { font-family: monospace }
pre { white-space: pre }
button, textarea,
input, select { display: inline-block }
big { font-size: 1.17em }
small, sub, sup { font-size: .83em }
sub { vertical-align: sub }
sup { vertical-align: super }
table { border-spacing: 2px; }
thead, tbody,
tfoot { vertical-align: middle }
td, th, tr { vertical-align: inherit }
s, strike, del { text-decoration: line-through }
hr { border: 1px inset }
ol, ul, dir,
menu, dd { margin-left: 40px }
ol { list-style-type: decimal }
ol ul, ul ol,
ul ul, ol ol { margin-top: 0; margin-bottom: 0 }
u, ins { text-decoration: underline }
br:before { content: "\A"; white-space: pre-line }
center { text-align: center }
:link, :visited { text-decoration: underline }
:focus { outline: thin dotted invert }

/* Begin bidirectionality settings (do not change) */
BDO[DIR="ltr"] { direction: ltr; unicode-bidi: bidi-override }
BDO[DIR="rtl"] { direction: rtl; unicode-bidi: bidi-override }

*[DIR="ltr"] { direction: ltr; unicode-bidi: embed }
*[DIR="rtl"] { direction: rtl; unicode-bidi: embed }

@media print {
 h1 { page-break-before: always }
 h1, h2, h3,
 h4, h5, h6 { page-break-after: avoid }
 ul, ol, dl { page-break-before: avoid }
}

30 Mar 2011 19:50454

Default style sheet for HTML 4

Appendix E. Elaborate description of Stacking
Contexts
Contents

................ 455E.1 Definitions

............... 455E.2 Painting order

................. 458E.3 Notes

This chapter defines the CSS 2.1 painting order in more detail than described in
the rest of the specification.

E.1 Definitions
Tree Order

Preorder depth-first traversal of the rendering tree, in logical (not visual) order
for bidirectional content, after taking into account properties that move boxes
around.

Element
In this description, "element" refers to actual elements, pseudo-elements, and
anonymous boxes. Pseudo-elements and anonymous boxes are treated as
descendants in the appropriate places. For example, an outside list marker
comes before an adjoining ’:before’ box in the line box, which comes before the
content of the box, and so forth.

E.2 Painting order
The bottom of the stack is the furthest from the user, the top of the stack is the
nearest to the user:

 | | | |
 | | | | ⇦ ☻
 | | | user
z-index: canvas -1 0 1 2

The stacking context background and most negative positioned stacking contexts
are at the bottom of the stack, while the most positive positioned stacking contexts
are at the top of the stack.

The canvas is transparent if contained within another, and given a UA-defined
color if it is not. It is infinite in extent and contains the root element. Initially, the view-
port is anchored with its top left corner at the canvas origin.

The painting order for the descendants of an element generating a stacking
context (see the ’z-index’ property) is:

45530 Mar 2011 19:50

Elaborate description of Stacking Contexts

1. If the element is a root element:
1. background color of element over the entire canvas.
2. background image of element, over the entire canvas, anchored at the

origin that would be used if it was painted for the root element.

2. If the element is a block, list-item, or other block equivalent:
1. background color of element unless it is the root element.
2. background image of element unless it is the root element.
3. border of element.

Otherwise, if the element is a block level table:
1. table backgrounds (color then image) unless it is the root element.
2. column group backgrounds (color then image).
3. column backgrounds (color then image).
4. row group backgrounds (color then image).
5. row backgrounds (color then image).
6. cell backgrounds (color then image).
7. all table borders (in tree order for separated borders).

3. Stacking contexts formed by positioned descendants with negative z-indices
(excluding 0) in z-index order (most negative first) then tree order.

4. For all its in-flow, non-positioned, block-level descendants in tree order: If the
element is a block, list-item, or other block equivalent:

1. background color of element.
2. background image of element.
3. border of element.

Otherwise, the element is a table:
1. table backgrounds (color then image).
2. column group backgrounds (color then image).
3. column backgrounds (color then image).
4. row group backgrounds (color then image).
5. row backgrounds (color then image).
6. cell backgrounds (color then image).
7. all table borders (in tree order for separated borders).

5. All non-positioned floating descendants, in tree order. For each one of these,
treat the element as if it created a new stacking context, but any positioned
descendants and descendants which actually create a new stacking context
should be considered part of the parent stacking context, not this new one.

6. If the element is an inline element that generates a stacking context, then:

1. For each line box that the element is in:
1. Jump to 7.2.1 [p. 457] for the box(es) of the element in that line box (in

tree order).

30 Mar 2011 19:50456

Elaborate description of Stacking Contexts

7. Otherwise: first for the element, then for all its in-flow, non-positioned,
block-level descendants in tree order:

1. If the element is a block-level replaced element, then: the replaced content,
atomically.

2. Otherwise, for each line box of that element:
1.

For each box that is a child of that element, in that line box, in tree
order:

1. background color of element.

2. background image of element.

3. border of element.

4. For inline elements:

1. For all the element’s in-flow, non-positioned, inline-level chil-
dren that are in this line box, and all runs of text inside the
element that is on this line box, in tree order:

1. If this is a run of text, then:
1. any underlining affecting the text of the element, in

tree order of the elements applying the underlining
(such that the deepest element’s underlining, if any,
is painted topmost and the root element’s underlin-
ing, if any, is drawn bottommost).

2. any overlining affecting the text of the element, in
tree order of the elements applying the overlining
(such that the deepest element’s overlining, if any, is
painted topmost and the root element’s overlining, if
any, is drawn bottommost).

3. the text.
4. any line-through affecting the text of the element, in

tree order of the elements applying the line-through
(such that the deepest element’s line-through, if any,
is painted topmost and the root element’s
line-through, if any, is drawn bottommost).

2. Otherwise, jump to 7.2.1 [p. 457] for that element.

For inline-block and inline-table elements:
1. For each one of these, treat the element as if it created a new

stacking context, but any positioned descendants and
descendants which actually create a new stacking context
should be considered part of the parent stacking context, not
this new one.

45730 Mar 2011 19:50

Elaborate description of Stacking Contexts

For inline-level replaced elements:
1. the replaced content, atomically.

Some of the boxes may have been generated by line splitting or the
Unicode bidirectional algorithm.

2. Optionally, the outline of the element (see 10 below [p. 458]).

3. Optionally, if the element is block-level, the outline of the element (see 10
below [p. 458]).

8. All positioned descendants with ’z-index: auto’ or ’z-index: 0’, in tree order. For
those with ’z-index: auto’, treat the element as if it created a new stacking
context, but any positioned descendants and descendants which actually create
a new stacking context should be considered part of the parent stacking context,
not this new one. For those with ’z-index: 0’, treat the stacking context gener-
ated atomically.

9. Stacking contexts formed by positioned descendants with z-indices greater than
or equal to 1 in z-index order (smallest first) then tree order.

10.

Finally, implementations that do not draw outlines in steps above must draw
outlines from this stacking context at this stage. (It is recommended to draw
outlines in this step and not in the steps above.)

E.3 Notes
The background of the root element is only painted once, over the whole canvas.

While the backgrounds of bidirectional inlines are painted in tree order, they are
positioned in visual order. Since the positioning of inline backgrounds is unspecified
in CSS 2.1, the exact result of these two requirements is UA-defined. CSS3 may
define this in more detail.

30 Mar 2011 19:50458

Elaborate description of Stacking Contexts

Appendix F. Full property table
This appendix is informative, not normative.

Name Values
Initial
value

Applies to
(Default: all)

Inherited?
Percentages
(Default: N/A)

Media
groups

’azimuth’ [p. 314]

<angle> | [[left-side |
far-left | left | center-left |
center | center-right |
right | far-right |
right-side] || behind] |
leftwards | rightwards |
inherit

center yes
aural
[p. 305]

’background-attachment’
[p. 237]

scroll | fixed | inherit scroll no
visual
[p. 110]

’background-color’
[p. 234]

<color> | transparent |
inherit

transparent no
visual
[p. 110]

’background-image’
[p. 235]

<uri> | none | inherit none no
visual
[p. 110]

’background-position’
[p. 238]

[[<percentage> |
<length> | left | center |
right] [<percentage> |
<length> | top | center |
bottom]?] | [[left |
center | right] || [top |
center | bottom]] |
inherit

0% 0% no
refer to the size of
the box itself

visual
[p. 110]

’background-repeat’
[p. 236]

repeat | repeat-x |
repeat-y | no-repeat |
inherit

repeat no
visual
[p. 110]

’background’ [p. 240]

[’background-color’ ||
’background-image’ ||
’background-repeat’ ||
’background-attachment’
|| ’background-position’]
| inherit

see individ-
ual proper-
ties

 no
allowed on ’back-
ground-position’

visual
[p. 110]

’border-collapse’ [p. 288]
collapse | separate |
inherit

separate
’table’ and
’inline-table’
elements

yes
visual
[p. 110]

’border-color’ [p. 122]
[<color> | transparent
]{1,4} | inherit

see individ-
ual proper-
ties

 no
visual
[p. 110]

’border-spacing’ [p. 288]
<length> <length>? |
inherit

0
’table’ and
’inline-table’
elements

yes
visual
[p. 110]

’border-style’ [p. 124]
<border-style>{1,4} |
inherit

see individ-
ual proper-
ties

 no
visual
[p. 110]

’border-top’ [p. 124]
’border-right’ [p. 124]
’border-bottom’ [p. 124]
’border-left’ [p. 124]

[<border-width> ||
<border-style> ||
’border-top-color’] |
inherit

see individ-
ual proper-
ties

 no
visual
[p. 110]

’border-top-color’
[p. 122]
’border-right-color’
[p. 122]
’border-bottom-color’
[p. 122]
’border-left-color’
[p. 122]

<color> | transparent |
inherit

the value
of the
’color’
property

 no
visual
[p. 110]

45930 Mar 2011 19:50

Full property table

Name Values
Initial
value

Applies to
(Default: all)

Inherited?
Percentages
(Default: N/A)

Media
groups

’border-top-style’
[p. 124]
’border-right-style’
[p. 124]
’border-bottom-style’
[p. 124]
’border-left-style’
[p. 124]

<border-style> | inherit none no
visual
[p. 110]

’border-top-width’
[p. 121]
’border-right-width’
[p. 121]
’border-bottom-width’
[p. 121]
’border-left-width’
[p. 121]

<border-width> | inherit medium no
visual
[p. 110]

’border-width’ [p. 121]
<border-width>{1,4} |
inherit

see individ-
ual proper-
ties

 no
visual
[p. 110]

’border’ [p. 125]

[<border-width> ||
<border-style> ||
’border-top-color’] |
inherit

see individ-
ual proper-
ties

 no
visual
[p. 110]

’bottom’ [p. 136]
<length> | <percentage>
| auto | inherit

auto
positioned
elements

no
refer to height of
containing block

visual
[p. 110]

’caption-side’ [p. 277] top | bottom | inherit top
’table-caption’
elements

yes
visual
[p. 110]

’clear’ [p. 148]
none | left | right | both |
inherit

none
block-level
elements

no
visual
[p. 110]

’clip’ [p. 198] <shape> | auto | inherit auto
absolutely posi-
tioned elements

no
visual
[p. 110]

’color’ [p. 233] <color> | inherit
depends
on user
agent

 yes
visual
[p. 110]

’content’ [p. 205]

normal | none | [
<string> | <uri> |
<counter> | attr(<identi-
fier>) | open-quote |
close-quote |
no-open-quote |
no-close-quote]+ |
inherit

normal
:before and :after
pseudo-elements

no
all
[p. 110]

’counter-increment’
[p. 210]

[<identifier> <integer>?
]+ | none | inherit

none no
all
[p. 110]

’counter-reset’ [p. 210]
[<identifier> <integer>?
]+ | none | inherit

none no
all
[p. 110]

’cue-after’ [p. 311] <uri> | none | inherit none no
aural
[p. 305]

’cue-before’ [p. 311] <uri> | none | inherit none no
aural
[p. 305]

’cue’ [p. 312]
[’cue-before’ ||
’cue-after’] | inherit

see individ-
ual proper-
ties

 no
aural
[p. 305]

30 Mar 2011 19:50460

Full property table

Name Values
Initial
value

Applies to
(Default: all)

Inherited?
Percentages
(Default: N/A)

Media
groups

’cursor’ [p. 297]

[[<uri> ,]* [auto |
crosshair | default |
pointer | move | e-resize
| ne-resize | nw-resize |
n-resize | se-resize |
sw-resize | s-resize |
w-resize | text | wait |
help | progress]] |
inherit

auto yes

visual
[p. 110] ,
interactive
[p. 110]

’direction’ [p. 166] ltr | rtl | inherit ltr
all elements, but
see prose

yes
visual
[p. 110]

’display’ [p. 132]

inline | block | list-item |
inline-block | table |
inline-table |
table-row-group |
table-header-group |
table-footer-group |
table-row |
table-column-group |
table-column | table-cell
| table-caption | none |
inherit

inline no
all
[p. 110]

’elevation’ [p. 315]
<angle> | below | level |
above | higher | lower |
inherit

level yes
aural
[p. 305]

’empty-cells’ [p. 290] show | hide | inherit show ’table-cell’ elements yes
visual
[p. 110]

’float’ [p. 146] left | right | none | inherit none
all, but see 9.7
[p. 153]

no
visual
[p. 110]

’font-family’ [p. 242]

[[<family-name> |
<generic-family>] [,
<family-name>|
<generic-family>]*] |
inherit

depends
on user
agent

 yes
visual
[p. 110]

’font-size’ [p. 251]
<absolute-size> | <rela-
tive-size> | <length> |
<percentage> | inherit

medium yes
refer to inherited font
size

visual
[p. 110]

’font-style’ [p. 247]
normal | italic | oblique |
inherit

normal yes
visual
[p. 110]

’font-variant’ [p. 247]
normal | small-caps |
inherit

normal yes
visual
[p. 110]

’font-weight’ [p. 248]

normal | bold | bolder |
lighter | 100 | 200 | 300 |
400 | 500 | 600 | 700 |
800 | 900 | inherit

normal yes
visual
[p. 110]

’font’ [p. 253]

[[’font-style’ ||
’font-variant’ ||
’font-weight’]? ’font-size’
[/ ’line-height’]?
’font-family’] | caption |
icon | menu |
message-box |
small-caption |
status-bar | inherit

see individ-
ual proper-
ties

 yes
see individual prop-
erties

visual
[p. 110]

’height’ [p. 182]
<length> | <percentage>
| auto | inherit

auto

all elements but
non-replaced inline
elements, table
columns, and
column groups

no see prose
visual
[p. 110]

’left’ [p. 137]
<length> | <percentage>
| auto | inherit

auto
positioned
elements

no
refer to width of
containing block

visual
[p. 110]

46130 Mar 2011 19:50

Full property table

Name Values
Initial
value

Applies to
(Default: all)

Inherited?
Percentages
(Default: N/A)

Media
groups

’letter-spacing’ [p. 262]
normal | <length> |
inherit

normal yes
visual
[p. 110]

’line-height’ [p. 191]
normal | <number> |
<length> | <percentage>
| inherit

normal yes
refer to the font size
of the element itself

visual
[p. 110]

’list-style-image’ [p. 216] <uri> | none | inherit none
elements with
’display: list-item’

yes
visual
[p. 110]

’list-style-position’
[p. 217]

inside | outside | inherit outside
elements with
’display: list-item’

yes
visual
[p. 110]

’list-style-type’ [p. 215]

disc | circle | square |
decimal |
decimal-leading-zero |
lower-roman |
upper-roman |
lower-greek | lower-latin
| upper-latin | armenian |
georgian | lower-alpha |
upper-alpha | none |
inherit

disc
elements with
’display: list-item’

yes
visual
[p. 110]

’list-style’ [p. 219]

[’list-style-type’ ||
’list-style-position’ ||
’list-style-image’] |
inherit

see individ-
ual proper-
ties

elements with
’display: list-item’

yes
visual
[p. 110]

’margin-right’ [p. 116]
’margin-left’ [p. 116]

<margin-width> | inherit 0

all elements except
elements with table
display types other
than table-caption,
table and
inline-table

no
refer to width of
containing block

visual
[p. 110]

’margin-top’ [p. 115]
’margin-bottom’ [p. 115]

<margin-width> | inherit 0

all elements except
elements with table
display types other
than table-caption,
table and
inline-table

no
refer to width of
containing block

visual
[p. 110]

’margin’ [p. 116]
<margin-width>{1,4} |
inherit

see individ-
ual proper-
ties

all elements except
elements with table
display types other
than table-caption,
table and
inline-table

no
refer to width of
containing block

visual
[p. 110]

’max-height’ [p. 188]
<length> | <percentage>
| none | inherit

none

all elements but
non-replaced inline
elements, table
columns, and
column groups

no see prose
visual
[p. 110]

’max-width’ [p. 180]
<length> | <percentage>
| none | inherit

none

all elements but
non-replaced inline
elements, table
rows, and row
groups

no
refer to width of
containing block

visual
[p. 110]

’min-height’ [p. 188]
<length> | <percentage>
| inherit

0

all elements but
non-replaced inline
elements, table
columns, and
column groups

no see prose
visual
[p. 110]

’min-width’ [p. 179]
<length> | <percentage>
| inherit

0

all elements but
non-replaced inline
elements, table
rows, and row
groups

no
refer to width of
containing block

visual
[p. 110]

30 Mar 2011 19:50462

Full property table

Name Values
Initial
value

Applies to
(Default: all)

Inherited?
Percentages
(Default: N/A)

Media
groups

’orphans’ [p. 229] <integer> | inherit 2
block container
elements

yes

visual
[p. 110] ,
paged
[p. 110]

’outline-color’ [p. 301] <color> | invert | inherit invert no

visual
[p. 110] ,
interactive
[p. 110]

’outline-style’ [p. 301] <border-style> | inherit none no

visual
[p. 110] ,
interactive
[p. 110]

’outline-width’ [p. 301] <border-width> | inherit medium no

visual
[p. 110] ,
interactive
[p. 110]

’outline’ [p. 300]
[’outline-color’ ||
’outline-style’ ||
’outline-width’] | inherit

see individ-
ual proper-
ties

 no

visual
[p. 110] ,
interactive
[p. 110]

’overflow’ [p. 195]
visible | hidden | scroll |
auto | inherit

visible block containers no
visual
[p. 110]

’padding-top’ [p. 119]
’padding-right’ [p. 119]
’padding-bottom’
[p. 119] ’padding-left’
[p. 119]

<padding-width> | inherit 0

all elements except
table-row-group,
table-header-group,
table-footer-group,
table-row,
table-column-group
and table-column

no
refer to width of
containing block

visual
[p. 110]

’padding’ [p. 119]
<padding-width>{1,4} |
inherit

see individ-
ual proper-
ties

all elements except
table-row-group,
table-header-group,
table-footer-group,
table-row,
table-column-group
and table-column

no
refer to width of
containing block

visual
[p. 110]

’page-break-after’
[p. 228]

auto | always | avoid |
left | right | inherit

auto
block-level
elements (but see
text)

no

visual
[p. 110] ,
paged
[p. 110]

’page-break-before’
[p. 227]

auto | always | avoid |
left | right | inherit

auto
block-level
elements (but see
text)

no

visual
[p. 110] ,
paged
[p. 110]

’page-break-inside’
[p. 228]

avoid | auto | inherit auto
block-level
elements (but see
text)

no

visual
[p. 110] ,
paged
[p. 110]

’pause-after’ [p. 310]
<time> | <percentage> |
inherit

0 no see prose
aural
[p. 305]

’pause-before’ [p. 310]
<time> | <percentage> |
inherit

0 no see prose
aural
[p. 305]

’pause’ [p. 310]
[[<time> | <percent-
age>]{1,2}] | inherit

see individ-
ual proper-
ties

 no
see descriptions of
’pause-before’ and
’pause-after’

aural
[p. 305]

’pitch-range’ [p. 318] <number> | inherit 50 yes
aural
[p. 305]

’pitch’ [p. 317]
<frequency> | x-low |
low | medium | high |
x-high | inherit

medium yes
aural
[p. 305]

46330 Mar 2011 19:50

Full property table

Name Values
Initial
value

Applies to
(Default: all)

Inherited?
Percentages
(Default: N/A)

Media
groups

’play-during’ [p. 312]
<uri> [mix || repeat]? |
auto | none | inherit

auto no
aural
[p. 305]

’position’ [p. 134]
static | relative | abso-
lute | fixed | inherit

static no
visual
[p. 110]

’quotes’ [p. 207]
[<string> <string>]+ |
none | inherit

depends
on user
agent

 yes
visual
[p. 110]

’richness’ [p. 319] <number> | inherit 50 yes
aural
[p. 305]

’right’ [p. 136]
<length> | <percentage>
| auto | inherit

auto
positioned
elements

no
refer to width of
containing block

visual
[p. 110]

’speak-header’ [p. 321] once | always | inherit once
elements that have
table header infor-
mation

yes
aural
[p. 305]

’speak-numeral’ [p. 320]
digits | continuous |
inherit

continuous yes
aural
[p. 305]

’speak-punctuation’
[p. 319]

code | none | inherit none yes
aural
[p. 305]

’speak’ [p. 309]
normal | none | spell-out
| inherit

normal yes
aural
[p. 305]

’speech-rate’ [p. 316]

<number> | x-slow |
slow | medium | fast |
x-fast | faster | slower |
inherit

medium yes
aural
[p. 305]

’stress’ [p. 318] <number> | inherit 50 yes
aural
[p. 305]

’table-layout’ [p. 282] auto | fixed | inherit auto
’table’ and
’inline-table’
elements

no
visual
[p. 110]

’text-align’ [p. 258]
left | right | center |
justify | inherit

a name-
less value
that acts
as ’left’ if
’direction’
is ’ltr’,
’right’ if
’direction’
is ’rtl’

block containers yes
visual
[p. 110]

’text-decoration’ [p. 259]
none | [underline ||
overline || line-through ||
blink] | inherit

none
no (see
prose)

visual
[p. 110]

’text-indent’ [p. 257]
<length> | <percentage>
| inherit

0 block containers yes
refer to width of
containing block

visual
[p. 110]

’text-transform’ [p. 263]
capitalize | uppercase |
lowercase | none |
inherit

none yes
visual
[p. 110]

’top’ [p. 135]
<length> | <percentage>
| auto | inherit

auto
positioned
elements

no
refer to height of
containing block

visual
[p. 110]

’unicode-bidi’ [p. 167]
normal | embed |
bidi-override | inherit

normal
all elements, but
see prose

no
visual
[p. 110]

’vertical-align’ [p. 192]

baseline | sub | super |
top | text-top | middle |
bottom | text-bottom |
<percentage> | <length>
| inherit

baseline
inline-level and
’table-cell’ elements

no
refer to the
’line-height’ of the
element itself

visual
[p. 110]

’visibility’ [p. 201]
visible | hidden |
collapse | inherit

visible yes
visual
[p. 110]

30 Mar 2011 19:50464

Full property table

Name Values
Initial
value

Applies to
(Default: all)

Inherited?
Percentages
(Default: N/A)

Media
groups

’voice-family’ [p. 317]

[[<specific-voice> |
<generic-voice>],]*
[<specific-voice> |
<generic-voice>] |
inherit

depends
on user
agent

 yes
aural
[p. 305]

’volume’ [p. 308]

<number> | <percent-
age> | silent | x-soft |
soft | medium | loud |
x-loud | inherit

medium yes
refer to inherited
value

aural
[p. 305]

’white-space’ [p. 264]
normal | pre | nowrap |
pre-wrap | pre-line |
inherit

normal yes
visual
[p. 110]

’widows’ [p. 229] <integer> | inherit 2
block container
elements

yes

visual
[p. 110] ,
paged
[p. 110]

’width’ [p. 174]
<length> | <percentage>
| auto | inherit

auto

all elements but
non-replaced inline
elements, table
rows, and row
groups

no
refer to width of
containing block

visual
[p. 110]

’word-spacing’ [p. 262]
normal | <length> |
inherit

normal yes
visual
[p. 110]

’z-index’ [p. 163] auto | <integer> | inherit auto
positioned
elements

no
visual
[p. 110]

46530 Mar 2011 19:50

Full property table

30 Mar 2011 19:50466

Full property table

Appendix G. Grammar of CSS 2.1
Contents

................ 467G.1 Grammar

............... 469G.2 Lexical scanner

...... 471G.3 Comparison of tokenization in CSS 2.1 and CSS1

............. 472G.4 Implementation note

This appendix is non-normative.

The grammar below defines the syntax of CSS 2.1. It is in some sense, however,
a superset of CSS 2.1 as this specification imposes additional semantic constraints
not expressed in this grammar. A conforming UA must also adhere to the
forward-compatible parsing rules [p. 49] , the selectors notation, the property and
value notation [p. 29] , and the unit notation. However, not all syntactically correct
CSS can take effect, since the document language may impose restrictions that are
not in CSS, e.g., HTML imposes restrictions on the possible values of the "class"
attribute.

G.1 Grammar
The grammar below is LALR(1) (but note that most UA’s should not use it directly,
since it does not express the parsing conventions [p. 60] , only the CSS 2.1 syntax).
The format of the productions is optimized for human consumption and some short-
hand notation beyond Yacc (see [YACC]) is used:

*: 0 or more
+: 1 or more
?: 0 or 1
|: separates alternatives
[] : grouping

The productions are:

stylesheet
 : [CHARSET_SYM STRING ’;’]?
 [S|CDO|CDC]* [import [CDO S* | CDC S*]*]*
 [[ruleset | media | page] [CDO S* | CDC S*]*]*
 ;
import
 : IMPORT_SYM S*
 [STRING|URI] S* media_list? ’;’ S*
 ;
media
 : MEDIA_SYM S* media_list LBRACE S* ruleset* ’}’ S*
 ;
media_list

46730 Mar 2011 19:50

Grammar of CSS 2.1

 : medium [COMMA S* medium]*
 ;
medium
 : IDENT S*
 ;
page
 : PAGE_SYM S* pseudo_page?
 ’{’ S* declaration? [’;’ S* declaration?]* ’}’ S*
 ;
pseudo_page
 : ’:’ IDENT S*
 ;
operator
 : ’/’ S* | ’,’ S*
 ;
combinator
 : ’+’ S*
 | ’>’ S*
 ;
unary_operator
 : ’-’ | ’+’
 ;
property
 : IDENT S*
 ;
ruleset
 : selector [’,’ S* selector]*
 ’{’ S* declaration? [’;’ S* declaration?]* ’}’ S*
 ;
selector
 : simple_selector [combinator selector | S+ [combinator? selector]?]?
 ;
simple_selector
 : element_name [HASH | class | attrib | pseudo]*
 | [HASH | class | attrib | pseudo]+
 ;
class
 : ’.’ IDENT
 ;
element_name
 : IDENT | ’*’
 ;
attrib
 : ’[’ S* IDENT S* [[’=’ | INCLUDES | DASHMATCH] S*
 [IDENT | STRING] S*]? ’]’
 ;
pseudo
 : ’:’ [IDENT | FUNCTION S* [IDENT S*]? ’)’]
 ;
declaration
 : property ’:’ S* expr prio?
 ;
prio
 : IMPORTANT_SYM S*
 ;
expr
 : term [operator? term]*

30 Mar 2011 19:50468

Grammar of CSS 2.1

 ;
term
 : unary_operator?
 [NUMBER S* | PERCENTAGE S* | LENGTH S* | EMS S* | EXS S* | ANGLE S* |
 TIME S* | FREQ S*]
 | STRING S* | IDENT S* | URI S* | hexcolor | function
 ;
function
 : FUNCTION S* expr ’)’ S*
 ;
/*
 * There is a constraint on the color that it must
 * have either 3 or 6 hex-digits (i.e., [0-9a-fA-F])
 * after the "#"; e.g., "#000" is OK, but "#abcd" is not.
 */
hexcolor
 : HASH S*
 ;

G.2 Lexical scanner
The following is the tokenizer, written in Flex (see [FLEX]) notation. The tokenizer is
case-insensitive.

The "\377" represents the highest character number that current versions of Flex
can deal with (decimal 255). It should be read as "\4177777" (decimal 1114111),
which is the highest possible code point in Unicode/ISO-10646.

%option case-insensitive

h [0-9a-f]
nonascii [\240-\377]
unicode \\{h}{1,6}(\r\n|[\t\r\n\f])?
escape {unicode}|\\[^\r\n\f0-9a-f]
nmstart [_a-z]|{nonascii}|{escape}
nmchar [_a-z0-9-]|{nonascii}|{escape}
string1 \"([^\n\r\f\\"]|\\{nl}|{escape})*\"
string2 \’([^\n\r\f\\’]|\\{nl}|{escape})*\’
badstring1 \"([^\n\r\f\\"]|\\{nl}|{escape})*\\?
badstring2 \’([^\n\r\f\\’]|\\{nl}|{escape})*\\?
badcomment1 \/*[^*]**+([^/*][^*]**+)*
badcomment2 \/*[^*]*(*+[^/*][^*]*)*
baduri1 url\({w}([!#$%&*-\[\]-~]|{nonascii}|{escape})*{w}
baduri2 url\({w}{string}{w}
baduri3 url\({w}{badstring}
comment \/*[^*]**+([^/*][^*]**+)*\/
ident -?{nmstart}{nmchar}*
name {nmchar}+
num [0-9]+|[0-9]*"."[0-9]+
string {string1}|{string2}
badstring {badstring1}|{badstring2}
badcomment {badcomment1}|{badcomment2}
baduri {baduri1}|{baduri2}|{baduri3}
url ([!#$%&*-~]|{nonascii}|{escape})*
s [\t\r\n\f]+
w {s}?

46930 Mar 2011 19:50

Grammar of CSS 2.1

nl \n|\r\n|\r|\f

A a|\\0{0,4}(41|61)(\r\n|[\t\r\n\f])?
C c|\\0{0,4}(43|63)(\r\n|[\t\r\n\f])?
D d|\\0{0,4}(44|64)(\r\n|[\t\r\n\f])?
E e|\\0{0,4}(45|65)(\r\n|[\t\r\n\f])?
G g|\\0{0,4}(47|67)(\r\n|[\t\r\n\f])?|\\g
H h|\\0{0,4}(48|68)(\r\n|[\t\r\n\f])?|\\h
I i|\\0{0,4}(49|69)(\r\n|[\t\r\n\f])?|\\i
K k|\\0{0,4}(4b|6b)(\r\n|[\t\r\n\f])?|\\k
L l|\\0{0,4}(4c|6c)(\r\n|[\t\r\n\f])?|\\l
M m|\\0{0,4}(4d|6d)(\r\n|[\t\r\n\f])?|\\m
N n|\\0{0,4}(4e|6e)(\r\n|[\t\r\n\f])?|\\n
O o|\\0{0,4}(4f|6f)(\r\n|[\t\r\n\f])?|\\o
P p|\\0{0,4}(50|70)(\r\n|[\t\r\n\f])?|\\p
R r|\\0{0,4}(52|72)(\r\n|[\t\r\n\f])?|\\r
S s|\\0{0,4}(53|73)(\r\n|[\t\r\n\f])?|\\s
T t|\\0{0,4}(54|74)(\r\n|[\t\r\n\f])?|\\t
U u|\\0{0,4}(55|75)(\r\n|[\t\r\n\f])?|\\u
X x|\\0{0,4}(58|78)(\r\n|[\t\r\n\f])?|\\x
Z z|\\0{0,4}(5a|7a)(\r\n|[\t\r\n\f])?|\\z

%%

{s} {return S;}

\/*[^*]**+([^/*][^*]**+)*\/ /* ignore comments */
{badcomment} /* unclosed comment at EOF */

"<!--" {return CDO;}
"-->" {return CDC;}
"~=" {return INCLUDES;}
"|=" {return DASHMATCH;}

{string} {return STRING;}
{badstring} {return BAD_STRING;}

{ident} {return IDENT;}

"#"{name} {return HASH;}

@{I}{M}{P}{O}{R}{T} {return IMPORT_SYM;}
@{P}{A}{G}{E} {return PAGE_SYM;}
@{M}{E}{D}{I}{A} {return MEDIA_SYM;}
"@charset " {return CHARSET_SYM;}

"!"({w}|{comment})*{I}{M}{P}{O}{R}{T}{A}{N}{T} {return IMPORTANT_SYM;}

{num}{E}{M} {return EMS;}
{num}{E}{X} {return EXS;}
{num}{P}{X} {return LENGTH;}
{num}{C}{M} {return LENGTH;}
{num}{M}{M} {return LENGTH;}
{num}{I}{N} {return LENGTH;}
{num}{P}{T} {return LENGTH;}
{num}{P}{C} {return LENGTH;}
{num}{D}{E}{G} {return ANGLE;}

30 Mar 2011 19:50470

Grammar of CSS 2.1

{num}{R}{A}{D} {return ANGLE;}
{num}{G}{R}{A}{D} {return ANGLE;}
{num}{M}{S} {return TIME;}
{num}{S} {return TIME;}
{num}{H}{Z} {return FREQ;}
{num}{K}{H}{Z} {return FREQ;}
{num}{ident} {return DIMENSION;}

{num}% {return PERCENTAGE;}
{num} {return NUMBER;}

"url("{w}{string}{w}")" {return URI;}
"url("{w}{url}{w}")" {return URI;}
{baduri} {return BAD_URI;}

{ident}"(" {return FUNCTION;}

. {return *yytext;}

G.3 Comparison of tokenization in CSS 2.1 and CSS1
There are some differences in the syntax specified in the CSS1 recommendation
([CSS1]), and the one above. Most of these are due to new tokens in CSS2 that did
not exist in CSS1. Others are because the grammar has been rewritten to be more
readable. However, there are some incompatible changes, that were felt to be errors
in the CSS1 syntax. They are explained below.

CSS1 style sheets could only be in 1-byte-per-character encodings, such as
ASCII and ISO-8859-1. CSS 2.1 has no such limitation. In practice, there was
little difficulty in extrapolating the CSS1 tokenizer, and some UAs have accepted
2-byte encodings.
CSS1 only allowed four hex-digits after the backslash (\) to refer to Unicode
characters, CSS2 allows six [p. 55] . Furthermore, CSS2 allows a white space
character to delimit the escape sequence. E.g., according to CSS1, the string
"\abcdef" has 3 letters (\abcd, e, and f), according to CSS2 it has only one
(\abcdef).
The tab character (ASCII 9) was not allowed in strings. However, since strings
in CSS1 were only used for font names and for URLs, the only way this can lead
to incompatibility between CSS1 and CSS2 is if a style sheet contains a font
family that has a tab in its name.
Similarly, newlines (escaped with a backslash [p. 70]) were not allowed in
strings in CSS1.
CSS2 parses a number immediately followed by an identifier as a DIMENSION
token (i.e., an unknown unit), CSS1 parsed it as a number and an identifier.
That means that in CSS1, the declaration ’font: 10pt/1.2serif’ was correct, as
was ’font: 10pt/12pt serif’; in CSS2, a space is required before "serif". (Some
UAs accepted the first example, but not the second.)
In CSS1, a class name could start with a digit (".55ft"), unless it was a dimen-
sion (".55in"). In CSS2, such classes are parsed as unknown dimensions (to

47130 Mar 2011 19:50

Grammar of CSS 2.1

allow for future additions of new units). To make ".55ft" a valid class, CSS2
requires the first digit to be escaped (".\35 5ft")

G.4 Implementation note
The lexical scanner for the CSS core syntax in section 4.1.1 [p. 50] can be imple-
mented as a scanner without back-up. In Lex notation, that requires the addition of
the following patterns (which do not change the returned tokens, only the efficiency
of the scanner):

{ident}/\\ return IDENT;
#{name}/\\ return HASH;
@{ident}/\\ return ATKEYWORD;
#/\\ return DELIM;
@/\\ return DELIM;
@/- return DELIM;
@/-\\ return DELIM;
-/\\ return DELIM;
-/- return DELIM;
\</! return DELIM;
\</!- return DELIM;
{num}{ident}/\\ return DIMENSION;
{num}/\\ return NUMBER;
{num}/- return NUMBER;
{num}/-\\ return NUMBER;
[0-9]+/\. return NUMBER;
u/\+ return IDENT;
u\+[0-9a-f?]{1,6}/- return UNICODE_RANGE;

30 Mar 2011 19:50472

Grammar of CSS 2.1

Appendix H: Has been intentionally left blank

47330 Mar 2011 19:50

Has been intentionally left blank

30 Mar 2011 19:50474

Has been intentionally left blank

Appendix I. Index
This appendix is informative, not normative.

:active, 89
:after, 203, 97
:before, 203, 97
:first, 226
:first-child, 88
:first-letter, 94
:first-line, 92
:focus, 89
:hover, 89
:lang, 91
:left, 226
:link, 89
:right, 226
:visited, 89
=, 82
~=, 82
|=, 82

@charset, 57, 71, 72
"@charset", 72
@import, 102, 102, 107
@media, 107, 108
@page, 224

absolute length, 64
absolutely positioned element, 151
active (pseudo-class), 89
actual value, 100
adjoining margins, 117
after, 203
’all’ media group, 110
ancestor, 45
<angle>, 314, 315

definition of, 307
anonymous, 129

47530 Mar 2011 19:50

Index

anonymous boxes., 101
anonymous inline boxes, 132
armenian, 216
at-rule, 57
at-rules, 56
atomic inline-level box, 131
attr(), 206
attribute, 45
’audio’ media group, 110
auditory icon, 306
Author, 46
authoring tool, 46
automatic numbering, 203
’azimuth’, 314

’background’, 240
’background-attachment’, 237
’background-color’, 234
’background-image’, 235
’background-position’, 238
’background-repeat’, 236
backslash escapes, 55
before, 203
bidirectionality (bidi), 165
’bitmap’ media group, 110
block, 57
block box, 129
block container box, 129
’block’, definition of, 133
block-level box, 129
block-level element, 129
BOM, 71
border box, 112
border edge, 112
’border’, 125, 125
’border-bottom’, 124
’border-bottom-color’, 122
’border-bottom-style’, 124
’border-bottom-width’, 121
’border-collapse’, 288
’border-color’, 122
’border-left’, 124, 124

30 Mar 2011 19:50476

Index

’border-left-color’, 122
’border-left-style’, 124
’border-left-width’, 121
’border-right’, 124
’border-right-color’, 122
’border-right-style’, 124
’border-right-width’, 121
’border-spacing’, 288
<border-style>, 294
<border-style>, definition of, 123
’border-style’, 124
’border-top’, 124
’border-top-color’, 122
’border-top-style’, 124
’border-top-width’, 121
<border-width>

definition of, 120
’border-width’, 121
border

of a box, 111
<bottom>

definition of, 199
’bottom’, 136
box

border, 111
content, 111
content height, 113
content width, 113
margin, 111
overflow, 195
padding, 111

canvas, 306, 40
’caption-side’, 277
cascade, 103
case sensitivity, 55
character encoding, 71

default, 71
user agent’s determination of, 71

child, 45
child selector, 81
circle, 215

47730 Mar 2011 19:50

Index

’clear’, 148
clearance, 149
’clip’, 198
clipping region, 198
close-quote, 209, 206
collapse, 117
collapse through, 118
collapsing margin, 117
color, 469
<color>, 122, 235

definition of, 69
’color’, 233
combinator, 79
comments, 60
computed value, 100
conditional import, 102
conformance, 47, 259
consecutive, 273
containing block, 171, 128, 128

initial, 171
content, 45
content box, 112
content edge, 112
’content’, 205
content

of a box, 111
rendered, 45

’continuous’ media group, 110
<counter>, 206
<counter>, definition of, 68
counter(), 68
’counter-increment’, 210
’counter-reset’, 210
counters, 210
’cue’, 312
’cue-after’, 311
’cue-before’, 311
cursive, definition of, 246
’cursor’, 297

30 Mar 2011 19:50478

Index

’dashed’, 123, 294
decimal, 215
decimal-leading-zero, 215
declaration, 59
declaration block, 58
default style sheet, 103
default

character encoding, 71
descendant, 45
descendant-selectors, 80
’direction’, 166
disc, 215
’display’, 132
document language, 44
document tree, 45
’dotted’, 123, 294
’double’, 123, 295
drop caps, 94
DTD, 84, 168, ??

element, 44
following, 46
preceding, 46

’elevation’, 315
em (unit), 64
empty, 45
’empty-cells’, 290
ex (unit), 64
exact matching, 82

fantasy, definition of, 246
fictional tag sequence, 92, 95, 97
first-child, 88
first-letter, 94
first-line, 92
float rules, 147
’float’, 146
flow of an element, 134
focus, 302
focus (pseudo-class), 89

47930 Mar 2011 19:50

Index

following element, 46
’font’, 253
’font-family’, 242
’font-size’, 251
’font-style’, 247
’font-variant’, 247
’font-weight’, 248
formatting context, 137
formatting structure, 40
forward-compatible parsing, 49
<frequency>, 318

definition of, 307

generated content, 203
<generic-voice>, definition of, 317
georgian, 215
’grid’ media group, 110
’groove’, 123, 295

’height’, 182
’hidden, 294
’hidden’, 123
hover (pseudo-class), 89
hyphen-separated matching, 82

identifier, 55
identifier, definition of, 55
ignore, 45, 47, 47, 60, 57, 58, 58, 58, 59, 60, 60, 61, 61, 62, 62, 57, 289
in-flow, 134
inherit, definition of, 101
initial caps, 94
initial containing block, 171
initial value, 99
inline box, 131
’inline’, definition of, 133
’inline-block’, definition of, 133
inline-level box, 131
inline-level element, 131
inline-table, 271

30 Mar 2011 19:50480

Index

inner edge, 112
’inset’, 123, 295
<integer>, 163

definition of, 63
’interactive media group, 110
internal table box, 273
internal table element, 271
intrinsic dimensions, 45
invert, 302
iso-10646, 469

LALR(1), 467
lang (pseudo-class), 91
language (human), 91
language code, 82
<left>

definition of, 199
’left’, 137
<length>, 239, 258, 263, 262, 183, 189, 191, 193, 174, 180

definition of, 63
’letter-spacing’, 262
ligatures, 262
line box, 138
line-box, 147
’line-height’, 191
link (pseudo-class), 89
list properties, 215
’list-item’, definition of, 133
’list-style’, 219
’list-style-image’, 216
’list-style-position’, 217
’list-style-type’, 215
lower-greek, 216
lower-latin, 216
lower-roman, 215

mapping elements to table parts, 271
margin box, 112
margin edge, 112
’margin’, 116

48130 Mar 2011 19:50

Index

’margin-bottom’, 115
’margin-left’, 116
’margin-right’, 116
’margin-top’, 115
<margin-width>

definition of, 115
margin

of a box, 111
match, 77
’max-height’, 188
’max-width’, 180
MAY, 43
media, 108
media group, 110
media-dependent import, 102
message entity, 48
’min-height’, 188
’min-width’, 179
monospace, definition of, 246
multiple declarations, 79
MUST, 43
MUST NOT, 43

newline, 70
no-close-quote, 210, 206
no-open-quote, 210, 206
none, 205
’none’

as border style, 123, 294
as display value, 133

normal, 205
<number>, 308, 316, 318, 307, 319, 319, 307, 307, 67, 191, 191

definition of, 63

open-quote, 209, 206
OPTIONAL, 43
’orphans’, 229
out of flow, 134
outer edge, 112
outline, 300

30 Mar 2011 19:50482

Index

’outline’, 300
’outline-color’, 301
’outline-style’, 301
’outline-width’, 301
’outset’, 123, 295
overflow, 195
’overflow’, 195

padding box, 112
padding edge, 112
’padding’, 119
’padding-bottom’, 119
’padding-left’, 119
’padding-right’, 119
’padding-top’, 119
<padding-width>

definition of, 119
padding

of a box, 111
page area, 224
page box, 224
page selector, 224
’page-break-after’, 228
’page-break-before’, 227
’page-break-inside’, 228
page-context, 224
’paged’ media group, 110
parent, 45
’pause’, 310
’pause-after’, 310
’pause-before’, 310
<percentage>, 308, 310, 238, 258, 183, 189, 192, 193, 174, 180

definition of, 67
’pitch’, 317
’pitch-range’, 318
pixel, 65
’play-during’, 312
’position’, 134
positioned element/box, 135
positioning scheme, 134
preceding element, 46
principal block-level box, 129

48330 Mar 2011 19:50

Index

proper table child, 273
proper table row parent, 273
Property, 46
property, 59
’property-name’, 29
pseudo-class

:first, 226
:left, 226
:right, 226

pseudo-classes, 87
:active, 89
:focus, 89
:hover, 89
:lang, 91
:link, 89
:visited, 89

pseudo-elements, 87
:after, 203, 97
:before, 203, 97
:first-letter, 94
:first-line, 92, 93

quad width, 64
’quotes’, 207

RECOMMENDED, 43
reference pixel, 65
relative positioning, 141
relative units, 63
rendered content, 45
replaced element, 44
REQUIRED, 43
’richness’, 319
’ridge’, 123, 295
<right>

definition of, 199
’right’, 136
root, 45
row group box, 273
row groups, 271

30 Mar 2011 19:50484

Index

rule sets, 56
run-in, 132

sans-serif, definition of, 245
scope, 212
screen reader, 306
selector, 468, 79, 77, 58

match, 77
subject of, 79

separated borders, 288
serif, definition of, 244
SHALL, 43
SHALL NOT, 43
<shape>

definition of, 199
sheet, 223
shorthand property, 32, 104, 79
SHOULD, 43
SHOULD NOT, 43
sibling, 46
simple selector, 79
’solid’, 123, 295
source document, 44
space-separated matching, 82
’speak’, 309
’speak-header’, 321
’speak-numeral’, 320
’speak-punctuation’, 319
<specific-voice>

definition of, 317
specified value, 99
’speech’ media group, 110
’speech-rate’, 316
square, 215
stack level, 164
stacking context, 164
statements, 56
’static’ media group, 110
’stress’, 318
string, 57
<string>, 205, 207, 207
<string>, definition of, 70

48530 Mar 2011 19:50

Index

illegal ,
style sheet, 1 [p. 44] 44
system fonts, 254

table, 271
table element, 271

internal, 271
table-caption, 272
table-cell, 272
table-column, 272
table-column-group, 272
table-footer-group, 272
table-header-group, 271
’table-layout’, 282
table-row, 271
table-row-group, 271
tables, 269
tabular container, 273
’tactile’ media group, 110
’text-align’, 258
’text-decoration’, 259
’text-indent’, 257
’text-transform’, 263
text/css, 48
<time>, 310

definition of, 307
tokenizer, 469
<top>

definition of, 199
’top’, 135
type selector, 80

UA, 46
unicode, 469
’unicode-bidi’, 167, 167
universal selector, 80
upper-latin, 216
upper-roman, 215
<uri>, 311, 313, 313, 313, 235, 205, 298

definition of, 67

30 Mar 2011 19:50486

Index

used value, 100
User, 46
user agent, 46
User agent (UA), 46
UTF-8, 72

valid style sheet, 44
validity, 44
value, 59
’vertical-align’, 192
viewport, 128
’visibility’, 201
visited (pseudo-class), 89
visual formatting model, 127
’visual’ media group, 110
’voice-family’, 317
volume, 308
’volume’, 308

’white-space’, 264
’widows’, 229
’width’, 174
’word-spacing’, 262

x-height, 64

’z-index’, 163

48730 Mar 2011 19:50

Index

	Cascading Style Sheets Level 2 Revision 1 †CSS€2.1‡ Specification
	W3C Editors Draft DD MMMMM YYYY
	Abstract
	Status of this document
	Candidate Recommendation Exit Criteria
	Features at risk

	Quick Table of Contents
	Full Table of Contents

	1 About the CSS€2.1 Specification
	1.1 CSS€2.1 vs CSS€2
	1.2 Reading the specification
	1.3 How the specification is organized
	1.4 Conventions
	1.4.1 Document language elements and attributes
	1.4.2 CSS property definitions
	1.4.2.1 Value
	1.4.2.2 Initial
	1.4.2.3 Applies to
	1.4.2.4 Inherited
	1.4.2.5 Percentage values
	1.4.2.6 Media groups
	1.4.2.7 Computed value

	1.4.3 Shorthand properties
	1.4.4 Notes and examples
	1.4.5 Images and long descriptions

	1.5 Acknowledgments

	2 Introduction to CSS€2.1
	2.1 A brief CSS€2.1 tutorial for HTML
	2.2 A brief CSS€2.1 tutorial for XML
	2.3 The CSS€2.1 processing model
	2.3.1 The canvas
	2.3.2 CSS€2.1 addressing model

	2.4 CSS design principles

	3 Conformance: Requirements and Recommendations
	3.1 Definitions
	3.2 UA Conformance
	3.3 Error conditions
	3.4 The text/css content type

	4 Syntax and basic data types
	4.1 Syntax
	4.1.1 Tokenization
	4.1.2 Keywords
	4.1.2.1 Vendor-specific extensions
	4.1.2.2 Informative Historical Notes

	4.1.3 Characters and case
	4.1.4 Statements
	4.1.5 At-rules
	4.1.6 Blocks
	4.1.7 Rule sets, declaration blocks, and selectors
	4.1.8 Declarations and properties
	4.1.9 Comments

	4.2 Rules for handling parsing errors
	4.3 Values
	4.3.1 Integers and real numbers
	4.3.2 Lengths
	4.3.3 Percentages
	4.3.4 URLs and URIs
	4.3.5 Counters
	4.3.6 Colors
	4.3.7 Strings
	4.3.8 Unsupported Values

	4.4 CSS style sheet representation
	4.4.1 Referring to characters not represented in a character encoding

	5 Selectors
	5.1 Pattern matching
	5.2 Selector syntax
	5.2.1 Grouping

	5.3 Universal selector
	5.4 Type selectors
	5.5 Descendant selectors
	5.6 Child selectors
	5.7 Adjacent sibling selectors
	5.8 Attribute selectors
	5.8.1 Matching attributes and attribute values
	5.8.2 Default attribute values in DTDs
	5.8.3 Class selectors

	5.9 ID selectors
	5.10 Pseudo-elements and pseudo-classes
	5.11 Pseudo-classes
	5.11.1 :first-child pseudo-class
	5.11.2 The link pseudo-classes: :link and :visited
	5.11.3 The dynamic pseudo-classes: :hover, :active, and :focus
	5.11.4 The language pseudo-class: :lang

	5.12 Pseudo-elements
	5.12.1 The :first-line pseudo-element
	5.12.2 The :first-letter pseudo-element
	5.12.3 The :before and :after pseudo-elements

	6 Assigning property values, Cascading, and Inheritance
	6.1 Specified, computed, and actual values
	6.1.1 Specified values
	6.1.2 Computed values
	6.1.3 Used values
	6.1.4 Actual values

	6.2 Inheritance
	6.2.1 The 'inherit' value

	6.3 The @import rule
	6.4 The cascade
	6.4.1 Cascading order
	6.4.2 !important rules
	6.4.3 Calculating a selector's specificity
	6.4.4 Precedence of non-CSS presentational hints

	7 Media types
	7.1 Introduction to media types
	7.2 Specifying media-dependent style sheets
	7.2.1 The @media rule

	7.3 Recognized media types
	7.3.1 Media groups

	8 Box model
	8.1 Box dimensions
	8.2 Example of margins, padding, and borders
	8.3 Margin properties: 'margin-top', 'margin-right', 'margin-bottom', 'margin-left', and 'margin'
	8.3.1 Collapsing margins

	8.4 Padding properties: 'padding-top', 'padding-right', 'padding-bottom', 'padding-left', and 'padding'
	8.5 Border properties
	8.5.1 Border width: 'border-top-width', 'border-right-width', 'border-bottom-width', 'border-left-width', and 'border-width'
	8.5.2 Border color: 'border-top-color', 'border-right-color', 'border-bottom-color', 'border-left-color', and 'border-color'
	8.5.3 Border style: 'border-top-style', 'border-right-style', 'border-bottom-style', 'border-left-style', and 'border-style'
	8.5.4 Border shorthand properties: 'border-top', 'border-right', 'border-bottom', 'border-left', and 'border'

	8.6 The box model for inline elements in bidirectional context

	9 Visual formatting model
	9.1 Introduction to the visual formatting model
	9.1.1 The viewport
	9.1.2 Containing blocks

	9.2 Controlling box generation
	9.2.1 Block-level elements and block boxes
	9.2.1.1 Anonymous block boxes

	9.2.2 Inline-level elements and inline boxes
	9.2.2.1 Anonymous inline boxes

	9.2.3 Run-in boxes
	9.2.4 The 'display' property

	9.3 Positioning schemes
	9.3.1 Choosing a positioning scheme: 'position' property
	9.3.2 Box offsets: 'top', 'right', 'bottom', 'left'

	9.4 Normal flow
	9.4.1 Block formatting contexts
	9.4.2 Inline formatting contexts
	9.4.3 Relative positioning

	9.5 Floats
	9.5.1 Positioning the float: the 'float' property
	9.5.2 Controlling flow next to floats: the 'clear' property

	9.6 Absolute positioning
	9.6.1 Fixed positioning

	9.7 Relationships between 'display', 'position', and 'float'
	9.8 Comparison of normal flow, floats, and absolute positioning
	9.8.1 Normal flow
	9.8.2 Relative positioning
	9.8.3 Floating a box
	9.8.4 Absolute positioning

	9.9 Layered presentation
	9.9.1 Specifying the stack level: the 'z-index' property

	9.10 Text direction: the 'direction' and 'unicode-bidi' properties

	10 Visual formatting model details
	10.1 Definition of "containing block"
	10.2 Content width: the 'width' property
	10.3 Calculating widths and margins
	10.3.1 Inline, non-replaced elements
	10.3.2 Inline, replaced elements
	10.3.3 Block-level, non-replaced elements in normal flow
	10.3.4 Block-level, replaced elements in normal flow
	10.3.5 Floating, non-replaced elements
	10.3.6 Floating, replaced elements
	10.3.7 Absolutely positioned, non-replaced elements
	10.3.8 Absolutely positioned, replaced elements
	10.3.9 'Inline-block', non-replaced elements in normal flow
	10.3.10 'Inline-block', replaced elements in normal flow

	10.4 Minimum and maximum widths: 'min-width' and 'max-width'
	10.5 Content height: the 'height' property
	10.6 Calculating heights and margins
	10.6.1 Inline, non-replaced elements
	10.6.2 Inline replaced elements, block-level replaced elements in normal flow, 'inline-block' replaced elements in normal flow and floating replaced elements
	10.6.3 Block-level non-replaced elements in normal flow when 'overflow' computes to 'visible'
	10.6.4 Absolutely positioned, non-replaced elements
	10.6.5 Absolutely positioned, replaced elements
	10.6.6 Complicated cases
	10.6.7 'Auto' heights for block formatting context roots

	10.7 Minimum and maximum heights: 'min-height' and 'max-height'
	10.8 Line height calculations: the 'line-height' and 'vertical-align' properties
	10.8.1 Leading and half-leading

	11 Visual effects
	11.1 Overflow and clipping
	11.1.1 Overflow: the 'overflow' property
	11.1.2 Clipping: the 'clip' property

	11.2 Visibility: the 'visibility' property

	12 Generated content, automatic numbering, and lists
	12.1 The :before and :after pseudo-elements
	12.2 The 'content' property
	12.3 Quotation marks
	12.3.1 Specifying quotes with the 'quotes' property
	12.3.2 Inserting quotes with the 'content' property

	12.4 Automatic counters and numbering
	12.4.1 Nested counters and scope
	12.4.2 Counter styles
	12.4.3 Counters in elements with 'display: none'

	12.5 Lists
	12.5.1 Lists: the 'list-style-type', 'list-style-image', 'list-style-position', and 'list-style' properties

	13 Paged media
	13.1 Introduction to paged media
	13.2 Page boxes: the @page rule
	13.2.1 Page margins
	13.2.2 Page selectors: selecting left, right, and first pages
	13.2.3 Content outside the page box

	13.3 Page breaks
	13.3.1 Page break properties: 'page-break-before', 'page-break-after', 'page-break-inside'
	13.3.2 Breaks inside elements: 'orphans', 'widows'
	13.3.3 Allowed page breaks
	13.3.4 Forced page breaks
	13.3.5 "Best" page breaks

	13.4 Cascading in the page context

	14 Colors and Backgrounds
	14.1 Foreground color: the 'color' property
	14.2 The background
	14.2.1 Background properties: 'background-color', 'background-image', 'background-repeat', 'background-attachment', 'background-position', and 'background'

	15 Fonts
	15.1 Introduction
	15.2 Font matching algorithm
	15.3 Font family: the 'font-family' property
	15.3.1 Generic font families
	15.3.1.1 serif
	15.3.1.2 sans-serif
	15.3.1.3 cursive
	15.3.1.4 fantasy
	15.3.1.5 monospace

	15.4 Font styling: the 'font-style' property
	15.5 Small-caps: the 'font-variant' property
	15.6 Font boldness: the 'font-weight' property
	15.7 Font size: the 'font-size' property
	15.8 Shorthand font property: the 'font' property

	16 Text
	16.1 Indentation: the 'text-indent' property
	16.2 Alignment: the 'text-align' property
	16.3 Decoration
	16.3.1 Underlining, overlining, striking, and blinking: the 'text-decoration' property

	16.4 Letter and word spacing: the 'letter-spacing' and 'word-spacing' properties
	16.5 Capitalization: the 'text-transform' property
	16.6 White space: the 'white-space' property
	16.6.1 The 'white-space' processing model
	16.6.2 Example of bidirectionality with white space collapsing
	16.6.3 Control and combining characters' details

	17 Tables
	17.1 Introduction to tables
	17.2 The CSS table model
	17.2.1 Anonymous table objects

	17.3 Columns
	17.4 Tables in the visual formatting model
	17.4.1 Caption position and alignment

	17.5 Visual layout of table contents
	17.5.1 Table layers and transparency
	17.5.2 Table width algorithms: the 'table-layout' property
	17.5.2.1 Fixed table layout
	17.5.2.2 Automatic table layout

	17.5.3 Table height algorithms
	17.5.4 Horizontal alignment in a column
	17.5.5 Dynamic row and column effects

	17.6 Borders
	17.6.1 The separated borders model
	17.6.1.1 Borders and Backgrounds around empty cells: the 'empty-cells' property

	17.6.2 The collapsing border model
	17.6.2.1 Border conflict resolution

	17.6.3 Border styles

	18 User interface
	18.1 Cursors: the 'cursor' property
	18.2 System Colors
	18.3 User preferences for fonts
	18.4 Dynamic outlines: the 'outline' property
	18.4.1 Outlines and the focus

	18.5 Magnification

	Appendix A. Aural style sheets
	A.1 The media types 'aural' and 'speech'
	A.2 Introduction to aural style sheets
	A.2.1 Angles
	A.2.2 Times
	A.2.3 Frequencies

	A.3 Volume properties: 'volume'
	A.4 Speaking properties: 'speak'
	A.5 Pause properties: 'pause-before', 'pause-after', and 'pause'
	A.6 Cue properties: 'cue-before', 'cue-after', and 'cue'
	A.7 Mixing properties: 'play-during'
	A.8 Spatial properties: 'azimuth' and 'elevation'
	A.9 Voice characteristic properties: 'speech-rate', 'voice-family', 'pitch', 'pitch-range', 'stress', and 'richness'
	A.10 Speech properties: 'speak-punctuation' and 'speak-numeral'
	A.11 Audio rendering of tables
	A.11.1 Speaking headers: the 'speak-header' property

	A.12 Sample style sheet for HTML
	A.13 Emacspeak

	Appendix B. Bibliography
	B.1 Normative references
	B.2 Informative references

	Appendix C. Changes
	C.1 Additional property values
	C.1.1 Section 4.3.6 Colors
	C.1.2 Section 9.2.4 The 'display' property
	C.1.3 Section 12.2 The 'content' property
	C.1.4 Section 16.6 White space: the 'white-space' property
	C.1.5 Section 18.1 Cursors: the 'cursor' property

	C.2 Changes
	C.2.1 Section 1.1 CSS 2.1 vs CSS 2
	C.2.2 Section 1.2 Reading the specification
	C.2.3 Section 1.3 How the specification is organized
	C.2.4 Section 1.4.2.1 Value
	C.2.5 Section 1.4.2.6 Media groups
	C.2.6 Section 1.4.2.7 Computed value
	C.2.7 Section 1.4.4 Notes and examples
	C.2.8 Section 1.5 Acknowledgments
	C.2.9 Section 3.2 Conformance
	C.2.10 Section 3.3 Error Conditions
	C.2.11 Section 4.1.1 Tokenization
	C.2.12 Section 4.1.3 Characters and case
	C.2.13 Section 4.2 Rules for handling parsing errors
	C.2.14 Section 4.3 Values
	C.2.15 Section 4.3.2 Lengths
	C.2.16 Section 4.3.4 URLs and URIs
	C.2.17 Section 4.3.5 Counters
	C.2.18 Section 4.3.6 Colors
	C.2.19 Section 4.3.8 Unsupported Values
	C.2.20 Section 4.4 CSS style sheet representation
	C.2.21 Section 5.8.1 Matching attributes and attribute values
	C.2.22 Section 5.8.3 Class selectors
	C.2.23 Section 5.9 ID selectors
	C.2.24 Section 5.10 Pseudo-elements and pseudo-classes
	C.2.25 Section 5.11.2 The link pseudo-classes: :link and :visited
	C.2.26 Section 5.11.4 The language pseudo-class: :lang
	C.2.27 Section 5.12.1 The :first-line pseudo-element
	C.2.28 Section 5.12.2 The :first-letter pseudo-element
	C.2.29 Section 6.1 Specified, computed, and actual values
	C.2.30 Section 6.4.1 Cascading order
	C.2.31 Section 6.4.3 Calculating a selector's specificity
	C.2.32 Section 6.4.4 Precedence of non-CSS presentational hints
	C.2.33 Section 7.3 Recognized Media Types
	C.2.34 Section 7.3.1 Media Groups
	C.2.35 Section 8.3 Margin properties
	C.2.36 Section 8.3.1 Collapsing margins
	C.2.37 Section 8.4 Padding properties
	C.2.38 Section 8.5.2 Border color
	C.2.39 Section 8.5.3 Border style
	C.2.40 Section 8.6 The box model for inline elements in bidirectional context
	C.2.41 Section 9.1.2 Containing blocks
	C.2.42 Section 9.2.1.1 Anonymous block boxes
	C.2.43 Section 9.2.2.1 Anonymous inline boxes
	C.2.44 Section 9.2.3 Run-in boxes
	C.2.45 Section 9.2.4 The 'display' property
	C.2.46 Section 9.3.1 Choosing a positioning scheme
	C.2.47 Section 9.3.2 Box offsets
	C.2.48 Section 9.4.1 Block formatting contexts
	C.2.49 Section 9.4.2 Inline formatting context
	C.2.50 Section 9.4.3 Relative positioning
	C.2.51 Section 9.5 Floats
	C.2.52 Section 9.5.1 Positioning the float
	C.2.53 Section 9.5.2 Controlling flow next to floats
	C.2.54 Section 9.7 Relationships between 'display', 'position', and 'float'
	C.2.55 Section 9.9 Layered presentation
	C.2.56 Section 9.10 Text direction
	C.2.57 Chapter 10 Visual formatting model details
	C.2.58 Section 10.1 Definition of "containing block"
	C.2.59 Section 10.2 Content width
	C.2.60 Section 10.3 Calculating widths and margins
	C.2.61 Section 10.3.2 Inline, replaced elements
	C.2.62 Section 10.3.3 Block-level, non-replaced elements in normal flow
	C.2.63 Section 10.3.4 Block-level, replaced elements in normal flow
	C.2.64 Section 10.3.5 Floating, non-replaced elements
	C.2.65 Section 10.3.6 Floating, replaced elements
	C.2.66 Section 10.3.7 Absolutely positioned, non-replaced elements
	C.2.67 Section 10.3.8 Absolutely positioned, replaced elements
	C.2.68 Section 10.4 Minimum and maximum widths
	C.2.69 Section 10.5 Content height
	C.2.70 Section 10.6 Calculating heights and margins
	C.2.71 Section 10.6.1 Inline, non-replaced elements
	C.2.72 Section 10.6.2 Inline replaced elements, block-level replaced elements in normal flow, 'inline-block' replaced elements in normal flow and floating replaced elements
	C.2.73 Section 10.6.3 Block-level non-replaced elements in normal flow when 'overflow' computes to 'visible'
	C.2.74 Section 10.6.4 Absolutely positioned, non-replaced elements
	C.2.75 Section 10.6.5 Absolutely positioned, replaced elements
	C.2.76 Section 10.7 Minimum and maximum heights
	C.2.77 Section 10.8 Line height calculations
	C.2.78 Section 10.8.1 Leading and half-leading
	C.2.79 Section 11.1 Overflow and clipping
	C.2.80 Section 11.1.1 Overflow
	C.2.81 Section 11.1.2 Clipping: the 'clip' property
	C.2.82 Section 11.2 Visibility
	C.2.83 Chapter 12 Generated content, automatic numbering, and lists
	C.2.84 Section 12.1 The :before and :after pseudo-elements
	C.2.85 Section 12.2 The 'content' property
	C.2.86 Section 12.3.2 Inserting quotes with the 'content' property
	C.2.87 Section 12.4 Automatic counters and numbering
	C.2.88 Section 12.4.1 Nested counters and scope
	C.2.89 Section 12.5 Lists
	C.2.90 Section 12.5.1 Lists
	C.2.91 Chapter 13 Paged media
	C.2.92 Section 13.2.2 Page selectors
	C.2.93 Section 13.3.1 Page break properties
	C.2.94 Section 13.3.3 Allowed page breaks
	C.2.95 Section 14.2.1 Background properties
	C.2.96 Section 14.3 Gamma correction
	C.2.97 Chapter 15 Fonts
	C.2.98 Section 15.2 Font matching algorithm
	C.2.99 Section 15.2.2 Font family
	C.2.100 Section 15.5 Small-caps
	C.2.101 Section 15.6 Font boldness
	C.2.102 Section 15.7 Font size
	C.2.103 Chapter 16 Text
	C.2.104 Section 16.2 Alignment
	C.2.105 Section 16.3.1 Underlining, over lining, striking, and blinking
	C.2.106 Section 16.4 Letter and word spacing
	C.2.107 Section 16.5 Capitalization
	C.2.108 Section 16.6 White space
	C.2.109 Chapter 17 Tables
	C.2.110 Section 17.2 The CSS table model
	C.2.111 Section 17.2.1 Anonymous table objects
	C.2.112 Section 17.4 Tables in the visual formatting model
	C.2.113 Section 17.4.1 Caption position and alignment
	C.2.114 Section 17.5 Visual layout of table contents
	C.2.115 Section 17.5.1 Table layers and transparency
	C.2.116 Section 17.5.2.1 Fixed table layout
	C.2.117 Section 17.5.2.2 Automatic table layout
	C.2.118 Section 17.5.3 Table height algorithms
	C.2.119 Section 17.5.4 Horizontal alignment in a column
	C.2.120 Section 17.6 Borders
	C.2.121 Section 17.6.1 The separated borders model
	C.2.122 Section 17.6.1.1 Borders and Backgrounds around empty cells
	C.2.123 Section 17.6.2 The collapsing border model
	C.2.124 Section 17.6.2.1 Border conflict resolution
	C.2.125 Section 18.1 Cursors: the 'cursor' property
	C.2.126 Section 18.4 Dynamic outlines
	C.2.127 Chapter 12 Generated content, automatic numbering, and lists
	C.2.128 Appendix A. Aural style sheets
	C.2.129 Appendix A Section 5 Pause properties
	C.2.130 Appendix A Section 6 Cue properties
	C.2.131 Appendix A Section 7 Mixing properties
	C.2.132 Appendix B Bibliography
	C.2.133 Other

	C.3 Errors
	C.3.1 Shorthand properties
	C.3.2 Applies to
	C.3.3 Section 4.1.1 †and G2‡
	C.3.4 Section 4.1.3 Characters and case
	C.3.5 Section 4.3 †Double sign problem‡
	C.3.6 Section 4.3.2 Lengths
	C.3.7 Section 4.3.3 Percentages
	C.3.8 Section 4.3.4 URLs and URIs
	C.3.9 Section 4.3.5 Counters
	C.3.10 Section 4.3.6 Colors
	C.3.11 Section 4.3.7 Strings
	C.3.12 Section 5.10 Pseudo-elements and pseudo-classes
	C.3.13 Section 6.4 The cascade
	C.3.14 Section 8.1 Box Dimensions
	C.3.15 Section 8.2 Example of margins, padding, and borders
	C.3.16 Section 8.5.4 Border shorthand properties
	C.3.17 Section 9.2.1 Block-level elements and block boxes
	C.3.18 Section 9.3.1 Choosing a positioning scheme
	C.3.19 Section 9.3.2 Box offsets
	C.3.20 Section 9.4.1 Block formatting contexts
	C.3.21 Section 9.4.2 Inline formatting context
	C.3.22 Section 9.4.3 Relative positioning
	C.3.23 Section 9.5 Floats
	C.3.24 Section 9.5.1 Positioning the float
	C.3.25 Section 9.5.2 Controlling flow next to floats
	C.3.26 Section 9.6 Absolute positioning
	C.3.27 Section 9.7 Relationships between 'display', 'position', and 'float'
	C.3.28 Section 9.10 Text direction
	C.3.29 Section 10.1 Definition of "containing block"
	C.3.30 Section 10.3.3 Block-level, non-replaced elements in normal flow
	C.3.31 Section 10.4 Minimum and maximum widths
	C.3.32 Section 10.6.3 Block-level non-replaced elements in normal flow when 'overflow' computes to 'visible'
	C.3.33 Section 10.7 Minimum and maximum heights
	C.3.34 Section 11.1.1 Overflow
	C.3.35 Section 11.1.2 Clipping: the 'clip' property
	C.3.36 Section 11.2 Visibility
	C.3.37 Section 12.4.2 Counter styles
	C.3.38 Section 12.6.2 Lists
	C.3.39 Section 14.2 The background
	C.3.40 Section 14.2.1 Background properties
	C.3.41 Section 15.2 Font matching algorithm
	C.3.42 Section 15.7 Font size
	C.3.43 Section 16.1 Indentation
	C.3.44 Section 16.2 Alignment
	C.3.45 Section 17.2 The CSS table model
	C.3.46 Section 17.2.1 Anonymous table objects
	C.3.47 Section 17.4 Tables in the visual formatting model
	C.3.48 Section 17.5 Visual layout of table contents
	C.3.49 Section 17.5.1 Table layers and transparency
	C.3.50 Section 17.6.1 The separated borders model
	C.3.51 Section 18.2 System Colors
	C.3.52 Section E.2 Painting order

	C.4 Clarifications
	C.4.1 Section 2.1 A brief CSS€2.1 tutorial for HTML
	C.4.2 Section 2.2 A brief CSS€2.1 tutorial for XML
	C.4.3 Section€2.3 The CSS€2.1 processing model
	C.4.4 Section 3.1 Definitions
	C.4.5 Section 4.1 Syntax
	C.4.6 Section 4.1.1 Tokenization
	C.4.7 Section 4.1.3 Characters and case
	C.4.8 Section 4.1.7 Rule sets, declaration blocks, and selectors
	C.4.9 Section 4.2 Rules for handling parsing errors
	C.4.10 Section 4.3.1 Integers and real numbers
	C.4.11 Section 4.3.2 Lengths
	C.4.12 Section 4.3.4 URLs and URIs
	C.4.13 Section 5.1 Pattern matching
	C.4.14 Section 5.7 Adjacent sibling selectors
	C.4.15 Section 5.8.1 Matching attributes and attribute values
	C.4.16 Section 5.8.2 Default attribute values in DTDs
	C.4.17 Section 5.9 ID selectors
	C.4.18 Section 5.11.3 The dynamic pseudo-classes: :hover, :active, and :focus
	C.4.19 Section 5.11.4 The language pseudo-class: :lang
	C.4.20 Section 5.12.2 The :first-letter pseudo-element
	C.4.21 Section 6.2 Inheritance
	C.4.22 Section 6.2.1 The 'inherit' value
	C.4.23 Section 6.3 The @import rule
	C.4.24 Section 6.4 The Cascade
	C.4.25 Section 6.4.1 Cascading order
	C.4.26 Section 6.4.3 Calculating a selector's specificity
	C.4.27 Section 7.2.1 The @media rule
	C.4.28 Section 7.3 Recognized media types
	C.4.29 Section 7.3.1 Media groups
	C.4.30 Section 8.1 Box dimensions
	C.4.31 Section 8.3 Margin properties
	C.4.32 Section 8.3.1 Collapsing margins
	C.4.33 Section 8.5.3 Border style
	C.4.34 Section 9.1.1 The viewport
	C.4.35 Section 9.2.4 The 'display' property
	C.4.36 Section 9.3.1 Choosing a positioning scheme
	C.4.37 Section 9.3.2 Box offsets
	C.4.38 Section 9.4.2 Inline formatting context
	C.4.39 Section 9.4.3 Relative positioning
	C.4.40 Section 9.5 Floats
	C.4.41 Section 9.5.1 Positioning the float
	C.4.42 Section 9.5.2 Controlling flow next to floats
	C.4.43 Section 9.8 Comparison of normal flow, floats, and absolute positioning
	C.4.44 Section 10.1 Definition of "containing block"
	C.4.45 Section 10.2 Content width
	C.4.46 Section 10.3.3 Block-level, non-replaced elements in normal flow
	C.4.47 Section 10.3.8 Absolutely positioning, replaced elements
	C.4.48 Section 10.4 Minimum and maximum widths
	C.4.49 Section 10.6 Calculating heights and margins
	C.4.50 Section 10.7 Minimum and maximum heights
	C.4.51 Section 10.8 Line height calculations
	C.4.52 Section 10.8.1 Leading and half-leading
	C.4.53 Section 11.1 Overflow and clipping
	C.4.54 Section 11.1.1 Overflow
	C.4.55 Section 11.1.2 Clipping
	C.4.56 Section 11.2 Visibility
	C.4.57 Section 12.1 The :before and :after pseudo-elements
	C.4.58 Section 12.2 The 'content' property
	C.4.59 Section 12.3.2 Inserting quotes with the 'content' property
	C.4.60 Section 12.4 Automatic counters and numbering
	C.4.61 Section 12.4.3 Counters in elements with 'display: none'
	C.4.62 Section 14.2 The background
	C.4.63 Section 15.1 Fonts Introduction
	C.4.64 Section 15.2 Font matching algorithm
	C.4.65 Section 15.2.2 Font family
	C.4.66 Section 15.3.1 Generic font families
	C.4.67 Section 15.4 Font styling
	C.4.68 Section 15.5 Small-caps
	C.4.69 Section 15.6 Font boldness
	C.4.70 Section 15.7 Font size
	C.4.71 Section 16.1 Indentation
	C.4.72 Section 16.2 Alignment
	C.4.73 Section 16.3.1 Underlining, over lining, striking, and blinking
	C.4.74 Section 16.5 Capitalization
	C.4.75 Section 16.6 White space
	C.4.76 Section 17.1 Introduction to tables
	C.4.77 Section 17.2 The CSS table model
	C.4.78 Section 17.2.1 Anonymous table objects
	C.4.79 Section 17.4 Tables in the visual formatting model
	C.4.80 Section 17.5 Visual layout of table contents
	C.4.81 Section 17.5.1 Table layers and transparency
	C.4.82 Section 17.5.2 Table width algorithms
	C.4.83 Section 17.5.2.1 Fixed table layout
	C.4.84 Section 17.5.2.2 Automatic table layout
	C.4.85 Section 17.5.4 Horizontal alignment in a column
	C.4.86 Section 17.5.5 Dynamic row and column effects
	C.4.87 Section 17.6.1 The separated borders model
	C.4.88 Section 17.6.2 The collapsing borders model
	C.4.89 Section 18.2 System Colors
	C.4.90 Section 18.4 Dynamic outlines
	C.4.91 Section 18.4.1 Outlines and the focus
	C.4.92 Appendix D Default style sheet for HTML 4

	C.5 Errata since the Candidate Recommendation of July 2007
	C.5.1 Section€1.4.2.1 Value
	C.5.2 Section€2.3 The CSS€2.1 processing model
	C.5.3 Section 3.1 Definitions
	C.5.4 Section 4.1.1 Tokenization
	C.5.5 Section€4.1.2.2 Informative Historical Notes
	C.5.6 Section€4.1.3 Characters and case
	C.5.7 Section€4.1.3 Characters and case
	C.5.8 Section€4.1.3 Characters and case
	C.5.9 Section€4.1.3 Characters and case
	C.5.10 Section€4.1.5 At-rules
	C.5.11 Section€4.1.7 Rule sets, declaration blocks, and selectors
	C.5.12 Section€4.2 Rules for handling parsing errors
	C.5.13 Section€4.2 Rules for handling parsing errors
	C.5.14 Section€4.3.2 Lengths
	C.5.15 Section€4.3.5 Counters
	C.5.16 Section€5.8.1 Matching attributes and attribute values
	C.5.17 Section 5.8.2 Default attribute values in DTDs
	C.5.18 Section€5.11.4 The language pseudo-class: :lang
	C.5.19 Section€5.12.3 The :before and :after pseudo-elements
	C.5.20 Section€6.3 The @import rule
	C.5.21 Section€6.3 The @import rule
	C.5.22 Section 6.4.1 Cascading order
	C.5.23 Section 6.4.1 Cascading order
	C.5.24 Section€7.2.1 The @media rule
	C.5.25 Section 8.3.1 Collapsing margins
	C.5.26 Section 8.3.1 Collapsing margins
	C.5.27 Section 8.3.1 Collapsing margins
	C.5.28 Section€9.2.2 Inline-level elements and inline boxes
	C.5.29 Section€9.2.4 The 'display' property
	C.5.30 Section€9.3.2 Box offsets: 'top', 'right', 'bottom', 'left'
	C.5.31 Section€9.5 Floats
	C.5.32 Section€9.5 Floats
	C.5.33 Section€9.5.2 Controlling flow next to floats: the 'clear' property
	C.5.34 Section€9.6.1 Fixed positioning
	C.5.35 Section€9.9.1 Specifying the stack level: the 'z-index' property
	C.5.36 Section€10.1 Definition of "containing block"
	C.5.37 Section€10.3 Calculating widths and margins
	C.5.38 Section€10.3.1 Inline, non-replaced elements
	C.5.39 Section 10.3.2 Inline, replaced elements
	C.5.40 Section 10.3.2 Inline, replaced elements
	C.5.41 Section€10.3.3 Block-level, non-replaced elements in normal flow
	C.5.42 Section€10.3.7 Absolutely positioned, non-replaced elements
	C.5.43 Section€10.3.7 Absolutely positioned, non-replaced elements
	C.5.44 Section€10.3.8 Absolutely positioned, replaced elements
	C.5.45 Section€10.3.8 Absolutely positioned, replaced elements
	C.5.46 Section€10.3.8 Absolutely positioned, replaced elements
	C.5.47 Section€10.5 Content height: the 'height' property
	C.5.48 Section 10.6.2 Inline replaced elements [¼]
	C.5.49 Section€10.6.4 Absolutely positioned, non-replaced elements
	C.5.50 Section€10.6.5 Absolutely positioned, replaced elements
	C.5.51 Section 10.8.1 Leading and half-leading
	C.5.52 Section€11.1.1 Overflow: the 'overflow' property
	C.5.53 Section€11.1.2 Clipping: the 'clip' property
	C.5.54 Section€12.2 The 'content' property
	C.5.55 Section€12.4.2 Counter styles
	C.5.56 Section€12.5 Lists
	C.5.57 Section€12.5.1 Lists: the 'list-style-type', 'list-style-image', 'list-style-position', and 'list-style' properties
	C.5.58 Section€12.5.1 Lists: the 'list-style-type', 'list-style-image', 'list-style-position', and 'list-style' properties
	C.5.59 Section€12.5.1 Lists: the 'list-style-type', 'list-style-image', 'list-style-position', and 'list-style' properties
	C.5.60 Section€13.2 Page boxes: the @page rule
	C.5.61 Section€13.2.1.1 Rendering page boxes that do not fit a target sheet
	C.5.62 Section€13.2.3 Content outside the page box
	C.5.63 Section€13.3.1 Page break properties: 'page-break-before', 'page-break-after', 'page-break-inside'
	C.5.64 Section€13.3.1 Page break properties: 'page-break-before', 'page-break-after', 'page-break-inside'
	C.5.65 Section€13.3.2 Breaks inside elements: 'orphans', 'widows'
	C.5.66 Section€13.3.2 Breaks inside elements: 'orphans', 'widows'
	C.5.67 Section€13.3.3 Allowed page breaks
	C.5.68 Section€13.3.3 Allowed page breaks
	C.5.69 Section€13.3.3 Allowed page breaks
	C.5.70 Section€13.3.5 "Best" page breaks
	C.5.71 Section€14.2 The background
	C.5.72 Section€14.2 The background
	C.5.73 Section 14.2.1 Background properties: 'background-color', 'background-image', 'background-repeat', 'background-attachment', 'background-position', and 'background'
	C.5.74 Section€15.6 Font boldness: the 'font-weight' property
	C.5.75 Section€16.6 Whitespace: the 'white-space' property
	C.5.76 Section€16.6.1 The 'white-space' processing model
	C.5.77 Section 17.2.1 Anonymous table objects
	C.5.78 Section 17.2.1 Anonymous table objects
	C.5.79 Section€17.4 Tables in the visual formatting model
	C.5.80 Section€17.5.4 Horizontal alignment in a column
	C.5.81 Section€18.1 Cursors: the 'cursor' property
	C.5.82 Section B.2 Informative references
	C.5.83 Appendix€D. Default style sheet for HTML 4
	C.5.84 Appendix€D. Default style sheet for HTML 4
	C.5.85 Section E.2 Painting order
	C.5.86 Appendix G. Grammar of CSS 2.1
	C.5.87 Section€G.1 Grammar
	C.5.88 Section G.2 Lexical scanner
	C.5.89 Section G.2 Lexical scanner
	C.5.90 Section€G.2 Lexical scanner
	C.5.91 Section€G.2 Lexical scanner
	C.5.92 Appendix€I. Index

	C.6 Errata since the Candidate Recommendation of April 2009
	C.6.1 Section€4.2 Rules for handling parsing errors
	C.6.2 Section€13.3.3 Allowed page breaks
	C.6.3 Section€15.3 Font family: the 'font-family' property
	C.6.4 Section€15.3.1.1 serif
	C.6.5 Section€15.7 Font size: the 'font-size' property
	C.6.6 Section€17.5.2.1 Fixed table layout
	C.6.7 Section€17.5.3 Table height layout
	C.6.8 Appendix€G. Grammar of CSS 2.1

	C.7 Errata since the Candidate Recommendation of September 2009
	C.7.1 Section€1.4.2.1 Value
	C.7.2 Section€3.1 Definitions
	C.7.3 Section€4.1.1 Tokenization
	C.7.4 Section€4.1.1 Tokenization
	C.7.5 Section€4.1.1 Tokenization
	C.7.6 Section€4.1.1 Tokenization
	C.7.7 Section€4.1.2.2 Informative Historical Notes
	C.7.8 Section€4.1.3 Characters and case
	C.7.9 Section€4.1.3 Characters and case
	C.7.10 Section€4.1.8 Declarations and properties
	C.7.11 Section€4.2 Rules for handling parsing errors
	C.7.12 Section€4.3.2 Lengths
	C.7.13 Section€4.3.2 Lengths
	C.7.14 Section€4.3.4 URLs and URIs
	C.7.15 Section€4.3.4 URLs and URIs
	C.7.16 Section€5.8.2 Default attribute values in DTDs
	C.7.17 Section€5.11.4 The language pseudo-class: :lang
	C.7.18 Section€5.12 Pseudo-elements
	C.7.19 Section€5.12.1 The :first-line pseudo-element
	C.7.20 Section€5.12.2 The :first-letter pseudo-element
	C.7.21 Section€6.2 Inheritance
	C.7.22 Section€6.4.4 Precedence of non-CSS presentational hints
	C.7.23 Section€7.3 Recognized media types
	C.7.24 Section€8.3.1 Collapsing margins
	C.7.25 Section€8.3.1 Collapsing margins
	C.7.26 Section€9.2.1 Block-level elements and block boxes
	C.7.27 Section€9.2.1.1 Anonymous block boxes
	C.7.28 Section€9.2.1.1 Anonymous block boxes
	C.7.29 Section€9.2.1.1 Anonymous block boxes
	C.7.30 Section€9.2.1.1 Anonymous block boxes
	C.7.31 Section€9.2.2 Inline-level elements and inline boxes
	C.7.32 Section€9.2.3 Run-in boxes
	C.7.33 Section€9.2.4 The 'display' property
	C.7.34 Section€9.2.4 The 'display' property
	C.7.35 Section€9.3 Positioning schemes
	C.7.36 Section€9.4 Normal flow
	C.7.37 Section€9.3.2 Box offsets: 'top', 'right', 'bottom', 'left'
	C.7.38 Section€9.5 Floats
	C.7.39 Section€9.5 Floats
	C.7.40 Section€9.5.2 Controlling flow next to floats: the 'clear' property
	C.7.41 Section€9.5.2 Controlling flow next to floats: the 'clear' property
	C.7.42 Section€9.5.2 Controlling flow next to floats: the 'clear' property
	C.7.43 Section€9.5.2 Controlling flow next to floats: the 'clear' property
	C.7.44 Section€14.2.1 Background properties
	C.7.45 Section€9.9.1 Specifying the stack level: the 'z-index' property
	C.7.46 Section€9.10 Text direction: the 'direction' and 'unicode-bidi' properties
	C.7.47 Section€9.10 Text direction: the 'direction' and 'unicode-bidi' properties
	C.7.48 Section€9.10 Text direction: the 'direction' and 'unicode-bidi' properties
	C.7.49 Section€10.1 Definition of "containing block"
	C.7.50 Section€10.2 Content width: the 'width' property
	C.7.51 Section€10.2 Content width: the 'width' property
	C.7.52 Section€10.2 Content width: the 'width' property
	C.7.53 Section€10.5 Content height: the 'height' property
	C.7.54 Section€10.5 Content height: the 'height' property
	C.7.55 Section€10.6.7 'Auto' heights for block formatting context roots
	C.7.56 Section€10.7 Minimum and maximum heights: 'min-height' and 'max-height'
	C.7.57 Section€10.8 Line height calculations: the 'line-height' and 'vertical-align' properties
	C.7.58 Section€10.8 Line height calculations: the 'line-height' and 'vertical-align' properties
	C.7.59 Section€10.8.1 Leading and half-leading
	C.7.60 Section€10.8.1 Leading and half-leading
	C.7.61 Section€10.8.1 Leading and half-leading
	C.7.62 Section€11.1 Overflow and clipping
	C.7.63 Section€11.1.1 Overflow: the 'overflow' property
	C.7.64 Section€11.1.1 Overflow: the 'overflow' property
	C.7.65 Section€11.1.1 Overflow: the 'overflow' property
	C.7.66 Section€11.1.2 Clipping: the 'clip' property
	C.7.67 Section€12.5 Lists
	C.7.68 Section€12.5.1 Lists: the 'list-style-type', 'list-style-image', 'list-style-position', and 'list-style' properties
	C.7.69 Section€12.5.1 Lists: the 'list-style-type', 'list-style-image', 'list-style-position', and 'list-style' properties
	C.7.70 Section€12.5.1 Lists: the 'list-style-type', 'list-style-image', 'list-style-position', and 'list-style' properties
	C.7.71 Section€12.5.1 Lists: the 'list-style-type', 'list-style-image', 'list-style-position', and 'list-style' properties
	C.7.72 Section€12.5.1 Lists: the 'list-style-type', 'list-style-image', 'list-style-position', and 'list-style' properties
	C.7.73 Section€13.2 Page boxes: the @page rule
	C.7.74 Section€13.2.2 Page selectors: selecting left, right, and first pages
	C.7.75 Section€13.3.2 Breaks inside elements: 'orphans', 'widows'
	C.7.76 Section€13.3.3 Allowed page breaks
	C.7.77 Section€15.3 Font family: the 'font-family' property
	C.7.78 Section€15.3.1 Generic font families
	C.7.79 Section€15.6 Font boldness: the 'font-weight' property
	C.7.80 Section€15.6 Font boldness: the 'font-weight' property
	C.7.81 Section€15.7 Font size: the 'font-size' property
	C.7.82 Section€16.1 Indentation: the 'text-indent' property
	C.7.83 Section€16.1 Indentation: the 'text-indent' property
	C.7.84 Section€16.2 Alignment: the 'text-align' property
	C.7.85 Section€16.2 Alignment: the 'text-align' property
	C.7.86 Section€16.3.1 Underlining, overlining, striking, and blinking: the 'text-decoration' property
	C.7.87 Section€16.3.1 Underlining, overlining, striking, and blinking: the 'text-decoration' property
	C.7.88 Section€16.4 Letter and word spacing: the 'letter-spacing' and 'word-spacing' properties
	C.7.89 Section€16.6 White space: the 'white-space' property
	C.7.90 Section€16.6.1 The 'white-space' processing model
	C.7.91 Section€16.6.1 The 'white-space' processing model
	C.7.92 Section€16.6.1 The 'white-space' processing model
	C.7.93 Section€17.2 The CSS table model
	C.7.94 Section€17.2.1 Anonymous table objects
	C.7.95 Section€17.2.1 Anonymous table objects
	C.7.96 Section€17.4 Tables in the visual formatting model
	C.7.97 Section€17.4 Tables in the visual formatting model
	C.7.98 Section€17.5.2.2 Automatic table layout
	C.7.99 Section€17.5.3 Table height algorithms
	C.7.100 Section€17.5.4 Horizontal alignment in a column
	C.7.101 Section€B.2 Informative references
	C.7.102 Section€D. Default style sheet for HTML 4
	C.7.103 Section€E.2 Painting order
	C.7.104 Appendix€G Grammar of CSS€2.1

	C.8 Changes since the working draft of 7 December 2010
	C.8.1 8.3.1 Collapsing margins
	C.8.2 10.8.1 Leading and half-leading
	C.8.3 10.3 Calculating widths and margins
	C.8.4 14.3 Gamma correction
	C.8.5 11.1.2 Clipping: the 'clip' property
	C.8.6 9.4.2 Inline formatting contexts
	C.8.7 10.3.2 Inline, replaced elements
	C.8.8 10.1 Definition of "containing block"
	C.8.9 13.2.2 Page selectors: selecting left, right, and first pages
	C.8.10 8.3.1 Collapsing margins
	C.8.11 10.8 Line height calculations: the 'line-height' and 'vertical-align' properties
	C.8.12 10.8.1 Leading and half-leading
	C.8.13 10.6.1 Inline, non-replaced elements
	C.8.14 9.5.1 Positioning the float: the 'float' property
	C.8.15 9.2.1.1 Anonymous block boxes
	C.8.16 5.12.1 The :first-line pseudo-element
	C.8.17 16.6 White space: the 'white-space' property
	C.8.18 12.5.1 Lists: the 'list-style-type', 'list-style-image', 'list-style-position', and 'list-style' properties
	C.8.19 9.7 Relationships between 'display', 'position', and 'float'
	C.8.20 9.4.2 Inline formatting contexts
	C.8.21 4.1.9 Comments
	C.8.22 12.5.1 Lists: the 'list-style-type', 'list-style-image', 'list-style-position', and 'list-style' properties
	C.8.23 9.5.1 Positioning the float: the 'float' property
	C.8.24 9.3 Positioning schemes
	C.8.25 9.10 Text direction: the 'direction' and 'unicode-bidi' properties
	C.8.26 16.3.1 Underlining, overlining, striking, and blinking: the 'text-decoration' property
	C.8.27 16.3.1 Underlining, overlining, striking, and blinking: the 'text-decoration' property
	C.8.28 10.4 Minimum and maximum widths: 'min-width' and 'max-width'
	C.8.29 9.3.2 Box offsets: 'top', 'right', 'bottom', 'left'
	C.8.30 9.2.1.1 Anonymous block boxes
	C.8.31 17.4 Tables in the visual formatting model
	C.8.32 11.1.2 Clipping: the 'clip' property
	C.8.33 13.2 Page boxes: the @page rule
	C.8.34 4.1.1 Tokenization
	C.8.35 4.2 Rules for handling parsing errors
	C.8.36 3.1 Definitions
	C.8.37 4.3.4 URLs and URIs
	C.8.38 9.5 Floats
	C.8.39 11.1.1 Overflow: the 'overflow' property
	C.8.40 9.2.1.1 Anonymous block boxes
	C.8.41 16.2 Alignment: the 'text-align' property
	C.8.42 9.5 Floats
	C.8.43 9.4.2 Inline formatting contexts
	C.8.44 5.12 Pseudo-elements
	C.8.45 9.5 Floats
	C.8.46 9.5 Floats
	C.8.47 14.2.1 Background properties: 'background-color', 'background-image', 'background-repeat', 'background-attachment', 'background-position', and 'background'
	C.8.48 9.2.4 The 'display' property
	C.8.49 6.1.2 Computed values
	C.8.50 10.3.2 Inline, replaced elements
	C.8.51 Section€9.5.2 Controlling flow next to floats: the 'clear' property
	C.8.52 G.2 Lexical scanner
	C.8.53 Section€9.5.2 Controlling flow next to floats: the 'clear' property
	C.8.54 9.5 Floats

	Appendix D. Default style sheet for HTML 4
	Appendix E. Elaborate description of Stacking Contexts
	E.1 Definitions
	E.2 Painting order
	E.3 Notes

	Appendix F. Full property table
	Appendix G. Grammar of CSS€2.1
	G.1 Grammar
	G.2 Lexical scanner
	G.3 Comparison of tokenization in CSS€2.1 and CSS1
	G.4 Implementation note

	
	
	
	
	
	 Appendix H: Has been intentionally left blank

	Appendix I. Index

