
1

Bug 1414: The Problem

XQuery has two kinds of comparison operators
General comparisons: =, !=, <, <=, >, >=
Value comparisons: eq, ne, lt, le, gt, ge

Assume a schemaless document (untyped data)

age > 21 returns true or false

age gt 21 is a type error (!)

2

How did this happen?

The general comparison operators were inherited
from XPath, and are existentially quantified

author = “Gray” is true if any author is Gray

Therefore general comparison operators are not
transitive

(1, 2) = (2, 3) and (2, 3) = (3, 4) but not (1, 2) = (3, 4)

Desire to have transitive comparison operators to
serve as the basis for grouping, ordering, etc.

3

Casting behavior

General comparison operators cast untyped data to
the type of the other operand

age > 21 casts age to an integer
city = “San Jose” casts city to a string
Reasons: usability, XPath 1.0 compatibility

Value comparison operators cannot have this casting
behavior if they are to be transitive! Example:

untyped(“7”) lt 9 would be true
9 lt untyped(“11”) would be true
untyped(“7”) lt untyped(“11”) would be false

Therefore the value comparison operators always cast
untyped data to string.

4

Are value-comparisons really transitive?

Well, no (because of loss of precision on promotion)

Suppose decimal has greater precision than double
VBDec eq VBDbl and VBDbl eq VBDec + 1
but not VBDec eq VBDec + 1

Value comparisons are transitive except for precision

Call this property “mostly transitive”

Question: Are “mostly transitive” operators useful in
query rewrites, etc.?

SQL has had such operators for a long time
In implementations that use a common implementation for
decimal and double, the operators are really transitive

5

The Microsoft Proposal

See w3c-xsl-query/2005Jun/0027.html

Change value comparisons to have the same casting
behavior as general comparisons

age gt 21 would behave like age > 21 if age
returns an untyped value.

But value and general comparisons would still treat
empty sequences differently:

age gt 21 returns () if age is ()
age > 21 returns false if age is ()

Value comparisons would no longer be “mostly
transitive”

6

The Consistency Argument

It’s good for = to be more consistent with eq , etc.
(though some inconsistencies would remain)
order by and distinct-values are defined to cast
untyped data to strings before comparing.

Currently consistent with gt but not with >
Under MS proposal, would be consistent with neither
Example:
for $p in /item/price
where $p gt 25
order by $p
return $p

Can implementations use an index on /item/price ?
Will users be surprised to see 101, 29, 370, 55 ?

7

Consistency Argument (cont’d.)

max and min are defined to cast untyped data to
double before comparing

Currently inconsistent with both gt and >.
MS proposal would not make this any worse.

Summary:
The MS proposal pushes the inconsistency from one place
(gt vs. >) to another (gt vs. order by)
Whether this is an improvement is a matter of taste

8

The Optimization Argument

Mostly-transitive operators are useful in optimization
Query rewrites:

Suppose A eq B and B eq 5. Can you infer that A eq 5?
Should not rely on static analysis

Access methods:
Sort-merge joins, hash-joins, etc.
Where does untyped data go in the sort or hash, if it can
behave like either string or numeric?

Indexing:
Where does untyped data go in an index, if it can behave
like either string or numeric?

Arguably, the MS proposal would make optimization
more difficult.

9

The Transitivity Argument

The value comparisons were created to be mostly-
transitive.

Mostly-transitive operators may have uses that we
have not yet anticipated.

If the value-comparison operators are not mostly-
transitive, the case for these operators is weakened.

If you want an operator that behaves like = but
requires singleton operands, why not use
fn:exactly-one() on one or both operands?

10

The Bottom Line

None of the arguments for or against this proposal
are absolutely compelling.

IBM votes to preserve the status quo.

