Copyright © 2010 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply.
CSS is a simple, declarative language for creating style sheets that specify the rendering of HTML and other structured documents. This specification is part of level 3 of CSS (“CSS3”) and contains features to describe layouts at a high level, meant for tasks such as the positioning and alignment of “widgets” in a graphical user interface or the layout grid for a page or a window, in particular when the desired visual order is different from the order of the elements in the source document. Other CSS3 modules contain properties to specify fonts, colors, text alignment, list numbering, tables, etc.
The features in this module are described together for easier reading, but are usually not implemented as a group. CSS3 modules often depend on other modules or contain features for several media types. Implementers should look at the various “profiles” of CSS, which list consistent sets of features for each type of media.
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.
Publication as a Working Draft does not imply endorsement by the W3C Membership. This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in progress.
The (archived) public mailing list www-style@w3.org (see instructions) is preferred for discussion of this specification. When sending e-mail, please put the text “css3-layout” in the subject, preferably like this: “[css3-layout] …summary of comment…”
This document was produced by the CSS Working Group (part of the Style Activity).
This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.
Changes from the previous draft, apart from editorial changes, include:
a clarification about using the (proposed) ‘gr
’ unit inside a template specification; the
definition of the intrinsic height of a ‘.
’
slot; and the addition of an open issue about setting writing modes on
individual slots.
This draft is related to the drafts about positoning with grid units
(‘gr
’) [CSS3GRID], flexible GUIs [CSS3-FLEXBOX], and tables [CSS3TBL]. The CSS
Working Group is considering combining some or all of these into a single
specification with all matrix-based layouts.
The section on “CR exit criteria” lists some conditions for this specification to become a W3C Recommendation.
display
’ property
position
’ property
::slot()
’ pseudo-elements
gr
’ unit in a template element
This CSS3 module depends on the following other CSS3 modules:
It has non-normative (informative) references to the following other CSS3 modules:
See section 1.4.2 of CSS level 2 [CSS21] for the grammar and other notations that this specification uses in property definitions.
(This section is not normative.)
The styling of a Web page, a form or a graphical user interface can roughly be divided in two parts: (1) defining the overall “grid” of the page or window and (2) specifying the fonts, indents, colors, etc., of the text and other objects. The two are not completely separate, of course, because indenting or coloring a text influences the perceived grid as well. Nevertheless, when one separates the parts of a style that should change when the window gets bigger from the parts that stay the same, one often finds that the grid changes (room for a sidebar, extra navigation bar, big margins, larger images…), while fonts, colors, indents, numbering styles, and many other things don't have to change, until the size of the window becomes extreme.
The properties in this specification work by associating a layout policy with an element. Rather than letting an element lay out its descendants in their normal order as inline text or as blocks of text (the policies available in CSS level 1), the policy defined in this module, called template-based positioning, gives an element an invisible grid for aligning descendant elements.
Because layouts on the Web have to adapt to different window and paper sizes, the rows and columns of the grid can be made fixed or flexible in size.
The typical use cases for these properties include:
Template-based positioning is an alternative to absolute positioning, which, like absolute positioning, is especially useful for aligning elements that don't have simple relationships in the source (parent-child, ancestor-descendant, immediate sibling). But in contrast to absolute positioning, the elements are not positioned with the help of horizontal and vertical coordinates, but by mapping them into slots in a table-like template. The relative size and alignment of elements is thus governed implicitly by the rows and columns of the template. A template doesn't allow elements to overlap, but it provides layouts that adapt better to different widths.
The mapping is done with the ‘position
’ property, which specifies in this
case into which slot of the template the element goes. The template itself
is specified on the ‘display
’ property of some ancestor of the
elements to remap.
In this example, the four children of an element are assigned to four slots (called a, b, c and d) in a 2×2 template. (All mark-up examples in this specification are HTML fragments, unless otherwise stated.)
<style type="text/css"> dl { display: "ab" "cd" } #sym1 { position: a } #lab1 { position: b } #sym2 { position: c } #lab2 { position: d } </style> <dl> <dt id=sym1>A <dd id=lab1>A is een aapje <dt id=sym2>B <dd id=lab2>B is de bakker </dl>
Templates can also help with device-independence. This example uses Media Queries [MEDIAQ] to change the overall layout of a page from 3-column layout for a wide screen to a 1-column layout for a narrow screen. It assumes the page has been marked-up with logical sections with IDs.
@media all { body { display: "aaa" "bcd" } #head { position: a } #nav { position: b } #adv { position: c } #body { position: d } } @media all and (max-width: 500px) { body { display: "a" "b" "c" } #head { position: a } #nav { position: b } #adv { display: none } #body { position: c } }
Elements can be positioned this way, but not made to overlap, unless with negative margins. Here is how the “zunflower” design of the Zen Garden could be done:
#container { display: "abc" } #intro { position: a; margin-right: -2em; box-shadow: 0.5em 0.5em 0.5em } #supportingText { position: b; box-shadow: 0.5em 0.5em 0.5em } #linkList { position: c }
Template-based positioning borrows some concepts from table layout, in particular the idea of aligning elements in rows and columns, so that they constrain each other's size. But there are also differences. This example shows some of them. Assume this document fragment:
<div class=group> <div>aa aa aa aa aa aa</div> <div>bbb</div> <div class=menu>ccccc</div> </div>
We can lay it out as three columns, as the following illustrations show. The style sheet would contain the following.
.group {display: table} .group > div {display: table-cell}
We can also use a template, in which case the style sheet would contain this:
.group {display: "abc"} .group > div {position: a} .group > div + div {position: b} .group > div + div + div {position: c}
By default, the table is as wide as needed to fit its contents. To make sure it is as wide as its containing block, we need to add
.group {display: table; width: 100%}
That is not needed for the template, but, on the other hand, if we want the template to fit its contents, we would need to say so:
.group {display: "abc"; width: fit-content}
(See [CSS3BOX] for the definition of
the ‘width
’
property.) The columns of the template are by default all the same size.
The columns of the table satisfy certain constraints, but the exact size
is not defined. We can make them all the same by adding a rule (see [CSS3TBL]):
.group {display: table; width: 100%; table-layout: fixed}
In both styles, we can set a column to a certain size:
div.menu {width: 3em}
resp.,
.group {display: "abc" * * 3em}
If there is an unknown number of columns (children of the div.group
element), the style sheet for the table model will automatically take
them into account. The style sheet for the template model, however,
creates a template of exactly three columns and can't handle tables with
an unknown number of columns. The extra elements will be added into the
default slot (in this case the ‘a
’ slot).
In both models, elements can have borders, but only in the table model can borders be collapsed, which makes setting borders a little easier in the table model:
.group {display: table; border-collapse: collapse} .group > div {border: solid}
resp.,
.group > div {border: solid; border-left: none} .group > div:first-child {border-left: solid}
In the template model, the order of the elements is explicit, and thus it is possible to reverse the order of the columns:
.group > div {position: c} .group > div + div {position: b} .group > div + div + div {position: a}
In the table model, the order of the rows and columns is given by the document source and thus can't be changed.
This example shows a way to move notes to the end of a section. “Notes” in this example refers to elements in HTML with a class of “note”. A fragment of HTML such as
<div class=section> <p>The balubious coster of the fifth secter<span class=note> The sixth secter coster is a difter manon.</span> of The Rollow Carpug mentizes a costernica. <p>… </div>
with this style sheet
div.section { display: "@" available "F" available} .note { position: F; content: counter(note) ".\A0" contents; counter-increment: note; font-size: smaller} .note::before { content: counter(note); position: @; vertical-align: super; font-size: larger}
results in a rendering similar to this:
display
’ propertyName: | display |
New value: | inline? [ <string> [ / <row-height> ]? ]+ <col-width>* |
Percentages: | N/A |
Computed value: | specified value |
An element with this ‘display
’ is similar to a table element, in
that its content is laid out in rows and columns. The two main differences
are that the number of rows and columns doesn't depend on the content, but
is fixed by the value of the property; and that the order of the
descendants in the source document may be different from the order in
which they appear in the rendered template.
If the keyword ‘inline
’ is present, the
element is an inline-level element, otherwise it is a
block-level element [CSS3BOX].
Note that ‘display
’ is extended to apply to ‘@page
’ rules as well and that it
has a different default there, viz., ‘"@"
’. See
“Templates in paged media” below.
Each string consist of one or more letters (see <letter> below), at signs (“@”), periods (“.”) and spaces. Each string represents one row in the template, each character other than a space represents one column in that row. Spaces have no meaning. They may be added for readability.
The symbols in the template have the following meaning
Multiple identical letters in adjacent rows or columns form a single slot that spans those rows and columns. Ditto for multiple “@”s. Uppercase and lowercase are considered to be the same letter (i.e., the template is case-insensitive).
Non-rectangular slots and multiple slots with the same letter are illegal. A template without any letter or “@” is illegal. A template with more than one “@” slot is illegal. These errors cause the declaration to be ignored.
Note: non-rectangular and disconnected regions may be permitted in a future update of CSS.
Rows with fewer columns than other rows are implicitly padded with periods (“.”) (that will thus not contain any elements).
Each slot (letter or “@”) acts as a block element for its contents.
Each <row-height> sets
the height of the preceding row. The default is ‘auto
’. The values can be as follows:
gr
’
units, these refer to the inherited grid, not the grid defined by the
template itself (see “Definition of the ‘gr
’ unit in a template element”).
Each <col-width> sets the
width of a column. If there are more <col-width>s then columns, the
last ones are ignored. If there are fewer, the missing ones are assumed
to be ‘*
’. Each <col-width> can be one of the
following:
*
’ have
the same width. See the algorithm below.
minmax(p,q)
’ is treated as
‘minmax(p,p)
’.
minmax(min-content,
max-content)
’.
Note that it is legal to specify no widths at all. In that case, all columns have the same width.
The orientation of the template is independent of the writing mode
(‘direction
’ and
‘block-flow
’
properties): the first string is the topmost row and the first symbol in
each string is the leftmost column.
<style type="text/css"> div { display: ".aa..bb." } p.left { position: a } p.right { position: b } </style> <div> <p class=left>Left column <p class=right>Right column </div>
An element with a template value for its ‘display
’ property is called a template element. An element's template ancestor is defined (recursively) as
follows:
position: fixed
’,
‘position: absolute
’, a value of ‘float
’ that is not
‘none
’ or the element is the root element,
than it has no template ancestor.
display
’, then that
parent is the element's template ancestor.
First, the intrinsic minimum and intrinsic preferred widths are defined as follows:
A column with a <col-width> of a given <length> has intrinsic minimum and intrinsic preferred widths both equal to that <length>.
A column with a <col-width> of ‘*
’ has an infinite intrinsic preferred width. Its
intrinsic minimum width is 0.
A column with a <col-width> of ‘min-content
’ has an intrinsic minimum width and
intrinsic preferred width that are both equal to the largest of the
intrinsic minimum widths of all the slots in that column:
block-flow
’ of
‘tb
’ with its contents as its children.
Should the block progression direction be a
property?
A column with a <col-width> of ‘max-content
’ has an intrinsic minimum width and
intrinsic preferred width that are both equal to the largest of the
intrinsic preferred widths of all the slots in that column:
block-flow
’ of ‘tb
’ with its contents as its children. Should the block progression direction be a
property?
A column with a <col-width> of ‘minmax(p,q)
’ has an intrinsic
minimum width equal to p and an intrinsic preferred width
equal to q.
Next, the layout algorithm distinguishes between elements with and without an a-priori known content width.
The width isn't known a-priori, if, e.g., ‘width
’ is ‘auto
’ and the element is floating, absolutely
positioned, inline-block or a child of a block with vertical writing mode.
If the element has an a-priori width:
overflow
’).
direction
’ is ‘ltr
’ or ‘rtl
’,
respectively.
Note: In a future update of CSS, columns might get a property to allow them some flexibility to become wider than their intrinsic preferred width under certain conditions or by a certain amount.
If the element doesn't have an a-priori width:
An extra step may be necessary in paged media if a page break occurs inside a template (only in the case of an element-based template, see below). If the template, after computing the width and height, is too big to fit on the current page, and if a suitable break point exists, the part of the template after that break point is put on the next page. The width of the containing block on that page may be different if that page has different margins from the current page (see [CSS3PAGE]) and thus the width and height of that part of the template must be recalculated in the new context.
Note that the widths of the columns can be completely
determined before laying out any of the contents as long as there are no
columns with a <col-width>
of ‘min-content
’ or ‘max-content
’.
The height of the template is the smallest possible under the following constraints:
*
’ are the
same height.
auto
’ is at least as high as every
letter or “@” slot that spans exactly that sequence of rows.
height
’ is ‘auto
’,
then every sequence of one or more rows of which at least one has a
height set to ‘*
’ is at least as high as every
letter or “@” slot that spans exactly that sequence of rows.
height
’,
unless that value is ‘auto
’, or unless all
rows have a height set to <length>.
If the template is higher than the element's ‘height
’, the element overflows, see ‘overflow
’.
Note: In a future update of CSS, rows might get a property to specify how the height of that row is adjusted in case the above calculation yields a template that is less tall than the element itself.
The height of a slot is measured as if the slot had one anonymous block
as a child that contains all the slot's contents, and both the slot and
the anonymous block have a ‘block-flow
’ of ‘tb
’
and the anonymous block's height is computed as a flow root (see
“Auto heights for flow roots” in [CSS3BOX]). Roughly, this means the
height is from the top margin edge of the topmost element to the bottom
margin edge of the bottommost element or of the bottommost float. Should the block progression direction be a property?
The intrinsic height of a ‘.
’ slot is 0.
This example divides the window in three rows and three columns, separated by 1em of white space. The middle row and the middle column are flexible, the others are fixed at a specific size. The first column is 5em wide, the last one 10em.
<style type="text/css"> body { height: 100%; display: "a . b . c" /2em ". . . . ." /1em "d . e . f" ". . . . ." /1em "g . h . i" /2em 5em 1em * 1em 10em} #logo {position: a} #motto {position: b} #date {position: c} #main {position: e} #adv {position: f} #copy {position: g} #about {position: h} </style> <p id=logo><img src=... <p id=motto>Making Web pages since 1862 <p id=date>August 2, 2004 ...
[Add example with three columns, first two as narrow as possible, third one taking up all remaining space.]
position
’ propertyName: | position |
New value: | <letter> | same |
Percentages: | N/A |
Computed value: | ‘<letter> ’ or ‘static ’; see text
|
This value of the ‘position
’ property specifies into which row
and column of a template the element is placed. The <letter> must be a single letter, with category
Lu, Ll or Lt in Unicode [UNICODE]), or a “@” symbol.
static
’.
same
’ instead of a letter
computes to the same letter as the most recent element with a letter as
position that has the same template ancestor. If there is no such element, the value
computes to ‘static
’.
The containing block of an element with one
of these values for ‘position
’ is the slot in the template into
which it is flowed.
Multiple elements may be put into the same slot. They will be laid-out
according to their ‘display
’ property in the order they occur in
the source document.
The content of a template element is put in the slot marked with “@”s. If there is no such slot, the content is put in the first (leftmost) slot on the first row that doesn't consist of only “.”.
A common markup in HTML for illustrations with captions is as follows:
<div class=figure> <p><img src="paul.jpg" alt="..."> <p class=caption>A pond in a playground in Amsterdam </div>
The caption can be put above the image by using a template as follows:
div.figure {display: "aaa" ".b." * min-content *} div.figure p {position: b} div.figure p.caption {position: a; text-align: center}
The caption can be wider than the image and the image will be centered.
When the figure is floating, it is probably better to not let the caption become wider than the image (unless the caption cannot be made narrow enough):
div.figure {float: right; display: "a" "b" min-content} div.figure p {position: b} div.figure p.caption {position: a; text-align: center}
In this example, a form is laid out on a grid, with two labels and two input boxes and a submit and a reset button:
form { border: thin solid; display: "aaaa.bbbb" "........."/1em "cccc.dddd" "........."/1em "...ee..ff" } label[for=minv] { position: a } input#minv { position: b; display: block } label[for=maxv] { position: c } input#maxv { position: d; display: block } input[type=submit] { position: e; display: block } input[type=reset] { position: f; display: block }
Here is the fragment of HTML that the style is applied to:
<form action="./"> <label for=minv>Enter minimum value:</label> <input id=minv name=minv> <label for=maxv>Enter maximum value:</label> <input id=maxv name=maxv> <input type=submit value="OK"> <input type=reset value="Reset"> </form>
The addition of ‘display: block
’ causes the
form controls to use the width computation of blocks, in other words:
they will be as wide as their containing block, which in this case means
that they will be as wide as the slot they are assigned to. Without it,
they would be inline elements and just be left-aligned in their slots.
This example shows that templates can be nested. The body has two columns. The #content element that goes into the second column has itself another template, into which the various “modules” are placed.
For clarity, the inner template uses different letters for the slots than the outer template. This is not required.
<style type="text/css"> body { display: "a b" 10em *; } #nav { position: a; } #content { position: b; display: "c . d . e " ". . . . . "/1em ". . f . . " * 1em * 1em *; } .module.news { position: c; } .module.sports { position: d; } .module.personal { position: e; } #foot { position: f; } </style> <body> <ul id="nav"> <li>navigation</li> </ul> <div id="content"> <div class="module news"> <h3>Weather</h3> <p>There will be weather</p> </div> <div class="module sports"> <h3>Football</h3> <p>People like football.</p> </div> <div class="module sports"> <h3>Chess</h3> <p>There was a brawl at the chess tournament</p> </div> <div class="module personal"> <h3>Your Horoscope</h3> <p>You're going to die (eventually).</p> </div> <p id="foot">Copyright some folks</p> </div> </body>
This example shows the use of ‘same
’ to put
DD
elements in the same slot as the preceding
DT
.
... DL {display: "a.b.c" * 2em * 2em *} DT.mineral {position: a} DT.animal {position: b} DT.plant {position: c} DD {position: same; margin-left: 1em} ... <DL> <DT class=animal>falcon <DD>This bird of prey... <DT class=animal>rabbit <DD>Local restaurants... <DT class=mineral>granite <DD>This rock occurs... <DT class=plant>olive <DD>The fruit of... <DT class=mineral>limestone <DD>A rock composed of... <DT class=plant>pine <DD>The western half... </DL>
::slot()
’ pseudo-elementsThe slots of a template
element can be individually addressed with the ‘slot()
’
pseudo-element.
For example, the following sets the color and vertical alignment of some of the slots in a template:
body { display: "aaa" "bcd" } body::slot(b) { background: #FF0 } body::slot(c), body::slot(d) { vertical-align: bottom }
A ‘::slot(X)
’ pseudo-element
selects the slot with name X (a letter or “@”) of the
subject of a selector. If that subject is not a template element, or if it has no
such slot, the pseudo-element selects nothing. (I.e., these cases are
legal selectors, they just happen to match nothing.)
Only the following properties apply to the ‘slot()
’ pseudo-element:
background
’
shorthand).
vertical-align
’
overflow
’
property.
block-flow
’ and ‘direction
’ properties?
box-shadow
’ property?
The background of a slot is drawn immediately on top of the background of the template element itself.
The ‘vertical-align
’ property of a ‘::slot()
’ pseudo-element can be
used to align elements vertically in a slot. The effect is as if the hypothetical
anonymous block that contains the slot's contents is positioned
as follows:
vertical-align: baseline
’. Baselines of
content inside floats are not taken into account. Slots that span
several rows are considered to occur in their topmost row.
For all other values, the content is top aligned: the top margin edge of the anonymous box coincides with the top edge of the slot.
A template can also be attached to a page, rather than an element. Such a template is called a page-based template as opposed to an element-based template.
The difference between page-based layout templates and element-based ones is that the size of a slot in a page-based layout template only depends on the template and the page size, never on the intrinsic size of the content.
Another difference is that content that overflows a slot may cause a page break: the rest of the content is put on another page. See below.
The syntax of a page-based template is the same as that of an
element-based one, but the declaration appears in an ‘@page
’ rule and any <col-width> or <row-height> that is neither
‘*
’ nor a <length> is treated as if it were
‘*
’.
Although the occurrence of keywords, such as ‘fit-content
’ or ‘auto
’, is
valid and well defined, a UA, especially an editor, may want to issue a
warning, because those keywords don't have any useful function in
page-based templates.
@page :first { display: "abc" "def" } @page { display: "def" } body {position: e} h1 {position: b}
The default ‘display
’ value of a page is ‘display: "@"
’.
The following rule is typically not needed, because it is the default:
@page { display: "@" }
The height of the slots in a template is computed as in the section “Computing the height of the slots,” except that the page area's height [CSS3PAGE] is used instead of the element's height. Similarly, the width of the slots is computed as in the section “Computing the width of the slots,” but with the page area's width replacing the element's width.
Note that certain rules in those sections are never applied,
because the page area's width and height are always known a-priori and the
width and height of slots is always a <length> or ‘*
’.
If a slot of a page-based template on non-interactive media has an ‘overflow
’ property of
‘visible
’, then content that overflows that
slot in the block progression direction (i.e., below the slot in the case
of horizontal text) causes a page break and is continued on the next page.
[What happens in non-interactive media with an ‘overflow
’ of ‘scroll
’ or ‘auto
’?]
For page breaking purposes, each slot is considered as a page and the page break properties on the elements in that slot determine where the content for that slot is broken. Content after the page break is put in the slot of the same name on the next page that has such a slot. If there is no such page the content after the page break is not displayed? displayed in the default slot?
Note that this may happen if the template for the first page
(‘@page :first
’) uses a letter that occurs in
no other @page rule. Possibly also if a page template is bound to a
“named page” [CSS3GCPM] and that named page is
not allowed to repeat. (At the time of writing, this is only a proposal in
the GCPM Module.)
Note that an element A that appears later in the document than an element B may thus be displayed on an earlier page than element B, because their respective slots are broken across pages in different ways.
Because of limitations of a device (e.g., limited memory), it may be that a UA has to print a page (force page breaks) even though some slots aren't filled yet.
This example shows how the first page may have a different layout from
the other pages. The slot ‘a
’ only occurs on
the first page. If the content for that slot (in this case: all H1
elements) is too long, the remaining content of that slot will not be displayed. The slot ‘@
’ occurs on normal pages and all its content can thus
be displayed by adding additional pages.
@page :first { display: "a" "@" } @page { display: "@" /* This is the default */ } h1 {position: a}
Element-based templates in paged media may be broken across pages, subject to the page break properties. In addition to the break points listed in the Paged Media module [CSS3PAGE], a page break may occur between two rows in a template, if there is a possible break point at the same height or higher in all slots that span those two rows; and a page break may occur inside a row if there is a possible break point in all slots in that row.
Try to be more precise?
If ‘page-break-before
’ or ‘page-break-after
’ is ‘right
’, ‘left
’ or ‘always
’ on an element inside a slot in an element-based
template, the value is treated as ‘auto
’
instead.
The ‘page
’ property
does not apply to elements inside a slot of an element-based template.
Any other forced page break (see section 5.5 of Paged Media [CSS3PAGE]) causes a new page to be created and all content in the document after this page break will be put in slots on the new page or on later pages: slots on any previous pages will not be further filled.
A slide presentation can be made with a template for each page (i.e., slide) and forced page break between the slides:
@page { display: "a" / 5em "@" / * "b" / auto } h1 { page-break-before: always; position: a } p.note { position: b }
With a document similar to this: (fragment)
<h1>Slide 1 title</h1> <ul> <li>Topic one </ul> <h1>Slide 2 title</h1> <ul> <li>More topics </ul> <p class=note>Note the note
The document in the example above doesn't have an element that
corresponds to a slide; a slide simply starts at an H1 and ends before
the next H1. But if there is a DIV around each slide (as is the case in
many slide formats in practice), the same effect can also be achieved
without page-based templates, by using the ‘vh
’ unit [CSS3VAL]:
div.slide {height: 100vh; display: "a"/5em "@" "b"/intrinsic; page-break-before: always} h1 {position: a} p.note {position: b}
With a document similar to this: (fragment)
<div class=slide> <h1>Slide 1 title</h1> <ul> <li>Topic one </ul> </div> <div class=slide> <h1>Slide 2 title</h1> <ul> <li>More topics </ul> <p class=note>Note the note </div>
Both page-based and element-based templates can be used in the same document.
@page { display: "a@" } :lang(fr} {position: a} div.special {display: "abc" "abd"}
Here is a page as one might find in a newspaper. It combines a layout template with multicolumn layout.
@page :first { display: "A A A A A A A A A" / 5cm ". . . . . . . . ." / 0.25cm "B . C C C C C C C" / * "B . C C C C C C C" / * "B . C C C C C C C" / * "B . C C C C C C C" / * "B . C C C C C C C" / * "B . D D D D D D D" / * "B . D D D D D D D" / * "B . E E E . F F F" / * "B . E E E . F F F" / * "B . E E E . F F F" / * * 3em * 3em * 3em * 3em * } h1 {position: a; border-bottom: thick; margin-bottom: 1.5em} #toc {position: b; margin-right: -1.5em; border-right: thin; padding-right: 1.5em} #leader {position: c; columns: 4; column-gap: 3em} #art1 {position: d; columns: 4; column-gap: 3em; border-top: thin} #art2 {position: e; columns: 2; column-gap: 3em} #art3 {position: f; columns: 2; column-gap: 3em}
If a slot on a page is full and the content continues on the
next page, it may be useful to insert something like “continued on page
X.” This is useful at any page break, but more important if there are
multiple “flows” of content on each page. Maybe a page-break-content
property? ‘page-break-content: "▶ continued on p. "
targetcounter(???, page)
’ or extend text-overflow from [CSS3TEXT]?
How do you set the ‘vertical-align
’ property of a slot in a page?
Does the ‘::slot()
’
pseudo-element apply? ‘@page :first :slot(A)
{vertical-align: bottom}
’
An element with a computed value of a letter for its ‘position
’ is a
positioned element (see [CSS3POS]) and thus the ‘z-index
’ property
applies to it. The general rules for stacking
contexts [ref in CSS3?] apply.
Note that an element can only have such a computed value if it has an ancestor that is a template element.
This example uses ‘z-index
’ and negative margins to make the
element in the middle slot partly overlap the other slots:
body { display: "a.b" ".c." "d.e"; height: 240px; width: 240px } ::slot(a) { background: #0C0 } ::slot(b) { background: #C00 } ::slot(d) { background: #00C } ::slot(e) { background: #A0A } #c { background: #FD0; height: 120px; position: c; margin: -20px; z-index: 1 }
An element may be positioned inside a template (computed value of <letter> for its ‘position
’ property)
and be a floating element at the same time (computed value of its ‘float
’ property is other
than ‘none
’). The following cases must be
distinguished:
float
’ specifies
that the element floats to the top or bottom of the page (in a horizontal
writing mode) or the left or right of the page (in a vertical writing
mode), the ‘position
’ property doesn't apply.
gr
’ unit in a template elementThe Grid Positioning Module [CSS3GRID] defines a ‘gr
’ unit that is usable with certain properties that
position or size boxes. A template
element defines an implicit grid (in the terminology of
that module) for use with the ‘gr
’ unit. The
vertical grid lines are formed by the left and right content edges of the
template element and by the edges between the columns of the template. The
horizontal grid lines are formed by the top and bottom content edges of
the template element and by the edges between the rows of the template.
The top content edge and the left content edge have the number 0.
In other words, a template with n columns and m rows defines n + 1 vertical grid lines numbered 0 to n and m + 1 horizontal grid lines numbered 0 to m.
For example, with the following style sheet
div { display: "abc" "def"; position: relative} p { position: f} #p1 { position: absolute; top: 1gr; left: 2gr}
and this document fragment
<div> <p>Lorem ipsum dolor sit amet, consectetaur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. <p id=p1>Position me. </div>
the “p1” element will be positioned with its top left corner against the top left corner of slot f. But note that it is not part of the content of slot f, it overlaps with it.
For this specification to be advanced to Proposed Recommendation, there must be at least two independent, interoperable implementations of each feature. Each feature may be implemented by a different set of products, there is no requirement that all features be implemented by a single product. For the purposes of this criterion, we define the following terms:
The specification will remain Candidate Recommendation for at least six months.
A test suite will be developed during the Candidate Recommendation phase of this specification.
(This section is not normative.)
The following types of use cases were considered for template-based layout.
Standard Web pages.
Grids and other table-like layouts. This includes grid layouts, frame layouts and table-like subdivision of a rectangular area.
A layout structure with “flex”ing information. The flexing is represented by constraints that specify how the cells are to relate to one another: which cells are to be allowed to grow or shrink and how much. There may also be a priority ordering, which determines, based on the size of the allowed display window, which cells shrink, which grow and under which conditions.
Layout structures with absolutely positioned (fixed-size) elements; for example a block of text into which several illustrations intrude at fixed positions within the block. This is like a float with respect to tightly wrapping the text around the intrusion, but the position of the intrusion is determined by the layout structure, not the content flowed into that structure.
An example of this is a multicolumn layout with one or more “absolutely positioned floats” that intrude on the columns (see figure).
Multiple, disconnected, fixed-size areas on a page that are chained together, each one receiving the content that doesn't fit in the previous slot. In combination with page breaks, this may give a layout as often seen in newspapers: the first few lines of each story on the first page, the rest of the story in other areas on subsequent pages. (It will probably need a way to conditionally insert“continued on page 7” or similar text.)
For comparing proposals for template-based layouts, the working group identified four important aspects of each proposal:
the physical layout structures – the way of structuring the “cells” (slots) into which content is flowed. This includes a way to identify the various layout containers.
the binding mechanism – the way to specify that a given element (and its descendants) are to be placed in a given layout cell.
the property distribution mechanism – the way to put properties onto the layout structure and the cells within it.
the flexing mechanism – the way to describe how the layout structure should adapt itself to the higher level container (window) in which it is placed. This includes statements about which cells should grow and when they should grow.
In this specification, these aspects are as follows:
A character matrix is used to show the layout structure and the cells are named by the character used to show where they are positioned.
The binding of content to cells is handled by the ‘position
’ property
which identifies a cell to which the content is bound.
The shape, size and flexibility of the layout are specified with the character matrix. Some properties (background, border and vertical alignment) are attached to individual slots.
There is limited “flexing” information. The choice is between fixed size, a fraction of the available size or the content's intrinsic size. (The latter is further subject to min/max sizes specified on that content.) It is not possible to say, e.g., that some column can only become wider if all other columns are at their maximum size.
The first ideas for describing a template in CSS date from 1996 and are described in Frame-based layout via Style Sheets by Bert Bos, Dave Raggett and Håkon Wium Lie. The idea was revived in 2005 on the request of W3C's Device Independence Working Group and benefited especially from discussions with Rhys Lewis and Rotan Hanrahan from that group.
This specification was further influenced by ideas about form layout by Dave Raggett [member-only link] and an early write-up of the features of XUL by Ian Hickson [member-only link].
Andy Clarke, Jina Bolton and Kevin Lawver provided use cases, examples and requirements. The analysis in the History section is a slightly shortened version of work by Steve Zilles.
César Acebal built the first prototype. Andrew Fedoniouk built the second. A third prototype was made by Alexis Deveria.
Normative references:
Other references:
slot()
’ pseudo-element., 7