
Yifei Yu (ByteDance). yuyifei.r@bytedance.com 2024.5

Practicing Immersive Web APIs

This talk shares our exploration on the api, implementation, and practical use of immersive web apis.

mailto:yuyifei.r@bytedance.com

Who are we

• Cross-Platform Infra Team

W3C Community Business Teams
Real-world needs

Practices
Oculus Rift shipped

2016.3 18.8 19.2 20.10 21.5 21.8 22.10 23.6

Magic Leap 1 shipped

MS HoloLens 2 announced

PICO Neo 3 released

PICO joined ByteDance

PICO 4 released

Meta Quest 2 released

Apple Vision Pro announced

now

• Our journey started from …

Cross-platform team of ByteDance.

Among the various roles in the community, the (small) green dot is us!

We gain knowledge from the community, but lean towards real world businesses.

We are:

- Practitioner in Web community: w/ exploration and experimentation on new territories.

- Enabler for business teams: w/ latest Web standards and Web engine expertise

We gain ideas from the community, sometimes come up with ours, in return we tell our stories!

21.8 is the time we start working on XR (I’m sure I missed some important dates!), our solutions are available on PICO Neo 3 and PICO 4.

— empowering XR with Web

The big question

• XR ecosystem demands:

• Richer content

• Lower development costs

• Easier distribution

• Cross-platform frameworks

• Web promises:

• Myriad apps and practice

• Battle-tested infrastructures/tools

• Inherently dynamic

• Standardization

Platform # of Native Apps

Meta Quest 600+

App Store Vision Pro 1000+

Google Play 2.43 million

App Store iOS 2.28 million

XR ecosystem is developing, and web can help!

Quest 600+ https://www.meta.com/experiences/section/1888816384764129/

Google Play 2.43m https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/

iOS 2.28m https://www.businessofapps.com/data/app-stores/

Vision Pro 1000+ https://www.roadtovr.com/apple-vision-pro-1000-apps/

https://www.meta.com/experiences/section/1888816384764129/
https://www.roadtovr.com/apple-vision-pro-1000-apps/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.businessofapps.com/data/app-stores/

Diverging paths

“Progressive”“Exclusive”

Web on XR currently has 2 paths:

- WebXR which renders the whole scene (exclusive)

- Progressively adding 3D-capabilities onto HTML/CSS, also progressively adding Web content onto existing 3D XR content.

WebXR Overview
createOffscreenCanvas

requestSession

requestReferenceSpace

updateRenderState

requestAnimationFrame

processInputs

getViewerPose

gl.bindFramebuffer

gl.clear

gl.viewport

gl.draw

foreach
XRView

…

Init

Update

Render

Basic overview of WebXR, explaining how it renders to the eye buffers and cannot coexist with other content.

Web ecosystem has good abstractions (frameworks) above WebXR, making it easy to adopt.

3D Elements Overview

• url: tesseract.glb
• position: (1,0,2)
• rotation: (0,0,0,1)
• scale: (1,1,1)
• properties: loop, autoplay

OS-Level Runtime

Web Engine

This is a 3D

page!

<body>
 <div>This is a 3D page!
 <<placeholder>>
 </div>
</body>

<body>
 <div>
 <p>This is a 3D</p>
 <model src=“tesseract.glb”
 position=“1,0,2”
 rotation=“0,0,0,1”
 scale=“1,1,1”
 loop autoplay/>
 <p>page!</p>
 </div>
</body>

Basic overview of the progressive path. Web engines does not render 3D content by itself. Instead it delegates to a lower level runtime, which composite everything in the
3D space.

Example: Magic Leap 1 and Safari on Vision Pro has declarative apis for Web to render in 3D, each on top of there system level engine (Lumin/RealityKit).

• Rendering engine forked from Chromium

• Supports all XR systems based on AOSP

• WebXR support, 3D HTML & CSS support

• “WebView” API

• Standalone/Embedded mode

Our solution

Application

WebView API WebXR 3D HTML/CSS

Scheduling & Compositing

OpenXR/OpenGL Embedder Engine

Implementation

Our solution.

Standalone: basically for WebXR. Packages an Web app into an android app.

Embedded: integrate with 3D Engine or another runtime.

Applying WebXR

• Instead of starting from 2D … • App can be inherently immersive: • Instead of a 2D interrupt … • WebXR Navigation can be smooth:

— reducing friction in navigation

Applying WebXR

WebXR needs to start from 2D page. When packaged with our solution (or, on PICO, manifested as an “immersive PWA”), can request immersive session with code.

Open another WebXR page also start from 2D. WebXR Navigation implemented.

https://github.com/immersive-web/navigation

— reducing friction in 2D rendering

Applying WebXR

• Converts to Canvas API calls under the hood

• Handles Fonts & Layout on JS side

• Impact on perf, code size, rendering quality

• How about good old HTML & CSS?

• “3D” DOM Overlay:

• ATW using WebXR depth buffer

• Care needed for UX

Rendering 2D content in WebXR is not good developer experience. Instead we extend WebXR DOM Overlay to 3D.

— reducing friction in user/dev experience

Applying WebXR

• Capabilities:

• Manage an offline version? Access native files?

• Reusing existing solutions, but with internal extensions (e.g. Push, Account …)

• Rendering perf:

• WebGPU is promising

• Supports WebXR Layers

• Supports WebXR on Web Workers (esp. helpful w/ overlays)

We use latest Web capabilities to address developer needs. We implement WebXR Layers and WebXR on Workers for perf.

The status quo and the big transition
• In the long run, Web shines in the general use cases …

• But it can also shine today! In use cases that:

• Have tight schedule

• Change frequently

• Special events, A/B tests …

The progressive path can shine in:

- multitasking use cases

- dynamic part in immersive apps

Screenshot shows a 2D event page in a 3D scene, which can be improved with more 3D content.

Turning Hybrid

Detached CSS

• Creates an plane detached from the main page

• 3D transforms & animations work intuitively

• Draft spec repo

• Prior art (Magic Leap)

We implemented what is called Detached CSS (originally by Magic Leap).

Video shows a page comprising detached planes.

https://github.com/immersive-web/detached-elements
https://ml1-developer.magicleap.com/en-us/learn/guides/detached-css-overview

Model Element

• Places a 3D model into space

• Can combine with detached CSS

• Basic interaction support

• Supports GLTF/OBJ/Engine-Specific formats

• Draft spec repo

• Prior art (Magic Leap, Google)

• Recent interest (Apple)

Also implemented model element.

Video shows 3 models in the scene: rocket, girl, and skybox.

https://github.com/immersive-web/model-element/tree/main
https://ml1-developer.magicleap.com/en-us/learn/guides/overview-prismatic
https://modelviewer.dev/
https://developer.apple.com/videos/play/wwdc2023/10279/

Architecture & Usage

Plane {
 vec T, R, S;
 id gpu_handle;
}

Model {
 vec T, R, S;
 string uri;
 buffer data;
}

XR PageXR Page XR Page WebXR App

PlanePlanePlane

Builtin Engine Render Plugin

Unity/Unreal

WebXR
FrameBufferRender Data

Event Data

Model

Layout & Render WebGL API Calls

OpenXR

Messages

Each scene can contain multiple Web pages, with any one of them running WebXR immersive session.

Description data of planes and models are sent to the lower level engine, and with WebXR frame buffer they are composited.

Screenshot shows usage of our package in Unity: a prefab (WebView) that can be configured in ‘Unity style’.

Rendering
Render Loop

BeginFrame

Sync

DispatchEvents

XRManager

Active Frame Pending Frame

<Host Rendering>

Browser

FrameArgs

Compositor

LayerTree

DOMTree

Main

Layout

Paint
FrameData

EventDataXRManager

Active Frame Pending Frame LayerTree

Make compositing
decisions in 3D!

DOMTree

Sync only when
updated!

BeginMa
inFrame

Commit

Takes effect in
next frame!

• Piggybacking on 2D compositing:

• Each 3D element corresponds to a render target

• Android WebView reformed:

• Less work and synchronizations

• Decoupled engine from host:

• Trade latency for comfort (FPS)

Subm
it

We modified the compositing step so that each plane or model is an individual render target, keeping its own transform in 3D.

Main render loop is made up of a couple of callbacks: (sending frame information to web engine) -> (receiving render targets from web engine) -> (render those targets
along with other stuff of the host app)

XR rendering needs to run in high frame rate and must not block on Web rendering. So Web updates are async: an update can last for more than one frame, and takes
effect by swapping the active frame and pending frame.

• Level of Detail and Anisotropic Filtering (performance & sharpness)

Entering new territory

These are
same-sized

in CSS!

• Coordinate conversion

x
1m

y

z

World

x

y
z

Page

interface CoordUtils {
 // Convert page coords to world coords.
 DOMMatrix pageToWorld();
 // Convert world coords to page coords.
 DOMMatrix worldToPage();
 // Decompose a matrix to use in CSS Transform Functions.
 TRS decompose(DOMMatrix m);
}

LOD and more 3D techniques are used to improve render perf and quality.

Util functions are provided to convert coords.

Entering new territory (continued)
• You may not want root scrolling … • You may not want scroll chaining … • You may not want scroll at all …

Scrolling is hard in 3D. Design UX carefully.

Joining forces
• How to keep 2D & 3D content in sync?

RealityView
“attachments”:

model

main

ribbon

effect

crown

ring

icon

info

Designer provisions: Wrap it with:

Root model

Slot icon

Slot info

...

Code:

On device:

Sync planes with model animation: make slots on model and associate planes with slots at run time with declarative syntax.

https://developer.apple.com/videos/play/wwdc2023/10081?time=125

Facts

• Our solution currently empowers “Douyin VR Live (抖音 VR 直播)”

• Industry active efforts in this area

• Merely scratched the surface here, huge potentials remaining

• Wouldn’t be and won’t be possible w/o a community

We believe the progressive path has huge potentials. And it is friendly in terms of accessibility, discoverability, and interoperability with existing Web.

Thank you!

