
Privacy Preserving Ads

Agenda

•Quick Recap of PARAKEET

•MaCAW

• Test setup update for PARAKEET

LEGEND:
C – publisher context
C’– anonymized publisher context - link scrubbing, keywords and category scrubbing
S’– differentially private user targeting and features

PARAKEET Private and Anonymized Requests for Ads that Keep Ad Efficiency and Enhance Transparency

Summary

• Anonymized context and Differentially Private
segments < 𝐜′, 𝐬′ > in the ad request

supports retrieval, ranking, bid model, auction
on Ad network, DSP and SSP servers

• Proxy service to control fingerprinting in ad request

• Direct trade-off between monetization efficacy and
privacy parameters

• Less disruptive changes in ads ecosystem and
improves privacy through anonymization

Limitation

• < 𝐜′, 𝐬′ > are shared together in the ad request –
prone to adversarial privacy attacks

• Privacy functions on targeting profile and user
features impact Bid models, Ranking and Auction

• Anonymity thresholds on 𝐜′ impact brand safety
controls

BROWSER

PUBLISHER

ADVERTISER 123

SSP/
DSP

U AdReq(C), S’

▪ Retrieval
▪ Ranking & Pricing
▪ Budget Control

Privacy Analysis
& Targeting
Anonymization

{s1, s2}

Browser User Segment
and feature Storage

s1U s2 sn

JS

AdReq(C’, S’)

Ad

Request
Anonymization

+
Proxy

Winner Ad

Anon Request

S’U

1

3

5

6

7

Ad
Xchange

DSP

𝑭

𝛽

AD

{s1, s2, …}2

4

PARAKEET simplified

BROWSER

PUBLISHER

ADVERTISER

Ad Servers

AD

< 𝒔𝟏, 𝒔𝟐 >

Browser Targeting Storage

𝒔𝟎 𝒔𝟏 𝒔𝒏

JS

s’

1

Control

LEGEND:
𝒄 : publisher context
𝒄′ : anonymized publisher context
𝒔′: differentially private user segments/features set
B(.): bid functions, executed by DSP servers
R(.): ranking function, executed by SSP servers

Anonymization & Proxy

3.1 Retrieve candidate ads using 𝑐′, 𝑠′

3.2 DSP: Compute bids B(.) and selects
creatives
3.3 SSP: executes ad Quality controls,
auction R(.) and provide winning ad

AdReq(c), s’ 𝒄′, 𝒔′

Ad Set A

3
2

BROWSER SERVICE
Ad4

SSP+DSP

SSP

DSP

MaCAW – Multi-party Computation of Ads on the Web

BROWSER

PUBLISHER

ADVERTISER

Ad Servers

AD

< 𝒔𝟏, 𝒔𝟐 >

Browser Targeting Storage

𝒔𝟎 𝒔𝟏 𝒔𝒏

JS

Secure Compute

s’

1

Control

LEGEND:
𝒄 : publisher context
𝒄′ : anonymized publisher context
𝒔′: differentially private user segments/features set
𝒆(𝒔): encrypted user targeting and features
𝒆(𝒄): encrypted publisher context features
B(.): bid functions, executed by DSP servers
R(.): ranking function, executed by SSP servers

Anonymization & Proxy

3.1 Retrieve candidate ads using 𝑐′, 𝑠′

Encrypt 𝒂𝒊, 𝒃𝒊
Decrypt R(.)
Identify ad w/ max R(.)

AdReq(c), s’

Efficient and generalized
secure compute for ad
serving

• Step 1: Anonymized < 𝑐′, 𝑠′ > for
retrieval to limit computation
complexity

• Step 2: Two-Party Secure
Compute for accurate bid,
ranking, brand controls and
auction using < 𝑐, 𝑠 >

𝒄′, 𝒔′

Ad Set A

3

4.1 Evaluate 1 e c ∗ 𝐁(𝐞 𝒄 , 𝒆 𝒔 ,𝒂𝒊)

4.2 Compress and share partial values

6

2

2-party SC for bid,
advertiser checks

5.1 Evaluate 𝐑(𝒄, 𝒆 𝒂𝒊 , 𝒆(𝒃𝒊))
5.2 Compress and share partial values

2-party SC for auction,
publisher control

(𝒆 𝒄 , 𝒆 𝒔 ,𝒂𝒊) 𝑓𝑜𝑟 ∀𝑎𝑖 ∈ 𝐴
𝑩(.)

4

(𝒄, 𝒆(𝒂𝒊), 𝒆(𝒃𝒊))
𝐑(.)

5

Encrypt 𝒄, 𝒔
Decrypt B(.)
Filter ads with 0 bid

BROWSER SERVICE

Ad7

SSP+DSP

Ad Response
const adResponse = {

'ads': [{

creative-id: 'hashid'

creative: 'https://ad-creative.cdn',

bid-inference-origin: 'https://dsp.example',

bid-model-format: 'https://dsp.example/bidmodel-structure-for-service.out',

contextual-signal-processor: 'https://dsp.example/feature-processing.js'

fallback-bid: 1.00,

lang: 'en-us',

adtype: 'image/native'

},

],

auction-inference-origin: 'https://ssp.ad-network.example',

auction-model-format: 'https://dsp.example/rankingmodel-structure-for-service.out',

fallback-ranking: 'highest-bid'

ad-signal-processor: 'https://ssp.example/feature-processing.js'

ranking-signals: ['coarse-geolocation', 'coarse-ua', 'encrypted-ad', 'encrypted-bid']

}

Working with 2 party secure compute

Ad Server model training model.pb
Training
process

Compiler
python path/to/EzPC/Athos/CompileTFGraph.py --config config.json --role
server/client
"model_name": "model.pb

Browser Service Ad Server

model.out model.out
model.weights

Leverage
EzPC
complier
for
generic
code

Key Considerations
Performance and Comm requirements for 2PC

N Time (ms) Total Comm (MiB) Peak Mem Server (MiB) Peak Mem Client (MiB)

400 201 51.46 65.73 50.89

1600 2585 804.73 693.43 378.01

3200 9913 3215.76 2654.21 1365.53

Improvements
• Mixed mode computation – random subset of variables are encrypted
• 3PC – non-colluding helper party to support secure compute

N Time (ms)
Client Total
Comm (MiB)

Server Total
Comm (MiB)

Helper Total
Comm (MiB)

Peak Mem
Client (MiB)

Peak Mem
Server (MiB)

Peak Mem
Helper (MiB)

400 13 2.44 2.45 0.003 17.39 17.44 17.46

1600 677 39.08 39.09 0.012 148.38 148.02 128.84

3200 1661 156.29 156.32 0.024 558.01 558.57 482.54

PARAKEET test setup

PARAKEET test setup

Polyfill library for ad interests, ad request and rendering

Goal:

• Implement ad serving flows – user features in

browser and runtime read access

• Provide robust ad parameter setup – placement

size, location, device etc.

• Data flows and key management for user feature

encryption/decryption

Request:

• Participants for alpha trials

Dev setup

• Advertiser.com JS changes to leverage polyfill

library to handle user features

• Ad Request changes to access user features

• Ad server changes to accept user features in

request (instead of cookie), and enable ad

serving

Next Steps

• Post your questions or issues via GitHub repo

• We’ll provide regular updates on progress on development, test and

design

• Participate in the design discussions in bi-weekly calls

https://github.com/WICG/privacy-preserving-ads
https://github.com/WICG/privacy-preserving-ads/issues/3

Discussion

