
Privacy Preserving Ads



Agenda

•Quick Recap of PARAKEET

•MaCAW

• Test setup update for PARAKEET 



LEGEND:
C – publisher context 
C’– anonymized publisher context - link scrubbing, keywords and category scrubbing
S’– differentially private user targeting and features

PARAKEET Private and Anonymized Requests for Ads that Keep Ad Efficiency and Enhance Transparency

Summary

• Anonymized context and Differentially Private 
segments < 𝐜′, 𝐬′ > in the ad request 

supports retrieval, ranking, bid model, auction 
on Ad network, DSP and SSP servers

• Proxy service to control fingerprinting in ad request

• Direct trade-off between monetization efficacy and 
privacy parameters

• Less disruptive changes in ads ecosystem and 
improves privacy through anonymization

Limitation

• < 𝐜′, 𝐬′ > are shared together in the ad request –
prone to adversarial privacy attacks

• Privacy functions on targeting profile and user 
features impact Bid models, Ranking and Auction 

• Anonymity thresholds on 𝐜′ impact brand safety 
controls
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PARAKEET simplified  
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LEGEND:
𝒄 : publisher context 
𝒄′ : anonymized publisher context
𝒔′: differentially private user segments/features set
B(. ): bid functions, executed by DSP servers
R(. ): ranking function, executed by SSP servers

Anonymization & Proxy 

3.1 Retrieve candidate ads using  𝑐′, 𝑠′

3.2 DSP: Compute bids B(.) and selects 
creatives
3.3 SSP: executes ad Quality controls, 
auction R(.) and provide winning ad  

AdReq(c), s’ 𝒄′, 𝒔′
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SSP

DSP

MaCAW – Multi-party Computation of Ads on the Web
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LEGEND:
𝒄 : publisher context 
𝒄′ : anonymized publisher context
𝒔′: differentially private user segments/features set
𝒆(𝒔): encrypted user targeting and features
𝒆(𝒄): encrypted publisher context features
B(. ): bid functions, executed by DSP servers
R(. ): ranking function, executed by SSP servers

Anonymization & Proxy 

3.1 Retrieve candidate ads using  𝑐′, 𝑠′

Encrypt 𝒂𝒊, 𝒃𝒊
Decrypt R(.)
Identify ad w/ max R(.)

AdReq(c), s’

Efficient and generalized 
secure compute for ad 
serving

• Step 1: Anonymized < 𝑐′, 𝑠′ > for 
retrieval to limit computation 
complexity

• Step 2: Two-Party Secure 
Compute for accurate bid, 
ranking, brand controls and 
auction using < 𝑐, 𝑠 >

𝒄′, 𝒔′
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4.1 Evaluate 1 e c ∗ 𝐁(𝐞 𝒄 , 𝒆 𝒔 ,𝒂𝒊)

4.2 Compress and share partial values
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2-party SC for bid, 
advertiser checks

5.1 Evaluate 𝐑(𝒄, 𝒆 𝒂𝒊 , 𝒆(𝒃𝒊))
5.2 Compress and share partial values

2-party SC for auction, 
publisher control

(𝒆 𝒄 , 𝒆 𝒔 ,𝒂𝒊) 𝑓𝑜𝑟 ∀𝑎𝑖 ∈ 𝐴
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Encrypt 𝒄, 𝒔
Decrypt B(.)
Filter ads with 0 bid
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Ad Response
const adResponse = {

'ads': [{

creative-id: 'hashid'

creative: 'https://ad-creative.cdn',

bid-inference-origin: 'https://dsp.example',

bid-model-format: 'https://dsp.example/bidmodel-structure-for-service.out',

contextual-signal-processor: 'https://dsp.example/feature-processing.js'

fallback-bid: 1.00,

lang: 'en-us',

adtype: 'image/native'

},

],

auction-inference-origin: 'https://ssp.ad-network.example',

auction-model-format: 'https://dsp.example/rankingmodel-structure-for-service.out',

fallback-ranking: 'highest-bid'

ad-signal-processor: 'https://ssp.example/feature-processing.js'

ranking-signals: ['coarse-geolocation', 'coarse-ua', 'encrypted-ad', 'encrypted-bid']

}



Working with 2 party secure compute

Ad Server model training model.pb
Training 
process 

Compiler
python path/to/EzPC/Athos/CompileTFGraph.py --config config.json --role 
server/client
"model_name": "model.pb

Browser Service Ad Server

model.out model.out
model.weights

Leverage 
EzPC
complier 
for 
generic 
code



Key Considerations 
Performance and Comm requirements for 2PC 

N Time (ms) Total Comm (MiB) Peak Mem Server (MiB) Peak Mem Client (MiB)

400 201 51.46 65.73 50.89

1600 2585 804.73 693.43 378.01

3200 9913 3215.76 2654.21 1365.53

Improvements
• Mixed mode computation – random subset of variables are encrypted
• 3PC – non-colluding helper party to support secure compute

N Time (ms)
Client Total 
Comm (MiB)

Server Total 
Comm (MiB)

Helper Total 
Comm (MiB)

Peak Mem 
Client (MiB)

Peak Mem 
Server (MiB)

Peak Mem 
Helper (MiB)

400 13 2.44 2.45 0.003 17.39 17.44 17.46

1600 677 39.08 39.09 0.012 148.38 148.02 128.84

3200 1661 156.29 156.32 0.024 558.01 558.57 482.54



PARAKEET test setup



PARAKEET test setup

Polyfill library for ad interests, ad request and rendering 

Goal: 

• Implement ad serving flows – user features in 

browser and runtime read access 

• Provide robust ad parameter setup – placement 

size, location, device etc.

• Data flows and key management for user feature 

encryption/decryption

Request: 

• Participants for alpha trials

Dev setup

• Advertiser.com JS changes to leverage polyfill

library to handle user features 

• Ad Request changes to access user features 

• Ad server changes to accept user features in 

request (instead of cookie), and enable ad 

serving



Next Steps 

• Post your questions or issues via GitHub repo

• We’ll provide regular updates on progress on development, test and 

design

• Participate in the design discussions in bi-weekly calls

https://github.com/WICG/privacy-preserving-ads
https://github.com/WICG/privacy-preserving-ads/issues/3


Discussion


