
1

Eradicating Bearer Tokens for Session Management
Philippe De Ryck, Lieven Desmet, Frank Piessens, Wouter Joosen

iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium
{firstname.lastname}@cs.kuleuven.be

Abstract— Session management is a crucial component in
every modern web application. It links multiple requests and
temporary stateful information together, enabling a rich and
interactive user experience. The de facto cookie-based session
management mechanism is however flawed by design, enabling
the theft of the session cookie through simple eavesdropping or
script injection attacks. Possession of the session cookie gives
an adversary full control over the user’s session, allowing him
to impersonate the user to the target application and perform
transactions in the user’s name. While several alternatives for
secure session management exist, they fail to be adopted due to
the introduction of additional roundtrips and overhead, as well
as incompatibility with current Web technologies, such as third-
party authentication providers, or widely deployed middleboxes,
such as web caches.

We identify four key objectives for a secure session manage-
ment mechanism, aiming to be compatible with the current and
future Web. We propose SecSess, a lightweight session manage-
ment mechanism based on a shared secret between client and
server, used to authenticate each request. SecSess ensures that a
session remains under control of the parties that established it,
and only introduces limited overhead. During session establish-
ment, SecSess introduces no additional roundtrips and only adds
4.3 milliseconds to client-side and server-side processing. Once a
session is established, the overhead becomes negligible (< 0.1ms),
and the average size of the request headers is even smaller than
with common session cookies. Additionally, SecSess works well
with currently deployed systems, such as web caches and third-
party services. SecSess also supports a gradual migration path,
while remaining compatible with currently existing applications.

I. INTRODUCTION

Session management is a corner stone of any modern
web application, since it enables the temporary storage of
stateful information, crucial for widely-used features such as
user authentication, authorization, transaction processing, etc.
Considering that HTTP, the de facto communication protocol
of the Web, is stateless by design, additional technology
supporting session management has been added afterwards.
Unfortunately, current session management techniques’ depen-
dence on a bearer token is a prevailing source of security
problems, allowing an attacker to gain full access to a user’s
account.

Generally, a unique, random session identifier, generated
by the server-side application or underlying framework and
subsequently shared with the browser is used to identify the
session. The session identifier is a bearer token, making its
presence the only verification of the legitimacy of the request
within this particular session. Consequently, an adversary
obtaining the session identifier can easily impersonate the user
by sending requests with the stolen session identifier attached,
a so-called session hijacking attack [11]. Two common attack
vectors for stealing the cookie containing the session identifier
are through injected JavaScript code, or eavesdropping on the

network traffic, where the session cookie is attached to the
plaintext HTTP requests.

The first attack vector can be countered by adding the
HttpOnly flag to the session cookie, which makes the cookie
inaccessible from JavaScript. Similarly, the Secure flag is
introduced to counter the second attack vector, as it prevents
the browser from sending the cookie on insecure, plaintext
channels. However, the use of the Secure flag is closely
connected to deploying the web application over a secure
HTTPS channel, where the HTTP protocol is run over a TLS-
secured connection. While the benefits of HTTPS deployments
are evident, its adoption on the Web is rather limited. A
2010 study by Qualys [12] shows that out of 119 million
domains listening on port 80 or 443, only 0.72 million present
a TLS certificate with the corresponding domain name, of
which a large percentage (approx. 25%) does not even validate
correctly. Similarly, last month’s data from the SSL Pulse
project [15] shows that only 51% of approximately 160,000
sites that voluntarily tested their TLS security are actually
secure, with 6.2% of sites with an incomplete certificate chain.
While a scientific survey of the culprit for the slow and
potentially insecure adoption is lacking, explanations based
on conjecture often refer to (a) the potential performance
impact, of which the relevance has diminished with modern
hardware [10], (b) the difficulty of presenting the correct
certificate on shared hosting systems, addressed by the Server
Name Indication extension of TLS [6], which is not yet
supported on older operating systems, such as Windows XP,
(c) the impact of encrypted traffic on middleboxes installed by
ISPs and network administrators, such as web caches, traffic
inspection systems and malware detection systems, and (d)
the complexity of creating keys, signing requests, installing
certificates and dealing with browser-approved Certificate Au-
thorities in general.

Without a doubt, wide-scale deployment of HTTPS would
entail a significant security upgrade. However, an objective,
non-utopian view on the evolution of the state of practice
shows that full-scale TLS adoption will be an uphill battle,
leaving a transition phase with mixed usage of HTTP and
HTTPS. Additionally, while cookie-based session management
with the appropriate flags over an HTTPS channel is currently
adequately secure, the session cookie still remains a bearer
token. Therefore, we think it is crucial to invest in the security
of session management mechanisms used with the HTTP(S)
protocol, effectively eradicating attacks aiming to steal a user’s
session.

In this work, we give an overview of the currently available
session management mechanisms, and propose an alternative
lightweight session management mechanism, SecSess. SecSess



2

ensures that an established session remains under control of
the browser and server that created it, thereby effectively
mitigating attacks depending on the bearer token property
of the session identifier. SecSess can be implemented in an
application-agnostic way, enabling a gradual migration path,
and is compatible with the current infrastructure of the Web,
such as intermediate caches and traffic inspection boxes.
SecSess introduces no significant performance overhead and
fits well within the current flows of requests and responses
observed on the Web, thereby avoiding the introduction of
additional requests or roundtrips.

In the remainder of this work, we define the relevant threat
model for session management, identify four key objectives
for secure session management and discuss related work
(Section II). We present SecSess, a secure session management
mechanism (Section III), and conclude with a discussion
of several practical compatibility scenarios and deployment
strategies (Section IV).

II. SESSION MANAGEMENT ON THE WEB

Currently deployed cookie-based session management
mechanisms often lack adequate protection, allowing the ses-
sion identifier to be stolen by an adversary, for example
by eavesdropping on the network or by injecting malicious
JavaScript within the target application. Even within the Alexa
top 100, session management vulnerabilities can be found,
with the popular image sharing site Flickr as an example.

In this section, we define the threat model relevant for
session management, and determine four key objectives for
a secure session management mechanism. Finally, we discuss
related work in light of the proposed threat model and objec-
tives.

A. Threat Model for Session Management

Currently deployed session management mechanisms are
threatened and exploited in various ways. Two common threats
against current session management mechanisms are eaves-
dropping attacks and script injection attacks, both part of the
threat model we consider relevant for a secure session man-
agement mechanism to be deployed on an insecure channel.
Two inherently more powerful attacker types, where either the
network or client machine are under full control of the attacker,
are considered to be out of scope. Below, we cover both in-
scope attacker types and both out-of-scope attacker types in
more detail.

First, an attacker can gain some control over the network,
resulting in a passive network attack, also known as an
eavesdropping attack, where he can steal a session identifier
transmitted over an insecure channel. In the modern Web, with
ubiquitous publicly available wifi networks, numerous wifi
enabled devices, such as smartphones, and widely available,
easy-to-use attacker tools, this type of attack is a common
threat. Additionally, we consider the attacker to have access
to a second, high-grade network connection, which allows him
to eavesdrop on a request being sent, crafting a new request
using certain properties and values from the original request,
and have it reach the target server first.

Second, an attacker has the possibility to exploit script
injection vulnerabilities in the target application, enabling the
attacker to run custom scripts in the victim’s browser, within
the context of the target application. This attack vector is often
used to steal a user’s cookies, typically including the session
cookie, and sending them to an attacker-controlled server,
which can now impersonate the user to the target application.
Note that the capability to inject custom scripts is sufficient
to make the user’s browser send attacker-controlled requests,
but that session stealing attacks through script injection are
extremely common on the Web, making this threat relevant
and in-scope.

Two other attacker types in the Web context have sig-
nificantly stronger capabilities, and are typically protected
against on layers below session management, which is why
we consider them to be out-of-scope in this context. One
attacker type is the active network attacker, who is capable
of performing full man-in-the-middle attacks on the user’s
connection. While being highly relevant, this type of attacker
is typically countered by deploying TLS, which provides entity
authentication, confidentiality and integrity. Explicitly protect-
ing against active network attackers in our secure session
management mechanism would lead to similar characteristics
as TLS currently provides. Instead, we have opted to achieve
compatibility with current and future TLS deployment sce-
narios, thereby further strengthening session management on
the Web. Secondly, we do not consider attacks on the client
machine to be in scope. Adversaries able to compromise a
client machine, for example through malware installation or
a man-in-the-browser attack, have unlimited control over the
browser, its data and its requests.

B. Objectives for Secure Session Management

Based on the discussion of the current cookie-based session
management mechanism and its associated threats, we identify
four design objectives for a new session management mecha-
nism. A first objective strongly focuses on security in light of
the proposed threat model. The three remaining objectives are
of a more practical nature, covering performance overhead,
compatibility with the current infrastructure and a gradual
migration path.

Secure Session Management: Within the proposed threat
model, the state-of-practice session management mechanisms
are vulnerable by design, due to their reliance on the session
identifier as a bearer token. The key to achieve a secure
session management mechanism is therefore to get rid of these
bearer token properties, by anchoring the session to the parties
involved in establishing it. By preventing the unauthorized
transfer of an established session, eavesdropping and script
injection attacks are effectively mitigated.

Minimal Overhead: A crucial requirement for a new
session management mechanism in the Web is a minimal
overhead, well illustrated by browser vendors and web ap-
plication developers focusing on minimizing page load times.
Overhead in the Web is twofold, with on one hand perfor-
mance overhead, such as additional computations, and on the
other hand networking overhead, with increased message sizes



3

and additional roundtrips. Especially the latter is considered
problematic, since it delays the processing of the page and the
loading of sub-resources, such as style sheets, images, etc.

Compatibility: A newly proposed session management
mechanism should be compatible with the current Web and
its peculiar deployment scenarios. Examples are the integra-
tion of third-party content in Web sites, and the redirection
towards third-party service providers, such as a centralized
authentication provider. On the infrastructure level, the Web
deploys numerous middleboxes, such as web caches at vari-
ous levels, content inspection systems at network perimeters,
etc., which typically conflict with security measures offering
confidentiality.

Gradual Migration: Finally, a new mechanism looking
for adoption in the Web should support a gradual migration
path, starting with early adopters on the client and server side,
followed by a gradual increase of coverage in the Web. Key
in this process is to aim for an application-agnostic session
management mechanism, supporting implementation in cur-
rent clients and server software or application development
frameworks, thereby preventing the need for each individual
application to incorporate the new mechanism. Additionally,
backwards compatibility with parts of the Web that will not
quickly adopt the new mechanism is also important, since the
Web can not be updated in a single step.

C. Related work

The importance of securing session management is widely
recognized, with several proposals offering different ap-
proaches to tackle the problem. While all of these approaches
offer a secure session management mechanism, none of them
meets all of the objectives for running a secure session
management mechanism on an insecure channel. For example,
several solutions require extensive changes to legacy applica-
tions before they can be deployed, or integrate tightly with
the authentication process, making them them incompatible
with several common web scenarios, such as third-party au-
thentication providers. Additionally, most solutions depend on
the mandatory use of TLS, which makes them unsuitable for
deployment during a transition phase.

SessionLock: SessionLock [1] augments requests with an
HMAC based on a shared session secret. The session secret is
established over a TLS channel and stored in a secure cookie.
For HTTP pages, it is stored in the fragment identifier, a part
of the URL that is never sent over the network. SessionLock
also supports a non-TLS scenario, where the client performs an
out-of-band Diffie-Hellman key exchange with the server. At
the client-side, SessionLock is implemented using a JavaScript
library, making it vulnerable to injection attacks. Additionally,
SessionLock requires all requests within the application to be
made from JavaScript using AJAX, making it incompatible
with most legacy applications.

BetterAuth: BetterAuth [9] is an authentication proto-
col for web applications, offering protection against several
attacks, including network attacks, phishing and cross-site
request forgery. BetterAuth considers a user’s password to
be a shared secret, and uses that shared secret to agree on a

session secret over an insecure channel. The session secret is
subsequently used to sign requests, offering authenticity. The
strength of BetterAuth is that it protects against active network
attackers. A disadvantage is that the password needs to be
shared with the server, requiring an initial setup phase over
TLS, and additionally causes incompatibilities with current
third-party authentication services.

One-Time Cookies: One-Time Cookies [4] proposes to
replace the static session identifier with disposable tokens per
request, similar to the concept of Kerberos service tickets.
Each token can only be used once, but using an initially
shared secret, every token can be separately verified and tied to
an existing session. Establishing the initial credential is done
during the authentication phase, which is assumed to take place
over a secure channel.

TLS Origin-Bound Certificates: Origin-Bound Certifi-
cates (OBC) [5] is an extension for TLS, that establishes
a strong authentication channel between browser and server,
without falling prey to active network attacks. Within this
secure channel, TLS-OBC supports the binding of cookies and
third-party authentication tokens, which prevents the stealing
of such bearer tokens. While TLS-OBC offers strong security
guarantees, it obviously depends on TLS, making it difficult
to deploy in a transition phase from HTTP to HTTPS.

HTTP Integrity Header: The HTTP Integrity Header [7]
is a draft proposing to add integrity protection to HTTP. The
header depends on a key exchange, either over TLS or with a
traditional Diffie-Hellman exchange, after which the integrity
of the selected parts of a message is protected. A downside
of the Integrity header over an insecure channel is the use of
the original Diffie-Hellman protocol, which only establishes
a secret at the client after the first request and response
have been exchanged. This leaves the setup phase of the
session vulnerable to passive network attacks. Additionally, the
protocol does not support web caches or out-of-order requests.

III. SECSESS SESSION MANAGEMENT

The essence of improving upon the current session man-
agement mechanism, is effectively binding the session to the
initiating parties, abolishing the bearer token. Doing so ensures
that the session can not be transferred without authorization
of one of the initiating parties, protecting the session integrity,
even when used on insecure channels.

A. Design

Our secure session management mechanism is illustrated in
Figure 1. All session management instructions are contained
in the newly introduced Session header, which keeps track of
a session identifier (ID), as well as the parameters needed to
provide the necessary security guarantees. SecSess is based
on a shared session secret, which is safely contained in the
browser, inaccessible from any script code and never sent over
the network. Using this shared session secret, we can generate
a message authentication code (HMAC) for a request, which
is sent to the server in the Session header. Using the shared
secret associated with the session, the server can calculate the



4

Fig. 1: The detailed flow of requests and responses used by
SecSess.

same HMAC in order to verify whether the received request
is actually valid within the session.

Note that the session identifier is no longer a bearer token,
making its secrecy obsolete. Using a simple incremental
counter as an identifier is sufficient. An attacker attempting to
use a stolen session identifier also needs the session secret to
generate valid HMACs for crafted requests. Since this shared
secret is safely contained within the browser, it can not be
obtained by an attacker.

We further detail each aspect of SecSess in four steps:
(a) the actual session management mechanism, (b) how we
establish the shared session secret, (c) generating and verifying
request HMACs, and (d) preventing replay attacks. Figure 1
shows a detailed view of SecSess’s session establishment.

a) Session Management: Associating the server-side
stored state with the appropriate requests is simplified by using
a simple session identifier (ID). The session identifier is pro-
vided by the server using a Session response header (response
1 in Figure 1). The browser attaches the session identifier
to each request, using the newly introduced Session request
header. Note that while the use of a session identifier strongly
resembles traditional cookie-based session management, the
session identifier is no longer considered to be a bearer token,
and is useless without the shared secret

b) Shared Session Secret: The shared session secret,
needed to compute and verify HMACs on requests, is estab-
lished using the Hughes variant [8], [13] of the Diffie-Hellman
key exchange algorithm. The advantage of the Hughes variant
is that one party can pre-calculate a key, which is then securely

transferred to the second party. After running this protocol,
the server shares a secret with the browser, without any
information being disclosed to an eavesdropper.

Note that the advantage of the Hughes variant of Diffie-
Hellman is that the browser can compute the key before the
first request is sent. This is required to attach an HMAC to
the first request, so the server can verify that the sender of
the first and second request are in fact the same. Omission of
the first HMAC allows an eavesdropper to respond to the first
response, injecting his key material into the session, which is
problematic when the first request already caused some server-
side state to be stored in the session.

c) Request HMACs: When both parties possess a shared
key, authentication codes can be attached to messages and
verified afterwards using a hash-based message authentication
code (HMAC). Since this HMAC takes the request and the
shared secret as input, only the browser and the server can
compute the correct values, indicating the authenticity of
the request within the session, since it can only have been
generated by the browser holding the shared secret. Incoming
requests with an invalid HMAC are simply discarded.

Note that the input for the HMAC should be chosen
carefully. Technically, a passive network attacker can steal the
valid HMAC from an eavesdropped request and attach it to a
crafted request, having the crafted request reach the server first.
In order to maintain a valid HMAC on the crafted request, the
attacker can only modify the parts of the request that are not
part of the input to the HMAC function. Including the URL of
the request in this input prevents an attacker from directing the
request to a different destination, but still allows him to modify
the request headers and body (e.g. the destination account of
a wire transfer). Therefore, the HMAC also covers the request
headers, and, if present, the request body.

Covering the URL, request headers and request body in the
HMAC does not prevent an attacker from taking the valid
HMAC value and attaching it to a crafted request. However, it
does ensure that the attacker can not change the sensitive data,
hence limiting the contents of the crafted request to those of
the original request.

d) Replay Protection: Adding an HMAC to each request
prevents an attacker from modifying request data, but does not
protect against replaying a previously eavesdropped request.
Replay attacks can be countered by including a unique value
in the request, allowing the server to differentiate between
fresh and replayed requests. The unique value (C in Figure 1)
is part of the Session header, which is in turn protected by the
request HMAC. In case verification of the replay protection
token fails, the request is discarded.

B. Prototype Implementation
To show the feasibility of SecSess on the Web, we created a

proof-of-concept implementation. The client-side component
is implemented as a browser add-on, making it easy to
integrate in an existing Firefox browser, and the server-side
is implemented as a middleware component for the Express
framework, running on top of Node.js.

The browser-addon is implemented in 706 source lines of
code, of which 339 cover the protocol implementation itself.



5

We use the OpenSSL crypto library to perform the required
cryptographic calculations and operations. The recently intro-
duced js-ctypes allows to load a native library, thereby expos-
ing the required native functions to the JavaScript environment.

The server-side middleware for the Express framework is
implemented in 658 source lines of code, with a binary module
interfacing towards the OpenSSL crypto library. The SecSess
middleware can easily be added to a web server, enabling
secure session management with a single line of code.

C. Evaluation

We performed a thorough evaluation of SecSess, of which
we highlight some results in this section. The performance
overhead is very limited1, with an average 4.3 milliseconds
overhead for establishing a new session, shared between
client and server. There is one time-consuming step, where
the server generates his protocol parameters, which includes
the modular inverse of the private exponent, resulting in an
average processing time of 212 ms. Fortunately, this step only
needs to be done once, and can be precomputed during idle
times, or loaded from a precomputed file.

Next to performance overhead, we also investigated the
induced network overhead. By design, SecSess follows the
same sequence of requests and responses used in existing
applications, which deploy cookie-based session management
mechanisms, so no additional requests or round trips are
required. Furthermore, SecSess leads to a small reduction
in average message sizes compared to typical cookie-based
session management mechanisms (10 bytes on average), but
requires the transmission of the public components, causing
increased request sizes during establishment, and one response
with an increased message size (both approx. 390 bytes).

IV. DEPLOYING SECSESS

Compared to the ubiquitous cookie-based session manage-
ment mechanism, SecSess offers integrity-protected session
management on the current Web, without incurring a signifi-
cant overhead. In line with the final design objective, SecSess
is application-agnostic, and can be deployed as part of the
Web’s infrastructure or development frameworks. By gradually
implementing support in clients, servers and development
frameworks, as our Express middleware does, SecSess can be
enabled step by step, without loosing backward compatibility.
Legacy applications can be protected by means of a reverse
proxy, which translates between SecSess and cookie-based
session management.

A. Web Caching

Web caches play an important role in the Web’s infrastruc-
ture, boosting performance and limiting the required band-
width for large networks. Contrary to most secure session
management mechanisms, the design of SecSess explicitly
takes caching into account, and effectively achieves full com-
patibility with currently deployed web caches, both within the

1Experiments have been performed in a VirtualBox VM (Linux Mint 15),
which was assigned 1 Intel i7-3770 core and 512 Mb of memory

browser and on the intermediate network. First, by only adding
integrity protection, the caching of content is effectively en-
abled. Second, SecSess is robust enough to deal with cached
responses, which is fairly trivial once a session is established,
but challenging during establishment. If the client’s public
component would get lost in transit, for example when an
intermediate cache responds to a request, the server would
not be able to complete the session establishment, effectively
breaking the protocol. Concretely, SecSess addresses this by
continuing to send the public component as long as the
server has not confirmed the session establishment, effectively
preventing the public component from getting lost in a request
served from an intermediate cache.

The presence of middleboxes on the Web also sparks the
discussion on integrity protection for responses. Technically,
adding an HMAC to the response is straightforward, and based
on our evaluation results, would not lead to a noticeable
performance overhead. However, on the Web, responses are
often modified in transit, for example for advertisement or
censorship purposes. While we do not support these practices,
they do occur, leading to a violation of the integrity, which
in turn leads to client-side warnings and errors [3]. For these
reasons, we chose to focus on session management, leaving
response integrity protection a property for secure channels,
such as HTTPS deployments.

B. Ongoing Changes to the Web

As the Web is continuously evolving, the underlying tech-
nology often changes, or generally accepted practices become
frowned upon. Two such examples we highlight below are the
pending upgrade of the HTTP protocol to HTTP/2.0, and the
browser behavior in light of third-party cookies.

An upgrade of the HTTP/1.1 protocol by HTTP/2.0 aims to
smooth out some rough edges of the HTTP protocol. Being
based on the SPDY proposal [2] by Google, HTTP/2.0 keeps
the semantics of the familiar HTTP protocol, such as URLs,
requests and responses, but changes the representation of this
content on the wire, using different types of frames, such as a
HEADERS frame, a DATA frame, and several kinds of control
frames. In this light, SecSess is compatible with HTTP/2.0,
since it is applied on a higher level, before the request is
encoded in HTTP/2.0 frames.

Another reality in the current Web is user tracking, mainly
through third-party cookies. In recent discussions, the Firefox
team contemplated disabling such third-party cookies, but
eventually decided to postpone this decision [14]. Currently,
SecSess follows the behavior of cookies, hence also supports
sessions initiated by third-party content. Should it be desired
to refrain from establishing sessions by means of third-party
content, browser implementations can easily decide to limit the
session establishment to first-party content, and only use al-
ready existing sessions on third-party content. This essentially
limits the creation of sessions to sites that users voluntarily
visit, but still allows widgets of these sites, embedded in
other applications as third-party content, to operate in an
authenticated manner.



6

ACKNOWLEDGEMENTS

This research is partially funded by the Research Fund
KU Leuven, IWT and the EU-funded FP7 projects NESSoS,
WebSand and STREWS, and is supported by the BRAIN-be
programme of BELSPO.

With the financial support from the Prevention of and Fight
against Crime Programme of the European Union European
Commission Directorate-General Home Affairs. This publi-
cation reflects the views only of the authors, and the European
Commission cannot be held responsible for any use which may
be made of the information contained therein.

Images are based on diagrams drawn using websequencedi-
agrams.com

REFERENCES

[1] B. Adida. Sessionlock: securing web sessions against eavesdropping. In
Proceedings of the 17th international conference on World Wide Web,
pages 517–524, 2008.

[2] M. Belshe and R. Peon. Spdy protocol. IETF Internet Draft, 2012.
[3] M. Brinkmann. Firefox 4 supports content security policy. Online

at http://www.ghacks.net/2011/05/08/firefox-4-supports-content-security-
policy/, 2011.

[4] I. Dacosta, S. Chakradeo, M. Ahamad, and P. Traynor. One-time cookies:
Preventing session hijacking attacks with stateless authentication tokens.
ACM Transactions on Internet Technology (TOIT), 12(1):1, 2012.

[5] M. Dietz, A. Czeskis, D. Balfanz, and D. S. Wallach. Origin-Bound
Certificates : A Fresh Approach to Strong Client Authentication for the
Web. In Proc. 21st USENIX Security Symposium, 2012.

[6] D. Eastlake 3rd. Transport layer security (TLS) extensions: Extension
definitions. RFC 6066, 2011.

[7] P. Hallam-Baker. Http integrity header. Online at
http://tools.ietf.org/html/draft-hallambaker-httpintegrity-02, 2012.

[8] E. Hughes. An encrypted key transmission protocol. rump session of
CRYPTO, 94, 1994.

[9] M. Johns, S. Lekies, B. Braun, and B. Flesch. BetterAuth: Web
Authentication Revisited. In Proceedings of the 28th Annual Computer
Security Applications Conference, pages 169—-178, Dec. 2012.

[10] A. Langley, N. Modadugu, and W. Chang. Overclocking ssl. In Velocity:
Web Performance and Operations Conference, 2010.

[11] N. Nikiforakis, W. Meert, Y. Younan, M. Johns, and W. Joosen. Ses-
sionshield: lightweight protection against session hijacking. Engineering
Secure Software and Systems, pages 87–100, 2011.

[12] I. Ristic. Internet ssl survey 2010. Talk at BlackHat, 2010.
[13] B. Schneier. Applied cryptography: protocols, algorithms, and source

code in C. John Wiley & sons, 2007.
[14] J. Temple. Firefox cookie blocking effort delayed

again, as mozilla commitment wavers. Online at
http://blog.sfgate.com/techchron/2013/11/06/firefox-cookie-blocking-
effort-delayed-again-as-mozilla-commitment-wavers/, 2013.

[15] Trustworthy Internet Movement. Ssl pulse. Online at
https://www.trustworthyinternet.org/ssl-pulse/, December 2013.


