Web-based Knowledge Extension

Richong Zhang

zhangrc@act.buaa.edu.cn

Beihang University, China

May 15, 2019

A ID 1

æ

1 / 40

May 15, 2019

Linked Data

0

May 15, 2019 2 / 40

• Emerging knowledge bases (KB): Freebase, YAGO, DBpedia, etc.

May 15, 2019

3 / 40

- A KB contains a collection of facts in the form of (h, r, t)
 - h: head/subject entity
 - r: relation
 - t: tail/object entity

Example (Factual Triple in KB)

(Beijing, isCapitalOf, China)

- h: Beijing
- r: isCapitalOf
- t: China

 KB can be interpreted as edge-labelled graph entity ⇒ vertex triple ⇒ edge relation in triple ⇒ edge label

Example

Triple $(h, r, t) \Rightarrow$ edge $h \xrightarrow{r} t$

<ロト <回ト < 回ト < 回ト = 三日

May 15, 2019

 • KB can be interpreted as edge-labelled graph entity ⇒ vertex triple ⇒ edge relation in triple ⇒ edge label

Example

Triple
$$(h, r, t) \Rightarrow \text{edge } h \xrightarrow{r} t$$

Our Belief

"Such a structured knowledge representation is fundamental for developing AI."

- Can AI retrieve information from KB?
- Can AI generalize knowledge from KB? ("link prediction")
- Can AI reason using KB?

- $\bullet~{\rm relations/entities} \Rightarrow {\rm representations}$ in a Euclidean space
- preserves intra-relational and inter-relational structures

Idea

 $\begin{array}{c|c} In \ the \ Euclidean \ space, \\ \hline Ottawa \ w.r.t. \ \hline Canada \\ \hline CND \ w.r.t. \ \hline Canada \\ \end{array} \equiv \begin{array}{c} \hline Beijing \ w.r.t. \ \hline China \\ \hline RMB \ w.r.t. \ \hline China \\ \end{array}$

- KB embedding converts discrete topology to a continuous one
- \Rightarrow avoids combinatorial complexity of algorithms
- $\bullet \Rightarrow$ potentially benefits all areas of KB research

instance: "Beijing is the capital of China" $\downarrow \\ \text{as a triple: (Beijing, isCapitalOf, China)} \\ \downarrow \\ \text{as a length-2 vector: (Beijing, China)} \in \text{isCapitalOf} \subseteq \mathcal{N} \times \mathcal{N} \\ \mathcal{N}: \text{ the set of all entities} \end{cases}$

Insight

A binary relation is a subset of the cartesian product $\mathcal{N} \times \mathcal{N}$.

Prior Art of Modelling

- TransE [Bordes et al., 2013]
- TransH[Wang et al., 2014]
- TransR [Lin et al., 2015]
- ProjE[Shi and Weninger, 2017]
- ComplEx[Trouillon et al. 2016]
- ConvE[Dettmers et al., 2017]
- Analogy [Liu et al., 2017]...

< (17) > < (17)

Prior Art of Modelling

- TransE [Bordes et al., 2013]
- TransH[Wang et al., 2014]
- TransR [Lin et al., 2015]
- ProjE[Shi and Weninger, 2017]
- ComplEx[Trouillon et al. 2016]
- ConvE[Dettmers et al., 2017]
- Analogy [Liu et al., 2017]...

Note

- All assume binary relations
- Trained and tested on FB15K, WN18, FB15K-237, WN18RR

Example

How to represent the fact: "Obama and Michelle were married on October 3, 1992 at Trinity United Church of Christ in Chicago, Illinois.".

Multi-fold Relation Example

May 15, 2019

9 / 40

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● のへで

Knowledge Base: Detailed Example

Richong Zhangzhangrc@act.buaa.ed Web-based Knowledge Extension

May 15, 2019

Insight (Codd, 1970)

A *J*-fold (or *J*-ary) relation is a subset of the *J*-fold cartesian product $\mathcal{N}^J := \underbrace{\mathcal{N} \times \mathcal{N} \times \ldots \times \mathcal{N}}_{J}$.

J times

Definition (Multi-Fold Relation)

Let \mathcal{M} be a set of *roles* in the KB, and a *(multi-fold) relation* R on \mathcal{N} with roles \mathcal{M} is a subset of $\mathcal{N}^{\mathcal{M}}$.

→ 同 → → 目 → → 目 → つへの

May 15, 2019 11 / 40

Motivation:

- Non-binary relations are ubiquitous.
- Around 75% and 71% people entities do not have nationality and birth place.
- Over 1/3 Freebase entities participate in non-binary relations.

We take a fundamental look at the following questions:

- How to represent multi-fold relational data?
- How to embed multi-fold relational data?
- How to complete multi-fold relational data?

Roadmap of This Talk

- **1** Representation of m-fold Relations
- 2 Knowledge Completion via Type-Argumented Embedding
- (3) Knowledge Completion via Locality-Expanded Embedding

<ロト <回ト < 回ト < 回ト = 三日

May 15, 2019

- 4 Knowledge Instance Re-construction
- 5 Observations
- 6 Concluding Remarks

Representation of m-fold Relations

J. Wen et. al: On the Representation and Embedding of Knowledge Bases beyond Binary Relations. IJCAI 2016

Representation:Instance Graph

 $t_1 \in$ SportAward: "Kobe Bryant is the All-Star MVP for 2010-2011" $t_2 \in$ TeamRoster: "Kobe Bryant is a Point Guard in Lakers"

Fact Representation to Instance Representation Example

"Will McGregor played bass and bass guitar in Precious Things."

Lemma

Fact representation \mathcal{F} can be recovered from $T_{id}(\mathcal{F})$.

Freebase Representation

Lemma

After applying S2C conversions to a graph, in general the graph is no longer recoverable.

Insight

Freebase contains equivalent information as a fact representation. Edges (triples) in Freebase have three different semantics. Not clean!

Insight

Fact graphs and instance graphs are both superior to S2C-converted graphs or Freebase representation, with instance graphs more. Richong Zhangzhangre@act.buaa.ed Web-based Knowledge Extension May 15, 2019 17 / 40

Standard dataset: FB15K [Bordes et al., 2013]

- Extracted from Freebase
- S2C applied to every CVT, converting non-binary relations to binary
 - \Rightarrow loss of structural information
- Mediators are not filtered out and have participated in S2C conversions.
 - \Rightarrow introduced additional noise

Insight

FB15K is not suitable for embedding KBs containing non-binary relations.

May 15, 2019

JF17K Dataset: Construction

- Download full Freebase
- Remove entities involved in very few triples
- Remove triples involving *String*, *Enumeration Type* and *Numbers*
- Construct fact representation
- Remove meta-relation containing a single role
- Randomly select 10,000 facts from each meta-relations containing more than 10,000 facts ⇒ fact representation *F*.
- Construct two instance representations $T_{id}(\mathcal{F})$ and $T(\mathcal{F})$
- Filter T(F) so that each entity participates in at least 5 instances
 ⇒ instance representation G
- Filter $T_{id}(\mathcal{F})$ correspondingly \Rightarrow instance representation \mathcal{G}_{id}
- Construct $S2C(\mathcal{G}) \Rightarrow$ instance representation \mathcal{G}_{s2c}

Note

JF17K contains three consistent datasets: \mathcal{G} , \mathcal{G}_{id} , \mathcal{G}_{s2c} Available at github.com/wenjf/multi-relational_learning.

JF17K: Statistics

	$\mathcal{G}^{\checkmark}/\mathcal{G}^{\checkmark}_{\mathrm{id}}$	$\mathcal{G}_{\mathrm{s2c}}^{\checkmark}$	$\mathcal{G}^?/\mathcal{G}^?_{\mathrm{id}}$	$\mathcal{G}^?_{ m s2c}$
# of entities	17629	17629	12282	12282
# of instances/triple types	181	381	159	336
# of instances/triples	139997	254366	22076	52933

Note

JF17K has similar scale/statistics as FB15K.

Richong Zhangzhangrc@act.buaa.ed Web-based Knowledge Extension

3

イロト イヨト イヨト イヨト

Zhang et. al: Embedding of Hierarchically Typed Knowledge Bases. AAAI 2018

・ロト ・回ト ・ヨト ・ヨト 三日

May 15, 2019

21 / 40

Embedding of Hierarchically Typed Knowledge Bases

Hierarchical Types

- Exploit entity type information in knowledge base embedding.
- A framework augments a "typeless" embedding model.

Figure: The tree Γ of types in the toy example.

Type as a set of entities

- Every node in the tree can be understood as a "type".
- Every node in the tree is interpreted as a constraint.

Type Space

Figure: Type space in our model

Note

- Each Type is a set of entities.
- Each type is a constraint on the entity.
- Each type (tree node) is mapped to a subset of the embedding space.
- Each such subset is chosen as an affine subspace.

Entity-Type Cost

Figure: Entity-type model

Note

- An entity lives in the intersection of the subspaces.
- An entity x should satisfy all its type, and the entity-type cost function defined as follows:

$$G(\phi, \Omega) := \sum_{x \in \mathcal{N}} \left(\sum_{v \in L(x)} g_v(\phi(x)) + \sum_{v' \in L^-(x)} [T_{\mathrm{ET}} - g_{v'}(\phi(x))]_+ \right)$$
(1)

May 15, 2019

24 / 40

(

Knowledge Completion via Locality-Expanded Embedding

F. Kong et. al: LENA: Locality-expanded Neural Embedding AAAI 2019

∃ ►

25 / 40

May 15, 2019

Example of Neighbourhood Information

Figure: A subgraph of Rebecca.

- "Rebecca is the wife of Jerry" is relevant to "Rebecca's gender is female"
- "Rebecca was born in Berkeley" is useful for predicting "the Nationality of Rebecca is U.S."
- "Rebecca is the wife of Jerry" is irrelevant to "the nationality of Rebecca is U.S."

Insight

The "modelling locality" can be expanded from edges to larger graph neighbourhoods.

Example of Neighbourhood Information

Figure: A subgraph of Rebecca.

- "Rebecca is the wife of Jerry" is relevant to "Rebecca's gender is female"
- "Rebecca was born in Berkeley" is useful for predicting "the Nationality of Rebecca is U.S."
- "Rebecca is the wife of Jerry" is irrelevant to "the nationality of Rebecca is U.S."

Insight

The "modelling locality" can be expanded from edges to larger graph neighbourhoods.

Example of Neighbourhood Information

Figure: A subgraph of Rebecca.

- "Rebecca is the wife of Jerry" is relevant to "Rebecca's gender is female"
- "Rebecca was born in Berkeley" is useful for predicting "the Nationality of Rebecca is U.S."
- "Rebecca is the wife of Jerry" is irrelevant to "the nationality of Rebecca is U.S."

Insight

The "modelling locality" can be expanded from edges to larger graph neighbourhoods.

Model

Probabilistic Model

$$p(t|h,r) = \frac{\exp(s(h,r,t))}{\sum_{t' \in \mathcal{N}} \exp(s(h,r,t'))}.$$

Embedding

- We embed entities and relations both as vectors in \mathbb{R}^k .
- $D_{\rm E}$ and $D_{\rm R}$ are $k \times |\mathcal{N}|$ matrix
- $x \in \mathcal{N}$ and $r \in \tilde{\mathcal{R}}$ are one-hot vectors

$$\mathbf{x} := D_{\mathrm{E}}x \tag{3}$$

$$\mathbf{r} := D_{\mathrm{R}}r \tag{4}$$

Score Function

$$s(h, r, t) := \langle v^{\mathrm{E}}(h, r, t) + \mathbf{r} + b_{\mathrm{E}}, C_{\mathrm{E}} \mathbf{t} \rangle + \langle v^{\mathrm{R}}(h, r, t) + \mathbf{h} + b_{\mathrm{R}}, C_{\mathrm{R}} \mathbf{t} \rangle$$
(5)

(2)

Neighbourhood Graph

Neighbourhood

$$\mathcal{G}(h,r,t) := \{ e \in \mathcal{G} : t(e) = h, e \neq (t,r^-,h) \}.$$

Figure: Example of neighbourhood graphs $\mathcal{G}(h, r, t)$ (the subgraphs in the dashed boxes) of triple (h, r, t). Triples in \mathcal{G} are represented by a solid edge, and triples (e.g., candidate triples) not in \mathcal{G} are represented by a dashed edge.

Knowledge Instance Re-construction

Zhang et. al: Scalable Instance Reconstruction in Knowledge Bases via Relatedness Affiliated Embedding. WWW 2018

Image: A matrix and a matrix

May 15, 2019

31 / 40

Knowledge Instance Re-construction

Link Prediction is not Enough!

Figure: Link prediction vs. instance reconstruction

Richong Zhangzhangrc@act.buaa.ed Web-based Knowledge Extension

프 🕨 🗉 프

32 / 40

・ロト ・ 日 ・ ・ 目 ・ ・

Instance Reconstruction

Definition

• To recover an instance in which entities are missing from all but one role.

Note

 $\bullet\,$ Recover t from x^* , x^* will be referred to as the key for the problem

May 15, 2019

- The complexity of instance reconstruction is $O(\mathcal{N}^{m-1})$
- The primary challenge is to develop a scalable reconstruction algorithm

Step 1: Filtering

Schema-based Filtering

• Leveraging the type requirements on the entities dictated by the schema of a relation to reduce the number of entities to be considered in forming instances.

May 15, 2019

Figure: (left) Update of MLP; (right) Update of Entity Embedding

Relatedness Filtering

- To predict if two entities are related.
- Returns the set of entity pairs (x, y) that the two entities in any pair are thought to be related.
- iterative learn the embedding model and MLP classification model.

May 15, 2019

Step 2: Splicing

Figure: Edge-end-Colored Graph

Edge-End-Colored Graph (EECG)

- Two end points of each edge are colored by two distinct colors
- Every entity is interpreted as a vertices.
- Every related entity pair can be interpreted as an edge.
- The role under relation is interpreted as the color .

Step 2: Splicing

Figure: Color-matched Clique

A D A A D A A

3.

37 / 40

May 15, 2019

Color-matched Clique (CMC)

- A sub-EECG and complete.
- The color set of every vertex is a singleton set.
- Every two vertices have different colors.

Observations

Freebase Types (23425 types)

 $\begin{array}{ll} (m.01xxvx,type.object.id, "/freebase/type_profile/featured_topics") \\ (m.011nd5wd,type.object.id, "/freebase/type_profile/ownership") \\ /astronomy/star/planet_sisusedforlistingplanetsaroundastar \end{array}$

Domains

/business - the ID of the Business domain /music - the Music domain /film - the Film domain

Properties

			<u>e</u> .
Property	Expected Type	Description	
actor	Person	An actor, e.g. in tv, radio etc.	
countryOfOrigin	Country	The country of the principal office	5
director	Person	A director of e.g. tv, radio etc.	
			-

May 15, 2019

Concluding Remarks

Representation

- Relations in the real world are often multi-fold.
- FB15K is no longer suited for embedding multi-fold relations.

Embedding

- Direct modelling is a superior framework.
- Type and structural information is useful for embedding.

Reconstruction

- KB containing n-ary relations are challenged by instance reconstruction problem.
- SIR algorithm has significantly reduced complexity for solving instance reconstruction.

ъ

Thank you

Richong Zhangzhangrc@act.buaa.ed Web-based Knowledge Extension

May 15, 2019 40 / 40

Ξ.

イロト イヨト イヨト イヨト