
Scaling up Service Composition with Downloadable
Directory Digests

Walter Binder, Ion Constantinescu, and Boi Faltings

Ecole Polytechnique F́ed́erale de Lausanne (EPFL)
Artificial Intelligence Laboratory
CH-1015 Lausanne, Switzerland

firstname.lastname@epfl.ch

Abstract. The composition of services that are indexed in a large-scale service
directory often involves many complex queries issued by the service composition
algorithm to the directory. These queries may cause considerable processing effort
within the directory, thus limiting scalability. In this position paper we present a novel
approach to increase scalability: The directory offers a compact directory digest that
service composition clients can download to solve the hard part of the composition
problem locally. In order to obtain the final solution, only a reduced number of simple
directory queries is needed.

Keywords: Service composition, service discovery, service directories

1 Introduction

There is a good body of work which addresses the service composition problem with plan-
ning techniques based either on theorem proving (e.g., Golog [6], SWORD [10]) or on hi-
erarchical task planning (e.g., SHOP-2 [14]). All these approaches assume that the relevant
service descriptions are initially loaded into the reasoning engine and that no discovery is
performed during composition.

However, due to the large number of services and to the loose coupling between service
providers and consumers, services are indexed in directories. Consequently, planning algo-
rithms have been adapted to a situation where planning operators are not known a priori, but
have to be retrieved through queries to these directories. In [11] the authors used a simple
service composition algorithm based on forward chaining. However, service discovery and
composition were not efficiently integrated, resulting in the discovery of large numbers of
services. Lassila and Dixit [5] addressed the problem of interleaving discovery and com-
position, but they considered only simple workflows where services had one input and one
output.

As current web service directories do not have semantically well-defined representations
and thus are not well-adapted for automatic matchmaking, we focused on a directory for
service descriptions based on OWL-S [9]. In [2] we presented a directory with a flexible
interface that allows to specify matching conditions and ranking heuristics in order to opti-
mize the interaction with different service composition algorithms. The service composition
algorithm presented in [3] ensures the type-compatibility of formal and actual service pa-
rameters. In [1] the query processing algorithm used by the directory was refined to enable a
best-first search, reducing the response time and processing effort within the directory.



However, despite of these advances, a single service composition may involve a large
number of directory queries, and each query may have to process a significant part of the
directory. E.g., in the case of service composition algorithms using forward chaining, a single
directory query may require the processing of 20% of the directory data. I.e., all queries
issued by a single service composition may together cause a workload in the directory that is
proportional to the directory size. As the directory is a shared resource, it is evident that this
kind of complex queries make the directory become a bottleneck. Massive replication of the
directory service is needed for scalability reasons, which may be very expensive due to the
large number of needed directory servers.

In this position paper we present a novel approach to service composition, which avoids
complex directory queries. In our approach, the directory offers a compact digest that sum-
marizes the input/output behaviour of available services. The service composition clients
download the digest and use it to solve the hard part of the composition problem locally.
Only simple directory queries are issued to obtain the final result.

This position paper is structured as follows: Section 2 introduces a simplified service de-
scription formalism and our definition of service composition. Section 3 gives an overview of
service composition exploiting a directory digest. Section 4 sketches several ways to repre-
sent a directory digest. Section 5 outlines how service composition algorithms can be adapted
to exploit a directory digest. Finally, Section 6 concludes this position paper.

2 Service Description and Service Composition

Service descriptions are a key element for service discovery and service composition, as they
enable automated interactions between applications. In our system, a serviceS is described
by two parameter sets – theinput parameters required by the serviceSin and theoutput
parameters provided by the serviceSout. Each parameter is identified by a unique name
in its set. We assume that this name uniquely identifies the meaning (semantics) of the pa-
rameter. Despite its simplicity, our service description formalism is consistent with existing
formalisms, such as WSDL [13] and OWL-S [9]. Part of the input/output specification of
services described in WSDL or OWL-S can be mapped to our simplified formalism.

Following the terminology used in [4],functional-level service compositionaddresses the
problem of selecting a set of services that – combined in a suitable way – are able to match
given user requirements. Each existing service is defined in terms of an atomic interaction,
i.e., in terms of its input and output parameters as well as of its preconditions and effects.
In [12] the authors introduceprocess-level service composition, a promising approach that
addresses complex service interactions and aims at generating executable code to implement
a composed service. However, in this position paper we focus on functional-level service
composition.

A service composition problemQ consists of a set of available input parametersQin

and a set of required output parametersQout. The composed service, which is represented
as a workflow, has to compute all required output parameters. Using forward chaining for
service composition, a serviceS can be invoked only if all the service inputs are available
(Sin ⊆ Qin). Upon invocation,S generates the outputsSout, which may be used as inputs
for further service invocations. I.e., the application ofS yields a new service composition
problemQ′, whereQ′

in = Qin ∪ Sout andQ′
out = Qout. The service composition problem

is solved ifQ′out ⊆ Q′in. In previous work [1] we used complex directory queries in order
to dynamically discover applicable services (i.e., services for which all required inputs are

2



available) during service composition, which caused a very high workload within the di-
rectory and consequently also slowed down the service composition algorithm because of
expensive remote interactions with the directory.

3 Service Composition with Directory Digest

The approach presented here increases scalability by avoiding complex directory queries
during composition. The directory offers a compact digest that summarizes the input/output
behaviour of the services indexed in the directory. Service composition clients download the
digest, which contains sufficient information to compute a service composition locally. The
interactions between the service composition client and the directory follows this scheme:

1. Download digest. The client periodically downloads the most recent version of the di-
rectory digest. As service descriptions usually remain constant for a longer period of
time, the clients do not have to reload their copy of the digest for every service composi-
tion request. Typical refresh rates would be once per day, once per week, etc. Directory
digests have version numbers, so the directory may support digest patches, i.e., incre-
mental updates of the digest.

2. Transform composition problemQ. As the digest is a compressed representation of the
input/output characterisations of indexed services, full parameter names are not avail-
able in the digest. Hence, the composition client sendsQ to the directory and receives
QT . The directory maps each parameter inQin resp.Qout to the corresponding digest
parameter inQT

in resp.QT
out. This translation is a simple mapping and can be processed

in linear time with the number of parameters inQ.
3. Compute composition. Using the directory digest andQT , the client locally computes

a service composition, without any queries to the directory. If the composition fails, the
client may update its copy of the directory digest and retry (the new digest may cover
the input/output behaviour of new, recently registered services).

4. Transform composition result. If the composition problem has been successfully solved
in the step before, the client knows the exact input/output characterization of the selected
services that are part of the composition workflow. It asks the service to provide service
descriptions for the selected services. The resulting directory query looks only forexact
matches, which can be processed very efficiently by the directory. E.g., the directory
may simply use the input/output characterization to compute a hash key and look up the
service descriptions in a hash table. If the desired input/output characterization is not
found in the directory (i.e., services have been removed), the client has to download an
up-to-date directory digest and retry.

4 Directory Digest Representation

The directory digest may be represented in many different ways. The simplest one is a bit
matrix, where each column corresponds to a certain parameter and each row describes an
available input/output characterization (i.e., for each row, the directory contains one or more
services with the corresponding input/output behaviour). Assume there aren different pa-
rameter names used by service descriptions in the directory, which are identified by their
indexi (0 ≤ i < n). The column position2i corresponds to theith parameter used as input,

3



while the position2i+1 corresponds to theith parameter used as output. This representation
is extensible, i.e., a new parameter can be included by adding 2 columns.

As an example, assume we have the parameter namesA (index 0), B (index 1), C
(index 2),D (index 3) and 2 service descriptionsS1 andS2 with the input/output behaviour
S1 : {B, C} → {D} resp.S2 : {B} → {C,D}. This can be represented by the following
bit matrix:

Column index 0 1 2 3 4 5 6 7 Corresponding
Column meaningAin Aout Bin Bout Cin Cout Din Dout service

0 0 1 0 1 0 0 1 S1

0 0 1 0 0 1 0 1 S2

For a large number of parameters and a large number of different input/output charac-
terizations, the matrix may become quite large. For instance, assume we have103 different
parameter names and106 different input/output characterizations. The resulting matrix has
2 ∗ 109 bits, i.e., about 238MB.

However, in practice, the matrix is sparse, i.e., each row has only a few bits set, because
the number of service inputs/outputs is limited. Hence, a more compact representation can
be obtained by listing the column indices of parameters that are present. If there are 1000
different parameter names, the column indices range from 0 to 1999, which can be repre-
sented by 11 bits. As a row delimiter, either an otherwise unused index (e.g.,211 − 1) may
be defined or we add one extra bit to mark the end of a row. If we assume that on average
each service has 3 inputs and 3 outputs and we use an extra bit to mark the end of rows, the
matrix can be represented by6 ∗ 12 ∗ 106 bits, which is less than 9MB. Further reductions
could be obtained e.g. by applying standard compression algorithms. In short, the size of the
directory digest is not prohibitive.

If we consider each row in the matrix a combination and the whole matrix a combination
set, we can also use a (serialized) 0-suppressed BDD (ZDD) as directory digest, which is
known to be a highly efficient representation of a combination set [7].

5 Adaptation of Composition Algorithm

Now the question arises how the composition clients use the directory digest. If the directory
digest is represented as a bit matrix, service composition can be implemented by simple bit
operations. These operations can be implemented highly efficiently by exploiting e.g. special
processor instructions, such as e.g. the MMX instructions of Intel processors.

IMask=(101010...) resp.OMask=(010101...) is the bit mask that selects all inputs
resp. outputs of a row.Inp are the available inputs (corresponding toQT

in), Outp are the
required outputs (corresponding toQT

out), represented as bit vectors. In the following, &
is the bitwise AND,| the bitwise OR, and>> the shift-right operation (inserting 0 on the
left side). The composition is completed if (Inp & (Outp >> 1)) = (Outp >> 1). A service
corresponding to a rowR is applicable if (R & Inp) = (R & IMask). After application of
the service,Inp is updated as follows:Inp := Inp | ((R & OMask) >> 1).

For the sparse matrix representation, a service composition algorithm using simple and
efficient operations can be easily derived, too. If the directory digest is represented as a ZDD,
we can leverage ZDD operations, in particular the ‘permission operation’® [8], in order to
select combinations that represent applicable services.

4



6 Conclusion

Service composition algorithms that dynamically retrieve possibly relevant service descrip-
tions from a large-scale service directory tend to issue a large number of complex directory
queries, causing high workload within the directory. As such an approach does not scale well,
we introduced downloadable directory digests that allow service composition algorithms to
solve the hard part of a composition problem locally without any interaction with the direc-
tory. Directory queries are only needed to translate the initial composition problem and to
obtain the final result. These queries are very simple and require only a lookup in a table,
significantly reducing the workload in the directory and boosting scalability.

References

1. W. Binder, I. Constantinescu, and B. Faltings. A directory for web service integration supporting
custom query pruning and ranking. InEuropean Conference on Web Services (ECOWS 2004),
pages 87–101, Erfurt, Germany, Sept. 2004.

2. I. Constantinescu, W. Binder, and B. Faltings. An extensible directory enabling efficient semantic
web service integration. In3rd International Semantic Web Conference (ISWC 2004), Hiroshima,
Japan, Nov. 2004.

3. I. Constantinescu, B. Faltings, and W. Binder. Large scale, type-compatible service composition.
In IEEE International Conference on Web Services (ICWS-2004), pages 506–513, San Diego, CA,
USA, July 2004.

4. R. Lara, W. Binder, I. Constantinescu, D. Fensel, U. Keller, J. Pan, M. Pistore, A. Polleres,
I. Toma, P. Traverso, and M. Zaremba. Knowledge Web research deliverable D2.4.2:
Definition of semantics for web service discovery and composition. Web pages at
http://knowledgeweb.semanticweb.org/, 2004.

5. O. Lassila and S. Dixit. Interleaving discovery and composition for simple workflows. InSemantic
Web Services, 2004 AAAI Spring Symposium Series, 2004.

6. S. A. McIlraith and T. C. Son. Adapting Golog for composition of semantic web services. In
D. Fensel, F. Giunchiglia, D. McGuinness, and M.-A. Williams, editors,Proceedings of the 8th
International Conference on Principles and Knowledge Representation and Reasoning (KR-02),
pages 482–496, San Francisco, CA, Apr. 22–25 2002. Morgan Kaufmann Publishers.

7. S. Minato. Zero-suppressed BDDs for set manipulation in combinatorial problems. In A.-S.
IEEE, editor,Proceedings of the 30th ACM/IEEE Design Automation Conference, pages 272–277,
Dallas, TX, June 1993. ACM Press.

8. H. G. Okuno, S. ichi Minato, and H. Isozaki. On the properties of combination set operations.
Information Processing Letters, 66(4):195–199, May 1998.

9. OWL-S. DAML Services, http://www.daml.org/services/owl-s/.
10. S. R. Ponnekanti and A. Fox. Sword: A developer toolkit for web service composition. In11th

World Wide Web Conference (Web Engineering Track), 2002.
11. S. Thakkar, C. A. Knoblock, J. L. Ambite, and C. Shahabi. Dynamically composing web services

from on-line sources. InProceeding of the AAAI-2002 Workshop on Intelligent Service Integration,
pages 1–7, Edmonton, Alberta, Canada, July 2002.

12. P. Traverso and M. Pistore. Automated composition of semantic web services into executable
processes. InInternational Semantic Web Conference, volume 3298 ofLecture Notes in Computer
Science, pages 380–394. Springer, 2004.

13. W3C. Web services description language (WSDL) version 1.2, http://www.w3.org/tr/wsdl12.
14. D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating DAML-S web services composition

using SHOP2. InProceedings of 2nd International Semantic Web Conference (ISWC2003), 2003.

5


