
Monitoring message size to break privacy

Current issues and proposed solutions

Alfredo Pironti
INRIA Paris-Rocquencourt, Paris, France

alfredo.pironti@inria.fr

January 15, 2014

Abstract

One of the Internet traffic features that can be easily collected by
passive pervasive monitoring is the size of the exchanged messages, or the
total bandwidth used by a conversation. Several works have showed that
careful analysis of this data can break users’ expected privacy, even for
encrypted traffic. Despite this, little has been done in practice to hide
message sizes, perhaps because deemed too inefficient or not a realistic
threat.

In this short paper, we contextualize message size analysis in the wider
pervasive monitoring scenario, which encompasses other powerful analysis
techniques, and we re-state the severity of the privacy breach that message
size analysis constitutes. We finally discuss proposals to fix this issue,
considering practical aspects such as required developer awareness, ease
of deployment, efficiency, and interaction with other countermeasures.

1 Introduction

As witnessed by recent awareness, pervasive monitoring is a reality, and it can be
used to break expected users’ privacy and confidentiality. One specific feature of
pervasive monitoring is that it analyzes communication meta-data, rather than
the communication payload itself, so that it can be applied to break encrypted
communications as well. Typical targets of pervasive monitoring are popular
application protocols such as HTTP or SMTP, their underlying security proto-
cols such as TLS or SSH, as well as the base communication protocols such as
TCP and IP.

Each protocol in the stack leaks some meta-data about the ongoing commu-
nication; even worse, the design of many of them does not even include security
nor privacy aspects. Experience with the TLS protocol has showed that basic se-
curity properties can be plugged into existing applications almost transparently,
with the notable exceptions of key management and computational overhead.
However, a challenge remains in the protection of communication meta-data,
and it is unclear yet whether this can be obtained purely as a pluggable aspect
of the communication, or whether application involvement is necessary.

Furthermore, one can probably never achieve full meta-data indistinguisha-
bility without making the Internet unsustainably inefficient. Hence, it is im-

1



portant to identify a trade-off between meta-data obfuscation and efficiency, so
that pervasive monitoring is thwarted with acceptable costs.

1.1 Brief discussion of meta-data availability

In a typical Internet communication, the source, destination and application
protocols are extremely easy to collect for a passive attacker. In itself, this con-
stitutes already a very valuable source of information, and probably constitutes
one of the highest priorities to address. Attempts to hide this information in-
clude the Tor project. Notably, Tor requires specific client and routing software,
but interoperates transparently with existing servers. While this is effective to
thwart most basic attacks, careful traffic analysis can still identify target web-
sites at the Tor-enabled communication source [9], and the plain communication
between the Tor exit node and the server remains the weakest point.

Other meta-data are provided by the so-called side channels, which include
at least timing, pattern and size of exchanged messages, as well as power con-
sumption and acoustic cryptanalysis. Often these side channels are correlated,
for example padding messages to hide their size may expose a new timing chan-
nel, if padding is processed quicker than application data.

According to the specific application, one side channel may be more ex-
ploitable than others, but in general trying to normalize different known side
channels seems a reasonable target to achieve, to minimize the attack surface.
Unfortunately, it turns out that some side channels are particularly tricky to
eliminate. For example, execution time usually depends on specific hardware
architectures, which may autonomously make unpredictable random choices to
optimize execution speed, defeating cleverly designed constant time program-
ming patterns.

In some other cases, some application cooperation is required in order to
mitigate the side channel. For example, normalizing message patterns require
all communicating parties (say, client and server) to adopt the same policy.
In some cases, intermediate layers can help (such as Tor on the client side by
sending messages of the same size at regular intervals), but with additional
performance costs.

To sum up, given the current state of the art against pervasive monitoring, it
seems that basic communication features such as endpoint identities are the most
effective to exploit, and thus require immediate action. Nevertheless, once those
are fixed, a wealth of communication meta-data remains available, that can be
exploited with moderate resources and automated analysis. In the following,
message size is discussed more deeply, along with some of its possible interactions
with other side-channel communication features.

2 Exploiting message size analysis

In the following, we will assume that all communication payload is end-to-end
encrypted (typically by using TLS), to provide its confidentiality and integrity.
Nevertheless, we will show to what extent message size and pattern analysis can
reveal some of the encrypted information.

In [2, 8], the size and number of objects returned by a web server following
a client HTTP request are used to identify the client’s requested URL. Hence,

2



even if the request was sent over TLS, its content would not be protected against
this kind of analysis. Even worse, when eavesdropping is performed at the server
side, not even clients using Tor-like solutions can avoid profiling the served web
pages.

In [1], the analysis of message size and direction is used to reveal users’
browsing habits. For example, user’s activity on an online health website is re-
constructed by observing the encrypted communication pattern: in practice, the
passive attacker gets to know whether the user searches for specific illnesses or
doctors, or if she is adding a health record to her account. Similarly, with search
engines, the encrypted searched keywords are revealed when the auto-completion
feature is in place, by observing the size of the returned auto-completion lists,
which is a function of the input string.

Bulletin boards are targeted in [3]. By correlating the size of encrypted
documents uploaded to and downloaded from a bulletin board, an eavesdropper
can track the flow of such documents. Additionally, if the bulletin board is
publicly available, the attacker can further correlate the document flow with its
content. A related attack tracks documents sent via mailing lists.

On this line of work, in [7] personal data shared between public social net-
works and private services such as email is correlated in order to de-anonymize
the users of the private services. Typically, user names and profile pictures are
shared between public social network profiles and private email services. An
attacker first accesses the public social network to gather the victim’s personal
data and their size; then the attacker passively observes connections to the tar-
get private service, being able to tell when the victim user logs in, by observing
the encrypted size of her personal data.

To sum up, the attacks above range from revealing the plaintext of requested
URLs, to track users’ behavior on target websites, to identify users who would
otherwise expect their identity to be encrypted with the rest of the communica-
tion. Even finer attacks can be mounted by correlating different features, such
as message sizes and their timing. Furthermore, such attacks become even more
effective and powerful in the presence of a pervasive observer, which controls
several sparse eavesdropping nodes.

3 Thwarting attacks based on message size anal-
ysis

What can be done to defeat or at least mitigate this kind of attacks? Näıvely,
one would give all the Internet traffic the same shape. Unfortunately, the sur-
vey in [4] shows that either this is unsustainably inefficient, or any attempt to
optimize it results in a substantial leak of the message sizes.

Other approaches try to randomly obfuscate the overall message size: some
of them operate at the transport level, for instance by adding random padding
to TLS fragments; others operate at the application level, for example by ran-
domly splitting a single HTTP response in several overlapping fragments [5].
We claim that such countermeasures are fundamentally flawed for two reasons.
First, they do not offer a deterministic level of protection: some sensitive parts
of the plaintext may not be sufficiently protected in some runs of the communi-
cation, and crucially the application has no control over this. Second, random

3



obfuscation is usually weak against repeated sampling: for example, if a user
fills a log in form several times a day, or often refreshes a web page, few samples
of the randomized communication are typically enough to recover the real size
of the messages [7]. By comparison, encryption guarantees, at least to some
extent, that all payload remains equally secret, independent of its position or
the number of times it is encrypted.

If hiding the size of all messages effectively and efficiently seems unrealistic,
pragmatically one can identify those parts of the message that are sensitive,
and make sure that at least their size is effectively concealed. This constitutes
a significant difference between classic encryption and side-channel mitigation.
The former can be indiscriminately applied to the whole communication pay-
load, and therefore can be plugged almost transparently. The latter instead is
applied according to a semantic discrimination, and hence requires application
cooperation in marking sensitive parts of the payload.

Application cooperation opens up a new series of challenges as well as pos-
sibilities. Here, a general discussion is presented; a more detailed and experi-
mental analysis using TLS as a case study is given in [7].

One challenge is developer awareness: while security and privacy are often
perceived as a necessary burden by developers, the awareness thereof can also
lead to positive byproducts. Misconfigured security is the fifth most common
web vulnerability according to OWASP: the more we allow developers to “plug
security” without understanding it, the more misconfigured systems we will get.
Developers who are required to assign sensitive levels to their application data
are potentially more informed about the threat model and the consequences
of an attack – and more pragmatically, they are accountable for the security
choices they make.

On the positive side, application cooperation allows for precise and efficient
countermeasures to message size analysis. The application can state which data
are sensitive, and to what extent their size shall be concealed. Hence, one can
rigorously measure the trade-off between message size indistinguishability and
network congestion impact; interestingly, this trade-off can be controlled by
the application over time, according to evolving privacy policies and network
features.

Another challenge is the interaction between developers and the underlying
security mechanisms. We claim that security mechanisms and protocols should
expose a precise API to applications, to let the developers express their security
requirements. This can range from function calls to identify sensitive data, to
new language constructs to express constant time operations.

Finally, we discuss the layering of such message size analysis countermea-
sures. One may argue that, since the application needs to be aware anyway, one
can directly implement countermeasures at the application level (say HTTP,
SMTP). While this is certainly possible, and sometimes even desirable for very
specific application scenarios, we claim that requiring each application to imple-
ment their own traffic analysis countermeasures in fact multiplies the chances
that some of them will get it wrong; moreover, it may make the application it-
self distinguishable from other applications, by the very way it conceals message
sizes.

We identify instead TLS as an amenable layer where to implement message
size hiding, so that the wealth of applications that already rely on it can also
benefit from the added message size analysis countermeasure. Technical details

4



of this idea can be found in [6, 7]; here we stress that, even if TLS is the
place where the countermeasure is implemented, still application cooperation
is needed. In particular, TLS has to offer an enhanced API that allows the
application to express its message size concealing requirements. Furthermore,
we observe that the countermeasure works best when the application exchanges
messages, as opposed to a (time sensitive) potentially unbound stream of bytes.
While the size of sensitive parts of an unbound stream can be conceived, hiding
the total size (or pattern) of a potentially unbounded stream is a task as hard
as concealing the whole size of a communication.

Other approaches may try to embed such message size analysis countermea-
sures within lower layer protocols, such as IPSec. While we do not find any
fundamental argument against this, we deem TLS more flexible and closely lay-
ered to the application, in such a way that makes TLS preferable to lower layer
solutions.

References

[1] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. Side-channel
leaks in web applications: A reality today, a challenge tomorrow. In IEEE
Symposium on Security and Privacy, pages 191–206, 2010.

[2] Heyning Cheng and Ron Avnur. Traffic analysis of SSL encrypted web
browsing, 1998.

[3] George Danezis. Traffic analysis of the HTTP protocol over TLS. Unpub-
lished draft.

[4] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton.
Peek-a-boo, I still see you: Why efficient traffic analysis countermeasures
fail. In IEEE Symposium on Security and Privacy, pages 332–346, 2012.

[5] Xiapu Luo, Peng Zhou, Edmond W. W. Chan, Wenke Lee, Rocky K. C.
Chang, and Roberto Perdisci. HTTPOS: Sealing information leaks with
browser-side obfuscation of encrypted flows. In Network and Distributed
Security Symposium, 2011.

[6] Alfredo Pironti and Nikos Mavrogiannopoulos. Length hiding padding for
the Transport Layer Security protocol. Internet Draft. Available at http:

//tools.ietf.org/html/draft-pironti-tls-length-hiding-02.

[7] Alfredo Pironti, Pierre-Yves Strub, and Karthikeyan Bhargavan. Identifying
Website Users by TLS Traffic Analysis: New Attacks and Effective Coun-
termeasures. Research Report RR-8067, INRIA, 2012.

[8] Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Russell, Venkata N. Pad-
manabhan, and Lili Qiu. Statistical identification of encrypted web browsing
traffic. In IEEE Symposium on Security and Privacy, pages 19–30, 2002.

[9] Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran, Linda Briesemeister,
Steven Cheung, Frank Wang, and Dan Boneh. StegoTorus: a camouflage
proxy for the Tor anonymity system. In ACM Conference on Computer and
Communications Security, pages 109–120, 2012.

5


