
Mini App
Standardisation

Mini Program

Smart App

Web

Native App

Mobile

PC

Quick App

OS

RECENT PROGRESS

Mini App Standardisation White Paper published
by Chinese Web IG!
-> https://www.w3.org/TR/mini-app-white-paper/

Contributors: Alibaba, Baidu, Xiaomi, Huawei,
Intel, China Mobile,360, Uni-App, W3C Beihang…

Goal of the White Paper:
• To define Mini App and the relevant terminology;
• To introduce the core technologies of Mini App;
• To figure out what should be standardised;
• To propose the next steps in W3C.

https://www.w3.org/TR/mini-app-white-paper/

Mini App is everywhere

Mini
Program Mini App

Quick
App

Running on Native App / Super App Running on the OS

Mini App is efficient to bridge Native App and the Web:
• Any Native App(including browsers) can be a runtime of Mini App.
• Any Native App can run a Mini App by install a SDK.

Mini App helps to solve problems like…

develop
ers users

Native Apps

• Heavy cost of usage: download,
register

• Limited storage, limited Native
Apps

• Update: initiated by users, time
consuming

• Walled garden
• High cost of development: iOS,

Android, etc.
• High cost of distribution: only

Native App store
• Long release time

Mini App helps to solve problems like…

develop
ers users

the Web

• Limited performance and
capability compared with
Native App

• Low user retention rate
• High barrier for developers,

due to the fact that the pre-
defined APIs and components
are not enough

What is Mini App?

MiniApp is a new format of mobile application, a hybrid solution which relies
on Web technologies but also integrates with capabilities of Native Apps.

MiniApps got popular from their usage on a few super-apps, as it was born
with a few characters that help to fill the gap of the Web and the Native.

• It's free of installation.
• Multiple webviews to improve performance.
• It provides a few mechanisms to get access to OS capabilities or data

through the Native.
• The content is usually more trustworthy because the app needs to be

validated by the platform.
• A miniapp can be distributed to multiple MiniApp platforms (the Web, a

Native App, even the OS). These platforms also provide entry to the
miniapp to ensure it can be easily discovered by the users.

CASE STUDY 1

Sharing Bicycle Service: Seamless Usage

1. User chooses the miniapp on a super-app that
he/she already logined;

2. User scans the QR-code label attached on a
shared bicycle within the superapp;

3. The super-app will automatically navigate to
the shared bicycle miniapp and unlocks the
bicycle instantly;

4. Upon arrival, user locks the bike on the
miniapp;

5. Transaction completes, a message of the
payment detail is sent to the user.

Web Native Mini App

Download/
Install No Yes No

Verified/
Trusted No Yes Yes

Login/
Register Yes Yes User

permission

Payment
Send a

payment
request

Register a
credit card
or navigate
to another

App

Complete
within the

hosted Native
App

CASE STUDY 2

AR Zoo(from Dev prospective): easier and
faster to adopt complex advanced feature.

Developers can easily finish a AR Zoo by
adding a few components or APIs that
provide access to the native capabilities or
advance features, f.ex., Image Recognition,
AR 3D Animal models rendering, a speech
API to for speech synthesis, AR navigation
provided by the map SDK.

MiniApps can be discovered by the search
engines, by the MiniApp store in the hosted-
app or by QR-code.

CASE STUDY 2

Web Native Mini App

Discoverability Search Engine App Store
Multiple Host-App

Scenarios, Search,
Mini app store, QR

code, etc.
Verified/Trusted Still exploring By Native App stores By host App platforms

Deploy/Reload load/reload the
webpage installed / reinstalled load/reload as it's using

a JS engine

Programming Language Web programming
language

new/multi languages:
iOS and Android at

least

Web programming
language

High-level APIs/
Components (AR, Image

Recognition, etc.)
Very basic Complex for web

developers
Simple high level APIs

and components

CASE STUDY 3

Mini App on IoT

• some MiniApps can be converted to
adapt the vehicle screen and system;

• MiniApp vendors have built a few
MiniApp platforms specially design for
the vehicle system;

• this brings millions of Web developers
to the Automotive application
ecosystem.

User scenarios of Automotive MiniApps
includes gas filling, car washing,
Electronic Toll Collection, insurance,
restaurant reservation, or entertainment.

CORE FEATURES

Separation of View and Logic

Multiple Render View + JS Worker +
Native Capabilities

• Convenient data sharing and interaction
among multiple Mini App pages

• Same context within a life circle of Mini App
• Prevent JS execution impacts or slows

down the page rendering

CORE FEATURES

Data Flow of Mini App when an API is called

CORE FEATURES

Components

APIs

View Text Form

Navigator

Image

Canvas Map …

Navigator API Canvas API Image API

Phone call API File API Scan API

Payment API Map API …

Rich APIs and Components Mini App Package Constructor

Mini App
Package

• One Set of app
files

• Multiple sets of
page files

CORE FEATURES

Mini App Widgets

• Mini App can be displayed as
information fragment — a Mini
App widget

• E.g., the Mini App widget
shows the train's latest status.
User can click on this widget
and jump to Mini App page for
more detailed information.

CORE FEATURES
Mini App Widgets

• standardizing calling (mini
apps)

• atomized combination widgets
• data sharing cross scenarios

SECURITY AND PRIVACY
Mini App utilises HTTPs to support secure connection.
Mini Apps within same host environment are independent with each other

S&P consideration Function
default(no extra action

needed)
Page sharing, clipboard, vibration, compass, motion

sensors, map, screen brightness, screen capture, battery
permission on first-time

usage
Geolocation, camera(qr code), network status, Bluetooth,

NFC
permission on every

usage
Contacts, file-apis, add to home screen, photo picker,

phone call
Validate with token Push

Callback/messaging Password-free Payment

request password Page sharing, clipboard, vibration, compass, motion
sensors, map, Payment

THINGS WE WANT TO STANDARDISE

Mini App Package Constructor

Mini App
Package

a packaged
(compressed)
collection of files

• Download
once

• Load data
instead of load
page

Goal: a standardised
 way to describe Mini App
package
• Define package’s structure/

contents
• Specify how to create the

package
• Specify how to parse the

package

THINGS WE WANT TO STANDARDISE

URI Scheme

Goal: a standardised URI scheme to access Mini App or Mini App
page is needed
• Navigate between Mini Apps
• Identification of page inside Mini App
• Define an access protocol, Mini App URI, Mini App page URI

THINGS WE WANT TO STANDARDISE
Transition Animation during Mini App

page switching

Goal: To make Mini App
smoother

Define:
• page transition

type(Replace current page
or stack on top)

• Animation(type & duration)
between pages (if any)

THINGS WE WANT TO STANDARDISE

Pull down refresh

Goal: Refresh page state by
gesture

Define: Pull-down-refresh
component

THINGS WE WANT TO STANDARDISE

Lifecycle Events in Mini App

Goal: Broadcasting Mini App states change for developer (e.g.,
update remote data)

Define: Life cycle events: App show/hide, page show/hide

THINGS WE WANT TO STANDARDISE

Scrollview component

Goal: Give developer a high level component to handle scroll
scenario. Develop can achieve more accurate scroll events

Define:
• scrollview component
• properties/event such as bindscrolltoupper/lower

THINGS WE WANT TO STANDARDISE

Mini App Widgets

Goal: Interact before entering Mini App. Widgets are implemented
by Mini App

Define:
• Display widgets within a host environment
• Access local or remote data
• Abilities to interact with user

THINGS WE WANT TO STANDARDISE

Native Rendering Component

Goal: Mini App needs a
standardised API or
component to integrate native
rendering result into Web
rendering result

THINGS WE WANT TO STANDARDISE

Other ideas

• Face Tracking
• Hand Gesture Tracking
• 3D Model Element
• Low level AR APIs based on ARCore and ARKit

NEXT STEP IN W3C
Explore innovation of user agent and enrich the Web

• Set up a specific group
• Coordinate Mini App related standardisation in W3C as well

as to collaborate with other related W3C groups
• Develop Mini App specs stack

• Package constructor
• Mini App URI scheme
• Transition Animation
• Native Rendering Component
• Pull down refresh
• …

• Horizontal review (security, privacy, i18n and a11y)

Thank You!

Mini Program

Smart App

Web

Native App

Mobile

PC

Quick App

OS

APPENDIX: MINI APP AND PWA

Mini App PWA

Difference

Target
Leverage Web

technologies in non-
browser environment

Enhance Web App so that
they could have

performance and user
Host

environment
Non-browser: Native

App, OS, etc. Browser

Solution Hybrid: Web + Native +
OS Web

Trust
Handled by host App

platform, so some APIs
that are not supported by

Limited, still exploring

Commona
lity

Some
standard

requirements

Such as native integration, access to native capabilitie
s and better UX

