

 JSON-LD 1.1 A JSON-based Serialization for Linked Data

 Gregg Kellogg; Pierre-Antoine Champin, LIRIS - Université de Lyon; Dave Longley, Digital Bazaar; Ruben Taelman, Ghent University – imec

 [image: W3C main logo]

 Copyright
 © of the original documents: 16 July, 2020 W3C® (MIT, ERCIM,
 Keio, Beihang).

 All right reserved. W3C liability,
 trademark,
 and document use rules apply.

 JSON-LD 1.1 A JSON-based Serialization for Linked Data — Table of Contents

	JSON-LD 1.1	1. Introduction	1.1 How to Read this Document
	1.2 Contributing
	1.3 Typographical conventions
	1.4 Terminology
	1.5 Design Goals and Rationale
	1.6 Data Model Overview
	1.7 Syntax Tokens and Keywords

	2. Conformance
	3. Basic Concepts	3.1 The Context
	3.2 IRIs
	3.3 Node Identifiers
	3.4 Uses of JSON Objects
	3.5 Specifying the Type

	4. Advanced Concepts	4.1 Advanced Context Usage	4.1.1 JSON-LD 1.1 Processing Mode
	4.1.2 Default Vocabulary
	4.1.3 Base IRI
	4.1.4 Using the Document Base for the Default Vocabulary
	4.1.5 Compact IRIs
	4.1.6 Aliasing Keywords
	4.1.7 IRI Expansion within a Context
	4.1.8 Scoped Contexts
	4.1.9 Context Propagation
	4.1.10 Imported Contexts
	4.1.11 Protected Term Definitions

	4.2 Describing Values	4.2.1 Typed Values
	4.2.2 JSON Literals
	4.2.3 Type Coercion
	4.2.4 String Internationalization	4.2.4.1 Base Direction

	4.3 Value Ordering	4.3.1 Lists
	4.3.2 Sets
	4.3.3 Using @set with @type

	4.4 Nested Properties
	4.5 Embedding	4.5.1 Identifying Blank Nodes

	4.6 Indexed Values	4.6.1 Data Indexing	4.6.1.1 Property-based data indexing

	4.6.2 Language Indexing
	4.6.3 Node Identifier Indexing
	4.6.4 Node Type Indexing

	4.7 Included Nodes
	4.8 Reverse Properties
	4.9 Named Graphs	4.9.1 Graph Containers
	4.9.2 Named Graph Data Indexing
	4.9.3 Named Graph Indexing

	4.10 Loading Documents

	5. Forms of JSON-LD	5.1 Expanded Document Form
	5.2 Compacted Document Form	5.2.1 Shortening IRIs
	5.2.2 Representing Values as Strings
	5.2.3 Representing Lists as Arrays
	5.2.4 Reversing Node Relationships
	5.2.5 Indexing Values
	5.2.6 Normalizing Values as Objects
	5.2.7 Representing Singular Values as Arrays
	5.2.8 Term Selection

	5.3 Flattened Document Form
	5.4 Framed Document Form

	6. Modifying Behavior with Link Relationships	6.1 Interpreting JSON as JSON-LD
	6.2 Alternate Document Location

	7. Embedding JSON-LD in HTML Documents	7.1 Inheriting base IRI from HTML's base element
	7.2 Restrictions for contents of JSON-LD script elements
	7.3 Locating a Specific JSON-LD Script Element

	8. Data Model
	9. JSON-LD Grammar	9.1 Terms
	9.2 Node Objects
	9.3 Frame Objects
	9.4 Graph Objects
	9.5 Value Objects
	9.6 Value Patterns
	9.7 Lists and Sets
	9.8 Language Maps
	9.9 Index Maps
	9.10 Property-based Index Maps
	9.11 Id Maps
	9.12 Type Maps
	9.13 Included Blocks
	9.14 Property Nesting
	9.15 Context Definitions	9.15.1 Expanded term definition

	9.16 Keywords

	10. Relationship to RDF	10.1 Serializing/Deserializing RDF
	10.2 The rdf:JSON Datatype
	10.3 The i18n Namespace
	10.4 The rdf:CompoundLiteral class and the rdf:language and rdf:direction properties

	11. Security Considerations
	12. Privacy Considerations
	13. Internationalization Considerations
	A. Image Descriptions	A.1 Linked Data Dataset

	B. Relationship to Other Linked Data Formats	B.1 Turtle	B.1.1 Prefix definitions
	B.1.2 Embedding
	B.1.3 Conversion of native data types
	B.1.4 Lists

	B.2 RDFa
	B.3 Microdata

	C. IANA Considerations	C.1 Examples

	D. Open Issues
	E. Changes since 1.0 Recommendation of 16 January 2014
	F. Changes since JSON-LD Community Group Final Report
	G. Changes since Candidate Release of 12 December 2019
	H. Changes since Proposed Recommendation Release of 7 May 2020
	I. Acknowledgements
	J. References	J.1
 Normative references

	J.2
 Informative references

	JSON-LD 1.1 Processing Algorithms and API	1. Introduction	1.1 How to Read this Document
	1.2 Contributing
	1.3 Typographical conventions
	1.4 Terminology
	1.5 Example Conventions

	2. Features	2.1 Expansion
	2.2 Compaction
	2.3 Flattening
	2.4 RDF Serialization/Deserialization

	3. Conformance
	4. Context Processing Algorithms	4.1 Context Processing Algorithm
	4.2 Create Term Definition
	4.3 Inverse Context Creation
	4.4 Term Selection

	5. Expansion Algorithms	5.1 Expansion Algorithm
	5.2 IRI Expansion
	5.3 Value Expansion

	6. Compaction Algorithms	6.1 Compaction Algorithm
	6.2 IRI Compaction
	6.3 Value Compaction

	7. Flattening Algorithms	7.1 Flattening Algorithm
	7.2 Node Map Generation
	7.3 Merge Node Maps
	7.4 Generate Blank Node Identifier

	8. RDF Serialization/Deserialization Algorithms	8.1 Deserialize JSON-LD to RDF Algorithm
	8.2 Object to RDF Conversion
	8.3 List to RDF Conversion
	8.4 Serialize RDF as JSON-LD Algorithm
	8.5 RDF to Object Conversion
	8.6 Data Round Tripping

	9. The Application Programming Interface	9.1 The JsonLdProcessor Interface
	9.2 RDF Dataset Interfaces
	9.3 The JsonLdOptions Type
	9.4 Remote Document and Context Retrieval
	9.5 HTML Content Algorithms
	9.6 Error Handling

	10. Security Considerations
	11. Privacy Considerations
	12. Internationalization Considerations
	A. IDL Index
	B. Open Issues
	C. Changes since 1.0 Recommendation of 16 January 2014
	D. Changes since JSON-LD Community Group Final Report
	E. Changes since Candidate Release of 12 December 2019
	F. Changes since Candidate Release of 05 March 2020
	G. Changes since Proposed Recommendation Release of 7 May 2020
	H. Acknowledgements
	I. References	I.1
 Normative references

	I.2
 Informative references

	JSON-LD 1.1 Framing	1. Introduction	1.1 How to Read this Document
	1.2 Contributing
	1.3 Typographical conventions
	1.4 Terminology	1.4.1 Algorithm Terms

	1.5 Syntax Tokens and Keywords

	2. Features	2.1 Framing	2.1.1 Matching on Properties
	2.1.2 Wildcard Matching
	2.1.3 Match on the Absence of a Property
	2.1.4 Matching on Values
	2.1.5 Matching on @id
	2.1.6 Empty Frame

	2.2 Default content
	2.3 Framing Flags	2.3.1 Object Embed Flag
	2.3.2 Explicit inclusion flag
	2.3.3 Omit default flag
	2.3.4 Omit graph flag
	2.3.5 Require all flag

	2.4 Reverse Framing
	2.5 Framing Named Graphs

	3. Conformance
	4. Framing	4.1 Framing Algorithm	4.1.1 Overview
	4.1.2 Algorithm

	4.2 Frame Matching Algorithm
	4.3 Value Pattern Matching Algorithm

	5. The Application Programming Interface	5.1 JsonLdProcessor
	5.2 Error Handling
	5.3 Data Structures	5.3.1 JsonLdContext
	5.3.2 JsonLdOptions

	6. Security Considerations
	7. Privacy Considerations
	8. Internationalization Considerations
	A. IANA Considerations
	B. IDL Index
	C. Open Issues
	D. Changes since 1.0 Draft of 30 August 2012
	E. Changes since JSON-LD Community Group Final Report
	F. Changes since Candidate Release of 12 December 2019
	G. Changes since Proposed Recommendation Release of 7 May 2020
	H. Acknowledgements
	I. References	I.1
 Normative references

	I.2
 Informative references

	Streaming JSON-LD	1. Introduction
	2. Conformance
	3. Streaming Document Form	3.1 Importance of Key Ordering
	3.2 Required Key Ordering
	3.3 Recommended Key Ordering
	3.4 Examples	3.4.1 Valid Examples
	3.4.2 Valid, Non-recommended Examples
	3.4.3 Invalid Examples

	3.5 Streaming Document Profile

	4. Streaming RDF Form	4.1 Importance of Triple Ordering
	4.2 Recommended Triple Ordering
	4.3 Examples	4.3.1 @graph grouping
	4.3.2 @id grouping
	4.3.3 Property grouping
	4.3.4 @graph and @id grouping
	4.3.5 Subject and object grouping

	5. Streaming Processing	5.1 Deserialization
	5.2 Serialization

	A. References	A.1 Normative references
	A.2 Informative references

 [image: W3C] JSON-LD 1.1

 A JSON-based Serialization for Linked Data

 W3C Recommendation
 16 July 2020

 	This version:
	
 https://www.w3.org/TR/2020/REC-json-ld11-20200716/

	Latest published version:
	
 https://www.w3.org/TR/json-ld11/

 	Latest editor's draft:
	https://w3c.github.io/json-ld-syntax/

 	Test suite:
	https://w3c.github.io/json-ld-api/tests/

 	Implementation report:
	
 https://w3c.github.io/json-ld-api/reports/

 	Previous version:
	https://www.w3.org/TR/2020/PR-json-ld11-20200507/

 	Previous Recommendation:
	https://www.w3.org/TR/2014/REC-json-ld-20140116/

 	Editors:

 	Gregg Kellogg (v1.0 and v1.1)
	Pierre-Antoine Champin
 (LIRIS - Université de Lyon)
 (v1.1)
	Dave Longley
 (Digital Bazaar)
 (v1.1)

 	
 Former editors:

	Manu Sporny
 (Digital Bazaar)
 (v1.0)
	Markus Lanthaler
 (Google)
 (v1.0)

 	
 Authors:

	Manu Sporny
 (Digital Bazaar)
 (v1.0)
	Dave Longley
 (Digital Bazaar)
 (v1.0 and v1.1)
	Gregg Kellogg (v1.0 and v1.1)
	Markus Lanthaler
 (Google)
 (v1.0)
	Pierre-Antoine Champin
 (LIRIS - Université de Lyon)
 (v1.1)
	Niklas Lindström (v1.0)

 	Participate:
	
 GitHub w3c/json-ld-syntax

	
 File a bug

	
 Commit history

	
 Pull requests

 Please check the
 errata for any errors or
 issues reported since publication.

 See also

 translations.

 This document is also available in this non-normative format:
 EPUB

 Copyright
 ©
 2010-2020

 W3C® (MIT,
 ERCIM, Keio,
 Beihang).
 W3C liability,
 trademark and permissive document license rules
 apply.

Abstract

 JSON is a useful data serialization and messaging format.
 This specification defines JSON-LD 1.1, a JSON-based format to serialize
 Linked Data. The syntax is designed to easily integrate into deployed
 systems that already use JSON, and provides a smooth upgrade path from
 JSON to JSON-LD.
 It is primarily intended to be a way to use Linked Data in Web-based
 programming environments, to build interoperable Web services, and to
 store Linked Data in JSON-based storage engines.

 This specification describes a superset of the features defined in
 JSON-LD 1.0 [JSON-LD10]
 and, except where noted,
 documents created using the 1.0 version of this specification remain compatible with JSON-LD 1.1.

Status of This Document
This section describes the status of this
 document at the time of its publication. Other documents may supersede
 this document. A list of current W3C publications and the latest revision
 of this technical report can be found in the
 W3C technical reports index at
 https://www.w3.org/TR/.

 This document has been developed by the
 JSON-LD Working Group and was derived from the JSON-LD Community Group's Final Report.

 There is a
 live JSON-LD playground that is capable
 of demonstrating the features described in this document.

 This specification is intended to supersede the JSON-LD 1.0 [JSON-LD10] specification.

 This document was published by the JSON-LD Working Group as a
 Recommendation.

 GitHub Issues are preferred for
 discussion of this specification.

 Alternatively, you can send comments to our mailing list.
 Please send them to
 public-json-ld-wg@w3.org
 (archives).

 Please see the Working Group's
 implementation report.

 This document has been reviewed by W3C Members, by software developers, and
 by other W3C groups and interested parties, and is endorsed by the Director
 as a W3C Recommendation. It is a stable document and may be used as
 reference material or cited from another document. W3C's role in making the
 Recommendation is to draw attention to the specification and to promote its
 widespread deployment. This enhances the functionality and interoperability
 of the Web.

 This document was produced by a group
 operating under the
 W3C Patent Policy.

 W3C maintains a
 public list of any patent disclosures
 made in connection with the deliverables of
 the group; that page also includes
 instructions for disclosing a patent. An individual who has actual
 knowledge of a patent which the individual believes contains
 Essential Claim(s)
 must disclose the information in accordance with
 section 6 of the W3C Patent Policy.

 This document is governed by the
 1 March 2019 W3C Process Document.

 Set of Documents

 This document is one of three JSON-LD 1.1 Recommendations produced by the
 JSON-LD Working Group:

 	JSON-LD 1.1

 	JSON-LD 1.1 Processing Algorithms and API

 	JSON-LD 1.1 Framing

 1. Introduction
This section is non-normative.

 Linked Data [LINKED-DATA] is a way to create a network of
 standards-based machine interpretable data across different documents and
 Web sites. It allows an application to start at one piece of Linked Data,
 and follow embedded links to other pieces of Linked Data that are hosted on
 different sites across the Web.

 JSON-LD is a lightweight syntax to serialize Linked Data in
 JSON [RFC8259]. Its design allows existing JSON to be interpreted as
 Linked Data with minimal changes. JSON-LD is primarily intended to be a
 way to use Linked Data in Web-based programming environments, to build
 interoperable Web services, and to store Linked Data in JSON-based storage engines. Since
 JSON-LD is 100% compatible with JSON, the large number of JSON parsers and libraries
 available today can be reused. In addition to all the features JSON provides,
 JSON-LD introduces:

 	a universal identifier mechanism for JSON objects
 via the use of IRIs,

 	a way to disambiguate keys shared among different JSON documents by mapping
 them to IRIs via a context,

 	a mechanism in which a value in a JSON object may refer
 to a resource on a different site on the Web,

 	the ability to annotate strings with their language,

 	a way to associate datatypes with values such as dates and times,

 	and a facility to express one or more directed graphs, such as a social
 network, in a single document.

 JSON-LD is designed to be usable directly as JSON, with no knowledge of RDF
 [RDF11-CONCEPTS]. It is also designed to be usable as RDF
 in conjunction with other Linked Data technologies like SPARQL [SPARQL11-OVERVIEW].
 Developers who
 require any of the facilities listed above or need to serialize an RDF graph
 or Dataset in a JSON-based syntax will find JSON-LD of interest. People
 intending to use JSON-LD with RDF tools will find it can be used as another
 RDF syntax, as with [Turtle] and [TriG]. Complete details of how JSON-LD relates
 to RDF are in section § 10. Relationship to RDF.

 The syntax is designed to not disturb already
 deployed systems running on JSON, but provide a smooth upgrade path from
 JSON to JSON-LD. Since the shape of such data varies wildly, JSON-LD
 features mechanisms to reshape documents into a deterministic structure
 which simplifies their processing.

 1.1 How to Read this Document
This section is non-normative.

 This document is a detailed specification for a serialization of Linked
 Data in JSON. The document is primarily intended for the following audiences:

 	Software developers who want to encode Linked Data in a variety of
 programming languages that can use JSON

 	Software developers who want to convert existing JSON to JSON-LD

 	Software developers who want to understand the design decisions and
 language syntax for JSON-LD

 	Software developers who want to implement processors and APIs for
 JSON-LD

 	Software developers who want to generate or consume Linked Data,
 an RDF graph, or an RDF Dataset in a JSON syntax

 A companion document, the JSON-LD 1.1 Processing Algorithms and API specification
 [JSON-LD11-API], specifies how to work with JSON-LD at a higher level by
 providing a standard library interface for common JSON-LD operations.

 To understand the basics in this specification you must first be familiar with
 JSON, which is detailed in [RFC8259].

 This document almost exclusively uses the term IRI
 (Internationalized Resource Indicator)
 when discussing hyperlinks. Many Web developers are more familiar with the
 URL (Uniform Resource Locator)
 terminology. The document also uses, albeit rarely, the URI
 (Uniform Resource Indicator)
 terminology. While these terms are often used interchangeably among
 technical communities, they do have important distinctions from one
 another and the specification goes to great lengths to try and use the
 proper terminology at all times.

 This document can highlight changes since the JSON-LD 1.0 version.
 Select to changes.

 1.2 Contributing
This section is non-normative.

 There are a number of ways that one may participate in the development of
 this specification:

 	Technical discussion typically occurs on the working group mailing list:
 public-json-ld-wg@w3.org

 	The working group uses #json-ld
 IRC channel is available for real-time discussion on irc.w3.org.

 	The #json-ld
 IRC channel is also available for real-time discussion on irc.freenode.net.

 1.3 Typographical conventions
This section is non-normative.

 The following typographic conventions are used in this specification:

 	markup
	
 Markup (elements, attributes, properties),
 machine processable values (string, characters, media types),
 property name,
 or a file name is in red-orange monospace font.

 	variable
	
 A variable in pseudo-code or in an algorithm description is in italics.

 	definition
	
 A definition of a term, to be used elsewhere in this or other specifications,
 is in bold and italics.

 	definition reference
	
 A reference to a definition in this document
 is underlined and is also an active link to the definition itself.

 	markup definition reference
	
 A references to a definition in this document,
 when the reference itself is also a markup, is underlined,
 red-orange monospace font, and is also an active link to the definition itself.

 	external definition reference
	
 A reference to a definition in another document
 is underlined, in italics, and is also an active link to the definition itself.

 	 markup external definition reference
	
 A reference to a definition in another document,
 when the reference itself is also a markup,
 is underlined, in italics red-orange monospace font,
 and is also an active link to the definition itself.

 	hyperlink
	
 A hyperlink is underlined and in blue.

 	[reference]
	
 A document reference (normative or informative) is enclosed in square brackets
 and links to the references section.

 	Changes from Recommendation
	
 Sections or phrases changed from the previous Recommendation
 may be highlighted using a control
 in § 1.1 How to Read this Document.

Note
Notes are in light green boxes with a green left border and with a "Note" header in green.
 Notes are always informative.

 Example 1

 Examples are in light khaki boxes, with khaki left border,
and with a numbered "Example" header in khaki.
Examples are always informative. The content of the example is in monospace font and may be syntax colored.

Examples may have tabbed navigation buttons
to show the results of transforming an example into other representations.

 1.4 Terminology
This section is non-normative.

 This document uses the following terms as defined in external specifications
 and defines terms specific to JSON-LD.

 Terms imported from Other Specifications

Terms imported from ECMAScript Language Specification [ECMASCRIPT], The JavaScript Object Notation (JSON) Data Interchange Format [RFC8259], Infra Standard [INFRA], and Web IDL [WEBIDL]

	array
	
 In the JSON serialization,
 an array structure is represented as square brackets surrounding zero or more values.
 Values are separated by commas.
 In the internal representation,
 a list (also called an array) is an ordered collection of zero or more values.
 While JSON-LD uses the same array representation as JSON,
 the collection is unordered by default.
 While order is preserved in regular JSON arrays,
 it is not in regular JSON-LD arrays unless specifically defined
 (see the Sets and Lists section of JSON-LD 1.1.

 	boolean
	
 The values true and false that are used
 to express one of two possible states.

 	JSON object
	
 In the JSON serialization,
 an object structure
 is represented as a pair of curly brackets surrounding zero or more name/value pairs (or members).
 A name is a string.
 A single colon comes after each name,
 separating the name from the value.
 A single comma separates a value from a following name.
 In JSON-LD the names in an object must be unique.
 In the internal representation a JSON object is described as a
 map (see [INFRA]),
 composed of entries with key/value pairs.

 In the Application Programming Interface,
 a map is described using a [WEBIDL] record.

 	null
	
 The use of the null value within JSON-LD
 is used to ignore or reset values.
 A map entry in the @context where the value,
 or the @id of the value, is null,
 explicitly decouples a term's association with an IRI.
 A map entry in the body of a JSON-LD document
 whose value is null
 has the same meaning as if the map entry was not defined.
 If @value, @list, or @set is set to null in expanded form,
 then the entire JSON object is ignored.

 	number
	
 In the JSON serialization, a number
 is similar to that used in most programming languages,
 except that the octal and hexadecimal formats are not used and that leading zeros are not allowed.
 In the internal representation,
 a number is equivalent to either a long
 or double,
 depending on if the number has a non-zero fractional part (see [WEBIDL]).

 	scalar
	
 A scalar is either a string, number, true, or false.

 	string
	
 A string
 is a sequence of zero or more Unicode (UTF-8) characters,
 wrapped in double quotes, using backslash escapes (if necessary).
 A character is represented as a single character string.

Terms imported from Internationalized Resource Identifiers (IRIs) [RFC3987]

	IRI
	
 The absolute form of an IRI containing a scheme along with a path
 and optional query and fragment segments.

 	IRI reference
	
 Denotes the common usage of an Internationalized Resource Identifier.
 An IRI reference may be absolute or
 relative.
 However, the "IRI" that results from such a reference only includes absolute IRIs;
 any relative IRI references are resolved to their absolute form.

 	relative IRI reference
	
 A relative IRI reference is an IRI reference that is relative to some other IRI,
 typically the base IRI of the document.
 Note that properties,
 values of @type,
 and values of terms defined to be vocabulary relative
 are resolved relative to the vocabulary mapping,
 not the base IRI.

Terms imported from RDF 1.1 Concepts and Abstract Syntax [RDF11-CONCEPTS], RDF Schema 1.1 [RDF-SCHEMA], and Linked Data Design Issues [LINKED-DATA]

	base IRI
	
 The base IRI is an IRI established in the context,
 or is based on the JSON-LD document location.
 The base IRI is used to turn relative IRI references into IRIs.

 	blank node
	
 A node in a graph that is neither an IRI,
 nor a literal.
 A blank node does not contain
 a de-referenceable identifier because it is either ephemeral in nature
 or does not contain information that needs to be linked to from outside of the linked data graph.
 In JSON-LD,
 a blank node is assigned an identifier starting with the prefix _:.

 	blank node identifier
	
 A blank node identifier
 is a string that can be used as an identifier for a blank node within the scope of a JSON-LD document.
 Blank node identifiers begin with _:.

 	dataset
	
 A dataset
 representing a collection of RDF graphs
 including exactly one default graph and zero or more named graphs.

 	datatype IRI
	
 A datatype IRI is an IRI identifying a datatype that determines how the lexical form maps to a
 literal value.

 	default graph
	
 The default graph of a dataset is an RDF graph having no name, which may be empty.

 	graph name
	
 The IRI or blank node identifying a named graph.

 	language-tagged string
	
 A language-tagged string
 consists of a string and a non-empty language tag
 as defined by [BCP47].
 The language tag must be well-formed
 according to section 2.2.9 Classes of Conformance of [BCP47].
 Processors may normalize language tags to lowercase.

 	Linked Data
	
 A set of documents, each containing a representation of a linked data graph or dataset.

 	list
	
 A list is an ordered sequence of IRIs, blank nodes, and literals.

 	literal
	
 An object expressed as a value such as a string or number.
 Implicitly or explicitly includes a datatype IRI and, if the datatype is rdf:langString, an optional language tag.

 	named graph
	
 A named graph
 is a linked data graph that is identified by an IRI or blank node.

 	node
	
 A node in an RDF graph, either the subject and object of at least one triple.
 Note that a node can play both roles (subject and object) in a graph, even in the same triple.

 	object
	
 An object is a node in a linked data graph
 with at least one incoming edge.

 	property
	
 The name of a directed-arc in a linked data graph.
 Every property is directional
 and is labeled with an IRI or a blank node identifier.
 Whenever possible, a property should be labeled with an IRI.
 Note
The use of blank node identifiers to label properties is obsolete,
 and may be removed in a future version of JSON-LD.

 Also, see predicate in [RDF11-CONCEPTS].

 	RDF graph
	
 A labeled directed graph,
 i.e., a set of nodes connected by directed-arcs.
 Also called linked data graph.

 	resource
	
 A resource denoted by an IRI, a blank node or literal representing something in the world (the "universe of discourse").

 	subject
	
 A subject is a node in a linked data graph
 with at least one outgoing edge,
 related to an object node through a property.
	triple
	
 A component of an RDF graph including a subject, predicate, and object, which represents
 a node-arc-node segment of an RDF graph.

JSON-LD Specific Term Definitions

	active context
	
 A context that is used to resolve terms
 while the processing algorithm is running.

 	base direction
	
 The base direction is the direction used when a string does not have a direction associated with it directly.
 It can be set in the context using the @direction key
 whose value must be one of the strings "ltr", "rtl", or null.
 See the Context Definitions section of JSON-LD 1.1 for a normative description.

 	compact IRI
	
 A compact IRI has the form of prefix:suffix
 and is used as a way of expressing an IRI without needing to define separate term definitions
 for each IRI contained within a common vocabulary identified by prefix.

 	context
	
 A set of rules for interpreting a JSON-LD document
 as described in the The Context section of JSON-LD 1.1,
 and normatively specified in the Context Definitions section of JSON-LD 1.1.

 	default language
	
 The default language is the language used when a string does not have a language associated with it directly.
 It can be set in the context using the @language key
 whose value must be a string representing a [BCP47] language code or null.
 See the Context Definitions section of JSON-LD 1.1 for a normative description.

 	default object
	
 A default object is a map that has a @default key.

 	embedded context
	
 An embedded context is a context which appears
 as the @context entry of one of the following:
 a node object, a value object, a graph object, a list object,
 a set object, the value of a nested properties,
 or the value of an expanded term definition.
 Its value may be a map for a context definition,
 as an IRI, or as an array combining either of the above.

 	expanded term definition
	
 An expanded term definition is a term definition
 where the value is a map
 containing one or more keyword keys to define the associated IRI,
 if this is a reverse property,
 the type associated with string values, and a container mapping.
 See the Expanded Term Definition section of JSON-LD 1.1 for a normative description.

 	frame
	
 A JSON-LD document,
 which describes the form for transforming another JSON-LD document
 using matching and embedding rules.
 A frame document allows additional keywords and certain map entries
 to describe the matching and transforming process.

 	frame object
	
 A frame object is a map element within a frame
 which represents a specific portion of the frame matching either
 a node object or a value object
 in the input.
 See the Frame Objects section of JSON-LD 1.1 for a normative description.

 	graph object
	
 A graph object represents a named graph
 as the value of a map entry within a node object.
 When expanded, a graph object must have an @graph entry,
 and may also have @id, and @index entries.
 A simple graph object
 is a graph object which does not have an @id entry.
 Note that node objects may have a @graph entry,
 but are not considered graph objects if they include any other entries.
 A top-level object consisting of @graph is also not a graph object.
 Note that a node object may also represent a named graph it it includes other properties.
 See the Graph Objects section of JSON-LD 1.1 for a normative description.

 	id map
	
 An id map is a map value of a term
 defined with @container set to @id.
 The values of the id map must be node objects,
 and its keys are interpreted as IRIs representing
 the @id of the associated node object.
 If a value in the id map contains a key expanding to @id,
 its value must be equivalent to the referencing key in the id map.
 See the Id Maps section of JSON-LD 1.1 for a normative description.

 	implicitly named graph
	
 A named graph created from the value of a map entry
 having an expanded term definition
 where @container is set to @graph.

 	included block
	
 An included block is an entry in a node object where the key is either @included or an alias of @included
 and the value is one or more node objects.
 See the Included Blocks section of JSON-LD 1.1 for a normative description.

 	index map
	
 An index map is a map value of a term
 defined with @container set to @index,
 whose values must be any of the following types:
 string,
 number,
 true,
 false,
 null,
 node object,
 value object,
 list object,
 set object, or
 an array of zero or more of the above possibilities.
 See the Index Maps section in JSON-LD 1.1 for a formal description.

 	JSON literal
	
 A JSON literal is a literal where the associated datatype IRI is rdf:JSON.
 In the value object representation, the value of @type is @json.
 JSON literals represent values which are valid JSON [RFC8259].
 See the The rdf:JSON Datatype section in JSON-LD 1.1 for a normative description.

 	JSON-LD document
	
 A JSON-LD document is a serialization of
 an RDF dataset.
 See the JSON-LD Grammar section in JSON-LD 1.1 for a formal description.

 	JSON-LD internal representation
	
 The JSON-LD internal representation
 is the result of transforming a JSON syntactic structure
 into the core data structures suitable for direct processing:
 arrays, maps, strings, numbers, booleans, and null.

 	JSON-LD Processor
	
 A JSON-LD Processor is a system which can perform the algorithms defined in JSON-LD 1.1 Processing Algorithms and API.
 See the Conformance section in JSON-LD 1.1 API for a formal description.

 	JSON-LD value
	
 A JSON-LD value is a string,
 a number,
 true or false,
 a typed value,
 or a language-tagged string.
 It represents an RDF literal.

 	keyword
	
 A string that is specific to JSON-LD,
 described in the Syntax Tokens and Keywords section of JSON-LD 1.1,
 and normatively specified in the Keywords section of JSON-LD 1.1,

 	language map
	
 An language map is a map value of a term
 defined with @container set to @language,
 whose keys must be strings representing [BCP47] language codes
 and the values must be any of the following types:
 null,
 string, or
 an array of zero or more of the above possibilities.
 See the Language Maps section of JSON-LD 1.1 for a normative description.

 	list object
	
 A list object is a map that has a @list key.
 It may also have an @index key, but no other entries.
 See the Lists and Sets section of JSON-LD 1.1 for a normative description.

 	local context
	
 A context that is specified with a map,
 specified via the @context keyword.

 	nested property
	
 A nested property is a key in a node object
 whose value is a map containing entries which are treated as if they were values of the node object.
 The nested property itself is semantically meaningless and used only to create a sub-structure within a node object.
 See the Property Nesting section of JSON-LD 1.1 for a normative description.

 	node object
	
 A node object represents zero or more properties of a node in the graph
 serialized by the JSON-LD document.
 A map is a node object
 if it exists outside of the JSON-LD context and:

 	it does not contain the @value, @list, or @set keywords, or

 	it is not the top-most map in the JSON-LD document
 consisting of no other entries than @graph and @context.

 The entries of a node object whose keys are not keywords are also called properties of the node object.
 See the Node Objects section of JSON-LD 1.1 for a normative description.

 	node reference
	
 A node object used to reference a node having only the @id key.

 	prefix
	
 A prefix is the first component of a compact IRI
 which comes from a term that maps to a string that,
 when prepended to the suffix of the compact IRI,
 results in an IRI.

 	processing mode
	
 The processing mode defines how a JSON-LD document is processed.
 By default, all documents are assumed to be conformant with this specification.
 By defining a different version using the @version entry in a context,
 publishers can ensure that processors conformant with JSON-LD 1.0 [JSON-LD10]
 will not accidentally process JSON-LD 1.1 documents, possibly creating a different output.
 The API provides an option for setting the processing mode to json-ld-1.0,
 which will prevent JSON-LD 1.1 features from being activated,
 or error if @version entry in a context is explicitly set to 1.1.
 This specification extends JSON-LD 1.0
 via the json-ld-1.1 processing mode.

 	scoped context
	
 A scoped context is part of an expanded term definition using the
 @context entry. It has the same form as an embedded context.
 When the term is used as a type, it defines a type-scoped context,
 when used as a property it defines a property-scoped context.

 	set object
	
 A set object is a map that has an @set entry.
 It may also have an @index key, but no other entries.
 See the Lists and Sets section of JSON-LD 1.1 for a normative description.

 	term
	
 A term is a short word defined in a context
 that may be expanded to an IRI.
 See the Terms section of JSON-LD 1.1 for a normative description.

 	term definition
	
 A term definition is an entry in a context,
 where the key defines a term
 which may be used within a map
 as a key, type, or elsewhere that a string is interpreted as a vocabulary item.
 Its value is either a string (simple term definition),
 expanding to an IRI,
 or a map (expanded term definition).

 	type map
	
 A type map is a map value of a term
 defined with @container set to @type,
 whose keys are interpreted as IRIs
 representing the @type of the associated node object;
 the value must be a node object, or array of node objects.
 If the value contains a term expanding to @type,
 its values are merged with the map value when expanding.
 See the Type Maps section of JSON-LD 1.1 for a normative description.

 	typed value
	
 A typed value consists of a value,
 which is a string,
 and a type,
 which is an IRI.

 	value object
	
 A value object is a map that has an @value entry.
 See the Value Objects section of JSON-LD 1.1 for a normative description.

 	vocabulary mapping
	
 The vocabulary mapping is set in the context using the @vocab key
 whose value must be an IRI, a compact IRI, a term, or null.
 See the Context Definitions section of JSON-LD 1.1 for a normative description.

 1.5 Design Goals and Rationale
This section is non-normative.

 JSON-LD satisfies the following design goals:

 	Simplicity

 	No extra processors or software libraries are necessary to use JSON-LD
 in its most basic form. The language provides developers with a very easy
 learning curve. Developers not concerned with Linked Data only need to understand JSON,
 and know to include but ignore the @context property,
 to use the basic functionality in JSON-LD.

 	Compatibility

 	A JSON-LD document is always a valid JSON document. This ensures that
 all of the standard JSON libraries work seamlessly with JSON-LD documents.

 	Expressiveness

 	The syntax serializes labeled directed graphs. This ensures that almost
 every real world data model can be expressed.

 	Terseness

 	The JSON-LD syntax is very terse and human readable, requiring as
 little effort as possible from the developer.

 	Zero Edits, most of the time

 	JSON-LD ensures a smooth and simple transition from existing
 JSON-based systems. In many cases,
 zero edits to the JSON document and the addition of one line to the HTTP response
 should suffice (see § 6.1 Interpreting JSON as JSON-LD).
 This allows organizations that have
 already deployed large JSON-based infrastructure to use JSON-LD's features
 in a way that is not disruptive to their day-to-day operations and is
 transparent to their current customers. However, there are times where
 mapping JSON to a graph representation is a complex undertaking.
 In these instances, rather than extending JSON-LD to support
 esoteric use cases, we chose not to support the use case. While Zero
 Edits is a design goal, it is not always possible without adding
 great complexity to the language. JSON-LD focuses on simplicity when
 possible.

 	Usable as RDF

 	JSON-LD is usable by developers as
 idiomatic JSON, with no need to understand RDF [RDF11-CONCEPTS].
 JSON-LD is also usable as RDF, so people intending to use JSON-LD
 with RDF tools will find it can be used like any other RDF syntax.
 Complete details of how JSON-LD relates to RDF are in section
 § 10. Relationship to RDF.

 1.6 Data Model Overview
This section is non-normative.

 Generally speaking, the data model described by a JSON-LD document is a labeled, directed graph.
 The graph contains nodes, which are connected by directed-arcs.
 A node is either a resource with properties, or the data values of those properties including
 strings, numbers, typed values (like dates and times) and IRIs.

 Within a directed graph, nodes are resources, and may
 be unnamed, i.e., not identified by an IRI;
 which are called blank nodes,
 and may be identified using a blank node identifier.
 These identifiers may be required to represent a fully connected graph
 using a tree structure, such as JSON, but otherwise have no
 intrinsic meaning.
 Literal values, such as strings and numbers, are also considered resources,
 and JSON-LD distinguishes between node objects and value objects to distinguish between the different
 kinds of resource.

 This simple data model is incredibly
 flexible and powerful, capable of modeling almost any kind of
 data. For a deeper explanation of the data model, see
 section § 8. Data Model.

 Developers who are familiar with Linked Data technologies will
 recognize the data model as the RDF Data Model. To dive deeper into how
 JSON-LD and RDF are related, see
 section § 10. Relationship to RDF.

 At the surface level, a JSON-LD document is simply
 JSON, detailed in [RFC8259].
 For the purpose of describing the core data structures,
 this is limited to arrays, maps (the parsed version of a JSON Object),
 strings, numbers, booleans, and null,
 called the JSON-LD internal representation.
 This allows surface syntaxes other than JSON
 to be manipulated using the same algorithms, when the syntax maps
 to equivalent core data structures.

 Note
Although not discussed in this specification,
 parallel work using YAML Ain’t Markup Language (YAML™) Version 1.2 [YAML]
 and binary representations such as Concise Binary Object Representation (CBOR) [RFC7049]
 could be used to map into the internal representation, allowing
 the JSON-LD 1.1 API [JSON-LD11-API] to operate as if the source was a
 JSON document.

 1.7 Syntax Tokens and Keywords
This section is non-normative.

 JSON-LD specifies a number of syntax tokens and keywords
 that are a core part of the language.
 A normative description of the keywords is given in § 9.16 Keywords.

 	:
	
 The separator for JSON keys and values that use compact IRIs.

 	@base

 	Used to set the base IRI against which to resolve those relative IRI references
 which are otherwise interpreted relative to the document.
 This keyword is described in § 4.1.3 Base IRI.

 	@container

 	Used to set the default container type for a term.
 This keyword is described in the following sections:

 	§ 4.3 Value Ordering,

 	§ 4.6.1 Data Indexing,

 	§ 4.6.2 Language Indexing,

 	§ 4.6.3 Node Identifier Indexing,

 	§ 4.6.4 Node Type Indexing

 	§ 4.9 Named Graphs,

 	§ 4.9.3 Named Graph Indexing, and

 	§ 4.9.2 Named Graph Data Indexing

 	@context

 	Used to define the short-hand names that are used throughout a JSON-LD
 document. These short-hand names are called terms and help
 developers to express specific identifiers in a compact manner. The
 @context keyword is described in detail in
 § 3.1 The Context.

 	@direction

 	Used to set the base direction of a JSON-LD value,
 which are not typed values (e.g. strings, or language-tagged strings).
 This keyword is described in
 § 4.2.4 String Internationalization.

 	@graph
	Used to express a graph.
 This keyword is described in § 4.9 Named Graphs.

 	@id

 	Used to uniquely identify node objects that are being described in the document
 with IRIs or
 blank node identifiers. This keyword
 is described in § 3.3 Node Identifiers.
 A node reference is a node object containing only the @id property,
 which may represent a reference to a node object found elsewhere in the document.

 	@import
	
 Used in a context definition to load an external context
 within which the containing context definition is merged.
 This can be useful to add JSON-LD 1.1 features to JSON-LD 1.0 contexts.

 	@included
	
 Used in a top-level node object to define an included block,
 for including secondary node objects within another node object.

	@index

 	Used to specify that a container is used to index information and
 that processing should continue deeper into a JSON data structure.
 This keyword is described in § 4.6.1 Data Indexing.

 	@json
	
 Used as the @type value of a JSON literal.
 This keyword is described in § 4.2.2 JSON Literals.

 	@language

 	Used to specify the language for a particular string value or the default
 language of a JSON-LD document. This keyword is described in
 § 4.2.4 String Internationalization.

 	@list

 	Used to express an ordered set of data.
 This keyword is described in § 4.3.1 Lists.

 	@nest
	Used to define a property of a node object that groups together properties of that node, but is not an edge in the graph.

 	@none
	Used as an index value
 in an index map, id map, language map, type map, or elsewhere where a map is
 used to index into other values, when the indexed node does not have the feature being indexed.

 	@prefix
	
 With the value true, allows this term to be used to construct a compact IRI
 when compacting.
 With the value false prevents the term from being used to construct a compact IRI.
 Also determines if the term will be considered when expanding compact IRIs.

 	@propagate
	
 Used in a context definition to change the scope of that context.
 By default, it is true,
 meaning that contexts propagate across node objects
 (other than for type-scoped contexts, which default to false).
 Setting this to false causes term definitions created within that context
 to be removed when entering a new node object.

 	@protected
	
 Used to prevent term definitions of a context to be overridden by other contexts.
 This keyword is described in § 4.1.11 Protected Term Definitions.

	@reverse

 	Used to express reverse properties. This keyword is described in
 § 4.8 Reverse Properties.

 	@set

 	Used to express an unordered set of data and to ensure that values are always
 represented as arrays. This keyword is described in
 § 4.3.2 Sets.

 	@type

 	Used to set the type of a node or the datatype of a typed value.
 This keyword is described further in § 3.5 Specifying the Type
 and § 4.2.1 Typed Values.
 Note
The use of @type to define a type for both
 node objects and value objects addresses the basic need to type data,
 be it a literal value or a more complicated resource.
 Experts may find the overloaded use of the @type keyword for both purposes concerning,
 but should note that Web developer usage of this feature over multiple years
 has not resulted in its misuse due to the far less frequent use of @type
 to express typed literal values.

 	@value

 	Used to specify the data that is associated with a particular
 property in the graph. This keyword is described in
 § 4.2.4 String Internationalization and
 § 4.2.1 Typed Values.

 	@version
	
 Used in a context definition to set the processing mode.
 New features since JSON-LD 1.0 [JSON-LD10] described in this specification are
 not available when processing mode has been explicitly set to
 json-ld-1.0.
 Note
Within a context definition @version takes the specific value 1.1, not
 "json-ld-1.1", as a JSON-LD 1.0 processor may accept a string value for @version,
 but will reject a numeric value.

 Note
The use of 1.1 for the value of @version is intended to
 cause a JSON-LD 1.0 processor to stop processing.
 Although it is clearly meant to be related to JSON-LD 1.1, it does not
 otherwise adhere to the requirements for Semantic Versioning.

 	@vocab

 	Used to expand properties and values in @type with a common prefix
 IRI. This keyword is described in § 4.1.2 Default Vocabulary.

 All keys, keywords, and values in JSON-LD are case-sensitive.

2. Conformance

 As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification are non-normative. Everything else in this specification is normative.

 The key words MAY, MUST, MUST NOT, RECOMMENDED, SHOULD, and SHOULD NOT in this document
 are to be interpreted as described in
 BCP 14
 [RFC2119] [RFC8174]
 when, and only when, they appear in all capitals, as shown here.

 A JSON-LD document complies with this specification if it follows
 the normative statements in appendix § 9. JSON-LD Grammar. JSON documents
 can be interpreted as JSON-LD by following the normative statements in
 § 6.1 Interpreting JSON as JSON-LD. For convenience, normative
 statements for documents are often phrased as statements on the properties of the document.

 This specification makes use of the following namespace prefixes:

 	Prefix
 	IRI

 	dc11
 	http://purl.org/dc/elements/1.1/

 	dcterms
 	http://purl.org/dc/terms/

 	cred
 	https://w3id.org/credentials#

 	foaf
 	http://xmlns.com/foaf/0.1/

 	geojson
 	https://purl.org/geojson/vocab#

 	prov
 	http://www.w3.org/ns/prov#

 	i18n
 	https://www.w3.org/ns/i18n#

 	rdf
 	http://www.w3.org/1999/02/22-rdf-syntax-ns#

 	schema
 	http://schema.org/

 	skos
 	http://www.w3.org/2004/02/skos/core#

 	xsd
 	http://www.w3.org/2001/XMLSchema#

 These are used within this document as part of a compact IRI
 as a shorthand for the resulting IRI, such as dcterms:title
 used to represent http://purl.org/dc/terms/title.

 3. Basic Concepts
This section is non-normative.

 JSON [RFC8259] is a lightweight, language-independent data interchange format.
 It is easy to parse and easy to generate. However, it is difficult to integrate JSON
 from different sources as the data may contain keys that conflict with other
 data sources. Furthermore, JSON has no
 built-in support for hyperlinks, which are a fundamental building block on
 the Web. Let's start by looking at an example that we will be using for the
 rest of this section:

 Example 2: Sample JSON document

 {
 "name": "Manu Sporny",
 "homepage": "http://manu.sporny.org/",
 "image": "http://manu.sporny.org/images/manu.png"
}

 It's obvious to humans that the data is about a person whose
 name is "Manu Sporny"
 and that the homepage property contains the URL of that person's homepage.
 A machine doesn't have such an intuitive understanding and sometimes,
 even for humans, it is difficult to resolve ambiguities in such representations. This problem
 can be solved by using unambiguous identifiers to denote the different concepts instead of
 tokens such as "name", "homepage", etc.

 Linked Data, and the Web in general, uses IRIs
 (Internationalized Resource Identifiers as described in [RFC3987]) for unambiguous
 identification. The idea is to use IRIs
 to assign unambiguous identifiers to data that may be of use to other developers.
 It is useful for terms,
 like name and homepage, to expand to IRIs
 so that developers don't accidentally step on each other's terms. Furthermore, developers and
 machines are able to use this IRI (by using a web browser, for instance) to go to
 the term and get a definition of what the term means. This process is known as IRI
 dereferencing.

 Leveraging the popular schema.org vocabulary,
 the example above could be unambiguously expressed as follows:

 Example 3: Sample JSON-LD document using full IRIs instead of terms

 Expanded (Input)
 Statements
 Turtle (Result)
 Open in playground

 {
 "http://schema.org/name": "Manu Sporny",
 "http://schema.org/url": {
 "@id": "http://manu.sporny.org/"
 ↑ The '@id' keyword means 'This value is an identifier that is an IRI'
 },
 "http://schema.org/image": {
 "@id": "http://manu.sporny.org/images/manu.png"
 }
}

 	Subject	Property	Value

 	_:b0	schema:image	http://manu.sporny.org/images/manu.png

 	_:b0	schema:name	Manu Sporny

 	_:b0	schema:url	http://manu.sporny.org/

 @prefix schema: <http://schema.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

 [
 schema:image <http://manu.sporny.org/images/manu.png>;
 schema:name "Manu Sporny";
 schema:url <http://manu.sporny.org/>
] .

 In the example above, every property is unambiguously identified by an IRI and all values
 representing IRIs are explicitly marked as such by the
 @id keyword. While this is a valid JSON-LD
 document that is very specific about its data, the document is also overly verbose and difficult
 to work with for human developers. To address this issue, JSON-LD introduces the notion
 of a context as described in the next section.

 This section only covers the most basic features of JSON-LD. More advanced features,
 including typed values, indexed values, and named graphs,
 can be found in § 4. Advanced Concepts.

 3.1 The Context
This section is non-normative.

 When two people communicate with one another, the conversation takes
 place in a shared environment, typically called
 "the context of the conversation". This shared context allows the
 individuals to use shortcut terms, like the first name of a mutual friend,
 to communicate more quickly but without losing accuracy. A context in
 JSON-LD works in the same way. It allows two applications to use shortcut
 terms to communicate with one another more efficiently, but without
 losing accuracy.

 Simply speaking, a context is used to map terms to IRIs.
 Terms are case sensitive and most valid strings that are not reserved JSON-LD keywords
 can be used as a term.
 Exceptions are the empty string "" and strings that have the form
 of a keyword (i.e., starting with "@" followed exclusively by one or more ALPHA characters (see [RFC5234])), which must not be used as terms.
 Strings that have the form of
 an IRI (e.g., containing a ":") should not be used as terms.

 For the sample document in the previous section, a context would
 look something like this:

 Example 4: Context for the sample document in the previous section

 {
 "@context": {
 "name": "http://schema.org/name",
 ↑ This means that 'name' is shorthand for 'http://schema.org/name'
 "image": {
 "@id": "http://schema.org/image",
 ↑ This means that 'image' is shorthand for 'http://schema.org/image'
 "@type": "@id"
 ↑ This means that a string value associated with 'image'
 should be interpreted as an identifier that is an IRI
 },
 "homepage": {
 "@id": "http://schema.org/url",
 ↑ This means that 'homepage' is shorthand for 'http://schema.org/url'
 "@type": "@id"
 ↑ This means that a string value associated with 'homepage'
 should be interpreted as an identifier that is an IRI
 }
 }
}

 As the context above shows, the value of a term definition can
 either be a simple string, mapping the term to an IRI,
 or a map.

 A context is introduced using an entry with the key @context and may
 appear within a node object or a value object.

 When an entry with a term key has a map value, the map is called
 an expanded term definition. The example above specifies that
 the values of image and homepage, if they are
 strings, are to be interpreted as
 IRIs. Expanded term definitions
 also allow terms to be used for index maps
 and to specify whether array values are to be
 interpreted as sets or lists.
 Expanded term definitions may
 be defined using IRIs or
 compact IRIs as keys, which is
 mainly used to associate type or language information with an
 IRIs or compact IRI.

 Contexts can either be directly embedded
 into the document (an embedded context) or be referenced using a URL.
 Assuming the context document in the previous
 example can be retrieved at https://json-ld.org/contexts/person.jsonld,
 it can be referenced by adding a single line and allows a JSON-LD document to
 be expressed much more concisely as shown in the example below:

 Example 5: Referencing a JSON-LD context

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": "https://json-ld.org/contexts/person.jsonld",
 "name": "Manu Sporny",
 "homepage": "http://manu.sporny.org/",
 "image": "http://manu.sporny.org/images/manu.png"
}

 [{
 "http://xmlns.com/foaf/0.1/name": [{"@value": "Manu Sporny"}],
 "http://xmlns.com/foaf/0.1/homepage": [{ "@id": "http://manu.sporny.org/" }],
 "http://xmlns.com/foaf/0.1/img": [{ "@id": "http://manu.sporny.org/images/manu.png" }]
}]

 	Subject	Property	Value

 	_:b0	foaf:name	Manu Sporny

 	_:b0	foaf:homepage	http://manu.sporny.org/

 	_:b0	foaf:img	http://manu.sporny.org/images/manu.png

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

 [
 foaf:name "Manu Sporny";
 foaf:homepage <http://manu.sporny.org/>;
 foaf:img <http://manu.sporny.org/images/manu.png>
] .

 The referenced context not only specifies how the terms map to
 IRIs in the Schema.org vocabulary but also
 specifies that string values associated with
 the homepage and image property
 can be interpreted as an IRI ("@type": "@id",
 see § 3.2 IRIs for more details). This information allows developers
 to re-use each other's data without having to agree to how their data will interoperate
 on a site-by-site basis. External JSON-LD context documents may contain extra
 information located outside of the @context key, such as
 documentation about the terms declared in the
 document. Information contained outside of the @context value
 is ignored when the document is used as an external JSON-LD context document.

 A remote context may also be referenced using a relative URL,
 which is resolved relative to the location of the document containing the reference.
 For example, if a document were located at http://example.org/document.jsonld
 and contained a relative reference to context.jsonld,
 the referenced context document would be found relative at http://example.org/context.jsonld.

 Example 6: Loading a relative context

 {
 "@context": "context.jsonld",
 "name": "Manu Sporny",
 "homepage": "http://manu.sporny.org/",
 "image": "http://manu.sporny.org/images/manu.png"
}

 Note
Resolution of relative references to context URLs also applies to remote
 context documents, as they may themselves contain references to other contexts.

 JSON documents can be interpreted as JSON-LD without having to be modified by
 referencing a context via an HTTP Link Header
 as described in § 6.1 Interpreting JSON as JSON-LD. It is also
 possible to apply a custom context using the JSON-LD 1.1 API [JSON-LD11-API].

 In JSON-LD documents,
 contexts may also be specified inline.
 This has the advantage that documents can be processed even in the
 absence of a connection to the Web. Ultimately, this is a modeling decision
 and different use cases may require different handling.
 See Security Considerations in § C. IANA Considerations
 for a discussion on using remote contexts.

 Example 7: In-line context definition

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "name": "http://schema.org/name",
 "image": {
 "@id": "http://schema.org/image",
 "@type": "@id"
 },
 "homepage": {
 "@id": "http://schema.org/url",
 "@type": "@id"
 }
 },
 "name": "Manu Sporny",
 "homepage": "http://manu.sporny.org/",
 "image": "http://manu.sporny.org/images/manu.png"
}

 [{
 "http://schema.org/name": [{"@value": "Manu Sporny"}],
 "http://schema.org/url": [{ "@id": "http://manu.sporny.org/" }],
 "http://schema.org/image": [{ "@id": "http://manu.sporny.org/images/manu.png" }]
}]

 	Subject	Property	Value

 	_:b0	schema:image	http://manu.sporny.org/images/manu.png

 	_:b0	schema:name	Manu Sporny

 	_:b0	schema:url	http://manu.sporny.org/

 @prefix schema: <http://schema.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

 [
 schema:image <http://manu.sporny.org/images/manu.png>;
 schema:name "Manu Sporny";
 schema:url <http://manu.sporny.org/>
] .

 This section only covers the most basic features of the JSON-LD Context.
 The Context can also be used to help interpret other more
 complex JSON data structures, such as indexed values,
 ordered values, and
 nested properties.
 More advanced features related to the JSON-LD Context are covered in
 § 4. Advanced Concepts.

 3.2 IRIs
This section is non-normative.

 IRIs (Internationalized Resource Identifiers
 [RFC3987]) are fundamental to Linked Data as that is how most
 nodes and properties
 are identified.
 In JSON-LD, IRIs may be represented as an IRI reference.
 An IRI is defined in [RFC3987] as containing a
 scheme along with path and optional query and
 fragment segments. A relative IRI reference is an IRI
 that is relative to some other IRI.
 In JSON-LD, with exceptions that are as described below, all relative IRI references
 are resolved relative to the base IRI.

 Note
As noted in § 1.1 How to Read this Document,
 IRIs can often be confused with URLs (Uniform Resource Locators),
 the primary distinction is that a URL locates a resource on the web,
 an IRI identifies a resource. While it is a good practice for resource identifiers
 to be dereferenceable, sometimes this is not practical. In particular, note the
 [URN] scheme for Uniform Resource Names, such as UUID.
 An example UUID is urn:uuid:f81d4fae-7dec-11d0-a765-00a0c91e6bf6.

 Note
Properties, values of @type,
 and values of properties with a term definition
 that defines them as being relative to the vocabulary mapping,
 may have the form of a relative IRI reference, but are resolved using the
 vocabulary mapping, and not the base IRI.

 A string is interpreted as an IRI when it is the
 value of a map entry with the key @id:

 Example 8: Values of @id are interpreted as IRI

 {
 ...
 "homepage": { "@id": "http://example.com/" }
 ...
}

 Values that are interpreted as IRIs, can also be
 expressed as relative IRI references. For example,
 assuming that the following document is located at
 http://example.com/about/, the relative IRI reference
 ../ would expand to http://example.com/ (for more
 information on where relative IRI references can be
 used, please refer to section § 9. JSON-LD Grammar).

 Example 9: IRIs can be relative

 {
 ...
 "homepage": { "@id": "../" }
 ...
}

 IRIs can be expressed directly in the key position like so:

 Example 10: IRI as a key

 {
 ...
 "http://schema.org/name": "Manu Sporny",
 ...
}

 In the example above, the key http://schema.org/name
 is interpreted as an IRI.

 Term-to-IRI expansion occurs if the key matches a term defined
 within the active context:

 Example 11: Term expansion from context definition

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "name": "http://schema.org/name"
 },
 "name": "Manu Sporny",
 "status": "trollin'"
}

 [{
 "http://schema.org/name": [{"@value": "Manu Sporny"}]
}]

 	Subject	Property	Value

 	_:b0	schema:name	Manu Sporny

 @prefix schema: <http://schema.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

 [
 schema:name "Manu Sporny"
] .

 JSON keys that do not expand to an IRI, such as status
 in the example above, are not Linked Data and thus ignored when processed.

 If type coercion rules are specified in the @context for
 a particular term or property IRI, an IRI is generated:

 Example 12: Type coercion

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 ...
 "homepage": {
 "@id": "http://schema.org/url",
 "@type": "@id"
 }
 ...
 },
 ...
 "homepage": "http://manu.sporny.org/"
 ...
}

 [{
 "http://schema.org/url": [{"@id": "http://manu.sporny.org/"}]
}]

 	Subject	Property	Value

 	_:b0	schema:url	http://manu.sporny.org/

 @prefix schema: <http://schema.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

 [
 schema:url <http://manu.sporny.org/>
] .

 In the example above, since the value http://manu.sporny.org/
 is expressed as a JSON string, the type coercion
 rules will transform the value into an IRI when processing the data.
 See § 4.2.3 Type Coercion for more
 details about this feature.

 In summary, IRIs can be expressed in a variety of
 different ways in JSON-LD:

 	Map entries that have a key mapping to a term in
 the active context expand to an IRI
 (only applies outside of the context definition).

 	An IRI is generated for the string value specified using
 @id or @type.

 	An IRI is generated for the string value of any key for which there
 are coercion rules that contain an @type key that is
 set to a value of @id or @vocab.

 This section only covers the most basic features associated with IRIs
 in JSON-LD. More advanced features related to IRIs are covered in
 section § 4. Advanced Concepts.

 3.3 Node Identifiers
This section is non-normative.

 To be able to externally reference nodes
 in an RDF graph, it is important that
 nodes have an identifier. IRIs
 are a fundamental concept of Linked Data, for
 nodes to be truly linked, dereferencing the
 identifier should result in a representation of that node.
 This may allow an application to retrieve further information about a
 node.

 In JSON-LD, a node is identified using the @id
 keyword:

 Example 13: Identifying a node

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 ...
 "name": "http://schema.org/name"
 },
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 ...
}

 [{
 "@id": "http://me.markus-lanthaler.com/",
 "http://schema.org/name": [{"@value": "Markus Lanthaler"}]
}]

 	Subject	Property	Value

 	http://me.markus-lanthaler.com/	schema:name	Markus Lanthaler

 @prefix schema: <http://schema.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://me.markus-lanthaler.com/> schema:name "Markus Lanthaler" .

 The example above contains a node object identified by the IRI
 http://me.markus-lanthaler.com/.

 This section only covers the most basic features associated with
 node identifiers in JSON-LD. More advanced features related to
 node identifiers are covered in section § 4. Advanced Concepts.

 3.4 Uses of JSON Objects
This section is non-normative.

 As a syntax, JSON has only a limited number of syntactic elements:

 	Numbers, which describe literal numeric values,

 	Strings, which may describe literal string values, or be used as the keys in a JSON object.

 	Boolean true and false, which describe literal boolean values,

 	null, which describes the absence of a value,

 	Arrays, which describe an ordered set of values of any type, and

 	JSON objects, which provide a set of map entries, relating keys with values.

 The JSON-LD data model allows for a richer set of resources, based on the RDF data model.
 The data model is described more fully in § 8. Data Model.
 JSON-LD uses JSON objects to describe various resources, along with the relationships
 between these resources:

 	Node objects
	
 Node objects are used to define nodes in the linked data graph
 which may have both incoming and outgoing edges.
 Node objects are principle structure for defining resources having properties.
 See § 9.2 Node Objects for the normative definition.

 	Value objects
	
 Value objects are used for describing literal nodes in a linked data graph
 which may have only incoming edges.
 In JSON, some literal nodes may be described without the use of a JSON object
 (e.g., numbers, strings, and boolean values),
 but in the expanded form,
 all literal nodes are described using value objects.
 See § 4.2 Describing Values for more information,
 and § 9.5 Value Objects for the normative definition.

 	List Objects and Set objects
	
 List Objects are a special kind of JSON-LD maps,
 distinct from node objects and value objects,
 used to express ordered values by wrapping an array in a map under the key @list.
 Set Objects exist for uniformity, and are equivalent to the array value of the @set key.
 See § 4.3.1 Lists and § 4.3.2 Sets
 for more detail.

 	Map Objects
	
 JSON-LD uses various forms of maps as ways to more easily access values of a property.

 	Language Maps
	
 Allows multiple values differing in their associated language to be
 indexed by language tag.
 See § 4.6.2 Language Indexing for more information,
 and § 9.8 Language Maps for the normative definition.

 	Index Maps
	
 Allows multiple values (node objects or value objects) to be indexed by an associated @index.
 See § 4.6.1 Data Indexing for more information,
 and § 9.9 Index Maps for the normative definition.

 	Id Maps
	
 Allows multiple node objects to be indexed by an associated @id.
 See § 4.6.3 Node Identifier Indexing for more information,
 and § 9.11 Id Maps for the normative definition.

 	Type Maps
	
 Allows multiple node objects to be indexed by an associated @type.
 See § 4.6.4 Node Type Indexing for more information,
 and § 9.12 Type Maps for the normative definition.

 	Named Graph Indexing
	
 Allows multiple named graphs to be indexed by an associated graph name.
 See § 4.9.3 Named Graph Indexing for more information.

 	Graph objects
	
 A graph object is much like a node object, except that it defines a named graph.
 See § 4.9 Named Graphs for more information,
 and § 9.4 Graph Objects for the normative definition.
 A node object may also describe a named graph, in addition to other properties
 defined on the node. The notable difference is that a graph object only describes
 a named graph.

 	Context Definitions
	
 A Context Definition uses the JSON object form, but is not itself data in a linked data graph.
 A Context Definition also may contain expanded term definitions,
 which are also represented using JSON objects.
 See § 3.1 The Context,
 § 4.1 Advanced Context Usage for more information,
 and § 9.15 Context Definitions for the normative definition.

 3.5 Specifying the Type
This section is non-normative.

 In Linked Data, it is common to specify the type of a graph node;
 in many cases, this can be inferred based on the properties used within a
 given node object, or the property for which a node is a value. For
 example, in the schema.org vocabulary, the givenName
 property is associated with a Person. Therefore, one may reason that
 if a node object contains the property givenName, that the
 type is a Person; making this explicit with @type helps
 to clarify the association.

 The type of a particular node can be specified using the @type
 keyword. In Linked Data, types are uniquely
 identified with an IRI.

 Example 14: Specifying the type for a node

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 ...
 "givenName": "http://schema.org/givenName",
 "familyName": "http://schema.org/familyName"
 },
 "@id": "http://me.markus-lanthaler.com/",
 "@type": "http://schema.org/Person",
 "givenName": "Markus",
 "familyName": "Lanthaler",
 ...
}

 [{
 "@id": "http://me.markus-lanthaler.com/",
 "@type": ["http://schema.org/Person"],
 "http://schema.org/givenName": [{"@value": "Markus"}],
 "http://schema.org/familyName": [{"@value": "Lanthaler"}]
}]

 	Subject	Property	Value

 	http://me.markus-lanthaler.com/	rdf:type	schema:Person

 	http://me.markus-lanthaler.com/	schema:givenName	Markus

 	http://me.markus-lanthaler.com/	schema:familyName	Lanthaler

 @prefix schema: <http://schema.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://me.markus-lanthaler.com/> a schema:Person;
 schema:givenName "Markus";
 schema:familyName "Lanthaler" .

 A node can be assigned more than one type by using an array:

 Example 15: Specifying multiple types for a node

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 ...
 "@id": "http://me.markus-lanthaler.com/",
 "@type": [
 "http://schema.org/Person",
 "http://xmlns.com/foaf/0.1/Person"
],
 ...
}

 [{
 "@id": "http://me.markus-lanthaler.com/",
 "@type": ["http://schema.org/Person", "http://xmlns.com/foaf/0.1/Person"]
}]

 	Subject	Property	Value

 	http://me.markus-lanthaler.com/	rdf:type	schema:Person

 	http://me.markus-lanthaler.com/	rdf:type	foaf:Person

 @prefix schema: <http://schema.org/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://me.markus-lanthaler.com/> a schema:Person, foaf:Person.

 The value of a @type key may also be a term defined in the active context:

 Example 16: Using a term to specify the type

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 ...
 "Person": "http://schema.org/Person"
 },
 "@id": "http://example.org/places#BrewEats",
 "@type": "Person",
 ...
}

 [{
 "@id": "http://example.org/places#BrewEats",
 "@type": ["http://schema.org/Person"]
}]

 	Subject	Property	Value

 	http://example.org/places#BrewEats	rdf:type	schema:Person

 @prefix schema: <http://schema.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example.org/places#BrewEats> a schema:Person.

 In addition to setting the type of nodes,
 @type can also be used to set the type of a value
 to create a typed value.
 This use of @type is similar to that used to define the type of a node object,
 but value objects are restricted to having just a single type.
 The use of @type to create typed values is discussed more fully in § 4.2.1 Typed Values.

 Typed values can also be defined implicitly, by specifying
 @type in an expanded term definition.
 This is covered more fully in § 4.2.3 Type Coercion.

4. Advanced Concepts
This section is non-normative.

JSON-LD has a number of features that provide functionality above and beyond
 the core functionality described above. JSON can be used to express data
 using such structures, and the features described in this
 section can be used to interpret a variety of different JSON structures as
 Linked Data. A JSON-LD processor will make use of provided and embedded
 contexts to interpret property values in a number of different idiomatic
 ways.

 	Describing values

 	One pattern in JSON is for the value of a property to be a string.
 Often times, this string actually represents some other typed value, for
 example an IRI, a date, or a string in some specific language. See § 4.2 Describing Values for details on how to
 describe such value typing.

 	Value ordering

 	In JSON, a property with an array value implies an implicit order;
 arrays in JSON-LD do not convey any ordering of the contained elements by
 default, unless defined using embedded structures or through a context
 definition. See § 4.3 Value Ordering for a
 further discussion.

 	Property nesting

 	Another JSON idiom often found in APIs is to use an
 intermediate object to group together related properties of an object; in JSON-LD
 these are referred to as nested properties and are described in § 4.4 Nested Properties.

 	Referencing objects

 	
 Linked Data is all about describing the relationships between different resources.
 Sometimes these relationships are between resources defined in different
 documents described on the web, sometimes the resources are described
 within the same document.

 Example 17: Referencing Objects on the Web

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@vocab": "http://xmlns.com/foaf/0.1/",
 "knows": {"@type": "@id"}
 },
 "@id": "http://manu.sporny.org/about#manu",
 "@type": "Person",
 "name": "Manu Sporny",
 "knows": "https://greggkellogg.net/foaf#me"
}

 [{
 "@id": "http://manu.sporny.org/about#manu",
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://xmlns.com/foaf/0.1/name": [{"@value": "Manu Sporny"}],
 "http://xmlns.com/foaf/0.1/knows": [{"@id": "https://greggkellogg.net/foaf#me"}]
}]

 	Subject	Property	Value

 	http://manu.sporny.org/about#manu	rdf:type	foaf:Person

 	http://manu.sporny.org/about#manu	foaf:name	Manu Sporny

 	http://manu.sporny.org/about#manu	foaf:knows	https://greggkellogg.net/foaf#me

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://manu.sporny.org/about#manu> a foaf:Person;
 foaf:name "Manu Sporny";
 foaf:knows <https://greggkellogg.net/foaf#me> .

 In this case, a document residing at http://manu.sporny.org/about
 may contain the example above, and reference another document at
 https://greggkellogg.net/foaf which could include a similar
 representation.

 A common idiom found in JSON usage is objects being specified as the
 value of other objects, called object embedding in JSON-LD;
 for example, a friend specified as an
 object value of a Person:

 Example 18: Embedding Objects

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@vocab": "http://xmlns.com/foaf/0.1/"
 },
 "@id": "http://manu.sporny.org/about#manu",
 "@type": "Person",
 "name": "Manu Sporny",
 "knows": {
 "@id": "https://greggkellogg.net/foaf#me",
 "@type": "Person",
 "name": "Gregg Kellogg"
 }
}

 [{
 "@id": "http://manu.sporny.org/about#manu",
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://xmlns.com/foaf/0.1/name": [{"@value": "Manu Sporny"}],
 "http://xmlns.com/foaf/0.1/knows": [{
 "@id": "https://greggkellogg.net/foaf#me",
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://xmlns.com/foaf/0.1/name": [{"@value": "Gregg Kellogg"}]
 }]
}]

 	Subject	Property	Value

 	http://manu.sporny.org/about#manu	rdf:type	foaf:Person

 	http://manu.sporny.org/about#manu	foaf:name	Manu Sporny

 	https://greggkellogg.net/foaf#me	rdf:type	foaf:Person

 	https://greggkellogg.net/foaf#me	foaf:name	Gregg Kellogg

 	http://manu.sporny.org/about#manu	foaf:knows	https://greggkellogg.net/foaf#me

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://manu.sporny.org/about#manu> a foaf:Person;
 foaf:name "Manu Sporny";
 foaf:knows <https://greggkellogg.net/foaf#me> .
<https://greggkellogg.net/foaf#me> a foaf:Person;
 foaf:name "Gregg Kellogg" .

 See § 4.5 Embedding details these relationships.

 	Indexed values

 	Another common idiom in JSON is to use an intermediate object to represent property values via indexing. JSON-LD allows data to be indexed
 in a number of different ways, as detailed in § 4.6 Indexed Values.

 	Reverse Properties

 	JSON-LD serializes directed graphs. That means that
 every property points from a node to another node
 or value. However, in some cases, it is desirable
 to serialize in the reverse direction, as detailed in § 4.8 Reverse Properties.

The following sections describe such
 advanced functionality in more detail.

4.1 Advanced Context Usage
This section is non-normative.

 Section § 3.1 The Context introduced the basics of what makes
 JSON-LD work. This section expands on the basic principles of the
 context and demonstrates how more advanced use cases can
 be achieved using JSON-LD.

 In general, contexts may be used any time a
 map is defined.
 The only time that one cannot express a context is as a direct child of another context definition (other than as part of an expanded term definition).
 For example, a JSON-LD document may
 have the form of an array composed of one or more node objects,
 which use a context definition in each top-level node object:

 Example 19: Using multiple contexts

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 [
 {
 "@context": "https://json-ld.org/contexts/person.jsonld",
 "name": "Manu Sporny",
 "homepage": "http://manu.sporny.org/",
 "depiction": "http://twitter.com/account/profile_image/manusporny"
 }, {
 "@context": "https://json-ld.org/contexts/place.jsonld",
 "name": "The Empire State Building",
 "description": "The Empire State Building is a 102-story landmark in New York City.",
 "geo": {
 "latitude": "40.75",
 "longitude": "73.98"
 }
 }
]

 [{
 "http://xmlns.com/foaf/0.1/name": [{"@value": "Manu Sporny"}],
 "http://xmlns.com/foaf/0.1/homepage": [{"@id": "http://manu.sporny.org/"}],
 "http://xmlns.com/foaf/0.1/depiction": [{"@id": "http://twitter.com/account/profile_image/manusporny"}]
}, {
 "http://purl.org/dc/terms/title": [{"@value": "The Empire State Building"}],
 "http://purl.org/dc/terms/description": [{
 "@value": "The Empire State Building is a 102-story landmark in New York City."
 }],
 "http://schema.org/geo": [{
 "http://www.w3.org/2003/01/geo/wgs84_pos#lat": [{
 "@type": "http://www.w3.org/2001/XMLSchema#decimal",
 "@value": "40.75"
 }],
 "http://www.w3.org/2003/01/geo/wgs84_pos#long": [{
 "@type": "http://www.w3.org/2001/XMLSchema#decimal",
 "@value": "73.98"
 }]
 }]
}]

 	Subject	Property	Value	Value Type

 	_:b0	foaf:name	Manu Sporny	

 	_:b0	foaf:homepage	http://manu.sporny.org/	

 	_:b0	foaf:depiction	http://twitter.com/account/profile_image/manusporny	

 	_:b1	dcterms:title	The Empire State Building	

 	_:b1	dcterms:description	The Empire State Building is a 102-story landmark in New York City.	

 	_:b2	geo:lat	40.75	xsd:decimal

 	_:b2	geo:long	73.98	xsd:decimal

 	_:b1	schema:geo	_:b2	

 @prefix dcterms: <http://purl.org/dc/terms/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .
@prefix schema: <http://schema.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

[
 foaf:name "Manu Sporny";
 foaf:homepage <http://manu.sporny.org/>;
 foaf:depiction <http://twitter.com/account/profile_image/manusporny>
] .

[
 dcterms:title "The Empire State Building";
 dcterms:description "The Empire State Building is a 102-story landmark in New York City.";
 schema:geo [
 geo:lat 40.75;
 geo:long 73.98
]
] .

 The outer array is standard for a document in
 expanded document form
 and flattened document form,
 and may be necessary when describing a disconnected graph,
 where nodes may not reference each other. In such cases, using
 a top-level map with a @graph property can be useful for saving
 the repetition of @context. See § 4.5 Embedding
 for more.

 Example 20: Describing disconnected nodes with @graph

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": [
 "https://json-ld.org/contexts/person.jsonld",
 "https://json-ld.org/contexts/place.jsonld",
 {"title": "http://purl.org/dc/terms/title"}
],
 "@graph": [{
 "http://xmlns.com/foaf/0.1/name": "Manu Sporny",
 "homepage": "http://manu.sporny.org/",
 "depiction": "http://twitter.com/account/profile_image/manusporny"
 }, {
 "title": "The Empire State Building",
 "description": "The Empire State Building is a 102-story landmark in New York City.",
 "geo": {
 "latitude": "40.75",
 "longitude": "73.98"
 }
 }]
}

 [{
 "http://xmlns.com/foaf/0.1/name": [{"@value": "Manu Sporny"}],
 "http://xmlns.com/foaf/0.1/homepage": [{"@id": "http://manu.sporny.org/"}],
 "http://xmlns.com/foaf/0.1/depiction": [{"@id": "http://twitter.com/account/profile_image/manusporny"}]
}, {
 "http://purl.org/dc/terms/title": [{"@value": "The Empire State Building"}],
 "http://purl.org/dc/terms/description": [{
 "@value": "The Empire State Building is a 102-story landmark in New York City."
 }],
 "http://schema.org/geo": [{
 "http://www.w3.org/2003/01/geo/wgs84_pos#lat": [{
 "@type": "http://www.w3.org/2001/XMLSchema#decimal",
 "@value": "40.75"
 }],
 "http://www.w3.org/2003/01/geo/wgs84_pos#long": [{
 "@type": "http://www.w3.org/2001/XMLSchema#decimal",
 "@value": "73.98"
 }]
 }]
}]

 	Subject	Property	Value	Value Type

 	_:b0	foaf:name	Manu Sporny	

 	_:b0	foaf:homepage	http://manu.sporny.org/	

 	_:b0	foaf:depiction	http://twitter.com/account/profile_image/manusporny	

 	_:b1	dcterms:title	The Empire State Building	

 	_:b1	dcterms:description	The Empire State Building is a 102-story landmark in New York City.	

 	_:b2	geo:lat	40.75	xsd:decimal

 	_:b2	geo:long	73.98	xsd:decimal

 	_:b1	schema:geo	_:b2	

 @prefix dcterms: <http://purl.org/dc/terms/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .
@prefix schema: <http://schema.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

[
 foaf:name "Manu Sporny";
 foaf:homepage <http://manu.sporny.org/>;
 foaf:depiction <http://twitter.com/account/profile_image/manusporny>
] .

[
 dcterms:title "The Empire State Building";
 dcterms:description "The Empire State Building is a 102-story landmark in New York City.";
 schema:geo [
 geo:lat 40.75;
 geo:long 73.98
]
] .

 Duplicate context terms are overridden using a
 most-recently-defined-wins mechanism.

 Example 21: Embedded contexts within node objects

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "name": "http://example.com/person#name",
 "details": "http://example.com/person#details"
 },
 "name": "Markus Lanthaler",
 ...
 "details": {
 "@context": {
 "name": "http://example.com/organization#name"
 },
 "name": "Graz University of Technology"
 }
}

 [{
 "http://example.com/person#details": [{
 "http://example.com/organization#name": [{
 "@value": "Graz University of Technology"
 }]
 }],
 "http://example.com/person#name": [{"@value": "Markus Lanthaler"}]
}]

 	Subject	Property	Value

 	_:b1	http://example.com/organization#name	Graz University of Technology

 	_:b0	http://example.com/person#details	_:b1

 	_:b0	http://example.com/person#name	Markus Lanthaler

 @prefix person: <http://example.com/person#> .
@prefix org: <http://example.com/organization#> .

[
 person:name "Markus Lanthaler";
 person:details [org:name "Graz University of Technology"]
] .

 In the example above, the name term is overridden
 in the more deeply nested details structure,
 which uses its own embedded context.
 Note that this is
 rarely a good authoring practice and is typically used when working with
 legacy applications that depend on a specific structure of the
 map. If a term is redefined within a
 context, all previous rules associated with the previous definition are
 removed. If a term is redefined to null,
 the term is effectively removed from the list of
 terms defined in the active context.

 Multiple contexts may be combined using an array, which is processed
 in order. The set of contexts defined within a specific map are
 referred to as local contexts. The
 active context refers to the accumulation of
 local contexts that are in scope at a
 specific point within the document. Setting a local context
 to null effectively resets the active context
 to an empty context, without term definitions, default language,
 or other things defined within previous contexts.
 The following example specifies an external context
 and then layers an embedded context on top of the external context:

 In JSON-LD 1.1, there are other mechanisms for introducing contexts, including
 scoped contexts and imported contexts, and there are new ways of protecting term definitions,
 so there are cases where the last defined inline context is not necessarily one
 which defines the scope of terms.
 See § 4.1.8 Scoped Contexts,
 § 4.1.9 Context Propagation,
 § 4.1.10 Imported Contexts, and
 § 4.1.11 Protected Term Definitions
 for further information.

 Example 22: Combining external and local contexts

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": [
 "https://json-ld.org/contexts/person.jsonld",
 {
 "pic": {
 "@id": "http://xmlns.com/foaf/0.1/depiction",
 "@type": "@id"
 }
 }
],
 "name": "Manu Sporny",
 "homepage": "http://manu.sporny.org/",
 "pic": "http://twitter.com/account/profile_image/manusporny"
}

 [{
 "http://xmlns.com/foaf/0.1/name": [{"@value": "Manu Sporny"}],
 "http://xmlns.com/foaf/0.1/homepage": [{"@id": "http://manu.sporny.org/"}],
 "http://xmlns.com/foaf/0.1/depiction": [{
 "@id": "http://twitter.com/account/profile_image/manusporny"
 }]
}]

 	Subject	Property	Value	Value Type

 	_:b0	foaf:name	Manu Sporny	

 	_:b0	foaf:homepage	http://manu.sporny.org/	IRI

 	_:b0	foaf:depiction	http://twitter.com/account/profile_image/manusporny	IRI

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

[
 foaf:name "Manu Sporny";
 foaf:homepage <http://manu.sporny.org/>;
 foaf:depiction <http://twitter.com/account/profile_image/manusporny>
] .

 Note
When possible, the context definition should be put
 at the top of a JSON-LD document. This makes the document easier to read and
 might make streaming parsers more efficient. Documents that do not have the
 context at the top are still conformant JSON-LD.

 Note
To avoid forward-compatibility issues, terms
 starting with an @ character
 followed exclusively by one or more ALPHA characters (see [RFC5234])
 are to be avoided as they
 might be used as keyword in future versions
 of JSON-LD. Terms starting with an @ character that are not
 JSON-LD 1.1 keywords are treated as any other term, i.e.,
 they are ignored unless mapped to an IRI. Furthermore, the use of
 empty terms ("") is not allowed as
 not all programming languages are able to handle empty JSON keys.

4.1.1 JSON-LD 1.1 Processing Mode
This section is non-normative.

 New features defined in JSON-LD 1.1 are available
 unless the processing mode is set to json-ld-1.0.
 This may be set through an API option.
 The processing mode may be explicitly set to json-ld-1.1 using the @version entry in a context
 set to the value 1.1 as a number, or through an API option.
 Explicitly setting the processing mode to json-ld-1.1
 will prohibit JSON-LD 1.0 processors from incorrectly processing a JSON-LD 1.1 document.

 Example 23: Setting @version in context

 {
 "@context": {
 "@version": 1.1,
 ...
 },
 ...
}

 The first context encountered when processing a
 document which contains @version determines the processing mode,
 unless it is defined explicitly through an API option.
 This means that if "@version": 1.1 is encountered after processing a context
 without @version,
 the former will be interpreted as having had "@version": 1.1 defined within it.

 Note
Setting the processing mode explicitly
 to json-ld-1.1 is RECOMMENDED to prevent a JSON-LD 1.0 processor
 from incorrectly processing a JSON-LD 1.1 document and
 producing different results.

4.1.2 Default Vocabulary
This section is non-normative.

 At times, all properties and types may come from the same vocabulary. JSON-LD's
 @vocab keyword allows an author to set a common prefix which
 is used as the vocabulary mapping and is used
 for all properties and types that do not match a term and are neither
 an IRI nor a compact IRI (i.e., they do
 not contain a colon).

 Example 24: Using a default vocabulary

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@vocab": "http://example.com/vocab/"
 },
 "@id": "http://example.org/places#BrewEats",
 "@type": "Restaurant",
 "name": "Brew Eats"
 ...
}

 [{
 "@id": "http://example.org/places#BrewEats",
 "@type": ["http://example.com/vocab/Restaurant"],
 "http://example.com/vocab/name": [{"@value": "Brew Eats"}]
}]

 	Subject	Property	Value

 	http://example.org/places#BrewEats	rdf:type	http://example.com/vocab/Restaurant

 	http://example.org/places#BrewEats	http://example.com/vocab/name	Brew Eats

 @prefix ex: <http://example.com/vocab/> .

<http://example.org/places#BrewEats> a ex:Restaurant;
 ex:name "Brew Eats" .

 If @vocab is used but certain keys in an
 map should not be expanded using
 the vocabulary IRI, a term can be explicitly set
 to null in the context. For instance, in the
 example below the databaseId entry would not expand to an
 IRI causing the property to be dropped when expanding.

 Example 25: Using the null keyword to ignore data

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@vocab": "http://example.com/vocab/",
 "databaseId": null
 },
 "@id": "http://example.org/places#BrewEats",
 "@type": "Restaurant",
 "name": "Brew Eats",
 "databaseId": "23987520"
}

 [{
 "@id": "http://example.org/places#BrewEats",
 "@type": ["http://example.com/vocab/Restaurant"],
 "http://example.com/vocab/name": [{"@value": "Brew Eats"}]
}]

 	Subject	Property	Value

 	http://example.org/places#BrewEats	rdf:type	http://example.com/vocab/Restaurant

 	http://example.org/places#BrewEats	http://example.com/vocab/name	Brew Eats

 @prefix ex: <http://example.com/vocab/> .

<http://example.org/places#BrewEats> a ex:Restaurant;
 ex:name "Brew Eats" .

 Since JSON-LD 1.1,
 the vocabulary mapping in a local context can be set to a relative IRI reference,
 which is concatenated to any vocabulary mapping in the active context
 (see § 4.1.4 Using the Document Base for the Default Vocabulary
 for how this applies if there is no vocabulary mapping in the active context).

 The following example illustrates the affect of expanding a property using
 a relative IRI reference, which is shown in the Expanded (Result) tab below.

 Example 26: Using a default vocabulary relative to a previous default vocabulary

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": [{
 "@vocab": "http://example.com/"
 }, {
 "@version": 1.1,
 "@vocab": "vocab/"
 }],
 "@id": "http://example.org/places#BrewEats",
 "@type": "Restaurant",
 "name": "Brew Eats"
 ...
}

 [{
 "@id": "http://example.org/places#BrewEats",
 "@type": ["http://example.com/vocab/Restaurant"],
 "http://example.com/vocab/name": [{"@value": "Brew Eats"}]
}]

 	Subject	Property	Value

 	http://example.org/places#BrewEats	rdf:type	http://example.com/vocab/Restaurant

 	http://example.org/places#BrewEats	http://example.com/vocab/name	Brew Eats

 @prefix ex: <http://example.com/vocab/> .

<http://example.org/places#BrewEats> a ex:Restaurant;
 ex:name "Brew Eats" .

 Note
The grammar for @vocab, as defined in § 9.15 Context Definitions
 allows the value to be a term or compact IRI.
 Note that terms used in the value of @vocab must be in scope at the time the context is introduced,
 otherwise there would be a circular dependency between @vocab and other terms defined in the same context.

4.1.3 Base IRI
This section is non-normative.

 JSON-LD allows IRIs
 to be specified in a relative form which is
 resolved against the document base according
 section 5.1 Establishing a Base URI
 of [RFC3986]. The base IRI may be explicitly set with a context
 using the @base keyword.

 For example, if a JSON-LD document was retrieved from http://example.com/document.jsonld,
 relative IRI references would resolve against that IRI:

 Example 27: Use a relative IRI reference as node identifier

 {
 "@context": {
 "label": "http://www.w3.org/2000/01/rdf-schema#label"
 },
 "@id": "",
 "label": "Just a simple document"
}

 This document uses an empty @id, which resolves to the document base.
 However, if the document is moved to a different location, the IRI would change.
 To prevent this without having to use an IRI, a context
 may define an @base mapping, to overwrite the base IRI for the document.

 Example 28: Setting the document base in a document

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@base": "http://example.com/document.jsonld",
 "label": "http://www.w3.org/2000/01/rdf-schema#label"
 },
 "@id": "",
 "label": "Just a simple document"
}

 [{
 "@id": "http://example.com/document.jsonld",
 "http://www.w3.org/2000/01/rdf-schema#label": [{"@value": "Just a simple document"}]
}]

 	Subject	Property	Value

 	http://example.com/document.jsonld	rdfs:label	Just a simple document

 @base <http://example.com/document.jsonld> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<> rdfs:label "Just a simple document" .

 Setting @base to null will prevent
 relative IRI references from being expanded to
 IRIs.

 Please note that the @base will be ignored if used in
 external contexts.

 4.1.4 Using the Document Base for the Default Vocabulary
This section is non-normative.

 In some cases, vocabulary terms are defined directly within the document
 itself, rather than in an external vocabulary.
 Since JSON-LD 1.1, the vocabulary mapping in a local context
 can be set to a relative IRI reference,
 which is, if there is no vocabulary mapping in scope, resolved against the base IRI.
 This causes terms which are expanded relative to the vocabulary,
 such as the keys of node objects,
 to be based on the base IRI to create IRIs.

 Example 29: Using "#" as the vocabulary mapping

 {
 "@context": {
 "@version": 1.1,
 "@base": "http://example/document",
 "@vocab": "#"
 },
 "@id": "http://example.org/places#BrewEats",
 "@type": "Restaurant",
 "name": "Brew Eats"
 ...
}

If this document were located at http://example/document, it would expand as follows:

 Example 30: Using "#" as the vocabulary mapping (expanded)

 Expanded (Result)
 Statements
 Turtle
 Open in playground

 [{
 "@id": "http://example.org/places#BrewEats",
 "@type": ["http://example/document#Restaurant"],
 "http://example/document#name": [{"@value": "Brew Eats"}]
}]

 	Subject	Property	Value

 	http://example.org/places#BrewEats	rdf:type	http://example/document#Restaurant

 	http://example.org/places#BrewEats	http://example/document#name	Brew Eats

 <http://example.org/places#BrewEats> a <http://example/document#Restaurant>;
 <http://example/document#name> "Brew Eats" .

4.1.5 Compact IRIs
This section is non-normative.

 A compact IRI is a way of expressing an IRI
 using a prefix and suffix separated by a colon (:).
 The prefix is a term taken from the
 active context and is a short string identifying a
 particular IRI in a JSON-LD document. For example, the
 prefix foaf may be used as a shorthand for the
 Friend-of-a-Friend vocabulary, which is identified using the IRI
 http://xmlns.com/foaf/0.1/. A developer may append
 any of the FOAF vocabulary terms to the end of the prefix to specify a short-hand
 version of the IRI for the vocabulary term. For example,
 foaf:name would be expanded to the IRI
 http://xmlns.com/foaf/0.1/name.

 Example 31: Prefix expansion

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "foaf": "http://xmlns.com/foaf/0.1/"
 ...
 },
 "@type": "foaf:Person",
 "foaf:name": "Dave Longley",
 ...
}

 [{
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://xmlns.com/foaf/0.1/name": [{"@value": "Dave Longley"}]
}]

 	Subject	Property	Value

 	_:b0	rdf:type	foaf:Person

 	_:b0	foaf:name	Dave Longley

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

 [
 a foaf:Person;
 foaf:name "Dave Longley"
] .

 In the example above, foaf:name expands to the IRI
 http://xmlns.com/foaf/0.1/name and foaf:Person expands
 to http://xmlns.com/foaf/0.1/Person.

 Prefixes are expanded when the form of the value
 is a compact IRI represented as a prefix:suffix
 combination, the prefix matches a term defined within the
 active context, and the suffix does not begin with two
 slashes (//). The compact IRI is expanded by
 concatenating the IRI mapped to the prefix to the (possibly empty)
 suffix. If the prefix is not defined in the active context,
 or the suffix begins with two slashes (such as in http://example.com),
 the value is interpreted as IRI instead. If the prefix is an
 underscore (_), the value is interpreted as blank node identifier
 instead.

 It's also possible to use compact IRIs within the context as shown in the
 following example:

 Example 32: Using vocabularies

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@version": 1.1,
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "foaf": "http://xmlns.com/foaf/0.1/",
 "foaf:homepage": { "@type": "@id" },
 "picture": { "@id": "foaf:depiction", "@type": "@id" }
 },
 "@id": "http://me.markus-lanthaler.com/",
 "@type": "foaf:Person",
 "foaf:name": "Markus Lanthaler",
 "foaf:homepage": "http://www.markus-lanthaler.com/",
 "picture": "http://twitter.com/account/profile_image/markuslanthaler"
}

 [{
 "@id": "http://me.markus-lanthaler.com/",
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://xmlns.com/foaf/0.1/name": [{
 "@value": "Markus Lanthaler"
 }],
 "http://xmlns.com/foaf/0.1/homepage": [{
 "@id": "http://www.markus-lanthaler.com/"
 }],
 "http://xmlns.com/foaf/0.1/depiction": [{
 "@id": "http://twitter.com/account/profile_image/markuslanthaler"
 }]
}]

 	Subject	Property	Value

 	http://me.markus-lanthaler.com/	rdf:type	foaf:Person

 	http://me.markus-lanthaler.com/	foaf:name	Markus Lanthaler

 	http://me.markus-lanthaler.com/	foaf:depiction	http://twitter.com/account/profile_image/markuslanthaler

 	http://me.markus-lanthaler.com/	foaf:homepage	http://www.markus-lanthaler.com/

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://me.markus-lanthaler.com/> a foaf:Person;
 foaf:name "Markus Lanthaler";
 foaf:homepage <http://www.markus-lanthaler.com/>;
 foaf:depiction <http://twitter.com/account/profile_image/markuslanthaler> .

 When operating explicitly with the processing mode
 for JSON-LD 1.0 compatibility, terms may be chosen as compact IRI prefixes when
 compacting only if a simple term definition is used where the value ends with a
 URI gen-delim character (e.g, /,
 # and others, see [RFC3986]).

 In JSON-LD 1.1, terms may be chosen as compact IRI prefixes
 when expanding or compacting only if
 a simple term definition is used where the value ends with a URI gen-delim character,
 or if their expanded term definition contains
 a @prefix entry with the value true.
 If a simple term definition does not end with a URI gen-delim character,
 or a expanded term definition contains
 a @prefix entry with the value false,
 the term will not be used for either expanding compact IRIs or compacting IRIs to compact IRIs.

 Note
The term selection behavior for 1.0 processors was changed
 as a result of an errata against JSON-LD 1.0 reported here.
 This does not affect the behavior of processing existing JSON-LD documents, but creates
 a slight change when compacting documents using Compact IRIs.

 The behavior when compacting can be illustrated by considering the following input
 document in expanded form:

 Example 33: Expanded document used to illustrate compact IRI creation

 [{
 "http://example.com/vocab/property": [{"@value": "property"}],
 "http://example.com/vocab/propertyOne": [{"@value": "propertyOne"}]
}]

 Using the following context in the 1.0 processing mode
 will now select the term vocab rather than
 property, even though the IRI associated with
 property captures more of the original IRI.

 Example 34: Compact IRI generation context (1.0)

 {
 "@context": {
 "vocab": "http://example.com/vocab/",
 "property": "http://example.com/vocab/property"
 }
}

 Compacting using the previous context with the above expanded input document
 results in the following compacted result:

 Example 35: Compact IRI generation term selection (1.0)

 Compacted (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "vocab": "http://example.com/vocab/",
 "property": "http://example.com/vocab/property"
 },
 "property": "property",
 "vocab:propertyOne": "propertyOne"
}

 	Subject	Property	Value

 	_:b0	http://example.com/vocab/property	property

 	_:b0	http://example.com/vocab/propertyOne	propertyOne

 @prefix vocab: <http://example.com/vocab/> .

[vocab:property "property"; vocab:propertyOne "propertyOne"] .

 In the original [JSON-LD10],
 the term selection algorithm would have selected property,
 creating the Compact IRI property:One.
 The original behavior can be made explicit using @prefix:

 Example 36: Compact IRI generation context (1.1)

 {
 "@context": {
 "@version": 1.1,
 "vocab": "http://example.com/vocab/",
 "property": {
 "@id": "http://example.com/vocab/property",
 "@prefix": true
 }
 }
}

 Example 37: Compact IRI generation term selection (1.1)

 Compacted (Input)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@version": 1.1,
 "vocab": "http://example.com/vocab/",
 "property": {
 "@id": "http://example.com/vocab/property",
 "@prefix": true
 }
 },
 "property": "property",
 "property:One": "propertyOne"
}

 	Subject	Property	Value

 	_:b0	http://example.com/vocab/property	property

 	_:b0	http://example.com/vocab/propertyOne	propertyOne

 @prefix vocab: <http://example.com/vocab/> .

[vocab:property "property"; vocab:propertyOne "propertyOne"] .

 In this case, the property term would not normally be usable as a prefix, both
 because it is defined with an expanded term definition, and because
 its @id does not end in a
 gen-delim character. Adding
 "@prefix": true allows it to be used as the prefix portion of
 the compact IRI property:One.

4.1.6 Aliasing Keywords
This section is non-normative.

 Each of the JSON-LD keywords,
 except for @context, may be aliased to application-specific
 keywords. This feature allows legacy JSON content to be utilized
 by JSON-LD by re-using JSON keys that already exist in legacy documents.
 This feature also allows developers to design domain-specific implementations
 using only the JSON-LD context.

 Example 38: Aliasing keywords

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "url": "@id",
 "a": "@type",
 "name": "http://xmlns.com/foaf/0.1/name"
 },
 "url": "http://example.com/about#gregg",
 "a": "http://xmlns.com/foaf/0.1/Person",
 "name": "Gregg Kellogg"
}

 [{
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://xmlns.com/foaf/0.1/name": [{"@value": "Gregg Kellogg"}],
 "@id": "http://example.com/about#gregg"
}]

 	Subject	Property	Value

 	http://example.com/about#gregg	rdf:type	foaf:Person

 	http://example.com/about#gregg	foaf:name	Gregg Kellogg

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example.com/about#gregg> a foaf:Person;
 foaf:name "Gregg Kellogg" .

 In the example above, the @id and @type
 keywords have been given the aliases
 url and a, respectively.

 Other than for @type, properties of
 expanded term definitions where the term is a keyword
 result in an error.
 Unless the processing mode is set to json-ld-1.0,
 there is also an exception for @type;
 see § 4.3.3 Using @set with @type for further details
 and usage examples.

 Unless the processing mode is set to json-ld-1.0,
 aliases of keywords are either simple term definitions,
 where the value is a keyword,
 or a expanded term definitions with an @id entry and optionally an @protected entry;
 no other entries are allowed.
 There is also an exception for aliases of @type,
 as indicated above.
 See § 4.1.11 Protected Term Definitions for further details
 of using @protected.

 Since keywords cannot be redefined, they can also not be aliased to
 other keywords.

 Note
Aliased keywords may not be used within a context, itself.

 See § 9.16 Keywords for a normative
 definition of all keywords.

4.1.7 IRI Expansion within a Context
This section is non-normative.

 In general, normal IRI expansion rules apply
 anywhere an IRI is expected (see § 3.2 IRIs). Within
 a context definition, this can mean that terms defined
 within the context may also be used within that context as long as
 there are no circular dependencies. For example, it is common to use
 the xsd namespace when defining typed values:

 Example 39: IRI expansion within a context

 {
 "@context": {
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "name": "http://xmlns.com/foaf/0.1/name",
 "age": {
 "@id": "http://xmlns.com/foaf/0.1/age",
 "@type": "xsd:integer"
 },
 "homepage": {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 },
 ...
}

In this example, the xsd term is defined
 and used as a prefix for the @type coercion
 of the age property.

Terms may also be used when defining the IRI of another
term:

 Example 40: Using a term to define the IRI of another term within a context

 {
 "@context": {
 "foaf": "http://xmlns.com/foaf/0.1/",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "name": "foaf:name",
 "age": {
 "@id": "foaf:age",
 "@type": "xsd:integer"
 },
 "homepage": {
 "@id": "foaf:homepage",
 "@type": "@id"
 }
 },
 ...
}

Compact IRIs
 and IRIs may be used on the left-hand side of a
 term definition.

 Example 41: Using a compact IRI as a term

 {
 "@context": {
 "foaf": "http://xmlns.com/foaf/0.1/",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "name": "foaf:name",
 "foaf:age": {
 "@id": "http://xmlns.com/foaf/0.1/age",
 "@type": "xsd:integer"
 },
 "foaf:homepage": {
 "@type": "@id"
 }
 },
 ...
}

In this example, the compact IRI form is used in two different ways.
 In the first approach, foaf:age declares both the
 IRI for the term (using short-form) as well as the
 @type associated with the term. In the second
 approach, only the @type associated with the term is
 specified. The full IRI for
 foaf:homepage is determined by looking up the foaf
 prefix in the
 context.

Warning
If a compact IRI is used as a term, it must expand to the
 value that compact IRI would have on its own when expanded.
 This represents a change to the original 1.0 algorithm to prevent terms from
 expanding to a different IRI, which could lead to undesired results.

 Example 42: Illegal Aliasing of a compact IRI to a different IRI

 {
 "@context": {
 "foaf": "http://xmlns.com/foaf/0.1/",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "name": "foaf:name",
 "foaf:age": {
 "@id": "http://xmlns.com/foaf/0.1/age",
 "@type": "xsd:integer"
 },
 "foaf:homepage": {
 "@id": "http://schema.org/url",
 "@type": "@id"
 }
 },
 ...
}

IRIs may also be used in the key position in a context:

 Example 43: Associating context definitions with IRIs

 {
 "@context": {
 "foaf": "http://xmlns.com/foaf/0.1/",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "name": "foaf:name",
 "foaf:age": {
 "@id": "http://xmlns.com/foaf/0.1/age",
 "@type": "xsd:integer"
 },
 "http://xmlns.com/foaf/0.1/homepage": {
 "@type": "@id"
 }
 },
 ...
}

In order for the IRI to match above, the IRI
 needs to be used in the JSON-LD document. Also note that foaf:homepage
 will not use the { "@type": "@id" } declaration because
 foaf:homepage is not the same as http://xmlns.com/foaf/0.1/homepage.
 That is, terms are looked up in a context using
 direct string comparison before the prefix lookup mechanism is applied.

Warning
Neither an IRI reference nor a compact IRI
 may expand to some other unrelated IRI.
 This represents a change to the original 1.0 algorithm which allowed this behavior but discouraged it.

The only other exception for using terms in the context is that
 circular definitions are not allowed. That is,
 a definition of term1 cannot depend on the
 definition of term2 if term2 also depends on
 term1. For example, the following context definition
 is illegal:

 Example 44: Illegal circular definition of terms within a context

 {
 "@context": {
 "term1": "term2:foo",
 "term2": "term1:bar"
 },
 ...
}

4.1.8 Scoped Contexts
This section is non-normative.

 An expanded term definition can include a @context
 property, which defines a context (a scoped context) for
 values of properties defined using that term.
 When used for a property, this is called a property-scoped context.
 This allows values to use term definitions, the base IRI,
 vocabulary mappings or the default language which are different from the
 node object they are contained in, as if the
 context was specified within the value itself.

 Example 45: Defining an @context within a term definition

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@version": 1.1,
 "name": "http://schema.org/name",
 "interest": {
 "@id": "http://xmlns.com/foaf/0.1/interest",
 "@context": {"@vocab": "http://xmlns.com/foaf/0.1/"}
 }
 },
 "name": "Manu Sporny",
 "interest": {
 "@id": "https://www.w3.org/TR/json-ld11/",
 "name": "JSON-LD",
 "topic": "Linking Data"
 }
}

 [{
 "http://xmlns.com/foaf/0.1/interest": [
 {
 "@id": "https://www.w3.org/TR/json-ld11/",
 "http://schema.org/name": [{"@value": "JSON-LD"}],
 "http://xmlns.com/foaf/0.1/topic": [{"@value": "Linking Data"}]
 }
],
 "http://schema.org/name": [{"@value": "Manu Sporny"}]
}]

 	Subject	Property	Value

 	https://www.w3.org/TR/json-ld11/	schema:name	JSON-LD

 	https://www.w3.org/TR/json-ld11/	foaf:topic	Linking Data

 	_:b0	schema:name	Manu Sporny

 	_:b0	foaf:interest	https://www.w3.org/TR/json-ld11/

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix schema: <http://schema.org/> .

[
 schema:name "Manu Sporny";
 foaf:interest <https://www.w3.org/TR/json-ld11/>
] .
<https://www.w3.org/TR/json-ld11/> schema:name "JSON-LD";
 foaf:topic "Linking Data" .

 In this case, the social profile is defined using the schema.org vocabulary,
 but interest is imported from FOAF,
 and is used to define a node describing one of Manu's interests
 where those properties now come from the FOAF vocabulary.

 Expanding this document, uses a combination of terms defined in the outer context,
 and those defined specifically for that term in a property-scoped context.

 Scoping can also be performed using a term used as a value of @type:

 Example 46: Defining an @context within a term definition used on @type

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@version": 1.1,
 "name": "http://schema.org/name",
 "interest": "http://xmlns.com/foaf/0.1/interest",
 "Person": "http://schema.org/Person",
 "Document": {
 "@id": "http://xmlns.com/foaf/0.1/Document",
 "@context": {"@vocab": "http://xmlns.com/foaf/0.1/"}
 }
 },
 "@type": "Person",
 "name": "Manu Sporny",
 "interest": {
 "@id": "https://www.w3.org/TR/json-ld11/",
 "@type": "Document",
 "name": "JSON-LD",
 "topic": "Linking Data"
 }
}

 [{
 "@type": ["http://schema.org/Person"],
 "http://xmlns.com/foaf/0.1/interest": [
 {
 "@id": "https://www.w3.org/TR/json-ld11/",
 "@type": ["http://xmlns.com/foaf/0.1/Document"],
 "http://schema.org/name": [{"@value": "JSON-LD"}],
 "http://xmlns.com/foaf/0.1/topic": [{"@value": "Linking Data"}]
 }
],
 "http://schema.org/name": [{"@value": "Manu Sporny"}]
}]

 	Subject	Property	Value

 	_:b0	rdf:type	schema:Person

 	https://www.w3.org/TR/json-ld11/	rdf:type	foaf:Document

 	https://www.w3.org/TR/json-ld11/	schema:name	JSON-LD

 	https://www.w3.org/TR/json-ld11/	foaf:topic	Linking Data

 	_:b0	schema:name	Manu Sporny

 	_:b0	foaf:interest	https://www.w3.org/TR/json-ld11/

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix schema: <http://schema.org/> .

[
 a schema:Person;
 schema:name "Manu Sporny";
 foaf:interest <https://www.w3.org/TR/json-ld11/>
] .
<https://www.w3.org/TR/json-ld11/> a foaf:Document;
 schema:name "JSON-LD";
 foaf:topic "Linking Data" .

 Scoping on @type is useful when common properties are used to
 relate things of different types, where the vocabularies in use within
 different entities calls for different context scoping. For example,
 hasPart/partOf may be common terms used in a document, but mean
 different things depending on the context.
 A type-scoped context is only in effect for the node object on which
 the type is used; the previous in-scope contexts are placed back into
 effect when traversing into another node object.
 As described further in § 4.1.9 Context Propagation,
 this may be controlled using the @propagate keyword.

 Note
Any property-scoped or local contexts that were introduced in the node object
 would still be in effect when traversing into another node object.

 When expanding, each value of @type is considered
 (ordering them lexicographically) where that value is also a term in
 the active context having its own type-scoped context.
 If so, that the scoped context is applied to the active context.

 Note
The values of @type are unordered, so if multiple
 types are listed, the order that type-scoped contexts are applied is based on
 lexicographical ordering.

 For example, consider the following semantically equivalent examples.
 The first example, shows how properties and types can define their own
 scoped contexts, which are included when expanding.

 Example 47: Expansion using embedded and scoped contexts

 {
 "@context": {
 "@version": 1.1,
 "@vocab": "http://example.com/vocab/",
 "property": {
 "@id": "http://example.com/vocab/property",
 "@context": {
 "term1": "http://example.com/vocab/term1"
 ↑ Scoped context for "property" defines term1
 }
 },
 "Type1": {
 "@id": "http://example.com/vocab/Type1",
 "@context": {
 "term3": "http://example.com/vocab/term3"
 ↑ Scoped context for "Type1" defines term3
 }
 },
 "Type2": {
 "@id": "http://example.com/vocab/Type2",
 "@context": {
 "term4": "http://example.com/vocab/term4"
 ↑ Scoped context for "Type2" defines term4
 }
 }
 },
 "property": {
 "@context": {
 "term2": "http://example.com/vocab/term2"
 ↑ Embedded context defines term2
 },
 "@type": ["Type2", "Type1"],
 "term1": "a",
 "term2": "b",
 "term3": "c",
 "term4": "d"
 }
}

 Contexts are processed depending on how they are defined.
 A property-scoped context is processed first,
 followed by any embedded context,
 followed lastly by the type-scoped contexts,
 in the appropriate order. The previous example is logically equivalent to the following:

 Example 48: Expansion using embedded and scoped contexts (embedding equivalent)

 {
 "@context": {
 "@vocab": "http://example.com/vocab/",
 "property": "http://example.com/vocab/property",
 "Type1": "http://example.com/vocab/Type1",
 "Type2": "http://example.com/vocab/Type2"
 },
 "property": {
 "@context": [{
 "term1": "http://example.com/vocab/term1"
 ↑ Previously scoped context for "property" defines term1
 }, {
 "term2": "http://example.com/vocab/term2"
 ↑ Embedded context defines term2
 }, {
 "term3": "http://example.com/vocab/term3"
 ↑ Previously scoped context for "Type1" defines term3
 }, {
 "term4": "http://example.com/vocab/term4"
 ↑ Previously scoped context for "Type2" defines term4
 }],
 "@type": ["Type2", "Type1"],
 "term1": "a",
 "term2": "b",
 "term3": "c",
 "term4": "d"
 }
}

 Note
If a term defines a scoped context,
 and then that term is later redefined,
 the association of the context defined in the earlier
 expanded term definition is lost
 within the scope of that redefinition. This is consistent with
 term definitions of a term overriding previous term definitions from
 earlier less deeply nested definitions, as discussed in
 § 4.1 Advanced Context Usage.

 Note
Scoped Contexts are a new feature in JSON-LD 1.1.

4.1.9 Context Propagation
This section is non-normative.

 Once introduced, contexts remain in effect until a subsequent
 context removes it by setting @context to null,
 or by redefining terms,
 with the exception of type-scoped contexts,
 which limit the effect of that context until the next node object is entered.
 This behavior can be changed using the @propagate keyword.

 The following example illustrates how terms defined in a context with @propagate set to false
 are effectively removed when descending into new node object.

 Example 49: Marking a context to not propagate

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@version": 1.1,
 "term": {
 "@id": "http://example.org/original",
 "@context": {
 "@propagate": false,
 ↑ Scoped context only lasts in one node-object
 "term": "http://example.org/non-propagated-term"
 }
 }
 },
 "term": {
 ↑ This term is the original
 "term": {
 ↑ This term is from the scoped context
 "term": "This term is from the first context"
 ↑ This term is the original again
 }
 }
}

 [{
 "http://example.org/original": [{
 "http://example.org/non-propagated-term": [{
 "http://example.org/original": [
 {"@value": "This term is from the first context"}
]
 }]
 }]
}]

 	Subject	Property	Value

 	_:b2	http://example.org/original	This term is from the first context

 	_:b1	http://example.org/non-propagated-term	_:b2

 	_:b0	http://example.org/original	_:b1

 @prefix ex: <http://example.org/> .
[
 ex:original [
 ex:non-propagated-term [
 ex:original "This term is from the first context"
]
]
] .

 Note
Contexts included within an array must all have the same value for @propagate
 due to the way that rollback is defined in JSON-LD 1.1 Processing Algorithms and API.

4.1.10 Imported Contexts
This section is non-normative.

 JSON-LD 1.0 included mechanisms for modifying the context that
 is in effect. This included the capability to load and process a remote
 context and then apply further changes to it via new contexts.

 However, with the introduction of JSON-LD 1.1, it is also desirable to
 be able to load a remote context, in particular an existing JSON-LD
 1.0 context, and apply JSON-LD 1.1 features to it prior to
 processing.

 By using the @import keyword in a context, another remote
 context, referred to as an imported context, can be loaded and
 modified prior to processing. The modifications are expressed in the
 context that includes the @import keyword, referred to as the
 wrapping context. Once an imported context is loaded, the
 contents of the wrapping context are merged into it prior to
 processing. The merge operation will cause each key-value pair in the
 wrapping context to be added to the loaded imported context,
 with the wrapping context key-value pairs taking precedence.

 By enabling existing contexts to be reused and edited inline prior
 to processing, context-wide keywords can be applied to adjust all term
 definitions in the imported context. Similarly, term definitions can
 be replaced prior to processing, enabling adjustments that, for instance, ensure term
 definitions match previously protected terms or that they include
 additional type coercion information.

 The following examples illustrate how @import can be used to express
 a type-scoped context that loads an imported context and
 sets @propagate to true, as a technique for making other similar modifications.

 Suppose there was a context that could be referenced remotely
 via the URL https://json-ld.org/contexts/remote-context.jsonld:

 Example 50: A remote context to be imported in a type-scoped context

 {
 "@context": {
 "Type1": "http://example.com/vocab/Type1",
 "Type2": "http://example.com/vocab/Type2",
 "term1": "http://example.com/vocab#term1",
 "term2": "http://example.com/vocab#term2",
 ...
 }
}

 A wrapping context could be used to source it and modify it:

 Example 51: Sourcing a context in a type-scoped context and setting it to propagate

 {
 "@context": {
 "@version": 1.1,
 "MyType": {
 "@id": "http://example.com/vocab#MyType",
 "@context": {
 "@version": 1.1,
 "@import": "https://json-ld.org/contexts/remote-context.jsonld",
 "@propagate": true
 }
 }
 }
}

 The effect would be the same as if the entire imported context
 had been copied into the type-scoped context:

 Example 52: Result of sourcing a context in a type-scoped context and setting it to propagate

 {
 "@context": {
 "@version": 1.1,
 "MyType": {
 "@id": "http://example.com/vocab#MyType",
 "@context": {
 "@version": 1.1,
 "Type1": "http://example.com/vocab/Type1",
 "Type2": "http://example.com/vocab/Type2",
 "term1": "http://example.com/vocab#term1",
 "term2": "http://example.com/vocab#term2",
 ...
 "@propagate": true
 }
 }
 }
}

 Similarly, the wrapping context may replace term definitions or
 set other context-wide keywords that may affect how the imported
 context term definitions will be processed:

 Example 53: Sourcing a context to modify @vocab and a term definition

 {
 "@context": {
 "@version": 1.1,
 "@import": "https://json-ld.org/contexts/remote-context.jsonld",
 "@vocab": "http://example.org/vocab#",
 ↑ This will replace any previous @vocab definition prior to processing it
 "term1": {
 "@id": "http://example.org/vocab#term1",
 "@type": "http://www.w3.org/2001/XMLSchema#integer"
 }
 ↑ This will replace the old term1 definition prior to processing it
 }
}

 Again, the effect would be the same as if the entire imported context
 had been copied into the context:

 Example 54: Result of sourcing a context to modify @vocab and a term definition

 {
 "@context": {
 "@version": 1.1,
 "Type1": "http://example.com/vocab/Type1",
 "Type2": "http://example.com/vocab/Type2",
 "term1": {
 "@id": "http://example.org/vocab#term1",
 "@type": "http://www.w3.org/2001/XMLSchema#integer"
 },
 ↑ Note term1 has been replaced prior to processing
 "term2": "http://example.com/vocab#term2",
 ...,
 "@vocab": "http://example.org/vocab#"
 }
}

 The result of loading imported contexts must be
 context definition, not an IRI or an array.
 Additionally, the imported context cannot include an @import entry.

4.1.11 Protected Term Definitions
This section is non-normative.

 JSON-LD is used in many specifications as the specified data format.
 However, there is also a desire to allow some JSON-LD contents to be processed as plain JSON,
 without using any of the JSON-LD algorithms.
 Because JSON-LD is very flexible,
 some terms from the original format may be locally overridden
 through the use of embedded contexts,
 and take a different meaning for JSON-LD based implementations.
 On the other hand, "plain JSON" implementations may not be able to interpret these embedded contexts,
 and hence will still interpret those terms with their original meaning.
 To prevent this divergence of interpretation,
 JSON-LD 1.1 allows term definitions to be protected.

 A protected term definition is a term definition with an entry @protected set to true.
 It generally prevents further contexts from overriding this term definition,
 either through a new definition of the same term,
 or through clearing the context with "@context": null.
 Such attempts will raise an error and abort the processing
 (except in some specific situations described
 below).

 Example 55: A protected term definition can generally not be overridden

 {
 "@context": [
 {
 "@version": 1.1,
 "Person": "http://xmlns.com/foaf/0.1/Person",
 "knows": "http://xmlns.com/foaf/0.1/knows",
 "name": {
 "@id": "http://xmlns.com/foaf/0.1/name",
 "@protected": true
 }
 },
 {
 – this attempt will fail with an error
 "name": "http://schema.org/name"
 }
],
 "@type": "Person",
 "name": "Manu Sporny",
 "knows": {
 "@context": [
 – this attempt would also fail with an error
 null,
 "http://schema.org/"
],
 "name": "Gregg Kellogg"
 }
}

 When all or most term definitions of a context need to be protected,
 it is possible to add an entry @protected set to true
 to the context itself.
 It has the same effect as protecting each of its term definitions individually.
 Exceptions can be made by adding an entry @protected set to false
 in some term definitions.

 Example 56: A protected @context with an exception

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": [
 {
 "@version": 1.1,
 "@protected": true,
 "name": "http://schema.org/name",
 "member": "http://schema.org/member",
 "Person": {
 "@id": "http://schema.org/Person",
 "@protected": false
 }
 }
],
 "name": "Digital Bazaar",
 "member": {
 "@context": {
 ­– name *is* protected, so the following would fail with an error
 – "name": "http://xmlns.com/foaf/0.1/Person",
 ­– Person is *not* protected, and can be overridden
 "Person": "http://xmlns.com/foaf/0.1/Person"
 },
 "@type": "Person",
 "name": "Manu Sporny"
 }
}

 [{
 "http://schema.org/name": [{"@value": "Digital Bazaar"}],
 "http://schema.org/member": [
 {
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://schema.org/name": [{"@value": "Manu Sporny"}]
 }
]
}]

 	Subject	Property	Value

 	_:b0	schema:name	Digital Bazaar

 	_:b0	schema:member	_:b1

 	_:b1	rdf:type	foaf:Person

 	_:b1	schema:name	Manu Sporny

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix schema: <http://schema.org/> .

[
 schema:name "Digital Bazaar";
 schema:member [
 a foaf:Person;
 schema:name "Manu Sporny"
]
] .

 While protected terms can in general not be overridden,
 there are two exceptions to this rule.
 The first exception is that a context is allowed to redefine a protected term
 if the new definition is identical to the protected term definition
 (modulo the @protected flag).
 The rationale is that the new definition does not violate the protection,
 as it does not change the semantics of the protected term.
 This is useful for widespread term definitions,
 such as aliasing @type to type,
 which may occur (including in a protected form) in several contexts.

 Example 57: Overriding permitted if both definitions are identical

 Original
 Expanded
 Statements
 Turtle
 Open in playground

 {
 "@context": [
 {
 "@version": 1.1,
 "@protected": true,
 "id": "@id",
 "type": "@type",
 "Organization": "http://example.org/orga/Organization",
 "member": {
 "@id": "http://example.org/orga/member",
 "@type": "@id"
 }
 },
 {
 "id": "@id",
 "type": "@type",
 ­– Those "redefinitions" do not raise an error.
 ­– Note however that the terms are still protected
 "Person": "http://schema.org/Person",
 "name": "http://schema.org/name"
 }
],
 "id": "https://digitalbazaar.com/",
 "type": "Organization",
 "member" : {
 "id": "http://manu.sporny.org/about#manu",
 "type": "Person",
 "name": "Manu Sporny"
 }
}

 [{
 "@id": "https://digitalbazaar.com/",
 "@type": ["http://example.org/orga/Organization"],
 "http://example.org/orga/member": [
 {
 "@id": "http://manu.sporny.org/about#manu",
 "@type": ["http://schema.org/Person"],
 "http://schema.org/name": [{"@value": "Manu Sporny"}]
 }
]
}]

 	Subject	Property	Value

 	https://digitalbazaar.com/	rdf:type	http://example.org/orga/Organization

 	https://digitalbazaar.com/	http://example.org/orga/member	http://manu.sporny.org/about#manu

 	http://manu.sporny.org/about#manu	rdf:type	schema:Person

 	http://manu.sporny.org/about#manu	schema:name	Manu Sporny

 @prefix o: <http://example.org/orga/>.
@prefix schema: <http://schema.org/>.

<https://digitalbazaar.com/> a o:Organization ;
 o:member <http://manu.sporny.org/about#manu>.

<http://manu.sporny.org/about#manu> a schema:Person ;
 schema:name "Manu Sporny".

 The second exception is that a property-scoped context
 is not affected by protection, and can therefore override protected terms,
 either with a new term definition,
 or by clearing the context with "@context": null.

 The rationale is that "plain JSON" implementations,
 relying on a given specification,
 will only traverse properties defined by that specification.
 Scoped contexts belonging to the specified properties are part of the specification,
 so the "plain JSON" implementations are expected to be aware of the change of semantics they induce.
 Scoped contexts belonging to other properties apply to parts of the document that "plain JSON" implementations will ignore.
 In both cases, there is therefore no risk of diverging interpretations between JSON-LD-aware implementations and "plain JSON" implementations,
 so overriding is permitted.

 Example 58: overriding permitted in property scoped context

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": [
 {
 – This context reflects the specification used by "plain JSON" implementations
 "@version": 1.1,
 "@protected": true,
 "Organization": "http://schema.org/Organization",
 "name": "http://schema.org/name",
 "employee": {
 "@id": "http://schema.org/employee",
 "@context": {
 "@protected": true,
 "name": "http://schema.org/familyName"
 }
 ↑ overrides the definition of "name"
 }
 },
 {
 – This context extends the previous one,
 – only JSON-LD-aware implementations are expected to use it
 "location": {
 "@id": "http://xmlns.com/foaf/0.1/based_near",
 "@context": [
 null,
 ↑ clears the context entirely, including all protected terms
 { "@vocab": "http://xmlns.com/foaf/0.1/" }
]
 }
 }
],
 "@type": "Organization",
 "name": "Digital Bazaar",
 "employee" : {
 "name": "Sporny",
 "location": {"name": "Blacksburg, Virginia"}
 }
}

 [{
 "@type": ["http://schema.org/Organization"],
 "http://schema.org/name": [{"@value": "Digital Bazaar"}],
 "http://schema.org/employee": [
 {
 "http://schema.org/familyName": [{"@value": "Sporny"}],
 "http://xmlns.com/foaf/0.1/based_near": [
 {
 "http://xmlns.com/foaf/0.1/name": [{"@value": "Blacksburg, Virginia"}]
 }
]
 }
]
}]

 	Subject	Property	Value

 	_:b0	rdf:type	schema:Organization

 	_:b0	schema:name	Digital Bazaar

 	_:b0	schema:employee	_:b1

 	_:b1	schema:familyName	Sporny

 	_:b1	foaf:based_near	_:b2

 	_:b2	foaf:name	Blacksburg, Virginia

 @prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix schema: <http://schema.org/>.

[
 a schema:Organization;
 schema:name "Digital Bazaar";
 schema:employee [
 schema:familyName "Sporny";
 foaf:based_near [
 foaf:name "Blacksburg, Virginia"
];
];
] .

 Note
By preventing terms from being overridden,
 protection also prevents any adaptation of a term
 (e.g., defining a more precise datatype, restricting the term's use to lists, etc.).
 This kind of adaptation is frequent with some general purpose contexts,
 for which protection would therefore hinder their usability.
 As a consequence, context publishers should use this feature with care.

 Note
Protected term definitions are a new feature in JSON-LD 1.1.

4.2 Describing Values
This section is non-normative.

 Values are leaf nodes in a graph associated with scalar values such as
 strings, dates, times, and other such atomic values.

4.2.1 Typed Values
This section is non-normative.

A value with an associated type, also known as a
 typed value, is indicated by associating a value with
 an IRI which indicates the value's type. Typed values may be
 expressed in JSON-LD in three ways:

 	By utilizing the @type keyword when defining
 a term within an @context section.

 	By utilizing a value object.

 	By using a native JSON type such as number, true, or false.

The first example uses the @type keyword to associate a
 type with a particular term in the @context:

 Example 59: Expanded term definition with type coercion

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "modified": {
 "@id": "http://purl.org/dc/terms/modified",
 "@type": "http://www.w3.org/2001/XMLSchema#dateTime"
 }
 },
 ...
 "@id": "http://example.com/docs/1",
 "modified": "2010-05-29T14:17:39+02:00",
 ...
}

 [{
 "@id": "http://example.com/docs/1",
 "http://purl.org/dc/terms/modified": [
 {
 "@type": "http://www.w3.org/2001/XMLSchema#dateTime",
 "@value": "2010-05-29T14:17:39+02:00"
 }
]
}]

 	Subject	Property	Value	Value Type

 	http://example.com/docs/1	dcterms:modified	2010-05-29T14:17:39+02:00	xsd:dateTime

 @prefix dcterms: <http://purl.org/dc/terms/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example.com/docs/1> dcterms:modified "2010-05-29T14:17:39+02:00"^^xsd:dateTime .

The modified key's value above is automatically interpreted as a
 dateTime value because of the information specified in the
 @context. The example tabs show how a JSON-LD processor will interpret the data.

The second example uses the expanded form of setting the type information
 in the body of a JSON-LD document:

 Example 60: Expanded value with type

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "modified": {
 "@id": "http://purl.org/dc/terms/modified"
 }
 },
 ...
 "modified": {
 "@value": "2010-05-29T14:17:39+02:00",
 "@type": "http://www.w3.org/2001/XMLSchema#dateTime"
 }
 ...
}

 [{
 "http://purl.org/dc/terms/modified": [
 {
 "@type": "http://www.w3.org/2001/XMLSchema#dateTime",
 "@value": "2010-05-29T14:17:39+02:00"
 }
]
}]

 	Subject	Property	Value	Value Type

 	_:b0	dcterms:modified	2010-05-29T14:17:39+02:00	xsd:dateTime

 @prefix dcterms: <http://purl.org/dc/terms/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

[dcterms:modified "2010-05-29T14:17:39+02:00"^^xsd:dateTime] .

Both examples above would generate the value
 2010-05-29T14:17:39+02:00 with the type
 http://www.w3.org/2001/XMLSchema#dateTime. Note that it is
 also possible to use a term or a compact IRI to
 express the value of a type.

Note
The @type keyword is also used to associate a type
 with a node.
 The concept of a node type and a value type are distinct.
 For more on adding types to nodes, see § 3.5 Specifying the Type.

Note
When expanding, an @type defined within a term definition
 can be associated with a string value to create an expanded value object,
 which is described in § 4.2.3 Type Coercion.
 Type coercion only takes place on string values, not for values which are maps,
 such as node objects and value objects in their expanded form.

A node type specifies the type of thing
 that is being described, like a person, place, event, or web page. A
 value type specifies the data type of a particular value, such
 as an integer, a floating point number, or a date.

 Example 61: Example demonstrating the context-sensitivity for @type

 {
 ...
 "@id": "http://example.org/posts#TripToWestVirginia",
 "@type": "http://schema.org/BlogPosting", ← This is a node type
 "http://purl.org/dc/terms/modified": {
 "@value": "2010-05-29T14:17:39+02:00",
 "@type": "http://www.w3.org/2001/XMLSchema#dateTime" ← This is a value type
 }
 ...
}

The first use of @type associates a node type
 (http://schema.org/BlogPosting) with the node,
 which is expressed using the @id keyword.
 The second use of @type associates a value type
 (http://www.w3.org/2001/XMLSchema#dateTime) with the
 value expressed using the @value keyword. As a
 general rule, when @value and @type are used in
 the same map, the @type
 keyword is expressing a value type.
 Otherwise, the @type keyword is expressing a
 node type. The example above expresses the following data:

 Example 62: Example demonstrating the context-sensitivity for @type (statements)

 Compacted (Input)
 Turtle
 Open in playground

 	Subject
 	Property
 	Value
 	Value Type

 	http://example.org/posts#TripToWestVirginia
 	rdf:type
 	schema:BlogPosting
 	

 	http://example.org/posts#TripToWestVirginia
 	dcterms:modified
 	2010-05-29T14:17:39+02:00
 	xsd:dateTime

 @prefix dcterms: <http://purl.org/dc/terms/> .
@prefix schema: <http://schema.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example.org/posts#TripToWestVirginia> a schema:BlogPosting;
 dcterms:modified "2010-05-29T14:17:39+02:00"^^xsd:dateTime .

4.2.2 JSON Literals
This section is non-normative.

 At times, it is useful to include JSON within JSON-LD that is not interpreted as JSON-LD.
 Generally, a JSON-LD processor will ignore properties which don't map to IRIs,
 but this causes them to be excluded when performing various algorithmic transformations.
 But, when the data that is being described is, itself, JSON, it's important that
 it survives algorithmic transformations.

 Warning
JSON-LD is intended to allow native JSON to be
 interpreted through the use of a context.
 The use of JSON literals creates blobs of data which are not available for interpretation.
 It is for use only in the rare cases that JSON cannot be represented as JSON-LD.

 When a term is defined with @type set to @json,
 a JSON-LD processor will treat the value as a JSON literal,
 rather than interpreting it further as JSON-LD.
 In the expanded document form, such JSON will become the value of @value within a value object
 having "@type": "@json".

 When transformed into RDF, the JSON literal will have a lexical form based on
 a specific serialization of the JSON,
 as described in Compaction algorithm of [JSON-LD11-API]
 and the JSON datatype.

 The following example shows an example of a JSON Literal contained as the
 value of a property. Note that the RDF results use a canonicalized form of the JSON
 to ensure interoperability between different processors.
 JSON canonicalization is described in Data Round Tripping in [JSON-LD11-API].

 Example 63: JSON Literal

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@version": 1.1,
 "e": {"@id": "http://example.com/vocab/json", "@type": "@json"}
 },
 "e": [
 56.0,
 {
 "d": true,
 "10": null,
 "1": []
 }
]
}

 [{
 "http://example.com/vocab/json": [{
 "@value": [
 56.0,
 {
 "d": true,
 "10": null,
 "1": []
 }
],
 "@type": "@json"
 }]
}]

 	Subject
 	Property
 	Value
 	Value Type

 	_:b0
 	http://example.com/vocab/json
 	[56,{"1":[],"10":null,"d":true}]
 	rdf:JSON

 @prefix ex: <http://example.com/vocab/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
[ex:json """[56,{"1":[],"10":null,"d":true}]"""^^rdf:JSON] .

Note
Generally, when a JSON-LD processor encounters null,
 the associated entry or value is removed.
 However, null is a valid JSON token; when used as the value
 of a JSON literal, a null value will be preserved.

4.2.3 Type Coercion
This section is non-normative.

JSON-LD supports the coercion of string values to particular data types.
Type coercion allows someone deploying JSON-LD to use string property values
and have those values be interpreted as typed values
by associating an IRI with the value in the expanded value object representation.
Using type coercion, string value representation can be used without requiring
the data type to be specified explicitly with each piece of data.

Type coercion is specified within an expanded term definition
 using the @type key. The value of this key expands to an IRI.
 Alternatively, the keyword @id or @vocab may be used
 as value to indicate that within the body of a JSON-LD document, a string value of a
 term coerced to @id or @vocab is to be interpreted as an
 IRI. The difference between @id and @vocab is how values are expanded
 to IRIs. @vocab first tries to expand the value
 by interpreting it as term. If no matching term is found in the
 active context, it tries to expand it as an IRI or a compact IRI
 if there's a colon in the value; otherwise, it will expand the value using the
 active context's vocabulary mapping, if present.
 Values coerced to @id in contrast are expanded as
 an IRI or a compact IRI if a colon is present; otherwise, they are interpreted
 as relative IRI references.

Note
The ability to coerce a value using a term definition is distinct
 from setting one or more types on a node object, as the former does not result in
 new data being added to the graph, while the latter manages node types
 through adding additional relationships to the graph.

Terms or compact IRIs used as the value of a
 @type key may be defined within the same context. This means that one may specify a
 term like xsd and then use xsd:integer within the same
 context definition.

The example below demonstrates how a JSON-LD author can coerce values to
typed values and IRIs.

 Example 64: Expanded term definition with types

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "name": "http://xmlns.com/foaf/0.1/name",
 "age": {
 "@id": "http://xmlns.com/foaf/0.1/age",
 "@type": "xsd:integer"
 },
 "homepage": {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 },
 "@id": "http://example.com/people#john",
 "name": "John Smith",
 "age": "41",
 "homepage": [
 "http://personal.example.org/",
 "http://work.example.com/jsmith/"
]
}

 [{
 "@id": "http://example.com/people#john",
 "http://xmlns.com/foaf/0.1/name": [{"@value": "John Smith"}],
 "http://xmlns.com/foaf/0.1/age": [{
 "@value": "41",
 "@type": "http://www.w3.org/2001/XMLSchema#integer"
 }],
 "http://xmlns.com/foaf/0.1/homepage": [{
 "@id": "http://personal.example.org/"
 }, {
 "@id": "http://work.example.com/jsmith/"
 }]
}]

 	Subject
 	Property
 	Value
 	Value Type

 	http://example.com/people#john
 	foaf:name
 	John Smith
 	

 	http://example.com/people#john
 	foaf:age
 	41
 	xsd:integer

 	http://example.com/people#john
 	foaf:homepage
 	http://personal.example.org/
 	IRI

 	http://example.com/people#john
 	foaf:homepage
 	http://work.example.com/jsmith/
 	IRI

 @prefix dcterms: <http://purl.org/dc/terms/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example.com/people#john> foaf:name "John Smith";
 foaf:age 41;
 foaf:homepage <http://personal.example.org/>,
 <http://work.example.com/jsmith/>
.

It is important to note that terms are only used in expansion
 for vocabulary-relative positions, such as for keys and values of map entries.
 Values of @id are considered to be document-relative,
 and do not use term definitions for expansion. For example, consider the following:

 Example 65: Term expansion for values, not identifiers

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@base": "http://example1.com/",
 "@vocab": "http://example2.com/",
 "knows": {"@type": "@vocab"}
 },
 "@id": "fred",
 "knows": [
 {"@id": "barney", "mnemonic": "the sidekick"},
 "barney"
]
}

 [{
 "@id": "http://example1.com/fred",
 "http://example2.com/knows": [{
 "@id": "http://example1.com/barney",
 "http://example2.com/mnemonic": [{"@value": "the sidekick"}]
 }, {
 "@id": "http://example2.com/barney"
 }]
}]

 	Subject	Property	Value

 	http://example1.com/barney	http://example2.com/mnemonic	the sidekick

 	http://example1.com/fred	http://example2.com/knows	http://example1.com/barney

 	http://example1.com/fred	http://example2.com/knows	http://example2.com/barney

 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix ex1: <http://example1.com/> .
@prefix ex2: <http://example2.com/> .

ex1:barney ex2:mnemonic "the sidekick" .

ex1:fred ex2:knows ex1:barney, ex2:barney .

The unexpected result is that "barney" expands to both http://example1.com/barney
 and http://example2.com/barney, depending where it is encountered.
 String values interpreted as IRIs because of the associated term definitions
 are typically considered to be document-relative.
 In some cases, it makes sense to interpret these relative to the vocabulary,
 prescribed using "@type": "@vocab" in the term definition, though this can
 lead to unexpected consequences such as these.

In the previous example, "barney" appears twice, once as the value of @id,
 which is always interpreted as a document-relative IRI, and once as the value of
 "fred", which is defined to be vocabulary-relative, thus the different expanded values.

For more on this see § 4.1.2 Default Vocabulary.

A variation on the previous example using "@type": "@id" instead
 of @vocab illustrates the behavior of interpreting "barney" relative to the document:

 Example 66: Terms not expanded when document-relative

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@base": "http://example1.com/",
 "@vocab": "http://example2.com/",
 "knows": {"@type": "@id"}
 },
 "@id": "fred",
 "knows": [
 {"@id": "barney", "mnemonic": "the sidekick"},
 "barney"
]
}

 [{
 "@id": "http://example1.com/fred",
 "http://example2.com/knows": [{
 "@id": "http://example1.com/barney",
 "http://example2.com/mnemonic": [{"@value": "the sidekick"}]
 }, {
 "@id": "http://example1.com/barney"
 }]
}]

 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix ex1: <http://example1.com/> .
@prefix ex2: <http://example2.com/> .

ex1:barney ex2:mnemonic "the sidekick" .

ex1:fred ex2:knows ex1:barney, ex1:barney .

Note
The triple ex1:fred ex2:knows ex1:barney . is emitted twice,
 but exists only once in an output dataset, as it is a duplicate triple.

Terms may also be defined using IRIs
 or compact IRIs. This allows coercion rules
 to be applied to keys which are not represented as a simple term.
 For example:

 Example 67: Term definitions using IRIs and compact IRIs

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "foaf": "http://xmlns.com/foaf/0.1/",
 "foaf:age": {
 "@id": "http://xmlns.com/foaf/0.1/age",
 "@type": "xsd:integer"
 },
 "http://xmlns.com/foaf/0.1/homepage": {
 "@type": "@id"
 }
 },
 "foaf:name": "John Smith",
 "foaf:age": "41",
 "http://xmlns.com/foaf/0.1/homepage": [
 "http://personal.example.org/",
 "http://work.example.com/jsmith/"
]
}

 [{
 "http://xmlns.com/foaf/0.1/age": [{"@type": "http://www.w3.org/2001/XMLSchema#integer", "@value": "41"}],
 "http://xmlns.com/foaf/0.1/name": [{"@value": "John Smith"}],
 "http://xmlns.com/foaf/0.1/homepage": [
 {"@id": "http://personal.example.org/"},
 {"@id": "http://work.example.com/jsmith/"}
]
}
]

 	Subject	Property	Value	Value Type

 	_:b0	foaf:age	41	xsd:integer

 	_:b0	foaf:name	John Smith	

 	_:b0	foaf:homepage	http://personal.example.org/	

 	_:b0	foaf:homepage	http://work.example.com/jsmith/	

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

 [
 foaf:age 41;
 foaf:homepage <http://personal.example.org/>,
 <http://work.example.com/jsmith/>;
 foaf:name "John Smith"
] .

In this case the @id definition in the term definition is optional.
 If it does exist, the IRI or compact IRI representing
 the term will always be expanded to IRI defined by the @id
 key—regardless of whether a prefix is defined or not.

Type coercion is always performed using the unexpanded value of the key. In the
 example above, that means that type coercion is done looking for foaf:age
 in the active context and not for the corresponding, expanded
 IRI http://xmlns.com/foaf/0.1/age.

Note
Keys in the context are treated as terms for the purpose of
 expansion and value coercion. At times, this may result in multiple representations for the same expanded IRI.
 For example, one could specify that dog and cat both expanded to http://example.com/vocab#animal.
 Doing this could be useful for establishing different type coercion or language specification rules.

4.2.4 String Internationalization
This section is non-normative.

 At times, it is important to annotate a string
 with its language. In JSON-LD this is possible in a variety of ways.
 First, it is possible to define a default language for a JSON-LD document
 by setting the @language key in the context:

 Example 68: Setting the default language of a JSON-LD document

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "name": "http://example.org/name",
 "occupation": "http://example.org/occupation",
 ...
 "@language": "ja"
 },
 "name": "花澄",
 "occupation": "科学者"
}

 [{
 "http://example.org/name": [{"@value": "花澄", "@language": "ja"}],
 "http://example.org/occupation": [{"@value": "科学者", "@language": "ja"}]
}]

 	Subject	Property	Value	Language

 	_:b0	http://example.org/name	花澄	ja

 	_:b0	http://example.org/occupation	科学者	ja

 @prefix ex: <http://example.org/> .

[
 ex:name "花澄"@ja;
 ex:occupation "科学者"@ja
] .

 The example above would associate the ja language
 tag with the two strings 花澄 and 科学者
 Languages tags are defined in [BCP47].
 The default language applies to all
 string values that are not type coerced.

 To clear the default language for a subtree, @language can
 be set to null in an intervening context, such as a scoped context as follows:

 Example 69: Clearing default language

 {
 "@context": {
 ...
 "@version": 1.1,
 "@vocab": "http://example.com/",
 "@language": "ja",
 "details": {
 "@context": {
 "@language": null
 }
 }
 },
 "name": "花澄",
 "details": {"occupation": "Ninja"}
}

 Second, it is possible to associate a language with a specific term
 using an expanded term definition:

 Example 70: Expanded term definition with language

 {
 "@context": {
 ...
 "ex": "http://example.com/vocab/",
 "@language": "ja",
 "name": { "@id": "ex:name", "@language": null },
 "occupation": { "@id": "ex:occupation" },
 "occupation_en": { "@id": "ex:occupation", "@language": "en" },
 "occupation_cs": { "@id": "ex:occupation", "@language": "cs" }
 },
 "name": "Yagyū Muneyoshi",
 "occupation": "忍者",
 "occupation_en": "Ninja",
 "occupation_cs": "Nindža",
 ...
}

 The example above would associate 忍者 with the specified default
 language tag ja, Ninja with the language tag
 en, and Nindža with the language tag cs.
 The value of name, Yagyū Muneyoshi wouldn't be
 associated with any language tag since @language was reset to
 null in the expanded term definition.

 Note
Language associations are only applied to plain
 strings. Typed values
 or values that are subject to type coercion
 are not language tagged.

 Just as in the example above, systems often need to express the value of a
 property in multiple languages. Typically, such systems also try to ensure that
 developers have a programmatically easy way to navigate the data structures for
 the language-specific data. In this case, language maps
 may be utilized.

 Example 71: Language map expressing a property in three languages

 {
 "@context": {
 ...
 "occupation": { "@id": "ex:occupation", "@container": "@language" }
 },
 "name": "Yagyū Muneyoshi",
 "occupation": {
 "ja": "忍者",
 "en": "Ninja",
 "cs": "Nindža"
 }
 ...
}

 The example above expresses exactly the same information as the previous
 example but consolidates all values in a single property. To access the
 value in a specific language in a programming language supporting dot-notation
 accessors for object properties, a developer may use the
 property.language pattern
 (when languages are limited to the primary language sub-tag,
 and do not depend on other sub-tags, such as "en-us").
 For example, to access the occupation
 in English, a developer would use the following code snippet:
 obj.occupation.en.

 Third, it is possible to override the default language by using a
 value object:

 Example 72: Overriding default language using an expanded value

 {
 "@context": {
 ...
 "@language": "ja"
 },
 "name": "花澄",
 "occupation": {
 "@value": "Scientist",
 "@language": "en"
 }
}

 This makes it possible to specify a plain string by omitting the
 @language tag or setting it to null when expressing
 it using a value object:

 Example 73: Removing language information using an expanded value

 {
 "@context": {
 ...
 "@language": "ja"
 },
 "name": {
 "@value": "Frank"
 },
 "occupation": {
 "@value": "Ninja",
 "@language": "en"
 },
 "speciality": "手裏剣"
}

 See § 9.8 Language Maps for a description
 of using language maps to set the language of mapped values.

 4.2.4.1 Base Direction
This section is non-normative.

 It is also possible to annotate a string, or language-tagged string,
 with its base direction.
 As with language, it is possible to define a default base direction for a JSON-LD document
 by setting the @direction key in the context:

 Example 74: Setting the default base direction of a JSON-LD document

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle (drops direction)
 Turtle (with datatype)
 Turtle (with bnode structure)
 Open in playground

 {
 "@context": {
 "title": "http://example.org/title",
 "publisher": "http://example.org/publisher",
 ...
 "@language": "ar-EG",
 "@direction": "rtl"
 },
 "title": "HTML و CSS: تصميم و إنشاء مواقع الويب",
 "publisher": "مكتبة"
}

 [{
 "http://example.org/title": [{"@value": "HTML و CSS: تصميم و إنشاء مواقع الويب", "@language": "ar-EG", "@direction": "rtl"}],
 "http://example.org/publisher": [{"@value": "مكتبة", "@language": "ar-EG", "@direction": "rtl"}]
}]

 	Subject	Property	Value	Language	Direction

 	_:b0	http://example.org/title	HTML و CSS: تصميم و إنشاء مواقع الويب	ar-EG	rtl

 	_:b0	http://example.org/publisher	مكتبة	ar-EG	rtl

 @prefix ex: <http://example.org/> .

Note that this version drops the base direction.
[
 ex:title "HTML و CSS: تصميم و إنشاء مواقع الويب"@ar-EG;
 ex:publisher "مكتبة"@ar-EG
] .

 @prefix ex: <http://example.org/> .
@prefix i18n: <https://www.w3.org/ns/i18n#> .

Note that this version preserves the base direction using a datatype.
[
 ex:title "HTML و CSS: تصميم و إنشاء مواقع الويب"^^i18n:ar-EG_rtl;
 ex:publisher "مكتبة"^^i18n:ar-EG_rtl
] .

 @prefix ex: <http://example.org/> .

Note that this version preserves the base direction using a bnode structure.
[
 ex:title [
 rdf:value "HTML و CSS: تصميم و إنشاء مواقع الويب",
 rdf:language "ar-EG",
 rdf:direction "rtl"
];
 ex:publisher [
 rdf:value "مكتبة",
 rdf:language "ar-EG",
 rdf:direction "rtl"
]
] .

 The example above would associate the ar-EG language tag
 and "rtl" base direction
 with the two strings
 HTML و CSS: تصميم و إنشاء مواقع الويب and مكتبة.
 The default base direction applies to all
 string values that are not type coerced.

 To clear the default base direction for a subtree, @direction can
 be set to null in an intervening context, such as a scoped context as follows:

 Example 75: Clearing default base direction

 {
 "@context": {
 ...
 "@version": 1.1,
 "@vocab": "http://example.com/",
 "@language": "ar-EG",
 "@direction": "rtl",
 "details": {
 "@context": {
 "@direction": null
 }
 }
 },
 "title": "HTML و CSS: تصميم و إنشاء مواقع الويب",
 "details": {"genre": "Technical Publication"}
}

 Second, it is possible to associate a base direction with a specific term
 using an expanded term definition:

 Example 76: Expanded term definition with language and direction

 {
 "@context": {
 ...
 "@version": 1.1,
 "@language": "ar-EG",
 "@direction": "rtl",
 "ex": "http://example.com/vocab/",
 "publisher": { "@id": "ex:publisher", "@direction": null },
 "title": { "@id": "ex:title" },
 "title_en": { "@id": "ex:title", "@language": "en", "@direction": "ltr" }
 },
 "publisher": "مكتبة",
 "title": "HTML و CSS: تصميم و إنشاء مواقع الويب",
 "title_en": "HTML and CSS: Design and Build Websites",
 ...
}

 The example above would create three properties:

 	Subject	Property	Value	Language	Direction

 	_:b0	http://example.com/vocab/publisher	مكتبة	ar-EG	

 	_:b0	http://example.com/vocab/title	HTML و CSS: تصميم و إنشاء مواقع الويب	ar-EG	rtl

 	_:b0	http://example.com/vocab/title	HTML and CSS: Design and Build Websites	en	ltr

 Note
Base direction associations are only applied to plain
 strings and language-tagged strings.
 Typed values or values that are subject to type coercion
 are not given a base direction.

 Third, it is possible to override the default base direction by using a
 value object:

 Example 77: Overriding default language and default base direction using an expanded value

 {
 "@context": {
 ...
 "@language": "ar-EG",
 "@direction": "rtl"
 },
 "title": "HTML و CSS: تصميم و إنشاء مواقع الويب",
 "author": {
 "@value": "Jon Duckett",
 "@language": "en",
 "@direction": null
 }
}

 See Strings on the Web: Language and Direction Metadata [string-meta] for a deeper discussion of base direction.

4.3 Value Ordering
This section is non-normative.

A JSON-LD author can express multiple values in a compact way by using
 arrays. Since graphs do not describe ordering for links
 between nodes, arrays in JSON-LD do not convey any ordering of the
 contained elements by default. This is exactly the opposite from regular JSON
 arrays, which are ordered by default. For example, consider the following
 simple document:

 Example 78: Multiple values with no inherent order

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {"foaf": "http://xmlns.com/foaf/0.1/"},
 ...
 "@id": "http://example.org/people#joebob",
 "foaf:nick": ["joe", "bob", "JB"],
 ...
}

 [{
 "@id": "http://example.org/people#joebob",
 "http://xmlns.com/foaf/0.1/nick": [
 {"@value": "joe"},
 {"@value": "bob"},
 {"@value": "JB"}
]
}]

 	Subject
 	Property
 	Value

 	http://example.org/people#joebob
 	foaf:nick
 	joe

 	http://example.org/people#joebob
 	foaf:nick
 	bob

 	http://example.org/people#joebob
 	foaf:nick
 	JB

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example.org/people#joebob> foaf:nick
 "joe", "bob", "JB" .

Multiple values may also be expressed using the expanded form:

 Example 79: Using an expanded form to set multiple values

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {"dcterms": "http://purl.org/dc/terms/"},
 "@id": "http://example.org/articles/8",
 "dcterms:title": [
 {
 "@value": "Das Kapital",
 "@language": "de"
 },
 {
 "@value": "Capital",
 "@language": "en"
 }
]
}

 [{
 "@id": "http://example.org/articles/8",
 "http://purl.org/dc/terms/title": [
 {"@value": "Das Kapital", "@language": "de"},
 {"@value": "Capital", "@language": "en"}
]
}]

 	Subject
 	Property
 	Value
 	Language

 	http://example.org/articles/8
 	dcterms:title
 	Das Kapital
 	de

 	http://example.org/articles/8
 	dcterms:title
 	Capital
 	en

 @prefix dcterms: <http://purl.org/dc/terms/> .

<http://example.org/articles/8> dcterms:title
 "Das Kapital"@de, "Capital"@en .

Note
The example shown above would generates statement, again with
 no inherent order.

Although multiple values of a property are typically of the same type,
 JSON-LD places no restriction on this, and a property may have values
 of different types:

 Example 80: Multiple array values of different types

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {"ex": "http://example.org/"},
 "@id": "http://example.org/people#michael",
 "ex:name": [
 "Michael",
 {"@value": "Mike"},
 {"@value": "Miguel", "@language": "es"},
 { "@id": "https://www.wikidata.org/wiki/Q4927524" },
 42
]
}

 [{
 "@id": "http://example.org/people#michael",
 "http://example.org/name": [
 {"@value": "Michael"},
 {"@value": "Mike"},
 {"@value": "Miguel", "@language": "es"},
 {"@id": "https://www.wikidata.org/wiki/Q4927524" },
 {"@value": 42}
]
}]

 	Subject
 	Property
 	Value
 	Language
 	Value Type

 	http://example.org/people#michael
 	http://example.org/name
 	Michael
 	
 	

 	http://example.org/people#michael
 	http://example.org/name
 	Mike
 	
 	

 	http://example.org/people#michael
 	http://example.org/name
 	Miguel
 	es
 	

 	http://example.org/people#michael
 	http://example.org/name
 	https://www.wikidata.org/wiki/Q4927524
 	
 	

 	http://example.org/people#michael
 	http://example.org/name
 	42
 	
 	xsd:integer

 @prefix ex: <http://example.org/> .

<http://example.org/people#michael> ex:name
 "Michael",
 "Mike",
 "Miguel"@es,
 <https://www.wikidata.org/wiki/Q4927524>,
 42 .

Note
When viewed as statements, the values have no inherent order.

4.3.1 Lists
This section is non-normative.

As the notion of ordered collections is rather important in data
 modeling, it is useful to have specific language support. In JSON-LD,
 a list may be represented using the @list keyword as follows:

 Example 81: An ordered collection of values in JSON-LD

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {"foaf": "http://xmlns.com/foaf/0.1/"},
 ...
 "@id": "http://example.org/people#joebob",
 "foaf:nick": {
 "@list": ["joe", "bob", "jaybee"]
 },
 ...
}

 [{
 "@id": "http://example.org/people#joebob",
 "http://xmlns.com/foaf/0.1/nick": [{
 "@list": [
 {"@value": "joe"},
 {"@value": "bob"},
 {"@value": "jaybee"}
]
 }]
}]

 	Subject
 	Property
 	Value

 	http://example.org/people#joebob	foaf:nick	_:b0

 	_:b0	rdf:first	joe

 	_:b0	rdf:rest	_:b1

 	_:b1	rdf:first	bob

 	_:b1	rdf:rest	_:b2

 	_:b2	rdf:first	jaybee

 	_:b2	rdf:rest	rdf:nil

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example.org/people#joebob> foaf:nick ("joe" "bob" "jaybee") .

This describes the use of this array as being ordered,
 and order is maintained when processing a document. If every use of a given multi-valued
 property is a list, this may be abbreviated by setting @container
 to @list in the context:

 Example 82: Specifying that a collection is ordered in the context

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 ...
 "nick": {
 "@id": "http://xmlns.com/foaf/0.1/nick",
 "@container": "@list"
 }
 },
 ...
 "@id": "http://example.org/people#joebob",
 "nick": ["joe", "bob", "jaybee"],
 ...
}

 [{
 "@id": "http://example.org/people#joebob",
 "http://xmlns.com/foaf/0.1/nick": [{
 "@list": [
 {"@value": "joe"},
 {"@value": "bob"},
 {"@value": "jaybee"}
]
 }]
}]

 	Subject	Property	Value

 	http://example.org/people#joebob	foaf:nick	_:b0

 	_:b0	rdf:first	joe

 	_:b0	rdf:rest	_:b1

 	_:b1	rdf:first	bob

 	_:b1	rdf:rest	_:b2

 	_:b2	rdf:first	jaybee

 	_:b2	rdf:rest	rdf:nil

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example.org/people#joebob> foaf:nick ("joe" "bob" "jaybee") .

The implementation of lists in RDF depends on linking anonymous nodes
 together using the properties rdf:first and
 rdf:rest, with the end of the list defined as the resource
 rdf:nil, as the "statements" tab illustrates.
 This allows order to be represented within an unordered set of statements.

Both JSON-LD and Turtle provide shortcuts for representing ordered lists.

In JSON-LD 1.1, lists of lists, where the value of
 a list object, may itself be a list object, are
 fully supported.

Note that the "@container": "@list" definition recursively
 describes array values of lists as being, themselves, lists. For example, in The GeoJSON Format (see [RFC7946]),
 coordinates are an ordered list of positions, which are
 represented as an array of two or more numbers:

 Example 83: Coordinates expressed in GeoJSON

 {
 "type": "Feature",
 "bbox": [-10.0, -10.0, 10.0, 10.0],
 "geometry": {
 "type": "Polygon",
 "coordinates": [
 [
 [-10.0, -10.0],
 [10.0, -10.0],
 [10.0, 10.0],
 [-10.0, -10.0]
]
]
 }
 //...
}

For these examples, it's important that values
 expressed within bbox and coordinates maintain their order,
 which requires the use of embedded list structures. In JSON-LD 1.1, we can
 express this using recursive lists, by simply adding the appropriate context
 definition:

 Example 84: Coordinates expressed in JSON-LD

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@vocab": "https://purl.org/geojson/vocab#",
 "type": "@type",
 "bbox": {"@container": "@list"},
 "coordinates": {"@container": "@list"}
 },
 "type": "Feature",
 "bbox": [-10.0, -10.0, 10.0, 10.0],
 "geometry": {
 "type": "Polygon",
 "coordinates": [
 [
 [-10.0, -10.0],
 [10.0, -10.0],
 [10.0, 10.0],
 [-10.0, -10.0]
]
]
 }
 //...
}

 [{
 "@type": ["https://purl.org/geojson/vocab#Feature"],
 "https://purl.org/geojson/vocab#bbox": [{
 "@list": [
 {"@value": -10.0},
 {"@value": -10.0},
 {"@value": 10.0},
 {"@value": 10.0}
]
 }],
 "https://purl.org/geojson/vocab#geometry": [{
 "@type": ["https://purl.org/geojson/vocab#Polygon"],
 "https://purl.org/geojson/vocab#coordinates": [{
 "@list": [{
 "@list": [
 {"@list": [{"@value": -10.0}, {"@value": -10.0}]},
 {"@list": [{"@value": 10.0}, {"@value": -10.0}]},
 {"@list": [{"@value": 10.0}, {"@value": 10.0}]},
 {"@list": [{"@value": -10.0}, {"@value": -10.0}]}
]
 }]
 }]
 }]
}]

 	Subject
 	Property
 	Value
 	Value Type

 	_:b0	rdf:type	geojson:Feature	

 	_:b0	geojson:bbox	_:b1	

 	_:b0	geojson:geometry	_:b5	

 	_:b1	rdf:first	-10	xsd:integer

 	_:b1	rdf:rest	_:b2	

 	_:b2	rdf:first	-10	xsd:integer

 	_:b2	rdf:rest	_:b3	

 	_:b3	rdf:first	10	xsd:integer

 	_:b3	rdf:rest	_:b4	

 	_:b4	rdf:first	10	xsd:integer

 	_:b4	rdf:rest	rdf:nil	

 	_:b5	rdf:type	geojson:Polygon	

 	_:b5	geojson:coordinates	_:b6	

 	_:b6	rdf:first	_:b7	

 	_:b6	rdf:rest	rdf:nil	

 	_:b7	rdf:first	_:b8	

 	_:b7	rdf:rest	_:b10	

 	_:b8	rdf:first	-10	xsd:integer

 	_:b8	rdf:rest	_:b9	

 	_:b9	rdf:first	-10	xsd:integer

 	_:b9	rdf:rest	rdf:nil	

 	_:b10	rdf:first	_:b11	

 	_:b10	rdf:rest	_:b13	

 	_:b11	rdf:first	10	xsd:integer

 	_:b11	rdf:rest	_:b12	

 	_:b12	rdf:first	-10	xsd:integer

 	_:b12	rdf:rest	rdf:nil	

 	_:b13	rdf:first	_:b14	

 	_:b13	rdf:rest	_:b16	

 	_:b14	rdf:first	10	xsd:integer

 	_:b14	rdf:rest	_:b15	

 	_:b15	rdf:first	10	xsd:integer

 	_:b15	rdf:rest	rdf:nil	

 	_:b16	rdf:first	_:b17	

 	_:b16	rdf:rest	rdf:nil	

 	_:b17	rdf:first	-10	xsd:integer

 	_:b17	rdf:rest	_:b18	

 	_:b18	rdf:first	-10	xsd:integer

 	_:b18	rdf:rest	rdf:nil	

 @prefix geojson: <https://purl.org/geojson/vocab#>.

[
 a geojson:Feature ;
 geojson:bbox (-10 -10 10 10) ;
 geojson:geometry [
 a geojson:Polygon ;
 geojson:coordinates (
 (
 (-10 -10)
 (10 -10)
 (10 10)
 (-10 -10)
)
)
]
] .

Note that coordinates includes three levels of lists.

Values of terms associated with an @list container
 are always represented in the form of an array,
 even if there is just a single value or no value at all.

4.3.2 Sets
This section is non-normative.

While @list is used to describe ordered lists,
 the @set keyword is used to describe unordered sets.
 The use of @set in the body of a JSON-LD document
 is optimized away when processing the document, as it is just syntactic
 sugar. However, @set is helpful when used within the context
 of a document.
 Values of terms associated with an @set container
 are always represented in the form of an array,
 even if there is just a single value that would otherwise be optimized to
 a non-array form in compact form (see
 § 5.2 Compacted Document Form). This makes post-processing of
 JSON-LD documents easier as the data is always in array form, even if the
 array only contains a single value.

 Example 85: An unordered collection of values in JSON-LD

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {"foaf": "http://xmlns.com/foaf/0.1/"},
 ...
 "@id": "http://example.org/people#joebob",
 "foaf:nick": {
 "@set": ["joe", "bob", "jaybee"]
 },
 ...
}

 [{
 "@id": "http://example.org/people#joebob",
 "http://xmlns.com/foaf/0.1/nick": [
 {"@value": "joe"},
 {"@value": "bob"},
 {"@value": "jaybee"}
]
}]

 	Subject
 	Property
 	Value

 	http://example.org/people#joebob
 	foaf:nick
 	joe

 	http://example.org/people#joebob
 	foaf:nick
 	bob

 	http://example.org/people#joebob
 	foaf:nick
 	jaybee

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example.org/people#joebob> foaf:nick "joe", "bob", "jaybee" .

This describes the use of this array as being unordered,
 and order may change when processing a document. By default,
 arrays of values are unordered, but this may be made explicit by
 setting @container to @set in the context:

 Example 86: Specifying that a collection is unordered in the context

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 ...
 "nick": {
 "@id": "http://xmlns.com/foaf/0.1/nick",
 "@container": "@set"
 }
 },
 ...
 "@id": "http://example.org/people#joebob",
 "nick": ["joe", "bob", "jaybee"],
 ...
}

 [{
 "@id": "http://example.org/people#joebob",
 "http://xmlns.com/foaf/0.1/nick": [
 {"@value": "joe"},
 {"@value": "bob"},
 {"@value": "jaybee"}
]
}]

 	Subject
 	Property
 	Value

 	http://example.org/people#joebob
 	foaf:nick
 	joe

 	http://example.org/people#joebob
 	foaf:nick
 	bob

 	http://example.org/people#joebob
 	foaf:nick
 	jaybee

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example.org/people#joebob> foaf:nick "joe", "bob", "jaybee" .

Since JSON-LD 1.1, the @set keyword may be
 combined with other container specifications within an expanded term
 definition to similarly cause compacted values of indexes to be consistently
 represented using arrays. See § 4.6 Indexed Values for a further discussion.

4.3.3 Using @set with @type
This section is non-normative.

 Unless the processing mode is set to json-ld-1.0,
 @type may be used with an expanded term definition with @container set
 to @set; no other entries may be set within such an expanded term definition.
 This is used by the Compaction algorithm to ensure that the values of @type (or an alias)
 are always represented in an array.

 Example 87: Setting @container: @set on @type

 {
 "@context": {
 "@version": 1.1,
 "@type": {"@container": "@set"}
 },
 "@type": ["http:/example.org/type"]
}

4.4 Nested Properties
This section is non-normative.

 Many JSON APIs separate properties from their entities using an
 intermediate object; in JSON-LD these are called nested properties.
 For example, a set of possible labels may be grouped
 under a common property:

 Example 88: Nested properties

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@version": 1.1,
 "skos": "http://www.w3.org/2004/02/skos/core#",
 "labels": "@nest",
 "main_label": {"@id": "skos:prefLabel"},
 "other_label": {"@id": "skos:altLabel"},
 "homepage": {"@id": "http://xmlns.com/foaf/0.1/homepage", "@type": "@id"}
 },
 "@id": "http://example.org/myresource",
 "homepage": "http://example.org",
 "labels": {
 "main_label": "This is the main label for my resource",
 "other_label": "This is the other label"
 }
}

 [{
 "@id": "http://example.org/myresource",
 "http://xmlns.com/foaf/0.1/homepage": [
 {"@id": "http://example.org"}
],
 "http://www.w3.org/2004/02/skos/core#prefLabel": [
 {"@value": "This is the main label for my resource"}
],
 "http://www.w3.org/2004/02/skos/core#altLabel": [
 {"@value": "This is the other label"}
]
}]

 	Subject
 	Property
 	Value

 	http://example.org/myresource
 	foaf:homepage
 	http://example.org

 	http://example.org/myresource
 	skos:prefLabel
 	This is the main label for my resource

 	http://example.org/myresource
 	skos:altLabel
 	This is the other label

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

<http://example.org/myresource>
 skos:prefLabel "This is the main label for my resource";
 skos:altLabel "This is the other label";
 foaf:homepage <http://example.org> .

 By defining labels using the keyword @nest,
 a JSON-LD processor will ignore the nesting created by using the
 labels property and process the contents as if it were declared
 directly within containing object. In this case, the labels
 property is semantically meaningless. Defining it as equivalent to
 @nest causes it to be ignored when expanding, making it
 equivalent to the following:

 Example 89: Nested properties folded into containing object

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "skos": "http://www.w3.org/2004/02/skos/core#",
 "main_label": {"@id": "skos:prefLabel"},
 "other_label": {"@id": "skos:altLabel"},
 "homepage": {"@id": "http://xmlns.com/foaf/0.1/homepage", "@type": "@id"}
 },
 "@id": "http://example.org/myresource",
 "homepage": "http://example.org",
 "main_label": "This is the main label for my resource",
 "other_label": "This is the other label"
}

 [{
 "@id": "http://example.org/myresource",
 "http://xmlns.com/foaf/0.1/homepage": [
 {"@id": "http://example.org"}
],
 "http://www.w3.org/2004/02/skos/core#prefLabel": [
 {"@value": "This is the main label for my resource"}
],
 "http://www.w3.org/2004/02/skos/core#altLabel": [
 {"@value": "This is the other label"}
]
}]

 	Subject
 	Property
 	Value

 	http://example.org/myresource
 	foaf:homepage
 	http://example.org

 	http://example.org/myresource
 	skos:prefLabel
 	This is the main label for my resource

 	http://example.org/myresource
 	skos:altLabel
 	This is the other label

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

<http://example.org/myresource>
 skos:prefLabel "This is the main label for my resource";
 skos:altLabel "This is the other label";
 foaf:homepage <http://example.org> .

 Similarly, term definitions may contain a @nest property
 referencing a term aliased to @nest which will cause such
 properties to be nested under that aliased term when compacting.
 In the example below, both main_label and other_label are defined
 with "@nest": "labels", which will cause them to be serialized under
 labels when compacting.

 Example 90: Defining property nesting - Expanded Input

 [{
 "@id": "http://example.org/myresource",
 "http://xmlns.com/foaf/0.1/homepage": [
 {"@id": "http://example.org"}
],
 "http://www.w3.org/2004/02/skos/core#prefLabel": [
 {"@value": "This is the main label for my resource"}
],
 "http://www.w3.org/2004/02/skos/core#altLabel": [
 {"@value": "This is the other label"}
]
}]

 Example 91: Defining property nesting - Context

 {
 "@context": {
 "@version": 1.1,
 "skos": "http://www.w3.org/2004/02/skos/core#",
 "labels": "@nest",
 "main_label": {"@id": "skos:prefLabel", "@nest": "labels"},
 "other_label": {"@id": "skos:altLabel", "@nest": "labels"},
 "homepage": {"@id": "http://xmlns.com/foaf/0.1/homepage", "@type": "@id"}
 }
}

 Example 92: Defining property nesting

 Compacted (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@version": 1.1,
 "skos": "http://www.w3.org/2004/02/skos/core#",
 "labels": "@nest",
 "main_label": {"@id": "skos:prefLabel", "@nest": "labels"},
 "other_label": {"@id": "skos:altLabel", "@nest": "labels"},
 "homepage": {"@id": "http://xmlns.com/foaf/0.1/homepage", "@type": "@id"}
 },
 "@id": "http://example.org/myresource",
 "homepage": "http://example.org",
 "labels": {
 "main_label": "This is the main label for my resource",
 "other_label": "This is the other label"
 }
}

 	Subject
 	Property
 	Value

 	http://example.org/myresource
 	foaf:homepage
 	http://example.org

 	http://example.org/myresource
 	skos:prefLabel
 	This is the main label for my resource

 	http://example.org/myresource
 	skos:altLabel
 	This is the other label

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

<http://example.org/myresource>
 skos:prefLabel "This is the main label for my resource";
 skos:altLabel "This is the other label";
 foaf:homepage <http://example.org> .

 Note
Nested properties are a new feature in JSON-LD 1.1.

4.5 Embedding
This section is non-normative.

 Embedding is a JSON-LD feature that allows an author to
 use node objects as
 property values. This is a commonly used mechanism for
 creating a parent-child relationship between two nodes.

 Without embedding, node objects can be linked by referencing the
 identifier of another node object. For example:

 Example 93: Referencing node objects

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@vocab": "http://xmlns.com/foaf/0.1/",
 "knows": {"@type": "@id"}
 },
 "@graph": [{
 "name": "Manu Sporny",
 "@type": "Person",
 "knows": "https://greggkellogg.net/foaf#me"
 }, {
 "@id": "https://greggkellogg.net/foaf#me",
 "@type": "Person",
 "name": "Gregg Kellogg"
 }]
}

 [{
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://xmlns.com/foaf/0.1/knows": [
 {"@id": "https://greggkellogg.net/foaf#me"}
],
 "http://xmlns.com/foaf/0.1/name": [
 {"@value": "Manu Sporny"}
]
}, {
 "@id": "https://greggkellogg.net/foaf#me",
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://xmlns.com/foaf/0.1/name": [
 {"@value": "Gregg Kellogg"}
]
}]

 	Subject
 	Property
 	Value

 	_:b0
 	rdf:type
 	foaf:Person

 	_:b0
 	foaf:name
 	Manu Sporny

 	_:b0
 	foaf:knows
 	https://greggkellogg.net/foaf#me

 	https://greggkellogg.net/foaf#me
 	rdf:type
 	foaf:Person

 	https://greggkellogg.net/foaf#me
 	foaf:name
 	Gregg Kellogg

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

[
 a foaf:Person;
 foaf:name "Manu Sporny";
 foaf:knows <https://greggkellogg.net/foaf#me>
] .

<https://greggkellogg.net/foaf#me> a foaf:Person;
 foaf:name "Gregg Kellogg" .

 The previous example describes two node objects, for Manu and Gregg, with
 the knows property defined to treat string values as identifiers.
 Embedding allows the node object for Gregg to be embedded as a value
 of the knows property:

 Example 94: Embedding a node object as property value of another node object

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@vocab": "http://xmlns.com/foaf/0.1/"
 },
 "@type": "Person",
 "name": "Manu Sporny",
 "knows": {
 "@id": "https://greggkellogg.net/foaf#me",
 "@type": "Person",
 "name": "Gregg Kellogg"
 }
}

 [{
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://xmlns.com/foaf/0.1/knows": [{
 "@id": "https://greggkellogg.net/foaf#me",
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://xmlns.com/foaf/0.1/name": [
 {"@value": "Gregg Kellogg"}
]
 }],
 "http://xmlns.com/foaf/0.1/name": [
 {"@value": "Manu Sporny"}
]
}]

 	Subject
 	Property
 	Value

 	_:b0
 	rdf:type
 	foaf:Person

 	_:b0
 	foaf:name
 	Manu Sporny

 	_:b0
 	foaf:knows
 	https://greggkellogg.net/foaf#me

 	https://greggkellogg.net/foaf#me
 	rdf:type
 	foaf:Person

 	https://greggkellogg.net/foaf#me
 	foaf:name
 	Gregg Kellogg

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

[
 a foaf:Person;
 foaf:name "Manu Sporny";
 foaf:knows <https://greggkellogg.net/foaf#me>
] .

<https://greggkellogg.net/foaf#me> a foaf:Person;
 foaf:name "Gregg Kellogg" .

 A node object, like the one used above, may be used in
 any value position in the body of a JSON-LD document.

 While it is considered a best practice to identify nodes in a graph,
 at times this is impractical. In the data model, nodes without an explicit
 identifier are called blank nodes, which can be represented in a
 serialization such as JSON-LD using a blank node identifier. In the
 previous example, the top-level node for Manu does not have an identifier,
 and does not need one to describe it within the data model. However, if we
 were to want to describe a knows relationship from Gregg to Manu,
 we would need to introduce a blank node identifier
 (here _:b0).

 Example 95: Referencing an unidentified node

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@vocab": "http://xmlns.com/foaf/0.1/"
 },
 "@id": "_:b0",
 "@type": "Person",
 "name": "Manu Sporny",
 "knows": {
 "@id": "https://greggkellogg.net/foaf#me",
 "@type": "Person",
 "name": "Gregg Kellogg",
 "knows": {"@id": "_:b0"}
 }
}

 [{
 "@id": "_:b0",
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://xmlns.com/foaf/0.1/knows": [{
 "@id": "https://greggkellogg.net/foaf#me",
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://xmlns.com/foaf/0.1/name": [
 {"@value": "Gregg Kellogg"}
],
 "http://xmlns.com/foaf/0.1/knows": [
 {"@id": "_:b0"}
]
 }],
 "http://xmlns.com/foaf/0.1/name": [
 {"@value": "Manu Sporny"}
]
}]

 	Subject
 	Property
 	Value

 	_:b0
 	rdf:type
 	foaf:Person

 	_:b0
 	foaf:name
 	Manu Sporny

 	_:b0
 	foaf:knows
 	https://greggkellogg.net/foaf#me

 	https://greggkellogg.net/foaf#me
 	rdf:type
 	foaf:Person

 	https://greggkellogg.net/foaf#me
 	foaf:name
 	Gregg Kellogg

 	https://greggkellogg.net/foaf#me
 	foaf:knows
 	_:b0

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:b0 a foaf:Person;
 foaf:name "Manu Sporny";
 foaf:knows <https://greggkellogg.net/foaf#me> .

<https://greggkellogg.net/foaf#me> a foaf:Person;
 foaf:name "Gregg Kellogg";
 foaf:knows _:b0 .

 Blank node identifiers may be automatically introduced by algorithms such as flattening, but they are also useful for authors to describe such relationships directly.

4.5.1 Identifying Blank Nodes
This section is non-normative.

 At times, it becomes necessary to be able to express information without
 being able to uniquely identify the node with an IRI.
 This type of node is called a blank node. JSON-LD does not require
 all nodes to be identified using @id. However, some graph topologies
 may require identifiers to be serializable. Graphs containing loops, e.g., cannot
 be serialized using embedding alone, @id must be used to connect the nodes.
 In these situations, one can use blank node identifiers,
 which look like IRIs using an underscore (_)
 as scheme. This allows one to reference the node locally within the document, but
 makes it impossible to reference the node from an external document. The
 blank node identifier is scoped to the document in which it is used.

 Example 96: Specifying a local blank node identifier

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": "http://schema.org/",
 ...
 "@id": "_:n1",
 "name": "Secret Agent 1",
 "knows": {
 "name": "Secret Agent 2",
 "knows": { "@id": "_:n1" }
 }
}

 [{
 "@id": "_:n1",
 "http://schema.org/name": [{"@value": "Secret Agent 1"}],
 "http://schema.org/knows": [{
 "http://schema.org/name": [{"@value": "Secret Agent 2"}],
 "http://schema.org/knows": [{"@id": "_:n1"}]
 }]
}]

 	Subject
 	Property
 	Value

 	_:b0
 	schema:name
 	Secret Agent 1

 	_:b0
 	schema:knows
 	_:b1

 	_:b1
 	schema:name
 	Secret Agent 2

 	_:b1
 	schema:knows
 	_:b0

 @prefix schema: <http://schema.org/> .

_:b0 schema:name "Secret Agent 1";
 schema:knows _:b1 .

_:b1 schema:name "Secret Agent 2";
 schema:knows _:b0 .

 The example above contains information about two secret agents that cannot be identified
 with an IRI. While expressing that agent 1 knows agent 2
 is possible without using blank node identifiers,
 it is necessary to assign agent 1 an identifier so that it can be referenced
 from agent 2.

 It is worth noting that blank node identifiers may be relabeled during processing.
 If a developer finds that they refer to the blank node more than once,
 they should consider naming the node using a dereferenceable IRI so that
 it can also be referenced from other documents.

4.6 Indexed Values
This section is non-normative.

Sometimes multiple property values need to be accessed
 in a more direct fashion than iterating though multiple array values. JSON-LD
 provides an indexing mechanism to allow the use of an intermediate map
 to associate specific indexes with associated values.

 	Data Indexing
	As described in § 4.6.1 Data Indexing,
 data indexing allows an arbitrary key to reference a node or value.

 	Language Indexing
	As described in § 4.6.2 Language Indexing,
 language indexing allows a language to reference a string and be
 interpreted as the language associated with that string.

 	Node Identifier Indexing
	As described in § 4.6.3 Node Identifier Indexing,
 node identifier indexing allows an IRI to reference a node
 and be interpreted as the identifier of that node.

 	Node Type Indexing
	As described in § 4.6.4 Node Type Indexing,
 node type indexing allows an IRI to reference a node
 and be interpreted as a type of that node.

See § 4.9 Named Graphs for other uses of indexing in JSON-LD.

4.6.1 Data Indexing
This section is non-normative.

 Databases are typically used to make access to
 data more efficient. Developers often extend this sort of functionality into
 their application data to deliver similar performance gains.
 This data may have no meaning from a Linked Data standpoint, but is
 still useful for an application.

 JSON-LD introduces the notion of index maps
 that can be used to structure data into a form that is
 more efficient to access. The data indexing feature allows an author to
 structure data using a simple key-value map where the keys do not map
 to IRIs. This enables direct access to data
 instead of having to scan an array in search of a specific item.
 In JSON-LD such data can be specified by associating the
 @index keyword with a
 @container declaration in the context:

 Example 97: Indexing data in JSON-LD

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "schema": "http://schema.org/",
 "name": "schema:name",
 "body": "schema:articleBody",
 "athletes": {
 "@id": "schema:athlete",
 "@container": "@index"
 },
 "position": "schema:jobTitle"
 },
 "@id": "http://example.com/",
 "@type": "schema:SportsTeam",
 "name": "San Francisco Giants",
 "athletes": {
 "catcher": {
 "@type": "schema:Person",
 "name": "Buster Posey",
 "position": "Catcher"
 },
 "pitcher": {
 "@type": "schema:Person",
 "name": "Madison Bumgarner",
 "position": "Starting Pitcher"
 },

 }
}

 [{
 "@id": "http://example.com/",
 "@type": ["http://schema.org/SportsTeam"],
 "http://schema.org/name": [{"@value": "San Francisco Giants"}],
 "http://schema.org/athlete": [{
 "@type": ["http://schema.org/Person"],
 "http://schema.org/name": [{"@value": "Buster Posey"}],
 "http://schema.org/jobTitle": [{"@value": "Catcher"}],
 "@index": "catcher"
 }, {
 "@type": ["http://schema.org/Person"],
 "http://schema.org/name": [{"@value": "Madison Bumgarner"}],
 "http://schema.org/jobTitle": [{"@value": "Starting Pitcher"}],
 "@index": "pitcher"
 },

]
}]

 	Subject
 	Property
 	Value

 	http://example.com/	rdf:type	schema:SportsTeam

 	http://example.com/	schema:name	San Francisco Giants

 	_:b0	rdf:type	schema:Person

 	_:b0	schema:name	Buster Posey

 	_:b0	schema:jobTitle	Catcher

 	http://example.com/	schema:athlete	_:b0

 	_:b1	rdf:type	schema:Person

 	_:b1	schema:name	Madison Bumgarner

 	_:b1	schema:jobTitle	Starting Pitcher

 	http://example.com/	schema:athlete	_:b1

 @prefix schema: <http://schema.org/> .

<http://example.com/> a schema:SportsTeam;
 schema:name "San Francisco Giants";
 schema:athlete [
 a schema:Person;
 schema:jobTitle "Catcher";
 schema:name "Buster Posey"
], [
 a schema:Person;
 schema:jobTitle "Starting Pitcher";
 schema:name "Madison Bumgarner"
],

 .

 In the example above, the athletes term has
 been marked as an index map.
 The catcher and pitcher keys will be ignored semantically,
 but preserved syntactically, by the JSON-LD Processor.
 If used in JavaScript, this can allow a developer to access a particular athlete using the
 following code snippet: obj.athletes.pitcher.

 The interpretation of the data is expressed in the statements table.
 Note how the index keys do not appear in the statements,
 but would continue to exist if the document were compacted or
 expanded (see § 5.2 Compacted Document Form and
 § 5.1 Expanded Document Form) using a JSON-LD processor.

 Warning
As data indexes are not preserved when round-tripping to RDF;
 this feature should be used judiciously.
 Often, other indexing mechanisms, which are preserved, are more appropriate.

 The value of @container can also
 be an array containing both @index and @set.
 When compacting, this ensures that a JSON-LD Processor will use
 the array form for all values of indexes.

 Unless the processing mode is set to json-ld-1.0,
 the special index @none is used for indexing
 data which does not have an associated index, which is useful to maintain
 a normalized representation.

 Example 98: Indexing data using @none

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@version": 1.1,
 "schema": "http://schema.org/",
 "name": "schema:name",
 "body": "schema:articleBody",
 "athletes": {
 "@id": "schema:athlete",
 "@container": "@index"
 },
 "position": "schema:jobTitle"
 },
 "@id": "http://example.com/",
 "@type": "schema:SportsTeam",
 "name": "San Francisco Giants",
 "athletes": {
 "catcher": {
 "@type": "schema:Person",
 "name": "Buster Posey",
 "position": "Catcher"
 },
 "pitcher": {
 "@type": "schema:Person",
 "name": "Madison Bumgarner",
 "position": "Starting Pitcher"
 },
 "@none": {
 "name": "Lou Seal",
 "position": "Mascot"
 },

 }
}

 [{
 "@id": "http://example.com/",
 "@type": ["http://schema.org/SportsTeam"],
 "http://schema.org/name": [{"@value": "San Francisco Giants"}],
 "http://schema.org/athlete": [{
 "@type": ["http://schema.org/Person"],
 "http://schema.org/name": [{"@value": "Buster Posey"}],
 "http://schema.org/jobTitle": [{"@value": "Catcher"}],
 "@index": "catcher"
 }, {
 "@type": ["http://schema.org/Person"],
 "http://schema.org/name": [{"@value": "Madison Bumgarner"}],
 "http://schema.org/jobTitle": [{"@value": "Starting Pitcher"}],
 "@index": "pitcher"
 }, {
 "http://schema.org/name": [{"@value": "Lou Seal"}],
 "http://schema.org/jobTitle": [{"@value": "Mascot"}]
 },

]
}]

 	Subject
 	Property
 	Value

 	http://example.com/	rdf:type	schema:SportsTeam

 	http://example.com/	schema:name	San Francisco Giants

 	_:b0	rdf:type	schema:Person

 	_:b0	schema:name	Buster Posey

 	_:b0	schema:jobTitle	Catcher

 	http://example.com/	schema:athlete	_:b0

 	_:b1	rdf:type	schema:Person

 	_:b1	schema:name	Madison Bumgarner

 	_:b1	schema:jobTitle	Starting Pitcher

 	http://example.com/	schema:athlete	_:b1

 	_:b2	schema:name	Lou Seal

 	_:b2	schema:jobTitle	Mascot

 	http://example.com/	schema:athlete	_:b2

 @prefix schema: <http://schema.org/> .

<http://example.com/> a schema:SportsTeam;
 schema:name "San Francisco Giants";
 schema:athlete [
 a schema:Person;
 schema:jobTitle "Catcher";
 schema:name "Buster Posey"
], [
 a schema:Person;
 schema:jobTitle "Starting Pitcher";
 schema:name "Madison Bumgarner"
], [
 schema:jobTitle "Mascot";
 schema:name "Lou Seal"
],

 .

 4.6.1.1 Property-based data indexing
This section is non-normative.

 In its simplest form (as in the examples above),
 data indexing assigns no semantics to the keys of an index map.
 However, in some situations,
 the keys used to index objects are semantically linked to these objects,
 and should be preserved not only syntactically, but also semantically.

 Unless the processing mode is set to json-ld-1.0,
 "@container": "@index" in a term description can be accompanied with
 an "@index" key. The value of that key must map to an IRI,
 which identifies the semantic property linking each object to its key.

 Example 99: Property-based data indexing

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@version": 1.1,
 "schema": "http://schema.org/",
 "name": "schema:name",
 "body": "schema:articleBody",
 "athletes": {
 "@id": "schema:athlete",
 "@container": "@index",
 "@index": "schema:jobTitle"
 }
 },
 "@id": "http://example.com/",
 "@type": "schema:SportsTeam",
 "name": "San Francisco Giants",
 "athletes": {
 "Catcher": {
 ↑ "Catcher" will add `"schema:jobTitle": "Catcher"` when expanded
 "@type": "schema:Person",
 "name": "Buster Posey"
 },
 "Starting Pitcher": {
 "@type": "schema:Person",
 "name": "Madison Bumgarner"
 },

 }
}

 [{
 "@id": "http://example.com/",
 "@type": ["http://schema.org/SportsTeam"],
 "http://schema.org/name": [{"@value": "San Francisco Giants"}],
 "http://schema.org/athlete": [{
 "@type": ["http://schema.org/Person"],
 "http://schema.org/name": [{"@value": "Buster Posey"}],
 "http://schema.org/jobTitle": [{"@value": "Catcher"}]
 }, {
 "@type": ["http://schema.org/Person"],
 "http://schema.org/name": [{"@value": "Madison Bumgarner"}],
 "http://schema.org/jobTitle": [{"@value": "Starting Pitcher"}]
 },

]
}]

 	Subject
 	Property
 	Value

 	http://example.com/	rdf:type	schema:SportsTeam

 	http://example.com/	schema:name	San Francisco Giants

 	_:b0	rdf:type	schema:Person

 	_:b0	schema:name	Buster Posey

 	_:b0	schema:jobTitle	Catcher

 	http://example.com/	schema:athlete	_:b0

 	_:b1	rdf:type	schema:Person

 	_:b1	schema:name	Madison Bumgarner

 	_:b1	schema:jobTitle	Starting Pitcher

 	http://example.com/	schema:athlete	_:b1

 @prefix schema: <http://schema.org/> .

<http://example.com/> a schema:SportsTeam;
 schema:name "San Francisco Giants";
 schema:athlete [
 a schema:Person;
 schema:jobTitle "Catcher";
 schema:name "Buster Posey"
], [
 a schema:Person;
 schema:jobTitle "Starting Pitcher";
 schema:name "Madison Bumgarner"
],

 .

 Note
When using property-based data indexing, index maps can only be used
 on node objects, not value objects or graph objects.
 Value objects are restricted to have only certain keys and do not support
 arbitrary properties.

4.6.2 Language Indexing
This section is non-normative.

 JSON which includes string values in multiple languages may be
 represented using a language map to allow for easily
 indexing property values by language tag. This enables direct access to
 language values instead of having to scan an array in search of a specific item.
 In JSON-LD such data can be specified by associating the
 @language keyword with a
 @container declaration in the context:

 Example 100: Indexing languaged-tagged strings in JSON-LD

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "vocab": "http://example.com/vocab/",
 "label": {
 "@id": "vocab:label",
 "@container": "@language"
 }
 },
 "@id": "http://example.com/queen",
 "label": {
 "en": "The Queen",
 "de": ["Die Königin", "Ihre Majestät"]
 }
}

 [{
 "@id": "http://example.com/queen",
 "http://example.com/vocab/label": [
 {"@value": "The Queen", "@language": "en"},
 {"@value": "Die Königin", "@language": "de"},
 {"@value": "Ihre Majestät", "@language": "de"}
]
}]

 	Subject	Property	Value	Language

 	http://example.com/queen	http://example.com/vocab/label	The Queen	en

 	http://example.com/queen	http://example.com/vocab/label	Die Königin	de

 	http://example.com/queen	http://example.com/vocab/label	Ihre Majestät	de

 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

<http://example.com/queen> <http://example.com/vocab/label>
 "Ihre Majestät"@de,
 "Die Königin"@de,
 "The Queen"@en .

 In the example above, the label term has
 been marked as a language map. The en and
 de keys are implicitly associated with their respective
 values by the JSON-LD Processor. This allows a developer to
 access the German version of the label using the
 following code snippet: obj.label.de,
 which, again, is only appropriate when languages are limited to the
 primary language sub-tag and do not depend on other sub-tags, such as "de-at".

 The value of @container can also
 be an array containing both @language and @set.
 When compacting, this ensures that a JSON-LD Processor will use
 the array form for all values of language tags.

 Example 101: Indexing languaged-tagged strings in JSON-LD with @set representation

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@version": 1.1,
 "vocab": "http://example.com/vocab/",
 "label": {
 "@id": "vocab:label",
 "@container": ["@language", "@set"]
 }
 },
 "@id": "http://example.com/queen",
 "label": {
 "en": ["The Queen"],
 "de": ["Die Königin", "Ihre Majestät"]
 }
}

 [{
 "@id": "http://example.com/queen",
 "http://example.com/vocab/label": [
 {"@value": "The Queen", "@language": "en"},
 {"@value": "Die Königin", "@language": "de"},
 {"@value": "Ihre Majestät", "@language": "de"}
]
}]

 	Subject	Property	Value	Language

 	http://example.com/queen	http://example.com/vocab/label	The Queen	en

 	http://example.com/queen	http://example.com/vocab/label	Die Königin	de

 	http://example.com/queen	http://example.com/vocab/label	Ihre Majestät	de

 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

<http://example.com/queen> <http://example.com/vocab/label>
 "Ihre Majestät"@de,
 "Die Königin"@de,
 "The Queen"@en .

 Unless the processing mode is set to json-ld-1.0,
 the special index @none is used for indexing
 strings which do not have a language; this is useful to maintain
 a normalized representation for string values not having a datatype.

 Example 102: Indexing languaged-tagged strings using @none for no language

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "vocab": "http://example.com/vocab/",
 "label": {
 "@id": "vocab:label",
 "@container": "@language"
 }
 },
 "@id": "http://example.com/queen",
 "label": {
 "en": "The Queen",
 "de": ["Die Königin", "Ihre Majestät"],
 "@none": "The Queen"
 }
}

 [{
 "@id": "http://example.com/queen",
 "http://example.com/vocab/label": [
 {"@value": "The Queen", "@language": "en"},
 {"@value": "Die Königin", "@language": "de"},
 {"@value": "Ihre Majestät", "@language": "de"},
 {"@value": "The Queen"}
]
}]

 	Subject	Property	Value	Language

 	http://example.com/queen	http://example.com/vocab/label	The Queen	en

 	http://example.com/queen	http://example.com/vocab/label	Die Königin	de

 	http://example.com/queen	http://example.com/vocab/label	Ihre Majestät	de

 	http://example.com/queen	http://example.com/vocab/label	The Queen	

 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

<http://example.com/queen> <http://example.com/vocab/label>
 "Ihre Majestät"@de,
 "Die Königin"@de,
 "The Queen"@en,
 "The Queen" .

4.6.3 Node Identifier Indexing
This section is non-normative.

 In addition to index maps, JSON-LD introduces the notion of id maps
 for structuring data. The id indexing feature allows an author to
 structure data using a simple key-value map where the keys map
 to IRIs. This enables direct access to associated node objects
 instead of having to scan an array in search of a specific item.
 In JSON-LD such data can be specified by associating the
 @id keyword with a
 @container declaration in the context:

 Example 103: Indexing data in JSON-LD by node identifiers

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@version": 1.1,
 "schema": "http://schema.org/",
 "name": "schema:name",
 "body": "schema:articleBody",
 "words": "schema:wordCount",
 "post": {
 "@id": "schema:blogPost",
 "@container": "@id",
 "@context": {
 "@base": "http://example.com/posts/"
 }
 }
 },
 "@id": "http://example.com/",
 "@type": "schema:Blog",
 "name": "World Financial News",
 "post": {
 "1/en": {
 "body": "World commodities were up today with heavy trading of crude oil...",
 "words": 1539
 },
 "1/de": {
 "body": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl...",
 "words": 1204
 }
 }
}

 [{
 "@id": "http://example.com/",
 "@type": ["http://schema.org/Blog"],
 "http://schema.org/name": [{"@value": "World Financial News"}],
 "http://schema.org/blogPost": [{
 "@id": "http://example.com/posts/1/en",
 "http://schema.org/articleBody": [
 {"@value": "World commodities were up today with heavy trading of crude oil..."}
],
 "http://schema.org/wordCount": [{"@value": 1539}]
 }, {
 "@id": "http://example.com/posts/1/de",
 "http://schema.org/articleBody": [
 {"@value": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl..."}
],
 "http://schema.org/wordCount": [{"@value": 1204}]
 }]
}]

 	Subject	Property	Value	Value Type

 	http://example.com/	rdf:type	schema:Blog	

 	http://example.com/	schema:name	World Financial News	

 	http://example.com/	schema:blogPost	http://example.com/posts/1/de	

 	http://example.com/	schema:blogPost	http://example.com/posts/1/en	

 	http://example.com/posts/1/de	schema:articleBody	Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl...	

 	http://example.com/posts/1/de	schema:wordCount	1204	xsd:integer

 	http://example.com/posts/1/en	schema:articleBody	World commodities were up today with heavy trading of crude oil...	

 	http://example.com/posts/1/en	schema:wordCount	1539	xsd:integer

 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix schema: <http://schema.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example.com/> a schema:Blog;
 schema:blogPost <http://example.com/posts/1/en>,
 <http://example.com/posts/1/de>;
 schema:name "World Financial News" .

<http://example.com/posts/1/de> schema:articleBody
 "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl...";
 schema:wordCount 1204 .

<http://example.com/posts/1/en> schema:articleBody
 "World commodities were up today with heavy trading of crude oil...";
 schema:wordCount 1539 .

 In the example above, the post term has
 been marked as an id map. The http://example.com/posts/1/en and
 http://example.com/posts/1/de keys will be interpreted
 as the @id property of the node object value.

 The interpretation of the data above is exactly the same
 as that in § 4.6.1 Data Indexing
 using a JSON-LD processor.

 The value of @container can also
 be an array containing both @id and @set.
 When compacting, this ensures that a JSON-LD processor will use
 the array form for all values of node identifiers.

 Example 104: Indexing data in JSON-LD by node identifiers with @set representation

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@version": 1.1,
 "schema": "http://schema.org/",
 "name": "schema:name",
 "body": "schema:articleBody",
 "words": "schema:wordCount",
 "post": {
 "@id": "schema:blogPost",
 "@container": ["@id", "@set"]
 }
 },
 "@id": "http://example.com/",
 "@type": "schema:Blog",
 "name": "World Financial News",
 "post": {
 "http://example.com/posts/1/en": [{
 "body": "World commodities were up today with heavy trading of crude oil...",
 "words": 1539
 }],
 "http://example.com/posts/1/de": [{
 "body": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl...",
 "words": 1204
 }]
 }
}

 [{
 "@id": "http://example.com/",
 "@type": ["http://schema.org/Blog"],
 "http://schema.org/name": [{"@value": "World Financial News"}],
 "http://schema.org/blogPost": [{
 "@id": "http://example.com/posts/1/en",
 "http://schema.org/articleBody": [
 {"@value": "World commodities were up today with heavy trading of crude oil..."}
],
 "http://schema.org/wordCount": [{"@value": 1539}]
 }, {
 "@id": "http://example.com/posts/1/de",
 "http://schema.org/articleBody": [
 {"@value": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl..."}
],
 "http://schema.org/wordCount": [{"@value": 1204}]
 }]
}]

 	Subject	Property	Value	Value Type

 	http://example.com/	rdf:type	schema:Blog	

 	http://example.com/	schema:name	World Financial News	

 	http://example.com/	schema:blogPost	http://example.com/posts/1/de	

 	http://example.com/	schema:blogPost	http://example.com/posts/1/en	

 	http://example.com/posts/1/de	schema:articleBody	Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl...	

 	http://example.com/posts/1/de	schema:wordCount	1204	xsd:integer

 	http://example.com/posts/1/en	schema:articleBody	World commodities were up today with heavy trading of crude oil...	

 	http://example.com/posts/1/en	schema:wordCount	1539	xsd:integer

 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix schema: <http://schema.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example.com/> a schema:Blog;
 schema:blogPost <http://example.com/posts/1/en>,
 <http://example.com/posts/1/de>;
 schema:name "World Financial News" .

<http://example.com/posts/1/de> schema:articleBody
 "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl...";
 schema:wordCount 1204 .

<http://example.com/posts/1/en> schema:articleBody
 "World commodities were up today with heavy trading of crude oil...";
 schema:wordCount 1539 .

 The special index @none is used for indexing
 node objects which do not have an @id, which is useful to maintain
 a normalized representation. The @none index may also be
 a term which expands to @none, such as the term none
 used in the example below.

 Example 105: Indexing data in JSON-LD by node identifiers using @none

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@version": 1.1,
 "schema": "http://schema.org/",
 "name": "schema:name",
 "body": "schema:articleBody",
 "words": "schema:wordCount",
 "post": {
 "@id": "schema:blogPost",
 "@container": "@id"
 },
 "none": "@none"
 },
 "@id": "http://example.com/",
 "@type": "schema:Blog",
 "name": "World Financial News",
 "post": {
 "http://example.com/posts/1/en": {
 "body": "World commodities were up today with heavy trading of crude oil...",
 "words": 1539
 },
 "http://example.com/posts/1/de": {
 "body": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl...",
 "words": 1204
 },
 "none": {
 "body": "Description for object without an @id",
 "words": 20
 }
 }
}

 [{
 "@id": "http://example.com/",
 "@type": ["http://schema.org/Blog"],
 "http://schema.org/name": [{"@value": "World Financial News"}],
 "http://schema.org/blogPost": [{
 "@id": "http://example.com/posts/1/en",
 "http://schema.org/articleBody": [
 {"@value": "World commodities were up today with heavy trading of crude oil..."}
],
 "http://schema.org/wordCount": [{"@value": 1539}]
 }, {
 "@id": "http://example.com/posts/1/de",
 "http://schema.org/articleBody": [
 {"@value": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl..."}
],
 "http://schema.org/wordCount": [{"@value": 1204}]
 }, {
 "http://schema.org/articleBody": [
 {"@value": "Description for object without an @id"}
],
 "http://schema.org/wordCount": [{"@value": 20}]
 }]
}]

 	Subject	Property	Value	Value Type

 	http://example.com/	rdf:type	schema:Blog	

 	http://example.com/	schema:name	World Financial News	

 	http://example.com/	schema:blogPost	http://example.com/posts/1/de	

 	http://example.com/	schema:blogPost	http://example.com/posts/1/en	

 	http://example.com/	schema:blogPost	_:b0	

 	http://example.com/posts/1/de	schema:articleBody	Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl...	

 	http://example.com/posts/1/de	schema:wordCount	1204	xsd:integer

 	http://example.com/posts/1/en	schema:articleBody	World commodities were up today with heavy trading of crude oil...	

 	http://example.com/posts/1/en	schema:wordCount	1539	xsd:integer

 	_:b0	schema:articleBody	Description for object without an @id	

 	_:b0	schema:wordCount	20	xsd:integer

 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix schema: <http://schema.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example.com/> a schema:Blog;
 schema:blogPost <http://example.com/posts/1/en>,
 <http://example.com/posts/1/de>, [
 schema:articleBody "Description for object without an @id";
 schema:wordCount 20
];
 schema:name "World Financial News" .

<http://example.com/posts/1/de> schema:articleBody
 "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl...";
 schema:wordCount 1204 .

<http://example.com/posts/1/en> schema:articleBody
 "World commodities were up today with heavy trading of crude oil...";
 schema:wordCount 1539 .

 Note
Id maps are a new feature in JSON-LD 1.1.

4.6.4 Node Type Indexing
This section is non-normative.

 In addition to id and index maps, JSON-LD introduces the notion of type maps
 for structuring data. The type indexing feature allows an author to
 structure data using a simple key-value map where the keys map
 to IRIs. This enables data to be structured based on the @type
 of specific node objects.
 In JSON-LD such data can be specified by associating the
 @type keyword with a
 @container declaration in the context:

 Example 106: Indexing data in JSON-LD by type

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@version": 1.1,
 "schema": "http://schema.org/",
 "name": "schema:name",
 "affiliation": {
 "@id": "schema:affiliation",
 "@container": "@type"
 }
 },
 "name": "Manu Sporny",
 "affiliation": {
 "schema:Corporation": {
 "@id": "https://digitalbazaar.com/",
 "name": "Digital Bazaar"
 },
 "schema:ProfessionalService": {
 "@id": "https://spec-ops.io",
 "name": "Spec-Ops"
 }
 }
}

 [{
 "http://schema.org/name": [{"@value": "Manu Sporny"}],
 "http://schema.org/affiliation": [
 {
 "@id": "https://digitalbazaar.com/",
 "@type": ["http://schema.org/Corporation"],
 "http://schema.org/name": [{"@value": "Digital Bazaar"}]
 }, {
 "@id": "https://spec-ops.io",
 "@type": ["http://schema.org/ProfessionalService"],
 "http://schema.org/name": [{"@value": "Spec-Ops"}]
 }
]
}]

 	Subject	Property	Value

 	https://digitalbazaar.com/	rdf:type	schema:Corporation

 	https://digitalbazaar.com/	schema:name	Digital Bazaar

 	https://spec-ops.io	rdf:type	schema:ProfessionalService

 	https://spec-ops.io	schema:name	Spec-Ops

 	_:b0	schema:name	Manu Sporny

 	_:b0	schema:affiliation	https://digitalbazaar.com/

 	_:b0	schema:affiliation	https://spec-ops.io

 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix schema: <http://schema.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<https://digitalbazaar.com/> a schema:Corporation;
 schema:name "Digital Bazaar" .

<https://spec-ops.io> a schema:ProfessionalService;
 schema:name "Spec-Ops" .

[
 schema:affiliation <https://digitalbazaar.com/>, <https://spec-ops.io>;
 schema:name "Manu Sporny"
] .

 In the example above, the affiliation term has
 been marked as a type map. The schema:Corporation and
 schema:ProfessionalService keys will be interpreted
 as the @type property of the node object value.

 The value of @container can also
 be an array containing both @type and @set.
 When compacting, this ensures that a JSON-LD processor will use
 the array form for all values of types.

 Example 107: Indexing data in JSON-LD by type with @set representation

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@version": 1.1,
 "schema": "http://schema.org/",
 "name": "schema:name",
 "affiliation": {
 "@id": "schema:affiliation",
 "@container": ["@type", "@set"]
 }
 },
 "name": "Manu Sporny",
 "affiliation": {
 "schema:Corporation": [{
 "@id": "https://digitalbazaar.com/",
 "name": "Digital Bazaar"
 }],
 "schema:ProfessionalService": [{
 "@id": "https://spec-ops.io",
 "name": "Spec-Ops"
 }]
 }
}

 [{
 "http://schema.org/name": [{"@value": "Manu Sporny"}],
 "http://schema.org/affiliation": [
 {
 "@id": "https://digitalbazaar.com/",
 "@type": ["http://schema.org/Corporation"],
 "http://schema.org/name": [{"@value": "Digital Bazaar"}]
 }, {
 "@id": "https://spec-ops.io",
 "@type": ["http://schema.org/ProfessionalService"],
 "http://schema.org/name": [{"@value": "Spec-Ops"}]
 }
]
}]

 	Subject	Property	Value

 	https://digitalbazaar.com/	rdf:type	schema:Corporation

 	https://digitalbazaar.com/	schema:name	Digital Bazaar

 	https://spec-ops.io	rdf:type	schema:ProfessionalService

 	https://spec-ops.io	schema:name	Spec-Ops

 	_:b0	schema:name	Manu Sporny

 	_:b0	schema:affiliation	https://digitalbazaar.com/

 	_:b0	schema:affiliation	https://spec-ops.io

 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix schema: <http://schema.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<https://digitalbazaar.com/> a schema:Corporation;
 schema:name "Digital Bazaar" .

<https://spec-ops.io> a schema:ProfessionalService;
 schema:name "Spec-Ops" .

[
 schema:affiliation <https://digitalbazaar.com/>, <https://spec-ops.io>;
 schema:name "Manu Sporny"
] .

 The special index @none is used for indexing
 node objects which do not have an @type, which is useful to maintain
 a normalized representation. The @none index may also be
 a term which expands to @none, such as the term none
 used in the example below.

 Example 108: Indexing data in JSON-LD by type using @none

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "@version": 1.1,
 "schema": "http://schema.org/",
 "name": "schema:name",
 "affiliation": {
 "@id": "schema:affiliation",
 "@container": "@type"
 },
 "none": "@none"
 },
 "name": "Manu Sporny",
 "affiliation": {
 "schema:Corporation": {
 "@id": "https://digitalbazaar.com/",
 "name": "Digital Bazaar"
 },
 "schema:ProfessionalService": {
 "@id": "https://spec-ops.io",
 "name": "Spec-Ops"
 },
 "none": {
 "@id": "https://greggkellogg.net/",
 "name": "Gregg Kellogg"
 }
 }
}

 [{
 "http://schema.org/name": [{"@value": "Manu Sporny"}],
 "http://schema.org/affiliation": [
 {
 "@id": "https://digitalbazaar.com/",
 "@type": ["http://schema.org/Corporation"],
 "http://schema.org/name": [{"@value": "Digital Bazaar"}]
 },
 {
 "@id": "https://spec-ops.io",
 "@type": ["http://schema.org/ProfessionalService"],
 "http://schema.org/name": [{"@value": "Spec-Ops"}]
 },
 {
 "@id": "https://greggkellogg.net/",
 "http://schema.org/name": [{"@value": "Gregg Kellogg"}]
 }
]
}]

 	Subject	Property	Value

 	https://digitalbazaar.com/	rdf:type	schema:Corporation

 	https://digitalbazaar.com/	schema:name	Digital Bazaar

 	https://spec-ops.io	rdf:type	schema:ProfessionalService

 	https://spec-ops.io	schema:name	Spec-Ops

 	https://greggkellogg.net/	schema:name	Gregg Kellogg

 	_:b0	schema:name	Manu Sporny

 	_:b0	schema:affiliation	https://digitalbazaar.com/

 	_:b0	schema:affiliation	https://spec-ops.io

 	_:b0	schema:affiliation	https://greggkellogg.net/

 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix schema: <http://schema.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<https://digitalbazaar.com/> a schema:Corporation;
 schema:name "Digital Bazaar" .

<https://spec-ops.io> a schema:ProfessionalService;
 schema:name "Spec-Ops" .

<https://greggkellogg.net/> schema:name "Gregg Kellogg" .

[
 schema:affiliation
 <https://digitalbazaar.com/>,
 <https://spec-ops.io>,
 <https://greggkellogg.net/>;
 schema:name "Manu Sporny"
] .

 As with id maps, when used with @type, a container may also
 include @set to ensure that key values are always contained in an array.

 Note
Type maps are a new feature in JSON-LD 1.1.

4.7 Included Nodes
This section is non-normative.

 Sometimes it is also useful to list node objects as part of another node object.
 For instance, to represent a set of resources which are used by some other
 resource. Included blocks may be also be used to collect such secondary node objects
 which can be referenced from a primary node object.
 For an example, consider a node object containing a list of different items,
 some of which share some common elements:

 Example 109: Included Blocks

 {
 "@context": {
 "@version": 1.1,
 "@vocab": "http://example.org/",
 "classification": {"@type": "@vocab"}
 },
 "@id": "http://example.org/org-1",
 "members": [{
 "@id":"http://example.org/person-1",
 "name": "Manu Sporny",
 "classification": "employee"
 }, {
 "@id":"http://example.org/person-2",
 "name": "Dave Longley",
 "classification": "employee"
 }, {
 "@id": "http://example.org/person-3",
 "name": "Gregg Kellogg",
 "classification": "contractor"
 }],
 "@included": [{
 "@id": "http://example.org/employee",
 "label": "An Employee"
 }, {
 "@id": "http://example.org/contractor",
 "label": "A Contractor"
 }]
}

 When flattened, this will move the employee and contractor elements
 from the included block into the outer array.

 Example 110: Flattened form for included blocks

 Flattened (Result)
 Statements
 Turtle
 Open in playground

 [{
 "@id": "http://example.org/org-1",
 "http://example.org/members": [
 {"@id": "http://example.org/person-1"},
 {"@id": "http://example.org/person-2"},
 {"@id": "http://example.org/person-3"}
]
 }, {
 "@id": "http://example.org/employee",
 "http://example.org/label": [{"@value": "An Employee"}]
 }, {
 "@id": "http://example.org/contractor",
 "http://example.org/label": [{"@value": "A Contractor"}]
 }, {
 "@id": "http://example.org/person-1",
 "http://example.org/name": [{"@value": "Manu Sporny"}],
 "http://example.org/classification": [
 {"@id": "http://example.org/employee"}
]
 }, {
 "@id": "http://example.org/person-2",
 "http://example.org/name": [{"@value": "Dave Longley"}],
 "http://example.org/classification": [
 {"@id": "http://example.org/employee"}
]
 }, {
 "@id": "http://example.org/person-3",
 "http://example.org/name": [{"@value": "Gregg Kellogg"}],
 "http://example.org/classification": [
 {"@id": "http://example.org/contractor"}
]
 }
]

 	Subject	Property	Value

 	http://example.org/org-1	http://example.org/members	http://example.org/person-1

 	http://example.org/org-1	http://example.org/members	http://example.org/person-2

 	http://example.org/org-1	http://example.org/members	http://example.org/person-3

 	http://example.org/employee	http://example.org/label	An Employee

 	http://example.org/contractor	http://example.org/label	A Contractor

 	http://example.org/person-1	http://example.org/name	Manu Sporny

 	http://example.org/person-1	http://example.org/classification	http://example.org/employee

 	http://example.org/person-2	http://example.org/name	Dave Longley

 	http://example.org/person-2	http://example.org/classification	http://example.org/employee

 	http://example.org/person-3	http://example.org/name	Gregg Kellogg

 	http://example.org/person-3	http://example.org/classification	http://example.org/contractor

 @prefix ex: <http://example.org/> .

ex:org-1 ex:members ex:person-3,
 ex:person-1,
 ex:person-2 .

ex:person-1 ex:classification ex:employee;
 ex:name "Manu Sporny" .

ex:person-2 ex:classification ex:employee;
 ex:name "Dave Longley" .

ex:person-3 ex:classification ex:contractor;
 ex:name "Gregg Kellogg" .

ex:employee ex:label "An Employee" .
ex:contractor ex:label "A Contractor" .

 Included resources are described in
 Inclusion of Related Resources of JSON API [JSON.API]
 as a way to include related resources associated with some primary resource;
 @included provides an analogous possibility in JSON-LD.

 As a by product of the use of @included within node objects, a map may contain
 only @included, to provide a feature similar to that described in § 4.1 Advanced Context Usage,
 where @graph is used to described disconnected nodes.

 Example 111: Describing disconnected nodes with @included

 Compacted (Input)
 Expanded (Result)
 Flattened
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "Person": "http://xmlns.com/foaf/0.1/Person",
 "name": "http://xmlns.com/foaf/0.1/name",
 "knows": {"@id": "http://xmlns.com/foaf/0.1/knows", "@type": "@id"}
 },
 "@included": [{
 "@id": "http://manu.sporny.org/about#manu",
 "@type": "Person",
 "name": "Manu Sporny",
 "knows": "https://greggkellogg.net/foaf#me"
 }, {
 "@id": "https://greggkellogg.net/foaf#me",
 "@type": "Person",
 "name": "Gregg Kellogg",
 "knows": "http://manu.sporny.org/about#manu"
 }]
}

 [{
 "@included": [{
 "@id": "http://manu.sporny.org/about#manu",
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://xmlns.com/foaf/0.1/name": [{"@value": "Manu Sporny"}],
 "http://xmlns.com/foaf/0.1/knows": [
 {"@id": "https://greggkellogg.net/foaf#me"}
]
 }, {
 "@id": "https://greggkellogg.net/foaf#me",
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://xmlns.com/foaf/0.1/name": [{"@value": "Gregg Kellogg"}],
 "http://xmlns.com/foaf/0.1/knows": [
 {"@id": "http://manu.sporny.org/about#manu"}
]
 }]
}]

 [{
 "@id": "http://manu.sporny.org/about#manu",
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://xmlns.com/foaf/0.1/name": [{"@value": "Manu Sporny"}],
 "http://xmlns.com/foaf/0.1/knows": [
 {"@id": "https://greggkellogg.net/foaf#me"}
]
}, {
 "@id": "https://greggkellogg.net/foaf#me",
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://xmlns.com/foaf/0.1/name": [{"@value": "Gregg Kellogg"}],
 "http://xmlns.com/foaf/0.1/knows": [
 {"@id": "http://manu.sporny.org/about#manu"}
]
}]

 	Subject	Property	Value	Value Type

 	http://manu.sporny.org/about#manu	rdf:type	foaf:Person	

 	http://manu.sporny.org/about#manu	foaf:name	Manu Sporny	

 	http://manu.sporny.org/about#manu	foaf:knows	https://greggkellogg.net/foaf#me	

 	https://greggkellogg.net/foaf#me	rdf:type	foaf:Person	

 	https://greggkellogg.net/foaf#me	foaf:name	Gregg Kellogg	

 	https://greggkellogg.net/foaf#me	foaf:knows	http://manu.sporny.org/about#manu	

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://manu.sporny.org/about#manu> a foaf:Person;
 foaf:name "Manu Sporny";
 foaf:knows <https://greggkellogg.net/foaf#me> .

<https://greggkellogg.net/foaf#me> a foaf:Person;
 foaf:name "Gregg Kellogg";
 foaf:knows <http://manu.sporny.org/about#manu> .

 However, in contrast to @graph, @included does not interact with other properties
 contained within the same map, a feature discussed further in § 4.9 Named Graphs.

4.8 Reverse Properties
This section is non-normative.

 JSON-LD serializes directed graphs. That means that
 every property points from a node to another node
 or value. However, in some cases, it is desirable
 to serialize in the reverse direction. Consider for example the case where a person
 and its children should be described in a document. If the used vocabulary does not
 provide a children property but just a parent
 property, every node representing a child would have to
 be expressed with a property pointing to the parent as in the following
 example.

 Example 112: A document with children linking to their parent

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 [
 {
 "@id": "#homer",
 "http://example.com/vocab#name": "Homer"
 }, {
 "@id": "#bart",
 "http://example.com/vocab#name": "Bart",
 "http://example.com/vocab#parent": { "@id": "#homer" }
 }, {
 "@id": "#lisa",
 "http://example.com/vocab#name": "Lisa",
 "http://example.com/vocab#parent": { "@id": "#homer" }
 }
]

 [{
 "@id": "http://example.org/#homer",
 "http://example.com/vocab#name": [{"@value": "Homer"}]
}, {
 "@id": "http://example.org/#bart",
 "http://example.com/vocab#name": [{"@value": "Bart"}],
 "http://example.com/vocab#parent": [{"@id": "http://example.org/#homer"}]
}, {
 "@id": "http://example.org/#lisa",
 "http://example.com/vocab#name": [{"@value": "Lisa"}],
 "http://example.com/vocab#parent": [{"@id": "http://example.org/#homer"}
]
}]

 	Subject	Property	Value

 	http://example.org/#homer	http://example.com/vocab#name	Homer

 	http://example.org/#bart	http://example.com/vocab#name	Bart

 	http://example.org/#bart	http://example.com/vocab#parent	http://example.org/#homer

 	http://example.org/#lisa	http://example.com/vocab#name	Lisa

 	http://example.org/#lisa	http://example.com/vocab#parent	http://example.org/#homer

 @base <http://example.org/> .
<#homer> <http://example.com/vocab#name> "Homer" .

<#bart> <http://example.com/vocab#name> "Bart";
 <http://example.com/vocab#parent> <#homer> .

<#lisa> <http://example.com/vocab#name> "Lisa";
 <http://example.com/vocab#parent> <#homer> .

 Expressing such data is much simpler by using JSON-LD's @reverse
 keyword:

 Example 113: A person and its children using a reverse property

 Compacted (Input)
 Expanded (Result)
 Flattened
 Statements
 Turtle
 Open in playground

 {
 "@id": "#homer",
 "http://example.com/vocab#name": "Homer",
 "@reverse": {
 "http://example.com/vocab#parent": [
 {
 "@id": "#bart",
 "http://example.com/vocab#name": "Bart"
 }, {
 "@id": "#lisa",
 "http://example.com/vocab#name": "Lisa"
 }
]
 }
}

 [{
 "@id": "http://example.org/#homer",
 "http://example.com/vocab#name": [{"@value": "Homer"}],
 "@reverse": {
 "http://example.com/vocab#parent": [{
 "@id": "http://example.org/#bart",
 "http://example.com/vocab#name": [{"@value": "Bart"}]
 }, {
 "@id": "http://example.org/#lisa",
 "http://example.com/vocab#name": [{"@value": "Lisa"}]
 }]
 }
}]

 [{
 "@id": "http://example.org/#homer",
 "http://example.com/vocab#name": [{"@value": "Homer"}]
}, {
 "@id": "http://example.org/#bart",
 "http://example.com/vocab#name": [{"@value": "Bart"}],
 "http://example.com/vocab#parent": [{"@id": "http://example.org/#homer"}]
}, {
 "@id": "http://example.org/#lisa",
 "http://example.com/vocab#name": [{"@value": "Lisa"}],
 "http://example.com/vocab#parent": [{"@id": "http://example.org/#homer"}
]
}]

 	Subject	Property	Value

 	http://example.org/#homer	http://example.com/vocab#name	Homer

 	http://example.org/#bart	http://example.com/vocab#name	Bart

 	http://example.org/#bart	http://example.com/vocab#parent	http://example.org/#homer

 	http://example.org/#lisa	http://example.com/vocab#name	Lisa

 	http://example.org/#lisa	http://example.com/vocab#parent	http://example.org/#homer

 @base <http://example.org/> .
<#homer> <http://example.com/vocab#name> "Homer" .

<#bart> <http://example.com/vocab#name> "Bart";
 <http://example.com/vocab#parent> <#homer> .

<#lisa> <http://example.com/vocab#name> "Lisa";
 <http://example.com/vocab#parent> <#homer> .

 The @reverse keyword can also be used in
 expanded term definitions
 to create reverse properties as shown in the following example:

 Example 114: Using @reverse to define reverse properties

 Compacted (Input)
 Expanded (Result)
 Flattened
 Statements
 Turtle
 Open in playground

 {
 "@context": { "name": "http://example.com/vocab#name",
 "children": { "@reverse": "http://example.com/vocab#parent" }
 },
 "@id": "#homer",
 "name": "Homer",
 "children": [
 {
 "@id": "#bart",
 "name": "Bart"
 }, {
 "@id": "#lisa",
 "name": "Lisa"
 }
]
}

 [{
 "@id": "http://example.org/#homer",
 "http://example.com/vocab#name": [{"@value": "Homer"}],
 "@reverse": {
 "http://example.com/vocab#parent": [{
 "@id": "http://example.org/#bart",
 "http://example.com/vocab#name": [{"@value": "Bart"}]
 }, {
 "@id": "http://example.org/#lisa",
 "http://example.com/vocab#name": [{"@value": "Lisa"}]
 }]
 }
}]

 [{
 "@id": "http://example.org/#homer",
 "http://example.com/vocab#name": [{"@value": "Homer"}]
}, {
 "@id": "http://example.org/#bart",
 "http://example.com/vocab#name": [{"@value": "Bart"}],
 "http://example.com/vocab#parent": [{"@id": "http://example.org/#homer"}]
}, {
 "@id": "http://example.org/#lisa",
 "http://example.com/vocab#name": [{"@value": "Lisa"}],
 "http://example.com/vocab#parent": [{"@id": "http://example.org/#homer"}
]
}]

 	Subject	Property	Value

 	http://example.org/#homer	http://example.com/vocab#name	Homer

 	http://example.org/#bart	http://example.com/vocab#name	Bart

 	http://example.org/#bart	http://example.com/vocab#parent	http://example.org/#homer

 	http://example.org/#lisa	http://example.com/vocab#name	Lisa

 	http://example.org/#lisa	http://example.com/vocab#parent	http://example.org/#homer

 @base <http://example.org/> .
<#homer> <http://example.com/vocab#name> "Homer" .

<#bart> <http://example.com/vocab#name> "Bart";
 <http://example.com/vocab#parent> <#homer> .

<#lisa> <http://example.com/vocab#name> "Lisa";
 <http://example.com/vocab#parent> <#homer> .

4.9 Named Graphs
This section is non-normative.

 At times, it is necessary to make statements about a graph
 itself, rather than just a single node. This can be done by
 grouping a set of nodes using the @graph
 keyword. A developer may also name data expressed using the
 @graph keyword by pairing it with an
 @id keyword as shown in the following example:

 Example 115: Identifying and making statements about a graph

 Compacted (Input)
 Expanded (Result)
 Statements
 TriG
 Open in playground

 {
 "@context": {
 "generatedAt": {
 "@id": "http://www.w3.org/ns/prov#generatedAtTime",
 "@type": "http://www.w3.org/2001/XMLSchema#dateTime"
 },
 "Person": "http://xmlns.com/foaf/0.1/Person",
 "name": "http://xmlns.com/foaf/0.1/name",
 "knows": {"@id": "http://xmlns.com/foaf/0.1/knows", "@type": "@id"}
 },
 "@id": "http://example.org/foaf-graph",
 "generatedAt": "2012-04-09T00:00:00",
 "@graph": [
 {
 "@id": "http://manu.sporny.org/about#manu",
 "@type": "Person",
 "name": "Manu Sporny",
 "knows": "https://greggkellogg.net/foaf#me"
 }, {
 "@id": "https://greggkellogg.net/foaf#me",
 "@type": "Person",
 "name": "Gregg Kellogg",
 "knows": "http://manu.sporny.org/about#manu"
 }
]
}

 [{
 "@id": "http://example.org/foaf-graph",
 "http://www.w3.org/ns/prov#generatedAtTime": [{
 "@value": "2012-04-09T00:00:00",
 "@type": "http://www.w3.org/2001/XMLSchema#dateTime"
 }],
 "@graph": [{
 "@id": "http://manu.sporny.org/about#manu",
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://xmlns.com/foaf/0.1/name": [{"@value": "Manu Sporny"}],
 "http://xmlns.com/foaf/0.1/knows": [
 {"@id": "https://greggkellogg.net/foaf#me"}
]
 }, {
 "@id": "https://greggkellogg.net/foaf#me",
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://xmlns.com/foaf/0.1/name": [{"@value": "Gregg Kellogg"}],
 "http://xmlns.com/foaf/0.1/knows": [
 {"@id": "http://manu.sporny.org/about#manu"}
]
 }]
}]

 	Graph	Subject	Property	Value	Value Type

 	 	http://example.org/foaf-graph	prov:generatedAtTime	2012-04-09T00:00:00	xsd:dateTime

 	http://example.org/foaf-graph	http://manu.sporny.org/about#manu	rdf:type	foaf:Person	

 	http://example.org/foaf-graph	http://manu.sporny.org/about#manu	foaf:name	Manu Sporny	

 	http://example.org/foaf-graph	http://manu.sporny.org/about#manu	foaf:knows	https://greggkellogg.net/foaf#me	

 	http://example.org/foaf-graph	https://greggkellogg.net/foaf#me	rdf:type	foaf:Person	

 	http://example.org/foaf-graph	https://greggkellogg.net/foaf#me	foaf:name	Gregg Kellogg	

 	http://example.org/foaf-graph	https://greggkellogg.net/foaf#me	foaf:knows	http://manu.sporny.org/about#manu	

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix prov: <http://www.w3.org/ns/prov#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example.org/foaf-graph> prov:generatedAtTime "2012-04-09T00:00:00"^^xsd:dateTime .

<http://example.org/foaf-graph> {
 <http://manu.sporny.org/about#manu> a foaf:Person;
 foaf:name "Manu Sporny";
 foaf:knows <https://greggkellogg.net/foaf#me> .

 <https://greggkellogg.net/foaf#me> a foaf:Person;
 foaf:name "Gregg Kellogg";
 foaf:knows <http://manu.sporny.org/about#manu> .
}

 The example above expresses a named graph that is identified
 by the IRI http://example.org/foaf-graph. That
 graph is composed of the statements about Manu and Gregg. Metadata about
 the graph itself is expressed via the generatedAt property,
 which specifies when the graph was generated.

 When a JSON-LD document's top-level structure is a
 map that contains no other
 keys than @graph and
 optionally @context (properties that are not mapped to an
 IRI or a keyword are ignored),
 @graph is considered to express the otherwise implicit
 default graph. This mechanism can be useful when a number
 of nodes exist at the document's top level that
 share the same context, which is, e.g., the case when a
 document is flattened. The
 @graph keyword collects such nodes in an array
 and allows the use of a shared context.

 Example 116: Using @graph to explicitly express the default graph

 Compacted (Input)
 Expanded (Result)
 Statements
 TriG
 Open in playground

 {
 "@context": {
 "@vocab": "http://xmlns.com/foaf/0.1/"
 },
 "@graph": [
 {
 "@id": "http://manu.sporny.org/about#manu",
 "@type": "Person",
 "name": "Manu Sporny"
 }, {
 "@id": "https://greggkellogg.net/foaf#me",
 "@type": "Person",
 "name": "Gregg Kellogg"
 }
]
}

 [{
 "@id": "http://manu.sporny.org/about#manu",
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://xmlns.com/foaf/0.1/name": [{"@value": "Manu Sporny"}]
},
{
 "@id": "https://greggkellogg.net/foaf#me",
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://xmlns.com/foaf/0.1/name": [{"@value": "Gregg Kellogg"}]
}]

 	Subject	Property	Value

 	http://manu.sporny.org/about#manu	rdf:type	foaf:Person

 	http://manu.sporny.org/about#manu	foaf:name	Manu Sporny

 	https://greggkellogg.net/foaf#me	rdf:type	foaf:Person

 	https://greggkellogg.net/foaf#me	foaf:name	Gregg Kellogg

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

<https://greggkellogg.net/foaf#me> a foaf:Person;
 foaf:name "Gregg Kellogg" .

<http://manu.sporny.org/about#manu> a foaf:Person;
 foaf:name "Manu Sporny" .

 In this case, embedding can not be used as
 the graph contains unrelated nodes.
 This is equivalent to using multiple
 node objects in array and defining
 the @context within each node object:

 Example 117: Context needs to be duplicated if @graph is not used

 Compacted (Input)
 Expanded (Result)
 Statements
 TriG
 Open in playground

 [
 {
 "@context": {
 "@vocab": "http://xmlns.com/foaf/0.1/",
 "knows": {"@type": "@id"}
 },
 "@id": "http://manu.sporny.org/about#manu",
 "@type": "Person",
 "name": "Manu Sporny",
 "knows": "https://greggkellogg.net/foaf#me"
 },
 {
 "@context": {
 "@vocab": "http://xmlns.com/foaf/0.1/",
 "knows": {"@type": "@id"}
 },
 "@id": "https://greggkellogg.net/foaf#me",
 "@type": "Person",
 "name": "Gregg Kellogg",
 "knows": "http://manu.sporny.org/about#manu"
 }
]

 [{
 "@id": "http://manu.sporny.org/about#manu",
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://xmlns.com/foaf/0.1/name": [{"@value": "Manu Sporny"}],
 "http://xmlns.com/foaf/0.1/knows": [
 {"@id": "https://greggkellogg.net/foaf#me"}
]
},
{
 "@id": "https://greggkellogg.net/foaf#me",
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://xmlns.com/foaf/0.1/name": [{"@value": "Gregg Kellogg"}],
 "http://xmlns.com/foaf/0.1/knows": [
 {"@id": "http://manu.sporny.org/about#manu"}
]
}]

 	Subject	Property	Value

 	http://manu.sporny.org/about#manu	rdf:type	foaf:Person

 	http://manu.sporny.org/about#manu	foaf:name	Manu Sporny

 	http://manu.sporny.org/about#manu	foaf:knows	https://greggkellogg.net/foaf#me

 	https://greggkellogg.net/foaf#me	rdf:type	foaf:Person

 	https://greggkellogg.net/foaf#me	foaf:name	Gregg Kellogg

 	https://greggkellogg.net/foaf#me	foaf:knows	http://manu.sporny.org/about#manu

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

<https://greggkellogg.net/foaf#me> a foaf:Person;
 foaf:knows <http://manu.sporny.org/about#manu>;
 foaf:name "Gregg Kellogg" .

<http://manu.sporny.org/about#manu> a foaf:Person;
 foaf:knows <https://greggkellogg.net/foaf#me>;
 foaf:name "Manu Sporny" .

 4.9.1 Graph Containers
This section is non-normative.

 In some cases, it is useful to logically partition data into separate
 graphs, without making this explicit within the JSON expression. For
 example, a JSON document may contain data against which other metadata is
 asserted and it is useful to separate this data in the data model using
 the notion of named graphs, without the syntactic overhead
 associated with the @graph keyword.

 An expanded term definition can use @graph as the
 value of @container. This indicates that values of this
 term should be considered to be named graphs, where the
 graph name is an automatically assigned blank node identifier
 creating an implicitly named graph. When expanded, these become
 simple graph objects.

 A different example uses an anonymously named graph as follows:

 Example 118: Implicitly named graph

 Compacted (Input)
 Expanded (Result)
 Statements
 TriG
 Open in playground

 {
 "@context": {
 "@version": 1.1,
 "@base": "http://dbpedia.org/resource/",
 "said": "http://example.com/said",
 "wrote": {"@id": "http://example.com/wrote", "@container": "@graph"}
 },
 "@id": "William_Shakespeare",
 "wrote": {
 "@id": "Richard_III_of_England",
 "said": "My kingdom for a horse"
 }
}

 [{
 "@id": "http://dbpedia.org/resource/William_Shakespeare",
 "http://example.com/wrote": [{
 "@graph": [{
 "@id": "http://dbpedia.org/resource/Richard_III_of_England",
 "http://example.com/said": [{"@value": "My kingdom for a horse"}]
 }]
 }]
}]

 	Graph	Subject	Property	Value

 	_:b0	http://dbpedia.org/resource/Richard_III_of_England	http://example.com/said	My kingdom for a horse

 	 	http://dbpedia.org/resource/William_Shakespeare	http://example.com/wrote	_:b0

 @prefix dbp: <http://dbpedia.org/resource/> .
@prefix ex: <http://example.com/> .

dbp:William_Shakespeare ex:wrote _:b0 .

_:b0 {
 dbp:Richard_III_of_England ex:said "My kingdom for a horse" .
}

 The example above expresses an anonymously named graph
 making a statement. The default graph includes a statement
 saying that the subject wrote that statement.
 This is an example of separating statements into a named graph, and then
 making assertions about the statements contained within that named graph.

 Note
Strictly speaking, the value of such a term
 is not a named graph, rather it is the graph name
 associated with the named graph, which exists separately within
 the dataset.

 Note
Graph Containers are a new feature in JSON-LD 1.1.

4.9.2 Named Graph Data Indexing
This section is non-normative.

 In addition to indexing node objects by index, graph objects may
 also be indexed by an index. By using the @graph
 container type, introduced in § 4.9.1 Graph Containers
 in addition to @index, an object value of such a property is
 treated as a key-value map where the keys do not map to IRIs, but
 are taken from an @index property associated with named graphs
 which are their values. When expanded, these must be simple graph objects

 The following example describes a default graph referencing multiple named
 graphs using an index map.

 Example 119: Indexing graph data in JSON-LD

 Compacted (Input)
 Expanded (Result)
 Statements
 TriG
 Open in playground

 {
 "@context": {
 "@version": 1.1,
 "schema": "http://schema.org/",
 "name": "schema:name",
 "body": "schema:articleBody",
 "words": "schema:wordCount",
 "post": {
 "@id": "schema:blogPost",
 "@container": ["@graph", "@index"]
 }
 },
 "@id": "http://example.com/",
 "@type": "schema:Blog",
 "name": "World Financial News",
 "post": {
 "en": {
 "@id": "http://example.com/posts/1/en",
 "body": "World commodities were up today with heavy trading of crude oil...",
 "words": 1539
 },
 "de": {
 "@id": "http://example.com/posts/1/de",
 "body": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl...",
 "words": 1204
 }
 }
}

 [{
 "@id": "http://example.com/",
 "@type": ["http://schema.org/Blog"],
 "http://schema.org/name": [{"@value": "World Financial News"}],
 "http://schema.org/blogPost": [{
 "@graph": [{
 "@id": "http://example.com/posts/1/en",
 "http://schema.org/articleBody": [{
 "@value": "World commodities were up today with heavy trading of crude oil..."
 }],
 "http://schema.org/wordCount": [{"@value": 1539}]
 }],
 "@index": "en"
 }, {
 "@graph": [{
 "@id": "http://example.com/posts/1/de",
 "http://schema.org/articleBody": [{
 "@value": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl..."
 }],
 "http://schema.org/wordCount": [{"@value": 1204}]
 }],
 "@index": "de"
 }]
}]

 	Graph	Subject	Property	Value	Value Type

 	 	http://example.com/	rdf:type	schema:Blog	

 	 	http://example.com/	schema:name	World Financial News	

 	 	http://example.com/	schema:blogPost	_:b1	

 	 	http://example.com/	schema:blogPost	_:b2	

 	_:b1	http://example.com/posts/1/de	schema:articleBody	Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl...	

 	_:b1	http://example.com/posts/1/de	schema:wordCount	1204	xsd:integer

 	_:b2	http://example.com/posts/1/en	schema:articleBody	World commodities were up today with heavy trading of crude oil...	

 	_:b2	http://example.com/posts/1/en	schema:wordCount	1539	xsd:integer

 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix schema: <http://schema.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example.com/> a schema:Blog;
 schema:name "World Financial News";
 schema:blogPost _:b0, _:b1 .

_:b0 {
 <http://example.com/posts/1/en>
 schema:articleBody
 "World commodities were up today with heavy trading of crude oil...";
 schema:wordCount 1539 .
}

_:b1 {
 <http://example.com/posts/1/de>
 schema:articleBody
 "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl...";
 schema:wordCount 1204 .
}

 As with index maps, when used with @graph, a container may also
 include @set to ensure that key values are always contained in an array.

 The special index @none is used for indexing
 graphs which do not have an @index key, which is useful to maintain
 a normalized representation. Note, however, that
 compacting a document where multiple unidentified named graphs are
 compacted using the @none index will result in the content
 of those graphs being merged. To prevent this, give each graph a distinct
 @index key.

 Example 120: Indexing graphs using @none for no index

 Compacted (Input)
 Expanded (Result)
 Statements
 TriG
 Open in playground

 {
 "@context": {
 "@version": 1.1,
 "schema": "http://schema.org/",
 "name": "schema:name",
 "body": "schema:articleBody",
 "words": "schema:wordCount",
 "post": {
 "@id": "schema:blogPost",
 "@container": ["@graph", "@index"]
 }
 },
 "@id": "http://example.com/",
 "@type": "schema:Blog",
 "name": "World Financial News",
 "post": {
 "en": {
 "@id": "http://example.com/posts/1/en",
 "body": "World commodities were up today with heavy trading of crude oil...",
 "words": 1539
 },
 "@none": {
 "@id": "http://example.com/posts/1/no-language",
 "body": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl...",
 "words": 1204
 }
 }
}

 [{
 "@id": "http://example.com/",
 "@type": ["http://schema.org/Blog"],
 "http://schema.org/name": [{"@value": "World Financial News"}],
 "http://schema.org/blogPost": [{
 "@graph": [{
 "@id": "http://example.com/posts/1/en",
 "http://schema.org/articleBody": [{
 "@value": "World commodities were up today with heavy trading of crude oil..."
 }],
 "http://schema.org/wordCount": [{"@value": 1539}]
 }],
 "@index": "en"
 }, {
 "@graph": [{
 "@id": "http://example.com/posts/1/no-language",
 "http://schema.org/articleBody": [{
 "@value": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl..."
 }],
 "http://schema.org/wordCount": [{"@value": 1204}]
 }]
 }]
}]

 	Graph	Subject	Property	Value	Value Type

 	 	http://example.com/	rdf:type	schema:Blog	

 	 	http://example.com/	schema:name	World Financial News	

 	 	http://example.com/	schema:blogPost	_:b0	

 	 	http://example.com/	schema:blogPost	_:b1	

 	_:b0	http://example.com/posts/1/en	schema:articleBody	World commodities were up today with heavy trading of crude oil...	

 	_:b0	http://example.com/posts/1/en	schema:wordCount	1539	xsd:integer

 	_:b1	http://example.com/posts/1/no-language	schema:articleBody	Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl...	

 	_:b1	http://example.com/posts/1/no-language	schema:wordCount	1204	xsd:integer

 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix schema: <http://schema.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example.com/> a schema:Blog;
 schema:blogPost _:b0, _:b1;
 schema:name "World Financial News" .

_:b0 {
 <http://example.com/posts/1/en>
 schema:articleBody
 "World commodities were up today with heavy trading of crude oil...";
 schema:wordCount 1539 .
}

_:b1 {
 <http://example.com/posts/1/no-language>
 schema:articleBody
 "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl...";
 schema:wordCount 1204 .
}

 Note
Named Graph Data Indexing is a new feature in JSON-LD 1.1.

4.9.3 Named Graph Indexing
This section is non-normative.

 In addition to indexing node objects by identifier, graph objects may
 also be indexed by their graph name. By using the @graph
 container type, introduced in § 4.9.1 Graph Containers
 in addition to @id, an object value of such a property is
 treated as a key-value map where the keys represent the identifiers of named graphs
 which are their values.

 The following example describes a default graph referencing multiple named
 graphs using an id map.

 Example 121: Referencing named graphs using an id map

 Compacted (Input)
 Expanded (Result)
 Statements
 TriG
 Open in playground

 {
 "@context": {
 "@version": 1.1,
 "generatedAt": {
 "@id": "http://www.w3.org/ns/prov#generatedAtTime",
 "@type": "http://www.w3.org/2001/XMLSchema#dateTime"
 },
 "Person": "http://xmlns.com/foaf/0.1/Person",
 "name": "http://xmlns.com/foaf/0.1/name",
 "knows": {
 "@id": "http://xmlns.com/foaf/0.1/knows",
 "@type": "@id"
 },
 "graphMap": {
 "@id": "http://example.org/graphMap",
 "@container": ["@graph", "@id"]
 }
 },
 "@id": "http://example.org/foaf-graph",
 "generatedAt": "2012-04-09T00:00:00",
 "graphMap": {
 "http://manu.sporny.org/about": {
 "@id": "http://manu.sporny.org/about#manu",
 "@type": "Person",
 "name": "Manu Sporny",
 "knows": "https://greggkellogg.net/foaf#me"
 },
 "https://greggkellogg.net/foaf": {
 "@id": "https://greggkellogg.net/foaf#me",
 "@type": "Person",
 "name": "Gregg Kellogg",
 "knows": "http://manu.sporny.org/about#manu"
 }
 }
}

 [{
 "@id": "http://example.org/foaf-graph",
 "http://www.w3.org/ns/prov#generatedAtTime": [{
 "@value": "2012-04-09T00:00:00",
 "@type": "http://www.w3.org/2001/XMLSchema#dateTime"
 }],
 "http://example.org/graphMap": [{
 "@graph": [{
 "@id": "http://manu.sporny.org/about#manu",
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://xmlns.com/foaf/0.1/knows": [
 {"@id": "https://greggkellogg.net/foaf#me"}
],
 "http://xmlns.com/foaf/0.1/name": [
 {"@value": "Manu Sporny"}
]
 }],
 "@id": "http://manu.sporny.org/about"
 }, {
 "@graph": [{
 "@id": "https://greggkellogg.net/foaf#me",
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://xmlns.com/foaf/0.1/knows": [
 {"@id": "http://manu.sporny.org/about#manu"}
],
 "http://xmlns.com/foaf/0.1/name": [
 {"@value": "Gregg Kellogg"}
]
 }],
 "@id": "https://greggkellogg.net/foaf"
 }]
}]

 	Graph	Subject	Property	Value	Value Type

 	 	http://example.org/foaf-graph	http://example.org/graphMap	https://greggkellogg.net/foaf	

 	 	http://example.org/foaf-graph	http://example.org/graphMap	http://manu.sporny.org/about	

 	 	http://example.org/foaf-graph	prov:generatedAtTime	2012-04-09T00:00:00	xsd:dateTime

 	https://greggkellogg.net/foaf	https://greggkellogg.net/foaf#me	rdf:type	foaf:Person	

 	https://greggkellogg.net/foaf	https://greggkellogg.net/foaf#me	foaf:name	Gregg Kellogg	

 	https://greggkellogg.net/foaf	https://greggkellogg.net/foaf#me	foaf:knows	http://manu.sporny.org/about#manu	

 	http://manu.sporny.org/about	http://manu.sporny.org/about#manu	rdf:type	foaf:Person	

 	http://manu.sporny.org/about	http://manu.sporny.org/about#manu	foaf:name	Manu Sporny	

 	http://manu.sporny.org/about	http://manu.sporny.org/about#manu	foaf:knows	https://greggkellogg.net/foaf#me	

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix prov: <http://www.w3.org/ns/prov#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example.org/foaf-graph>
 <http://example.org/graphMap>
 <http://manu.sporny.org/about>,
 <https://greggkellogg.net/foaf>;
 prov:generatedAtTime "2012-04-09T00:00:00"^^xsd:dateTime .

<https://greggkellogg.net/foaf> {
 <https://greggkellogg.net/foaf#me> a foaf:Person;
 foaf:knows <http://manu.sporny.org/about#manu>;
 foaf:name "Gregg Kellogg" .
}

<http://manu.sporny.org/about> {
 <http://manu.sporny.org/about#manu> a foaf:Person;
 foaf:knows <https://greggkellogg.net/foaf#me>;
 foaf:name "Manu Sporny" .
}

 As with id maps, when used with @graph, a container may also
 include @set to ensure that key values are always contained in an array.

 As with id maps, the special index @none is used for indexing
 named graphs which do not have an @id, which is useful to maintain
 a normalized representation. The @none index may also be
 a term which expands to @none.
 Note, however, that if multiple graphs are represented without
 an @id, they will be merged on expansion. To prevent this,
 use @none judiciously, and consider giving graphs
 their own distinct identifier.

 Example 122: Referencing named graphs using an id map with @none

 Compacted (Input)
 Expanded (Result)
 Statements
 TriG
 Open in playground

 {
 "@context": {
 "@version": 1.1,
 "generatedAt": {
 "@id": "http://www.w3.org/ns/prov#generatedAtTime",
 "@type": "http://www.w3.org/2001/XMLSchema#dateTime"
 },
 "Person": "http://xmlns.com/foaf/0.1/Person",
 "name": "http://xmlns.com/foaf/0.1/name",
 "knows": {"@id": "http://xmlns.com/foaf/0.1/knows", "@type": "@id"},
 "graphMap": {
 "@id": "http://example.org/graphMap",
 "@container": ["@graph", "@id"]
 }
 },
 "@id": "http://example.org/foaf-graph",
 "generatedAt": "2012-04-09T00:00:00",
 "graphMap": {
 "@none": [{
 "@id": "http://manu.sporny.org/about#manu",
 "@type": "Person",
 "name": "Manu Sporny",
 "knows": "https://greggkellogg.net/foaf#me"
 }, {
 "@id": "https://greggkellogg.net/foaf#me",
 "@type": "Person",
 "name": "Gregg Kellogg",
 "knows": "http://manu.sporny.org/about#manu"
 }]
 }
}

 [{
 "@id": "http://example.org/foaf-graph",
 "http://www.w3.org/ns/prov#generatedAtTime": [{
 "@value": "2012-04-09T00:00:00",
 "@type": "http://www.w3.org/2001/XMLSchema#dateTime"
 }],
 "http://example.org/graphMap": [{
 "@graph": [{
 "@id": "http://manu.sporny.org/about#manu",
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://xmlns.com/foaf/0.1/name": [{"@value": "Manu Sporny"}],
 "http://xmlns.com/foaf/0.1/knows": [
 {"@id": "https://greggkellogg.net/foaf#me"}
]
 }]
 },
 {
 "@graph": [{
 "@id": "https://greggkellogg.net/foaf#me",
 "@type": ["http://xmlns.com/foaf/0.1/Person"],
 "http://xmlns.com/foaf/0.1/name": [{"@value": "Gregg Kellogg"}],
 "http://xmlns.com/foaf/0.1/knows": [
 {"@id": "http://manu.sporny.org/about#manu"}
]
 }]
 }]
}]

 	Graph	Subject	Property	Value	Value Type

 	 	http://example.org/foaf-graph	prov:generatedAtTime	2012-04-09T00:00:00	xsd:dateTime

 	 	http://example.org/foaf-graph	http://example.org/graphMap	_:b0	

 	 	http://example.org/foaf-graph	http://example.org/graphMap	_:b1	

 	_:b0	http://manu.sporny.org/about#manu	rdf:type	foaf:Person	

 	_:b0	http://manu.sporny.org/about#manu	foaf:name	Manu Sporny	

 	_:b0	http://manu.sporny.org/about#manu	foaf:knows	https://greggkellogg.net/foaf#me	

 	_:b1	https://greggkellogg.net/foaf#me	rdf:type	foaf:Person	

 	_:b1	https://greggkellogg.net/foaf#me	foaf:name	Gregg Kellogg	

 	_:b1	https://greggkellogg.net/foaf#me	foaf:knows	http://manu.sporny.org/about#manu	

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix prov: <http://www.w3.org/ns/prov#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example.org/foaf-graph> <http://example.org/graphMap> _:b0, _:b1;
 prov:generatedAtTime "2012-04-09T00:00:00"^^xsd:dateTime .

_:b0 {
 <http://manu.sporny.org/about#manu> a foaf:Person;
 foaf:name "Manu Sporny";
 foaf:knows <https://greggkellogg.net/foaf#me> .
}

_:b1 {
 <https://greggkellogg.net/foaf#me> a foaf:Person;
 foaf:name "Gregg Kellogg";
 foaf:knows <http://manu.sporny.org/about#manu> .
}

 Note
Graph Containers are a new feature in JSON-LD 1.1.

4.10 Loading Documents
This section is non-normative.

 The JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-API]
 defines the interface to a JSON-LD Processor and includes
 a number of methods used for manipulating different forms
 of JSON-LD (see § 5. Forms of JSON-LD).
 This includes a general mechanism for loading remote documents,
 including referenced JSON-LD documents and remote contexts,
 and potentially extracting embedded JSON-LD from other formats such as [HTML].
 This is more fully described in
 Remote Document and Context Retrieval
 in [JSON-LD11-API].

 A documentLoader
 can be useful in a number of contexts where loading remote documents can be problematic:

 	Remote context documents should be cached to prevent overloading the
 location of the remote context for each request.
 Normally, an HTTP caching infrastructure might be expected to handle this,
 but in some contexts this might not be feasible.
 A documentLoader implementation might provide separate logic for performing
 such caching.

 	Non-standard URL schemes may not be widely implemented,
 or may have behavior specific to a given application domain.
 A documentLoader can be defined to implement document retrieval semantics.

 	Certain well-known contexts may be statically cached within a documentLoader implementation.
 This might be particularly useful in embedded applications,
 where it is not feasible, or even possible, to access remote documents.

 	For security purposes, the act of remotely retrieving a document may provide a signal of application behavior.
 The judicious use of a documentLoader can isolate the application and reduce its online fingerprint.

5. Forms of JSON-LD
This section is non-normative.

As with many data formats, there is no single correct way to describe data in JSON-LD.
 However, as JSON-LD is used for describing graphs, certain transformations can be used
 to change the shape of the data, without changing its meaning as Linked Data.

	Expanded Document Form

	Expansion is the process of taking a JSON-LD document and applying a
 context so that the @context is no longer necessary.
 This process is described further in § 5.1 Expanded Document Form.

	Compacted Document Form

	Compaction is the process
 of applying a provided context to an existing JSON-LD document. This process
 is described further in § 5.2 Compacted Document Form.

	Flattened Document Form

	Flattening is the process of extracting
 embedded nodes to the top level of the JSON tree, and replacing the embedded
 node with a reference, creating blank node identifiers as necessary. This
 process is described further in § 5.3 Flattened Document Form.

	Framed Document Form

	Framing is used to shape
 the data in a JSON-LD document, using an example frame document
 which is used to both match the flattened data and show an example
 of how the resulting data should be shaped. This
 process is described further in § 5.4 Framed Document Form.

5.1 Expanded Document Form
This section is non-normative.

 The JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-API]
 defines a method for expanding a JSON-LD document.
 Expansion is the process of taking a JSON-LD document and applying a
 context such that all IRIs, types, and values
 are expanded so that the @context is no longer necessary.

 For example, assume the following JSON-LD input document:

 Example 123: Sample JSON-LD document to be expanded

 {
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "homepage": {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 },
 "name": "Manu Sporny",
 "homepage": "http://manu.sporny.org/"
}

 Running the JSON-LD Expansion algorithm against the JSON-LD input document
 provided above would result in the following output:

 Example 124: Expanded form for the previous example

 Expanded (Result)
 Statements
 Turtle
 Open in playground

 [
 {
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "Manu Sporny" }
],
 "http://xmlns.com/foaf/0.1/homepage": [
 { "@id": "http://manu.sporny.org/" }
]
 }
]

 	Subject	Property	Value

 	_:b0	foaf:name	Manu Sporny

 	_:b0	foaf:homepage	http://manu.sporny.org/

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

[
 foaf:name "Manu Sporny";
 foaf:homepage <http://manu.sporny.org/>
] .

 JSON-LD's media type defines a
 profile parameter which can be used to signal or request
 expanded document form. The profile URI identifying
 expanded document form is http://www.w3.org/ns/json-ld#expanded.

5.2 Compacted Document Form
This section is non-normative.

 The JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-API] defines
 a method for compacting a JSON-LD document. Compaction is the process
 of applying a developer-supplied context to shorten IRIs
 to terms or compact IRIs
 and JSON-LD values expressed in expanded form to simple values such as
 strings or numbers.
 Often this makes it simpler to work with document as the data is expressed in
 application-specific terms. Compacted documents are also typically easier to read
 for humans.

 For example, assume the following JSON-LD input document:

 Example 125: Sample expanded JSON-LD document

 [
 {
 "http://xmlns.com/foaf/0.1/name": ["Manu Sporny"],
 "http://xmlns.com/foaf/0.1/homepage": [
 {
 "@id": "http://manu.sporny.org/"
 }
]
 }
]

 Additionally, assume the following developer-supplied JSON-LD context:

 Example 126: Sample context

 {
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "homepage": {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 }
}

 Running the JSON-LD Compaction algorithm given the context supplied above
 against the JSON-LD input document provided above would result in the following
 output:

 Example 127: Compact form of the sample document once sample context has been applied

 {
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "homepage": {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 },
 "name": "Manu Sporny",
 "homepage": "http://manu.sporny.org/"
}

 JSON-LD's media type defines a
 profile parameter which can be used to signal or request
 compacted document form. The profile URI identifying
 compacted document form is http://www.w3.org/ns/json-ld#compacted.

 The details of Compaction are described in the
 Compaction algorithm in [JSON-LD11-API].
 This section provides a short description of how the algorithm operates as a guide
 to authors creating contexts to be used for compacting JSON-LD documents.

 The purpose of compaction is to apply the term definitions, vocabulary mapping, default language,
 and base IRI to an existing JSON-LD document to cause it to be represented in a form
 that is tailored to the use of the JSON-LD document directly as JSON.
 This includes representing values as strings, rather than value objects, where possible,
 shortening the use of list objects into simple arrays, reversing the relationship
 between nodes, and using data maps to index into multiple values instead of
 representing them as an array of values.

 5.2.1 Shortening IRIs
This section is non-normative.

 In an expanded JSON-LD document, IRIs are always represented as absolute IRIs.
 In many cases, it is preferable to use a shorter version, either a relative IRI reference,
 compact IRI, or term. Compaction uses a combination of elements
 in a context to create a shorter form of these IRIs. See
 § 4.1.2 Default Vocabulary,
 § 4.1.3 Base IRI,
 and § 4.1.5 Compact IRIs for more details.

 The vocabulary mapping can be used to shorten IRIs that may be vocabulary relative
 by removing the IRI prefix that matches the vocabulary mapping.
 This is done whenever an IRI is determined to be vocabulary relative,
 i.e., used as a property, or a value of @type,
 or as the value of a term described as "@type": "@vocab".

 Example 128: Compacting using a default vocabulary

 Given the following expanded document:

 [{
 "@id": "http://example.org/places#BrewEats",
 "@type": ["http://example.org/Restaurant"],
 "http://example.org/name": [{"@value": "Brew Eats"}]
}]

 And the following context:

 {
 "@context": {
 "@vocab": "http://example.org/"
 }
}

 The compaction algorithm will shorten all vocabulary-relative IRIs that begin with http://xmlns.com/foaf/0.1/:

 {
 "@context": {
 "@vocab": "http://example.org/"
 },
 "@id": "http://example.org/places#BrewEats",
 "@type": "Restaurant",
 "name": "Brew Eats"
}

 Note that two IRIs were shortened, unnecessary arrays are removed, and simple string
 values are replaced with the string.

 See Security Considerations in § C. IANA Considerations
 for a discussion on how string vocabulary-relative IRI resolution via concatenation.

 Example 129: Compacting using a base IRI

 Given the following expanded document:

 [{
 "@id": "http://example.com/document.jsonld",
 "http://www.w3.org/2000/01/rdf-schema#label": [{"@value": "Just a simple document"}]
}]

 And the following context:

 {
 "@context": {
 "@base": "http://example.com/",
 "label": "http://www.w3.org/2000/01/rdf-schema#label"
 }
}

 The compaction algorithm will shorten all document-relative IRIs that begin with http://example.com/:

 {
 "@context": {
 "@base": "http://example.com/",
 "label": "http://www.w3.org/2000/01/rdf-schema#label"
 },
 "@id": "document.jsonld",
 "label": "Just a simple document"
}

 5.2.2 Representing Values as Strings
This section is non-normative.

 To be unambiguous, the expanded document form always represents nodes
 and values using node objects and value objects.
 Moreover, property values are always contained within an array, even when there is only
 one value. Sometimes this is useful to maintain a uniformity of access,
 but most JSON data use the simplest possible representation, meaning that
 properties have single values, which are represented as strings
 or as structured values such as node objects.
 By default, compaction will represent values which are simple strings as strings,
 but sometimes a value is an IRI, a date, or some other typed value for which
 a simple string representation would loose information.
 By specifying this within a term definition,
 the semantics of a string value can be inferred from the definition
 of the term used as a property.
 See § 4.2 Describing Values for more details.

 Example 130: Coercing Values to Strings

 Given the following expanded document:

 [{
 "http://example.com/plain": [
 {"@value": "string"},
 {"@value": true},
 {"@value": 1}
],
 "http://example.com/date": [
 {
 "@value": "2018-02-16",
 "@type": "http://www.w3.org/2001/XMLSchema#date"
 }
],
 "http://example.com/en": [
 {"@value": "English", "@language": "en"}
],
 "http://example.com/iri": [
 {"@id": "http://example.com/some-location"}
]
}]

 And the following context:

 {
 "@context": {
 "@vocab": "http://example.com/",
 "date": {"@type": "http://www.w3.org/2001/XMLSchema#date"},
 "en": {"@language": "en"},
 "iri": {"@type": "@id"}
 }
}

 The compacted version will use string values for the defined terms
 when the values match the term definition. Note that there is
 no term defined for "plain", that is created automatically using
 the vocabulary mapping.
 Also, the other native values,
 1 and true,
 can be represented without defining a specific type mapping.

 {
 "@context": {
 "@vocab": "http://example.com/",
 "date": {"@type": "http://www.w3.org/2001/XMLSchema#date"},
 "en": {"@language": "en"},
 "iri": {"@type": "@id"}
 },
 "plain": ["string", true, 1],
 "date": "2018-02-16",
 "en": "English",
 "iri": "http://example.com/some-location"
}

 5.2.3 Representing Lists as Arrays
This section is non-normative.

 As described in § 4.3.1 Lists,
 JSON-LD has an expanded syntax for representing ordered values,
 using the @list keyword.
 To simplify the representation in JSON-LD, a term can be defined with
 "@container": "@list" which causes all values of a
 property using such a term to be considered ordered.

 Example 131: Using Arrays for Lists

 Given the following expanded document:

 [{
 "http://xmlns.com/foaf/0.1/nick": [{
 "@list": [
 {"@value": "joe"},
 {"@value": "bob"},
 {"@value": "jaybee"}
]
 }]
}]

 And the following context:

 {
 "@context": {
 "nick": {
 "@id": "http://xmlns.com/foaf/0.1/nick",
 "@container": "@list"
 }
 }
}

 The compacted version eliminates the explicit list object.

 {
 "@context": {
 "nick": {
 "@id": "http://xmlns.com/foaf/0.1/nick",
 "@container": "@list"
 }
 },
 "nick": ["joe", "bob", "jaybee"]
}

 5.2.4 Reversing Node Relationships
This section is non-normative.

 In some cases, the property used to relate two nodes may
 be better expressed if the nodes have a reverse direction,
 for example, when describing a relationship between
 two people and a common parent.
 See § 4.8 Reverse Properties for more details.

 Example 132: Reversing Node Relationships

 Given the following expanded document:

 [{
 "@id": "http://example.org/#homer",
 "http://example.com/vocab#name": [{"@value": "Homer"}],
 "@reverse": {
 "http://example.com/vocab#parent": [{
 "@id": "http://example.org/#bart",
 "http://example.com/vocab#name": [{"@value": "Bart"}]
 }, {
 "@id": "http://example.org/#lisa",
 "http://example.com/vocab#name": [{"@value": "Lisa"}]
 }]
 }
}]

 And the following context:

 {
 "@context": {
 "name": "http://example.com/vocab#name",
 "children": { "@reverse": "http://example.com/vocab#parent" }
 }
}

 The compacted version eliminates the @reverse property
 by describing "children" as the reverse of "parent".

 {
 "@context": {
 "name": "http://example.com/vocab#name",
 "children": { "@reverse": "http://example.com/vocab#parent" }
 },
 "@id": "#homer",
 "name": "Homer",
 "children": [
 { "@id": "#bart", "name": "Bart"},
 { "@id": "#lisa", "name": "Lisa"}
]
}

 Reverse properties can be even more useful when combined with
 framing, which can actually make node objects defined
 at the top-level of a document to become embedded nodes.
 JSON-LD provides a means to index such values, by defining
 an appropriate @container definition within a term definition.

 5.2.5 Indexing Values
This section is non-normative.

 Properties with multiple values are typically represented using
 an unordered array. This means that an application working
 on an internalized representation of that JSON would need to
 iterate through the values of the array to find a value matching
 a particular pattern, such as a language-tagged string
 using the language en.

 Example 133: Indexing language-tagged strings

 Given the following expanded document:

 [{
 "@id": "http://example.com/queen",
 "http://example.com/vocab/label": [
 {"@value": "The Queen", "@language": "en"},
 {"@value": "Die Königin", "@language": "de"},
 {"@value": "Ihre Majestät", "@language": "de"}
]
}]

 And the following context:

 {
 "@context": {
 "vocab": "http://example.com/vocab/",
 "label": {
 "@id": "vocab:label",
 "@container": "@language"
 }
 }
}

 The compacted version uses a map value
 for "label", with the keys representing the language tag
 and the values are the strings associated with the relevant language tag.

 {
 "@context": {
 "vocab": "http://example.com/vocab/",
 "label": {
 "@id": "vocab:label",
 "@container": "@language"
 }
 },
 "@id": "http://example.com/queen",
 "label": {
 "en": "The Queen",
 "de": ["Die Königin", "Ihre Majestät"]
 }
}

 Data can be indexed on a number of different keys, including
 @id, @type, @language, @index and more.
 See § 4.6 Indexed Values and
 § 4.9 Named Graphs for more details.

 5.2.6 Normalizing Values as Objects
This section is non-normative.

 Sometimes it's useful to compact a document, but keep the
 node object and value object representations.
 For this, a term definition can set "@type": "@none".
 This causes the Value Compaction algorithm to always use the object
 form of values, although components of that value may be compacted.

 Example 134: Forcing Object Values

 Given the following expanded document:

 [{
 "http://example.com/notype": [
 {"@value": "string"},
 {"@value": true},
 {"@value": false},
 {"@value": 1},
 {"@value": 10.0},
 {"@value": "plain"},
 {"@value": "false", "@type": "http://www.w3.org/2001/XMLSchema#boolean"},
 {"@value": "english", "@language": "en"},
 {"@value": "2018-02-17", "@type": "http://www.w3.org/2001/XMLSchema#date"},
 {"@id": "http://example.com/iri"}
]
}]

 And the following context:

 {
 "@context": {
 "@version": 1.1,
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "notype": {"@id": "http://example.com/notype", "@type": "@none"}
 }
}

 The compacted version will use string values for the defined terms
 when the values match the term definition.
 Also, the other native values,
 1 and true,
 can be represented without defining a specific type mapping.

 {
 "@context": {
 "@version": 1.1,
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "notype": {"@id": "http://example.com/notype", "@type": "@none"}
 },
 "notype": [
 {"@value": "string"},
 {"@value": true},
 {"@value": false},
 {"@value": 1},
 {"@value": 10.0},
 {"@value": "plain"},
 {"@value": "false", "@type": "xsd:boolean"},
 {"@value": "english", "@language": "en"},
 {"@value": "2018-02-17", "@type": "xsd:date"},
 {"@id": "http://example.com/iri"}
]
}

 5.2.7 Representing Singular Values as Arrays
This section is non-normative.

 Generally, when compacting, properties having only one value are
 represented as strings or maps, while properties having
 multiple values are represented as an array of strings or maps.
 This means that applications accessing such properties need to be prepared
 to accept either representation. To force all values to be represented
 using an array, a term definition can set "@container": "@set".
 Moreover, @set can be used in combination with other container settings,
 for example looking at our language-map example from § 5.2.5 Indexing Values:

 Example 135: Indexing language-tagged strings and @set

 Given the following expanded document:

 [{
 "@id": "http://example.com/queen",
 "http://example.com/vocab/label": [
 {"@value": "The Queen", "@language": "en"},
 {"@value": "Die Königin", "@language": "de"},
 {"@value": "Ihre Majestät", "@language": "de"}
]
}]

 And the following context:

 {
 "@context": {
 "@version": 1.1,
 "@vocab": "http://example.com/vocab/",
 "label": {
 "@container": ["@language", "@set"]
 }
 }
}

 The compacted version uses a map value
 for "label" as before,
 and the values are the relevant strings but always represented using an array.

 {
 "@context": {
 "@version": 1.1,
 "@vocab": "http://example.com/vocab/",
 "label": {
 "@container": ["@language", "@set"]
 }
 },
 "@id": "http://example.com/queen",
 "label": {
 "en": ["The Queen"],
 "de": ["Die Königin", "Ihre Majestät"]
 }
}

 5.2.8 Term Selection
This section is non-normative.

 When compacting, the Compaction algorithm will compact using a term
 for a property only when the values of that property match the
 @container, @type, and @language specifications for that term definition.
 This can actually split values between different properties, all of which
 have the same IRI. In case there is no matching term definition,
 the compaction algorithm will compact using the absolute IRI of the property.

 Example 136: Term Selection

 Given the following expanded document:

 [{
 "http://example.com/vocab/property": [
 {"@value": "string"},
 {"@value": true},
 {"@value": 1},
 {"@value": "false", "@type": "http://www.w3.org/2001/XMLSchema#boolean"},
 {"@value": "10", "@type": "http://www.w3.org/2001/XMLSchema#integer"},
 {"@value": "english", "@language": "en"},
 {"@value": "2018-02-17", "@type": "http://www.w3.org/2001/XMLSchema#date"},
 {"@id": "http://example.com/some-location"}
]
}]

 And the following context:

 {
 "@context": {
 "vocab": "http://example.com/vocab/",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "integer": {"@id": "vocab:property", "@type": "xsd:integer"},
 "date": {"@id": "vocab:property", "@type": "xsd:date"},
 "english": {"@id": "vocab:property", "@language": "en"},
 "list": {"@id": "vocab:property", "@container": "@list"},
 "iri": {"@id": "vocab:property", "@type": "@id"}
 }
}

 Note that the values that match the "integer", "english", "date", and "iri"
 terms are properly matched, and that everything that does not explicitly
 match is added to a property created using a compact IRI.

 {
 "@context": {
 "vocab": "http://example.com/vocab/",
 "xsd": "http://www.w3.org/2001/XMLSchema#",
 "integer": {"@id": "vocab:property", "@type": "xsd:integer"},
 "date": {"@id": "vocab:property", "@type": "xsd:date"},
 "english": {"@id": "vocab:property", "@language": "en"},
 "list": {"@id": "vocab:property", "@container": "@list"},
 "iri": {"@id": "vocab:property", "@type": "@id"}
 },
 "vocab:property": [
 "string", true, 1,
 {"@value": "false", "@type": "xsd:boolean"}
],
 "integer": "10",
 "english": "english",
 "date": "2018-02-17",
 "iri": "http://example.com/some-location"
}

5.3 Flattened Document Form
This section is non-normative.

 The JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-API] defines
 a method for flattening a JSON-LD document.
 Flattening collects all
 properties of a node in a single map and labels
 all blank nodes with
 blank node identifiers.
 This ensures a shape of the data and consequently may drastically simplify the code
 required to process JSON-LD in certain applications.

 For example, assume the following JSON-LD input document:

 Example 137: Sample JSON-LD document to be flattened

 {
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "knows": "http://xmlns.com/foaf/0.1/knows"
 },
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "knows": [
 {
 "@id": "http://manu.sporny.org/about#manu",
 "name": "Manu Sporny"
 }, {
 "name": "Dave Longley"
 }
]
}

 Running the JSON-LD Flattening algorithm against the JSON-LD input document in
 the example above and using the same context would result in the following
 output:

 Example 138: Flattened and compacted form for the previous example

 Open in playground

 {
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "knows": "http://xmlns.com/foaf/0.1/knows"
 },
 "@graph": [{
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "knows": [
 { "@id": "http://manu.sporny.org/about#manu" },
 { "@id": "_:b0" }
]
 }, {
 "@id": "http://manu.sporny.org/about#manu",
 "name": "Manu Sporny"
 }, {
 "@id": "_:b0",
 "name": "Dave Longley"
 }]
}

 JSON-LD's media type defines a
 profile parameter which can be used to signal or request
 flattened document form. The profile URI identifying
 flattened document form is http://www.w3.org/ns/json-ld#flattened.
 It can be combined with the profile URI identifying
 expanded document form or
 compacted document form.

5.4 Framed Document Form
This section is non-normative.

 The JSON-LD 1.1 Framing specification [JSON-LD11-FRAMING] defines
 a method for framing a JSON-LD document. Framing is used to shape
 the data in a JSON-LD document, using an example frame document
 which is used to both match the flattened data and show an example
 of how the resulting data should be shaped.

 For example, assume the following JSON-LD frame:

 Example 139: Sample library frame

 {
 "@context": {
 "@version": 1.1,
 "@vocab": "http://example.org/"
 },
 "@type": "Library",
 "contains": {
 "@type": "Book",
 "contains": {
 "@type": "Chapter"
 }
 }
}

 This frame document describes an embedding structure that would place
 objects with type Library at the top, with objects of
 type Book that were linked to the library object using
 the contains property embedded as property values. It also
 places objects of type Chapter within the referencing Book object
 as embedded values of the Book object.

 When using a flattened set of objects that match the frame components:

 Example 140: Flattened library objects

 {
 "@context": {
 "@vocab": "http://example.org/",
 "contains": {"@type": "@id"}
 },
 "@graph": [{
 "@id": "http://example.org/library",
 "@type": "Library",
 "contains": "http://example.org/library/the-republic"
 }, {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": "http://example.org/library/the-republic#introduction"
 }, {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }]
}

 The Frame Algorithm can create a new document which follows the structure
 of the frame:

 Example 141: Framed library objects

 Open in playground

 {
 "@context": {
 "@version": 1.1,
 "@vocab": "http://example.org/"
 },
 "@id": "http://example.org/library",
 "@type": "Library",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 },
 "creator": "Plato",
 "title": "The Republic"
 }
}

 JSON-LD's media type defines a
 profile parameter which can be used to signal or request
 framed document form. The profile URI identifying
 framed document form is http://www.w3.org/ns/json-ld#framed.

 JSON-LD's media type also defines a
 profile parameter which can be used to identify a
 script element in an HTML document containing a frame.
 The first script element
 of type application/ld+json;profile=http://www.w3.org/ns/json-ld#frame
 will be used to find a frame..

6. Modifying Behavior with Link Relationships

 Certain aspects of JSON-LD processing can be modified using
 HTTP Link Headers [RFC8288].
 These can be used when retrieving resources that are not, themselves, JSON-LD,
 but can be interpreted as JSON-LD by using information in a
 Link Relation.

 When processing normal JSON documents, a link relation can be specified using
 the HTTP Link Header
 returned when fetching a remote document, as described in § 6.1 Interpreting JSON as JSON-LD.

 In other cases, a resource may be returned using a representation that cannot easily be interpreted
 as JSON-LD. Normally, HTTP content negotiation
 would be used to allow a client to specify a preference for JSON-LD over another representation,
 but in certain situations, it is not possible or practical for a server to respond appropriately to such requests.
 For this, an HTTP Link Header can be used to provide an alternate location for a document
 to be used in place of the originally requested resource,
 as described in § 6.2 Alternate Document Location.

6.1 Interpreting JSON as JSON-LD

 Ordinary JSON documents can be interpreted as JSON-LD
 by providing an explicit JSON-LD context document. One way
 to provide this is by using referencing a JSON-LD
 context document in an HTTP Link Header.
 Doing so allows JSON to be unambiguously machine-readable without requiring developers to drastically
 change their documents and provides an upgrade path for existing infrastructure
 without breaking existing clients that rely on the application/json
 media type or a media type with a +json suffix as defined in
 [RFC6839].

 In order to use an external context with an ordinary JSON document,
 when retrieving an ordinary JSON document via HTTP, processors MUST
 attempt to retrieve any JSON-LD document referenced by a
 Link Header with:

 	rel="http://www.w3.org/ns/json-ld#context", and

 	type="application/ld+json".

 The referenced document MUST have a top-level JSON object.
 The @context entry within that object is added to the top-level
 JSON object of the referencing document. If an array
 is at the top-level of the referencing document and its items are
 JSON objects, the @context
 subtree is added to all array items. All extra information located outside
 of the @context subtree in the referenced document MUST be
 discarded. Effectively this means that the active context is
 initialized with the referenced external context. A response MUST NOT
 contain more than one HTTP Link Header using the
 http://www.w3.org/ns/json-ld#context link relation.

 Other mechanisms for providing a JSON-LD Context MAY be described for other
 URI schemes.

 The JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-API]
 provides for an expandContext option for specifying
 a context to use when expanding JSON documents programmatically.

 The following example demonstrates the use of an external context with an
 ordinary JSON document over HTTP:

 Example 142: Referencing a JSON-LD context from a JSON document via an HTTP Link Header

 GET /ordinary-json-document.json HTTP/1.1
Host: example.com
Accept: application/ld+json,application/json,*/*;q=0.1

====================================

HTTP/1.1 200 OK
...
Content-Type: application/json
Link: <https://json-ld.org/contexts/person.jsonld>; rel="http://www.w3.org/ns/json-ld#context"; type="application/ld+json"

{
 "name": "Markus Lanthaler",
 "homepage": "http://www.markus-lanthaler.com/",
 "image": "http://twitter.com/account/profile_image/markuslanthaler"
}

 Please note that JSON-LD documents
 served with the application/ld+json
 media type MUST have all context information, including references to external
 contexts, within the body of the document. Contexts linked via a
 http://www.w3.org/ns/json-ld#context HTTP Link Header MUST be
 ignored for such documents.

6.2 Alternate Document Location

 Documents which can't be directly interpreted as JSON-LD can provide an alternate location containing JSON-LD.
 One way to provide this is by referencing a JSON-LD document in an HTTP Link Header.
 This might be useful, for example, when the URL associated with a namespace naturally
 contains an HTML document, but the JSON-LD context associated with that URL is located elsewhere.

 To specify an alternate location, a non-JSON resource
 (i.e., one using a media type other than application/json or a derivative)
 can return the alternate location using a Link Header with:

 	rel="alternate", and

 	type="application/ld+json".

 A response MUST NOT contain more than one HTTP Link Header using the
 alternate link relation with type="application/ld+json" .

 Other mechanisms for providing an alternate location MAY be described for other
 URI schemes.

 The following example demonstrates the use of an alternate location with an
 ordinary HTTP document over HTTP:

 Example 143: Specifying an alternate location via an HTTP Link Header

 GET /index.html HTTP/1.1
Host: example.com
Accept: application/ld+json,application/json,*/*;q=0.1

====================================

HTTP/1.1 200 OK
...
Content-Type: text/html
Link: <alternate.jsonld>; rel="alternate"; type="application/ld+json"

<html>
 <head>
 <title>Primary Entrypoint</title>
 </head>
 <body>
 <p>This is the primary entrypoint for a vocabulary</p>
 </body>
</html>

 A processor seeing a non-JSON result will note the presence of the link header
 and load that document instead.

7. Embedding JSON-LD in HTML Documents

 Note
This section describes features available
 with a documentLoader supporting HTML script extraction.
 See Remote Document and Context Retrieval
 for more information.

 JSON-LD content can be easily embedded in HTML [HTML] by placing
 it in a script element with the type attribute set to
 application/ld+json. Doing so creates a
 data block.

 Example 144: Embedding JSON-LD in HTML

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle

 <script type="application/ld+json">
{
 "@context": "https://json-ld.org/contexts/person.jsonld",
 "@id": "http://dbpedia.org/resource/John_Lennon",
 "name": "John Lennon",
 "born": "1940-10-09",
 "spouse": "http://dbpedia.org/resource/Cynthia_Lennon"
}
</script>

 [{
 "@id": "http://dbpedia.org/resource/John_Lennon",
 "http://xmlns.com/foaf/0.1/name": [{"@value": "John Lennon"}],
 "http://schema.org/birthDate": [
 {"@value": "1940-10-09", "@type": "http://www.w3.org/2001/XMLSchema#date"}
],
 "http://schema.org/spouse": [
 {"@id": "http://dbpedia.org/resource/Cynthia_Lennon"}
]
}]

 	Subject	Property	Value	Value Type

 	http://dbpedia.org/resource/John_Lennon	foaf:name	John Lennon	

 	http://dbpedia.org/resource/John_Lennon	schema:birthDate	1940-10-09	xsd:date

 	http://dbpedia.org/resource/John_Lennon	schema:spouse	http://dbpedia.org/resource/Cynthia_Lennon	

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix schema: <http://schema.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://dbpedia.org/resource/John_Lennon> foaf:name "John Lennon";
 schema:birthDate "1940-10-09"^^xsd:date;
 schema:spouse <http://dbpedia.org/resource/Cynthia_Lennon> .

 Defining how such data may be used is beyond the scope of this specification.
 The embedded JSON-LD document might be extracted as is or, e.g., be
 interpreted as RDF.

 If JSON-LD content is extracted as RDF [RDF11-CONCEPTS], it MUST be expanded into an
 RDF Dataset using the
 Deserialize JSON-LD to RDF Algorithm
 [JSON-LD11-API]. Unless a specific script is targeted
 (see § 7.3 Locating a Specific JSON-LD Script Element),
 all script elements
 with type application/ld+json MUST be processed and merged
 into a single dataset with equivalent blank node identifiers contained in
 separate script elements treated as if they were in a single document (i.e.,
 blank nodes are shared between different JSON-LD script elements).

 Example 145: Combining multiple JSON-LD script elements into a single dataset

 HTML Embedded (Input)
 Statements
 Turtle (Result)

 <p>Data describing Dave</p>
<script type="application/ld+json">
{
 "@context": "http://schema.org/",
 "@id": "https://digitalbazaar.com/author/dlongley/",
 "@type": "Person",
 "name": "Dave Longley"
}
</script>

<p>Data describing Gregg</p>
<script type="application/ld+json">
{
 "@context": "http://schema.org/",
 "@id": "https://greggkellogg.net/foaf#me",
 "@type": "Person",
 "name": "Gregg Kellogg"
}
</script>

 	Subject	Property	Value

 	https://digitalbazaar.com/author/dlongley/	rdf:type	schema:Person

 	https://digitalbazaar.com/author/dlongley/	schema:name	Dave Longley

 	https://greggkellogg.net/foaf#me	rdf:type	schema:Person

 	https://greggkellogg.net/foaf#me	schema:name	Gregg Kellogg

 @prefix schema: <http://schema.org/> .

<https://digitalbazaar.com/author/dlongley/> a schema:Person;
 schema:name "Dave Longley" .

<https://greggkellogg.net/foaf#me> a schema:Person;
 schema:name "Gregg Kellogg" .

 7.1 Inheriting base IRI from HTML's base element

 When processing a JSON-LD
 script element,
 the Document Base URL
 of the containing HTML document,
 as defined in [HTML],
 is used to establish the default base IRI of the enclosed
 JSON-LD content.

 Example 146: Using the document base URL to establish the default base IRI

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle

 <html>
 <head>
 <base href="http://dbpedia.org/resource/"/>
 <script type="application/ld+json">
 {
 "@context": "https://json-ld.org/contexts/person.jsonld",
 "@id": "John_Lennon",
 "name": "John Lennon",
 "born": "1940-10-09",
 "spouse": "Cynthia_Lennon"
 }
 </script>
 </head>
</html>

 [{
 "@id": "http://dbpedia.org/resource/John_Lennon",
 "http://xmlns.com/foaf/0.1/name": [{"@value": "John Lennon"}],
 "http://schema.org/birthDate": [
 {"@value": "1940-10-09", "@type": "http://www.w3.org/2001/XMLSchema#date"}
],
 "http://schema.org/spouse": [
 {"@id": "http://dbpedia.org/resource/Cynthia_Lennon"}
]
}]

 	Subject	Property	Value	Value Type

 	http://dbpedia.org/resource/John_Lennon	foaf:name	John Lennon	

 	http://dbpedia.org/resource/John_Lennon	schema:birthDate	1940-10-09	xsd:date

 	http://dbpedia.org/resource/John_Lennon	schema:spouse	http://dbpedia.org/resource/Cynthia_Lennon	

 @base <http://dbpedia.org/resource/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix schema: <http://schema.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<John_Lennon> foaf:name "John Lennon";
 schema:birthDate "1940-10-09"^^xsd:date;
 schema:spouse <Cynthia_Lennon> .

 HTML allows for Dynamic changes to base URLs.
 This specification does not require any specific behavior,
 and to ensure that all systems process the base IRI equivalently, authors SHOULD
 either use IRIs, or explicitly as defined in § 4.1.3 Base IRI.
 Implementations (particularly those natively operating in the [DOM]) MAY take into consideration
 Dynamic changes to base URLs.

 7.2 Restrictions for contents of JSON-LD script elements
This section is non-normative.

 Due to the HTML Restrictions for contents of <script> elements
 additional encoding restrictions are placed on JSON-LD data contained in
 script elements.

 Authors should avoid using character sequences in scripts embedded in HTML
 which may be confused with a comment-open, script-open,
 comment-close, or script-close.

 Note
Such content should be escaped as indicated below, however
 the content will remain escaped after processing through the
 JSON-LD API [JSON-LD11-API].

 	& → & (ampersand, U+0026)

 	< → < (less-than sign, U+003C)

 	> → > (greater-than sign, U+003E)

 	" → " (quotation mark, U+0022)

 	' → ' (apostrophe, U+0027)

 Example 147: Embedding JSON-LD containing HTML in HTML

 Compacted (Input)
 Expanded (Result)
 Turtle

 <script type="application/ld+json">
{
 "@context": "http://schema.org/",
 "@type": "WebPageElement",
 "name": "Encoding Issues",
 "description": "Issues list such as unescaped </script> or -->"
}
</script>

 [{
 "@type": ["http://schema.org/WebPageElement"],
 "http://schema.org/name": [{"@value": "Encoding Issues"}],
 "http://schema.org/description": [
 {"@value": "Issues list such as unescaped </script> or -->"}
]
}]

 @prefix schema: <http://schema.org/> .

[a schema:WebPageElement;
 schema:name "Encoding Issues";
 schema:description "Issues list such as unescaped </script> or -->"
] .

 7.3 Locating a Specific JSON-LD Script Element

 A specific
 script element
 within an HTML document may be located using
 a fragment identifier matching the unique identifier
 of the script element within the HTML document located by a URL (see [DOM]).
 A JSON-LD processor MUST extract only the specified data block's contents
 parsing it as a standalone JSON-LD document
 and MUST NOT merge the result with any other markup from the same HTML document.

 For example, given an HTML document located at http://example.com/document,
 a script element identified by "dave" can be targeted using the URL
 http://example.com/document#dave.

 Example 148: Targeting a specific script element by id

 Compacted (Input)
 Statements
 Turtle

 Targeting a script element with id "gregg"

 <p>Data describing Dave</p>
<script id="dave" type="application/ld+json">
{
 "@context": "http://schema.org/",
 "@id": "https://digitalbazaar.com/author/dlongley/",
 "@type": "Person",
 "name": "Dave Longley"
}
</script>

<p>Data describing Gregg</p>
<script id="gregg" type="application/ld+json">
{
 "@context": "http://schema.org/",
 "@id": "https://greggkellogg.net/foaf#me",
 "@type": "Person",
 "name": "Gregg Kellogg"
}
</script>

 	Subject	Property	Value

 	https://greggkellogg.net/foaf#me	rdf:type	schema:Person

 	https://greggkellogg.net/foaf#me	schema:name	Gregg Kellogg

 @prefix schema: <http://schema.org/> .

<https://greggkellogg.net/foaf#me> a schema:Person;
 schema:name "Gregg Kellogg" .

 8. Data Model

 JSON-LD is a serialization format for Linked Data based on JSON.
 It is therefore important to distinguish between the syntax, which is
 defined by JSON in [RFC8259], and the data model which is
 an extension of the RDF data model [RDF11-CONCEPTS].
 The precise details of how JSON-LD relates to the RDF data model are given in
 § 10. Relationship to RDF.

 To ease understanding for developers unfamiliar with the RDF model, the
 following summary is provided:

 	A JSON-LD document serializes a
 RDF Dataset
 [RDF11-CONCEPTS], which is a collection of graphs
 that comprises exactly one default graph
 and zero or more named graphs.

 	The default graph does not have a name and MAY be empty.

 	Each named graph is a pair consisting of an IRI or
 blank node identifier (the
 graph name)
 and a graph. Whenever practical, the graph name SHOULD be an IRI.

 	A graph
 is a labeled directed graph, i.e., a set of nodes
 connected by directed-arcs.

 	Every directed-arc is labeled with
 an IRI or a blank node identifier. Within the JSON-LD syntax
 these arc labels are called properties.
 Whenever practical, a directed-arc SHOULD be labeled with an IRI.
 Note
The use of blank node identifiers to label properties is obsolete,
 and may be removed in a future version of JSON-LD.
 Consider using a document-relative IRI, instead, such as #.

 	Every node
 is an IRI, a blank node, or a literal,
 although syntactically lists and native JSON values may be represented directly.

 	A node having an outgoing edge MUST be an IRI or a
 blank node.

 	A graph MUST NOT contain unconnected nodes,
 i.e., nodes which are not connected by an property to any other node.

 Example 149: Illegal Unconnected Node

 {
 "@id": "http://example.org/1"
}

 Note

 This effectively just prohibits unnested, empty node objects
 and unnested node objects that contain only an @id.
 A document may have nodes which are unrelated, as long as one or more
 properties are defined, or the node is referenced from another node object.

 	An IRI (Internationalized Resource Identifier) is a string that conforms to the syntax
 defined in [RFC3987]. IRIs used within a
 graph SHOULD return a Linked Data document describing
 the resource denoted by that IRI when being dereferenced.

 	A blank node is a node which is neither an IRI,
 nor a JSON-LD value, nor a list. A blank node is identified
 using a blank node identifier.

 	A blank node identifier
 is a string that can be used as an identifier for a blank node within
 the scope of a JSON-LD document. Blank node identifiers begin with
 _:.

 	A JSON-LD value is a typed value, a string (which is interpreted
 as a typed value with type xsd:string), a number
 (numbers with a non-zero fractional part, i.e., the result of a modulo‑1 operation,
 or which are too large to represent as integers
 (see Data Round Tripping) in [JSON-LD11-API]),
 are interpreted as typed values with type xsd:double, all other
 numbers are interpreted as typed values
 with type xsd:integer), true or false (which are interpreted as
 typed values with type xsd:boolean),
 or a language-tagged string.

 	A typed value consists of a value, which is a string, and a type, which is an
 IRI.

 	A language-tagged string
 consists of a string and a non-empty language tag as defined by [BCP47].
 The language tag MUST be well-formed according to section
 2.2.9 Classes of Conformance
 of [BCP47].
 Processors MAY normalize language tags to lowercase.

 	Either strings, or language-tagged strings may include
 a base direction, which represents an extension to the underlying
 RDF data model.

 	A list is a sequence of zero or more IRIs,
 blank nodes, and JSON-LD values.
 Lists are interpreted as
 RDF list structures [RDF11-MT].

 JSON-LD documents MAY contain data
 that cannot be represented by the data model
 defined above. Unless otherwise specified, such data is ignored when a
 JSON-LD document is being processed. One result of this rule
 is that properties which are not mapped to an IRI,
 a blank node, or keyword will be ignored.

 Additionally, the JSON serialization format is internally represented using
 the JSON-LD internal representation, which uses the generic
 concepts of lists, maps,
 strings, numbers, booleans, and null to describe
 the data represented by a JSON document.

 The image depicts a linked data dataset with a default graph
 and two named graphs.

 Figure 1 An illustration of a linked data dataset.

 A description of the linked data dataset
 diagram is available in the Appendix. Image available in

 SVG
 and

 PNG

 formats.

 The dataset described in this figure can be represented as follows:

 Example 150: Linked Data Dataset

 Compacted (Input)
 Expanded (Result)
 Statements
 TriG

 {
 "@context": [
 "http://schema.org/",
 {"@base": "http://example.com/"}
],
 "@graph": [{
 "@id": "people/alice",
 "gender": [
 {"@value": "weiblich", "@language": "de"},
 {"@value": "female", "@language": "en"}
],
 "knows": {"@id": "people/bob"},
 "name": "Alice"
 }, {
 "@id": "graphs/1",
 "@graph": {
 "@id": "people/alice",
 "parent": {
 "@id": "people/bob",
 "name": "Bob"
 }
 }
 }, {
 "@id": "graphs/2",
 "@graph": {
 "@id": "people/bob",
 "sibling": {
 "name": "Mary",
 "sibling": {"@id": "people/bob"}
 }
 }
 }]
}

 [{
 "@id": "http://example.com/people/alice",
 "http://schema.org/name": [{"@value": "Alice"}],
 "http://schema.org/gender": [
 {"@value": "weiblich","@language": "de"},
 {"@value": "female","@language": "en"}
],
 "http://schema.org/knows": [
 {"@id": "http://example.com/people/bob"}
]
}, {
 "@id": "http://example.com/graphs/1",
 "@graph": [{
 "@id": "http://example.com/people/alice",
 "http://schema.org/parent": [{
 "@id": "http://example.com/people/bob",
 "http://schema.org/name": [{"@value": "Bob"}]
 }]
 }]
}, {
 "@id": "http://example.com/graphs/2",
 "@graph": [{
 "@id": "http://example.com/people/bob",
 "http://schema.org/sibling": [{
 "http://schema.org/name": [{"@value": "Mary"}],
 "http://schema.org/sibling": [
 {"@id": "http://example.com/people/bob"}
]
 }]
 }]
}]

 	Graph	Subject	Property	Value	Language

 	 	http://example.com/people/alice	schema:name	Alice	

 	 	http://example.com/people/alice	schema:gender	weiblich	de

 	 	http://example.com/people/alice	schema:gender	female	en

 	 	http://example.com/people/alice	schema:knows	http://example.com/people/bob	

 	http://example.com/graphs/1	http://example.com/people/bob	schema:name	Bob	

 	http://example.com/graphs/1	http://example.com/people/alice	schema:parent	http://example.com/people/bob	

 	http://example.com/graphs/2	http://example.com/people/bob	schema:sibling	_:b0	

 	http://example.com/graphs/2	_:b0	schema:name	Mary	

 	http://example.com/graphs/2	_:b0	schema:sibling	http://example.com/people/bob	

 @prefix schema: <http://schema.org/> .

<http://example.com/people/alice> schema:knows <http://example.com/people/bob>;
 schema:name "Alice";
 schema:gender "weiblich"@de, "female"@en .

<http://example.com/graphs/1> {
 <http://example.com/people/alice> schema:parent <http://example.com/people/bob> .
 <http://example.com/people/bob> schema:name "Bob" .
}

<http://example.com/graphs/2> {
 <http://example.com/people/bob> schema:sibling [
 schema:name "Mary";
 schema:sibling <http://example.com/people/bob>
] .
}

 Note
Note the use of @graph at the outer-most level to describe three top-level
 resources (two of them named graphs). The named graphs use @graph in addition
 to @id to provide the name for each graph.

 9. JSON-LD Grammar

 This section restates the syntactic conventions described in the
 previous sections more formally.

 A JSON-LD document MUST be valid JSON text as described
 in [RFC8259], or some format that can be represented
 in the JSON-LD internal representation that is equivalent to
 valid JSON text.

 A JSON-LD document MUST be a single node object,
 a map consisting of only
 the entries @context and/or @graph,
 or an array of zero or more node objects.

 In contrast to JSON, in JSON-LD the keys in objects
 MUST be unique.

 Whenever a keyword is discussed in this grammar,
 the statements also apply to an alias for that keyword.

 Note
JSON-LD allows keywords to be aliased
 (see § 4.1.6 Aliasing Keywords for details). For example, if the active context
 defines the term id as an alias for @id,
 that alias may be legitimately used as a substitution for @id.
 Note that keyword aliases are not expanded during context
 processing.

 9.1 Terms

 A term is a short-hand string that expands
 to an IRI, blank node identifier, or keyword.

 A term MUST NOT equal any of the JSON-LD keywords,
 other than @type.

 When used as the prefix in a Compact IRI, to avoid
 the potential ambiguity of a prefix being confused with an IRI
 scheme, terms SHOULD NOT come from the list of URI schemes as defined in
 [IANA-URI-SCHEMES]. Similarly, to avoid confusion between a
 Compact IRI and a term, terms SHOULD NOT include a colon (:)
 and SHOULD be restricted to the form of
 isegment-nz-nc
 as defined in [RFC3987].

 To avoid forward-compatibility issues, a term SHOULD NOT start
 with an @ character
 followed exclusively by one or more ALPHA characters (see [RFC5234])
 as future versions of JSON-LD may introduce
 additional keywords. Furthermore, the term MUST NOT
 be an empty string ("") as not all programming languages
 are able to handle empty JSON keys.

 See § 3.1 The Context and
 § 3.2 IRIs for further discussion
 on mapping terms to IRIs.

 9.2 Node Objects

 A node object represents zero or more properties of a
 node in the graph serialized by the
 JSON-LD document. A map is a
 node object if it exists outside of a JSON-LD
 context and:

 	it is not the top-most map in the JSON-LD document consisting
 of no other entries than @graph and @context,

 	it does not contain the @value, @list,
 or @set keywords, and

 	it is not a graph object.

 The properties of a node in
 a graph may be spread among different
 node objects within a document. When
 that happens, the keys of the different
 node objects need to be merged to create the
 properties of the resulting node.

 A node object MUST be a map. All keys
 which are not IRIs, compact IRIs, terms valid in the
 active context, or one of the following keywords
 (or alias of such a keyword)
 MUST be ignored when processed:

 	@context,

 	@id,

 	@included,

 	@graph,

 	@nest,

 	@type,

 	@reverse, or

 	@index

 If the node object contains the @context
 key, its value MUST be null, an IRI reference,
 a context definition, or
 an array composed of any of these.

 If the node object contains the @id key,
 its value MUST be an IRI reference,
 or a compact IRI (including
 blank node identifiers).
 See § 3.3 Node Identifiers,
 § 4.1.5 Compact IRIs, and
 § 4.5.1 Identifying Blank Nodes for further discussion on
 @id values.

 If the node object contains the @graph
 key, its value MUST be
 a node object or
 an array of zero or more node objects.
 If the node object also contains an @id keyword,
 its value is used as the graph name of a named graph.
 See § 4.9 Named Graphs for further discussion on
 @graph values. As a special case, if a map
 contains no keys other than @graph and @context, and the
 map is the root of the JSON-LD document, the
 map is not treated as a node object; this
 is used as a way of defining node objects
 that may not form a connected graph. This allows a
 context to be defined which is shared by all of the constituent
 node objects.

 If the node object contains the @type
 key, its value MUST be either an IRI reference, a compact IRI
 (including blank node identifiers),
 a term defined in the active context expanding into an IRI, or
 an array of any of these.
 See § 3.5 Specifying the Type for further discussion on
 @type values.

 If the node object contains the @reverse key,
 its value MUST be a map containing entries representing reverse
 properties. Each value of such a reverse property MUST be an IRI reference,
 a compact IRI, a blank node identifier,
 a node object or an array containing a combination of these.

 If the node object contains the @included key,
 its value MUST be an included block.
 See § 9.13 Included Blocks for further discussion
 on included blocks.

 If the node object contains the @index key,
 its value MUST be a string. See
 § 4.6.1 Data Indexing for further discussion
 on @index values.

 If the node object contains the @nest key,
 its value MUST be a map or an array of map
 which MUST NOT include a value object. See
 § 9.14 Property Nesting for further discussion
 on @nest values.

 Keys in a node object that are not
 keywords MAY expand to an IRI
 using the active context. The values associated with keys that expand
 to an IRI MUST be one of the following:

 	string,

 	number,

 	true,

 	false,

 	null,

 	node object,

 	graph object,

 	value object,

 	list object,

 	set object,

 	an array of zero or more of any of the possibilities above,

 	a language map,

 	an index map,

 	an included block

 	an id map, or

 	a type map

 9.3 Frame Objects

 When framing, a frame object extends a node object to allow
 entries used specifically for framing.

 	A frame object MAY include a default object as the value of any key
 which is not a keyword.
 Values of @default MAY include the value @null,
 or an array containing only @null, in addition to other values
 allowed in the grammar for values of entry keys expanding to IRIs.

 	The values of @id and @type MAY additionally be
 an empty map (wildcard),
 an array containing only an empty map,
 an empty array (match none)
 an array of IRIs.

 	A frame object MAY include an entry with the key @embed with
 any value from @always, @once, and @never.

 	A frame object MAY include entries with the boolean valued
 keys @explicit, @omitDefault, or @requireAll

 	In addition to other property values, a property of a frame object
 MAY include a value pattern
 (See § 9.6 Value Patterns).

 See [JSON-LD11-FRAMING] for a description of how frame objects are used.

 9.4 Graph Objects

 A graph object represents a named graph, which MAY include
 an explicit graph name.
 A map is a graph object if
 it exists outside of a JSON-LD context,
 it contains an @graph entry (or an alias of that keyword),
 it is not the top-most map in the JSON-LD document, and
 it consists of no entries other than @graph,
 @index, @id
 and @context, or an alias of one of these keywords.

 If the graph object contains the @context
 key, its value MUST be null, an IRI reference, a context definition, or
 an array composed of any of these.

 If the graph object contains the @id key,
 its value is used as the identifier (graph name) of a named graph, and
 MUST be an IRI reference,
 or a compact IRI (including
 blank node identifiers).
 See § 3.3 Node Identifiers,
 § 4.1.5 Compact IRIs, and
 § 4.5.1 Identifying Blank Nodes for further discussion on
 @id values.

 A graph object without an @id entry is also a
 simple graph object and represents a named graph without an
 explicit identifier, although in the data model it still has a
 graph name, which is an implicitly allocated
 blank node identifier.

 The value of the @graph key MUST be
 a node object or
 an array of zero or more node objects.
 See § 4.9 Named Graphs for further discussion on
 @graph values..

 9.5 Value Objects

 A value object is used to explicitly associate a type or a
 language with a value to create a typed value or a language-tagged string
 and possibly associate a base direction.

 A value object MUST be a map containing the
 @value key. It MAY also contain an @type,
 an @language,
 an @direction,
 an @index, or an @context key but MUST NOT contain
 both an @type and either @language
 or @direction
 keys at the same time.
 A value object MUST NOT contain any other keys that expand to an
 IRI or keyword.

 The value associated with the @value key MUST be either a
 string, a number, true,
 false or null.
 If the value associated with the @type key
 is @json, the value MAY be either an array or an object.

 The value associated with the @type key MUST be a
 term,
 an IRI,
 a compact IRI,
 a string which can be turned into an IRI using the vocabulary mapping,
 @json,
 or null.

 The value associated with the @language key MUST have the
 lexical form described in [BCP47], or be null.

 The value associated with the @direction key MUST be
 one of "ltr" or "rtl", or be null.

 The value associated with the @index key MUST be a
 string.

 See § 4.2.1 Typed Values and
 § 4.2.4 String Internationalization
 for more information on value objects.

 9.6 Value Patterns

 When framing,
 a value pattern
 extends a value object to allow
 entries used specifically for framing.

 	The values of
 @value,
 @language,
 @direction and
 @type
 MAY additionally be
 an empty map (wildcard),
 an array containing only an empty map,
 an empty array (match none),
 an array of strings.

 9.7 Lists and Sets

 A list represents an ordered set of values. A set
 represents an unordered set of values. Unless otherwise specified,
 arrays are unordered in JSON-LD. As such, the
 @set keyword, when used in the body of a JSON-LD document,
 represents just syntactic sugar which is optimized away when processing the document.
 However, it is very helpful when used within the context of a document. Values
 of terms associated with an @set or @list container
 will always be represented in the form of an array when a document
 is processed—even if there is just a single value that would otherwise be optimized to
 a non-array form in compacted document form.
 This simplifies post-processing of the data as the data is always in a
 deterministic form.

 A list object MUST be a map that contains no
 keys that expand to an IRI or keyword other
 than @list and @index.

 A set object MUST be a map that contains no
 keys that expand to an IRI or keyword other
 than @set and @index.
 Please note that the @index key will be ignored when being processed.

 In both cases, the value associated with the keys @list and @set
 MUST be one of the following types:

 	string,

 	number,

 	true,

 	false,

 	null,

 	node object,

 	value object, or

 	an array of zero or more of the above possibilities

 See § 4.3 Value Ordering for further discussion on sets and lists.

 9.8 Language Maps

 A language map is used to associate a language with a value in a
 way that allows easy programmatic access. A language map may be
 used as a term value within a node object if the term is defined
 with @container set to @language,

 or an array containing both @language and @set
 . The keys of a
 language map MUST be strings representing
 [BCP47] language tags, the keyword @none,
 or a term which expands to @none,
 and the values MUST be any of the following types:

 	null,

 	string, or

 	an array of zero or more of the strings

 See § 4.2.4 String Internationalization for further discussion
 on language maps.

 9.9 Index Maps

 An index map allows keys that have no semantic meaning,
 but should be preserved regardless, to be used in JSON-LD documents.
 An index map may
 be used as a term value within a node object if the
 term is defined with @container set to @index,

 or an array containing both @index and @set
 .
 The values of the entries of an index map MUST be one
 of the following types:

 	string,

 	number,

 	true,

 	false,

 	null,

 	node object,

 	value object,

 	list object,

 	set object,

 	an array of zero or more of the above possibilities

 See § 4.6.1 Data Indexing for further information on this topic.

 Index Maps may also be used to map indexes to associated
 named graphs, if the term is defined with @container
 set to an array containing both @graph and
 @index, and optionally including @set. The
 value consists of the node objects contained within the named
 graph which is indexed using the referencing key, which can be
 represented as a simple graph object if the value does
 not include @id, or a named graph if it includes @id.

 9.10 Property-based Index Maps

 A property-based index map is a variant of index map
 were indexes are semantically preserved in the graph as property values.
 A property-based index map may be used as a term value within a node object
 if the term is defined with @container set to @index,
 or an array containing both @index and @set,
 and with @index set to a string.
 The values of a property-based index map MUST be node objects
 or strings which expand to node objects.

 When expanding,
 if the active context contains a term definition
 for the value of @index,
 this term definition will be used to expand the keys of the index map.
 Otherwise, the keys will be expanded as simple value objects.
 Each node object in the expanded values of the index map
 will be added an additional property value,
 where the property is the expanded value of @index,
 and the value is the expanded referencing key.

 See § 4.6.1.1 Property-based data indexing for further information on this topic.

 9.11 Id Maps

 An id map is used to associate an IRI with a value that allows easy
 programmatic access. An id map may be used as a term value within a node object if the term
 is defined with @container set to @id,
 or an array containing both @id and @set.
 The keys of an id map MUST be IRIs
 (IRI references or compact IRIs (including blank node identifiers)),
 the keyword @none,
 or a term which expands to @none,
 and the values MUST be node objects.

 If the value contains a property expanding to @id, its value MUST
 be equivalent to the referencing key. Otherwise, the property from the value is used as
 the @id of the node object value when expanding.

 Id Maps may also be used to map graph names to their
 named graphs, if the term is defined with @container
 set to an array containing both @graph and @id,
 and optionally including @set. The value consists of the
 node objects contained within the named graph
 which is named using the referencing key.

 9.12 Type Maps

 A type map is used to associate an IRI with a value that allows easy
 programmatic access. A type map may be used as a term value within a node object if the term
 is defined with @container set to @type,
 or an array containing both @type and @set.
 The keys of a type map MUST be IRIs
 (IRI references or compact IRI (including blank node identifiers)),
 terms,
 or the keyword @none,
 and the values MUST be node objects
 or strings which expand to node objects.

 If the value contains a property expanding to @type, and its value
 is contains the referencing key after suitable expansion of both the referencing key
 and the value, then the node object already contains the type. Otherwise, the property from the value is
 added as a @type of the node object value when expanding.

 9.13 Included Blocks

 An included block is used to provide a set of node objects.
 An included block MAY appear as the value of a member of a node object with either the key of @included or an alias of @included.
 An included block is either a node object or an array of node objects.

 When expanding, multiple included blocks will be coalesced into a single included block.

 9.14 Property Nesting

 A nested property is used to gather properties of a node object in a separate
 map, or array of maps which are not
 value objects. It is semantically transparent and is removed
 during the process of expansion. Property nesting is recursive, and
 collections of nested properties may contain further nesting.

 Semantically, nesting is treated as if the properties and values were declared directly
 within the containing node object.

 9.15 Context Definitions

 A context definition defines a local context in a
 node object.

 A context definition MUST be a map whose
 keys MUST be either terms, compact IRIs, IRIs,
 or one of the keywords
 @base,
 @import,
 @language,
 @propagate,
 @protected,
 @type,
 @version,
 or @vocab.

 If the context definition has an @base key,
 its value MUST be an IRI reference,
 or null.

 If the context definition has an @direction key,
 its value MUST be one of "ltr" or "rtl", or be null.

 If the context definition contains the @import
 keyword, its value MUST be an IRI reference.
 When used as a reference from an @import, the referenced context definition MUST NOT
 include an @import key, itself.

 If the context definition has an @language key,
 its value MUST have the lexical form described in [BCP47] or be null.

 If the context definition has an @propagate key,
 its value MUST be true or false.

 If the context definition has an @protected key,
 its value MUST be true or false.

 If the context definition has an @type key,
 its value MUST be a map with only the entry @container set to @set,
 and optionally an entry @protected.

 If the context definition has an @version key,
 its value MUST be a number with the value 1.1.

 If the context definition has an @vocab key,
 its value MUST be an IRI reference, a compact IRI,
 a blank node identifier,
 a term, or null.

 The value of keys that are not keywords MUST be either an
 IRI, a compact IRI, a term,
 a blank node identifier, a keyword, null,
 or an expanded term definition.

 9.15.1 Expanded term definition

 An expanded term definition is used to describe the mapping
 between a term and its expanded identifier, as well as other
 properties of the value associated with the term when it is
 used as key in a node object.

 An expanded term definition MUST be a map
 composed of zero or more keys from
 @id,
 @reverse,
 @type,
 @language,
 @container,
 @context,
 @prefix,
 @propagate, or
 @protected.
 An expanded term definition SHOULD NOT contain any other keys.

 When the associated term is @type, the expanded term definition
 MUST NOT contain keys other than @container and @protected.
 The value of @container is limited to the single value @set.

 If the term being defined is not an IRI or a compact IRI
 and the active context does not have an
 @vocab mapping, the expanded term definition MUST
 include the @id key.

 Term definitions with keys which are of the form of an IRI or a compact IRI MUST NOT
 expand to an IRI other than the expansion of the key itself.

 If the expanded term definition contains the @id
 keyword, its value MUST be null, an IRI,
 a blank node identifier, a compact IRI, a term,
 or a keyword.

 If an expanded term definition has an @reverse entry,
 it MUST NOT have @id or @nest entries at the same time,
 its value MUST be an IRI,
 a blank node identifier, a compact IRI, or a term. If an
 @container entry exists, its value MUST be null,
 @set, or @index.

 If the expanded term definition contains the @type
 keyword, its value MUST be an IRI, a
 compact IRI, a term, null, or one of the
 keywords @id, @json, @none, or @vocab.

 If the expanded term definition contains the @language keyword,
 its value MUST have the lexical form described in [BCP47] or be null.

 If the expanded term definition contains the @index
 keyword, its value MUST be an IRI,
 a compact IRI, or a term.

 If the expanded term definition contains the @container
 keyword, its value MUST be either
 @list,
 @set,
 @language,
 @index,
 @id,
 @graph,
 @type, or be
 null

 or an array containing exactly any one of those keywords, or a
 combination of @set and any of @index,
 @id, @graph, @type,
 @language in any order
 .
 @container may also be an array
 containing @graph along with either @id or
 @index and also optionally including @set.
 If the value
 is @language, when the term is used outside of the
 @context, the associated value MUST be a language map.
 If the value is @index, when the term is used outside of
 the @context, the associated value MUST be an
 index map.

 If an expanded term definition has an @context entry,
 it MUST be a valid context definition.

 If the expanded term definition contains the @nest
 keyword, its value MUST be either @nest, or a term
 which expands to @nest.

 If the expanded term definition contains the @prefix
 keyword, its value MUST be true or false.

 If the expanded term definition contains the @propagate
 keyword, its value MUST be true or false.

 If the expanded term definition contains the @protected
 keyword, its value MUST be true or false.

 Terms MUST NOT be used in a circular manner. That is,
 the definition of a term cannot depend on the definition of another term if that other
 term also depends on the first term.

 See § 3.1 The Context for further discussion on contexts.

 9.16 Keywords

 JSON-LD keywords are described in § 1.7 Syntax Tokens and Keywords,
 this section describes where each keyword may appear within different JSON-LD structures.

 Within
 node objects,
 value objects,
 graph objects,
 list objects,
 set objects, and
 nested properties
 keyword aliases MAY be used instead of the corresponding keyword, except for @context.
 The @context keyword MUST NOT be aliased.
 Within local contexts and expanded term definitions,
 keyword aliases MAY NOT used.

 	@base
	
 The unaliased @base keyword MAY be used as a key in a context definition.
 Its value MUST be an IRI reference, or null.

 	@container
	
 The unaliased @container keyword MAY be used as a key in an expanded term definition.
 Its value MUST be either
 @list,
 @set,
 @language,
 @index,
 @id,
 @graph,
 @type, or be
 null,
 or an array containing exactly any one of those keywords, or a
 combination of @set and any of @index,
 @id, @graph, @type,
 @language in any order.
 The value may also be an array
 containing @graph along with either @id or
 @index and also optionally including @set.

 	@context
	
 The @context keyword MUST NOT be aliased, and MAY be used as a key in the following objects:

 	node objects (see § 9.2 Node Objects),

 	value objects (see § 9.5 Value Objects),

 	graph objects (see § 9.4 Graph Objects),

 	list objects (see § 9.7 Lists and Sets),

 	set objects (see § 9.7 Lists and Sets),

 	nested properties (see § 9.14 Property Nesting), and

 	expanded term definitions (see § 9.15 Context Definitions).

 The value of @context MUST be
 null,
 an IRI reference,
 a context definition, or
 an array composed of any of these.

 	@direction
	
 The @direction keyword MAY be aliased and MAY be used as a key in a value object.
 Its value MUST be one of "ltr" or "rtl", or be null.
 The unaliased @direction MAY be used as a key in a context definition.

 See § 4.2.4.1 Base Direction for a further discussion.

 	@graph
	
 The @graph keyword MAY be aliased and MAY be used as a key in a node object or a graph object,
 where its value MUST be a value object, node object, or an array of either value objects or node objects.
 The unaliased @graph MAY be used as the value of the @container key within an expanded term definition.

 See § 4.9 Named Graphs.

 	@id
	
 The @id keyword MAY be aliased and MAY be used as a key in a node object or a graph object.
 The unaliased @id MAY be used as a key in an expanded term definition,
 or as the value of the @container key within an expanded term definition.

 The value of the @id key MUST be an IRI reference,
 or a compact IRI (including blank node identifiers).

 See § 3.3 Node Identifiers,
 § 4.1.5 Compact IRIs, and
 § 4.5.1 Identifying Blank Nodes for further discussion on
 @id values.

 	@import
	
 The unaliased @import keyword MAY be used in a context definition.
 Its value MUST be an IRI reference.
 See § 4.1.10 Imported Contexts for a further discussion.

 	@included
	
 The @included keyword MAY be aliased and
 its value MUST be an included block.
 This keyword is described further in § 4.7 Included Nodes,
 and § 9.13 Included Blocks.

 	@index
	
 The @index keyword MAY be aliased and MAY be used as a key in a
 node object, value object, graph object, set object, or list object.
 Its value MUST be a string.
 The unaliased @index MAY be used as the value of the @container key within an expanded term definition
 and as an entry in a expanded term definition, where the value an IRI,
 a compact IRI, or a term.

 See § 9.9 Index Maps, and
 § 4.6.1.1 Property-based data indexing for a further discussion.

 	@json
	
 The @json keyword MAY be aliased
 and MAY be used as the value of the @type key within a value object
 or an expanded term definition.
 See § 4.2.2 JSON Literals.

	@language
	
 The @language keyword MAY be aliased and MAY be used as a key in a value object.
 Its value MUST be a string with the lexical form described in [BCP47] or be null.
 The unaliased @language MAY be used as a key in a context definition,
 or as the value of the @container key within an expanded term definition.

 See § 4.2.4 String Internationalization, § 9.8 Language Maps.

 	@list
	
 The @list keyword MAY be aliased and MUST be used as a key in a list object.
 The unaliased @list MAY be used as the value of the @container key within an expanded term definition.
 Its value MUST be one of the following:

 	string,

 	number,

 	true,

 	false,

 	null,

 	node object,

 	value object, or

 	an array of zero or more of the above possibilities

 See § 4.3 Value Ordering for further discussion on sets and lists.

 	@nest
	
 The @nest keyword MAY be aliased and MAY be used as a key in a node object,
 where its value must be a map.
 The unaliased @nest MAY be used as the value of a simple term definition,
 or as a key in an expanded term definition,
 where its value MUST be a string expanding to @nest.

 See § 9.14 Property Nesting for a further discussion.

 	@none
	
 The @none keyword MAY be aliased and MAY be used as a key in an
 index map, id map, language map, type map.
 See § 4.6.1 Data Indexing,
 § 4.6.2 Language Indexing,
 § 4.6.3 Node Identifier Indexing,
 § 4.6.4 Node Type Indexing,
 § 4.9.3 Named Graph Indexing, or
 § 4.9.2 Named Graph Data Indexing
 for a further discussion.

 	@prefix
	
 The unaliased @prefix keyword MAY be used as a key in an expanded term definition.
 Its value MUST be true or false.
 See § 4.1.5 Compact IRIs
 and § 9.15 Context Definitions
 for a further discussion.

 	@propagate
	
 The unaliased @propagate keyword MAY be used in a context definition.
 Its value MUST be true or false.
 See § 4.1.9 Context Propagation for a further discussion.

 	@protected
	
 The unaliased @protected keyword MAY be used in a context definition,
 or an expanded term definition.
 Its value MUST be true or false.
 See § 4.1.11 Protected Term Definitions for a further discussion.

 	@reverse
	
 The @reverse keyword MAY be aliased and MAY be used as a key in a node object.
 The unaliased @reverse MAY be used as a key in an expanded term definition.

 The value of the @reverse key MUST be an IRI reference,
 or a compact IRI (including blank node identifiers).

 See § 4.8 Reverse Properties and
 § 9.15 Context Definitions for further discussion.

 	@set
	
 The @set keyword MAY be aliased and MUST be used as a key in a set object.
 Its value MUST be one of the following:

 	string,

 	number,

 	true,

 	false,

 	null,

 	node object,

 	value object, or

 	an array of zero or more of the above possibilities

 The unaliased @set MAY be used as the value of the @container key within an expanded term definition.

 See § 4.3 Value Ordering for further discussion on sets and lists.

 	@type
	
 The @type keyword MAY be aliased and MAY be used as a key in a node object or a value object,
 where its value MUST be a term, IRI reference,
 or a compact IRI (including blank node identifiers).
 The unaliased @type MAY be used as a key in an expanded term definition,
 where its value may also be either @id or @vocab,
 or as the value of the @container key within an expanded term definition.

 Within a context, @type may be used as the key for an expanded term definition,
 whose entries are limited to @container and @protected.

 This keyword is described further in § 3.5 Specifying the Type
 and § 4.2.1 Typed Values.

 	@value
	
 The @value keyword MAY be aliased and MUST be used as a key in a value object.
 Its value key MUST be either a string, a number, true, false or null.
 This keyword is described further in § 9.5 Value Objects.

 	@version
	
 The unaliased @version keyword MAY be used as a key in a context definition.
 Its value MUST be a number with the value 1.1.
 This keyword is described further in § 9.15 Context Definitions.

 	@vocab
	
 The unaliased @vocab keyword MAY be used as a key in a context definition
 or as the value of @type in an expanded term definition.
 Its value MUST be an IRI reference, a compact IRI, a blank node identifier, a term, or null.
 This keyword is described further in § 9.15 Context Definitions,
 and § 4.1.2 Default Vocabulary.

 10. Relationship to RDF

 JSON-LD is a
 concrete RDF syntax
 as described in [RDF11-CONCEPTS]. Hence, a JSON-LD document is both an
 RDF document and a JSON document and correspondingly represents an
 instance of an RDF data model. However, JSON-LD also extends the RDF data
 model to optionally allow JSON-LD to serialize
 generalized RDF Datasets.
 The JSON-LD extensions to the RDF data model are:

 	In JSON-LD properties can be
 IRIs or blank nodes
 whereas in RDF properties (predicates) have to be IRIs. This
 means that JSON-LD serializes
 generalized RDF Datasets.

 	In JSON-LD lists use native JSON syntax, either contained in a
 list object, or described as such within a context. Consequently, developers
 using the JSON representation can access list elements directly rather than
 using the vocabulary for collections described in [RDF-SCHEMA].

 	RDF values are either typed literals
 (typed values) or
 language-tagged strings whereas
 JSON-LD also supports JSON's native data types, i.e., number,
 strings, and the boolean values true
 and false. The JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-API]
 defines the conversion rules
 between JSON's native data types and RDF's counterparts to allow round-tripping.

 	As an extension to the RDF data model,
 literals without an explicit datatype
 MAY include a base direction.
 As there is currently no standardized mechanism for representing the base direction
 of RDF literals, the JSON-LD to standard RDF transformation loses the base direction.
 However, the Deserialize JSON-LD to RDF Algorithm
 provides a means of representing base direction
 using mechanisms which will preserve round-tripping through non-standard RDF.

 Note
The use of blank node identifiers to label properties is obsolete,
 and may be removed in a future version of JSON-LD, as is the support for generalized RDF Datasets.

 Summarized, these differences mean that JSON-LD is capable of serializing any RDF
 graph or dataset and most, but not all, JSON-LD documents can be directly
 interpreted as RDF as described in RDF 1.1 Concepts [RDF11-CONCEPTS].

 Authors are strongly encouraged to avoid labeling properties using blank node identifiers,
 instead, consider one of the following mechanisms:

 	a relative IRI reference, either relative to the document or the vocabulary
 (see § 4.1.4 Using the Document Base for the Default Vocabulary for a discussion on using the document base as part of the vocabulary mapping),

 	a URN such as urn:example:1, see [URN], or

 	a "Skolem IRI" as per
 Replacing Blank Nodes with IRIs
 of [RDF11-CONCEPTS].

 The normative algorithms for interpreting JSON-LD as RDF and serializing
 RDF as JSON-LD are specified in the JSON-LD 1.1 Processing Algorithms and API
 specification [JSON-LD11-API].

 Even though JSON-LD serializes
 RDF Datasets, it can
 also be used as a graph source.
 In that case, a consumer MUST only use the default graph and ignore all named graphs.
 This allows servers to expose data in languages such as Turtle and JSON-LD
 using HTTP content negotiation.

 Note
Publishers supporting both dataset and graph syntaxes have to ensure that
 the primary data is stored in the default graph to enable consumers that do not support
 datasets to process the information.

 10.1 Serializing/Deserializing RDF
This section is non-normative.

 The process of serializing RDF as JSON-LD and deserializing JSON-LD to RDF
 depends on executing the algorithms defined in
 RDF Serialization-Deserialization Algorithms
 in the JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-API].
 It is beyond the scope of this document to detail these algorithms any further,
 but a summary of the necessary operations is provided to illustrate the process.

 The procedure to deserialize a JSON-LD document to RDF involves the
 following steps:

 	Expand the JSON-LD document, removing any context; this ensures
 that properties, types, and values are given their full representation
 as IRIs and expanded values. Expansion
 is discussed further in § 5.1 Expanded Document Form.

 	Flatten the document, which turns the document into an array of
 node objects. Flattening is discussed
 further in § 5.3 Flattened Document Form.

 	Turn each node object into a series of triples.

 For example, consider the following JSON-LD document in compact form:

 Example 151: Sample JSON-LD document

 {
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "knows": "http://xmlns.com/foaf/0.1/knows"
 },
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "knows": [
 {
 "@id": "http://manu.sporny.org/about#manu",
 "name": "Manu Sporny"
 }, {
 "name": "Dave Longley"
 }
]
}

 Running the JSON-LD Expansion and Flattening algorithms against the
 JSON-LD input document in the example above would result in the
 following output:

 Example 152: Flattened and expanded form for the previous example

 [
 {
 "@id": "_:b0",
 "http://xmlns.com/foaf/0.1/name": "Dave Longley"
 }, {
 "@id": "http://manu.sporny.org/about#manu",
 "http://xmlns.com/foaf/0.1/name": "Manu Sporny"
 }, {
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": "Markus Lanthaler",
 "http://xmlns.com/foaf/0.1/knows": [
 { "@id": "http://manu.sporny.org/about#manu" },
 { "@id": "_:b0" }
]
 }
]

 Deserializing this to RDF now is a straightforward process of turning
 each node object into one or more triples. This can be
 expressed in Turtle as follows:

 Example 153: Turtle representation of expanded/flattened document

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:b0 foaf:name "Dave Longley" .

<http://manu.sporny.org/about#manu> foaf:name "Manu Sporny" .

<http://me.markus-lanthaler.com/> foaf:name "Markus Lanthaler" ;
 foaf:knows <http://manu.sporny.org/about#manu>, _:b0 .

 The process of serializing RDF as JSON-LD can be thought of as the
 inverse of this last step, creating an expanded JSON-LD document closely
 matching the triples from RDF, using a single node object
 for all triples having a common subject, and a single property
 for those triples also having a common predicate. The result may
 then be framed by using the
 Framing Algorithm
 described in [JSON-LD11-FRAMING] to create the desired object embedding.

 10.2 The rdf:JSON Datatype

 RDF provides for JSON content as a possible literal value.
 This allows markup in literal values.
 Such content is indicated in a graph using a literal whose datatype is set to rdf:JSON.

 The rdf:JSON datatype is defined as follows:

 	The IRI denoting this datatype

 	is http://www.w3.org/1999/02/22-rdf-syntax-ns#JSON.

 	The lexical space

 	is the set of UNICODE [UNICODE] strings which conform to the JSON Grammar
 as described in Section 2 JSON Grammar of [RFC8259].

 	The value space

 	is the set of UNICODE [UNICODE] strings which conform to the JSON Grammar
 as described in Section 2 JSON Grammar of [RFC8259],
 and furthermore comply with the following constraints:

 	It MUST NOT contain any unnecessary whitespace,

 	Keys in objects MUST be ordered lexicographically,

 	Native Numeric values MUST be serialized according to
 Section 7.1.12.1 of [ECMASCRIPT],

 	Strings MUST be serialized with Unicode codepoints from U+0000 through U+001F
 using lower case hexadecimal Unicode notation (\uhhhh) unless in the set
 of predefined JSON control characters U+0008, U+0009,
 U+000A, U+000C or U+000D
 which SHOULD be serialized as \b, \t, \n, \f and \r respectively.
 All other Unicode characters SHOULD be serialized "as is", other than
 U+005C (\) and U+0022 (")
 which SHOULD be serialized as \\ and \" respectively.

 Issue
The JSON Canonicalization Scheme (JCS) [RFC8785]
 is an emerging standard for JSON canonicalization.
 This specification will likely be updated to require such a canonical representation.
 Users are cautioned from depending on the
 JSON literal lexical representation as an RDF literal,
 as the specifics of serialization may change in a future revision of this document.

 Despite being defined as a set of strings,
 this value space is considered distinct from the value space of xsd:string,
 in order to avoid side effects with existing specifications.

 	The lexical-to-value mapping

 	maps any element of the lexical space to the result of

 	parsing it into
 an internal representation consistent with [ECMASCRIPT] representation
 created by using the JSON.parse function as defined in
 Section 24.5 The JSON Object of [ECMASCRIPT],

 	then serializing it in the JSON format [RFC8259]
 in compliance with the constraints of the value space described above.

 	The canonical mapping

 	maps any element of the value space to the identical string in the lexical space.

 10.3 The i18n Namespace
This section is non-normative.

 The i18n namespace is used for describing combinations of language tag and base direction in RDF literals.
 It is used as an alternative mechanism for describing the [BCP47] language tag and base direction
 of RDF literals that would otherwise use the xsd:string or rdf:langString datatypes.

 Datatypes based on this namespace allow round-tripping of JSON-LD documents using base direction,
 although the mechanism is not otherwise standardized.

 The Deserialize JSON-LD to RDF Algorithm
 can be used with the rdfDirection option
 set to i18n-datatype to generate RDF literals using the i18n base to create an IRI
 encoding the base direction along with optional language tag (normalized to lower case)
 from value objects containing @direction by appending to https://www.w3.org/ns/i18n#
 the value of @language, if any, followed by an underscore ("_") followed
 by the value of @direction.

 For improved interoperability, the language tag is normalized to
 lower case when creating the datatype IRI.

 The following example shows two statements with literal values of i18n:ar-EG_rtl,
 which encodes the language tag ar-EG and the base direction rtl.

 @prefix ex: <http://example.org/> .
@prefix i18n: <https://www.w3.org/ns/i18n#> .

Note that this version preserves the base direction using a non-standard datatype.
[
 ex:title "HTML و CSS: تصميم و إنشاء مواقع الويب"^^i18n:ar-eg_rtl;
 ex:publisher "مكتبة"^^i18n:ar-eg_rtl
] .

 See § 4.2.4.1 Base Direction for more details
 on using base direction for strings.

 10.4 The rdf:CompoundLiteral class and the rdf:language and rdf:direction properties
This section is non-normative.

 This specification defines the rdf:CompoundLiteral class, which is in the domain
 of rdf:language and rdf:direction to be used for describing RDF literal values
 containing base direction and a possible language tag to be associated with the
 string value of rdf:value on the same subject.

 	rdf:CompoundLiteral

 	A class representing a compound literal.

 	rdf:language

 	An RDF property.
 The range of the property is an rdfs:Literal, whose value MUST be a well-formed [BCP47] language tag.
 The domain of the property is rdf:CompoundLiteral.

 	rdf:direction

 	An RDF property.
 The range of the property is an rdfs:Literal, whose value MUST be either "ltr" or "rtl".
 The domain of the property is rdf:CompoundLiteral.

 The Deserialize JSON-LD to RDF Algorithm
 can be used with the rdfDirection option
 set to compound-literal to generate RDF literals using these properties to
 describe the base direction and optional language tag (normalized to lower case)
 from value objects containing @direction and optionally @language.

 For improved interoperability, the language tag is normalized to
 lower case when creating the datatype IRI.

 The following example shows two statements with compound literals
 representing strings with the language tag ar-EG and base direction rtl.

 @prefix ex: <http://example.org/> .

Note that this version preserves the base direction using a bnode structure.
[
 ex:title [
 rdf:value "HTML و CSS: تصميم و إنشاء مواقع الويب",
 rdf:language "ar-eg",
 rdf:direction "rtl"
];
 ex:publisher [
 rdf:value "مكتبة",
 rdf:language "ar-eg",
 rdf:direction "rtl"
]
] .

 See § 4.2.4.1 Base Direction for more details
 on using base direction for strings.

 11. Security Considerations

 See, Security Considerations in § C. IANA Considerations.

 Note
Future versions of this specification
 may incorporate subresource integrity [SRI] as a means of ensuring that cached and retrieved
 content matches data retrieved from remote servers; see issue 86.

 12. Privacy Considerations

 The retrieval of external contexts can expose the operation of a JSON-LD processor,
 allow intermediate nodes to fingerprint the client application through introspection of retrieved resources
 (see [fingerprinting-guidance]),
 and provide an opportunity for a man-in-the-middle attack.
 To protect against this, publishers should consider caching remote contexts for future use,
 or use the documentLoader
 to maintain a local version of such contexts.

 13. Internationalization Considerations

 As JSON-LD uses the RDF data model, it is restricted by design in its ability to
 properly record JSON-LD Values which are strings with left-to-right or right-to-left direction indicators.
 Both JSON-LD and RDF provide a mechanism for specifying the language associated with
 a string (language-tagged string), but do not provide a means of indicating
 the base direction of the string.

 Unicode provides a mechanism for signaling direction within a string
 (see Unicode Bidirectional Algorithm [UAX9]),
 however, when a string has an overall base direction which cannot be determined by the
 beginning of the string, an external indicator is required,
 such as the [HTML] dir attribute,
 which currently has no counterpart for RDF literals.

 The issue of properly representing base direction in RDF is not something that
 this Working Group can handle, as it is a limitation or the core RDF data model.
 This Working Group expects that a future RDF Working Group will consider the matter
 and add the ability to specify the base direction of language-tagged strings.

 Until a more comprehensive solution can be addressed in a future version of this
 specification, publishers should consider this issue when representing strings
 where the base direction of the string cannot otherwise be correctly inferred
 based on the content of the string.
 See [string-meta] for a discussion best practices for
 identifying language and base direction for strings used on the Web.

A. Image Descriptions
This section is non-normative.

 A.1 Linked Data Dataset
This section is non-normative.

 This section describes the Linked Data Dataset figure in § 8. Data Model.

 The image consists of three dashed boxes, each describing a different
 linked data graph. Each box consists of shapes linked with arrows describing
 the linked data relationships.

 The first box is titled "default graph: <no name>" describes two
 resources: http://example.com/people/alice and http://example.com/people/bob
 (denoting "Alice" and "Bob" respectively), which are
 connected by an arrow labeled schema:knows which describes
 the knows relationship between the two resources. Additionally, the "Alice" resource is related
 to three different literals:

 	Alice

 	an RDF literal with no datatype or language.

 	weiblich | de

 	an language-tagged string with the value "weiblich" and language tag "de".

 	female | en

 	an language-tagged string with the value "female" and language tag "en".

 The second and third boxes describe two named graphs, with the graph names
 "http://example.com/graphs/1" and "http://example.com/graphs/1", respectively.

 The second box consists of two resources:
 http://example.com/people/alice and http://example.com/people/bob
 related by the schema:parent relationship, and names the
 http://example.com/people/bob "Bob".

 The third box consists of two resources, one
 named http://example.com/people/bob and the other unnamed.
 The two resources related to each other using schema:sibling relationship
 with the second named "Mary".

 B. Relationship to Other Linked Data Formats
This section is non-normative.

 The JSON-LD examples below demonstrate how JSON-LD can be used to
 express semantic data marked up in other linked data formats such as Turtle,
 RDFa, and Microdata. These sections are merely provided as
 evidence that JSON-LD is very flexible in what it can express across different
 Linked Data approaches.

 B.1 Turtle
This section is non-normative.

 The following are examples of transforming RDF expressed in [Turtle]
 into JSON-LD.

 B.1.1 Prefix definitions

 The JSON-LD context has direct equivalents for the Turtle
 @prefix declaration:

 Example 154: A set of statements serialized in Turtle

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://manu.sporny.org/about#manu> a foaf:Person;
 foaf:name "Manu Sporny";
 foaf:homepage <http://manu.sporny.org/> .

 Example 155: The same set of statements serialized in JSON-LD

 {
 "@context": {
 "foaf": "http://xmlns.com/foaf/0.1/"
 },
 "@id": "http://manu.sporny.org/about#manu",
 "@type": "foaf:Person",
 "foaf:name": "Manu Sporny",
 "foaf:homepage": { "@id": "http://manu.sporny.org/" }
}

 B.1.2 Embedding

 Both [Turtle] and JSON-LD allow embedding, although [Turtle] only allows embedding of
 blank nodes.

 Example 156: Embedding in Turtle

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://manu.sporny.org/about#manu>
 a foaf:Person;
 foaf:name "Manu Sporny";
 foaf:knows [a foaf:Person; foaf:name "Gregg Kellogg"] .

 Example 157: Same embedding example in JSON-LD

 {
 "@context": {
 "foaf": "http://xmlns.com/foaf/0.1/"
 },
 "@id": "http://manu.sporny.org/about#manu",
 "@type": "foaf:Person",
 "foaf:name": "Manu Sporny",
 "foaf:knows": {
 "@type": "foaf:Person",
 "foaf:name": "Gregg Kellogg"
 }
}

 B.1.3 Conversion of native data types

 In JSON-LD numbers and boolean values are native data types. While [Turtle]
 has a shorthand syntax to express such values, RDF's abstract syntax requires
 that numbers and boolean values are represented as typed literals. Thus,
 to allow full round-tripping, the JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-API]
 defines conversion rules between JSON-LD's native data types and RDF's
 counterparts. Numbers without fractions are
 converted to xsd:integer-typed literals, numbers with fractions
 to xsd:double-typed literals and the two boolean values
 true and false to a xsd:boolean-typed
 literal. All typed literals are in canonical lexical form.

 Example 158: JSON-LD using native data types for numbers and boolean values

 {
 "@context": {
 "ex": "http://example.com/vocab#"
 },
 "@id": "http://example.com/",
 "ex:numbers": [14, 2.78],
 "ex:booleans": [true, false]
}

 Example 159: Same example in Turtle using typed literals

 @prefix ex: <http://example.com/vocab#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://example.com/>
 ex:numbers "14"^^xsd:integer, "2.78E0"^^xsd:double ;
 ex:booleans "true"^^xsd:boolean, "false"^^xsd:boolean .

 Note
Note that this interpretation differs from [Turtle],
 in which the literal 2.78 translates to an xsd:decimal.
 The rationale is that most JSON tools parse numbers with fractions as
 floating point numbers,
 so xsd:double is the most appropriate datatype to render them back in RDF.

 B.1.4 Lists

 Both JSON-LD and [Turtle] can represent sequential lists of values.

 Example 160: A list of values in Turtle

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example.org/people#joebob> a foaf:Person;
 foaf:name "Joe Bob";
 foaf:nick ("joe" "bob" "jaybee") .

 Example 161: Same example with a list of values in JSON-LD

 {
 "@context": {
 "foaf": "http://xmlns.com/foaf/0.1/"
 },
 "@id": "http://example.org/people#joebob",
 "@type": "foaf:Person",
 "foaf:name": "Joe Bob",
 "foaf:nick": {
 "@list": ["joe", "bob", "jaybee"]
 }
}

 B.2 RDFa
This section is non-normative.

 The following example describes three people with their respective names and
 homepages in RDFa [RDFA-CORE].

 Example 162: RDFa fragment that describes three people

 <div prefix="foaf: http://xmlns.com/foaf/0.1/">

 <li typeof="foaf:Person">

 Bob

 <li typeof="foaf:Person">

 Eve

 <li typeof="foaf:Person">

 Manu

</div>

 An example JSON-LD implementation using a single context is
 described below.

 Example 163: Same description in JSON-LD (context shared among node objects)

 {
 "@context": {
 "foaf": "http://xmlns.com/foaf/0.1/",
 "foaf:homepage": {"@type": "@id"}
 },
 "@graph": [
 {
 "@type": "foaf:Person",
 "foaf:homepage": "http://example.com/bob/",
 "foaf:name": "Bob"
 }, {
 "@type": "foaf:Person",
 "foaf:homepage": "http://example.com/eve/",
 "foaf:name": "Eve"
 }, {
 "@type": "foaf:Person",
 "foaf:homepage": "http://example.com/manu/",
 "foaf:name": "Manu"
 }
]
}

 B.3 Microdata
This section is non-normative.

 The HTML Microdata [MICRODATA] example below expresses book information as
 a Microdata Work item.

 Example 164: HTML that describes a book using microdata

 <dl itemscope
 itemtype="http://purl.org/vocab/frbr/core#Work"
 itemid="http://purl.oreilly.com/works/45U8QJGZSQKDH8N">
 <dt>Title</dt>
 <dd><cite itemprop="http://purl.org/dc/elements/1.1/title">Just a Geek</cite></dd>
 <dt>By</dt>
 <dd>Wil Wheaton</dd>
 <dt>Format</dt>
 <dd itemprop="http://purl.org/vocab/frbr/core#realization"
 itemscope
 itemtype="http://purl.org/vocab/frbr/core#Expression"
 itemid="http://purl.oreilly.com/products/9780596007683.BOOK">
 <link itemprop="http://purl.org/dc/elements/1.1/type" href="http://purl.oreilly.com/product-types/BOOK">
 Print
 </dd>
 <dd itemprop="http://purl.org/vocab/frbr/core#realization"
 itemscope
 itemtype="http://purl.org/vocab/frbr/core#Expression"
 itemid="http://purl.oreilly.com/products/9780596802189.EBOOK">
 <link itemprop="http://purl.org/dc/elements/1.1/type" href="http://purl.oreilly.com/product-types/EBOOK">
 Ebook
 </dd>
</dl>

 Note that the JSON-LD representation of the Microdata information stays
 true to the desires of the Microdata community to avoid contexts and
 instead refer to items by their full IRI.

 Example 165: Same book description in JSON-LD (avoiding contexts)

 [
 {
 "@id": "http://purl.oreilly.com/works/45U8QJGZSQKDH8N",
 "@type": "http://purl.org/vocab/frbr/core#Work",
 "http://purl.org/dc/elements/1.1/title": "Just a Geek",
 "http://purl.org/dc/elements/1.1/creator": "Wil Wheaton",
 "http://purl.org/vocab/frbr/core#realization":
 [
 {"@id": "http://purl.oreilly.com/products/9780596007683.BOOK"},
 {"@id": "http://purl.oreilly.com/products/9780596802189.EBOOK"}
]
 }, {
 "@id": "http://purl.oreilly.com/products/9780596007683.BOOK",
 "@type": "http://purl.org/vocab/frbr/core#Expression",
 "http://purl.org/dc/elements/1.1/type": {"@id": "http://purl.oreilly.com/product-types/BOOK"}
 }, {
 "@id": "http://purl.oreilly.com/products/9780596802189.EBOOK",
 "@type": "http://purl.org/vocab/frbr/core#Expression",
 "http://purl.org/dc/elements/1.1/type": {"@id": "http://purl.oreilly.com/product-types/EBOOK"}
 }
]

 C. IANA Considerations

 This section has been submitted to the Internet Engineering Steering
 Group (IESG) for review, approval, and registration with IANA.

 application/ld+json

 	Type name:

 	application

 	Subtype name:

 	ld+json

 	Required parameters:

 	N/A

 	Optional parameters:

 	

 	profile

 	
 A non-empty list of space-separated URIs identifying specific
 constraints or conventions that apply to a JSON-LD document according to [RFC6906].
 A profile does not change the semantics of the resource representation
 when processed without profile knowledge, so that clients both with
 and without knowledge of a profiled resource can safely use the same
 representation. The profile parameter MAY be used by
 clients to express their preferences in the content negotiation process.
 If the profile parameter is given, a server SHOULD return a document that
 honors the profiles in the list which it recognizes,
 and MUST ignore the profiles in the list which it does not recognize.
 It is RECOMMENDED that profile URIs are dereferenceable and provide
 useful documentation at that URI. For more information and background
 please refer to [RFC6906].

 This specification defines six values for the profile parameter.

 	http://www.w3.org/ns/json-ld#expanded

 	To request or specify expanded JSON-LD document form.

 	http://www.w3.org/ns/json-ld#compacted

 	To request or specify compacted JSON-LD document form.

 	http://www.w3.org/ns/json-ld#context

 	To request or specify a JSON-LD context document.

 	http://www.w3.org/ns/json-ld#flattened

 	To request or specify flattened JSON-LD document form.

 	http://www.w3.org/ns/json-ld#frame

 	To request or specify a JSON-LD frame document.

 	http://www.w3.org/ns/json-ld#framed

 	To request or specify framed JSON-LD document form.

 All other URIs starting with http://www.w3.org/ns/json-ld
 are reserved for future use by JSON-LD specifications.

 Other specifications may publish additional profile parameter
 URIs with their own defined semantics.
 This includes the ability to associate a file extension with a profile parameter.

 When used as a media type parameter [RFC4288]
 in an HTTP Accept header [RFC7231],
 the value of the profile parameter MUST be enclosed in quotes (") if it contains
 special characters such as whitespace, which is required when multiple profile URIs are combined.

 When processing the "profile" media type parameter, it is important to
 note that its value contains one or more URIs and not IRIs. In some cases
 it might therefore be necessary to convert between IRIs and URIs as specified in
 section 3 Relationship between IRIs and URIs
 of [RFC3987].

 	Encoding considerations:

 	See RFC 8259, section 11.

 	Security considerations:

 	See RFC 8259, section 12 [RFC8259]
 Since JSON-LD is intended to be a pure data exchange format for
 directed graphs, the serialization SHOULD NOT be passed through a
 code execution mechanism such as JavaScript's eval()
 function to be parsed. An (invalid) document may contain code that,
 when executed, could lead to unexpected side effects compromising
 the security of a system.

 When processing JSON-LD documents, links to remote contexts and frames are
 typically followed automatically, resulting in the transfer of files
 without the explicit request of the user for each one. If remote
 contexts are served by third parties, it may allow them to gather
 usage patterns or similar information leading to privacy concerns.
 Specific implementations, such as the API defined in the
 JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-API],
 may provide fine-grained mechanisms to control this behavior.

 JSON-LD contexts that are loaded from the Web over non-secure connections,
 such as HTTP, run the risk of being altered by an attacker such that
 they may modify the JSON-LD active context in a way that
 could compromise security. It is advised that any application that
 depends on a remote context for mission critical purposes vet and
 cache the remote context before allowing the system to use it.

 Given that JSON-LD allows the substitution of long IRIs with short terms,
 JSON-LD documents may expand considerably when processed and, in the worst case,
 the resulting data might consume all of the recipient's resources. Applications
 should treat any data with due skepticism.

 As JSON-LD places no limits on the IRI schemes that may be used,
 and vocabulary-relative IRIs use string concatenation rather than
 IRI resolution, it is possible to construct IRIs that may be
 used maliciously, if dereferenced.

 	Interoperability considerations:

 	Not Applicable

 	Published specification:

 	http://www.w3.org/TR/json-ld

 	Applications that use this media type:

 	Any programming environment that requires the exchange of
 directed graphs. Implementations of JSON-LD have been created for
 JavaScript, Python, Ruby, PHP, and C++.

 	Additional information:

 	

 	Magic number(s):

 	Not Applicable

 	File extension(s):

 	.jsonld

 	Macintosh file type code(s):

 	TEXT

 	Person & email address to contact for further information:

 	Ivan Herman <ivan@w3.org>

 	Intended usage:

 	Common

 	Restrictions on usage:

 	N/A

 	Author(s):

 	Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lanthaler, Niklas Lindström

 	Change controller:

 	W3C

 Fragment identifiers used with application/ld+json
 are treated as in RDF syntaxes, as per
 RDF 1.1 Concepts and Abstract Syntax
 [RDF11-CONCEPTS].

 This registration is an update to the original definition
 for application/ld+json
 in [JSON-LD10].

 C.1 Examples
This section is non-normative.

 The following examples illustrate different ways in which the profile parameter may be used
 to describe different acceptable responses.

 Example 166: HTTP Request with profile requesting an expanded document

 GET /ordinary-json-document.json HTTP/1.1
Host: example.com
Accept: application/ld+json;profile=http://www.w3.org/ns/json-ld#expanded

 Requests the server to return the requested resource as JSON-LD
 in expanded document form.

 Example 167: HTTP Request with profile requesting a compacted document

 GET /ordinary-json-document.json HTTP/1.1
Host: example.com
Accept: application/ld+json;profile=http://www.w3.org/ns/json-ld#compacted

 Requests the server to return the requested resource as JSON-LD
 in compacted document form.
 As no explicit context resource is specified, the server compacts
 using an application-specific default context.

 Example 168: HTTP Request with profile requesting a compacted document with a reference to a compaction context

 GET /ordinary-json-document.json HTTP/1.1
Host: example.com
Accept: application/ld+json;profile="http://www.w3.org/ns/json-ld#flattened http://www.w3.org/ns/json-ld#compacted"

 Requests the server to return the requested resource as JSON-LD
 in both compacted document form
 and flattened document form.
 Note that as whitespace is used to separate the two URIs, they
 are enclosed in double quotes (").

 D. Open Issues
This section is non-normative.

 The following is a list of issues open at the time of publication.

 Issue 108: Consider context by reference with metadata defer-future-versionprivacy-trackersecurity-tracker
Consider context by reference with metadata.

 Issue 191: Compact IRI expansion support for non-trivial prefix term definitions defer-future-versionspec:enhancement
Compact IRI expansion support for non-trivial prefix term definitions.

 Issue 280: language-maps don't allow separate base direction defer-future-version
Language-maps don't allow separate base direction.

 Issue 328: @default in @context in JSON-LD core syntax defer-future-version
@default in @context in JSON-LD core syntax.

 Issue 329: Suggestion about `@prefix` defer-future-version
Suggestion about @prefix.

 Issue 335: Type Coercion / Node Conversion: @coerce keyword or similar defer-future-version
Type Coercion / Node Conversion: @coerce keyword or similar.

 E. Changes since 1.0 Recommendation of 16 January 2014
This section is non-normative.

 	A context may contain a @version entry which is used to set the processing mode.

 	An expanded term definition can now have an
 @context property, which defines a context used for values of
 a property identified with such a term.

 	@container values within an expanded term definition may now
 include @id, @graph and @type, corresponding to id maps and type maps.

 	An expanded term definition can now have an
 @nest property, which identifies a term expanding to
 @nest which is used for containing properties using the same
 @nest mapping. When expanding, the values of a property
 expanding to @nest are treated as if they were contained
 within the enclosing node object directly.

 	The JSON syntax has been abstracted into an internal representation
 to allow for other serializations that are functionally equivalent
 to JSON.

 	Added § 4.6.3 Node Identifier Indexing and § 4.6.4 Node Type Indexing.

 	Both language maps and index maps may legitimately have an @none key, but
 JSON-LD 1.0 only allowed string keys. This has been updated
 to allow @none keys.

 	The value for @container in an expanded term definition
 can also be an array containing any appropriate container
 keyword along with @set (other than @list).
 This allows a way to ensure that such property values will always
 be expressed in array form.

 	In JSON-LD 1.1, terms will be chosen as compact IRI prefixes
 when compacting only if
 a simple term definition is used where the value ends with a URI gen-delim character,
 or if their expanded term definition contains
 a @prefix entry with the value true. The 1.0 algorithm has
 been updated to only consider terms that map to a value that ends with a URI
 gen-delim character.

 	Values of properties where the associated term definition
 has @container set to @graph are interpreted as
 implicitly named graphs, where the associated graph name is
 assigned from a new blank node identifier. Other combinations
 include ["@container", "@id"], ["@container", "@index"] each also
 may include "@set", which create maps from the
 graph identifier or index value similar to index maps
 and id maps.

 Additionally, see § F. Changes since JSON-LD Community Group Final Report.

 F. Changes since JSON-LD Community Group Final Report
This section is non-normative.

 	Lists may now have items which are themselves lists.

 	Values of @type, or an alias of @type, may now have their @container set to @set
 to ensure that @type entries are always represented as an array. This
 also allows a term to be defined for @type, where the value MUST be a map
 with @container set to @set.

 	The use of blank node identifiers to label properties is obsolete,
 and may be removed in a future version of JSON-LD, as is the support for generalized RDF Datasets.

 	The vocabulary mapping can be a relative IRI reference, which is evaluated
 either against an existing default vocabulary, or against the document base.
 This allows vocabulary-relative IRIs, such as the
 keys of node objects, are expanded or compacted relative
 to the document base.
 (See Security Considerations in § C. IANA Considerations
 for a discussion on how string vocabulary-relative IRI resolution via concatenation.
)

 	Added support for "@type": "@none" in a term definition to prevent value compaction.
 Define the rdf:JSON datatype.

 	Term definitions with keys which are of the form of an IRI reference or a compact IRI MUST NOT
 expand to an IRI other than the expansion of the key itself.

 	A frame may also be located within an HTML document, identified
 using type application/ld+json;profile=http://www.w3.org/ns/json-ld#frame.

 	Term definitions can now be protected,
 to limit the ability of other contexts to override them.

 	A context defined in an expanded term definition may also be used for values
 of @type, which defines a context to use for node objects including the associated type.

 	By default, all contexts are propagated when traversing node objects, other than
 type-scoped contexts. This can be controlled using the @propagate
 entry in a local context.

 	A context may contain an @import entry used to reference a remote context
 within a context, allowing JSON-LD 1.1 features to be added to contexts originally
 authored for JSON-LD 1.0.

 	A node object may include an included block,
 which is used to contain a set of node objects which are treated
 exactly as if they were node objects defined in an array including the containing
 node object.
 This allows the use of the object form of a JSON-LD document when there is more
 than one node object being defined, and where those node objects
 are not embedded as values of the containing node object.

 	The alternate link relation can be used to supply an alternate location for
 retrieving a JSON-LD document when the returned document is not JSON.

 	Value objects, and associated context and term definitions have been updated to
 support @direction for setting the base direction of strings.

 	The processing mode is now implicitly json-ld-1.1, unless set
 explicitly to json-ld-1.0.

 	Improve notation using IRI, IRI reference, and relative IRI reference.

 	Warn about forward-compatibility issues for terms of the form ("@"1*ALPHA).

 	When creating an i18n datatype or rdf:CompoundLiteral, language tags are
 normalized to lower case to improve interoperability between implementations.

 G. Changes since Candidate Release of 12 December 2019
This section is non-normative.

 	Expand § 4.1.5 Compact IRIs to describe the behavior
 of "@prefix": false for compact IRIs, and to note that this affects both expansion
 of compact IRIs and compaction of IRIs to compact IRIs.

 	Adding a missing normative definition of the @index keyword used within
 an expanded term definition to § 9.15.1 Expanded term definition.

 	Changed normative definition of the rdf:JSON datatype in § 10.2 The rdf:JSON Datatype
 to describe a normative canonicalization.
 This is in response to Issue 323.

 	Updated the non-normative definitions of the i18n based datatype in § 10.3 The i18n Namespace
 and rdf:CompoundLiteral class in § 10.4 The rdf:CompoundLiteral class and the rdf:language and rdf:direction properties
 to normalize language tags to lowercase when generating RDF.

 H. Changes since Proposed Recommendation Release of 7 May 2020
This section is non-normative.

 	Removed remaining "at-risk" notes.

 	Update bibliographic reference for JCS to [RFC8785].

 	Fixed typo in § 9.3 Frame Objects,
 which was unintentionally diverging from the normative description of the @embed keyword in JSON-LD 1.1 Framing.
 This is in response to Issue 358.

 I. Acknowledgements
This section is non-normative.

 The editors would like to specially thank the following individuals for making significant
 contributions to the authoring and editing of this specification:

 	Timothy Cole (University of Illinois at Urbana-Champaign)

 	Gregory Todd Williams (J. Paul Getty Trust)

 	Ivan Herman (W3C Staff)

 	Jeff Mixter (OCLC (Online Computer Library Center, Inc.))

 	David Lehn (Digital Bazaar)

 	David Newbury (J. Paul Getty Trust)

 	Robert Sanderson (J. Paul Getty Trust, chair)

 	Harold Solbrig (Johns Hopkins Institute for Clinical and Translational Research)

 	Simon Steyskal (WU (Wirschaftsuniversität Wien) - Vienna University of Economics and Business)

 	A Soroka (Apache Software Foundation)

 	Ruben Taelman (Imec vzw)

 	Benjamin Young (Wiley, chair)

 Additionally, the following people were members of the Working Group at the time of publication:

 	Steve Blackmon (Apache Software Foundation)

 	Dan Brickley (Google, Inc.)

 	Newton Calegari (NIC.br - Brazilian Network Information Center)

 	Victor Charpenay (Siemens AG)

 	Sebastian Käbisch (Siemens AG)

 	Axel Polleres (WU (Wirschaftsuniversität Wien) - Vienna University of Economics and Business)

 	Leonard Rosenthol (Adobe)

 	Jean-Yves ROSSI (CANTON CONSULTING)

 	Antoine Roulin (CANTON CONSULTING)

 	Manu Sporny (Digital Bazaar)

 	Clément Warnier de Wailly (CANTON CONSULTING)

 A large amount of thanks goes out to the JSON-LD Community Group participants who worked through many of the technical issues on the mailing list and the weekly telecons: Chris Webber, David Wood, Drummond Reed, Eleanor Joslin, Fabien Gandon, Herm Fisher, Jamie Pitts, Kim Hamilton Duffy, Niklas Lindström, Paolo Ciccarese, Paul Frazze, Paul Warren, Reto Gmür, Rob Trainer, Ted Thibodeau Jr., and Victor Charpenay.

J. References

 J.1
 Normative references

 	[BCP47]
	Tags for Identifying Languages. A. Phillips; M. Davis. IETF. September 2009. IETF Best Current Practice. URL: https://tools.ietf.org/html/bcp47
	[DOM]
	DOM Standard. Anne van Kesteren. WHATWG. Living Standard. URL: https://dom.spec.whatwg.org/
	[ECMASCRIPT]
	ECMAScript Language Specification. Ecma International. URL: https://tc39.es/ecma262/
	[HTML]
	HTML Standard. Anne van Kesteren; Domenic Denicola; Ian Hickson; Philip Jägenstedt; Simon Pieters. WHATWG. Living Standard. URL: https://html.spec.whatwg.org/multipage/
	[IANA-URI-SCHEMES]
	Uniform Resource Identifier (URI) Schemes. IANA. URL: https://www.iana.org/assignments/uri-schemes/uri-schemes.xhtml
	[JSON]
	The application/json Media Type for JavaScript Object Notation (JSON). D. Crockford. IETF. July 2006. Informational. URL: https://tools.ietf.org/html/rfc4627
	[JSON-LD10]
	JSON-LD 1.0. Manu Sporny; Gregg Kellogg; Marcus Langhaler. W3C. 16 January 2014. W3C Recommendation. URL: https://www.w3.org/TR/2014/REC-json-ld-20140116/
	[JSON-LD11-API]
	JSON-LD 1.1 Processing Algorithms and API. Gregg Kellogg; Dave Longley; Pierre-Antoine Champin. W3C. 7 May 2020. W3C Proposed Recommendation. URL: https://www.w3.org/TR/json-ld11-api/
	[JSON-LD11-FRAMING]
	JSON-LD 1.1 Framing. Dave Longley; Gregg Kellogg; Pierre-Antoine Champin. W3C. 7 May 2020. W3C Proposed Recommendation. URL: https://www.w3.org/TR/json-ld11-framing/
	[RDF-SCHEMA]
	RDF Schema 1.1. Dan Brickley; Ramanathan Guha. W3C. 25 February 2014. W3C Recommendation. URL: https://www.w3.org/TR/rdf-schema/
	[RDF11-CONCEPTS]
	RDF 1.1 Concepts and Abstract Syntax. Richard Cyganiak; David Wood; Markus Lanthaler. W3C. 25 February 2014. W3C Recommendation. URL: https://www.w3.org/TR/rdf11-concepts/
	[RDF11-MT]
	RDF 1.1 Semantics. Patrick Hayes; Peter Patel-Schneider. W3C. 25 February 2014. W3C Recommendation. URL: https://www.w3.org/TR/rdf11-mt/
	[RFC2119]
	Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997. Best Current Practice. URL: https://tools.ietf.org/html/rfc2119
	[RFC3986]
	Uniform Resource Identifier (URI): Generic Syntax. T. Berners-Lee; R. Fielding; L. Masinter. IETF. January 2005. Internet Standard. URL: https://tools.ietf.org/html/rfc3986
	[RFC3987]
	Internationalized Resource Identifiers (IRIs). M. Duerst; M. Suignard. IETF. January 2005. Proposed Standard. URL: https://tools.ietf.org/html/rfc3987
	[RFC4288]
	Media Type Specifications and Registration Procedures. N. Freed; J. Klensin. IETF. December 2005. Best Current Practice. URL: https://tools.ietf.org/html/rfc4288
	[RFC5234]
	Augmented BNF for Syntax Specifications: ABNF. D. Crocker, Ed.; P. Overell. IETF. January 2008. Internet Standard. URL: https://tools.ietf.org/html/rfc5234
	[RFC6839]
	Additional Media Type Structured Syntax Suffixes. T. Hansen; A. Melnikov. IETF. January 2013. Informational. URL: https://tools.ietf.org/html/rfc6839
	[RFC6906]
	The 'profile' Link Relation Type. E. Wilde. IETF. March 2013. Informational. URL: https://tools.ietf.org/html/rfc6906
	[RFC7231]
	Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content. R. Fielding, Ed.; J. Reschke, Ed. June 2014. Proposed Standard. URL: https://tools.ietf.org/html/rfc7231
	[RFC8174]
	Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. B. Leiba. IETF. May 2017. Best Current Practice. URL: https://tools.ietf.org/html/rfc8174
	[RFC8259]
	The JavaScript Object Notation (JSON) Data Interchange Format. T. Bray, Ed.. IETF. December 2017. Internet Standard. URL: https://tools.ietf.org/html/rfc8259
	[RFC8288]
	Web Linking. M. Nottingham. October 2017. Proposed Standard. URL: https://tools.ietf.org/html/rfc8288
	[UAX9]
	Unicode Bidirectional Algorithm. Mark Davis; Aharon Lanin; Andrew Glass. Unicode Consortium. 12 February 2020. Unicode Standard Annex #9. URL: https://www.unicode.org/reports/tr9/tr9-42.html
	[UNICODE]
	The Unicode Standard. Unicode Consortium. URL: https://www.unicode.org/versions/latest/

 J.2
 Informative references

 	[fingerprinting-guidance]
	Mitigating Browser Fingerprinting in Web Specifications. Nick Doty. W3C. 28 March 2019. W3C Note. URL: https://www.w3.org/TR/fingerprinting-guidance/
	[INFRA]
	Infra Standard. Anne van Kesteren; Domenic Denicola. WHATWG. Living Standard. URL: https://infra.spec.whatwg.org/
	[JSON.API]
	JSON API. Steve Klabnik; Yehuda Katz; Dan Gebhardt; Tyler Kellen; Ethan Resnick. 29 May 2015. unofficial. URL: https://jsonapi.org/format/
	[ld-glossary]
	Linked Data Glossary. Bernadette Hyland; Ghislain Auguste Atemezing; Michael Pendleton; Biplav Srivastava. W3C. 27 June 2013. W3C Note. URL: https://www.w3.org/TR/ld-glossary/
	[LINKED-DATA]
	Linked Data Design Issues. Tim Berners-Lee. W3C. 27 July 2006. W3C-Internal Document. URL: https://www.w3.org/DesignIssues/LinkedData.html
	[MICRODATA]
	HTML Microdata. Charles 'chaals' (McCathie) Nevile; Dan Brickley; Ian Hickson. W3C. 26 April 2018. W3C Working Draft. URL: https://www.w3.org/TR/microdata/
	[RDFA-CORE]
	RDFa Core 1.1 - Third Edition. Ben Adida; Mark Birbeck; Shane McCarron; Ivan Herman et al. W3C. 17 March 2015. W3C Recommendation. URL: https://www.w3.org/TR/rdfa-core/
	[rfc4122]
	A Universally Unique IDentifier (UUID) URN Namespace. P. Leach; M. Mealling; R. Salz. IETF. July 2005. Proposed Standard. URL: https://tools.ietf.org/html/rfc4122
	[RFC7049]
	Concise Binary Object Representation (CBOR). C. Bormann; P. Hoffman. IETF. October 2013. Proposed Standard. URL: https://tools.ietf.org/html/rfc7049
	[RFC7946]
	The GeoJSON Format. H. Butler; M. Daly; A. Doyle; S. Gillies; S. Hagen; T. Schaub. IETF. August 2016. Proposed Standard. URL: https://tools.ietf.org/html/rfc7946
	[RFC8785]
	JSON Canonicalization Scheme (JCS). A. Rundgren; B. Jordan; S. Erdtman. Network Working Group. June 2020. Informational. URL: https://www.rfc-editor.org/rfc/rfc8785
	[SPARQL11-OVERVIEW]
	SPARQL 1.1 Overview. The W3C SPARQL Working Group. W3C. 21 March 2013. W3C Recommendation. URL: https://www.w3.org/TR/sparql11-overview/
	[SRI]
	Subresource Integrity. Devdatta Akhawe; Frederik Braun; Francois Marier; Joel Weinberger. W3C. 23 June 2016. W3C Recommendation. URL: https://www.w3.org/TR/SRI/
	[string-meta]
	Strings on the Web: Language and Direction Metadata. Addison Phillips; Richard Ishida. W3C. 11 June 2019. W3C Working Draft. URL: https://www.w3.org/TR/string-meta/
	[TriG]
	RDF 1.1 TriG. Gavin Carothers; Andy Seaborne. W3C. 25 February 2014. W3C Recommendation. URL: https://www.w3.org/TR/trig/
	[Turtle]
	RDF 1.1 Turtle. Eric Prud'hommeaux; Gavin Carothers. W3C. 25 February 2014. W3C Recommendation. URL: https://www.w3.org/TR/turtle/
	[URN]
	URN Syntax. R. Moats. IETF. May 1997. Proposed Standard. URL: https://tools.ietf.org/html/rfc2141
	[WEBIDL]
	Web IDL. Boris Zbarsky. W3C. 15 December 2016. W3C Editor's Draft. URL: https://heycam.github.io/webidl/
	[YAML]
	YAML Ain’t Markup Language (YAML™) Version 1.2. Oren Ben-Kiki; Clark Evans; Ingy döt Net. 1 October 2009. URL: http://yaml.org/spec/1.2/spec.html

 ↑

 [image: W3C] JSON-LD 1.1 Processing Algorithms and API

 W3C Recommendation
 16 July 2020

 	This version:
	
 https://www.w3.org/TR/2020/REC-json-ld11-api-20200716/

	Latest published version:
	
 https://www.w3.org/TR/json-ld11-api/

 	Latest editor's draft:
	https://w3c.github.io/json-ld-api/

 	Test suite:
	https://w3c.github.io/json-ld-api/tests/

 	Implementation report:
	
 https://w3c.github.io/json-ld-api/reports/

 	Previous version:
	https://www.w3.org/TR/2020/PR-json-ld11-api-20200507/

 	Previous Recommendation:
	https://www.w3.org/TR/2014/REC-json-ld-api-20140116/

 	Editors:

 	Gregg Kellogg (v1.0 and v1.1)
	Dave Longley
 (Digital Bazaar)
 (v1.1)
	Pierre-Antoine Champin
 (LIRIS - Université de Lyon)
 (v1.1)

 	
 Former editors:

	Markus Lanthaler
 (Google)
 (v1.0)
	Manu Sporny
 (Digital Bazaar)
 (v1.0)

 	
 Authors:

	Dave Longley
 (Digital Bazaar)
 (v1.0 and v1.1)
	Gregg Kellogg (v1.0 and v1.1)
	Markus Lanthaler
 (Google)
 (v1.0)
	Manu Sporny
 (Digital Bazaar)
 (v1.0)
	Niklas Lindström (v1.0)

 	Participate:
	
 GitHub w3c/json-ld-api

	
 File a bug

	
 Commit history

	
 Pull requests

 Please check the
 errata for any errors or
 issues reported since publication.

 See also

 translations.

 This document is also available in this non-normative format:
 EPUB

 Copyright
 ©
 2010-2020

 W3C® (MIT,
 ERCIM, Keio,
 Beihang).
 W3C liability,
 trademark and permissive document license rules
 apply.

Abstract

 This specification defines a set of algorithms for programmatic transformations
 of JSON-LD documents. Restructuring data according to the defined transformations
 often dramatically simplifies its usage. Furthermore, this document proposes
 an Application Programming Interface (API) for developers implementing the
 specified algorithms.

 This specification describes a superset of the features defined in
 JSON-LD 1.0 Processing Algorithms And API [JSON-LD10-API]
 and, except where noted,
 the algorithms described in this specification are fully compatible
 with documents created using JSON-LD 1.0 [JSON-LD10].

Status of This Document
This section describes the status of this
 document at the time of its publication. Other documents may supersede
 this document. A list of current W3C publications and the latest revision
 of this technical report can be found in the
 W3C technical reports index at
 https://www.w3.org/TR/.

 This document has been developed by the
 JSON-LD Working Group and was derived from the JSON-LD Community Group's Final Report.

 There is a
 live JSON-LD playground that is capable
 of demonstrating the features described in this document.

 This specification is intended to supersede the JSON-LD 1.0 Processing Algorithms And API [JSON-LD10-API] specification.

 This document was published by the JSON-LD Working Group as a
 Recommendation.

 GitHub Issues are preferred for
 discussion of this specification.

 Alternatively, you can send comments to our mailing list.
 Please send them to
 public-json-ld-wg@w3.org
 (archives).

 Please see the Working Group's
 implementation report.

 This document has been reviewed by W3C Members, by software developers, and
 by other W3C groups and interested parties, and is endorsed by the Director
 as a W3C Recommendation. It is a stable document and may be used as
 reference material or cited from another document. W3C's role in making the
 Recommendation is to draw attention to the specification and to promote its
 widespread deployment. This enhances the functionality and interoperability
 of the Web.

 This document was produced by a group
 operating under the
 W3C Patent Policy.

 W3C maintains a
 public list of any patent disclosures
 made in connection with the deliverables of
 the group; that page also includes
 instructions for disclosing a patent. An individual who has actual
 knowledge of a patent which the individual believes contains
 Essential Claim(s)
 must disclose the information in accordance with
 section 6 of the W3C Patent Policy.

 This document is governed by the
 1 March 2019 W3C Process Document.

 Set of Documents

 This document is one of three JSON-LD 1.1 Recommendations produced by the
 JSON-LD Working Group:

 	JSON-LD 1.1

 	JSON-LD 1.1 Processing Algorithms and API

 	JSON-LD 1.1 Framing

 1. Introduction
This section is non-normative.

 This document is a detailed specification of the JSON-LD processing algorithms.
 The document is primarily intended for the following audiences:

 	Software developers who want to implement the algorithms to transform
 JSON-LD documents.

 	Web authors and developers who want a very detailed view of how
 a JSON-LD Processor operates.

 	Developers who want an overview of the proposed JSON-LD API.

 To understand the basics in this specification you must first be familiar with
 JSON, which is detailed in [RFC8259]. You must also understand the
 JSON-LD syntax defined in the JSON-LD 1.1 Syntax specification [JSON-LD11], which is the base syntax used by all
 of the algorithms in this document. To understand the API and how it is
 intended to operate in a programming environment, it is useful to have working
 knowledge of the JavaScript programming language [ECMASCRIPT] and
 WebIDL [WEBIDL]. To understand how JSON-LD maps to RDF, it is helpful to be
 familiar with the basic RDF concepts [RDF11-CONCEPTS].

 1.1 How to Read this Document
This section is non-normative.

 This document is a detailed specification for a serialization of Linked
 Data in JSON. The document is primarily intended for the following audiences:

 	Software developers who want to implement processors and APIs for
 JSON-LD

 A companion document, the JSON-LD 1.1 specification
 [JSON-LD11], specifies the grammar of JSON-LD documents.

 To understand the basics in this specification you must first be familiar with
 JSON, which is detailed in [RFC8259].

 This document can highlight changes since the JSON-LD 1.0 version.
 Select to changes.

 1.2 Contributing
This section is non-normative.

 There are a number of ways that one may participate in the development of
 this specification:

 	Technical discussion typically occurs on the public mailing list:
 public-json-ld-wg@w3.org

 	The working group uses #json-ld
 IRC channel is available for real-time discussion on irc.w3.org.

 	The #json-ld
 IRC channel is also available for real-time discussion on irc.freenode.net.

 1.3 Typographical conventions
This section is non-normative.

 The following typographic conventions are used in this specification:

 	markup
	
 Markup (elements, attributes, properties),
 machine processable values (string, characters, media types),
 property name,
 or a file name is in red-orange monospace font.

 	variable
	
 A variable in pseudo-code or in an algorithm description is in italics.

 	definition
	
 A definition of a term, to be used elsewhere in this or other specifications,
 is in bold and italics.

 	definition reference
	
 A reference to a definition in this document
 is underlined and is also an active link to the definition itself.

 	markup definition reference
	
 A references to a definition in this document,
 when the reference itself is also a markup, is underlined,
 red-orange monospace font, and is also an active link to the definition itself.

 	external definition reference
	
 A reference to a definition in another document
 is underlined, in italics, and is also an active link to the definition itself.

 	 markup external definition reference
	
 A reference to a definition in another document,
 when the reference itself is also a markup,
 is underlined, in italics red-orange monospace font,
 and is also an active link to the definition itself.

 	hyperlink
	
 A hyperlink is underlined and in blue.

 	[reference]
	
 A document reference (normative or informative) is enclosed in square brackets
 and links to the references section.

 	Changes from Recommendation
	
 Sections or phrases changed from the previous Recommendation
 may be highlighted using a control
 in § 1.1 How to Read this Document.

Note
Notes are in light green boxes with a green left border and with a "Note" header in green.
 Notes are always informative.

 Example 1

 Examples are in light khaki boxes, with khaki left border,
and with a numbered "Example" header in khaki.
Examples are always informative. The content of the example is in monospace font and may be syntax colored.

Examples may have tabbed navigation buttons
to show the results of transforming an example into other representations.

 1.4 Terminology

 This document uses the following terms as defined in external specifications
 and defines terms specific to JSON-LD.

 Terms imported from Other Specifications

Terms imported from ECMAScript Language Specification [ECMASCRIPT], The JavaScript Object Notation (JSON) Data Interchange Format [RFC8259], Infra Standard [INFRA], and Web IDL [WEBIDL]

	array
	
 In the JSON serialization,
 an array structure is represented as square brackets surrounding zero or more values.
 Values are separated by commas.
 In the internal representation,
 a list (also called an array) is an ordered collection of zero or more values.
 While JSON-LD uses the same array representation as JSON,
 the collection is unordered by default.
 While order is preserved in regular JSON arrays,
 it is not in regular JSON-LD arrays unless specifically defined
 (see the Sets and Lists section of JSON-LD 1.1.

 	boolean
	
 The values true and false that are used
 to express one of two possible states.

 	JSON object
	
 In the JSON serialization,
 an object structure
 is represented as a pair of curly brackets surrounding zero or more name/value pairs (or members).
 A name is a string.
 A single colon comes after each name,
 separating the name from the value.
 A single comma separates a value from a following name.
 In JSON-LD the names in an object must be unique.
 In the internal representation a JSON object is described as a
 map (see [INFRA]),
 composed of entries with key/value pairs.

 In the Application Programming Interface,
 a map is described using a [WEBIDL] record.

 	null
	
 The use of the null value within JSON-LD
 is used to ignore or reset values.
 A map entry in the @context where the value,
 or the @id of the value, is null,
 explicitly decouples a term's association with an IRI.
 A map entry in the body of a JSON-LD document
 whose value is null
 has the same meaning as if the map entry was not defined.
 If @value, @list, or @set is set to null in expanded form,
 then the entire JSON object is ignored.

 	number
	
 In the JSON serialization, a number
 is similar to that used in most programming languages,
 except that the octal and hexadecimal formats are not used and that leading zeros are not allowed.
 In the internal representation,
 a number is equivalent to either a long
 or double,
 depending on if the number has a non-zero fractional part (see [WEBIDL]).

 	scalar
	
 A scalar is either a string, number, true, or false.

 	string
	
 A string
 is a sequence of zero or more Unicode (UTF-8) characters,
 wrapped in double quotes, using backslash escapes (if necessary).
 A character is represented as a single character string.

Terms imported from Internationalized Resource Identifiers (IRIs) [RFC3987]

	IRI
	
 The absolute form of an IRI containing a scheme along with a path
 and optional query and fragment segments.

 	IRI reference
	
 Denotes the common usage of an Internationalized Resource Identifier.
 An IRI reference may be absolute or
 relative.
 However, the "IRI" that results from such a reference only includes absolute IRIs;
 any relative IRI references are resolved to their absolute form.

 	relative IRI reference
	
 A relative IRI reference is an IRI reference that is relative to some other IRI,
 typically the base IRI of the document.
 Note that properties,
 values of @type,
 and values of terms defined to be vocabulary relative
 are resolved relative to the vocabulary mapping,
 not the base IRI.

Terms imported from RDF 1.1 Concepts and Abstract Syntax [RDF11-CONCEPTS], RDF Schema 1.1 [RDF-SCHEMA], and Linked Data Design Issues [LINKED-DATA]

	base IRI
	
 The base IRI is an IRI established in the context,
 or is based on the JSON-LD document location.
 The base IRI is used to turn relative IRI references into IRIs.

 	blank node
	
 A node in a graph that is neither an IRI,
 nor a literal.
 A blank node does not contain
 a de-referenceable identifier because it is either ephemeral in nature
 or does not contain information that needs to be linked to from outside of the linked data graph.
 In JSON-LD,
 a blank node is assigned an identifier starting with the prefix _:.

 	blank node identifier
	
 A blank node identifier
 is a string that can be used as an identifier for a blank node within the scope of a JSON-LD document.
 Blank node identifiers begin with _:.

 	dataset
	
 A dataset
 representing a collection of RDF graphs
 including exactly one default graph and zero or more named graphs.

 	datatype IRI
	
 A datatype IRI is an IRI identifying a datatype that determines how the lexical form maps to a
 literal value.

 	default graph
	
 The default graph of a dataset is an RDF graph having no name, which may be empty.

 	graph name
	
 The IRI or blank node identifying a named graph.

 	language-tagged string
	
 A language-tagged string
 consists of a string and a non-empty language tag
 as defined by [BCP47].
 The language tag must be well-formed
 according to section 2.2.9 Classes of Conformance of [BCP47].
 Processors may normalize language tags to lowercase.

 	Linked Data
	
 A set of documents, each containing a representation of a linked data graph or dataset.

 	list
	
 A list is an ordered sequence of IRIs, blank nodes, and literals.

 	literal
	
 An object expressed as a value such as a string or number.
 Implicitly or explicitly includes a datatype IRI and, if the datatype is rdf:langString, an optional language tag.

 	named graph
	
 A named graph
 is a linked data graph that is identified by an IRI or blank node.

 	node
	
 A node in an RDF graph, either the subject and object of at least one triple.
 Note that a node can play both roles (subject and object) in a graph, even in the same triple.

 	object
	
 An object is a node in a linked data graph
 with at least one incoming edge.

 	property
	
 The name of a directed-arc in a linked data graph.
 Every property is directional
 and is labeled with an IRI or a blank node identifier.
 Whenever possible, a property should be labeled with an IRI.
 Note
The use of blank node identifiers to label properties is obsolete,
 and may be removed in a future version of JSON-LD.

 Also, see predicate in [RDF11-CONCEPTS].

 	RDF graph
	
 A labeled directed graph,
 i.e., a set of nodes connected by directed-arcs.
 Also called linked data graph.

 	resource
	
 A resource denoted by an IRI, a blank node or literal representing something in the world (the "universe of discourse").

 	subject
	
 A subject is a node in a linked data graph
 with at least one outgoing edge,
 related to an object node through a property.
	triple
	
 A component of an RDF graph including a subject, predicate, and object, which represents
 a node-arc-node segment of an RDF graph.

JSON-LD Specific Term Definitions

	active context
	
 A context that is used to resolve terms
 while the processing algorithm is running.

 	base direction
	
 The base direction is the direction used when a string does not have a direction associated with it directly.
 It can be set in the context using the @direction key
 whose value must be one of the strings "ltr", "rtl", or null.
 See the Context Definitions section of JSON-LD 1.1 for a normative description.

 	compact IRI
	
 A compact IRI has the form of prefix:suffix
 and is used as a way of expressing an IRI without needing to define separate term definitions
 for each IRI contained within a common vocabulary identified by prefix.

 	context
	
 A set of rules for interpreting a JSON-LD document
 as described in the The Context section of JSON-LD 1.1,
 and normatively specified in the Context Definitions section of JSON-LD 1.1.

 	default language
	
 The default language is the language used when a string does not have a language associated with it directly.
 It can be set in the context using the @language key
 whose value must be a string representing a [BCP47] language code or null.
 See the Context Definitions section of JSON-LD 1.1 for a normative description.

 	default object
	
 A default object is a map that has a @default key.

 	expanded term definition
	
 An expanded term definition is a term definition
 where the value is a map
 containing one or more keyword keys to define the associated IRI,
 if this is a reverse property,
 the type associated with string values, and a container mapping.
 See the Expanded Term Definition section of JSON-LD 1.1 for a normative description.

 	frame
	
 A JSON-LD document,
 which describes the form for transforming another JSON-LD document
 using matching and embedding rules.
 A frame document allows additional keywords and certain map entries
 to describe the matching and transforming process.

 	graph object
	
 A graph object represents a named graph
 as the value of a map entry within a node object.
 When expanded, a graph object must have an @graph entry,
 and may also have @id, and @index entries.
 A simple graph object
 is a graph object which does not have an @id entry.
 Note that node objects may have a @graph entry,
 but are not considered graph objects if they include any other entries.
 A top-level object consisting of @graph is also not a graph object.
 Note that a node object may also represent a named graph it it includes other properties.
 See the Graph Objects section of JSON-LD 1.1 for a normative description.

 	id map
	
 An id map is a map value of a term
 defined with @container set to @id.
 The values of the id map must be node objects,
 and its keys are interpreted as IRIs representing
 the @id of the associated node object.
 If a value in the id map contains a key expanding to @id,
 its value must be equivalent to the referencing key in the id map.
 See the Id Maps section of JSON-LD 1.1 for a normative description.

 	included block
	
 An included block is an entry in a node object where the key is either @included or an alias of @included
 and the value is one or more node objects.
 See the Included Blocks section of JSON-LD 1.1 for a normative description.

 	index map
	
 An index map is a map value of a term
 defined with @container set to @index,
 whose values must be any of the following types:
 string,
 number,
 true,
 false,
 null,
 node object,
 value object,
 list object,
 set object, or
 an array of zero or more of the above possibilities.
 See the Index Maps section in JSON-LD 1.1 for a formal description.

 	JSON literal
	
 A JSON literal is a literal where the associated datatype IRI is rdf:JSON.
 In the value object representation, the value of @type is @json.
 JSON literals represent values which are valid JSON [RFC8259].
 See the The rdf:JSON Datatype section in JSON-LD 1.1 for a normative description.

 	JSON-LD document
	
 A JSON-LD document is a serialization of
 an RDF dataset.
 See the JSON-LD Grammar section in JSON-LD 1.1 for a formal description.

 	JSON-LD internal representation
	
 The JSON-LD internal representation
 is the result of transforming a JSON syntactic structure
 into the core data structures suitable for direct processing:
 arrays, maps, strings, numbers, booleans, and null.

 	JSON-LD Processor
	
 A JSON-LD Processor is a system which can perform the algorithms defined in JSON-LD 1.1 Processing Algorithms and API.
 See the Conformance section in JSON-LD 1.1 API for a formal description.

 	JSON-LD value
	
 A JSON-LD value is a string,
 a number,
 true or false,
 a typed value,
 or a language-tagged string.
 It represents an RDF literal.

 	keyword
	
 A string that is specific to JSON-LD,
 described in the Syntax Tokens and Keywords section of JSON-LD 1.1,
 and normatively specified in the Keywords section of JSON-LD 1.1,

 	language map
	
 An language map is a map value of a term
 defined with @container set to @language,
 whose keys must be strings representing [BCP47] language codes
 and the values must be any of the following types:
 null,
 string, or
 an array of zero or more of the above possibilities.
 See the Language Maps section of JSON-LD 1.1 for a normative description.

 	list object
	
 A list object is a map that has a @list key.
 It may also have an @index key, but no other entries.
 See the Lists and Sets section of JSON-LD 1.1 for a normative description.

 	local context
	
 A context that is specified with a map,
 specified via the @context keyword.

 	node object
	
 A node object represents zero or more properties of a node in the graph
 serialized by the JSON-LD document.
 A map is a node object
 if it exists outside of the JSON-LD context and:

 	it does not contain the @value, @list, or @set keywords, or

 	it is not the top-most map in the JSON-LD document
 consisting of no other entries than @graph and @context.

 The entries of a node object whose keys are not keywords are also called properties of the node object.
 See the Node Objects section of JSON-LD 1.1 for a normative description.

 	prefix
	
 A prefix is the first component of a compact IRI
 which comes from a term that maps to a string that,
 when prepended to the suffix of the compact IRI,
 results in an IRI.

 	processing mode
	
 The processing mode defines how a JSON-LD document is processed.
 By default, all documents are assumed to be conformant with this specification.
 By defining a different version using the @version entry in a context,
 publishers can ensure that processors conformant with JSON-LD 1.0 [JSON-LD10]
 will not accidentally process JSON-LD 1.1 documents, possibly creating a different output.
 The API provides an option for setting the processing mode to json-ld-1.0,
 which will prevent JSON-LD 1.1 features from being activated,
 or error if @version entry in a context is explicitly set to 1.1.
 This specification extends JSON-LD 1.0
 via the json-ld-1.1 processing mode.

 	scoped context
	
 A scoped context is part of an expanded term definition using the
 @context entry. It has the same form as an embedded context.
 When the term is used as a type, it defines a type-scoped context,
 when used as a property it defines a property-scoped context.

 	set object
	
 A set object is a map that has an @set entry.
 It may also have an @index key, but no other entries.
 See the Lists and Sets section of JSON-LD 1.1 for a normative description.

 	term
	
 A term is a short word defined in a context
 that may be expanded to an IRI.
 See the Terms section of JSON-LD 1.1 for a normative description.

 	term definition
	
 A term definition is an entry in a context,
 where the key defines a term
 which may be used within a map
 as a key, type, or elsewhere that a string is interpreted as a vocabulary item.
 Its value is either a string (simple term definition),
 expanding to an IRI,
 or a map (expanded term definition).

 	type map
	
 A type map is a map value of a term
 defined with @container set to @type,
 whose keys are interpreted as IRIs
 representing the @type of the associated node object;
 the value must be a node object, or array of node objects.
 If the value contains a term expanding to @type,
 its values are merged with the map value when expanding.
 See the Type Maps section of JSON-LD 1.1 for a normative description.

 	typed value
	
 A typed value consists of a value,
 which is a string,
 and a type,
 which is an IRI.

 	value object
	
 A value object is a map that has an @value entry.
 See the Value Objects section of JSON-LD 1.1 for a normative description.

 	vocabulary mapping
	
 The vocabulary mapping is set in the context using the @vocab key
 whose value must be an IRI, a compact IRI, a term, or null.
 See the Context Definitions section of JSON-LD 1.1 for a normative description.

 1.4.1 Algorithm Terms

 The Following terms are used within specific algorithms.

 	active graph
	
 The name of the currently active graph that the processor should use when processing.

 	active property
	
 The currently active property or keyword that the processor should use when processing.
 The active property is represented in the original lexical form,
 which is used for finding coercion mappings in the active context.

 	add value

 	
 Used as a macro within various algorithms as a way to add a value
 to an entry in a map (object) using a specified key.
 The invocation may include an as array flag defaulting to false.

 	If as array is true
 and the value of key in object does not exist
 or is not an array, set it to a new array
 containing any original value.

 	If value is an array,
 then for each element v in value,
 use add value recursively to add v to key in entry.

 	Otherwise:

 	If key is not an entry in object,
 add value as the value of key in object.

 	Otherwise

 	If the value of the key entry in object is not an array,
 set it to a new array containing the original value.

 	Append value
 to the value of the key entry in object.

 	IRI compacting

 	
 Used as a macro within various algorithms as to reduce the language used to describe
 the process of compacting a string var representing an IRI or keyword
 using an active context either specified directly, or coming from the scope of
 the algorithm step using this term.
 An optional value is used, if explicitly provided.
 Unless specified, the vocab flag defaults to true,
 and the reverse flag defaults to false.

 	Return the result of using the IRI Compaction algorithm,
 passing active context,
 var,
 value (if supplied),
 vocab,
 and result.

 	IRI expanding

 	
 Used as a macro within various algorithms as to reduce the language used to describe
 the process of expanding a string value representing an IRI or keyword
 using an active context either specified directly, or coming from the scope of
 the algorithm step using this term.
 Optional defined and local context arguments are used, if explicitly provided.
 Unless specified,
 the document relative flag defaults to false,
 and the vocab flag defaults to true.

 	Return the result of using the IRI Expansion algorithm,
 passing active context,
 value,
 local context (if supplied),
 defined (if supplied),
 document relative,
 and vocab.

 	JSON-LD input
	
 The JSON-LD data structure that is provided as input to the algorithm.

 1.4.2 Syntax Tokens and Keywords

 In addition to the keywords defined in the JSON-LD 1.1 Syntax specification [JSON-LD11],
 this specification adds an additional keyword to support
 JSON-LD 1.1 Framing [JSON-LD11-FRAMING]:

 	@preserve

 	Used in an expanded document created as the result of the
 Framing algorithm
 to represent values that might otherwise be removed as part of the
 Expansion algorithm.

 1.5 Example Conventions
This section is non-normative.

 Note that in the examples used in this document, output
 is of necessity shown in serialized form as JSON. While the algorithms
 describe operations on the JSON-LD internal representation, when
 they as displayed as examples, the JSON serialization is used. In particular,
 the internal representation use of maps are represented using
 JSON objects.

 Example 2: Sample JSON-LD document

 {
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "knows": "http://xmlns.com/foaf/0.1/knows"
 },
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "knows": [
 {
 "name": "Dave Longley"
 }
]
}

 In the internal representation, the example above would be of a
 map containing @context, @id, name, and knows entries,
 with either maps, strings, or arrays of
 maps or strings values. In the JSON serialization, JSON objects are used
 for maps, while arrays and strings are serialized using a
 convention common to many programming languages.

 2. Features
This section is non-normative.

 The JSON-LD 1.1 Syntax specification [JSON-LD11] defines a syntax to
 express Linked Data in JSON. Because there is more than one way to
 express Linked Data using this syntax, it is often useful to be able to
 transform JSON-LD documents so that they may be more easily consumed by
 specific applications.

 To allow these algorithms to be adapted for syntaxes
 other than JSON, the algorithms operate on the JSON-LD internal representation,
 which uses the generic
 concepts of arrays, maps,
 strings, numbers, booleans, and null to describe
 the data represented by a JSON document. Algorithms act on this
 internal representation with API entry points responsible for
 transforming between the concrete and internal representations.

 JSON-LD uses contexts to allow Linked Data
 to be expressed in a way that is specifically tailored to a particular
 person or application. By providing a context,
 JSON data can be expressed in a way that is a natural fit for a particular
 person or application whilst also indicating how the data should be
 understood at a global scale. In order for people or applications to
 share data that was created using a context that is different
 from their own, a JSON-LD processor must be able to transform a document
 from one context to another. Instead of requiring JSON-LD
 processors to write specific code for every imaginable
 context switching scenario, it is much easier to specify a
 single algorithm that can remove any context. Similarly,
 another algorithm can be specified to subsequently apply any
 context. These two algorithms represent the most basic
 transformations of JSON-LD documents. They are referred to as
 expansion and compaction, respectively.

 JSON-LD 1.1 introduces new features that are
 compatible with JSON-LD 1.0 [JSON-LD10],
 but if processed by a JSON-LD 1.0 processor may produce different results.
 Processors default to json-ld-1.1, unless the
 processingMode API option
 is explicitly set to json-ld-1.0.
 Publishers are encouraged to use the @version map entry within a context
 set to 1.1 to ensure that JSON-LD 1.0 processors will not misinterpret JSON-LD 1.1 features.

 There are four major types of transformation that are discussed in this
 document: expansion, compaction, flattening, and RDF serialization/deserialization.

 2.1 Expansion
This section is non-normative.

 The algorithm that removes context is
 called expansion. Before performing any other
 transformations on a JSON-LD document, it is easiest to
 remove any context from it and to make data structures
 more regular.

 To get an idea of how context and data structuring affects the same data,
 here is an example of JSON-LD that uses only terms
 and is fairly compact:

 Example 3: JSON-LD document using only terms

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "homepage": {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 },
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "homepage": "http://www.markus-lanthaler.com/"
}

 [{
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": [
 {"@value": "Markus Lanthaler"}
],
 "http://xmlns.com/foaf/0.1/homepage": [
 {"@id": "http://www.markus-lanthaler.com/"}
]
}]

 	Subject	Property	Value

 	http://me.markus-lanthaler.com/	foaf:name	Markus Lanthaler

 	http://me.markus-lanthaler.com/	http://xmlns.com/foaf/0.1/homepage	http://www.markus-lanthaler.com/

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://me.markus-lanthaler.com/> foaf:name "Markus Lanthaler";
 foaf:homepage <http://www.markus-lanthaler.com/> .

 The next input example uses one IRI to express a property
 and a map to encapsulate a value, but
 leaves the rest of the information untouched.

 Example 4: Sample JSON-LD document using an IRI instead of a term to express a property

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "website": "http://xmlns.com/foaf/0.1/homepage"
 },
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": "Markus Lanthaler",
 "website": { "@id": "http://www.markus-lanthaler.com/" }
}

 [{
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": [
 {"@value": "Markus Lanthaler"}
],
 "http://xmlns.com/foaf/0.1/homepage": [
 {"@id": "http://www.markus-lanthaler.com/"}
]
}]

 	Subject	Property	Value

 	http://me.markus-lanthaler.com/	foaf:name	Markus Lanthaler

 	http://me.markus-lanthaler.com/	http://xmlns.com/foaf/0.1/homepage	http://www.markus-lanthaler.com/

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://me.markus-lanthaler.com/> foaf:name "Markus Lanthaler";
 foaf:homepage <http://www.markus-lanthaler.com/> .

 Note that both inputs are valid JSON-LD and both represent the same
 information. The difference is in their context information
 and in the data structures used. A JSON-LD processor can remove
 context and ensure that the data is more regular by employing
 expansion.

 Expansion has two important goals: removing any contextual
 information from the document, and ensuring all values are represented
 in a regular form. These goals are accomplished by expanding all entry keys
 to IRIs and by expressing all
 values in arrays in
 expanded form. Expanded form is the most verbose
 and regular way of expressing of values in JSON-LD; all contextual
 information from the document is instead stored locally with each value.
 Running the Expansion algorithm
 (expand())
 operation) against the above examples results in the following output:

 Example 5: Expanded JSON-LD document using an IRI

 [
 {
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "Markus Lanthaler" }
],
 "http://xmlns.com/foaf/0.1/homepage": [
 { "@id": "http://www.markus-lanthaler.com/" }
]
 }
]

 The example above is the JSON-LD serialization of the output of the
 expansion algorithm,
 where the algorithm's use of maps are replaced with JSON objects.

 Note that in the output above all context definitions have
 been removed, all terms and
 compact IRIs have been expanded to absolute
 IRIs, and all
 JSON-LD values are expressed in
 arrays in expanded form. While the
 output is more verbose and difficult for a human to read, it establishes a
 baseline that makes JSON-LD processing easier because of its very regular
 structure.

 2.2 Compaction
This section is non-normative.

 While expansion removes context from a given
 input, compaction's primary function is to
 perform the opposite operation: to express a given input according to
 a particular context. Compaction applies a
 context that specifically tailors the way information is
 expressed for a particular person or application. This simplifies applications
 that consume JSON or JSON-LD by expressing the data in application-specific
 terms, and it makes the data easier to read by humans.

 Compaction uses a developer-supplied context to
 shorten IRIs to terms or
 compact IRIs and
 JSON-LD values expressed in
 expanded form to simple values such as strings
 or numbers.

 For example, assume the following expanded JSON-LD input document:

 Example 6: Expanded sample document

 [
 {
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "Markus Lanthaler" }
],
 "http://xmlns.com/foaf/0.1/homepage": [
 { "@id": "http://www.markus-lanthaler.com/" }
]
 }
]

 Additionally, assume the following developer-supplied JSON-LD
 context:

 Example 7: JSON-LD context

 {
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "homepage": {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 }
}

 Running the Compaction Algorithm
 (compact())
 operation) given the context supplied above against the JSON-LD input
 document provided above would result in the following output:

 Example 8: Compacted sample document

 Open in playground

 {
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "homepage": {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 },
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "homepage": "http://www.markus-lanthaler.com/"
}

 The example above is the JSON-LD serialization of the output of the
 compaction algorithm,
 where the algorithm's use of maps are replaced with JSON objects.

 Note that all IRIs have been compacted to
 terms as specified in the context,
 which has been injected into the output. While compacted output is
 useful to humans, it is also used to generate structures that are easy to
 program against. Compaction enables developers to map any expanded document
 into an application-specific compacted document. While the context provided
 above mapped http://xmlns.com/foaf/0.1/name to name, it
 could also have been mapped to any other term provided by the developer.

 2.3 Flattening
This section is non-normative.

 While expansion ensures that a document is in a uniform structure,
 flattening goes a step further to ensure that the shape of the data
 is deterministic. In expanded documents, the properties of a single
 node may be spread across a number of different
 node objects. By flattening a
 document, all properties of a node are collected in a single
 node object and all blank nodes
 are labeled with a blank node identifier. This may drastically
 simplify the code required to process JSON-LD data in certain applications.

 For example, assume the following JSON-LD input document:

 Example 9: JSON-LD document in compact form

 {
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "knows": "http://xmlns.com/foaf/0.1/knows"
 },
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "knows": [
 {"name": "Dave Longley"}
]
}

 Running the Flattening Algorithm
 (flatten())
 operation) with a context set to null to prevent compaction
 returns the following document:

 Example 10: Flattened sample document

 Open in playground

 [{
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "Markus Lanthaler" }
],
 "http://xmlns.com/foaf/0.1/knows": [
 { "@id": "_:b0" }
]
}, {
 "@id": "_:b0",
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "Dave Longley" }
]
}]

 The example above is the JSON-LD serialization of the output of the
 flattening algorithm,
 where the algorithm's use of maps are replaced with JSON objects.

 Note how in the output above all properties of a node are collected in a
 single node object and how the blank node representing
 "Dave Longley" has been assigned the blank node identifier
 _:b0.

 To make it easier for humans to read or for certain applications to
 process it, a flattened document can be compacted by passing a context. Using
 the same context as the input document, the flattened and compacted document
 looks as follows:

 Example 11: Flattened and compacted sample document

 Open in playground

 {
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "knows": "http://xmlns.com/foaf/0.1/knows"
 },
 "@graph": [{
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "knows": { "@id": "_:b0" }
 }, {
 "@id": "_:b0",
 "name": "Dave Longley"
 }]
}

 Please note that the result of flattening and compacting a document
 is always a map,
 (represented as a JSON object when serialized),
 which contains an @graph
 entry that represents the default graph.

 2.4 RDF Serialization/Deserialization
This section is non-normative.

 JSON-LD can be used to serialize RDF data as described in
 [RDF11-CONCEPTS]. This ensures that data can be round-tripped to and from
 any RDF syntax without any loss in fidelity.

 For example, assume the following RDF input serialized in Turtle [TURTLE]:

 Example 12: Sample Turtle document

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://me.markus-lanthaler.com/>
 foaf:name "Markus Lanthaler" ;
 foaf:homepage <http://www.markus-lanthaler.com/> .

 Using the Serialize RDF as JSON-LD Algorithm
 a developer could transform this document into expanded JSON-LD:

 Example 13: Sample Turtle document converted to JSON-LD

 [
 {
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "Markus Lanthaler" }
],
 "http://xmlns.com/foaf/0.1/homepage": [
 { "@id": "http://www.markus-lanthaler.com/" }
]
 }
]

 The example above is the JSON-LD serialization of the output of the
 Serialize RDF as JSON-LD Algorithm,
 where the algorithm's use of maps are replaced with JSON objects.

 Note that the output above could easily be compacted using the technique outlined
 in the previous section. It is also possible to deserialize the JSON-LD document back
 to RDF using the Deserialize JSON-LD to RDF Algorithm.

3. Conformance

 As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification are non-normative. Everything else in this specification is normative.

 The key words MAY, MUST, MUST NOT, and SHOULD in this document
 are to be interpreted as described in
 BCP 14
 [RFC2119] [RFC8174]
 when, and only when, they appear in all capitals, as shown here.

 There are two classes of products that can claim conformance to this
 specification: JSON-LD Processors,
 and RDF Serializers/Deserializers.

 A conforming JSON-LD Processor is a system which can perform the
 Expansion, Compaction,
 and Flattening operations
 in a manner consistent with
 the algorithms defined in this specification.

 JSON-LD Processors MUST NOT
 attempt to correct malformed IRIs or language tags;
 however, they SHOULD issue validation warnings.
 IRIs are not modified other than conversion between
 relative and absolute IRIs.

 A conforming RDF Serializer/Deserializer is a system that can
 deserialize JSON-LD to RDF and
 serialize RDF as JSON-LD as
 defined in this specification.

 Unless specified using
 processingMode API option,
 the processing mode is set using the @version entry
 in a local context and
 affects the behavior of algorithms including expansion and compaction.
 Once set, it is an error to attempt to change to a different processing mode,
 and processors MUST generate,
 a processing mode conflict
 error and abort further processing.

 The algorithms in this specification are generally written with more concern for clarity
 than efficiency. Thus, JSON-LD Processors may
 implement the algorithms given in this specification in any way desired,
 so long as the end result is indistinguishable from the result that would
 be obtained by the specification's algorithms.

 In algorithm steps that describe operations on keywords, those steps
 also apply to keyword aliases.

 Note
Implementers can partially check their level of conformance to
 this specification by successfully passing the test cases of the
 JSON-LD test suite.
 Note, however, that passing all the tests in the test
 suite does not imply complete conformance to this specification. It only implies
 that the implementation conforms to aspects tested by the test suite.

 This specification makes use of the following namespace prefixes:

 	Prefix
 	IRI

 	rdf
 	http://www.w3.org/1999/02/22-rdf-syntax-ns#

 	xsd
 	http://www.w3.org/2001/XMLSchema#

4. Context Processing Algorithms

 The following sections describe algorithms for processing a JSON-LD context.

 4.1 Context Processing Algorithm

 When processing a JSON-LD data structure, each processing rule is applied
 using information provided by the active context. This
 section describes how to produce an active context.

 The active context consists of:

 	the active term definitions which specify how
 keys and values have to be interpreted (array of term definitions),

 	the current base IRI (IRI),

 	the original base URL (IRI),

 	an inverse context (inverse context),

 	an optional vocabulary mapping (IRI),

 	an optional default language (string),

 	an optional default base direction ("ltr" or "rtl"),

 	and an optional previous context (context),
 used when a non-propagated context is defined.

 Each term definition consists of:

 	an IRI mapping (IRI),

 	a prefix flag (boolean),

 	a protected flag (boolean),

 	a reverse property flag (boolean),

 	an optional base URL (IRI),

 	an optional context (context),

 	an optional container mapping (array of strings),

	an optional direction mapping ("ltr" or "rtl"),

 	an optional index mapping (string),

 	an optional language mapping (string),

 	an optional nest value (string),

 	and an optional type mapping (IRI).

 A term definition can not only be used to map a term
 to an IRI, but also to map a term to a keyword,
 in which case it is referred to as a keyword alias.

 When processing, active context is initialized
 with a null inverse context,
 without any term definitions,
 vocabulary mapping, default base direction, or default language.
 If a local context is encountered during processing, a new
 active context is created by cloning the existing
 active context. Then the information from the
 local context is merged into the new active context.
 Given that local contexts may contain
 references to remote contexts, this includes their retrieval.

 4.1.1 Overview
This section is non-normative.

 First we prepare a new active context result by cloning
 the current active context. Then we normalize the form of the original
 local context to an array.
 Local contexts may be in the form of a
 map, a string, or an array containing
 a combination of the two. Finally we process each context contained
 in the local context array as follows.

 If context is a string, it represents a reference to
 a remote context. We dereference the remote context and replace context
 with the value of the @context entry of the top-level object in the
 retrieved JSON-LD document.
 If there's no such entry, an
 invalid remote context
 has been detected. Otherwise, we process context by recursively using
 this algorithm ensuring that there is no cyclical reference.

 If context is a map,
 it is a context definition.
 We first update
 the base IRI,
 the default base direction,
 the default language,
 context propagation,
 the processing mode,
 and the vocabulary mapping
 by processing six specific keywords:
 @base,
 @direction,
 @language,
 @propagate,
 @version,
 and @vocab.
 These are handled before any other entries in the local context because
 they affect how the other entries are processed.
 If context contains @import, it is retrieved and is reverse-merged
 into the containing context, allowing JSON-LD 1.0 contexts to be upgraded to JSON-LD 1.1.
 Please note that @base is ignored when processing remote contexts.

 If context is not to be propagated,
 a reference to the previous context is retained so that
 it may be rolled back when a new node object is entered.
 By default, all contexts are propagated, other than type-scoped contexts.

 When an active context is initialized, the value
 of the original base URL
 is initialized from the original documentUrl
 of the document containing the initial context, if available,
 otherwise from the base API option.
 This is necessary when resetting the active context
 by setting it to null
 to retain the original default base IRI.

 When initialized, or when any entry of
 an active context is changed,
 or any associated term definition is added, changed, or removed,
 the inverse context field
 in active context is set to null.

 Then, for every other entry in local context, we update
 the term definition in result. Since
 term definitions in a local context
 may themselves contain terms or
 compact IRIs, we may need to recurse.
 When doing so, we must ensure that there is no cyclical dependency,
 which is an error. After we have processed any
 term definition dependencies,
 we update the current term definition,
 which may be a keyword alias.

 Finally, we return result as the new active context.

 4.1.2 Algorithm

 This algorithm specifies how a new active context is updated
 with a local context. The algorithm takes three required
 and four optional
 input variables.
 The required inputs are
 an active context,
 a local context,
 and a base URL used when resolving relative context URLs.
 The optional inputs are
 an array remote contexts,
 defaulting to a new empty array, which is used to detect cyclical context inclusions,

 override protected, defaulting to false,
 which is used to allow changes to protected terms,
 propagate, defaulting to true
 to mark term definitions associated with non-propagated contexts,
 and validate scoped context defaulting to true,
 which is used to limit recursion when validating possibly recursive scoped contexts..

 	Initialize result to the result of cloning
 active context,
 with inverse context set to null..

 	If local context is an object containing the member @propagate,
 its value MUST be boolean true or false,
 set propagate to that value.
 Note
Error handling is performed in step 5.11.

 	If propagate is false, and result
 does not have a previous context, set previous context
 in result to active context.

 	If local context is not an array,
 set local context to an array containing only
 local context.

 	
 For each item context in local context:

 	If context is null:

 	If override protected is false and active context
 contains any protected term definitions,
 an invalid context nullification
 has been detected and processing is aborted.

 	Initialize result as a
 newly-initialized active context,

 setting both base IRI and original base URL to the value of
 original base URL in active context,
 and, if propagate is false,
 previous context in result
 to the previous value of result.

 	Continue with the next context.

 	If context is a string,

 	Initialize context to the result of resolving context against
 base URL. If base URL is not a valid IRI,
 then context MUST be a valid IRI, otherwise
 a loading document failed error
 has been detected and processing is aborted.
 Note

 base URL is often not the same as base
 or the base IRI of the active context.

 	If validate scoped context is false,
 and remote contexts already includes context
 do not process context further and continue to any next
 context in local context.

 	If the number of entries in the remote contexts array
 exceeds a processor defined limit, a
 context overflow
 error has been detected and processing is aborted;
 otherwise, add context to remote contexts.

 	If context was previously dereferenced,
 then the processor MUST NOT do a further dereference, and
 context is set to the
 previously established internal representation:
 set context document to the previously dereferenced document,
 and set loaded context to the value of the @context
 entry from the document in context document.
 Note
Only the @context entry need be retained.

 	Otherwise, set context document
 to the RemoteDocument obtained
 by dereferencing context using
 the LoadDocumentCallback, passing context
 for url,
 and http://www.w3.org/ns/json-ld#context for profile
 and for requestProfile.

 	If context cannot be dereferenced,

 or the document from context document
 cannot be transformed into the internal representation
 ,
 a loading remote context failed
 error has been detected and processing is aborted.

 	If the document has no
 top-level map with an @context entry, an
 invalid remote context
 has been detected and processing is aborted.

 	Set loaded context to the value of that entry.

 	Set result to the result of recursively calling this algorithm,
 passing result for active context,
 loaded context for local context,

 the documentUrl of context document for base URL,

 a copy of remote contexts,
 and validate scoped context.
 Note
If context was previously dereferenced,
 processors MUST make provisions for retaining the base URL
 of that context for this step to enable the resolution of any
 relative context URLs that may be encountered during processing.

 	Continue with the next context.

 	If context is not a map, an
 invalid local context
 error has been detected and processing is aborted.

 	Otherwise, context is a context definition.

 	If context has an @version entry:

 	If the associated value is not 1.1,
 an invalid @version value
 has been detected, and processing is aborted.
 Note
The use of 1.1 for the value of @version is intended to
 cause a JSON-LD 1.0 processor to stop processing.
 Although it is clearly meant to be related to JSON-LD 1.1, it does not
 otherwise adhere to the requirements for Semantic Versioning.
 Implementations may require
 special consideration
 when comparing the values of numbers with a non-zero fractional part.

 	If processing mode
 is set to json-ld-1.0,
 a processing mode conflict
 error has been detected and processing is aborted.

 	If context has an @import entry:

 	If processing mode is json-ld-1.0,
 an invalid context entry
 error has been detected and processing is aborted.

 	Otherwise, if the value of @import is not a string,
 an invalid @import value
 error has been detected and processing is aborted.

 	Initialize import to the result of resolving the value of @import against
 base URL.

 	Dereference import using
 the LoadDocumentCallback, passing import
 for url,
 and http://www.w3.org/ns/json-ld#context for profile
 and for requestProfile.

 	If import cannot be dereferenced,
 or cannot be transformed into the internal representation,
 a loading remote context failed
 error has been detected and processing is aborted.

 	If the dereferenced document has no
 top-level map with an @context entry,
 or if the value of @context is not a context definition
 (i.e., it is not an map),
 an invalid remote context
 has been detected and processing is aborted; otherwise,
 set import context to the value of that entry.

 	If import context has a @import entry,
 an invalid context entry
 error has been detected and processing is aborted.

 	Set context to the result of merging context
 into import context, replacing common entries
 with those from context.

 	If context has an @base entry and remote contexts is empty, i.e., the currently
 being processed context is not a remote context:

 	Initialize value to the value associated with the
 @base entry.

 	If value is null, remove the
 base IRI of result.

 	Otherwise, if value is an IRI,
 the base IRI of result is set to value.

 	Otherwise, if value is a relative IRI reference and
 the base IRI of result is not null,
 set the base IRI of result to the result of
 resolving value against the current base IRI
 of result.

 	Otherwise, an
 invalid base IRI
 error has been detected and processing is aborted.

 	If context has an @vocab entry:

 	Initialize value to the value associated with the
 @vocab entry.

 	If value is null, remove
 any vocabulary mapping from result.

 	Otherwise, if value is
 an IRI
 or blank node identifier, the vocabulary mapping
 of result is set to
 the result of
 IRI expanding value
 using true for document relative
 .
 If it is not an IRI, or a blank node identifier, an
 invalid vocab mapping
 error has been detected and processing is aborted.
 Note
The use of blank node identifiers to value for @vocab is obsolete,
 and may be removed in a future version of JSON-LD.

 	If context has an @language entry:

 	Initialize value to the value associated with the
 @language entry.

 	If value is null, remove
 any default language from result.

 	Otherwise, if value is a string, the
 default language of result is set to
 value.
 If it is not a string, an
 invalid default language
 error has been detected and processing is aborted.
 If value is not well-formed according to
 section 2.2.9 of [BCP47],
 processors SHOULD issue a warning.
 Note
Processors MAY normalize language tags to lower case.

 	If context has an @direction entry:

 	If processing mode is json-ld-1.0,
 an invalid context entry
 error has been detected and processing is aborted.

 	Initialize value to the value associated with the
 @direction entry.

 	If value is null, remove
 any base direction from result.

 	Otherwise, if value is a string, the
 base direction of result is set to
 value. If it is not null, "ltr", or "rtl", an
 invalid base direction
 error has been detected and processing is aborted.

 	If context has an @propagate entry:

 	If processing mode is json-ld-1.0,
 an invalid context entry
 error has been detected and processing is aborted.

 	Otherwise, if the value of @propagate is not boolean true or false,
 an invalid @propagate value
 error has been detected and processing is aborted.
 Note
The previous context is actually set earlier in this algorithm;
 the previous two steps exist for error checking only.

 	Create a map defined to keep
 track of whether or not a term has already been defined
 or is currently being defined during recursion.

 	For each key-value pair in context where
 key is not
 @base,
 @direction,
 @import,
 @language,
 @propagate,
 @protected,
 @version, or
 @vocab,
 invoke the
 Create Term Definition algorithm,
 passing result for active context,
 context for local context, key,
 defined,

 base URL,
 the value of the @protected
 entry from context, if any, for protected,
 override protected,
 and a copy of remote contexts.

 	Return result.

 4.2 Create Term Definition

 This algorithm is called from the
 Context Processing algorithm
 to create a term definition in the active context
 for a term being processed in a local context.

 4.2.1 Overview
This section is non-normative.

 Term definitions are created by
 parsing the information in the given local context for the
 given term. If the given term is a
 compact IRI, it may omit an IRI mapping by
 depending on its prefix having its own
 term definition. If the prefix is
 an entry in the local context, then its term definition
 must first be created, through recursion, before continuing. Because a
 term definition can depend on other
 term definitions, a mechanism must
 be used to detect cyclical dependencies. The solution employed here
 uses a map, defined, that keeps track of whether or not a
 term has been defined or is currently in the process of
 being defined. This map is checked before any recursion is attempted.

 After all dependencies for a term have been defined, the rest of
 the information in the local context for the given
 term is taken into account, creating the appropriate
 IRI mapping, container mapping, and
 type mapping,
 language mapping,
 or direction mapping
 for the term.

 4.2.2 Algorithm

 The algorithm has four required and five optional inputs.
 The required inputs are
 an active context,
 a local context,
 a term,
 and a map defined.
 The optional inputs are
 base URL defaulting to null,
 protected which defaults to false,
 and override protected, defaulting to false,
 which is used to allow changes to protected terms,
 an array remote contexts,
 defaulting to a new empty array, which is used to detect cyclical context inclusions,
 and validate scoped context defaulting to true,
 which is used to limit recursion when validating possibly recursive scoped contexts..

 	If defined contains the entry term and the associated
 value is true (indicating that the
 term definition has already been created), return. Otherwise,
 if the value is false, a
 cyclic IRI mapping
 error has been detected and processing is aborted.

 	If term is the empty string (""),
 an invalid term definition
 error has been detected and processing is aborted.
 Otherwise, set the value associated with defined's term entry to
 false. This indicates that the term definition
 is now being created but is not yet complete.

 	Initialize value to a copy of the value associated with the entry
 term in local context.

 	If term is @type,
 and processing mode is json-ld-1.0,
 a keyword redefinition error has
 been detected and processing is aborted.
 At this point,
 value MUST be a map with only either or both of the following entries:

 	An entry for @container with value @set.

 	An entry for @protected.

 Any other value means that a
 keyword redefinition error has
 been detected and processing is aborted.

 	Otherwise, since keywords cannot be overridden,
 term MUST NOT be a keyword and a
 keyword redefinition
 error has been detected and processing is aborted.
 If term has the form of a keyword
 (i.e., it matches the ABNF rule "@"1*ALPHA from [RFC5234]),
 return; processors SHOULD generate a warning.

 	Initialize previous definition to any existing
 term definition for term in active context,
 removing that term definition from active context.

 	If value is null,
 convert it to a map consisting of a single entry whose
 key is @id and whose value is null.

 	Otherwise, if value is a string, convert it
 to a map consisting of a single entry whose
 key is @id and whose value is value.
 Set simple term to true.

 	Otherwise, value MUST be a map, if not, an
 invalid term definition
 error has been detected and processing is aborted.
 Set simple term to false.

 	Create a new term definition, definition,
 initializing prefix flag to false,
 protected to protected,
 and reverse property to false.

 	If value has an @protected entry,
 set the protected flag in definition to the value of this entry.
 If the value of @protected is not a boolean,
 an invalid @protected value error has been detected and processing is aborted.
 If processing mode is json-ld-1.0,
 an invalid term definition
 has been detected and processing is aborted.

 	If value contains the entry @type:

 	Initialize type to the value associated with the
 @type entry, which MUST be a string. Otherwise, an
 invalid type mapping
 error has been detected and processing is aborted.

 	Set type to the result of
 IRI expanding type,
 using local context, and defined.

 	If the expanded type is
 @json or @none, and processing mode is json-ld-1.0,
 an invalid type mapping
 error has been detected and processing is aborted.

 	Otherwise, if the expanded type is
 neither @id, nor @json,
 nor @none,
 nor @vocab,
 nor an IRI,
 an invalid type mapping
 error has been detected and processing is aborted.

 	Set the type mapping for definition to type.

 	If value contains the entry @reverse:

 	If value contains @id or @nest, entries, an
 invalid reverse property
 error has been detected and processing is aborted.

 	If the value associated with the @reverse entry
 is not a string, an
 invalid IRI mapping
 error has been detected and processing is aborted.

 	If the value associated with the @reverse entry is a string
 having the form of a keyword
 (i.e., it matches the ABNF rule "@"1*ALPHA from [RFC5234]),
 return; processors SHOULD generate a warning.

 	Otherwise, set the IRI mapping of definition to the
 result of
 IRI expanding
 the value associated with the @reverse entry,
 using local context, and defined.
 If the result does not have the form of an IRI or a blank node identifier,
 an invalid IRI mapping
 error has been detected and processing is aborted.

 	If value contains an @container entry,
 set the container mapping of definition
 to an array containing its value;
 if its value is neither @set, nor
 @index, nor null, an
 invalid reverse property
 error has been detected (reverse properties only support set- and
 index-containers) and processing is aborted.

 	Set the reverse property flag of definition
 to true.

 	Set the term definition of term in
 active context to definition and the
 value associated with defined's entry term to
 true and return.

 	If value contains the entry @id and its value
 does not equal term:

 	If the @id entry of value
 is null, the term is not used for IRI expansion, but is
 retained to be able to detect future redefinitions of this term.

 	Otherwise:

 	If the value associated with the @id entry is not a string, an
 invalid IRI mapping
 error has been detected and processing is aborted.

 	If the value associated with the @id entry
 is not a keyword, but
 has the form of a keyword
 (i.e., it matches the ABNF rule "@"1*ALPHA from [RFC5234]),
 return; processors SHOULD generate a warning.

 	Otherwise, set the IRI mapping of definition to the
 result of
 IRI expanding
 the value associated with the @id entry,
 using local context, and defined.
 If the resulting IRI mapping is neither a keyword, nor an
 IRI, nor a blank node identifier, an
 invalid IRI mapping
 error has been detected and processing is aborted; if it equals @context, an
 invalid keyword alias
 error has been detected and processing is aborted.

 	If the term contains a colon (:)
 anywhere but as the first or last character of term,
 or if it contains a slash (/) anywhere:

 	Set the value associated with defined's term entry to
 true.

 	If the result of IRI expanding term
 using local context, and defined,
 is not the same as the IRI mapping of definition,
 an invalid IRI mapping
 error has been detected and processing is aborted.

 	If term contains neither a colon (:) nor a slash (/),
 simple term is true,
 and if the IRI mapping of definition
 is either an IRI ending with a gen-delim character,
 or a blank node identifier,
 set the prefix flag in definition to true.

 	
 Otherwise if the term contains a colon (:)
 anywhere after the first character:

 	If term is a compact IRI with a
 prefix that is an entry in local context
 a dependency has been found. Use this algorithm recursively passing
 active context, local context, the
 prefix as term, and defined.

 	If term's prefix has a
 term definition in active context, set
 the IRI mapping of definition to the result of
 concatenating the value associated with the prefix's
 IRI mapping and the term's suffix.

 	Otherwise, term is an IRI or
 blank node identifier. Set the IRI mapping
 of definition to term.

 	
 Otherwise if the term contains a slash (/):

 	Term is a relative IRI reference.

 	Set the IRI mapping of definition to the
 result of IRI expanding term.
 If the resulting IRI mapping is not an IRI, an
 invalid IRI mapping
 error has been detected and processing is aborted.

 	Otherwise, if term is @type, set the IRI mapping
 of definition to @type.

 	Otherwise, if active context has a
 vocabulary mapping, the IRI mapping
 of definition is set to the result of concatenating the value
 associated with the vocabulary mapping and term.
 If it does not have a vocabulary mapping, an
 invalid IRI mapping
 error been detected and processing is aborted.

 	If value contains the entry @container:

 	Initialize container to the value associated with the
 @container entry, which MUST be either
 @graph,
 @id,
 @index,
 @language,
 @list,
 @set,
 @type,

 or an array containing exactly any one of those keywords,
 an array containing @graph and
 either @id or @index optionally
 including @set,
 or an array containing a combination of @set and any of
 @index, @graph,
 @id, @type,
 @language in any order
 .
 Otherwise, an
 invalid container mapping
 has been detected and processing is aborted.

 	If the container value
 is @graph, @id, or @type, or is otherwise not a string,
 generate an invalid container mapping
 error and abort processing if processing mode is json-ld-1.0.

 	Set the container mapping of definition to
 container
 coercing to an array, if necessary.

 	If the container mapping of definition includes @type:

 	If type mapping in definition is undefined, set it to @id.

 	If type mapping in definition is neither @id nor @vocab,
 an invalid type mapping
 error has been detected and processing is aborted.

 	If value contains the entry @index:

 	If processing mode is json-ld-1.0 or
 container mapping does not include @index,
 an invalid term definition
 has been detected and processing is aborted.

 	Initialize index to the value associated with the
 @index entry.
 If the result of IRI expanding that value is not an IRI,
 an
 invalid term definition
 has been detected and processing is aborted.

 	Set the index mapping of definition to index

 	If value contains the entry @context:

 	If processing mode is json-ld-1.0, an
 invalid term definition
 has been detected and processing is aborted.

 	Initialize context to the value associated with the
 @context entry, which is treated as a local context.

 	Invoke the Context Processing algorithm
 using the active context, context as local context,
 base URL,
 true for override protected,
 a copy of remote contexts,
 and false for validate scoped context.
 If any error is detected, an
 invalid scoped context error
 has been detected and processing is aborted.
 Note
The result of the Context Processing algorithm
 is discarded; it is called to detect errors at definition time.
 If used, the context will be re-processed and applied to the active context
 as part of expansion or compaction.

 	Set the local context of definition to context,
 and base URL to base URL.

 	If value contains the entry @language and
 does not contain the entry @type:

 	Initialize language to the value associated with the
 @language entry, which MUST be either null
 or a string.
 If language is not well-formed according to
 section 2.2.9 of [BCP47],
 processors SHOULD issue a warning.
 Otherwise, an invalid language mapping
 error has been detected and processing is aborted.

 	Set the language mapping of definition to language.
 Note
Processors MAY normalize language tags to lower case.

 	If value contains the entry @direction and
 does not contain the entry @type:

 	Initialize direction to the value associated with the
 @direction entry, which MUST be either null,
 "ltr", or "rtl". Otherwise, an
 invalid base direction
 error has been detected and processing is aborted.

 	Set the direction mapping
 of definition to direction.

 	If value contains the entry @nest:

 	If processing mode is json-ld-1.0, an
 invalid term definition
 has been detected and processing is aborted.

 	Initialize nest value in definition to the value associated with the
 @nest entry, which MUST be a string and
 MUST NOT be a keyword other than @nest. Otherwise, an
 invalid @nest value
 error has been detected and processing is aborted.

 	If value contains the entry @prefix:

 	If processing mode is json-ld-1.0, or if
 term contains a colon (:) or slash (/), an
 invalid term definition
 has been detected and processing is aborted.

 	Set the prefix flag to the value associated with the
 @prefix entry, which MUST be a boolean. Otherwise, an
 invalid @prefix value
 error has been detected and processing is aborted.

 	If the prefix flag of definition is set to true,
 and its IRI mapping is a keyword,
 an invalid term definition
 has been detected and processing is aborted.

 	If value contains any entry other than @id,
 @reverse, @container,
 @context,
 @direction,
 @index,
 @language,
 @nest,
 @prefix,
 @protected,
 or @type,
 an invalid term definition error has
 been detected and processing is aborted.

 	If override protected is false
 and previous definition exists and is protected;

 	If definition is not the same as previous definition
 (other than the value of protected),
 a protected term redefinition error has been detected,
 and processing is aborted.

 	Set definition to previous definition to retain the value
 of protected.

 	Set the term definition of term in
 active context to definition and set the value
 associated with defined's entry term to
 true.

 4.3 Inverse Context Creation

 When there is more than one term that could be chosen
 to compact an IRI, it has to be ensured that the term
 selection is both deterministic and represents the most context-appropriate
 choice whilst taking into consideration algorithmic complexity.

 In order to make term selections, the concept of an
 inverse context is introduced. An inverse context
 is essentially a reverse lookup table that maps
 container mapping,
 type mappings, and
 language mappings to a simple
 term for a given active context. A
 inverse context only needs to be generated for an
 active context if it is being used for compaction.

 To make use of an inverse context, a list of preferred
 container mapping and the
 type mapping or language mapping are gathered
 for a particular value associated with an IRI. These parameters
 are then fed to the Term Selection algorithm,
 which will find the term that most appropriately
 matches the value's mappings.

 4.3.1 Overview
This section is non-normative.

 To create an inverse context for a given
 active context, each term in the
 active context is visited, ordered by length, shortest
 first (ties are broken by choosing the lexicographically least
 term). For each term, an entry is added to
 the inverse context for each possible combination of
 container mapping and type mapping
 or language mapping that would legally match the
 term. Illegal matches include differences between a
 value's type mapping or language mapping and
 that of the term. If a term has no
 container mapping, type mapping, or
 language mapping (or some combination of these), then it
 will have an entry in the inverse context using the special
 key @none. This allows the
 Term Selection algorithm to fall back
 to choosing more generic terms when a more
 specifically-matching term is not available for a particular
 IRI and value combination.

 Although normalizing language tags is optional,
 the inverse context creates entries based on normalized
 language tags, so that the proper term can be selected
 regardless of representation.

 4.3.2 Algorithm

 The algorithm takes one required input: the active context that
 the inverse context is being created for.

 	Initialize result to an empty map.

 	Initialize default language to @none.
 If the active context has a default language,
 set default language to the default language from the active context
 normalized to lower case.

 	For each key term and value term definition in
 the active context, ordered by shortest term
 first (breaking ties by choosing the lexicographically least
 term):

 	If the term definition is null,
 term cannot be selected during compaction,
 so continue to the next term.

 	Initialize container to @none.

 If the container mapping is not empty, set container
 to the concatenation of all values of the container mapping
 in lexicographical order
 .

 	Initialize var to the value of the IRI mapping
 for the term definition.

 	If var is not an entry of result, add
 an entry where the key is var and the value
 is an empty map to result.

 	Reference the value associated with the var entry in
 result using the variable container map.

 	If container map has no container entry,
 create one and set its value to a new
 map with three entries.
 The first entry is @language and its value is a new empty
 map, the second entry is @type
 and its value is a new empty map,
 and the third entry is @any
 and its value is a new map with the entry
 @none set to the term being processed.

 	Reference the value associated with the container entry
 in container map using the variable type/language map.

 	Reference the value associated with the @type
 entry in type/language map using the variable
 type map.

 	Reference the value associated with the @language
 entry in type/language map using the variable
 language map.

 	If the term definition indicates that the term
 represents a reverse property:

 	If type map does not have an @reverse
 entry, create one and set its value to the term
 being processed.

 	Otherwise, if term definition has a
 type mapping which is @none:

 	If language map does not have an @any
 entry, create one and set its value to the term
 being processed.

 	If type map does not have an @any
 entry, create one and set its value to the term
 being processed.

 	Otherwise, if term definition has a
 type mapping:

 	If type map does not have an entry corresponding
 to the type mapping in term definition,
 create one and set its value to the term
 being processed.

 	Otherwise, if term definition has both
 a language mapping and a direction mapping:

 	Create a new variable lang dir.

 	If neither the language mapping nor the direction mapping
 are null, set lang dir to the concatenation
 of language mapping and direction mapping
 separated by an underscore ("_")
 normalized to lower case.

 	Otherwise, if language mapping is not null,
 set lang dir to the language mapping,
 normalized to lower case.

	Otherwise, if direction mapping is not null,
 set lang dir to direction mapping
 preceded by an underscore ("_").

 	Otherwise, set lang dir to @null.

 	If language map does not have a lang dir
 entry, create one and set its value to the term
 being processed.

 	Otherwise, if term definition has a
 language mapping (might be null):

 	If the language mapping equals null,
 set language to @null; otherwise
 to the language mapping,
 normalized to lower case.

 	If language map does not have a language entry,
 create one and set its value to the term
 being processed.

 	Otherwise, if term definition has a
 direction mapping (might be null):

 	If the direction mapping equals null,
 set direction to @none; otherwise
 to direction mapping preceded by an underscore ("_").

 	If language map does not have a direction entry,
 create one and set its value to the term
 being processed.

 	Otherwise, if active context has a
 default base direction:

 	Initialize a variable lang dir
 with the concatenation of default language and default base direction,
 separate by an underscore ("_"),
 normalized to lower case.

 	If language map does not have a lang dir entry,
 create one and set its value to the term
 being processed.

 	If language map does not have an @none entry,
 create one and set its value to the term
 being processed.

 	If type map does not have an @none entry,
 create one and set its value to the term
 being processed.

 	Otherwise:

 	If language map does not have a default language entry
 (after being normalized to lower case),
 create one and set its value to the term
 being processed.

 	If language map does not have an @none
 entry, create one and set its value to the term
 being processed.

 	If type map does not have an @none
 entry, create one and set its value to the term
 being processed.

 	Return result.

 4.4 Term Selection

 This algorithm, invoked via the IRI Compaction algorithm,
 makes use of an active context's
 inverse context to find the term that is best
 used to compact an IRI. Other
 information about a value associated with the IRI is given,
 including which container mapping
 and which type mapping or language mapping would
 be best used to express the value.

 4.4.1 Overview
This section is non-normative.

 The inverse context's entry for
 the IRI will be first searched according to the preferred
 container mapping, in the order
 that they are given. Amongst terms with a matching
 container mapping, preference will be given to those
 with a matching type mapping or language mapping,
 over those without a type mapping or
 language mapping. If there is no term
 with a matching container mapping then the term
 without a container mapping that matches the given
 type mapping or language mapping is selected. If
 there is still no selected term, then a term
 with no type mapping or language mapping will
 be selected if available. No term will be selected that
 has a conflicting type mapping or language mapping.
 Ties between terms that have the same
 mappings are resolved by first choosing the shortest terms, and then by
 choosing the lexicographically least term. Note that these ties are
 resolved automatically because they were previously resolved when the
 Inverse Context Creation algorithm
 was used to create the inverse context.

 4.4.2 Algorithm

 This algorithm has five required inputs. They are:
 an active context,
 a keyword or IRI var,
 an array containers that represents an
 ordered list of preferred container mapping,
 a string type/language that indicates whether
 to look for a term with a matching type mapping
 or language mapping,
 and an array representing an ordered list of preferred values
 for the type mapping or language mapping to look for.

 	If the active context has a null
 inverse context,
 set inverse context in active context
 to the result of calling the
 Inverse Context Creation algorithm
 using active context.

 	Initialize inverse context to the value of
 inverse context in active context.

 	Initialize container map to the value associated with
 var in the inverse context.

 	For each item container in containers:

 	If container is not an entry of container map, then
 there is no term with a matching
 container mapping for it, so continue to the next
 container.

 	Initialize type/language map to the value associated
 with the container entry in container map.

 	Initialize value map to the value associated
 with type/language entry in type/language map.

 	For each item in preferred values:

 	If item is not an entry of value map,
 then there is no term with a matching
 type mapping or language mapping,
 so continue to the next item.

 	Otherwise, a matching term has been found, return the value
 associated with the item entry in
 value map.

 	No matching term has been found. Return null.

 4.4.3 Examples
This section is non-normative.

 The following examples are intended to illustrate how the term selection algorithm
 behaves for different term definitions and values. It is not comprehensive, but
 intended to illustrate different parts of the algorithm.

 Language Map Term

 If the term definition has "@container": "@language", it will only match a
 value object having no @type.

 Example 14: Term definition with language map

 {
 "@context": {"t": {"@id": "http://example.org/t", "@container": "@language"}}
}

 The inverse context will contain the following:

 {
 "@language": {
 "@language": {"@none": "t"},
 "@type": {"@none": "t"},
 "@any": {"@none": "t"}
 }
}

 Example 15: Language map term with language value

 Given the entry {"http://example.org/t": {"@value": "foo", "@type": "http:/example.org/type"}},
 The algorithm will be invoked as follows:

 	containers

 	["@language", "@language@set", "@set", "@none", "@index", "@index@set"]

 	type/language

 	@language

 	preferred values

 	["en", "@none"]

 The value map will be set to {"@none": "t"},
 as preferred values contains "@none",
 the algorithm returns "t" as the term to use for compaction.

 Datatyped Term

 If the term definition has a datatype, it will only match a
 value object having a matching datatype.

 Example 16: Term definition with datatype

 {
 "@context": {"t": {"@id": "http://example.org/t", "@type": "http:/example.org/type"}}
}

 The inverse context will contain the following:

 {
 "@none": {
 "@language": {},
 "@type": {"http:/example.org/type": "t"},
 "@any": {"@none": "t"}
 }
}

 Example 17: Datatyped term with datatyped value

 Given the entry {"http://example.org/t": {"@value": "foo", "@type": "http:/example.org/type"}},
 The algorithm will be invoked as follows:

 	containers

 	["@set", "@none", "@index", "@index@set"]

 	type/language

 	@type

 	preferred values

 	["http:/example.org/type", "@none"]

 The value map will be set to {"http:/example.org/type": "t"},
 as preferred values contains "http:/example.org/type",
 the algorithm returns "t" as the term to use for compaction.

 Example 18: Datatyped term with simple value

 Given the entry {"http://example.org/t": {"@value": "foo"}},
 The algorithm will be invoked as follows:

 	containers

 	["@set", "@none", "@index", "@index@set", "@language", "@language@set"]

 	type/language

 	@language

 	preferred values

 	["@null", "@none"]

 The value map will be set to {"@none": "t"},
 as no key in preferred values matches a key in value map,
 the algorithm returns null and no term is found.

 Example 19: Datatyped term with object value

 Given the entry {"http://example.org/t": {"@id": "http://example.org/id"}},
 The algorithm will be invoked as follows:

 	containers

 	["@id", "@id@set", "@type", "@set@type", "@set", "@none", "@index", "@index@set"]

 	type/language

 	@type

 	preferred values

 	["@id", "@vocab", "@none"]

 The value map will be set to {"http:/example.org/type": "t"},
 as no key in preferred values matches a key in value map,
 the algorithm returns null and no term is found.

5. Expansion Algorithms

 The following sections describe algorithms for expanding JSON-LD
 documents, IRIs and values.

 5.1 Expansion Algorithm

 This algorithm expands a JSON-LD document, such that all context
 definitions are removed, all terms and
 compact IRIs are expanded to
 IRIs,
 blank node identifiers, or
 keywords and all
 JSON-LD values are expressed in
 arrays in expanded form.

 5.1.1 Overview
This section is non-normative.

 Starting with its root element, we can process the
 JSON-LD document recursively, until we have a fully
 expanded result. When
 expanding an element, we can treat
 each one differently according to its type, in order to break down the
 problem:

 	If the element is null, there is nothing
 to expand.

 	Otherwise, if element is a scalar, we expand it
 according to the Value Expansion algorithm.

 	Otherwise, if the element is an array, then we expand
 each of its items recursively and return them in a new
 array.

 	Otherwise, element is a map. We expand
 each of its entries, adding them to our result, and then we expand
 each value for each entry recursively. Some of the entry keys will be
 terms or
 compact IRIs and others will be
 keywords or simply ignored because
 they do not have definitions in the context. Any
 IRIs will be expanded using the
 IRI Expansion algorithm.

 Finally, after ensuring result is in an array,
 we return result.

 Note
Although the data model,
 based on [RDF11-CONCEPTS], does not support multiple unordered property values,
 this algorithm does not remove duplicates that
 may be found during expansion within an unordered array.
 Other algorithms, such as § 6.1 Compaction Algorithm,
 and § 7.1 Flattening Algorithm, do eliminate
 duplicate values from unordered arrays.
 A future version of this specification may be updated to remove duplicate
 array values when the form a set.

 5.1.2 Algorithm

 The algorithm takes four required and three optional input variables.
 The required inputs are an active context,
 an active property, an element to be expanded,
 and a base URL associated with the documentUrl of the original
 document to expand.
 The optional inputs are the
 frameExpansion
 flag allowing special forms of input used for frame expansion,
 the ordered flag, used to order
 map entry keys lexicographically, where noted,
 and the from map flag, used to control reverting
 previous term definitions in the active context associated with non-propagated contexts.
 If not passed, the optional flags are set to false.

 The algorithm also performs processing steps specific to expanding
 a JSON-LD Frame. For a frame, the @id and
 @type entries can accept an array of IRIs or
 an empty map. The entries of a value object can also
 accept an array of strings, or an empty map.
 Framing also uses additional keyword entries:
 (@explicit, @default,
 @embed, @explicit, @omitDefault, or
 @requireAll) which are preserved through expansion.
 Special processing for a JSON-LD Frame is invoked when the
 frameExpansion flag is set to true.

 Note
As mentioned in Terms [JSON-LD11],
 to avoid forward-compatibility issues, terms should not start with an
 @ character as future versions of JSON-LD may introduce
 additional keywords.
 This algorithm will treat such terms like any other term, i.e., they are ignored unless mapped to an IRI.
 Implementations of this algorithm may consider providing a
 runtime flag to show a warning if such terms are encountered.

 Note
The use of empty terms ("") is not
 allowed as not all programming languages are able to handle empty JSON keys.
 Implementations of this algorithm may consider providing a
 runtime flag to show a warning if such terms are encountered.

 Note
The use of blank node identifiers to label properties is obsolete,
 and may be removed in a future version of JSON-LD.
 Implementations of this algorithm may consider providing a
 runtime flag to show a warning if such terms are encountered.

 	If element is null, return null.

 	If active property is @default,
 initialize the frameExpansion flag to false.

 	If active property has a term definition in active context
 with a local context, initialize property-scoped context to that local context.

 	If element is a scalar,

 	If active property is null or @graph,
 drop the free-floating scalar by returning null.

 	If property-scoped context is defined,
 set active context to the result of the
 Context Processing algorithm,
 passing active context, property-scoped context as local context,
 and base URL from the term definition for active property
 in active context.

 	Return the result of the
 Value Expansion algorithm, passing the
 active context, active property, and
 element as value.

 	If element is an array,

 	Initialize an empty array, result.

 	For each item in element:

 	Initialize expanded item to the result of using this
 algorithm recursively, passing active context,
 active property, item as element,
 base URL,
 the frameExpansion
 ordered,
 and from map flags.

 	If the container mapping
 of active property includes @list,
 and expanded item is an
 array, set expanded item to a new
 map containing the entry
 @list where the value is the original
 expanded item.

 	If expanded item is an array, append each
 of its items to result. Otherwise, if
 expanded item is not null, append it to result.

 	Return result.

 	Otherwise element is a map.

 	If active context has a previous context,
 the active context is not propagated.
 If from map is undefined or false,
 and element does not contain an entry expanding to @value,
 and element does not consist of a single entry expanding to @id
 (where entries are IRI expanded,
 set active context to previous context from active context,
 as the scope of a term-scoped context does not apply when processing new node objects.

 	If property-scoped context is defined,
 set active context to the result of the
 Context Processing algorithm,
 passing active context, property-scoped context as local context,
 base URL from the term definition for active property,
 in active context
 and true for override protected.

 	If element contains the entry @context, set
 active context to the result of the
 Context Processing algorithm,
 passing active context, the value of the
 @context entry as local context
 and base URL.

 	Initialize type-scoped context to active context.
 This is used for expanding values that may be relevant to any previous
 type-scoped context.

 	For each key and value in element
 ordered lexicographically by key
 where key IRI expands to @type:

 	Convert value into an array, if necessary.

 	For each term which is a value of value ordered lexicographically,
 if term is a string,
 and term's term definition in type-scoped context
 has a local context, set active context to the result
 Context Processing algorithm,
 passing active context,
 the value of the
 term's local context as local context,
 base URL from the term definition for value
 in active context,
 and false for propagate.

 	Initialize two empty maps, result
 and nests.
 Initialize input type to expansion of the last value of the first entry in element
 expanding to @type (if any), ordering entries lexicographically by key.
 Both the key and value of the matched entry are
 IRI expanded.

 	
 For each key and value in element,
 ordered lexicographically by key if ordered is true:

 	If key is @context, continue to
 the next key.

 	Initialize expanded property to the result of
 IRI expanding key.

 	If expanded property is null or it neither
 contains a colon (:) nor it is a keyword,
 drop key by continuing to the next key.

 	If expanded property is a keyword:

 	If active property equals @reverse, an
 invalid reverse property map
 error has been detected and processing is aborted.

 	If result already has an expanded property entry,
 other than @included or @type
 (unless processing mode is json-ld-1.0),
 a colliding keywords
 error has been detected and processing is aborted.

 	If expanded property is @id:

 	If value is not a string, an
 invalid @id value
 error has been detected and processing is aborted.

 When the frameExpansion flag is set, value
 MAY be an empty map, or an array of one
 or more strings.

 	Otherwise,
 set expanded value to the result of
 IRI expanding value
 using true for document relative
 and false for vocab.

 When the frameExpansion flag is set, expanded value will be
 an array of one or more of the values, with string
 values expanded using the IRI Expansion algorithm as above.

 	If expanded property is @type:

 	If value
 is neither a string nor an array of
 strings, an
 invalid type value
 error has been detected and processing is aborted.

 When the frameExpansion flag is set, value
 MAY be an empty map, or a default object
 where the value of @default is restricted to be
 an IRI.
 All other values mean that invalid type value
 error has been detected and processing is aborted.

 	If value
 is an empty map, set expanded value to value.

 	Otherwise, if value
 is a default object, set expanded value to
 a new default object with the value of @default set
 to the result of
 IRI expanding value
 using type-scoped context for active context,
 and true for document relative.

 	Otherwise,
 set expanded value to the result of
 IRI expanding
 each of its values
 using type-scoped context for active context,
 and true for document relative.

 	If result already has an entry for @type,
 prepend the value of @type in result to expanded value,
 transforming it into an array, if necessary.
 Note

 No transformation from a string value to an array
 expanded value is implied, and the form or value
 should be preserved in expanded value.

 	If expanded property is @graph, set
 expanded value to the result of using this algorithm
 recursively passing active context, @graph
 for active property, value for element,
 base URL,
 and the frameExpansion
 and ordered flags,

 ensuring that expanded value is an array of one or more maps.

 	If expanded property is @included:

 	If processing mode is json-ld-1.0,
 continue with the next key from element.

 	Set expanded value to the result of using
 this algorithm recursively passing active context,
 null for active property,
 value for element,
 base URL,
 and the frameExpansion
 and ordered flags,
 ensuring that the result is an array.

 	If any element of expanded value is not a node object,
 an invalid @included value
 error has been detected and processing is aborted.

 	If result already has an entry for @included,
 prepend the value of @included in result to expanded value.

 	If expanded property is @value:

 	If
 input type is @json,
 set expanded value to value.
 If processing mode is json-ld-1.0,
 an invalid value object value
 error has been detected and processing is aborted.

 	Otherwise, if value is not a scalar or null,
 an invalid value object value
 error has been detected and processing is aborted.
 When the frameExpansion flag is set, value
 MAY be an empty map or an array of
 scalar values.

 	Otherwise, set expanded value to value.
 When the frameExpansion flag is set,
 expanded value will be an
 array of one or more string values
 or an array containing an empty map.

 	If expanded value
 is null, set the @value
 entry of result to null and continue with the
 next key from element. Null values need to be preserved
 in this case as the meaning of an @type entry depends
 on the existence of an @value entry.

 	If expanded property is @language:

 	If value is not a string, an
 invalid language-tagged string
 error has been detected and processing is aborted.
 When the frameExpansion flag is set, value
 MAY be an empty map or an array of zero or more
 strings.

 	
 Otherwise, set expanded value to value.
 If value is not well-formed according to
 section 2.2.9 of [BCP47],
 processors SHOULD issue a warning.
 When the frameExpansion flag is set,
 expanded value will be an
 array of one or more string values
 or an array containing an empty map.
 Note
Processors MAY normalize language tags to lower case.

 	If expanded property is @direction:

 	If processing mode is json-ld-1.0,
 continue with the next key from element.

 	If value is neither "ltr" nor "rtl", an
 invalid base direction
 error has been detected and processing is aborted.
 When the frameExpansion flag is set, value
 MAY be an empty map or an array of zero or more
 strings.

 	Otherwise, set expanded value to value.
 When the frameExpansion flag is set,
 expanded value will be an
 array of one or more string values
 or an array containing an empty map.

 	If expanded property is @index:

 	If value is not a string, an
 invalid @index value
 error has been detected and processing is aborted.

 	Otherwise,
 set expanded value to value.

 	If expanded property is @list:

 	If active property is null or
 @graph, continue with the next key
 from element to remove the free-floating list.

 	Otherwise, initialize expanded value to the result of using
 this algorithm recursively passing active context,
 active property, value for element,
 base URL,
 and the frameExpansion
 and ordered flags,
 ensuring that the result is an array..

 	If expanded property is @set, set
 expanded value to the result of using this algorithm
 recursively, passing active context,
 active property, value for element,
 base URL,
 and the frameExpansion
 and ordered flags.

 	If expanded property is @reverse:

 	If value is not a map, an
 invalid @reverse value
 error has been detected and processing is aborted.

 	Otherwise initialize expanded value to the result of using this
 algorithm recursively, passing active context,
 @reverse as active property,
 value as element,
 base URL,
 and the frameExpansion
 and ordered flags.

 	If expanded value contains an @reverse entry,
 i.e., properties that are reversed twice, execute for each of its
 property and item the following steps:

 	Use add value to add item
 to the property entry in result
 using true for as array.

 	If expanded value contains an entry other than @reverse:

 	Set reverse map to the value
 of the @reverse entry in result,
 initializing it to an empty map, if necessary.

 	For each property and items in expanded value
 other than @reverse:

 	For each item in items:

 	If item is a value object or list object, an
 invalid reverse property value
 has been detected and processing is aborted.

 	Use add value to add item
 to the property entry in reverse map
 using true for as array.

 	Continue with the next key from element.

 	If expanded property is @nest,
 add key to nests, initializing it to an empty array,
 if necessary.
 Continue with the next key from element.

 	When the frameExpansion flag is set,
 if expanded property is any other
 framing keyword (@default,
 @embed, @explicit, @omitDefault, or
 @requireAll),
 set expanded value to the result of performing the
 Expansion Algorithm
 recursively, passing active context,
 active property, value for element,
 base URL,
 and the frameExpansion
 and ordered flags.

 	Unless expanded value is null,
 expanded property is @value,
 and input type is not @json,
 set the expanded property entry of result to
 expanded value.

 	Continue with the next key from element.

 	Initialize container mapping to key's container mapping in
 active context.

 	If key's term definition in active context
 has a type mapping of @json,
 set expanded value to a new map, set the entry
 @value to value, and set the entry @type to @json.

 	Otherwise, if container mapping includes @language and
 value is a map then value
 is expanded from a language map
 as follows:

 	Initialize expanded value to an empty
 array.

 	Initialize direction to the default base direction from active context.

 	If key's term definition in active context
 has a direction mapping,
 update direction with that value.

 	For each key-value pair language-language value
 in value, ordered lexicographically by language if ordered is true:

 	If language value is not an array
 set language value to an array containing only
 language value.

 	For each item in language value:

 	If item is null,
 continue to the next entry in language value.

 	item must be a string,
 otherwise an
 invalid language map value
 error has been detected and processing is aborted.

 	Initialize a new map v
 consisting of two
 key-value pairs: (@value-item)
 and (@language-language).
 If item is neither @none nor well-formed according to
 section 2.2.9 of [BCP47],
 processors SHOULD issue a warning.
 Note
Processors MAY normalize language tags to lower case.

 	If language is @none,
 or expands to @none, remove @language from v.

 	
 If direction is not null,
 add an entry for @direction to v with direction.

 	Append v to expanded value.

 	Otherwise, if container mapping
 includes @index,
 @type, or @id and
 value is a map then value
 is expanded from an map as follows:

 	Initialize expanded value to an empty array.

 	Initialize index key to
 the key's index mapping in active context,
 or @index, if it does not exist.

 	For each key-value pair index-index value
 in value, ordered lexicographically by index
 if ordered is true:

 	If container mapping includes @id or @type,
 initialize map context to the previous context
 from active context if it exists,
 otherwise, set map context to active context.

 	If container mapping includes @type
 and index's term definition in
 map context has a local context, update
 map context to the result of the
 Context Processing algorithm,
 passing map context as active context
 the value of the index's local context
 as local context
 and base URL from the term definition for index
 in map context.

 	Otherwise, set map context to active context.

 	Initialize expanded index to the result of
 IRI expanding index.

 	If index value is not an array
 set index value to an array containing only
 index value.

 	Initialize index value to the result of
 using this algorithm recursively, passing
 map context as active context,
 key as active property,
 index value as element,
 base URL,
 true for from map,
 and the frameExpansion
 and ordered flags.

 	For each item in index value:

 	If container mapping includes @graph,
 and item is not a graph object,
 set item to a new map containing the key-value pair
 @graph-item,
 ensuring that the value is represented using an array.

 	If container mapping includes @index,
 index key is not @index,
 and expanded index is not @none:

 	Initialize re-expanded index to the result of calling
 the Value Expansion algorithm,
 passing the active context,
 index key as active property,
 and index as value.

 	Initialize expanded index key to the result of
 IRI expanding index key.

 	Initialize index property values to
 an array consisting of re-expanded index followed
 by the existing values of
 the concatenation of expanded index key in item,
 if any.

 	Add the key-value pair (expanded index key-index property values)
 to item.

 	If item is a value object,
 it MUST NOT contain any extra properties;
 an invalid value object
 error has been detected and processing is aborted.

 	Otherwise, if container mapping includes @index,
 item does not have an entry @index,
 and expanded index is not @none,
 add the key-value pair (@index-index) to item.

 	Otherwise, if container mapping includes @id
 item does not have the entry @id,
 and expanded index is not @none,
 add the key-value pair (@id-expanded index) to item,
 where expanded index is set to the result of
 IRI expandingindex
 using true for document relative
 and false for vocab.

 	Otherwise, if container mapping includes @type
 and expanded index is not @none,
 initialize types to a new array
 consisting of expanded index followed by any existing
 values of @type in item.
 Add the key-value pair (@type-types) to item.

 	Append item to expanded value.

 	Otherwise, initialize expanded value to the result of
 using this algorithm recursively, passing active context,
 key for active property, value for element,
 base URL,
 and the frameExpansion
 and ordered flags.

 	If expanded value is null, ignore key
 by continuing to the next key from element.

 	If container mapping includes @list and
 expanded value is not already a list object,
 convert expanded value to a list object
 by first setting it to an array containing only
 expanded value if it is not already an array,
 and then by setting it to a map containing
 the key-value pair @list-expanded value.

 	If container mapping includes
 @graph,
 and includes neither @id nor @index,
 convert expanded value into an array, if necessary,
 then convert each value ev in expanded value into a
 graph object:

 	Convert ev into
 a graph object by creating a map containing the key-value
 pair @graph-ev
 where ev is represented as an array.
 Note
This may lead to a graph object including another graph object,
 if ev was already in the form of a graph object.

 	If the term definition associated to
 key indicates that it is a reverse property

 	If result has no @reverse entry, create
 one and initialize its value to an empty map.

 	Reference the value of the @reverse entry in result
 using the variable reverse map.

 	If expanded value is not an array, set
 it to an array containing expanded value.

 	For each item in expanded value

 	If item is a value object or list object, an
 invalid reverse property value
 has been detected and processing is aborted.

 	If reverse map has no expanded property entry,
 create one and initialize its value to an empty array.

 	Use add value to add item
 to the expanded property entry in reverse map
 using true for as array.

 	Otherwise, key is not a reverse property
 use add value to add expanded value
 to the expanded property entry in result
 using true for as array.

 	For each key nesting-key in nests,
 ordered lexicographically if ordered is true:

 	Initialize nested values to the value of nesting-key
 in element, ensuring that it is an array.

 	For each nested value in nested values:

 	If nested value is not a map, or any key within
 nested value expands to @value, an
 invalid @nest value error
 has been detected and processing is aborted.

 	Recursively repeat steps 13
 and 14
 using nested value for element.
 Note
By invoking steps 13
 and 14 on nested value
 we are able to unfold arbitrary levels of nesting, with results being merged into
 result.
 Step 13 iterates through each
 entry in nested value and expands it, while collecting new
 nested values found at each level, until all nesting has been extracted.

 	If result contains the entry @value:

 	The result must not contain any entries other than
 @direction,
 @index,
 @language,
 @type,
 and @value.
 It must not contain an @type entry if it contains either @language or @direction entries.
 Otherwise, an invalid value object
 error has been detected and processing is aborted.

 	If the result's @type entry
 is @json, then the @value entry may
 contain any value, and is treated as a JSON literal.

 	Otherwise, if the value of result's @value entry is
 null, or an empty array, return null.

 	Otherwise, if the value of result's @value entry
 is not a string and result contains the entry
 @language, an
 invalid language-tagged value
 error has been detected (only strings
 can be language-tagged) and processing is aborted.

 	Otherwise, if the result has an @type entry
 and its value is not an IRI, an
 invalid typed value
 error has been detected and processing is aborted.

 	Otherwise, if result contains the entry @type
 and its associated value is not an array, set it to
 an array containing only the associated value.

 	Otherwise, if result contains the entry @set
 or @list:

 	The result must contain at most one other entry
 which must be @index. Otherwise, an
 invalid set or list object
 error has been detected and processing is aborted.

 	If result contains the entry @set, then
 set result to the entry's associated value.

 	If result is a map that contains only the entry
 @language, return null.

 	If active property is null or @graph,
 drop free-floating values as follows:

 	If result is a map which is empty,
 or contains only the entries @value or @list,
 set result to null.

 	Otherwise, if result is a map whose only
 entry is @id, set result to null.

 When the frameExpansion flag is set, a map
 containing only the @id entry is retained.

 	Return result.

 5.2 IRI Expansion

 In JSON-LD documents, some keys and values may represent
 IRIs. This section defines an algorithm for
 transforming a string that represents an IRI into
 an absolute IRI or blank node identifier.
 It also covers transforming keyword aliases
 into keywords.

 IRI expansion may occur during context processing or during
 any of the other JSON-LD algorithms. If IRI expansion occurs during context
 processing, then the local context and its related defined
 map from the Context Processing algorithm
 are passed to this algorithm. This allows for term definition
 dependencies to be processed via the
 Create Term Definition algorithm.

 5.2.1 Overview
This section is non-normative.

 In order to expand value to an IRI, we must
 first determine if it is null, a term, a
 keyword alias, or some form of IRI. Based on what
 we find, we handle the specific kind of expansion; for example, we expand
 a keyword alias to a keyword and a term
 to an IRI according to its IRI mapping
 in the active context. While inspecting value we
 may also find that we need to create term definition
 dependencies because we're running this algorithm during context processing.
 We can tell whether or not we're running during context processing by
 checking local context against null.
 We know we need to create a term definition in the
 active context when value is
 an entry in the local context and the defined map
 does not have an entry for value with an associated value of
 true. The defined map is used during
 Context Processing to keep track of
 which terms have already been defined or are
 in the process of being defined. We create a
 term definition by using the
 Create Term Definition algorithm.

 Note
Values that have the form of a keyword,
 but are not keywords (i.e., they begin with "@") do not
 map to any value, as they are reserved for future use.
 The algorithm returns null, so that they will be ignored when encountered.

 5.2.2 Algorithm

 The algorithm takes two required and four optional input variables. The
 required inputs are an active context and a value
 to be expanded. The optional inputs are two flags,
 document relative and vocab, that specifying
 whether value can be interpreted as a relative IRI reference
 against the document's base IRI or the
 active context's
 vocabulary mapping, respectively, and
 a local context and a map defined to be used when
 this algorithm is used during Context Processing.
 If not passed, the two flags are set to false and
 local context and defined are initialized to null.

 	If value is a keyword or null,
 return value as is.

 	
 If value has the form of a keyword
 (i.e., it matches the ABNF rule "@"1*ALPHA from [RFC5234]),
 a processor SHOULD generate a warning and return null.

 	If local context is not null, it contains
 an entry with a key that equals value, and the value of the entry
 for value in defined is not true,
 invoke the Create Term Definition algorithm,
 passing active context, local context,
 value as term, and defined. This will ensure that
 a term definition is created for value in
 active context during Context Processing.

 	If active context has a term definition for
 value, and the associated IRI mapping is a keyword,
 return that keyword.

 	If vocab is true and the
 active context has a term definition for
 value, return the associated IRI mapping.

 	If value contains a colon (:)
 anywhere after the first character,
 it is either
 an IRI, a compact IRI, or a
 blank node identifier:

 	Split value into a prefix and suffix
 at the first occurrence of a colon (:).

 	If prefix is underscore (_)
 or suffix begins with double-forward-slash
 (//), return value as it is already an
 IRI or a blank node identifier.

 	If local context is not null, it
 contains a prefix entry, and the value
 of the prefix entry in defined
 is not true, invoke the
 Create Term Definition algorithm,
 passing active context,
 local context, prefix as term,
 and defined. This will ensure that a
 term definition is created for prefix
 in active context during
 Context Processing.

 	If active context contains a term definition
 for prefix
 having a non-null IRI mapping
 and the prefix flag of the term definition is true,
 return the result of concatenating the IRI mapping
 associated with prefix and suffix.

 	If value has the form of an IRI,
 return value.

 	If vocab is true, and
 active context has a vocabulary mapping,
 return the result of concatenating the vocabulary mapping
 with value.

 	Otherwise, if document relative is true
 set value to the result of resolving value against
 the base IRI from active context. Only the basic algorithm in
 section 5.2
 of [RFC3986] is used; neither
 Syntax-Based Normalization nor
 Scheme-Based Normalization
 are performed. Characters additionally allowed in IRI references are treated
 in the same way that unreserved characters are treated in URI references, per
 section 6.5
 of [RFC3987].

 	Return value as is.

 5.3 Value Expansion

 Some values in JSON-LD can be expressed in a
 compact form. These values are required
 to be expanded at times when processing
 JSON-LD documents. A value is said to be in expanded form
 after the application of this algorithm.

 5.3.1 Overview
This section is non-normative.

 If active property has a type mapping in the
 active context set to @id or @vocab,
 and the value is a string,
 a map with a single entry @id whose
 value is the result of using the
 IRI Expansion algorithm on value
 is returned.

 Otherwise, the result will be a map containing
 an @value entry whose value is the passed value.
 Additionally, an @type entry will be included if there is a
 type mapping associated with the active property
 or an @language entry if value is a
 string and there is language mapping associated
 with the active property.

 Note that values interpreted as IRIs fall into two categories:
 those that are document relative, and those that are
 vocabulary relative. Properties and values of @type,
 along with terms marked as "@type": "@vocab"
 are vocabulary relative, meaning that they need to be either
 a defined term, a compact IRI
 where the prefix is a term,
 or a string which is turned into an IRI using
 the vocabulary mapping.

 5.3.2 Algorithm

 The algorithm takes three required inputs: an active context,
 an active property, and a value to expand.

 	If the active property has a type mapping
 in active context that is @id,
 and the value is a string,
 return a new
 map containing a single entry where the
 key is @id and the value is the result
 IRI expanding value
 using true for document relative
 and false for vocab.

 	If active property has a type mapping in
 active context that is @vocab,
 and the value is a string,
 return a new
 map containing a single entry where the
 key is @id and the value is the result of
 IRI expanding value
 using true for document relative.

 	Otherwise, initialize result to a map
 with an @value entry whose value is set to
 value.

 	If active property has a type mapping in
 active context,
 other than @id, @vocab, or @none,
 add @type to
 result and set its value to the value associated with the
 type mapping.

 	Otherwise, if value is a string:

 	Initialize language to the language mapping for active property
 in active context, if any, otherwise to the default language
 of active context.

 	Initialize direction to the direction mapping for active property
 in active context, if any, otherwise to the default base direction
 of active context.

 	If language is not null,
 add @language to result with the value language.

 	If direction is not null,
 add @direction to result with the value direction.

 	Return result.

6. Compaction Algorithms

 The following sections describe algorithms for compacting JSON-LD
 documents, IRIs and values.

 6.1 Compaction Algorithm

 This algorithm compacts a JSON-LD document, such that the given
 context is applied. This must result in shortening
 any applicable IRIs to
 terms or
 compact IRIs, any applicable
 keywords to
 keyword aliases, and
 any applicable JSON-LD values
 expressed in expanded form to simple values such as
 strings or
 numbers.

 6.1.1 Overview
This section is non-normative.

 Starting with its root element, we can process the
 JSON-LD document recursively, until we have a fully
 compacted result. When
 compacting an element, we can treat
 each one differently according to its type, in order to break down the
 problem:

 	If the element is a scalar, it is
 already in compacted form, so we simply return it.

 	If the element is an array, we compact
 each of its items recursively and return them in a new
 array.

 	Otherwise element is a map. The value
 of each entry in element is compacted recursively. Some of the entry keys will be
 compacted, using the IRI Compaction algorithm,
 to terms or compact IRIs
 and others will be compacted from keywords to
 keyword aliases or simply left
 unchanged because they do not have definitions in the context.
 Values will be converted to compacted form via the
 Value Compaction algorithm. Some data
 will be reshaped based on container mapping
 specified in the context such as @index or @language
 maps.

 6.1.2 Algorithm

 The algorithm takes three required and two optional input variables.
 The required inputs are an active context,
 an active property,
 and an element to be compacted.
 The optional inputs are the
 compactArrays flag
 and the ordered flag, used to order
 map entry keys lexicographically, where noted.
 If not passed, both flags are set to false.

 	Initialize type-scoped context to active context.
 This is used for compacting values that may be relevant to any previous
 type-scoped context.

 	If element is a scalar, it is already in its most
 compact form, so simply return element.

 	If element is an array:

 	Initialize result to an empty array.

 	For each item in element:

 	Initialize compacted item to the result of using this
 algorithm recursively, passing active context,
 active property,
 item for element,
 and the compactArrays
 and ordered flags.

 	If compacted item is not null, then append
 it to result.

 	If result is empty or contains more than one value,
 or compactArrays is false,
 or active property is either @graph or @set,
 or container mapping for active property in
 active context includes either @list or @set,
 return result.

 	Otherwise, return the value in result.

 	Otherwise element is a map.

 	If active context has a previous context,
 the active context is not propagated.
 If element does not contain an @value entry,
 and element does not consist of a single @id entry,
 set active context to previous context from active context,
 as the scope of a term-scoped context does not apply when processing new node objects.

 	If the term definition for active property in active context
 has a local context:

 	Set active context to the result of the
 Context Processing algorithm,
 passing active context,
 the value of the active property's local context as local context,

 base URL from the term definition for active property
 in active context,
 and true for override protected.

 	If element has an @value or @id
 entry and the result of using the
 Value Compaction algorithm,
 passing active context,
 active property, and element as value is
 a scalar,
 or the term definition for active property
 has a type mapping of @json,
 return that result.

 	If element is a
 list object, and the container mapping for
 active property in active context includes @list,
 return the result of using this algorithm recursively, passing
 active context,
 active property, value of @list
 in element for element,
 and the compactArrays
 and ordered flags.

 	Initialize inside reverse to true if
 active property equals @reverse,
 otherwise to false.

 	Initialize result to an empty map.

 	If element has an @type entry,
 create a new array compacted types initialized
 by transforming each expanded type of that entry
 into its compacted form
 by IRI compacting expanded type.
 Then, for each term
 in compacted types ordered lexicographically:

 	If the term definition for term in type-scoped context has a
 local context
 set active context to the result of the
 Context Processing algorithm,
 passing active context and the value of term's
 local context in type-scoped context as local context

 base URL from the term definition for term
 in type-scoped context,
 and false for propagate.

 	For each key expanded property and value expanded value
 in element, ordered lexicographically by expanded property
 if ordered is true:

 	If expanded property is @id:

 	If expanded value is a string,
 then initialize compacted value
 by IRI compacting expanded value
 with vocab set to false.

 	Initialize alias
 by IRI compacting expanded property.

 	Add an entry alias to result whose value is
 set to compacted value and continue to the next
 expanded property.

 	If expanded property is @type:

 	If expanded value is a string,
 then initialize compacted value
 by IRI compacting expanded value
 using type-scoped context for active context.

 	Otherwise, expanded value must be a
 @type array:

 	Initialize compacted value to an empty
 array.

 	For each item expanded type in
 expanded value:

 	Set term
 by IRI compacting expanded type
 using type-scoped context for active context.

 	Append term, to compacted value.

 	Initialize alias
 by IRI compacting expanded property.

 	Initialize as array
 to true if processing mode is json-ld-1.1 and
 the container mapping for alias in the
 active context includes @set,
 otherwise to the negation of compactArrays.

 	Use add value to add compacted value
 to the alias entry in result
 using as array.

 	Continue to the next expanded property.

 	If expanded property is @reverse:

 	Initialize compacted value to the result of using this
 algorithm recursively, passing active context,
 @reverse for
 active property, expanded value
 for element,
 and the compactArrays
 and ordered flags.

 	For each property and value in compacted value:

 	If the term definition for property in the
 active context indicates that property is
 a reverse property

 	Initialize as array
 to true if the container mapping for property in the
 active context includes @set,
 otherwise the negation of compactArrays.

 	Use add value to add value
 to the property entry in result
 using as array.

 	Remove the property entry from
 compacted value.

 	If compacted value has some remaining map entries, i.e.,
 it is not an empty map:

 	Initialize alias
 by IRI compacting @reverse.

 	Set the value of the alias entry of result to
 compacted value.

 	Continue with the next expanded property from element.

 	If expanded property is @preserve
 then:

 	Initialize compacted value to the result of using this
 algorithm recursively, passing
 active context,
 active property,
 expanded value for element,
 and the compactArrays
 and ordered flags.

 	Add compacted value as the value of @preserve
 in result unless expanded value is an empty array.

 	If expanded property is @index and
 active property has a container mapping
 in active context that includes @index,
 then the compacted result will be inside of an @index
 container, drop the @index entry by continuing
 to the next expanded property.

 	Otherwise, if expanded property is
 @direction,
 @index,
 @language,
 or @value:

 	Initialize alias
 by IRI compacting expanded property.

 	Add an entry alias to result whose value is
 set to expanded value and continue with the next
 expanded property.

 	If expanded value is an empty array:

 	Initialize item active property
 by IRI compacting expanded property
 using expanded value for value
 and inside reverse for reverse.

 	If the term definition for item active property
 in the active context has a nest value
 entry (nest term):

 	If nest term is not @nest,
 or a term in the active context that expands to @nest,
 an invalid @nest value
 error has been detected, and processing is aborted.

 	If result does not have a nest term entry,
 initialize it to an empty map.

 	Initialize nest result to the value of nest term in result.

 	Otherwise, initialize nest result to result.

 	Use add value to add an empty array
 to the item active property entry in nest result
 using true for as array.

 	
 At this point, expanded value must be an
 array due to the
 Expansion algorithm.
 For each item expanded item in expanded value:

 	Initialize item active property
 by IRI compacting expanded property
 using expanded item for value
 and inside reverse for reverse.

 	If the term definition for item active property
 in the active context has a nest value
 entry (nest term):

 	If nest term is not @nest,
 or a term in the active context that expands to @nest,
 an invalid @nest value
 error has been detected, and processing is aborted.

 	If result does not have a nest term entry,
 initialize it to an empty map.

 	Initialize nest result to the value of nest term in result.

 	Otherwise, initialize nest result to result.

 	Initialize container to container mapping for
 item active property in active context,
 or to a new empty array, if there is no such container mapping.

 	Initialize as array
 to true if container includes @set,
 or if item active property is @graph or @list,
 otherwise the negation of compactArrays.

 	Initialize compacted item to the result of using
 this algorithm recursively, passing
 active context,
 item active property for active property,
 expanded item for element,
 along with the compactArrays
 and ordered flags.
 If expanded item is a list object or a graph object,
 use the value of the @list or @graph entries,
 respectively, for element instead of expanded item.

 	If expanded item is a list object:

 	If compacted item is not an array,
 then set compacted item to an array containing only
 compacted item.

 	If container does not include @list:

 	Convert compacted item to a
 list object by setting it to a
 map containing an entry
 where the key is the result of
 IRI compacting @list
 and the value is the original compacted item.

 	If expanded item contains the entry
 @index-value, then add an entry
 to compacted item where the key is the
 result of
 IRI compacting @index
 and value is value.

 	Use add value to add compacted item
 to the item active property entry in
 nest result
 using as array.

 	Otherwise, set the value of the item active property entry
 in nest result to compacted item.

 	If expanded item is a graph object:

 	If container includes @graph and @id:

 	Initialize map object to the value of item active property
 in nest result,
 initializing it to a new empty map, if necessary.

 	Initialize map key
 by IRI compacting
 the value of @id in expanded item
 or @none if no such value exists
 with vocab set to false
 if there is an @id entry in expanded item.

 	Use add value to add compacted item
 to the map key entry in map object
 using as array.

 	Otherwise, if container includes @graph and @index
 and expanded item is a simple graph object:

 	Initialize map object to the value of item active property
 in nest result,
 initializing it to a new empty map, if necessary.

 	Initialize map key the value of @index in
 expanded item or @none, if no such
 value exists.

 	Use add value to add compacted item
 to the map key entry in map object
 using as array.

 	Otherwise, if container includes @graph
 and expanded item is a simple graph object
 the value cannot be represented as a map object.

 	If compacted item is an array
 with more than one value, it cannot be directly represented,
 as multiple objects would be interpreted as different named graphs.
 Set compacted item to a new map,
 containing the key
 from IRI compacting @included
 and the original compacted item as the value.

 	Use add value to add compacted item
 to the item active property entry in nest result
 using as array.

 	Otherwise, container does not include @graph
 or otherwise does not match one of the previous cases.

 	Set compacted item to a new map containing
 the key
 from IRI compacting @graph
 using the original compacted item as a value.

 	If expanded item contains an @id entry,
 add an entry in compacted item using the key
 from IRI compacting @id
 using the value
 of IRI compacting the value of @id in expanded item
 using false for vocab.

 	If expanded item contains an @index entry,
 add an entry in compacted item using the key
 from IRI compacting @index
 and the value of @index in expanded item.

 	Use add value to add compacted item
 to the item active property entry in nest result
 using as array.

 	
 Otherwise, if container includes @language,
 @index, @id,
 or @type
 and container does not include @graph:

 	Initialize map object to the value of item active property
 in nest result,
 initializing it to a new empty map, if necessary.

 	Initialize container key
 by IRI compacting
 either @language, @index, @id, or @type
 based on the contents of container.

 	Initialize index key to the value of index mapping in
 the term definition associated with item active property in active context,
 or @index, if no such value exists.

 	If container includes @language and
 expanded item contains a
 @value entry, then set compacted item
 to the value associated with its @value entry.
 Set map key to the value of @language in expanded item, if any.

 	Otherwise, if container includes @index
 and index key is @index,
 set map key to the value of @index in expanded item, if any.

 	Otherwise, if container includes @index
 and index key is not @index:

 	Reinitialize container key by IRI compacting
 index key.

 	Set map key to the first value of container key in compacted item, if any.

 	If there are remaining values in compacted item
 for container key, use add value to
 add those remaining values to the container key in compacted item.
 Otherwise, remove that entry from compacted item.

 	Otherwise, if container includes @id, set
 map key to the value of container key in
 compacted item and remove container key from compacted item.

 	Otherwise, if container includes @type:

 	Set map key to the first value of container key in compacted item, if any.

 	If there are remaining values in compacted item
 for container key, use add value to
 add those remaining values to the container key in compacted item.

 	Otherwise, remove that entry from compacted item.

 	If compacted item contains a single entry with a key expanding
 to @id, set compacted item
 to the result of using
 this algorithm recursively, passing
 active context,
 item active property for active property,
 and a map composed of the single entry for @id from expanded item for element.

 	If map key is null,
 set it to the result of
 IRI compacting @none.

 	Use add value to add compacted item
 to the map key entry in map object
 using as array.

 	Otherwise, use add value to add compacted item
 to the item active property entry in nest result
 using as array.

 	Return result.

 6.2 IRI Compaction

 This algorithm compacts an IRI to a term or
 compact IRI, or a keyword to a
 keyword alias. A value that is associated with the
 IRI may be passed in order to assist in selecting the most
 context-appropriate term.

 6.2.1 Overview
This section is non-normative.

 If the passed IRI is null,
 we simply return null.
 Otherwise, we first try to find a term that the IRI or keyword
 can be compacted to if it is relative to
 active context's vocabulary mapping.
 In order to select the most appropriate term,
 we may have to collect information about the passed value.
 This information includes determining the preferred container mapping,
 type mapping or language mapping
 for expressing the value.
 For JSON-LD lists, the type mapping
 or language mapping will be chosen based on the most
 specific values that work for all items in the list.
 Once this information is gathered,
 it is passed to the Term Selection algorithm,
 which will return the most appropriate term.

 If no term was found that could be used to compact the IRI,
 an attempt is made to compact the IRI
 using the active context's vocabulary mapping,
 if there is one.
 If the IRI could not be compacted,
 an attempt is made to find a compact IRI.
 A term will be used to create a compact IRI
 only if the term definition contains the prefix flag
 with the value true.
 If there is no appropriate compact IRI,
 and the compactToRelative option is true,
 the IRI is transformed to a relative IRI reference
 using the document's base IRI.
 Finally, if the IRI or keyword still could not be compacted,
 it is returned as is.

 When considering language mapping,
 the direction mapping is also considered, either with, or without,
 a language mapping,
 and the language mapping is normalized to lower case.

 In the case were this algorithm would return the input IRI as is,
 and that IRI can be mistaken for a compact IRI in the active context,
 this algorithm will raise an error,
 because it has no way to return an unambiguous representation of the original IRI.

 6.2.2 Algorithm

 This algorithm takes two required inputs and three optional inputs.
 The required inputs are an active context,
 and the var to be compacted.
 The optional inputs are a value associated with the var,
 a vocab flag which specifies whether the passed var
 should be compacted using the active context's vocabulary mapping,
 and a reverse flag which specifies whether a reverse property is being compacted.
 If not passed, value is set to null
 and both vocab and reverse are both set to false.

 	If var is null, return null.

 	If the active context has a null
 inverse context,
 set inverse context in active context
 to the result of calling the
 Inverse Context Creation algorithm
 using active context.

 	Initialize inverse context to the value of
 inverse context in active context.

 	If vocab is true and var is an
 entry of inverse context:

 	Initialize default language
 based on the active context's
 default language, normalized to lower case and default base direction:

 	If the active context's default base direction
 is not null, to the concatenation of
 the active context's default language
 and default base direction, separated by an underscore ("_"),
 normalized to lower case.

 	Otherwise, to the active context's default language,
 if it has one,
 normalized to lower case,
 otherwise to @none.

 	If value is a map containing an @preserve entry,
 use the first element from the value of @preserve as value.

 	Initialize containers to an empty array. This
 array will be used to keep track of an ordered list of
 preferred container mapping for a term,
 based on what is compatible with value.
 Note

 Algorithm steps may append the same value to containers,
 but the order in which they are added is significant for choosing the most appropriate term.

 	Initialize type/language to @language,
 and type/language value to @null. These two
 variables will keep track of the preferred
 type mapping or language mapping for
 a term, based on what is compatible with value.

 	If value is a map containing an @index entry,
 and value is not a graph object
 then append the values @index and @index@set to containers.

 	If reverse is true, set type/language
 to @type, type/language value to
 @reverse, and append @set to containers.

 	Otherwise, if value is a list object, then set
 type/language and type/language value
 to the most specific values that work for all items in
 the list as follows:

 	If @index is not an entry in value, then
 append @list to containers.

 	Initialize list to the array associated
 with the @list entry in value.

 	Initialize common type and common language to null. If
 list is empty, set common language to
 default language.

 	For each item in list:

 	Initialize item language to @none and
 item type to @none.

 	If item contains an @value entry:

 	If item contains an @direction entry,
 then set item language to the concatenation of
 the item's @language entry (if any)
 the item's @direction, separated by an underscore ("_"),
 normalized to lower case.

 	Otherwise, if item contains an @language entry,
 then set item language to its associated value,
 normalized to lower case.

 	Otherwise, if item contains a
 @type entry, set item type to its
 associated value.

 	Otherwise, set item language to
 @null.

 	Otherwise, set item type to @id.

 	If common language is null,
 set common language to item language.

 	Otherwise, if item language does not equal
 common language and item contains a
 @value entry, then set common language
 to @none because list items have conflicting
 languages.

 	If common type is null,
 set common type to item type.

 	Otherwise, if item type does not equal
 common type, then set common type
 to @none because list items have conflicting
 types.

 	If common language is @none and
 common type is @none, then
 stop processing items in the list because it has been
 detected that there is no common language or type amongst
 the items.

 	If common language is null,
 set common language to @none.

 	If common type is null,
 set common type to @none.

 	If common type is not @none then set
 type/language to @type and
 type/language value to common type.

 	Otherwise, set type/language value to
 common language.

 	Otherwise, if value is a graph object,
 prefer a mapping most appropriate for the particular value.

 	If value contains an @index entry,
 append the values @graph@index and @graph@index@set
 to containers.

 	If value contains an @id entry,
 append the values @graph@id and @graph@id@set
 to containers.

 	Append the values @graph @graph@set,
 and @set
 to containers.

 	If value does not contain an @index entry,
 append the values @graph@index and @graph@index@set
 to containers.

 	If the value does not contain an @id entry,
 append the values @graph@id and @graph@id@set
 to containers.

 	Append the values @index and @index@set
 to containers.

 	Set type/language to @type
 and set type/language value to @id.

 	Otherwise:

 	If value is a value object:

 	If value contains an @direction entry
 and does not contain an @index entry,
 then set type/language value to the concatenation of
 the value's @language entry (if any)
 and the value's @direction entry, separated by an underscore ("_"),
 normalized to lower case.
 Append @language and @language@set to containers.

 	Otherwise, if value contains an @language entry
 and does not contain an @index entry,
 then set type/language value to
 the value of @language normalized to lower case,
 and append @language,
 and @language@set to
 containers.

 	Otherwise, if value contains an
 @type entry, then set type/language value to
 its associated value and set type/language to
 @type.

 	Otherwise, set type/language to @type
 and set type/language value to @id,
 and append @id, @id@set,
 @type, and @set@type,
 to containers.

 	Append @set to containers.

 	Append @none to containers. This represents
 the non-existence of a container mapping, and it will
 be the last container mapping value to be checked as it
 is the most generic.

 	
 If processing mode is not json-ld-1.0 and value is not a map
 or does not contain an @index entry,
 append @index and @index@set to containers.

	
 If processing mode is not json-ld-1.0 and
 value is a map containing only an @value entry,
 append @language and @language@set to containers.

 	If type/language value is null,
 set type/language value to @null.
 This is the key under which null values
 are stored in the inverse context entry.

 	Initialize preferred values to an empty array.
 This array will indicate, in order, the preferred values for
 a term's type mapping or
 language mapping.

 	If type/language value is @reverse, append
 @reverse to preferred values.

 	If type/language value is @id or @reverse and
 value is a map containing an @id entry:

 	If the result of
 IRI compacting
 the value of the @id entry in value
 has a term definition in the active context
 with an IRI mapping that equals the value of the @id entry in value,
 then append @vocab, @id, and
 @none, in that order, to preferred values.

 	Otherwise, append @id, @vocab, and
 @none, in that order, to preferred values.

 	Otherwise, append type/language value and @none, in
 that order, to preferred values.
 If value is a list object
 with an empty array as the value of @list,
 set type/language to @any.

 	Append @any to preferred values.

 	If preferred values
 contains any entry having an underscore ("_"),
 append the substring of that entry from the underscore to the end of the string
 to preferred values.

 	Initialize term to the result of the
 Term Selection algorithm, passing
 var, containers,
 type/language, and preferred values.

 	If term is not null, return term.

 	At this point, there is no simple term that var
 can be compacted to. If vocab is true and
 active context has a vocabulary mapping:

 	If var begins with the
 vocabulary mapping's value
 but is longer, then initialize suffix to the substring
 of var that does not match. If suffix does not
 have a term definition in active context,
 then return suffix.

 	The var could not be compacted using the
 active context's vocabulary mapping.
 Try to create a compact IRI, starting by initializing
 compact IRI to null. This variable will be used to
 store the created compact IRI, if any.

 	For each term definition definition in active context:

 	If the IRI mapping of definition is null,
 its IRI mapping equals var,
 its IRI mapping is not a substring at the beginning of
 var,
 or definition does not have
 a true prefix flag,
 definition's key cannot be used as a prefix.
 Continue with the next definition.

 	Initialize candidate by concatenating definition key,
 a colon (:), and the substring of var
 that follows after the value of the
 definition's IRI mapping.

 	If either compact IRI is null, candidate is
 shorter or the same length but lexicographically less than
 compact IRI and candidate does not have a
 term definition in active context, or if that
 term definition has an IRI mapping
 that equals var and value is null,
 set compact IRI to candidate.

 	If compact IRI is not null, return compact IRI.

 	To ensure that the IRI var is
 not confused with a compact IRI,
 if the IRI scheme of var
 matches any term in active context with prefix flag set to true,
 and var has no IRI authority (preceded by double-forward-slash (//),
 an IRI confused with prefix error has been detected,
 and processing is aborted.

 	If vocab is false,
 transform var to a relative IRI reference using
 the base IRI from active context, if it exists.

 	Finally, return var as is.

 6.3 Value Compaction

 Expansion transforms all values into expanded form
 in JSON-LD. This algorithm performs the opposite operation, transforming
 a value into compacted form. This algorithm compacts a
 value according to the term definition in the given
 active context that is associated with the value's associated
 active property.

 6.3.1 Overview
This section is non-normative.

 The value to compact has either an @id or an
 @value entry.

 For the former case, if the type mapping of
 active property is set to @id or @vocab
 and value consists of only an @id entry and, if
 the container mapping of active property
 includes @index, an @index entry, value
 can be compacted to a string by returning the result of
 using the IRI Compaction algorithm
 to compact the value associated with the @id entry.
 Otherwise, value cannot be compacted and is returned as is.

 For the latter case, it might be possible to compact value
 just into the value associated with the @value entry.
 This can be done if the active property has a matching
 type mapping or language mapping and there
 is either no @index entry or the container mapping
 of active property includes @index. It can
 also be done if @value is the only entry in value
 (apart an @index entry in case the container mapping
 of active property includes @index) and
 either its associated value is not a string, there is
 no default language, or there is an explicit
 null language mapping for the
 active property.

 6.3.2 Algorithm

 This algorithm has three required inputs: an active context,
 an active property, and a value
 to be compacted.

 	Initialize result to a copy of value.

 	If the active context has a null
 inverse context,
 set inverse context in active context
 to the result of calling the
 Inverse Context Creation algorithm
 using active context.

 	Initialize inverse context to the value of
 inverse context in active context.

 	Initialize language to the language mapping for active property
 in active context, if any, otherwise to the default language
 of active context.

 	Initialize direction to the direction mapping for active property
 in active context, if any, otherwise to the default base direction
 of active context.

 	If value has an @id entry
 and has no other entries other than @index:

 	If the type mapping of active property
 is set to @id, set result to the result of
 IRI compacting
 the value associated with the @id entry
 using false for vocab.

 	Otherwise, if the type mapping of active property
 is set to @vocab, set result to the result of
 IRI compacting
 the value associated with the @id entry.

 	Otherwise, if value has an @type entry whose
 value matches the type mapping of active property,
 set result to the value associated with the @value entry
 of value.

 	Otherwise, if the type mapping of active property is @none,
 or value has an @type entry,
 and the value of @type in value does not match the type mapping of active property,
 leave value as is, as value compaction is disabled.

 	Replace any value of @type in result with the result of
 IRI compacting
 the value of the @type entry.

 	Otherwise, if the value of the @value entry is not a string:

 	If value has an @index entry,
 and the container mapping associated to active property
 includes @index,
 or if value has no @index entry,
 set result to the value associated with the @value entry.

 	Otherwise, if value has an @language entry
 whose value exactly matches language,
 using a case-insensitive comparison
 if it is not null, or is not present, if language is null,
 and the value has an @direction entry
 whose value exactly matches direction,
 if it is not null, or is not present, if direction is null:

 	If value has an @index entry,
 and the container mapping associated to active property
 includes @index,
 or value has no @index entry,
 set result to the value associated with the @value entry.

 	If result is a map,
 replace each key in result with the result of
 IRI compacting that key.

 	Return result.

7. Flattening Algorithms

 The following sections describe algorithms for flattening JSON-LD documents,
 creating node maps, and generating blank nodes.

 7.1 Flattening Algorithm

 This algorithm flattens an expanded JSON-LD document by collecting all
 properties of a node in a single map
 and labeling all blank nodes with
 blank node identifiers.
 This resulting uniform shape of the document, may drastically simplify
 the code required to process JSON-LD data in certain applications.

 7.1.1 Overview
This section is non-normative.

 First, a node map is generated using the
 Node Map Generation algorithm
 which collects all properties of a node in a single
 map. In the next step, the node map is
 converted to a JSON-LD document in
 flattened document form.

 7.1.2 Algorithm

 The algorithm takes one required and one optional input variables.
 The required input is an element to flatten.
 The optional input is
 the ordered flag, used to order
 map entry keys lexicographically, where noted.
 If not passed, the ordered flag is set to false.

 This algorithm uses the
 Generate Blank Node Identifier algorithm
 to generate new blank node identifiers
 and relabel existing blank node identifiers.
 The Generate Blank Node Identifier algorithm
 maintains an identifier map
 to ensure that blank node identifiers in the source
 document are consistently remapped to new blank node identifiers
 avoiding collisions.
 Thus, before this algorithm is run, the identifier map is reset.

 	Initialize node map to a map consisting of
 a single entry whose key is @default and whose value is
 an empty map.

 	Perform the Node Map Generation algorithm, passing
 element and node map.

 	Initialize default graph to the value of the @default
 entry of node map, which is a map representing
 the default graph.

 	For each key-value pair graph name-graph in node map
 where graph name is not @default,
 ordered lexicographically by graph name
 if ordered is true,
 perform the following steps:

 	If default graph does not have a graph name entry, create
 one and initialize its value to a map consisting of an
 @id entry whose value is set to graph name.

 	Reference the value associated with the graph name entry in
 default graph using the variable entry.

 	Add an @graph entry to entry and set it to an
 empty array.

 	For each id-node pair in graph ordered lexicographically by id
 if ordered is true,
 add node to the @graph entry of entry,
 unless the only entry of node is @id.

 	Initialize an empty array flattened.

 	For each id-node pair in default graph ordered lexicographically by id
 if ordered is true,
 add node to flattened,
 unless the only entry of node is @id.

 	Return flattened.

 7.2 Node Map Generation

 This algorithm creates a map node map holding an indexed
 representation of the graphs and nodes
 represented in the passed expanded document. All nodes that are not
 uniquely identified by an IRI get assigned a (new) blank node identifier.
 The resulting node map will have an map entry for every graph in the document whose
 value is another object with an entry for every node represented in the document.
 The default graph is stored under the @default entry, all other graphs are
 stored under their graph name.

 7.2.1 Overview
This section is non-normative.

 The algorithm recursively runs over an expanded JSON-LD document to
 collect all entries of a node
 in a single map. The algorithm updates a
 map node map whose keys represent the
 graph names used in the document
 (the default graph is stored under the @default entry)
 and whose associated values are maps
 which index the nodes in the
 graph. If a
 entry's value is a node object,
 it is replaced by a node object consisting of only an
 @id entry. If a node object has no @id
 entry or it is identified by a blank node identifier,
 a new blank node identifier is generated. This relabeling
 of blank node identifiers is
 also done for properties and values of
 @type.

 7.2.2 Algorithm

 The algorithm takes as input an expanded JSON-LD document element and a reference to
 a map node map. Furthermore it has the optional parameters
 active graph (which defaults to @default), an active subject,
 active property, and a reference to a map list. If
 not passed, active subject, active property, and list are
 set to null.

 	If element is an array, process each item in element
 as follows and then return:

 	Run this algorithm recursively by passing item for element,
 node map, active graph, active subject,
 active property, and list.

 	Otherwise element is a map. Reference the
 map which is the value of the active graph
 entry of node map using the variable graph. If the
 active subject is null, set node to null
 otherwise reference the active subject entry of graph using the
 variable subject node.

 	For each item in the @type entry of element,
 if any, or for the value of @type, if the value of @type exists and is not an array:

 	If item is a blank node identifier, replace it with a newly
 generated blank node identifier
 passing item for identifier.

 	If element has an @value entry, perform the following steps:

 	If list is null:

 	If subject node does not have an active property entry,
 create one and initialize its value to an array
 containing element.

 	Otherwise, compare element against every item in the
 array associated with the active property
 entry of subject node. If there is no item equivalent to element,
 append element to the array. Two
 maps are considered
 equal if they have equivalent map entries.

 	Otherwise, append element to the @list entry of list.

 	Otherwise, if element has an @list entry, perform
 the following steps:

 	Initialize a new map result consisting of a single entry
 @list whose value is initialized to an empty array.

 	Recursively call this algorithm passing the value of element's
 @list entry for element, node map, active graph,
 active subject, active property, and
 result for list.

 	If list is null,
 append result to the value of the active property entry
 of subject node.

 	Otherwise, append result to the @list entry of list.

 	Otherwise element is a node object, perform
 the following steps:

 	If element has an @id entry, set id
 to its value and remove the entry from element. If id
 is a blank node identifier, replace it with a newly
 generated blank node identifier
 passing id for identifier.

 	Otherwise, set id to the result of the
 Generate Blank Node Identifier algorithm
 passing null for identifier.

 	If graph does not contain an entry id, create one and initialize
 its value to a map consisting of a single entry @id whose
 value is id.

 	Reference the value of the id entry of graph using the
 variable node.

 	If active subject is a map, a reverse property relationship
 is being processed. Perform the following steps:

 	If node does not have a active property entry,
 create one and initialize its value to an array
 containing active subject.

 	Otherwise, compare active subject against every item in the
 array associated with the active property
 entry of node. If there is no item equivalent to active subject,
 append active subject to the array. Two
 maps are considered
 equal if they have equivalent map entries.

 	Otherwise, if active property is not null, perform the following steps:

 	Create a new map reference consisting of a single entry
 @id whose value is id.

 	If list is null:

 	If subject node does not have an active property entry,
 create one and initialize its value to an array
 containing reference.

 	Otherwise, compare reference against every item in the
 array associated with the active property
 entry of subject node. If there is no item equivalent to reference,
 append reference to the array. Two
 maps are considered
 equal if they have equivalent map entries.

 	Otherwise, append reference to the @list entry of list.

 	If element has an @type entry, append
 each item of its associated array to the
 array associated with the @type entry of
 node unless it is already in that array. Finally
 remove the @type entry from element.

 	If element has an @index entry, set the @index
 entry of node to its value. If node already has an
 @index entry with a different value, a
 conflicting indexes
 error has been detected and processing is aborted. Otherwise, continue by
 removing the @index entry from element.

 	If element has an @reverse entry:

 	Create a map referenced node with a single entry @id whose
 value is id.

 	Initialize reverse map to the value of the @reverse entry of
 element.

 	For each key-value pair property-values in reverse map:

 	For each value of values:

 	Recursively invoke this algorithm passing value for
 element, node map, active graph,
 referenced node for active subject, and
 property for active property. Passing a
 map for active subject indicates to the
 algorithm that a reverse property relationship is being processed.

 	Remove the @reverse entry from element.

 	If element has an @graph entry, recursively invoke this
 algorithm passing the value of the @graph entry for element,
 node map, and id for active graph before removing
 the @graph entry from element.

 	If element has an @included entry,
 recursively invoke this algorithm passing the value of the @included entry for element,
 node map, and active graph
 before removing the @included entry from element.

 	Finally, for each key-value pair property-value in element ordered by
 property perform the following steps:

 	If property is a blank node identifier, replace it with a newly
 generated blank node identifier
 passing property for identifier.
 Note
The use of blank node identifiers to label properties is obsolete,
 and may be removed in a future version of JSON-LD.

 	If node does not have a property entry, create one and initialize
 its value to an empty array.

 	Recursively invoke this algorithm passing value for element,
 node map, active graph, id for active subject,
 and property for active property.

 7.3 Merge Node Maps

 This algorithm creates a new map of subjects to nodes using all graphs
 contained in the graph map created using the Node Map Generation algorithm
 to create merged node objects containing information defined for a given subject
 in each graph contained in the node map.

 	Create result as an empty map

 	For each graph name and node map in graph map
 and for each id and node in node map:

 	Initialize merged node to the value for id in result, initializing it
 with a new map consisting of a single entry @id whose value is id, if it does not exist.

 	For each property and values in node:

 	If property is a keyword other than @type, add property and values to merged node.

 	Otherwise, merge each element from values into the values for property
 in merged node, initializing it to an empty array if necessary.

 	Return result.

 7.4 Generate Blank Node Identifier

 This algorithm is used to generate new
 blank node identifiers or to
 relabel an existing blank node identifier to avoid collision
 by the introduction of new ones.

 7.4.1 Overview
This section is non-normative.

 The simplest case is if there exists already a blank node identifier
 in the identifier map for the passed identifier, in which
 case it is simply returned. Otherwise, a new blank node identifier
 is generated. If the passed identifier is not null,
 an entry is created in the identifier map associating the
 identifier with the blank node identifier.

 7.4.2 Algorithm

 The algorithm takes a single input variable identifier which may
 be null. The algorithm
 maintains an identifier map to relabel existing
 blank node identifiers to new blank node identifiers,
 which is reset when the invoking algorithm is initialized.

 	If identifier is not null and has an entry in the
 identifier map, return the mapped identifier.

 	Otherwise, generate a new unique blank node identifier.

 	If identifier is not null, create a new entry
 for identifier in identifier map and set its value
 to the new blank node identifier.

 	Return the new blank node identifier.

 Note

 One way of generating new blank node identifiers is to maintain a counter
 and increment it when generating a new identifier and appending it to
 a string such as _:b.

8. RDF Serialization/Deserialization Algorithms

 This section describes algorithms to deserialize a JSON-LD document to an
 RDF dataset and vice versa. The algorithms are designed for in-memory
 implementations with random access to map elements.

 8.1 Deserialize JSON-LD to RDF Algorithm

 This algorithm deserializes a JSON-LD document to an RDF dataset.
 Please note that RDF does not allow a blank node to be used
 as a property, while JSON-LD does. Therefore, by default
 triples that would have contained blank nodes as properties are
 discarded when interpreting JSON-LD as RDF.

 Note
The use of blank node identifiers to label properties is obsolete,
 and may be removed in a future version of JSON-LD.

 If the rdfDirection option is not null, then special processing is used to
 convert from an i18n-datatype or compound-literal form.

 Implementations MUST generate only well-formed
 triples and graph names:

 	An IRI is well-formed if it matches the
 ABNF for IRI as
 described in [RFC3987].

 	A blank node identifier is well-formed if it matches the
 EBNF for
 BLANK_NODE_LABEL as described in [Turtle].
 Note
When following the algorithm described here,
 all blank node identifiers will be normalized using the Generate Blank Node Identifier
 algorithm and automatically adhere to this form.

 	A literal is well-formed if it has the
 lexical form of a string, any datatype IRI is
 well-formed, and any language tag is well-formed
 according to section 2.2.9 of
 [BCP47].

 8.1.1 Overview
This section is non-normative.

 The JSON-LD document is expanded and converted to a node map using the
 Node Map Generation algorithm.
 This allows each graph represented within the document to be
 extracted and flattened, making it easier to process each
 node object.
 Each graph from the node map is processed to extract triple,
 to which any (non-default) graph name is applied to create an RDF dataset.
 Each node object in the node map has an @id entry
 which corresponds to the subject,
 the other entries represent predicates.
 Each entry value is either an IRI or blank node identifier
 or can be transformed to anRDF literal
 to generate an triple.
 Lists are transformed into an RDF collection
 using the List to RDF Conversion algorithm.

 8.1.2 Algorithm

 The algorithm takes a map node map, which
 is the result of the Node Map Generation algorithm and
 an RDF dataset dataset into which new graphs and triples are added.
 It also takes two optional input variables produceGeneralizedRdf
 and rdfDirection.
 Unless the produceGeneralizedRdf option
 is set to true, triple
 containing a blank node predicate
 are excluded from output.

 Note
The use of blank node identifiers to label properties is obsolete,
 and may be removed in a future version of JSON-LD,
 as is the support for generalized RDF Datasets
 and thus the produceGeneralizedRdf option may be also be removed.

 	For each graph name and graph in node map
 ordered by graph name:

 	If graph name is
 not well-formed, continue
 with the next graph name-graph pair.

 	If graph name is @default,
 initialize triples to the value of the defaultGraph
 attribute of dataset.
 Otherwise, initialize triples as an empty RdfGraph
 and add to dataset using its
 add method along with graph name
 for graphName.

 	For each subject and node in graph ordered
 by subject:

 	If subject is
 not well-formed, continue
 with the next subject-node pair.

 	For each property and values in node
 ordered by property:

 	If property is @type, then for each
 type in values,
 create a new RdfTriple
 composed of subject, rdf:type for predicate,
 and type for object
 and add to triples
 using its add method,
 unless type is not well-formed.

 	Otherwise, if property is a keyword
 continue with the next property-values pair.

 	Otherwise, if property is a blank node identifier and
 the produceGeneralizedRdf option is not true,
 continue with the next property-values pair.
 Note
The use of blank node identifiers to label properties is obsolete,
 and may be removed in a future version of JSON-LD,
 as is the support for generalized RDF Datasets
 and thus the produceGeneralizedRdf option may be also be removed.

 	Otherwise, if property is
 not well-formed,
 continue with the next property-values pair.

 	Otherwise, property is an IRI or
 blank node identifier. For each item
 in values:

 	Initialize list triples as an empty array.
 Note

 item is a value object, list object,
 or a node object.

 	Add a triple
 composed of subject, property, and
 the result of using the
 Object to RDF Conversion algorithm
 passing item
 and list triples
 to triples using its add method,
 unless the result is null,
 indicating a non-well-formed resource
 that has to be ignored.

 	Add all RdfTriple instances from
 list triples to triples using
 its add method.

 8.2 Object to RDF Conversion

 This algorithm takes a node object, list object, or value object
 and transforms it into an resource to be used as the object of an triple.
 If a node object containing a relative IRI reference is passed to
 the algorithm, null is returned which then causes the resulting
 triple to be ignored.
 If the input is a list object, it will also
 return the triples created from that input.

 8.2.1 Overview
This section is non-normative.

 Value objects are transformed to
 RDF literals as described in
 § 8.6 Data Round Tripping
 whereas node objects are transformed
 to IRIs,
 blank node identifiers,
 or null.

 8.2.2 Algorithm

 The algorithm takes as two arguments item which MUST be
 either a value object, list object, or node object
 and list triples, which is an empty array.

 	If item is a node object and the value of
 its @id entry is
 not well-formed, return
 null.

 	If item is a node object, return the
 IRI or blank node identifier associated
 with its @id entry.

 	If item is a list object
 return the result of the
 List Conversion algorithm, passing
 the value associated with the @list entry from
 item and list triples.

 	Otherwise, item is a value object. Initialize
 value to the value associated with the @value
 entry in item.

	Initialize datatype to the value associated with the
 @type entry of item or null if
 item does not have such an entry.

 	If datatype is not null
 and neither a well-formed IRI nor @json,
 return null.

 	If item has an @language
 entry which is not well-formed, return null.

 	If datatype is @json,
 convert value to the canonical lexical form
 using the result of transforming the internal representation of value
 to JSON and set datatype to rdf:JSON.
 Issue
The JSON Canonicalization Scheme (JCS) [RFC8785]
 is an emerging standard for JSON canonicalization.
 This specification will likely be updated to require such a canonical representation.
 Users are cautioned from depending on the
 JSON literal lexical representation as an RDF literal,
 as the specifics of serialization may change in a future revision of this document.

 	If value is true or
 false, set value to the string
 true or false which is the
 canonical lexical form as described in
 § 8.6 Data Round Tripping
 If datatype is null,
 set datatype to xsd:boolean.

 	Otherwise, if value is a number with a non-zero fractional
 part (the result of a modulo‑1 operation)
 or an absolute value greater or equal to 1021,
 or value is a number
 and datatype equals xsd:double, convert value to a
 string in canonical lexical form of
 an xsd:double as defined in [XMLSCHEMA11-2]
 and described in
 § 8.6 Data Round Tripping.
 If datatype is null,
 set datatype to xsd:double.

 	Otherwise, if value is a number,
 convert it to a string in canonical lexical form of
 an xsd:integer as defined in [XMLSCHEMA11-2]
 and described in
 § 8.6 Data Round Tripping.
 If datatype is null,
 set datatype to xsd:integer.
 Note
It follows from the previous step that value
 has no non-zero fractional part.

 	Otherwise, if datatype is null,
 set datatype to xsd:string or rdf:langString,
 depending on if item has an @language entry.

 	If item contains an @direction entry
 and rdfDirection is not null,
 item is a value object which is serialized using special rules.

 	
 Initialize language to the value of @language in item
 normalized to lower case,
 or the empty string ("") if there is no such entry.
 Note
Generally, language tags are not normalized,
 but when creating an i18n-datatype or compound-literal
 values are normalized to lower case for improved interoperability.

 	If rdfDirection is i18n-datatype,
 set datatype to the result of appending language
 and the value of @direction in item separated by an underscore ("_")
 to https://www.w3.org/ns/i18n#.
 Initialize literal as an RDF literal using
 value and datatype.
 Note
Processors MAY normalize language tags to lower case.

 Note
As @direction may be used without @language,
 it is possible, and legitimate, to create a datatype IRI
 such as http://w3.org/ns/i18n#_ltr, which does not encode a language tag.

 	Otherwise, if rdfDirection is compound-literal:

 	Initialize literal as a new blank node.

 	Create a new triple using literal as the subject,
 rdf:value as the predicate, and the value of @value in item
 as the object, and add it to list triples.

 	If the item has an entry for @language,
 create a new triple using literal as the subject,
 rdf:language as the predicate, and language
 as the object, and add it to list triples.

 	Create a new triple using literal as the subject,
 rdf:direction as the predicate, and the value of @direction in item
 as the object, and add it to list triples.

 	Otherwise, initialize literal as an RDF literal using
 value and datatype. If item has an
 @language entry, add the value associated with the
 @language entry as the language tag of literal.

 	Return literal.

 8.3 List to RDF Conversion

 List Conversion is the process of taking a list object
 and transforming it into an
 RDF collection
 as defined in RDF Semantics [RDF11-MT].

 8.3.1 Overview
This section is non-normative.

 For each element of the list a new blank node identifier
 is allocated which is used to generate rdf:first and
 rdf:rest. The
 algorithm returns the list head, which is either the first allocated
 blank node identifier or rdf:nil if the
 list is empty. If a list element represents an IRI,
 the corresponding rdf:first triple is omitted.

 8.3.2 Algorithm

 The algorithm takes two inputs: an array list
 and an empty array list triples used for returning
 the generated triples.

 	If list is empty, return rdf:nil.

 	Otherwise, create an array bnodes composed of a
 newly generated blank node identifier
 for each entry in list.

 	For each pair of subject from bnodes and item from list:

 	Initialize embedded triples to a new empty array.

 	Initialize object to the result of using the
 Object to RDF Conversion algorithm
 passing item
 and embedded triples for list triples.

 	Unless object is null, append a triple
 composed of subject, rdf:first, and object
 to list triples.

 	Initialize rest as the next entry in bnodes, or if that
 does not exist, rdf:nil. Append a
 triple composed of subject,
 rdf:rest, and rest to list triples.

 	Append all values from embedded triples to list triples

 	Return the first blank node from bnodes or
 rdf:nil if bnodes is empty.

 8.4 Serialize RDF as JSON-LD Algorithm

 This algorithm serializes an RDF dataset consisting of a
 default graph and zero or more
 named graphs into a JSON-LD document.

 In the RDF abstract syntax, RDF literals have a
 lexical form, as defined
 in [RDF11-CONCEPTS]. The form of these literals is used when creating JSON-LD values based on these literals.

 8.4.1 Overview
This section is non-normative.

 Iterate through each graph in the dataset, converting each
 RDF collection into a list
 and generating a JSON-LD document in expanded form for all
 RDF literals, IRIs
 and blank node identifiers.
 If the useNativeTypes flag is set to true,
 RDF literals with a
 datatype IRI
 that equals xsd:integer or xsd:double are converted
 to a JSON numbers and RDF literals
 with a datatype IRI
 that equals xsd:boolean are converted to true or
 false based on their
 lexical form
 as described in
 § 8.6 Data Round Tripping.
 Unless the useRdfType flag is set to true, rdf:type
 predicates will be serialized as @type as long as the associated object is
 either an IRI or blank node identifier.

 If the rdfDirection option is not null, then special processing is used to
 convert from an i18n-datatype or compound-literal form.

 8.4.2 Algorithm

 The algorithm takes one required and four optional inputs:
 an RDF dataset dataset
 and the four optional arguments are
 the ordered flag, defaulting to false, used to order
 map entry keys lexicographically, where noted,
 rdfDirection defaulting to null,
 the useNativeTypes flag, defaulting to false,
 and the useRdfType flag, defaulting to false.

 The dataset is iterable to iterate over graphs and graph names
 contained within the RdfDataset. Each graph is also iterable
 for iterating over triples contained within the RdfGraph.

 	Initialize default graph to an empty map.

 	Initialize graph map to a map consisting
 of a single entry @default whose value references
 default graph.

 	Initialize referenced once to an empty map.

 	Initialize compound literal subjects to an empty map.

 	For each graph in dataset:

 	If graph is the default graph,
 initialize name to @default, otherwise to the
 graph name associated with graph.

 	If graph map has no name entry, create one and set
 its value to an empty map.

 	If compound literal subjects has no name entry, create one and set
 its value to an empty map.

 	If graph is not the default graph and
 default graph does not have a name entry,
 create such an entry and initialize its value to a new
 map with a single entry @id
 whose value is name.

 	Reference the value of the name entry in graph map
 using the variable node map.

 	Reference the value of the name entry in compound literal subjects
 using the variable compound map.

 	For each triple in graph
 consisting of subject, predicate, and object:

 	If node map does not have a subject entry,
 create one and initialize its value to a new map
 consisting of a single entry @id whose value is
 set to subject.

 	Reference the value of the subject entry in node map
 using the variable node.

 	If the rdfDirection option
 is compound-literal and predicate is rdf:direction,
 add an entry in compound map for subject with the value true.

 	If object is an IRI or blank node identifier,
 and node map does not have an object entry,
 create one and initialize its value to a new map
 consisting of a single entry @id whose value is
 set to object.

 	If predicate equals rdf:type, the
 useRdfType flag is not true, and object
 is an IRI or blank node identifier,
 append object to the value of the @type
 entry of node; unless such an item already exists.
 If no such entry exists, create one
 and initialize it to an array whose only item is
 object. Finally, continue to the next
 triple.

 	Initialize value to the result of using the
 RDF to Object Conversion algorithm,
 passing object,
 rdfDirection,
 and useNativeTypes.

 	If node does not have a predicate entry, create one
 and initialize its value to an empty array.

 	If there is no item equivalent to value in the array
 associated with the predicate entry of node, append a
 reference to value to the array. Two maps
 are considered equal if they have equivalent map entries.

 	If object is rdf:nil, it represents
 the termination of an RDF collection:

 	Reference the usages entry of the object
 entry of node map using the variable usages.

 	Append a new map consisting of three
 entries, node, property, and value
 to the usages array. The node entry
 is set to a reference to node, property to predicate,
 and value to a reference to value.

 	Otherwise, if referenced once has an entry for object,
 set the object entry of referenced once to false.

 	Otherwise, if object is a blank node identifier,
 it might represent a list node:

 	Set the object entry of referenced once to a new map consisting of three
 entries, node, property, and value
 to the usages array. The node entry
 is set to a reference to node, property to predicate,
 and value to a reference to value.

 	For each name and graph object in graph map:

 	If compound literal subjects
 has an entry for name, then for each cl
 which is a key in that entry:

 	Initialize cl entry to the value of cl
 in referenced once,
 continuing to the next cl if cl entry is not a map.

 	Initialize node to the value of node in cl entry.

 	Initialize property to value of property in cl entry.

 	Initialize value to value of value in cl entry.

 	Initialize cl node to the value of cl
 in graph object, and remove that entry from graph object,
 continuing to the next cl if cl node is not a map.

 	For each cl reference in the value of property in node
 where the value of @id in cl reference is cl:

 	Delete the @id entry in cl reference.

 	Add an entry to cl reference for @value with the value taken
 from the rdf:value entry in cl node.

 	Add an entry to cl reference for @language with the value taken
 from the rdf:language entry in cl node, if any.
 If that value is not well-formed according to
 section 2.2.9 of [BCP47],
 an invalid language-tagged string
 error has been detected and processing is aborted.

 	Add an entry to cl reference for @direction with the value taken
 from the rdf:direction entry in cl node, if any.
 If that value is not "ltr" or "rtl", an
 invalid base direction
 error has been detected and processing is aborted.

 	If graph object has no rdf:nil entry, continue
 with the next name-graph object pair as the graph does
 not contain any lists that need to be converted.

 	Initialize nil to the value of the rdf:nil entry
 of graph object.

 	For each item usage in the usages entry of
 nil, perform the following steps:

 	Initialize node to the value of the value of the
 node entry of usage, property to
 the value of the property entry of usage,
 and head to the value of the value entry
 of usage.

 	Initialize two empty arrays list
 and list nodes.

 	While property equals rdf:rest,
 the value of the @id entry
 of node is a blank node identifier,
 the value of the entry of referenced once associated with the @id
 entry of node is a map,
 node has rdf:first and rdf:rest entries,
 both of which have as value an array consisting of a single element,
 and node has no other entries apart from an optional @type
 entry whose value is an array with a single item equal to
 rdf:List,
 node represents a well-formed list node.
 Perform the following steps to traverse the list backwards towards its head:

 	Append the only item of rdf:first entry of
 node to the list array.

 	Append the value of the @id entry of
 node to the list nodes array.

 	Initialize node usage to the value of the entry of referenced once associated with the @id
 entry of node.

 	Set node to the value of the node entry
 of node usage, property to the value of the
 property entry of node usage, and
 head to the value of the value entry
 of node usage.

 	If the @id entry of node is an
 IRI instead of a blank node identifier,
 exit the while loop.

 	Remove the @id entry from head.

 	Reverse the order of the list array.

 	Add an @list entry to head and initialize
 its value to the list array.

 	For each item node id in list nodes, remove the
 node id entry from graph object.

 	Initialize an empty array result.

 	For each subject and node in default graph
 ordered lexicographically by subject
 if ordered is true:

 	If graph map has a subject entry:

 	Add an @graph entry to node and initialize
 its value to an empty array.

 	For each key-value pair s-n in the subject
 entry of graph map ordered lexicographically by s
 if ordered is true,
 append n to the @graph entry of node after
 removing its usages entry, unless the only
 remaining entry of n is @id.

 	Append node to result after removing its
 usages entry, unless the only remaining entry of
 node is @id.

 	Return result.

 8.5 RDF to Object Conversion

 This algorithm transforms an RDF literal to a JSON-LD value object
 and a RDF blank node or IRI to an JSON-LD node object.

 8.5.1 Overview
This section is non-normative.

 RDF literals are transformed to
 value objects whereas IRIs and
 blank node identifiers are
 transformed to node objects.

 Literals with datatype rdf:JSON
 are transformed into a value object using the internal representation
 based on the lexical-to-value mapping defined in
 JSON datatype in [JSON-LD11],
 and @type of @json.

 With the rdfDirection option set to i18n-datatype,
 literals with datatype starting with https://www.w3.org/ns/i18n#
 are transformed into a value object by decoding
 the language tag and base direction from the datatype.

 With the rdfDirection option set to compound-literal,
 blank node objects using rdf:direction are
 are transformed into a value object by decoding
 the rdf:value, rdf:language, and rdf:direction properties.

 If the useNativeTypes flag is set to true,
 RDF literals with a
 datatype IRI
 that equals xsd:integer or xsd:double are converted
 to a JSON numbers and RDF literals
 with a datatype IRI
 that equals xsd:boolean are converted to true or
 false based on their
 lexical form
 as described in
 § 8.6 Data Round Tripping.

 8.5.2 Algorithm

 This algorithm takes three required inputs:
 a value to be converted to a map,
 rdfDirection,
 and a flag useNativeTypes.

 	If value is an IRI or a
 blank node identifier, return a new map
 consisting of a single entry @id whose value is set to
 value.

 	Otherwise value is an
 RDF literal:

 	Initialize a new empty map result.

 	Initialize converted value to value.

 	Initialize type to null

 	If useNativeTypes is true

 	If the
 datatype IRI
 of value equals xsd:string, set
 converted value to the
 lexical form
 of value.

 	Otherwise, if the
 datatype IRI
 of value equals xsd:boolean, set
 converted value to true if the
 lexical form
 of value matches true, or false
 if it matches false. If it matches neither,
 set type to xsd:boolean.

 	Otherwise, if the
 datatype IRI
 of value equals xsd:integer or
 xsd:double and its
 lexical form
 is a valid xsd:integer or xsd:double
 according [XMLSCHEMA11-2], set converted value
 to the result of converting the
 lexical form
 to a JSON number.

 	Otherwise, if processing mode is not json-ld-1.0,
 and value is a JSON literal,
 set converted value to the result of
 turning the lexical value of value
 into the JSON-LD internal representation, and set type to @json.
 If the lexical value of value is not valid JSON according to
 the JSON Grammar [RFC8259],
 an invalid JSON literal
 error has been detected and processing is aborted.

 	Otherwise, if the datatype IRI of value starts with https://www.w3.org/ns/i18n#,
 and rdfDirection is i18n-datatype:

 	Set converted value to the lexical form of value.

 	If the string prefix of the fragment identifier
 of the datatype IRI up until the underscore ("_") is not empty,
 add an entry @language to result and set its value to that prefix.
 Note
As @direction may be used without @language,
 it is possible, and legitimate, to create a datatype IRI
 such as http://w3.org/ns/i18n#_ltr, which does not encode a language tag.

 	Add an entry @direction to result and set its value to the substring of the
 fragment identifier following
 the underscore ("_").

 	Otherwise, if value is a
 language-tagged string
 add an entry @language to result and set its value to the
 language tag of value.

 	Otherwise, set type to the
 datatype IRI
 of value, unless it equals xsd:string which is ignored.

 	Add an entry @value to result whose value
 is set to converted value.

 	If type is not null, add an entry @type
 to result whose value is set to type.

 	Return result.

 8.6 Data Round Tripping

 When deserializing JSON-LD to RDF
 JSON-native numbers are automatically
 type-coerced to xsd:integer or xsd:double
 depending on whether the number has a non-zero fractional part
 or not (the result of a modulo‑1 operation), the boolean values
 true and false are coerced to xsd:boolean,
 and strings are coerced to xsd:string.
 The JSON, numeric, or boolean values themselves are converted to
 canonical lexical form, i.e., a deterministic string
 representation as defined in [XMLSCHEMA11-2].

 The canonical lexical form of an integer, i.e., a
 number with no non-zero fractional part
 and an absolute value less than 1021,
 or a number coerced to xsd:integer,
 is a finite-length sequence of decimal
 digits (0-9) with an optional leading minus sign; leading
 zeros are prohibited. In JavaScript, implementers can use the following
 snippet of code to convert an integer to
 canonical lexical form:

 Example 20: Sample integer serialization implementation in JavaScript

 (value).toFixed(0).toString()

 The canonical lexical form of a double, i.e., a
 number
 with a non-zero fractional part or an absolute value greater or equal to 1021,
 or a number
 coerced to xsd:double, consists of a mantissa followed by the
 character E, followed by an exponent. The mantissa is a
 decimal number and the exponent is an integer. Leading zeros and a
 preceding plus sign (+) are prohibited in the exponent.
 If the exponent is zero, it is indicated by E0. For the
 mantissa, the preceding optional plus sign is prohibited and the
 decimal point is required. Leading and trailing zeros are prohibited
 subject to the following: number representations must be normalized
 such that there is a single digit which is non-zero to the left of
 the decimal point and at least a single digit to the right of the
 decimal point unless the value being represented is zero. The
 canonical representation for zero is 0.0E0.
 xsd:double's value space is defined by the IEEE
 double-precision 64-bit floating point type [IEEE-754-2008] whereas
 the value space of JSON numbers is not
 specified; when deserializing JSON-LD to RDF the mantissa is rounded to
 15 digits after the decimal point. In JavaScript, implementers
 can use the following snippet of code to convert a double to
 canonical lexical form:

 Example 21: Sample floating point number serialization implementation in JavaScript

 (value).toExponential(15).replace(/(\d)0*e\+?/,'$1E')

 The canonical lexical form of the boolean
 values true and false are the strings
 true and false.

 The canonical lexical form of a JSON literal
 is the result of serializing the internal representation
 into the JSON format [RFC8259] in compliance with the constraints of the value space description within
 The rdf:JSON Datatype of [JSON-LD11].

 Example 22: Canonicalized JSON literal

 {
 "@context": {
 "@version": 1.1,
 "e": {"@id": "http://example.org/vocab#json", "@type": "@json"}
 },
 "e": [
 56.0,
 {
 "d": true,
 "10": null,
 "1": []
 }
]
}

 The example shows the value of "e" as a native JSON array including
 unnecessary whitespace, a number and an object. The result
 eliminates the whitespace, uses a canonical number representation,
 and reorders the map entries lexicographically:

 @prefix ex: <http://example.org/vocab#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
[ex:json """[56,{"1":[],"10":null,"d":true}]"""^^rdf:JSON] .

 When JSON-native numbers are deserialized
 to RDF, lossless data round-tripping cannot be guaranteed, as rounding
 errors might occur. When
 serializing RDF as JSON-LD,
 similar rounding errors might occur. Furthermore, the datatype or the lexical
 representation might be lost. An xsd:double with a value
 of 2.0 will, e.g., result in an xsd:integer
 with a value of 2 in canonical lexical form
 when converted from RDF to JSON-LD and back to RDF. It is important
 to highlight that in practice it might be impossible to losslessly
 convert an xsd:integer to a number because
 its value space is not limited. While the JSON specification [RFC8259]
 does not limit the value space of numbers
 either, concrete implementations typically do have a limited value
 space.

 To ensure lossless round-tripping the
 Serialize RDF as JSON-LD Algorithm
 specifies a useNativeTypes flag which controls whether
 RDF literals
 with a datatype IRI
 equal to xsd:integer, xsd:double, or
 xsd:boolean are converted to their JSON-native
 counterparts. If the useNativeTypes flag is set to
 false, all literals remain in their original string
 representation.

 Some JSON serializers, such as PHP's native implementation in some versions,
 backslash-escape the forward slash character. For example, the value
 http://example.com/ would be serialized as http:\/\/example.com\/.
 This is problematic as other JSON parsers might not understand those escaping characters.
 There is no need to backslash-escape forward slashes in JSON-LD. To aid
 interoperability between JSON-LD processors, forward slashes MUST NOT be
 backslash-escaped.

9. The Application Programming Interface

 This API provides a clean mechanism that enables developers to convert
 JSON-LD data into a variety of output formats that are often easier to
 work with.

 The JSON-LD API uses Promises to represent
 the result of the various deferred operations.
 Promises are defined in [ECMASCRIPT].
 General use within specifications can be found in [promises-guide].
 Implementations MAY chose to implement in an appropriate way for their native environments
 as long as they generally use the same methods, arguments, and options
 and return the same results.

 Note
Interfaces are marked [Exposed=JsonLd],
 which creates a global interface.
 The use of WebIDL in JSON-LD, while appropriate for use within browsers,
 is not limited to such use.

 9.1 The JsonLdProcessor Interface

 The JsonLdProcessor interface is the high-level programming structure
 that developers use to access the JSON-LD transformation methods.

 It is important to highlight that implementations do not modify the input parameters.
 If an error is detected, the Promise is
 rejected with a JsonLdError having an appropriate code
 and processing is stopped.

 If the documentLoader
 option is specified, it is used to dereference remote documents and contexts.
 The documentUrl
 in the returned RemoteDocument
 is used as base IRI and the
 contextUrl
 is used instead of looking at the HTTP Link Header directly. For the sake of simplicity, none of the algorithms
 in this document mention this directly.

 WebIDL/*
 * The JsonLd interface is created to expose the JsonLdProcessor interface.
 */
[Global=JsonLd, Exposed=JsonLd]
interface JsonLd {};

[Exposed=JsonLd]
interface JsonLdProcessor {
 constructor();
 static Promise<JsonLdRecord> compact(
 JsonLdInput input,
 optional JsonLdContext context = null,
 optional JsonLdOptions options = {});
 static Promise<sequence<JsonLdRecord>> expand(
 JsonLdInput input,
 optional JsonLdOptions options = {});
 static Promise<JsonLdRecord> flatten(
 JsonLdInput input,
 optional JsonLdContext context = null,
 optional JsonLdOptions options = {});
 static Promise<sequence<JsonLdRecord>> fromRdf(
 RdfDataset input,
 optional JsonLdOptions options = {});
 static Promise<RdfDataset> toRdf(
 JsonLdInput input,
 optional JsonLdOptions options = {});
};

 	compact()

 	
 Compacts the given input using the
 context according to the steps in the Compaction algorithm:

 The final output is a map
 derived from compacted output.
 If compacted output is an array, it is
 included with an entry of (a possibly aliased) @graph
 with the value of compacted output,
 otherwise compacted output is used as the map result.
 If context not null,
 an @context entry is added to the map result.

 	Create a new Promise promise and return it.
 The following steps are then deferred.

 	If the provided input
 is a RemoteDocument,
 initialize remote document to input.

 	Otherwise, if the provided input
 is a string representing the IRI of a remote document, await and dereference it as remote document
 using LoadDocumentCallback, passing input
 for url,
 and the extractAllScripts option from options
 for extractAllScripts.

 	Set expanded input to the result of
 using the expand() method
 using either remote document
 or input
 if there is no remote document
 for input,
 and options,
 with ordered set to false,
 and extractAllScripts defaulting to false.

 	Set context base to the documentUrl
 from remote document, if available, otherwise to the base option
 from options.

 	If context is a map
 having an @context entry,
 set context to that entry's value,
 otherwise to context.

 	Initialize active context
 to the result of the Context Processing algorithm
 passing a new empty context as active context
 context as local context,
 and context base as base URL.

 	Set base IRI in active context to the base option from options, if set;
 otherwise, if the compactToRelative option is true,
 to the IRI of the currently being processed document, if available;
 otherwise to null.

 	Set compacted output to the result of using the Compaction algorithm,
 using active context,
 null for active property,
 expanded input as element,
 and the compactArrays
 and ordered
 flags from options.

 	If compacted output is an empty array,
 replace it with a new map.

 	Otherwise, if compacted output is an array,
 replace it with a new map with a single entry
 whose key is the result of
 IRI compacting @graph
 and value is compacted output.

 	If context was not null,
 add an @context entry to compacted output and set its value
 to the provided context.

 	Resolve the promise with compacted output
 transforming compacted output from the
 internal representation to a JSON serialization.

 	input

 	The map,
 array of maps to perform the compaction upon,
 or an IRI referencing the JSON-LD document to compact.

 	context

 	The context to use when compacting the input;
 it can be specified by using a map,
 an IRI,
 or an array consisting of maps and IRIs.

 	options

 	A set of options to configure the algorithms.
 This allows, e.g., to set the input document's base IRI.
 The JsonLdOptions type defines default option values.

 	expand()

 	
 Expands the given input
 according to the steps in the Expansion algorithm:

 	Create a new Promise promise and return it.
 The following steps are then deferred.

 	If the provided input
 is a RemoteDocument,
 initialize remote document to input.

 	Otherwise, if the provided input
 is a string representing the IRI of a remote document, await and dereference it as remote document
 using LoadDocumentCallback, passing input
 for url,
 the extractAllScripts option from options
 for extractAllScripts.

 	If document
 from remote document is a string, transform into the internal representation.
 If document cannot be transformed to the internal representation,
 reject promise passing a loading document failed error.

 	Initialize a new empty active context.
 The base IRI and original base URL of the active context is set to the documentUrl
 from remote document, if available;
 otherwise to the base option from options.
 If set, the base option from options overrides the base IRI.

 	If the expandContext option in options is set,
 update the active context using the Context Processing algorithm,
 passing the expandContext as local context
 and the original base URL from active context as base URL.
 If expandContext is a map having an @context entry,
 pass that entry's value instead for local context.

 	If remote document has a contextUrl,
 update the active context using the Context Processing algorithm,
 passing the contextUrl as local context,
 and contextUrl as base URL.

 	Set expanded output to the result of using the Expansion algorithm,
 passing the active context,
 document from remote document or input
 if there is no remote document as element,
 null as active property,
 documentUrl as base URL, if available,
 otherwise to the base option
 from options,
 and the frameExpansion
 and and ordered
 flags from options.
 Note
If there is no remote document,
 then input is
 a JsonLdRecord or a sequence of
 JsonLdRecords, which are implicitly already in the
 internal representation.

 	If expanded output is a
 map that contains only an @graph entry,
 set expanded output that value.

 	If expanded output is null,
 set expanded output to an empty array.

 	If expanded output is not an array,
 set expanded output to an array containing only expanded output.

 	Resolve the promise with expanded output
 transforming expanded output from the
 internal representation to a JSON serialization.

 	input

 	The map,
 or array of maps to perform the expansion upon,
 or an IRI referencing the JSON-LD document to expand.

 	options

 	A set of options to configure the used algorithms.
 This allows, e.g., to set the input document's base IRI.
 The JsonLdOptions type defines default option values.

 	flatten()

 	
 Flattens the given input
 and optionally compacts it using the provided context
 according to the steps in the Flattening algorithm:

 	Create a new Promise promise and return it.
 The following steps are then deferred.

 	If the provided input
 is a RemoteDocument,
 initialize remote document to input.

 	Otherwise, if the provided input
 is a string representing the IRI of a remote document, await and dereference it as remote document
 using LoadDocumentCallback, passing input
 for url,
 and the extractAllScripts option from options
 for extractAllScripts.

 	Set expanded input to the result of
 using the expand() method
 using either remote document
 or input
 if there is no remote document
 for input,
 and options
 with ordered set to false.

 	Initialize an empty identifier map.

 	Set flattened output to the result of using the Flattening algorithm,
 passing expanded input as element,
 and the ordered flag
 from options.

 	If context is not null,
 set flattened output to the result of
 using the compact() method
 using flattened output for input,
 context,
 and options.
 Set the base IRI in active context to the base option
 from options, if set;
 otherwise, if the compactToRelative option is true,
 to the IRI of the currently being processed document, if available;
 otherwise to null.

 	Resolve the promise with flattened output
 transforming flattened output from the
 internal representation to a JSON serialization,
 if necessary.

 	input

 	The map,
 or array of maps,
 or an IRI referencing the JSON-LD document to flatten.

 	context

 	The context to use when compacting the flattened expanded input;
 it can be specified by using a map,
 an IRI, or an array consisting of maps
 and IRIs.
 If null, the result will not be compacted but kept in expanded form.

 	options

 	A set of options to configure the used algorithms.
 This allows, e.g., to set the input document's base IRI.
 The JsonLdOptions type defines default option values.

 	fromRdf()

 	
 Transforms the given input
 into a JSON-LD document in expanded form
 according to the steps in the Serialize RDF as JSON-LD Algorithm:

 Note
This interface does not define a means of creating an RdfDataset
 from an arbitrary input, other than the toRdf() method.

 	Create a new Promise promise and return it.
 The following steps are then deferred.

 	Set expanded result to the result of invoking the
 Serialize RDF as JSON-LD Algorithm method
 using dataset
 and options.

 	Resolve the promise with expanded result
 transforming expanded result from the
 internal representation to a JSON serialization.

 	input

 	The map,
 or array of maps,
 or an IRI referencing the JSON-LD document to flatten.

 	options

 	A set of options to configure the used algorithms.
 This allows, e.g., to set the input document's base IRI.
 The JsonLdOptions type defines default option values.

 	toRdf()

 	
 Transforms the given input into an RdfDataset
 according to the steps in the Deserialize JSON-LD to RDF Algorithm:

 	Create a new Promise promise and return it.
 The following steps are then deferred.

 	Set expanded input to the result of using the
 expand() method
 using input
 and options
 with ordered set to false.

 	Create a new RdfDataset dataset.

 	Create a new map node map.

 	Invoke the Node Map Generation algorithm,
 passing expanded input as element
 and node map.

 	Invoke the Deserialize JSON-LD to RDF Algorithm
 passing node map, dataset,
 and the produceGeneralizedRdf flag from options.
 Note
The use of blank node identifiers to label properties is obsolete,
 and may be removed in a future version of JSON-LD,
 as is the support for generalized RDF Datasets
 and thus the produceGeneralizedRdf option may be also be removed.

 	Resolve the promise with dataset.

 	input

 	The map,
 or array of maps,
 or an IRI referencing the JSON-LD document to flatten.

 	options

 	A set of options to configure the used algorithms.
 This allows, e.g., to set the input document's base IRI.
 The JsonLdOptions type defines default option values.

 WebIDLtypedef record<USVString, any> JsonLdRecord;

 The JsonLdRecord is the definition of a map
 used to contain arbitrary map entries
 which are the result of parsing a JSON Object.

WebIDLtypedef (JsonLdRecord or sequence<JsonLdRecord> or USVString or RemoteDocument) JsonLdInput;

 The JsonLdInput interface is used to refer to an input value
 that that may be a JsonLdRecord,
 a sequence of JsonLdRecords,
 a string representing an IRI,
 which can be dereferenced to retrieve a valid JSON document,
 or an already dereferenced RemoteDocument.

 When the value is a JsonLdRecord or sequence of JsonLdRecords,
 the values are taken as their equivalent internal representation values,
 where a JsonLdRecord is equivalent to a map,
 and a sequence of JsonLdRecords is equivalent to an array
 of maps. The map entries are converted to their equivalents
 in [INFRA].

 WebIDLtypedef (JsonLdRecord or sequence<(JsonLdRecord or USVString)> or USVString) JsonLdContext;

 The JsonLdContext interface is used to refer to a value
 that may be a JsonLdRecord,
 a sequence of JsonLdRecords,
 or a string representing an IRI,
 which can be dereferenced to retrieve a valid JSON document.

 When the value is a JsonLdRecord or sequence of JsonLdRecords,
 the values are taken as their equivalent internal representation values,
 where a JsonLdRecord is equivalent to a map,
 and a sequence of JsonLdRecords is equivalent to an array
 of maps. The map entries are converted to their equivalents
 in [INFRA].

 9.2 RDF Dataset Interfaces

 The RdfDataset interface describes operations on an RDF dataset
 used by the fromRdf()
 and toRdf() methods
 in the JsonLdProcessor interface.
 The interface may be used for constructing a new RDF dataset,
 which has a default graph accessible via the defaultGraph attribute.

 WebIDL[Exposed=JsonLd]
interface RdfDataset {
 constructor();
 readonly attribute RdfGraph defaultGraph;
 void add(USVString graphName, RdfGraph graph);
 iterable<USVString?, RdfGraph>;
};

 	add()

 	
 Adds an RdfGraph and its associated graph name to the RdfDataset.
 Used by the Deserialize JSON-LD to RDF Algorithm.

 	graphName

 	The graph name associated with graph.
 graphName MUST be a
 well-formed IRI or blank node identifier.

 	graph

 	The RdfGraph to add to the RdfDataset.

 	defaultGraph

 	Provides access to the default graph associated with the RDF dataset.

 	iterable

 	The value pairs to iterate over
 are the list of graph name-graph pairs,
 with the graph name being null
 (for the default graph),
 an IRI,
 or blank node identifier
 and graph an RdfGraph instance.

 The RdfGraph interface describes operations on an RDF graph used by the fromRdf()
 and toRdf() methods
 in the JsonLdProcessor interface.
 The interface may be used for constructing a new RDF graph,
 which is composed of zero or more RdfTriple instances.

 WebIDL[Exposed=JsonLd]
interface RdfGraph {
 constructor();
 void add(RdfTriple triple);
 iterable<RdfTriple>;
};

 	add()

 	
 Adds an RdfTriple to the RdfGraph.
 Used by the Deserialize JSON-LD to RDF Algorithm.

 	triple

 	The RdfTriple to add to the RdfGraph.

 	iterable

 	A value iterator
 over the RdfTriple instances associated with the graph.
 Note that a given RdfTriple instance may appear in more than one graph
 within a particular RdfDataset instance.

 The RdfTriple interface describes an triple.

 WebIDL[Exposed=JsonLd]
interface RdfTriple {
 constructor();
 readonly attribute USVString subject;
 readonly attribute USVString predicate;
 readonly attribute (USVString or RdfLiteral) _object;
};

 	subject

 	An absolute IRI or blank node identifier
 denoting the subject of the triple.

 	predicate

 	An absolute IRI denoting the predicate of the triple.
 If used to represent a Generalized RDF Dataset,
 it may also be a blank node identifier.
 Note
The use of blank node identifiers to label properties is obsolete,
 and may be removed in a future version of JSON-LD, as is the support for generalized RDF Datasets.

 	object

 	An absolute IRI, blank node identifier, or literal
 denoting the object of the triple.

 The RdfLiteral interface describes an RDF Literal.

 WebIDL[Exposed=JsonLd]
interface RdfLiteral {
 constructor();
 readonly attribute USVString value;
 readonly attribute USVString datatype;
 readonly attribute USVString? language;
};

 	value

 	The lexical value of the literal.

 	datatype

 	An absolute IRI denoting the datatype IRI of the literal.
 If the value is rdf:langString,
 language MUST be specified.

 	language

 	An optional language tag as defined by [BCP47].
 If this value is specified, datatype MUST be rdf:langString.

 9.3 The JsonLdOptions Type

 The JsonLdOptions type is used to pass various options to the
 JsonLdProcessor methods.

 WebIDLdictionary JsonLdOptions {
 USVString? base = null;
 boolean compactArrays = true;
 boolean compactToRelative = true;
 LoadDocumentCallback? documentLoader = null;
 (JsonLdRecord? or USVString) expandContext = null;
 boolean extractAllScripts = false;
 boolean frameExpansion = false;
 boolean ordered = false;
 USVString processingMode = "json-ld-1.1";
 boolean produceGeneralizedRdf = true;
 USVString? rdfDirection = null;
 boolean useNativeTypes = false;
 boolean useRdfType = false;
};

 	base

 	The base IRI to use when expanding or compacting the document.
 If set, this overrides the input document's IRI.

 	compactArrays

 	If set to true, the JSON-LD processor replaces arrays
 with just one element with that element during compaction.
 If set to false,
 all arrays will remain arrays even if they have just one element.

 	compactToRelative

 	Determines if IRIs are compacted
 relative to the base option
 or document location when compacting.

 	documentLoader

 	The callback of the loader to be used to retrieve remote documents and contexts,
 implementing the LoadDocumentCallback.
 If specified, it is used to retrieve remote documents and contexts;
 otherwise, if not specified, the processor's built-in loader is used.

 	expandContext

 	A context that is used to initialize the active context when expanding a document.

 	extractAllScripts

 	If set to true,
 when extracting JSON-LD script elements from HTML,
 unless a specific fragment identifier is targeted,
 extracts all encountered JSON-LD script elements using an array form, if necessary.

 	frameExpansion

 	Enables special frame processing rules for the Expansion Algorithm.

 	Enables special rules for the Serialize RDF as JSON-LD Algorithm
 to use JSON-LD native types as values, where possible.

 	ordered

 	If set to true,
 certain algorithm processing steps where indicated are ordered lexicographically.
 If false, order is not considered in processing.

 	processingMode

 	Sets the processing mode.
 If set to json-ld-1.0 or json-ld-1.1,
 the implementation must produce exactly the same results as the
 algorithms defined in this specification.
 If set to another value,
 the JSON-LD processor is allowed to extend or modify the algorithms defined in this specification
 to enable application-specific optimizations.
 The definition of such optimizations is beyond the scope of this specification
 and thus not defined.
 Consequently, different implementations may implement different optimizations.
 Developers must not define modes beginning with json-ld
 as they are reserved for future versions of this specification.

 	produceGeneralizedRdf

 	If set to true, the JSON-LD processor may emit
 blank nodes for triple predicates,
 otherwise they will be omitted.
 Generalized RDF Datasets
 are defined in [RDF11-CONCEPTS].
 Note
The use of blank node identifiers to label properties is obsolete,
 and may be removed in a future version of JSON-LD,
 as is the support for generalized RDF Datasets
 and thus the produceGeneralizedRdf option may be also be removed.

 	rdfDirection

 	Determines how value objects containing a base direction
 are transformed to and from RDF.

 	If set to i18n-datatype, an RDF literal is generated using a datatype IRI
 based on https://www.w3.org/ns/i18n# with both the language tag (if present)
 and base direction encoded.
 When transforming from RDF, this datatype is decoded to create a value object
 containing @language (if present) and @direction.

 	If set to compound-literal, a blank node is emitted instead of a literal,
 where the blank node is the subject of rdf:value, rdf:direction, and rdf:language (if present)
 properties.
 When transforming from RDF, this object is decoded to create a value object
 containing @language (if present) and @direction.

	useNativeTypes

 	Causes the Serialize RDF as JSON-LD Algorithm
 to use native JSON values in value objects avoiding the need for an explicitly @type.

 	useRdfType

 	Enables special rules for the Serialize RDF as JSON-LD Algorithm
 causing rdf:type properties to be kept as IRIs in the output, rather than use @type.

 9.4 Remote Document and Context Retrieval

 Users of an API implementation can utilize a callback to control how
 remote documents and contexts are retrieved.
 This section details the parameters of that callback
 and the data structure used to return the retrieved context.

 9.4.1 LoadDocumentCallback

 The LoadDocumentCallback defines a callback that custom document loaders
 have to implement to be used to retrieve remote documents and contexts.
 The callback returns a Promise resolving to a RemoteDocument.
 On failure, the Promise with a JsonLdError having an appropriate error code.

 WebIDLcallback LoadDocumentCallback = Promise<RemoteDocument> (
 USVString url,
 optional LoadDocumentOptions? options
);

 	url

 	The URL of the remote document or context to load.

 	options

 	A set of options to determine
 the behavior of the callback. See § 9.4.2 LoadDocumentOptions.

 The following algorithm describes the default callback and places
 requirements on implementations of the callback.

 	Create a new Promise promise and return it.
 The following steps are then deferred.

 	Set document to the body retrieved from
 the resource identified by url,
 or by otherwise locating a resource associated with url.
 When requesting remote documents the request MUST prefer Content-Type application/ld+json
 followed by application/json.

 If requestProfile is set,
 it MUST be added as a profile on application/ld+json.

 Processors MAY include other media types using a +json suffix as defined in [RFC6839].

 	Set documentUrl to the location of the retrieved resource
 considering redirections (exclusive of HTTP status 303 "See Other" redirects
 as discussed in [cooluris]).

 	If the retrieved resource's Content-Type is not application/json
 nor any media type with a +json suffix as defined in [RFC6839],
 and the response has an HTTP Link Header [RFC8288] using the alternate link relation
 with type application/ld+json,
 set url to the associated href relative to the previous url
 and restart the algorithm from step 2.

 	If the retrieved resource's Content-Type is application/json
 or any media type with a +json suffix as defined in [RFC6839]
 except application/ld+json,
 and the response has an HTTP Link Header [RFC8288] using the http://www.w3.org/ns/json-ld#context link relation,
 set contextUrl to the associated href.
 If multiple HTTP Link Headers using the http://www.w3.org/ns/json-ld#context link relation are found,
 the promise is rejected with a JsonLdError whose code is set to multiple context link headers
 and processing is terminated.

 Processors MAY transform document to the internal representation.

 Note
The HTTP Link Header is ignored for documents served as application/ld+json,
 text/html, or application/xhtml+xml.

 	Otherwise, the retrieved document's Content-Type is neither
 application/json,
 application/ld+json,
 nor any other media type using a
 +json suffix as defined in [RFC6839].
 Reject the promise passing a loading document failed error.

 	Create a new RemoteDocument remote document using
 url as documentUrl,
 document as document,
 the returned Content-Type (without parameters) as contentType,
 any returned profile parameter, or null as profile,
 and contextUrl, or null as contextUrl.

 	Resolve the promise with remote document.

 Note
A custom LoadDocumentCallback set via the
 documentLoader option might be used
 to maintain a local cache of well-known context documents or to implement
 application-specific URL protocols.

 9.4.2 LoadDocumentOptions

 The LoadDocumentOptions type is used to pass various options
 to the LoadDocumentCallback.

 WebIDLdictionary LoadDocumentOptions {
 boolean extractAllScripts = false;
 USVString profile = null;
 (USVString or sequence<USVString>) requestProfile = null;
};

 	extractAllScripts

 	If set to true,
 when extracting JSON-LD script elements from HTML,
 unless a specific fragment identifier is targeted,
 extracts all encountered JSON-LD script elements using an array form, if necessary.

 	profile

 	When the resulting contentType is text/html
 or application/xhtml+xml,
 this option determines the profile to use for selecting JSON-LD script elements.

 	requestProfile

 	One or more IRIs to use in the request as a profile parameter.
 (See IANA Considerations in [JSON-LD11]).

 9.4.3 RemoteDocument

 The RemoteDocument type is used by a LoadDocumentCallback
 to return information about a remote document or context.

 WebIDL[Exposed=JsonLd]
interface RemoteDocument {
 constructor();
 readonly attribute USVString contentType;
 readonly attribute USVString contextUrl;
 attribute any document;
 readonly attribute USVString documentUrl;
 readonly attribute USVString profile;
};

 	contentType

 	The Content-Type
 of the loaded document, exclusive of any optional parameters.

 	contextUrl

 	If available, the value of the HTTP Link Header [RFC8288]
 using the http://www.w3.org/ns/json-ld#context link relation
 in the response.
 If the response's Content-Type is application/ld+json,
 the HTTP Link Header is ignored.
 If multiple HTTP Link Headers using the http://www.w3.org/ns/json-ld#context link relation are found,
 the Promise of the LoadDocumentCallback is rejected
 with a JsonLdError whose code is set to multiple context link headers.

 	document

 	The retrieved document.
 This can either be the raw payload or the already parsed document.

 	documentUrl

 	The final URL of the loaded document.
 This is important to handle HTTP redirects properly.

 	profile

 	The value of any profile parameter
 retrieved as part of the original contentType.

 9.5 HTML Content Algorithms

 Note
This section describes optional features available
 with a documentLoader supporting HTML script extraction.

 Implementations of a documentLoader MAY support extracting JSON-LD from
 script elements contained within an HTML [HTML] document.
 This section describes the normative behavior of such processors.
 Such a processor supports HTML script extraction.

 9.5.1 Process HTML

 This sections describe an extension to the algorithm specified
 in LoadDocumentCallback to support extracting JSON-LD from HTML.

 Step 2 is updated to add the following: A processor supporting HTML script extraction MUST include text/html at any preference level
 and MAY include application/xhtml+xml at any preference level,
 unless requestProfile is http://www.w3.org/ns/json-ld#context.

 After step 5, add the following processing step:
 Otherwise, if the retrieved resource's Content-Type is either text/html
 or application/xhtml+xml:

 	Set documentUrl to the Document Base URL
 of url, as defined in [HTML],
 using the existing documentUrl as the document's URL.

 	If the url parameter
 contains a fragment identifier,
 set source to the textContent
 of the script element in document
 having an id attribute
 that matches the fragment identifier, after decoding percent encoded sequences.
 If no such element is found,
 or the located element is not a JSON-LD script element,
 the promise is rejected with a JsonLdError whose code is set to loading document failed
 and processing is terminated.

 	Otherwise, if the profile
 option is specified,
 set source to the result of transforming the
 textContent
 of the first script element in document
 having an type attribute
 of application/ld+json along with the value of the
 profile option, if found.

 	If source is still undefined and the extractAllScripts option is not present, or false,
 set source to the textContent
 of the first JSON-LD script element in document.
 If no such element is found,
 or the located element is not a JSON-LD script element,
 the promise is rejected with a JsonLdError whose code is set to loading document failed
 and processing is terminated.

 	If source is defined,
 set document to the result of the
 Extract Script Content algorithm,
 using source, rejecting promise
 with a JsonLdError whose code set from the result, if an error is detected
 and processing is terminated.

 	Otherwise, source is undefined.

 	If the extractAllScripts option is not present, or false,
 the promise is rejected with a JsonLdError whose code is set to loading document failed
 and processing is terminated.

 	Otherwise, the extractAllScripts option is true.
 Set document to a new empty array.
 For each JSON-LD script element in input:

 	Set source to its textContent.

 	Set script content to the result of the Extract Script Content algorithm,
 using source, rejecting promise
 with a JsonLdError whose code set from the result, if an error is detected
 and processing is terminated.

 	If script content is an array, merge it to the end of document.

 	Otherwise, append script content to document.

 9.5.2 Extract Script Content Algorithm

 The algorithm extracts the text content a
 JSON-LD script element into a map or array of maps.
 A JSON-LD script element is a script element
 within an HTML [HTML] document with the type attribute set to
 application/ld+json.

 The algorithm takes a single required input variable: source,
 the textContent of an HTML script element.

 	If source is not a valid JSON document,
 an invalid script element has been detected, and processing is aborted.

 	Return the result of transforming source into the internal representation.

 9.6 Error Handling

 This section describes the datatype definitions
 used within the JSON-LD API for error handling.

 9.6.1 JsonLdError

 The JsonLdError type is used to report processing errors.

 WebIDLdictionary JsonLdError {
 JsonLdErrorCode code;
 USVString? message = null;
};

 	code

 	A string representing the particular error type,
 as described in the various algorithms in this document.

 	message

 	An optional error message containing additional debugging information.
 The specific contents of error messages are outside the scope of this specification.

 9.6.2 JsonLdErrorCode

 The JsonLdErrorCode represents the collection of valid JSON-LD error codes.

 WebIDLenum JsonLdErrorCode {
 "colliding keywords",
 "conflicting indexes",
 "context overflow",
 "cyclic IRI mapping",
 "invalid @id value",
 "invalid @import value",
 "invalid @included value",
 "invalid @index value",
 "invalid @nest value",
 "invalid @prefix value",
 "invalid @propagate value",
 "invalid @protected value",
 "invalid @reverse value",
 "invalid @version value",
 "invalid base direction",
 "invalid base IRI",
 "invalid container mapping",
 "invalid context entry",
 "invalid context nullification",
 "invalid default language",
 "invalid IRI mapping",
 "invalid JSON literal",
 "invalid keyword alias",
 "invalid language map value",
 "invalid language mapping",
 "invalid language-tagged string",
 "invalid language-tagged value",
 "invalid local context",
 "invalid remote context",
 "invalid reverse property map",
 "invalid reverse property value",
 "invalid reverse property",
 "invalid scoped context",
 "invalid script element",
 "invalid set or list object",
 "invalid term definition",
 "invalid type mapping",
 "invalid type value",
 "invalid typed value",
 "invalid value object value",
 "invalid value object",
 "invalid vocab mapping",
 "IRI confused with prefix",
 "keyword redefinition",
 "loading document failed",
 "loading remote context failed",
 "multiple context link headers",
 "processing mode conflict",
 "protected term redefinition"
};

 	colliding keywords

 	Two properties which expand to the same keyword have been detected.
 This might occur if a keyword
 and an alias thereof
 are used at the same time.

 	conflicting indexes

 	Multiple conflicting indexes have been found for the same node.

 	context overflow

 	Maximum number of @context URLs exceeded.

 	cyclic IRI mapping

 	A cycle in IRI mappings has been detected.

 	invalid @id value

 	An @id entry was encountered whose value was not a string.

 	invalid @import value

 	An invalid value for @import has been found.

 	invalid @included value

 	An included block contains an invalid value.

 	invalid @index value

 	An @index entry was encountered whose value was not a string.

 	invalid @nest value

 	An invalid value for @nest has been found.

 	invalid @prefix value

 	An invalid value for @prefix has been found.

 	invalid @propagate value

 	An invalid value for @propagate has been found.

 	invalid @protected value

 	An invalid value for @protected has been found.

 	invalid @reverse value

 	An invalid value for an @reverse entry has been detected,
 i.e., the value was not a map.

 	invalid @version value

 	The @version entry was used in a context
 with an out of range value.

 	invalid base direction

 	The value of @direction is not "ltr", "rtl",
 or null and thus invalid.

 	invalid base IRI

 	An invalid base IRI has been detected, i.e.,
 it is neither an IRI nor null.

 	invalid container mapping

 	An @container entry was encountered
 whose value was not one of the following strings:
 @list,
 @set,
 @language,
 @index,
 @id,
 @graph, or
 @type.

 	invalid context entry

 	An entry in a context is invalid due to processing mode incompatibility.

 	invalid context nullification

 	An attempt was made to nullify a context
 containing protected term definitions.

 	invalid default language

 	The value of the default language is not a string
 or null and thus invalid.

 	invalid IRI mapping

 	A local context contains a term
 that has an invalid or missing IRI mapping.

 	invalid JSON literal

 	An invalid JSON literal was detected.

 	invalid keyword alias

 	An invalid keyword alias definition has been encountered.

 	invalid language map value

 	An invalid value in a language map has been detected.
 It MUST be a string or an array of strings.

 	invalid language mapping

 	An @language entry in a term definition
 was encountered whose value was neither a string
 nor null and thus invalid.

 	invalid language-tagged string

 	A language-tagged string with an invalid language value was detected.

 	invalid language-tagged value

 	A number, true, or false
 with an associated language tag was detected.

 	invalid local context

 	In invalid local context was detected.

 	invalid remote context

 	No valid context document has been found for a referenced remote context.

 	invalid reverse property

 	An invalid reverse property definition has been detected.

 	invalid reverse property map

 	An invalid reverse property map has been detected.
 No keywords apart from @context
 are allowed in reverse property maps.

 	invalid reverse property value

 	An invalid value for a reverse property has been detected.
 The value of an inverse property must be a node object.

 	invalid scoped context

 	The local context
 defined within a term definition
 is invalid.

 	invalid script element

 	A script element in HTML input
 which is the target of a fragment identifier
 does not have an appropriate type attribute.

 	invalid set or list object

 	A set object or list object
 with disallowed entries
 has been detected.

 	invalid term definition

 	An invalid term definition has been detected.

 	invalid type mapping

 	An @type entry in a term definition
 was encountered whose value could not be expanded to an IRI.

 	invalid type value

 	An invalid value for an @type entry has been detected,
 i.e., the value was neither a string nor an array of strings.

 	invalid typed value

 	A typed value with an invalid type was detected.

 	invalid value object

 	A value object with disallowed entries has been detected.

 	invalid value object value

 	An invalid value for the @value entry of a value object
 has been detected,
 i.e., it is neither a scalar nor null.

 	invalid vocab mapping

 	An invalid vocabulary mapping has been detected,
 i.e., it is neither an IRI nor null.

 	IRI confused with prefix

 	When compacting an IRI would result in an IRI
 which could be confused with a compact IRI
 (because its IRI scheme matches a term definition and it has no IRI authority).

 	keyword redefinition

 	A keyword redefinition has been detected.

 	loading document failed

 	The document could not be loaded or parsed as JSON.

 	loading remote context failed

 	There was a problem encountered loading a remote context.

 	multiple context link headers

 	Multiple HTTP Link Headers [RFC8288]
 using the http://www.w3.org/ns/json-ld#context link relation
 have been detected.

 	processing mode conflict

 	An attempt was made to change the processing mode
 which is incompatible with the previous specified version.

 	protected term redefinition

 	An attempt was made to redefine a protected term.

10. Security Considerations

 See, Security Considerations in [JSON-LD11].

11. Privacy Considerations

 See, Privacy Considerations in [JSON-LD11].

12. Internationalization Considerations

 See, Internationalization Considerations in [JSON-LD11].

A. IDL Index
This section is non-normative.

WebIDL/*
 * The JsonLd interface is created to expose the JsonLdProcessor interface.
 */
[Global=JsonLd, Exposed=JsonLd]
interface JsonLd {};

[Exposed=JsonLd]
interface JsonLdProcessor {
 constructor();
 static Promise<JsonLdRecord> compact(
 JsonLdInput input,
 optional JsonLdContext context = null,
 optional JsonLdOptions options = {});
 static Promise<sequence<JsonLdRecord>> expand(
 JsonLdInput input,
 optional JsonLdOptions options = {});
 static Promise<JsonLdRecord> flatten(
 JsonLdInput input,
 optional JsonLdContext context = null,
 optional JsonLdOptions options = {});
 static Promise<sequence<JsonLdRecord>> fromRdf(
 RdfDataset input,
 optional JsonLdOptions options = {});
 static Promise<RdfDataset> toRdf(
 JsonLdInput input,
 optional JsonLdOptions options = {});
};

typedef record<USVString, any> JsonLdRecord;

typedef (JsonLdRecord or sequence<JsonLdRecord> or USVString or RemoteDocument) JsonLdInput;

typedef (JsonLdRecord or sequence<(JsonLdRecord or USVString)> or USVString) JsonLdContext;

[Exposed=JsonLd]
interface RdfDataset {
 constructor();
 readonly attribute RdfGraph defaultGraph;
 void add(USVString graphName, RdfGraph graph);
 iterable<USVString?, RdfGraph>;
};

[Exposed=JsonLd]
interface RdfGraph {
 constructor();
 void add(RdfTriple triple);
 iterable<RdfTriple>;
};

[Exposed=JsonLd]
interface RdfTriple {
 constructor();
 readonly attribute USVString subject;
 readonly attribute USVString predicate;
 readonly attribute (USVString or RdfLiteral) _object;
};

[Exposed=JsonLd]
interface RdfLiteral {
 constructor();
 readonly attribute USVString value;
 readonly attribute USVString datatype;
 readonly attribute USVString? language;
};

dictionary JsonLdOptions {
 USVString? base = null;
 boolean compactArrays = true;
 boolean compactToRelative = true;
 LoadDocumentCallback? documentLoader = null;
 (JsonLdRecord? or USVString) expandContext = null;
 boolean extractAllScripts = false;
 boolean frameExpansion = false;
 boolean ordered = false;
 USVString processingMode = "json-ld-1.1";
 boolean produceGeneralizedRdf = true;
 USVString? rdfDirection = null;
 boolean useNativeTypes = false;
 boolean useRdfType = false;
};

callback LoadDocumentCallback = Promise<RemoteDocument> (
 USVString url,
 optional LoadDocumentOptions? options
);

dictionary LoadDocumentOptions {
 boolean extractAllScripts = false;
 USVString profile = null;
 (USVString or sequence<USVString>) requestProfile = null;
};

[Exposed=JsonLd]
interface RemoteDocument {
 constructor();
 readonly attribute USVString contentType;
 readonly attribute USVString contextUrl;
 attribute any document;
 readonly attribute USVString documentUrl;
 readonly attribute USVString profile;
};

dictionary JsonLdError {
 JsonLdErrorCode code;
 USVString? message = null;
};

enum JsonLdErrorCode {
 "colliding keywords",
 "conflicting indexes",
 "context overflow",
 "cyclic IRI mapping",
 "invalid @id value",
 "invalid @import value",
 "invalid @included value",
 "invalid @index value",
 "invalid @nest value",
 "invalid @prefix value",
 "invalid @propagate value",
 "invalid @protected value",
 "invalid @reverse value",
 "invalid @version value",
 "invalid base direction",
 "invalid base IRI",
 "invalid container mapping",
 "invalid context entry",
 "invalid context nullification",
 "invalid default language",
 "invalid IRI mapping",
 "invalid JSON literal",
 "invalid keyword alias",
 "invalid language map value",
 "invalid language mapping",
 "invalid language-tagged string",
 "invalid language-tagged value",
 "invalid local context",
 "invalid remote context",
 "invalid reverse property map",
 "invalid reverse property value",
 "invalid reverse property",
 "invalid scoped context",
 "invalid script element",
 "invalid set or list object",
 "invalid term definition",
 "invalid type mapping",
 "invalid type value",
 "invalid typed value",
 "invalid value object value",
 "invalid value object",
 "invalid vocab mapping",
 "IRI confused with prefix",
 "keyword redefinition",
 "loading document failed",
 "loading remote context failed",
 "multiple context link headers",
 "processing mode conflict",
 "protected term redefinition"
};

B. Open Issues
This section is non-normative.

 The following is a list of issues open at the time of publication.

 Issue 76: More compact @prefix defer-future-version
More compact @prefix.

 Issue 94: Expansion concept "key's term definition" is unclear with compact IRI keys defer-future-version
Expansion concept "key's term definition" is unclear with compact IRI keys.

 Issue 166: Relationship to the RDF/JS Dataset interface(s) defer-future-version
Relationship to the RDF/JS Dataset interface(s).

 Issue 380: Expansion does not take property-scoped contexts for nested properties into account defer-future-versionspec:editorialtest:needs testswr:spec-updated-partial
Expansion does not take property-scoped contexts for nested properties into account.

 Issue 391: Recursively nested properties and compaction defer-future-version
Recursively nested properties and compaction.

 Issue 435: relative iri compaction defer-future-versionspec:wontfixwr:pending
relative iri compaction.

C. Changes since 1.0 Recommendation of 16 January 2014
This section is non-normative.

 	The Expansion Algorithm
 has a special processing mode, based on
 the frameExpansion flag, to enable content associated with JSON-LD
 frames, which may not otherwise be valid JSON-LD documents.

 	An expanded term definition can now have an
 @context entry, which defines a context used for values of
 a property identified with such a term. This context is used
 in both the Expansion Algorithm and
 Compaction Algorithm.

 	A new § 7.3 Merge Node Maps is required
 for framing, to create a single graph from the default
 and named graphs.

 	An expanded term definition can now have an
 @nest entry, which identifies a term expanding to
 @nest which is used for containing properties using the same
 @nest mapping. When expanding, the values of an entry
 expanding to @nest are treated as if they were contained
 within the enclosing node object directly.

 	@container values within an expanded term definition may now
 include @id and @type, corresponding to id maps and type maps.

 	Both language maps and index maps may legitimately have an @none value, but
 JSON-LD 1.0 only allowed string values. This has been updated
 to allow (and ignore) @none values.

 	The JSON syntax has been abstracted into an internal representation
 to allow for other serialization formats that are functionally equivalent
 to JSON.

 	Preserved values are compacted using the properties of the referencing term.

 	The value for @container in an expanded term definition
 can also be an array containing any appropriate container
 keyword along with @set (other than @list).
 This allows a way to ensure that such entry values will always
 be expressed in array form.

 	Added support for the compactToRelative option to allow IRI compaction (§ 6.2 IRI Compaction)
 to document-relative IRIs to be disabled.

 	In JSON-LD 1.1, terms will be used as compact IRI prefixes
 when compacting only if
 a simple term definition is used where the value ends with a URI gen-delim character,
 or if their expanded term definition contains
 an @prefix entry with the value true. The 1.0 algorithm has
 been updated to only consider terms that map to a value that ends with a URI
 gen-delim character.

 	Term definitions now allow @container to include @graph,
 along with @id, @index and @set.
 In the Expansion Algorithm, this is
 used to create a named graph from either a node object, or
 objects which are values of entries in an id map or index map.
 The Compaction Algorithm allows
 specific forms of graph objects to be compacted back to a set of node objects,
 or maps of node objects.

 	Value Expansion will not turn native values
 into node objects.

 	The Term Selection algorithm has been
 updated to allow uses of containers for values which would otherwise not
 match. This is used in the Compaction
 Algorithm to use the @none keyword, or an alias, for
 values of maps for which there is no natural index. The Expansion Algorithm removes this indexing
 transparently.

 Additionally, see § D. Changes since JSON-LD Community Group Final Report.

D. Changes since JSON-LD Community Group Final Report
This section is non-normative.

 	Lists may now have items which are themselves lists.

 	The Deserialize JSON-LD to RDF Algorithm
 has been updated to ensure that only well-formed triples
 are emitted; previously, it only ensured that triples containing
 relative IRI references were excluded.

 	The API now adds an ordered
 option, defaulting to false This is used in algorithms to
 control iteration of map entry keys. Previously, the
 algorithms always required such an order. The instructions for
 evaluating test results have been updated accordingly.

 	The Generate Blank Node Identifier algorithm
 has been updated to remove the specifics of how new blank node
 identifiers are created.

 	Values of @type, or an alias of @type, may now have their @container set to @set
 to ensure that @type entries are always represented as an array. This
 also allows a term to be defined for @type, where the value MUST be a map
 with @container set to @set.

 	Updated the IRI Expansion algorithm so that
 if value contains a colon (:), but
 prefix is not a term, to only return value
 if it has the form of an IRI, otherwise fall through to
 the rest of the algorithm.

 	The use of blank node identifiers to label properties is obsolete,
 and may be removed in a future version of JSON-LD,
 as is the support for generalized RDF Datasets
 and thus the produceGeneralizedRdf option may be also be removed.

 	Added API steps to accept text/html as input,
 extracting either a specifically targeted script element,
 the first found JSON-LD script element,
 or all JSON-LD script elements.

 	Added contentType field to RemoteDocument.

 	Added support for protected contexts and term definitions.

 	Because scoped contexts can lead to contexts being reloaded, replace the
 recursive context inclusion error with a context overflow error.

 	Added support for "@type": "@none" in a term definition to prevent value compaction.

 	Added support for JSON literals.

 	Term definitions with keys which are of the form of an IRI or a compact IRI MUST NOT
 expand to an IRI other than the expansion of the key itself.

 	Consolidate RemoteDocument processing into the LoadDocumentCallback
 including variations on HTML processing.

 	The IRI Compaction algorithm may generate an error if the result is an
 IRI which could be confused with a compact IRI in the
 active context.

 	By default, all contexts are propagated when traversing node objects, other than
 type-scoped contexts. This can be controlled using the @propagate
 entry in a local context.

 	A context may contain a @import entry used to reference a remote context
 within a context, allowing JSON-LD 1.1 features to be added to contexts originally
 authored for JSON-LD 1.0.

 	The colliding keywords error is not issued for @type;
 instead, previous values of @type are prepended to any new values, when expanding.

 	A node object may include an included block,
 which is used to contain a set of node objects which are treated
 exactly as if they were node objects defined in an array including the containing
 node object.
 This allows the use of the object form of a JSON-LD document when there is more
 than one node object being defined, and where those node objects
 are not embedded as values of the containing node object.

 	A relative IRI reference has been added as a possible value for @vocab in
 a context. When this is set, vocabulary-relative IRI references, such as the
 entries of node objects, are expanded or compacted relative
 to the base IRI and the vocabulary mapping using string concatenation.

 	In the LoadDocumentCallback, if the retrieved content is not any JSON media type
 and there is a link header with rel=alternate and type=application/ld+json, redirect
 to that content.

 	Value objects, and associated context and term definitions have been updated to
 support @direction for setting the base direction of strings.

 	It is no longer required that language tags be normalized to lower case,
 other than for testing considerations.
 Language tags that are not valid according to [BCP47] are rejected.

 	The processing mode is now implicitly json-ld-1.1, unless set
 explicitly to json-ld-1.0.

 	Improve notation using IRI, IRI reference, and relative IRI reference.

 	Ignore terms and IRIs that have the form of a keyword ("@"1*ALPHA).

 E. Changes since Candidate Release of 12 December 2019
This section is non-normative.

 Note
All changes are editorial and do not affect the observable
 behavior of the API nor the expected test results.

 	Add application/xhtml+xml as an allowed media type in § 9.5.1 Process HTML,
 in the note in § 9.4.1 LoadDocumentCallback,
 and as a use of the profile API option.

 	Added add value, IRI expanding, and IRI compacting
 macros to reduce boilerplate in algorithmic language.

 	Improved algorithms in
 § 4.1 Context Processing Algorithm,
 § 4.2 Create Term Definition,
 § 2.1 Expansion,
 § 2.2 Compaction,
 § 6.3 Value Compaction,
 § 7.2 Node Map Generation,
 and § 8.1 Deserialize JSON-LD to RDF Algorithm.

 	When creating an i18n datatype or rdf:CompoundLiteral, language tags are
 normalized to lower case to improve interoperability between implementations.

 	Moved non-recursive portions algorithms
 into the JsonLdProcessor processing steps.

 	Fix some JsonLdOption initializers where defaults are null.
 Set default value for processingMode to json-ld-1.1.

 	Remove normative text for canonicalizing rdf:JSON literals and
 reference the rdf:JSON datatype of the syntax document
 for the conversion of the JSON Literals in § 8.6 Data Round Tripping.

 	Updated interfaces in § 9. The Application Programming Interface
 to use record,
 instead of dictionary,
 and to allow RemoteDocument to be used
 as a direct input, which resolves a Promise boundary issue.

 F. Changes since Candidate Release of 05 March 2020
This section is non-normative.

 Note
All changes are editorial and do not affect the observable
 behavior of the API nor the expected test results.

 	The inverse context is not passed explicitly as a parameter
 to the Term Selection,
 IRI compaction,
 and Value Compaction algorithms,
 but is retrieved from the inverse context field
 within an active context, and initialized as necessary.
 This simplifies calling sequences and better represents actual implementation experience.

 	Updated step 5.13 of the
 Context Processing algorithm
 to pass override protected
 and not pass validate scoped context
 to the Create Term Definition algorithm.

 	Move step 5.2.2 of the
 Context Processing algorithm
 to run before the subsequent step for checking remote contexts.

 	Updated step 11 of the
 Create Term Definition algorithm
 to use any boolean value of @protected, not just true.

 	Updated step 4.5 of the IRI Compaction algorithm
 to use @index for any value with an @index entry.

 	Update step 13.4.6.2 of the
 Expansion algorithm to pass
 null for active property, as included blocks
 do not define a relationship to a referencing node.

 	Update step 13.8.3.6 of the
 Expansion algorithm to pass
 true for the from map parameter to properly manage reverting
 active contexts.

 	Update step 11.1 of the
 Compaction Algorithm
 to pass false for propagate when calling the
 Context Processing algorithm.

 	Updated step 12.2.4 of the
 Compaction Algorithm
 to only look for @set if processing mode is json-ld-1.1.

 	Update step 12.8.6 of the
 Compaction Algorithm
 to clarify the value passed for element.

 	Update steps 12.8.9.6.3
 and 12.8.9.2.2 of the
 Compaction Algorithm
 to invoke the add value macro for adding remaining values back to compacted item.

 	Update step 12.8.10 of the
 Compaction Algorithm
 to add values to nest result instead of result
 as was originally intended.

 	Update step 2.2.1
 of § 7.3 Merge Node Maps to
 exclude @type, leaving it to the next step.
 This could cause type values from a node to be left out of the merge.

 	Added step 5.2.3
 to the Context Processing algorithm,
 which is added validate scoped context as a new
 optional argument, and passed to the
 Create Term Definition algorithm,
 which in turn uses it with the value false when recursively calling
 the Context Processing algorithm
 when validating a scoped context.

 	Added missing values for @container in the description of
 invalid container mapping.

 	Clarified step 3.13 in the
 Inverse Context Creation algorithm
 by moving the preceding step to 3.9.

 	Update substeps of 6.1.6
 in the Serialize RDF as JSON-LD Algorithm
 to update cl reference and not node.

 	Added § 1.4.2 Syntax Tokens and Keywords to describe
 the preserve keyword, which is only used for framing.

 G. Changes since Proposed Recommendation Release of 7 May 2020
This section is non-normative.

 	Removed remaining "at-risk" notes.

 	Update bibliographic reference for JCS to [RFC8785].

 	Changed [Exposed=(Window,Worker)] to [Exposed=JsonLd],
 which is declared as a global interface in order to expose the JsonLdProcessor interface
 for non-browser usage to address review suggestions.

 H. Acknowledgements
This section is non-normative.

 The editors would like to specially thank the following individuals for making significant
 contributions to the authoring and editing of this specification:

 	Timothy Cole (University of Illinois at Urbana-Champaign)

 	Gregory Todd Williams (J. Paul Getty Trust)

 	Ivan Herman (W3C Staff)

 	Jeff Mixter (OCLC (Online Computer Library Center, Inc.))

 	David Lehn (Digital Bazaar)

 	David Newbury (J. Paul Getty Trust)

 	Robert Sanderson (J. Paul Getty Trust, chair)

 	Harold Solbrig (Johns Hopkins Institute for Clinical and Translational Research)

 	Simon Steyskal (WU (Wirschaftsuniversität Wien) - Vienna University of Economics and Business)

 	A Soroka (Apache Software Foundation)

 	Ruben Taelman (Imec vzw)

 	Benjamin Young (Wiley, chair)

 Additionally, the following people were members of the Working Group at the time of publication:

 	Steve Blackmon (Apache Software Foundation)

 	Dan Brickley (Google, Inc.)

 	Newton Calegari (NIC.br - Brazilian Network Information Center)

 	Victor Charpenay (Siemens AG)

 	Sebastian Käbisch (Siemens AG)

 	Axel Polleres (WU (Wirschaftsuniversität Wien) - Vienna University of Economics and Business)

 	Leonard Rosenthol (Adobe)

 	Jean-Yves ROSSI (CANTON CONSULTING)

 	Antoine Roulin (CANTON CONSULTING)

 	Manu Sporny (Digital Bazaar)

 	Clément Warnier de Wailly (CANTON CONSULTING)

 A large amount of thanks goes out to the JSON-LD Community Group participants who worked through many of the technical issues on the mailing list and the weekly telecons: Chris Webber, David Wood, Drummond Reed, Eleanor Joslin, Fabien Gandon, Herm Fisher, Jamie Pitts, Kim Hamilton Duffy, Niklas Lindström, Paolo Ciccarese, Paul Frazze, Paul Warren, Reto Gmür, Rob Trainer, Ted Thibodeau Jr., and Victor Charpenay.

I. References

 I.1
 Normative references

 	[BCP47]
	Tags for Identifying Languages. A. Phillips; M. Davis. IETF. September 2009. IETF Best Current Practice. URL: https://tools.ietf.org/html/bcp47
	[DOM]
	DOM Standard. Anne van Kesteren. WHATWG. Living Standard. URL: https://dom.spec.whatwg.org/
	[ECMASCRIPT]
	ECMAScript Language Specification. Ecma International. URL: https://tc39.es/ecma262/
	[HTML]
	HTML Standard. Anne van Kesteren; Domenic Denicola; Ian Hickson; Philip Jägenstedt; Simon Pieters. WHATWG. Living Standard. URL: https://html.spec.whatwg.org/multipage/
	[IEEE-754-2008]
	IEEE 754-2008 Standard for Floating-Point Arithmetic. Institute of Electrical and Electronics Engineers. 2008. URL: http://standards.ieee.org/findstds/standard/754-2008.html
	[INFRA]
	Infra Standard. Anne van Kesteren; Domenic Denicola. WHATWG. Living Standard. URL: https://infra.spec.whatwg.org/
	[JSON-LD10]
	JSON-LD 1.0. Manu Sporny; Gregg Kellogg; Marcus Langhaler. W3C. 16 January 2014. W3C Recommendation. URL: https://www.w3.org/TR/2014/REC-json-ld-20140116/
	[JSON-LD11]
	JSON-LD 1.1. Gregg Kellogg; Pierre-Antoine Champin; Dave Longley. W3C. 7 May 2020. W3C Proposed Recommendation. URL: https://www.w3.org/TR/json-ld11/
	[JSON-LD11-FRAMING]
	JSON-LD 1.1 Framing. Dave Longley; Gregg Kellogg; Pierre-Antoine Champin. W3C. 7 May 2020. W3C Proposed Recommendation. URL: https://www.w3.org/TR/json-ld11-framing/
	[LINKED-DATA]
	Linked Data Design Issues. Tim Berners-Lee. W3C. 27 July 2006. W3C-Internal Document. URL: https://www.w3.org/DesignIssues/LinkedData.html
	[promises-guide]
	Writing Promise-Using Specifications. Domenic Denicola. W3C. 9 November 2018. TAG Finding. URL: https://www.w3.org/2001/tag/doc/promises-guide
	[RDF-SCHEMA]
	RDF Schema 1.1. Dan Brickley; Ramanathan Guha. W3C. 25 February 2014. W3C Recommendation. URL: https://www.w3.org/TR/rdf-schema/
	[RDF11-CONCEPTS]
	RDF 1.1 Concepts and Abstract Syntax. Richard Cyganiak; David Wood; Markus Lanthaler. W3C. 25 February 2014. W3C Recommendation. URL: https://www.w3.org/TR/rdf11-concepts/
	[RDF11-MT]
	RDF 1.1 Semantics. Patrick Hayes; Peter Patel-Schneider. W3C. 25 February 2014. W3C Recommendation. URL: https://www.w3.org/TR/rdf11-mt/
	[RFC2045]
	Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies. N. Freed; N. Borenstein. IETF. November 1996. Draft Standard. URL: https://tools.ietf.org/html/rfc2045
	[RFC2119]
	Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997. Best Current Practice. URL: https://tools.ietf.org/html/rfc2119
	[RFC3986]
	Uniform Resource Identifier (URI): Generic Syntax. T. Berners-Lee; R. Fielding; L. Masinter. IETF. January 2005. Internet Standard. URL: https://tools.ietf.org/html/rfc3986
	[RFC3987]
	Internationalized Resource Identifiers (IRIs). M. Duerst; M. Suignard. IETF. January 2005. Proposed Standard. URL: https://tools.ietf.org/html/rfc3987
	[RFC5234]
	Augmented BNF for Syntax Specifications: ABNF. D. Crocker, Ed.; P. Overell. IETF. January 2008. Internet Standard. URL: https://tools.ietf.org/html/rfc5234
	[RFC6839]
	Additional Media Type Structured Syntax Suffixes. T. Hansen; A. Melnikov. IETF. January 2013. Informational. URL: https://tools.ietf.org/html/rfc6839
	[RFC8174]
	Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. B. Leiba. IETF. May 2017. Best Current Practice. URL: https://tools.ietf.org/html/rfc8174
	[RFC8259]
	The JavaScript Object Notation (JSON) Data Interchange Format. T. Bray, Ed.. IETF. December 2017. Internet Standard. URL: https://tools.ietf.org/html/rfc8259
	[RFC8288]
	Web Linking. M. Nottingham. October 2017. Proposed Standard. URL: https://tools.ietf.org/html/rfc8288
	[Turtle]
	RDF 1.1 Turtle. Eric Prud'hommeaux; Gavin Carothers. W3C. 25 February 2014. W3C Recommendation. URL: https://www.w3.org/TR/turtle/
	[WEBIDL]
	Web IDL. Boris Zbarsky. W3C. 15 December 2016. W3C Editor's Draft. URL: https://heycam.github.io/webidl/
	[XMLSCHEMA11-2]
	W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. David Peterson; Sandy Gao; Ashok Malhotra; Michael Sperberg-McQueen; Henry Thompson; Paul V. Biron et al. W3C. 5 April 2012. W3C Recommendation. URL: https://www.w3.org/TR/xmlschema11-2/

 I.2
 Informative references

 	[cooluris]
	Cool URIs for the Semantic Web. Leo Sauermann; Richard Cyganiak. W3C. 3 December 2008. W3C Note. URL: https://www.w3.org/TR/cooluris/
	[JSON-LD10-API]
	JSON-LD 1.0 Processing Algorithms And API. Marcus Langhaler; Gregg Kellogg; Manu Sporny. W3C. 16 January 2014. W3C Recommendation. URL: https://www.w3.org/TR/2014/REC-json-ld-api-20140116/
	[RFC8785]
	JSON Canonicalization Scheme (JCS). A. Rundgren; B. Jordan; S. Erdtman. Network Working Group. June 2020. Informational. URL: https://www.rfc-editor.org/rfc/rfc8785

 ↑

 [image: W3C] JSON-LD 1.1 Framing

 An Extension to the Application Programming Interface for the JSON-LD Syntax

 W3C Recommendation
 16 July 2020

 	This version:
	
 https://www.w3.org/TR/2020/REC-json-ld11-framing-20200716/

	Latest published version:
	
 https://www.w3.org/TR/json-ld11-framing/

 	Latest editor's draft:
	https://w3c.github.io/json-ld-framing/

 	Test suite:
	https://w3c.github.io/json-ld-framing/tests/

 	Implementation report:
	
 https://w3c.github.io/json-ld-api/reports/

 	Previous version:
	https://www.w3.org/TR/2020/PR-json-ld11-framing-20200507/

 	Editors:

 	Dave Longley
 (Digital Bazaar)
 (v1.0 and v1.1)
	Gregg Kellogg (v1.0 and v1.1)
	Pierre-Antoine Champin
 (LIRIS - Université de Lyon)
 (v1.1)

 	
 Former editors:

	Manu Sporny
 (Digital Bazaar)
 (v1.0)
	Markus Lanthaler
 (Google)
 (v1.0)

 	
 Authors:

	Dave Longley
 (Digital Bazaar)
 (v1.0)
	Manu Sporny
 (Digital Bazaar)
 (v1.0)
	Gregg Kellogg (v1.0 and v1.1)
	Markus Lanthaler
 (Google)
 (v1.0)
	Niklas Lindström (v1.0)

 	Participate:
	
 GitHub w3c/json-ld-framing

	
 File a bug

	
 Commit history

	
 Pull requests

 Please check the
 errata for any errors or
 issues reported since publication.

 See also

 translations.

 This document is also available in this non-normative format:
 EPUB

 Copyright
 ©
 2010-2020

 W3C® (MIT,
 ERCIM, Keio,
 Beihang).
 W3C liability,
 trademark and permissive document license rules
 apply.

Abstract

JSON-LD Framing allows developers to query by example and
 force a specific tree layout to a JSON-LD document.

 This specification describes a superset of the features defined in
 JSON-LD Framing 1.0 [JSON-LD10-FRAMING]
 and, except where noted,
 the algorithms described in this specification are fully compatible
 with documents created using the previous community standard.

Status of This Document
This section describes the status of this
 document at the time of its publication. Other documents may supersede
 this document. A list of current W3C publications and the latest revision
 of this technical report can be found in the
 W3C technical reports index at
 https://www.w3.org/TR/.

 This document has been developed by the
 JSON-LD Working Group and was derived from the JSON-LD Community Group's Final Report.

 There is a
 live JSON-LD playground that is capable
 of demonstrating the features described in this document.

 This document was published by the JSON-LD Working Group as a
 Recommendation.

 GitHub Issues are preferred for
 discussion of this specification.

 Alternatively, you can send comments to our mailing list.
 Please send them to
 public-json-ld-wg@w3.org
 (archives).

 Please see the Working Group's
 implementation report.

 This document has been reviewed by W3C Members, by software developers, and
 by other W3C groups and interested parties, and is endorsed by the Director
 as a W3C Recommendation. It is a stable document and may be used as
 reference material or cited from another document. W3C's role in making the
 Recommendation is to draw attention to the specification and to promote its
 widespread deployment. This enhances the functionality and interoperability
 of the Web.

 This document was produced by a group
 operating under the
 W3C Patent Policy.

 W3C maintains a
 public list of any patent disclosures
 made in connection with the deliverables of
 the group; that page also includes
 instructions for disclosing a patent. An individual who has actual
 knowledge of a patent which the individual believes contains
 Essential Claim(s)
 must disclose the information in accordance with
 section 6 of the W3C Patent Policy.

 This document is governed by the
 1 March 2019 W3C Process Document.

 Set of Documents

 This document is one of three JSON-LD 1.1 Recommendations produced by the
 JSON-LD Working Group:

 	JSON-LD 1.1

 	JSON-LD 1.1 Processing Algorithms and API

 	JSON-LD 1.1 Framing

1. Introduction
This section is non-normative.

JSON-LD is a lightweight syntax to serialize Linked Data [LINKED-DATA] in JSON [RFC8259].
 Its design allows existing JSON to be interpreted as Linked Data with minimal changes.
 As with other representations of Linked Data which describe directed graphs,
 a single directed graph can have many different serializations, each expressing
 exactly the same information. Developers typically work with trees, represented as
 JSON objects. While mapping a graph to
 a tree can be done, the layout of the end result must be specified in advance.
 A Frame can be used by a developer on a JSON-LD document to
 specify a deterministic layout for a graph.

Using delimiters around a chunk of data is known as "framing".
 JSON-LD uses JSON delimiters such as { and } to
 separate statements about a particular subject. JSON-LD also allows subjects
 to reference other subjects through the use of their identifiers, expressed
 as strings.

However, given that JSON-LD represents one or more graphs of information,
 there is more than one way to frame the statements about several related
 subjects into a whole document. In fact, a graph of information can be
 thought of as a long list of independent statements (aka triples) that are not bundled together in any way.

The
 JSON-LD Framing API
 enables a developer to specify exactly how they would like data to be framed,
 such that statements about a particular subject are bundled together,
 delimited via { and }, and such that the subjects
 they relate to "nest" into a particular tree structure that matches what
 their application expects.

 1.1 How to Read this Document
This section is non-normative.

 This document is a detailed specification for a serialization of Linked
 Data in JSON. The document is primarily intended for the following audiences:

 	Authors who want to query JSON-LD documents to create representations
 more appropriate for a given use case.

 	Software developers that want to implement processors and APIs for JSON-LD.

 A companion document, the JSON-LD 1.1 specification
 [JSON-LD11], specifies the grammar of JSON-LD documents.

 To understand the basics in this specification you must first be familiar with
 JSON, which is detailed in [RFC8259].
 You must also understand the JSON-LD 1.1 Syntax specification [JSON-LD11],
 which is the base syntax used by all of the algorithms in this document,
 and the JSON-LD 1.1 API [JSON-LD11-API].
 To understand the API and how it is intended to operate in a programming environment,
 it is useful to have working knowledge of
 the JavaScript programming language [ECMASCRIPT]
 and WebIDL [WEBIDL].
 To understand how JSON-LD maps to RDF, it is helpful to be
 familiar with the basic RDF concepts [RDF11-CONCEPTS].

 This document can highlight changes since the JSON-LD 1.0 version.
 Select to changes.

 1.2 Contributing
This section is non-normative.

 There are a number of ways that one may participate in the development of
 this specification:

 	Technical discussion typically occurs on the public mailing list:
 public-json-ld-wg@w3.org

 	The working group uses #json-ld
 IRC channel is available for real-time discussion on irc.w3.org.

 	The #json-ld
 IRC channel is also available for real-time discussion on irc.freenode.net.

 1.3 Typographical conventions
This section is non-normative.

 The following typographic conventions are used in this specification:

 	markup
	
 Markup (elements, attributes, properties),
 machine processable values (string, characters, media types),
 property name,
 or a file name is in red-orange monospace font.

 	variable
	
 A variable in pseudo-code or in an algorithm description is in italics.

 	definition
	
 A definition of a term, to be used elsewhere in this or other specifications,
 is in bold and italics.

 	definition reference
	
 A reference to a definition in this document
 is underlined and is also an active link to the definition itself.

 	markup definition reference
	
 A references to a definition in this document,
 when the reference itself is also a markup, is underlined,
 red-orange monospace font, and is also an active link to the definition itself.

 	external definition reference
	
 A reference to a definition in another document
 is underlined, in italics, and is also an active link to the definition itself.

 	 markup external definition reference
	
 A reference to a definition in another document,
 when the reference itself is also a markup,
 is underlined, in italics red-orange monospace font,
 and is also an active link to the definition itself.

 	hyperlink
	
 A hyperlink is underlined and in blue.

 	[reference]
	
 A document reference (normative or informative) is enclosed in square brackets
 and links to the references section.

 	Changes from Recommendation
	
 Sections or phrases changed from the previous Recommendation
 may be highlighted using a control
 in § 1.1 How to Read this Document.

Note
Notes are in light green boxes with a green left border and with a "Note" header in green.
 Notes are always informative.

 Example 1

 Examples are in light khaki boxes, with khaki left border,
and with a numbered "Example" header in khaki.
Examples are always informative. The content of the example is in monospace font and may be syntax colored.

Examples may have tabbed navigation buttons
to show the results of transforming an example into other representations.

 1.4 Terminology

 This document uses the following terms as defined in external specifications
 and defines terms specific to JSON-LD.

 Terms imported from Other Specifications

Terms imported from ECMAScript Language Specification [ECMASCRIPT], The JavaScript Object Notation (JSON) Data Interchange Format [RFC8259], Infra Standard [INFRA], and Web IDL [WEBIDL]

	array
	
 In the JSON serialization,
 an array structure is represented as square brackets surrounding zero or more values.
 Values are separated by commas.
 In the internal representation,
 a list (also called an array) is an ordered collection of zero or more values.
 While JSON-LD uses the same array representation as JSON,
 the collection is unordered by default.
 While order is preserved in regular JSON arrays,
 it is not in regular JSON-LD arrays unless specifically defined
 (see the Sets and Lists section of JSON-LD 1.1.

 	boolean
	
 The values true and false that are used
 to express one of two possible states.

 	JSON object
	
 In the JSON serialization,
 an object structure
 is represented as a pair of curly brackets surrounding zero or more name/value pairs (or members).
 A name is a string.
 A single colon comes after each name,
 separating the name from the value.
 A single comma separates a value from a following name.
 In JSON-LD the names in an object must be unique.
 In the internal representation a JSON object is described as a
 map (see [INFRA]),
 composed of entries with key/value pairs.

 In the Application Programming Interface,
 a map is described using a [WEBIDL] record.

 	null
	
 The use of the null value within JSON-LD
 is used to ignore or reset values.
 A map entry in the @context where the value,
 or the @id of the value, is null,
 explicitly decouples a term's association with an IRI.
 A map entry in the body of a JSON-LD document
 whose value is null
 has the same meaning as if the map entry was not defined.
 If @value, @list, or @set is set to null in expanded form,
 then the entire JSON object is ignored.

 	number
	
 In the JSON serialization, a number
 is similar to that used in most programming languages,
 except that the octal and hexadecimal formats are not used and that leading zeros are not allowed.
 In the internal representation,
 a number is equivalent to either a long
 or double,
 depending on if the number has a non-zero fractional part (see [WEBIDL]).

 	scalar
	
 A scalar is either a string, number, true, or false.

 	string
	
 A string
 is a sequence of zero or more Unicode (UTF-8) characters,
 wrapped in double quotes, using backslash escapes (if necessary).
 A character is represented as a single character string.

Terms imported from Internationalized Resource Identifiers (IRIs) [RFC3987]

	IRI
	
 The absolute form of an IRI containing a scheme along with a path
 and optional query and fragment segments.

 	IRI reference
	
 Denotes the common usage of an Internationalized Resource Identifier.
 An IRI reference may be absolute or
 relative.
 However, the "IRI" that results from such a reference only includes absolute IRIs;
 any relative IRI references are resolved to their absolute form.

 	relative IRI reference
	
 A relative IRI reference is an IRI reference that is relative to some other IRI,
 typically the base IRI of the document.
 Note that properties,
 values of @type,
 and values of terms defined to be vocabulary relative
 are resolved relative to the vocabulary mapping,
 not the base IRI.

Terms imported from RDF 1.1 Concepts and Abstract Syntax [RDF11-CONCEPTS], RDF Schema 1.1 [RDF-SCHEMA], and Linked Data Design Issues [LINKED-DATA]

	base IRI
	
 The base IRI is an IRI established in the context,
 or is based on the JSON-LD document location.
 The base IRI is used to turn relative IRI references into IRIs.

 	blank node
	
 A node in a graph that is neither an IRI,
 nor a literal.
 A blank node does not contain
 a de-referenceable identifier because it is either ephemeral in nature
 or does not contain information that needs to be linked to from outside of the linked data graph.
 In JSON-LD,
 a blank node is assigned an identifier starting with the prefix _:.

 	blank node identifier
	
 A blank node identifier
 is a string that can be used as an identifier for a blank node within the scope of a JSON-LD document.
 Blank node identifiers begin with _:.

 	dataset
	
 A dataset
 representing a collection of RDF graphs
 including exactly one default graph and zero or more named graphs.

 	datatype IRI
	
 A datatype IRI is an IRI identifying a datatype that determines how the lexical form maps to a
 literal value.

 	default graph
	
 The default graph of a dataset is an RDF graph having no name, which may be empty.

 	graph name
	
 The IRI or blank node identifying a named graph.

 	language-tagged string
	
 A language-tagged string
 consists of a string and a non-empty language tag
 as defined by [BCP47].
 The language tag must be well-formed
 according to section 2.2.9 Classes of Conformance of [BCP47].
 Processors may normalize language tags to lowercase.

 	Linked Data
	
 A set of documents, each containing a representation of a linked data graph or dataset.

 	list
	
 A list is an ordered sequence of IRIs, blank nodes, and literals.

 	literal
	
 An object expressed as a value such as a string or number.
 Implicitly or explicitly includes a datatype IRI and, if the datatype is rdf:langString, an optional language tag.

 	named graph
	
 A named graph
 is a linked data graph that is identified by an IRI or blank node.

 	node
	
 A node in an RDF graph, either the subject and object of at least one triple.
 Note that a node can play both roles (subject and object) in a graph, even in the same triple.

 	object
	
 An object is a node in a linked data graph
 with at least one incoming edge.

 	property
	
 The name of a directed-arc in a linked data graph.
 Every property is directional
 and is labeled with an IRI or a blank node identifier.
 Whenever possible, a property should be labeled with an IRI.
 Note
The use of blank node identifiers to label properties is obsolete,
 and may be removed in a future version of JSON-LD.

 Also, see predicate in [RDF11-CONCEPTS].

 	RDF graph
	
 A labeled directed graph,
 i.e., a set of nodes connected by directed-arcs.
 Also called linked data graph.

 	resource
	
 A resource denoted by an IRI, a blank node or literal representing something in the world (the "universe of discourse").

 	subject
	
 A subject is a node in a linked data graph
 with at least one outgoing edge,
 related to an object node through a property.
	triple
	
 A component of an RDF graph including a subject, predicate, and object, which represents
 a node-arc-node segment of an RDF graph.

JSON-LD Specific Term Definitions

	active context
	
 A context that is used to resolve terms
 while the processing algorithm is running.

 	base direction
	
 The base direction is the direction used when a string does not have a direction associated with it directly.
 It can be set in the context using the @direction key
 whose value must be one of the strings "ltr", "rtl", or null.
 See the Context Definitions section of JSON-LD 1.1 for a normative description.

 	context
	
 A set of rules for interpreting a JSON-LD document
 as described in the The Context section of JSON-LD 1.1,
 and normatively specified in the Context Definitions section of JSON-LD 1.1.

 	default object
	
 A default object is a map that has a @default key.

 	frame
	
 A JSON-LD document,
 which describes the form for transforming another JSON-LD document
 using matching and embedding rules.
 A frame document allows additional keywords and certain map entries
 to describe the matching and transforming process.

 	frame object
	
 A frame object is a map element within a frame
 which represents a specific portion of the frame matching either
 a node object or a value object
 in the input.
 See the Frame Objects section of JSON-LD 1.1 for a normative description.

 	JSON-LD document
	
 A JSON-LD document is a serialization of
 an RDF dataset.
 See the JSON-LD Grammar section in JSON-LD 1.1 for a formal description.

 	JSON-LD internal representation
	
 The JSON-LD internal representation
 is the result of transforming a JSON syntactic structure
 into the core data structures suitable for direct processing:
 arrays, maps, strings, numbers, booleans, and null.

 	JSON-LD Processor
	
 A JSON-LD Processor is a system which can perform the algorithms defined in JSON-LD 1.1 Processing Algorithms and API.
 See the Conformance section in JSON-LD 1.1 API for a formal description.

 	JSON-LD value
	
 A JSON-LD value is a string,
 a number,
 true or false,
 a typed value,
 or a language-tagged string.
 It represents an RDF literal.

 	keyword
	
 A string that is specific to JSON-LD,
 described in the Syntax Tokens and Keywords section of JSON-LD 1.1,
 and normatively specified in the Keywords section of JSON-LD 1.1,

 	node object
	
 A node object represents zero or more properties of a node in the graph
 serialized by the JSON-LD document.
 A map is a node object
 if it exists outside of the JSON-LD context and:

 	it does not contain the @value, @list, or @set keywords, or

 	it is not the top-most map in the JSON-LD document
 consisting of no other entries than @graph and @context.

 The entries of a node object whose keys are not keywords are also called properties of the node object.
 See the Node Objects section of JSON-LD 1.1 for a normative description.

 	node reference
	
 A node object used to reference a node having only the @id key.

 	processing mode
	
 The processing mode defines how a JSON-LD document is processed.
 By default, all documents are assumed to be conformant with this specification.
 By defining a different version using the @version entry in a context,
 publishers can ensure that processors conformant with JSON-LD 1.0 [JSON-LD10]
 will not accidentally process JSON-LD 1.1 documents, possibly creating a different output.
 The API provides an option for setting the processing mode to json-ld-1.0,
 which will prevent JSON-LD 1.1 features from being activated,
 or error if @version entry in a context is explicitly set to 1.1.
 This specification extends JSON-LD 1.0
 via the json-ld-1.1 processing mode.

 	scoped context
	
 A scoped context is part of an expanded term definition using the
 @context entry. It has the same form as an embedded context.
 When the term is used as a type, it defines a type-scoped context,
 when used as a property it defines a property-scoped context.

 	typed value
	
 A typed value consists of a value,
 which is a string,
 and a type,
 which is an IRI.

 	value object
	
 A value object is a map that has an @value entry.
 See the Value Objects section of JSON-LD 1.1 for a normative description.

 	vocabulary mapping
	
 The vocabulary mapping is set in the context using the @vocab key
 whose value must be an IRI, a compact IRI, a term, or null.
 See the Context Definitions section of JSON-LD 1.1 for a normative description.

 1.4.1 Algorithm Terms

 The Following terms are used within specific algorithms.

 	active property
	
 The currently active property or keyword that the processor should use when processing.
 The active property is represented in the original lexical form,
 which is used for finding coercion mappings in the active context.

 	explicit inclusion flag
	
 A flag specifying that for properties to be included in the output,
 they must be explicitly declared in the matching frame.

 	framing state
	
 A map containing values for
 the object embed flag,
 the require all flag,
 the embedded flag,
 used internally to help determine if object embedding is appropriate,
 the explicit inclusion flag,
 and the omit default flag.

 	input frame
	
 The initial Frame provided to the framing algorithm.

 	IRI compacting

 	
 Used as a macro within various algorithms as to reduce the language used to describe
 the process of compacting a string var representing an IRI or keyword
 using an active context either specified directly, or coming from the scope of
 the algorithm step using this term.
 An optional value is used, if explicitly provided.
 Unless specified, the vocab flag defaults to true,
 and the reverse flag defaults to false.

 	Return the result of using the IRI Compaction algorithm,
 passing active context,
 var,
 value (if supplied),
 vocab,
 and result.

 	JSON-LD input
	
 The JSON-LD data structure that is provided as input to the algorithm.

 	map of flattened subjects
	
 A map of subjects that is the result of the
 Node Map Generation algorithm.

 	object embed flag
	
 A flag specifying that node objects should be directly embedded in the output,
 instead of being referred to by their IRI.

 	omit default flag
	
 A flag specifying that properties that are missing from the JSON-LD input,
 but present in the input frame,
 should be omitted from the output.

 	omit graph flag
	
 A flag that determines if framing output is always contained within a @graph entry,
 or only if required to represent multiple node objects.

 	require all flag
	
 A flag specifying that all properties present in the input frame
 must either have a default value
 or be present in the JSON-LD input
 for the frame to match.

 1.5 Syntax Tokens and Keywords

 This specification adds a number of keywords (framing keywords) to
 the ones defined in the JSON-LD 1.1 Syntax specification [JSON-LD11]:

 	@default

 	Used in Framing to set the default value for
 an output property when the framed node object does not include such a property.

 	@embed

 	Used in Framing to override the
 value of object embed flag within a specific frame. Valid values for
 @embed as the following:

 	@always
	
 Always embed node objects as property values, unless this would
 cause a circular reference.

 	@once
	
 Just a single value within a given node object should be embedded,
 other values of other properties use a node reference. This is the
 default value if neither @embed nor object embed flag
 is specified.
 Note
The specific node object chosen to embed depends on
 ordering. If the ordered flag is true,
 this will be the first node object encountered,
 otherwise, it may be any node object.

 	@never
	
 Always use a node reference when serializing matching values.

 Any other value for @embed is invalid and indicates that an
 invalid @embed value
 error has been detected and processing is aborted.

 	@explicit

 	Used in Framing to override the
 value of explicit inclusion flag within a specific frame.

 	@null

 	Used in Framing when a value of null
 should be returned, which would otherwise be removed when
 Compacting.

 	@omitDefault

 	Used in Framing to override the
 value of omit default flag within a specific frame.

 	@requireAll

 	Used in Framing to override the
 value of require all flag within a specific frame.

 All JSON-LD tokens and keywords are case-sensitive.

2. Features
This section is non-normative.

 JSON-LD 1.1 introduces new features that are
 compatible with JSON-LD 1.0 [JSON-LD10],
 but if processed by a JSON-LD 1.0 processor may produce different results.
 Processors default to json-ld-1.1, unless the
 processingMode API option
 is explicitly set to json-ld-1.0.
 Publishers are encouraged to use the @version map entry within a context
 set to 1.1 to ensure that JSON-LD 1.0 processors will not misinterpret JSON-LD 1.1 features.

 2.1 Framing
This section is non-normative.

 Framing is used to shape the data in a JSON-LD document,
 using an example frame document which is used to both match the
 flattened
 data and show an example of how the resulting data should be shaped.
 Matching is performed by using properties present in in the frame
 to find objects in the data that share common values. Matching can be done
 either using all properties present in the frame, or any property in the frame.
 By chaining together objects using matched property values, objects can be embedded
 within one another.

 A frame also includes a context, which is used for compacting the resulting
 framed output.

 For example, assume the following JSON-LD frame:

 Example 2: Sample library frame

 {
 "@context": {"@vocab": "http://example.org/"},
 "@type": "Library",
 "contains": {
 "@type": "Book",
 "contains": {
 "@type": "Chapter"
 }
 }
}

 This frame document describes an embedding structure that would place
 objects with type Library at the top, with objects of
 type Book that were linked to the library object using
 the contains property embedded as property values. It also
 places objects of type Chapter within the referencing Book object
 as embedded values of the Book object.

 When using a flattened set of objects that match the frame components:

 Example 3: Flattened library objects

 {
 "@context": {
 "@vocab": "http://example.org/",
 "contains": {"@type": "@id"}
 },
 "@graph": [{
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "contains": "http://example.org/library/the-republic"
 }, {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": "http://example.org/library/the-republic#introduction"
 }, {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }]
}

 The Frame Algorithm can create a new document which follows the structure
 of the frame:

 Example 4: Framed library objects

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
}

 If processing mode is not json-ld-1.0, or the omit graph flag is true,
 the top-level @graph entry may be omitted.

 Example 5: Framed library objects

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
}

 The Framing Algorithm does this by
 first expanding both the input frame and document. It then creates
 a map of flattened subjects. The outer-most node object within the frame
 is used to match objects in the map, in this case looking for node objects
 which have an @type of Library, and a
 contains property with another
 frame used to match values of that property. The input document contains
 exactly one such node object. The value of contains also has
 a node object, which is then treated as a frame to match the set of subjects
 which are contains values of the Library object, and so forth.

 2.1.1 Matching on Properties
This section is non-normative.

 In addition to matching on types, a frame can match on
 one or more properties.

 For example, the following frame selects object based on property
 values, rather than @type.

 Example 6: Library frame with property matching

 {
 "@context": {"@vocab": "http://example.org/"},
 "location": "Athens",
 "contains": {
 "title": "The Republic",
 "contains": {
 "title": "The Introduction"
 }
 }
}

 This will generate the same framed results as when selecting on @type,
 as the property values are unique to each node object.

 Example 7: Framed library objects with property matching

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
}

 See § 2.3.5 Require all flag
 to see how matching can be restricted to match node objects containing
 all, versus any such listed property.

 2.1.2 Wildcard Matching
This section is non-normative.

 The empty map ({}) is used as a wildcard, which will
 match a property if it exists in a target node object, independent of any specific value.

 For example, the following frame selects object based on property
 wildcarding, rather than @type.

 Example 8: Library frame with wildcard matching

 {
 "@context": {"@vocab": "http://example.org/"},
 "location": {},
 "contains": {
 "creator": {},
 "contains": {
 "description": {}
 }
 }
}

 This will generate the same framed results as when selecting on @type,
 as the matched properties are distinct to each node object.

 Example 9: Framed library objects with wildcard matching

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
}

 2.1.3 Match on the Absence of a Property
This section is non-normative.

 The empty array ([]) is used for match none, which will
 match a node object only if a property does not exist in a target node object.

 For example, the following frame selects object based on the absence of properties,
 rather than @type.

 Example 10: Library frame with absent matching

 {
 "@context": {"@vocab": "http://example.org/"},
 "creator": [],
 "title": [],
 "contains": {
 "location": [],
 "description": [],
 "contains": {
 "location": []
 }
 }
}

 This will generate the same framed results as when selecting on @type,
 the property that is excluded uniquely identifies each node object.
 Note that additional properties with the value null are added
 for those properties explicitly excluded.

 Example 11: Framed library objects with wildcard matching

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "creator": null, ← This property is added
 "title": null, ← This property is added
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "description": null, ← This property is added
 "location": null, ← This property is added
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "location": null, ← This property is added
 "title": "The Introduction"
 }
 }
}

 2.1.4 Matching on Values
This section is non-normative.

 Frames can be matched based on the presence of specific property values.
 These values can themselves use wildcards, to match on a specific
 or set of values, language tags, types, or base direction.

 For an example, we'll use an multilingual version of the library example
 with more complex value representations.

 Example 12: Multilingual library objects

 {
 "@context": {
 "@vocab": "http://example.org/",
 "contains": {"@type": "@id"}
 },
 "@graph": [{
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": [
 {"@value": "Athens", "@language": "en"},
 {"@value": "Αθήνα", "@language": "grc"},
 {"@value": "Athína", "@language": "el-Latn"}
],
 "contains": "http://example.org/library/the-republic"
 }, {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": [
 {"@value": "Plato", "@language": "en"},
 {"@value": "Πλάτων", "@language": "grc"},
 {"@value": "Plátōn", "@language": "el-Latn"}
],
 "title": [
 {"@value": "The Republic", "@language": "en"},
 {"@value": "Πολιτεία", "@language": "grc"},
 {"@value": "Res Publica", "@language": "el-Latn"}
],
 "contains": "http://example.org/library/the-republic#introduction"
 }, {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }]
}

 By matching on an attribute of a value, we can match frames
 having that attribute, and limit results to property values
 that match. In this case, we'll frame the Library and Book objects
 on values only in latinized Greek (el-Latn):

 Example 13: Library frame with language matching

 {
 "@context": {"@vocab": "http://example.org/"},
 "location": {"@value": {}, "@language": "el-Latn"},
 "contains": {
 "creator": {"@value": {}, "@language": "el-Latn"},
 "title": {"@value": {}, "@language": "el-Latn"},
 "contains": {
 "title": "The Introduction"
 }
 }
}

 This generates the following framed results:

 Example 14: Framed library objects with wildcard matching

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": {"@value": "Athína", "@language": "el-Latn"},
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": {"@value": "Plátōn", "@language": "el-Latn"},
 "title": {"@value": "Res Publica", "@language": "el-Latn"},
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
}

 2.1.5 Matching on @id
This section is non-normative.

 Frames can be matched if they match a specific
 identifier (@id). This can be illustrated with the original
 Flattened library objects
 input using a frame which matches on specific @id values:

 Example 15: Library frame with @id matching

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction"
 }
 }
}

 This generates the following framed results:

 Example 16: Framed library objects with @id matching

 Open in playground

 {
 "@context": {
 "@vocab": "http://example.org/"
 },
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
}

 Frames can also be matched from an array of identifiers.
 Within a frame, it is acceptable for @id to have an array value,
 where the individual values are treated as IRIs.

 Example 17: Library frame with array @id matching

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": ["http://example.org/home", "http://example.org/library"],
 "contains": {
 "@id": ["http://example.org/library/the-republic"],
 "contains": {
 "@id": ["http://example.org/library/the-republic#introduction"]
 }
 }
}

 This generates the following framed results:

 Example 18: Framed library objects with @id matching

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
}

 2.1.6 Empty Frame
This section is non-normative.

 An empty frame matches any node object, even if those
 objects are embedded elsewhere, causing them to be serialized at the top level.

 Example 19: Empty frame

 {
 "@context": {"@vocab": "http://example.org/"}
}

 This generates the following framed results:

 Example 20: Framed library objects with empty frame

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@graph": [{
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
 }, {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }, {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }]
}

 2.2 Default content
This section is non-normative.

 A frame may specify properties that don't exist in an input file. If the
 explicit inclusion flag is false, the framing algorithm
 will add a property and value to the result. The @default property
 in a node object or value object,
 or as a value of @type,
 provides a default value to use in the resulting
 output document. If there is no @default value, the property will be output
 with a null value. (See § 2.3.3 Omit default flag
 for ways to avoid this).

 Note
The value of the property in the frame is not otherwise
 used in the output document. It's purpose is for frame matching and
 finding default values. Note the description value for Library in the following example.

 Example 21: Sample library frame with @default value

 {
 "@context": {"@vocab": "http://example.org/"},
 "@type": "Library",
 "description": "A great Library.",
 "contains": {
 "@type": "Book",
 "description": {"@default": "A great book."},
 "contains": {
 "@type": "Chapter"
 }
 }
}

 Example 22: Sample library output with @default value

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "description": null,
 "location": "Athens",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "description": "A great book.",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
}

 Default values may also be used for @type, similar to other properties.
 In this case, a matched node object without an @type will take the
 value of the default object from the frame.
 The default object has a value which is a single IRI.
 If multiple IRIs are specified, only the first will be used as the default type.

 The frame matches objects having specific property values,
 and provides defaults for @type for matched objects.

 Example 23: Sample library frame with @default type

 {
 "@context": {"@vocab": "http://example.org/"},
 "@type": "Library",
 "contains": {
 "@type": {"@default": "Book"},
 "creator": "Plato",
 "contains": {
 "@type": {"@default": "Chapter"},
 "description": "An introductory chapter on The Republic."
 }
 }
}

 Data missing specific values for @type, but which matches based on
 other property values.

 Example 24: Typeless library objects

 {
 "@context": {
 "@vocab": "http://example.org/",
 "contains": {"@type": "@id"}
 },
 "@graph": [{
 "@id": "http://example.org/library",
 "@type": "Library",
 "contains": "http://example.org/library/the-republic"
 }, {
 "@id": "http://example.org/library/the-republic",
 "creator": "Plato",
 "title": "The Republic",
 "contains": "http://example.org/library/the-republic#introduction"
 }, {
 "@id": "http://example.org/library/the-republic#introduction",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }]
}

 Example 25: Sample library output with @default type

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@graph": [{
 "@id": "http://example.org/library",
 "@type": "Library",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 },
 "creator": "Plato",
 "description": "A great book.",
 "title": "The Republic"
 }
 }]
}

 2.3 Framing Flags
This section is non-normative.

 Framing can be controlled using API options,
 or by adding framing keywords within the frame as
 described in § 1.5 Syntax Tokens and Keywords.

 Note
Framing flags set using keywords have effect only for the
 frame in which they appear, and for implicit frames which are created
 for objects where no frame object exists.

 2.3.1 Object Embed Flag
This section is non-normative.

 The object embed flag determines if a referenced
 node object is embedded as a property value of a referencing
 object, or kept as a node reference.
 The initial value for the object embed flag is set using the
 embed option.
 Consider the following frame
 based on the default @once value of the object embed flag:

 Example 26: Sample library frame with implicit @embed set to @once

 {
 "@context": {"@vocab": "http://example.org/"},
 "@type": "Library"
}

 Example 27: Framed library objects with @embed set to @once

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
}

 Because, the default for the object embed flag is @once
 (in addition to the explicit inclusion flag being false),
 non-listed properties are added to the output, and implicitly embedded
 using a default empty frame. As a result, the same output used in the
 Framed library objects above is generated,
 assuming that the ordered flag is true.

 However, if the @embed property is added explicitly with a
 value of @never, the values for Book and Chapter will be excluded.

 Example 28: Sample library frame with explicit @embed set to @never

 {
 "@context": {"@vocab": "http://example.org/"},
 "@type": "Library",
 "contains": {
 "@type": "Book",
 "@embed": "@never"
 }
}

 Example 29: Framed library objects with @embed set to @never

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "contains": {
 "@id": "http://example.org/library/the-republic"
 }
}

 To illustrate the case where @once does not expand values,
 consider an alternate library example where books are doubly indexed.

 Example 30: Flattened library objects with double index

 {
 "@context": {
 "@vocab": "http://example.org/",
 "books": {"@type": "@id"},
 "contains": {"@type": "@id"}
 },
 "@graph": [{
 "@id": "http://example.org/library",
 "@type": "Library",
 "books": "http://example.org/library/the-republic",
 "contains": "http://example.org/library/the-republic"
 }, {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": "http://example.org/library/the-republic#introduction"
 }, {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }]
}

 Example 31: Framed library objects with double index

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "contains": {"@id": "http://example.org/library/the-republic"},
 "books": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
}

 When framed using the same frame with the default @embed of @once,
 only the "books" property will have content,
 if the ordered flag is true,
 and the "contains" property will use a reference.

 If we use a frame using "@embed": "@always",
 both properties will include expanded values.

 Example 32: Sample library frame with explicit @embed set to @always

 {
 "@context": {"@vocab": "http://example.org/"},
 "@type": "Library",
 "@embed": "@always"
}

 Example 33: Framed library objects with double index and @always

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "books": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 },
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
}

 2.3.2 Explicit inclusion flag
This section is non-normative.

 The explicit inclusion flag used to determine
 properties which will be included in the output document.
 The default value is false, which means that properties
 present in an input node object that are not in the associated frame will be
 included in the output object.
 If true, only properties present in
 the input frame will be placed into the output.
 The initial value for the explicit inclusion flag is set using the
 explicit option.

 For example, take an expanded version of the library frame which include
 some properties from the input, but omit others.

 Example 34: Sample library frame with @explicit set to true

 {
 "@context": {"@vocab": "http://example.org/"},
 "@type": "Library",
 "description": {},
 "contains": {
 "@type": "Book",
 "@explicit": true,
 "title": {},
 "contains": {
 "@type": "Chapter"
 }
 }
}

 The resulting output will exclude properties for Book which are not explicitly
 listed in the frame object:

 Example 35: Framed library objects with @explicit set to true

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "description": null ← This property is explicit,
 "location": "Athens",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato", ← This property is omitted
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
}

 Note that the Library object contains a null
 description property, as it is explicitly called for in the frame
 using "description": {}. The creator property does
 not exist in the output, because it is not explicit.

 2.3.3 Omit default flag
This section is non-normative.

 The omit default flag changes the way framing generates output when a property
 described in the frame is not present in the input document.
 The initial value for the omit default flag is set using the
 omitDefault option.
 See § 2.2 Default content for a further discussion.

 Consider the following input document:

 Example 36: Sample parent/child relationship data

 {
 "@context": {
 "@vocab": "http://example.org/",
 "child": {"@type": "@id"}
 },
 "@graph": [{
 "@id": "http://example.org#John",
 "@type": "Person",
 "name": "John",
 "child": "http://example.org#Jane"
 }, {
 "@id": "http://example.org#Jane",
 "@type": "Person",
 "name": "Jane"
 }]
}

 To illustrate where the omit default flag is useful, consider the following
 frame, which does not use @omitDefault:

 Example 37: Sample parent/child relationship frame without @omitDefault

 {
 "@context": {
 "@vocab": "http://example.org/",
 "child": {"@type": "@id"}
 },
 "@type": "Person",
 "child": {
 "@embed": "@always"
 }
}

 The resulting output will include a "child" property with the value
 null, which may not always be desired:

 Example 38: Sample parent/child relationship output without @omitDefault

 Open in playground

 {
 "@context": {
 "@vocab": "http://example.org/",
 "child": {"@type": "@id"}
 },
 "@graph": [{
 "@id": "http://example.org#John",
 "@type": "Person",
 "name": "John",
 "child": {
 "@id": "http://example.org#Jane",
 "@type": "Person",
 "name": "Jane"
 }
 }, {
 "@id": "http://example.org#Jane",
 "@type": "Person",
 "name": "Jane",
 "child": null
 }]
}

 Note that because the option "@embed": "@always" is specified in the frame
 under the child property, that "child": null appears in the output
 for matches that do not have that property, which may be undesirable.
 To prevent this default null output from occurring,
 the @omitDefault may be set to true like so:

 Example 39: Sample parent/child relationship frame with @omitDefault

 {
 "@context": {
 "@vocab": "http://example.org/",
 "child": {"@type": "@id"}
 },
 "@type": "Person",
 "child": {
 "@embed": "@always",
 "@omitDefault": true
 }
}

 Which yields this (desirable) output:

 Example 40: Sample parent/child relationship output with @omitDefault

 Open in playground

 {
 "@context": {
 "@vocab": "http://example.org/",
 "child": {"@type": "@id"}
 },
 "@graph": [{
 "@id": "http://example.org#John",
 "@type": "Person",
 "name": "John",
 "child": {
 "@id": "http://example.org#Jane",
 "@type": "Person",
 "name": "Jane"
 }
 }, {
 "@id": "http://example.org#Jane",
 "@type": "Person",
 "name": "Jane"
 ↑ Does not include "child" property
 }]
}

 2.3.4 Omit graph flag
This section is non-normative.

 The omit graph flag determines if framed output containing a single
 node object is contained within @graph, or not.
 The initial value for the omit graph flag is set using the
 omitGraph option, or based on
 the processing mode; if processing mode is json-ld-1.0, the output
 always includes a @graph entry, otherwise, the @graph entry is used only
 to describe multiple node objects, consistent with compaction.
 See § 4.1 Framing Algorithm for a further discussion.

 The result is the same as the original Flattened library objects example,
 but a @graph at the top-level.
 Example 5 shows the results
 with the omit graph flag set to true, which is the default value when
 the processing mode is set to the default json-ld-1.1.
 The top-level object can be enclosed within @graph by setting the processing mode to json-ld-1.0,
 or by setting the omit graph flag to false.

 Example 41: Framed library objects with @omitGraph set to false

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@graph": [{
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
 }]
}

 2.3.5 Require all flag
This section is non-normative.

 The require all flag is used in frame matching to determine when a
 node object from an input document matches a frame. When
 matching, an object may include @type and other
 properties, a match is made when any property value in the
 object matches the node pattern in the frame object if
 the value of the require all flag is false (the
 default). If the flag value is true, then all
 properties in the frame object must be present in the node
 object for the node to match.

 The following frame matches on multiple properties, including the absence of a property.
 Using the Flattened library objects example,
 we can match on an object containing both the title and description or title and creator
 properties.
 If we were to use @requireAll set to false, then we could match on the presence
 of any property, not all properties.

 Example 42: Frame with @requireAll

 {
 "@context": {"@vocab": "http://example.org/"},
 "@type": "Library",
 "contains": {
 "@requireAll": true,
 "creator": {},
 "title": {},
 "contains": {
 "@requireAll": true,
 "description": {},
 "title": {}
 }
 }
}

 This will, again, reproduce the desired framed output:

 Example 43: Framed library objects with @requireAll set to true

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "contains": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
}

 2.4 Reverse Framing
This section is non-normative.

 A frame may include @reverse, or a value of a term defined using @reverse
 to invert the relationships in the output object. For example, the
 Library example can be inverted using the following frame:

 Example 44: Inverted library frame

 {
 "@context": {
 "@vocab": "http://example.org/",
 "within": {"@reverse": "contains"}
 },
 "@type": "Chapter",
 "within": {
 "@type": "Book",
 "within": {
 "@type": "Library"
 }
 }
}

 Using the flattened library example above, results in the following:

 Example 45: Inverted library output

 Open in playground

 {
 "@context": {
 "@vocab": "http://example.org/",
 "within": {"@reverse": "contains"}
 },
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction",
 "within": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "contains": {"@id": "http://example.org/library/the-republic#introduction"},
 "creator": "Plato",
 "title": "The Republic",
 "within": {
 "@id": "http://example.org/library",
 "@type": "Library",
 "location": "Athens",
 "contains": {"@id": "http://example.org/library/the-republic"}
 }
 }
}

 Note

 There is an asymmetry between regular properties and reverse properties.
 Normally, when framing a node object, unless the explicit inclusion flag is set,
 all properties of the node are included in the output, but reverse
 properties are not, as they are not actually properties of the node.

 To include reverse properties in the output, add them explicitly to the frame.
 Note that if the reverse relationship does not exist, it will simply be
 left out of the output.

 2.5 Framing Named Graphs
This section is non-normative.

 Frames can include @graph, which allows information from named graphs
 contained within a JSON-LD document to be exposed within it's proper
 graph context. By default, framing uses a merged graph, composed of all
 the node objects across all graphs within the input. By using @graph
 within a frame, the output document can include information specifically
 from named graphs contained within the input document.

 The following example uses a variation on our library theme where information
 is split between the default graph, and a graph named http://example.org/graphs/books:

 Example 46: Frame with named graphs

 {
 "@context": {"@vocab": "http://example.org/"},
 "@type": "Library",
 "contains": {
 "@id": "http://example.org/graphs/books",
 "@graph": {
 "@type": "Book"
 }
 }
}

 Example 47: Flattened Input with named graphs

 [{
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/graphs/books",
 "@graph": [{
 "@id": "http://example.org/library/the-republic",
 "@type": "http://example.org/Book",
 "http://example.org/contains": {
 "@id": "http://example.org/library/the-republic#introduction"
 },
 "http://example.org/creator": "Plato",
 "http://example.org/title": "The Republic"
 }, {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "http://example.org/Chapter",
 "http://example.org/description": "An introductory chapter on The Republic.",
 "http://example.org/title": "The Introduction"
 }]
}, {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "http://example.org/Library",
 "http://example.org/contains": {"@id": "http://example.org/graphs/books"},
 "http://example.org/name": "Library"
}]

 Example 48: Framed output with named graphs

 Open in playground

 {
 "@context": {"@vocab": "http://example.org/"},
 "@id": "http://example.org/library",
 "@type": "Library",
 "name": "Library",
 "contains": {
 "@id": "http://example.org/graphs/books",
 "@graph": {
 "@id": "http://example.org/library/the-republic",
 "@type": "Book",
 "creator": "Plato",
 "title": "The Republic",
 "contains": {
 "@id": "http://example.org/library/the-republic#introduction",
 "@type": "Chapter",
 "description": "An introductory chapter on The Republic.",
 "title": "The Introduction"
 }
 }
 }
}

3. Conformance

 As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification are non-normative. Everything else in this specification is normative.

 The key words MAY, MUST, MUST NOT, SHOULD, and SHOULD NOT in this document
 are to be interpreted as described in
 BCP 14
 [RFC2119] [RFC8174]
 when, and only when, they appear in all capitals, as shown here.

 There is one class of products that can claim conformance to this
 specification: JSON-LD Processors.

 A conforming JSON-LD Processor is a system which can perform the
 Framing operation in a manner consistent with
 the algorithms defined in this specification.

 JSON-LD Processors MUST NOT
 attempt to correct malformed IRIs or language tags;
 however, they MAY issue validation warnings. IRIs are not modified other
 than conversion between
 relative and absolute IRIs.

 Unless specified using
 processingMode API option,
 the processing mode is set using the @version entry
 in a local context and
 affects the behavior of algorithms including expansion and compaction.
 Once set, it is an error to attempt to change to a different processing mode,
 and processors MUST generate,
 a processing mode conflict
 error and abort further processing.

 The algorithms in this specification are generally written with more concern for clarity
 than efficiency. Thus, JSON-LD Processors MAY
 implement the algorithms given in this specification in any way desired,
 so long as the end result is indistinguishable from the result that would
 be obtained by the specification's algorithms.

 In algorithm steps that describe operations on keywords, those steps
 also apply to keyword aliases.

 Note
Implementers can partially check their level of conformance to
 this specification by successfully passing the test cases of the
 JSON-LD framing test suite.
 Note, however, that passing all the tests in the test
 suite does not imply complete conformance to this specification. It only implies
 that the implementation conforms to aspects tested by the test suite.

4. Framing

The following sections describe algorithms for framing JSON-LD documents.
 Framing is the process of taking a JSON-LD document, which expresses a
 graph of information, and applying a specific graph layout
 (called a Frame).

Framing makes use of the Node Map Generation algorithm
 to place each object defined in the JSON-LD document into a map of flattened subjects, allowing
 them to be operated upon by the Framing algorithm.

All algorithms described in this section are intended to operate on
 language-native data structures. That is, the serialization to a text-based
 JSON document isn't required as input or output to any of these algorithms.

Reference to JSON data structures are interpreted using their internal representation for the purpose
 of describing algorithms.

4.1 Framing Algorithm

4.1.1 Overview

A valid JSON-LD Frame is a superset of a valid JSON-LD document,
 allowing additional content, which is preserved through expansion.
 The Grammar defined in the JSON-LD 1.1 Syntax specification [JSON-LD11]
 is extended as follows:

 	Framing adds framing keywords which may be used as entries of a node object, which MUST be preserved when expanding.

	Values of entries in a frame object that are not keyword MAY also include a default object.
 Values of @default MAY include the value @null,
 or an array containing only @null, in addition to other values
 allowed in the grammar for values of entry keys expanding to IRIs.
 Processors MUST preserve this value when expanding. All other entries of
 a default object MUST be ignored.

 	The values of @id and @type may also be an empty map,
 an IRI reference,
 array containing only an empty map,
 or an array of IRI references.
 Values of @type MAY also be a map with
 a @default entry, whose values are restricted by be IRIs.
 Processors MUST preserve this value when expanding.

 	Framing either operates on the merged node definitions contained in
 the input document, or on the default graph depending on if the
 input frame contains the @graph entry at the top level.
 Nodes with a subject that is also a named graph, where
 the frame object contains @graph, extend framing
 to node objects from the associated named graph.

4.1.2 Algorithm

The framing algorithm takes
 five required input variables and one optional input variable.
 The required inputs are
 a framing state (state),
 a list of subjects to frame,
 an input frame (expanded frame),
 a parent used to collect partial frame results,
 and an active property.
 The optional input variable is the ordered flag.

The algorithm adds elements to parent either by appending
 the element to parent, if it is an array, or by appending it
 to an array associated with active property in parent, if it is a map.
 Note that if parent is an array, active property MUST be null,
 and if it is a map, it MUST NOT be null.

 	If frame is an array, set frame to the value of the array, which MUST be a valid frame.
 If frame is determined to be invalid,
 an invalid frame
 error has been detected and processing is aborted.

 	Frame MUST be a map.

 	If frame has an @id entry, its value MUST be
 either an array containing a single empty map as a value,
 a valid IRI
 or an array where all values are valid IRIs.

 	If frame has a @type entry, its value MUST be
 either an array containing a single empty map as a value,
 an array containing a map with a entry whose key is @default,
 a valid IRI
 or an array where all values are valid IRIs.

 	Initialize flags embed, explicit, and requireAll from
 object embed flag, explicit inclusion flag, and
 require all flag in state overriding from any property values
 for @embed, @explicit, and @requireAll in frame.

 	Create a list of matched subjects by filtering subjects against frame
 using the Frame Matching algorithm
 with state, subjects, frame, and requireAll.

 	For each id and associated node object node
 from the set of matched subjects, ordered lexicographically by id
 if the optional ordered flag is true:

 	Initialize output to a new map with @id and id.

 	If the embedded flag in state is false
 and there is an existing embedded node in parent associated with
 graph name and id in state,
 do not perform additional processing for this node.

 	Otherwise, if the embedded flag in state is true
 and either embed is @never or if a
 circular reference would be created by an embed,
 add output to parent
 and do not perform additional processing for this node.

 	Otherwise, if the embedded flag in state is true,
 embed is @once,
 and there is an existing embedded node in parent associated with
 graph name and id in state,
 add output to parent
 and do not perform additional processing for this node.

 	If graph map in state has an entry for id:

 	If frame does not have a @graph entry,
 set recurse to true, unless graph name in state is @merged
 and set subframe to a new empty map.

 	Otherwise, set subframe to the first entry for @graph in frame,
 or a new empty map, if it does not exist, and
 set recurse to true, unless id
 is @merged or @default.

 	If recurse is true:

 	Set the value of graph name in state to id.

 	Set the value of embedded flag in state to false.

 	Invoke the algorithm
 using a copy of state
 with the value of graph name set to id
 and the value of embedded flag set to false,
 the keys from the graph map in state associated with id as subjects,
 subframe as frame,
 output as parent, and @graph as active property.

 	
 If frame has an @included entry,
 invoke the algorithm
 using a copy of state with the value of embedded flag set to false,
 subjects, frame,
 output as parent, and @included as active property.

 	For each property and objects in node, ordered lexicographically by property
 if the optional ordered flag is true:

 	If property is a keyword, add property and objects
 to output.

 	Otherwise, if property is not in frame, and explicit is true,
 processors MUST NOT add any values for property to output, and the following
 steps are skipped.

 	For each item in objects:

 	If item is a map with the property @list, then each
 listitem in the list is processed in sequence and added to a new list map
 in output:

 	If listitem is a node reference,
 invoke the algorithm
 using a copy of state with the value of embedded flag set to true,
 the value of @id from listitem
 as the sole item in a new subjects array,
 the first value from @list in frame as frame,
 list as parent, and @list as active property.
 If frame does not exist, create a new frame using a new map
 with properties for @embed, @explicit and @requireAll
 taken from embed, explicit and requireAll.

 	Otherwise, append a copy of listitem to @list in list.

 	If item is a node reference,
 invoke the algorithm
 using a copy of state with the value of embedded flag set to true,
 the value of @id from item
 as the sole item in a new subjects array,
 the first value from property in frame as frame,
 output as parent, and property as active property.
 If frame does not exist, create a new frame using a new map
 with properties for @embed, @explicit and @requireAll
 taken from embed, explicit and requireAll.

 	Otherwise, append a copy of item to active property in
 output.

 	For each non-keyword property and objects in frame
 (other than `@type)
 that is not in output:

 	Let item be the first value in objects, which MUST be a frame object.

 	Set property frame to the first value in objects or a newly created frame object if value is objects.
 property frame MUST be a map.

 	Skip property and property frame if property frame contains
 @omitDefault with a value of true,
 or does not contain @omitDefault and the value of
 the omit default flag in state is true.

 	Add property to output with a
 new map having a property @preserve and
 a value that is a copy of the value of @default in
 frame if it exists, or the string @null
 otherwise.

 	If frame has the property @reverse, then
 for each reverse property and sub frame that are the values of @reverse in frame:

 	Create a @reverse property in output with a new map reverse dict as its value.

 	For each reverse id and node in the map of flattened subjects that has the property
 reverse property containing a node reference with an @id of id:

 	Add reverse property to reverse dict with a new empty array as its value.

 	Invoke the algorithm
 using a copy of state with the value of embedded flag set to true,
 the reverse id
 as the sole item in a new subjects array,
 sub frame as frame,
 null as active property,
 and the array value of reverse property in reverse dict as parent.

 	Once output has been set are required in the previous steps,
 add output to parent.

 4.2 Frame Matching Algorithm

 The Frame Matching Algorithm is used as part of the Framing algorithm
 to determine if a particular node object matches the criteria set in a frame.
 In general, a node object matches a frame if it meets the matches on @type,
 @id,
 or if it matches given one of several different properties.
 If the require all flag is true, all properties must have defaults
 or match for the frame to match.

 Note
As matching is performed on expanded node objects, all values will be in the form of an array.

 Node matching uses a combination of JSON constructs to match any, zero, or some specific values:

 	[] (match none)

 	An empty array matches no values, or a value which is, itself, an empty array.

 	[frame object] (node pattern)

 	A non-empty frame object, used to match specific values using recursive node matching.

 	[IRI+]

 	One or more strings in the form of an IRI, used for matching on @type and @id,
 which allows a match on any of the listed IRIs.

 	[value object] (value pattern)

 	A value object, used to match a specific value. Within a value object,
 the values for @value, @type, and @language
 may also be an array of one or more string values,
 values of @language are compared without regard to case..
	{} (wildcard)

 	An array containing an empty object
 (after excluding any properties which are framing keywords)
 matches any value that is present, and does not match if there are no values.

The frame matching algorithm takes the framing state (state),
 a list of subjects to match from the map of flattened subjects (subjects),
 a frame to match against (frame), and the requireAll flag
 and returns a list of matched subjects by filtering each node in subjects as follows:

All properties, including @id and @type, but no other keywords are considered
 when matching a frame.

 	node matches if frame has no properties.

 	If requireAll is true, node matches if all properties (property)
 in frame match any of the following conditions.
 Or, if requireAll is false, if any of the properties (property)
 in frame match any of the following conditions.
 For the values of each property from frame in node:

 	If property is @id:

 	property matches if the @id property in frame includes any IRI in values.

 	Otherwise, property matches if the @type property in frame is wildcard or match none.

 Note
Framing works on map of flattened subjects,
 and the act of flattening ensures that all subjects have an
 @id property; thus the "@id": [] pattern would
 never match any node object. The "@id": [{}] pattern would
 match any node object and is equivalent to not specifying a
 @id property in frame at all

 	Otherwise, if property is @type:

 	property matches if the @type property in frame includes any IRI in values.

 	Otherwise, property matches if values is not empty and the @type property in frame is wildcard.

 	Otherwise, property matches if values is empty and the @type property in frame is match none.

 	Otherwise, property matches if the @type property in frame is a default object.

 	Otherwise, property does not match.

 	If property is @id or @type and does not match,
 node does not match, and processing is terminated.

 	Otherwise, the value of property in frame MUST be empty, or an array
 containing a valid frame.

 	property matches if values is empty, or non existent,
 the value of property in frame
 is a map containing only the @default entry with any value,
 and any other property in node has a non-default match.

 	node does not match if values is not empty and the value of property in frame is match none, and further matching is aborted.

 	Otherwise, property matches if values is not empty and the value of property in frame is wildcard.

 	Otherwise, if the value of property in frame is a value pattern (value pattern):
 property matching is determined using the Value matching algorithm.

 	Otherwise, for any node pattern (node pattern) which is one of the values of property in frame:

 	Let value subjects be the list of subjects from the map of flattened subjects matching the node object values from values.

 	Let matched subjects be the result of calling this algorithm recursively using
 state, value subjects for subjects,
 node pattern for frame, and the requireAll flag.

 	property matches if matched subjects is not empty.

 	Otherwise, property does not match.

 4.3 Value Pattern Matching Algorithm

 The Value Pattern Matching Algorithm is used as part of the Framing
 and Frame Matching algorithms. A value object
 matches a value pattern using the match none and wildcard
 patterns on @value, @type, and
 @language, in addition to allowing a specific value to match a
 set of values defined using the array form for each value
 object property.

 The algorithm takes a value pattern (pattern) and value object (value) as parameters.
 Value matches pattern using the following algorithm:

 	Let v1, t1, and l1 be the values of @value, @type, and @language in value, or null if none exists,
 where values of @language are normalized to lower case..

 	Let v2, t2, and l2 be the values of @value, @type, and @language in value pattern, or null if none exists,
 where string values of @language are normalized to lower case..

 	Value matches pattern when pattern is wildcard, or:

 	v1 is in v2, or v1 is not null and v2 is wildcard, and

 	t1 is in t2, or t1 is not null and t2 is wildcard, or null, or t1 is null and t2 is null or match none, and

 	l1 is in l2, or l1 is not null and l2 is wildcard, or null, or l1 is null and l2 is null or match none.

 5. The Application Programming Interface

 This API provides a clean mechanism that enables developers to convert
 JSON-LD data into a variety of output formats that are easier to work with in
 various programming languages. If a JSON-LD API is provided in a programming
 environment, the entirety of the following API MUST be implemented.

 The JSON-LD API uses Promises to represent
 the result of the various deferred operations.
 Promises are defined in [ECMASCRIPT].
 General use within specifications can be found in [promises-guide].
 Implementations MAY chose to implement in an appropriate way for their native environments
 as long as they generally use the same methods, arguments, and options
 and return the same results.

 Note
Interfaces are marked [Exposed=JsonLd],
 which creates a global interface.
 The use of WebIDL in JSON-LD, while appropriate for use within browsers,
 is not limited to such use.

 5.1 JsonLdProcessor

 The JSON-LD Processor interface is the high-level programming structure that developers
 use to access the JSON-LD transformation methods. The definition below is an experimental
 extension of the interface defined in the JSON-LD 1.1 API [JSON-LD11-API].

 It is important to highlight that implementations do not modify the input parameters.
 If an error is detected, the Promise is
 rejected with a JsonLdFramingError having an appropriate code
 and processing is stopped.

 WebIDL/*
 * The JsonLd interface is created to expose the JsonLdProcessor interface.
 */
[Global=JsonLd, Exposed=JsonLd]
interface JsonLd {};

[Exposed=JsonLd]
interface JsonLdProcessor {
 constructor();
 static Promise<JsonLdRecord> frame(
 JsonLdInput input,
 JsonLdInput frame,
 optional JsonLdOptions options = {});
};

 The JsonLdProcessor interface
 frame() method
 Frames
 the given input using frame
 according to the steps in the Framing
 Algorithm:

 	Create a new Promise promise and return it. The
 following steps are then executed asynchronously.

 	If the provided input
 is a RemoteDocument,
 initialize remote document to input.

 	Otherwise, if the provided input
 is a string representing the IRI of a remote document, await and dereference it as remote document
 using LoadDocumentCallback, passing input
 for url,
 and the extractAllScripts option from options
 for extractAllScripts.

 	Set expanded input to the result of using the
 expand
 method either remote document
 or input
 if there is no remote document
 for input
 and options
 with ordered set to false.

 	If the provided frame
 is a RemoteDocument,
 initialize remote frame to frame.

 	Otherwise, if the provided frame
 is a string representing the IRI of a remote document, await and dereference it as remote frame
 using LoadDocumentCallback, passing frame
 for url,
 and the extractAllScripts option from options
 for extractAllScripts.

 	Set expanded frame to the result of using the
 expand
 method either remote frame
 or frame
 if there is no remote frame
 for input
 options
 the frameExpansion option set to true,
 and theordered set to false.

 	Set context to the value of @context
 from remote frame or frame, if it exists, or to
 a new empty context, otherwise.

 	Set context base to the documentUrl
 from remote frame, if available, otherwise to the base option
 from options.

 	Initialize active context
 to the result of the Context Processing algorithm
 passing a new empty context as active context
 context as local context,
 and context base as base URL.

 	Initialize an active context using context;
 the base IRI is set to
 the base option from
 options, if set;
 otherwise, if the
 compactToRelative option is
 true, to the IRI of the currently being processed
 document, if available; otherwise to null.

 	Initialize inverse context to the result of performing the
 Inverse Context Creation algorithm.

 	If frame has a top-level
 property which expands to @graph set the frameDefault
 option to options with the
 value true.

 	Initialize a new framing state (state) to an empty map.

 	Set object embed flag in state to
 embed
 with the default value @once.

 	Set the embedded flag in state to false

 	Set explicit inclusion flag in state to
 explicit
 with the default value false.

 	Set require all flag in state to
 requireAll
 with the default value false.

 	Set omit default flag in state to
 omitDefault
 with the default value false.

 	Set the graph name in state to
 either @default if frameDefault is true,
 otherwise to false.

 	Set the graph map in state to the result of performing the
 Node Map Generation algorithm on
 expanded input.

 	If graph name in state is @merged,
 add en entry for @merged in graph map set
 to the result of the Merge Node Maps algorithm
 passing graph map.

 	Set subject map in state
 to the map of flattened subjects which is the value of graph name
 in graph map.

 	

 	Initialize results as an empty array.

 	Invoke the
 Framing algorithm, passing
 state,
 the keys from subject map in state for subjects,
 expanded frame,
 results for parent,
 and null as active property.

 	If the processing mode is not json-ld-1.0,
 remove the @id entry of each node object in results
 where the entry value is a blank node identifier which appears only once
 in any property value within results.

 	Recursively, replace all entries in results
 where the key is @preserve with the first value of that entry.
 Note
The value of the entry will be an array with a single value;
 this will effectively replace the map containing @preserve with that value.

 	Set compacted results to the result of using the
 compact
 method using
 active context,
 inverse context,
 null for active property,
 results as element,,
 and the compactArrays
 and ordered
 flags from options.

 	If compacted results is an empty array,
 replace it with a new map.

 	Otherwise, if compacted results is an array,
 replace it with a new map with a single entry
 whose key is the result of
 IRI compacting @graph
 and value is compacted results.

 	Add an @context entry to compacted results and set its value
 to the provided context.

 	Recursively, replace all @null values in compacted results with null.
 If, after replacement, an array contains only the value null remove that value, leaving
 an empty array.

 	If omitGraph is false and
 compacted results does not have a top-level @graph entry, or its value is
 not an array, modify compacted results to place the non @context entry
 of compacted results into a map contained within the array value of
 @graph. If omitGraph is true, a
 top-level @graph entry is used only to contain multiple node objects.

 	Resolve the promise with compacted results,
 transforming compacted results from the internal representation to a JSON serialization.

 	input

 	The JSON-LD object or array of JSON-LD objects to perform the framing upon or an
 IRI referencing the JSON-LD document to frame.

 	frame

 	The frame to use when re-arranging the data of input; either
 in the form of an map or as IRI.

 	options

 	A set of options that MAY affect the framing algorithm such as, e.g., the
 input document's base IRI.
 The JsonLdOptions type defines default option values.

 WebIDLtypedef record<USVString, any> JsonLdRecord;

 The JsonLdRecord is the definition of a map
 used to contain arbitrary map entries
 which are the result of parsing a JSON Object.

WebIDLtypedef (JsonLdRecord or sequence<JsonLdRecord> or USVString or RemoteDocument) JsonLdInput;

 The JsonLdInput interface is used to refer to an input value
 that that may be a JsonLdRecord,
 a sequence of JsonLdRecords,
 a string representing an IRI,
 which can be dereferenced to retrieve a valid JSON document,
 or an already dereferenced RemoteDocument.

 When the value is a JsonLdRecord or sequence of JsonLdRecords,
 the values are taken as their equivalent internal representation values,
 where a JsonLdRecord is equivalent to a map,
 and a sequence of JsonLdRecords is equivalent to an array
 of maps. The map entries are converted to their equivalents
 in [INFRA].

 5.2 Error Handling

 The JsonLdFramingError type is used to report processing errors.

 WebIDLdictionary JsonLdFramingError {
 JsonLdFramingErrorCode code;
 USVString? message = null;
};
enum JsonLdFramingErrorCode {
 "invalid frame",
 "invalid @embed value"
};

 JSON-LD Framing extends the error interface and codes defined in
 JSON-LD 1.1 Processing Algorithms and API the JSON-LD 1.1 API [JSON-LD11-API].

 	code

 	a string representing the particular error type, as described in
 the various algorithms in this document.

 	message

 	an optional error message containing additional debugging information.
 The specific contents of error messages are outside the scope of this
 specification.

 The JsonLdFramingErrorCode represents the collection of valid JSON-LD Framing error
 codes.

 	invalid @embed value
	
 The value for @embed is not one recognized for the object embed flag.

	invalid frame
	
 The frame is invalid.

 5.3 Data Structures

 This section describes datatype definitions used within the JSON-LD API.

 5.3.1 JsonLdContext

 The JsonLdContext type is used to refer to a value that
 that may be a map, a string representing an
 IRI, or an array of maps
 and strings.

 See JsonLdContext definition in the JSON-LD 1.1 API [JSON-LD11-API].

 5.3.2 JsonLdOptions

 The JsonLdOptions type is used to pass various options to the
 JsonLdProcessor methods.

 WebIDLdictionary JsonLdOptions {
 (JsonLdEmbed or boolean) embed = "@once";
 boolean explicit = false;
 boolean omitDefault = false;
 boolean omitGraph;
 boolean requireAll = false;
 boolean frameDefault = false;
 boolean ordered = false;
};

enum JsonLdEmbed {
 "@always",
 "@once",
 "@never"
};

 In addition to those options defined in the JSON-LD 1.1 API [JSON-LD11-API], framing defines these
 additional options:

 	embed

 	Sets the value object embed flag used in the
 Framing Algorithm.
 A boolean value of true sets the flag to
 @once, while a value of false sets the flag
 to @never.

 	explicit

 	Sets the value explicit inclusion flag used in the
 Framing Algorithm.

 	frameDefault

 	Instead of framing a merged graph, frame only the default graph.

 	omitDefault

 	Sets the value omit default flag used in the
 Framing Algorithm

 	omitGraph

 	Sets the value omit graph flag used in the
 Framing Algorithm. If not set explicitly,
 it is set to false if processing mode is json-ld-1.0, true otherwise.

 	ordered

 	If set to true, certain algorithm
 processing steps where indicated are ordered lexicographically.
 If false, order
 is not considered in processing.
	requireAll

 	Sets the value require all flag used in the
 Framing Algorithm.

 JsonLdEmbed enumerates the values of the embed option:

 	@always
	
 Always embed node objects as property values, unless this would
 cause a circular reference.

 	@never
	
 Always use a node reference when serializing matching values.
	@once
	
 Only a single value within a given node object should be embedded,
 other values of other properties use a node reference. This is the
 default value if neither @embed nor object embed flag
 is specified.

 See JsonLdOptions definition in the JSON-LD 1.1 API [JSON-LD11-API].

 6. Security Considerations

 See, Security Considerations in § A. IANA Considerations.

 7. Privacy Considerations

 See, Privacy Considerations in [JSON-LD11].

 8. Internationalization Considerations

 See, Internationalization Considerations in [JSON-LD11].

A. IANA Considerations

This section is included merely for standards community review and will be
submitted to the Internet Engineering Steering Group if this specification
becomes a W3C Recommendation.

A JSON-LD Frame uses the same MIME media type described in [JSON-LD11]
 along with a required profile parameter.

application/ld+json

 	Type name:

 	application

 	Subtype name:

 	ld+json

 	Required parameters:

 	None

 	Optional parameters:

 	

 	profile

 	
 A single URI identifying the resource as a JSON-LD Frame.
 A profile does not change the semantics of the resource representation
 when processed without profile knowledge, so that clients both with
 and without knowledge of a profiled resource can safely use the same
 representation.

 	http://www.w3.org/ns/json-ld#framed

 	To specify a JSON-LD Frame.

 The http://www.w3.org/ns/json-ld#framed SHOULD
 be used when serving and requesting a JSON-LD frame document.

 	Encoding considerations:

 	See RFC 8259, section 11.

 	Security considerations:

 	See RFC 8259, section 12 [RFC8259]
 Since JSON-LD is intended to be a pure data exchange format for
 directed graphs, the serialization SHOULD NOT be passed through a
 code execution mechanism such as JavaScript's eval()
 function to be parsed. An (invalid) document may contain code that,
 when executed, could lead to unexpected side effects compromising
 the security of a system.

 When processing JSON-LD documents, links to remote contexts are
 typically followed automatically, resulting in the transfer of files
 without the explicit request of the user for each one. If remote
 contexts are served by third parties, it may allow them to gather
 usage patterns or similar information leading to privacy concerns.
 Specific implementations, such as the API defined in the
 JSON-LD 1.1 Processing Algorithms and API specification [JSON-LD11-API],
 may provide fine-grained mechanisms to control this behavior.

 JSON-LD contexts that are loaded from the Web over non-secure connections,
 such as HTTP, run the risk of being altered by an attacker such that
 they may modify the JSON-LD active context in a way that
 could compromise security. It is advised that any application that
 depends on a remote context for mission critical purposes vet and
 cache the remote context before allowing the system to use it.

 Given that JSON-LD allows the substitution of long IRIs with short terms,
 JSON-LD documents may expand considerably when processed and, in the worst case,
 the resulting data might consume all of the recipient's resources. Applications
 should treat any data with due skepticism.

 As JSON-LD places no limits on the IRI schemes that may be used,
 and vocabulary-relative IRIs use string concatenation rather than
 IRI resolution, it is possible to construct IRIs that may be
 used maliciously, if dereferenced.

 	Interoperability considerations:

 	Not Applicable

 	Published specification:

 	https://www.w3.org/TR/json-ld11-framing

 	Applications that use this media type:

 	Any programming environment that requires the exchange of
 directed graphs. Implementations of JSON-LD have been created for
 JavaScript, Python, Ruby, PHP, and C++.

 	Additional information:

 	

 	Magic number(s):

 	Not Applicable

 	File extension(s):

 	.jsonld

 	Macintosh file type code(s):

 	TEXT

 	Person & email address to contact for further information:

 	Ivan Herman <ivan@w3.org>

 	Intended usage:

 	Common

 	Restrictions on usage:

 	None

 	Author(s):

 	Manu Sporny, Gregg Kellogg, Markus Lanthaler, Dave Longley

 	Change controller:

 	W3C

Fragment identifiers used with application/ld+json
 are treated as in RDF syntaxes, as per
 RDF 1.1 Concepts and Abstract Syntax
 [RDF11-CONCEPTS].

B. IDL Index
This section is non-normative.

WebIDL/*
 * The JsonLd interface is created to expose the JsonLdProcessor interface.
 */
[Global=JsonLd, Exposed=JsonLd]
interface JsonLd {};

[Exposed=JsonLd]
interface JsonLdProcessor {
 constructor();
 static Promise<JsonLdRecord> frame(
 JsonLdInput input,
 JsonLdInput frame,
 optional JsonLdOptions options = {});
};

typedef record<USVString, any> JsonLdRecord;

typedef (JsonLdRecord or sequence<JsonLdRecord> or USVString or RemoteDocument) JsonLdInput;

dictionary JsonLdFramingError {
 JsonLdFramingErrorCode code;
 USVString? message = null;
};
enum JsonLdFramingErrorCode {
 "invalid frame",
 "invalid @embed value"
};

dictionary JsonLdOptions {
 (JsonLdEmbed or boolean) embed = "@once";
 boolean explicit = false;
 boolean omitDefault = false;
 boolean omitGraph;
 boolean requireAll = false;
 boolean frameDefault = false;
 boolean ordered = false;
};

enum JsonLdEmbed {
 "@always",
 "@once",
 "@never"
};

 C. Open Issues
This section is non-normative.

 The following is a list of issues open at the time of publication.

 Issue 29: Allow class-scoped framing defer-future-versionspec:enhancement
Allow class-scoped framing.

 Issue 38: Several frames in the same frame document? defer-future-versionspec:enhancementspec:substantive
Several frames in the same frame document?

 Issue 73: Reframing Relationships defer-future-version
Reframing Relationships.

 D. Changes since 1.0 Draft of 30 August 2012
This section is non-normative.

 	There are numerous formatting and terminology changes intended to align with
 the 1.0 Recommendations of JSON-LD and JSON-LD-API in addition to the use
 of common term definition sections.

 	The object embed flag (@embed) can take on different
 values to better control object embedding.

 	Framing supports More specific frame matching, where
 general wildcard and match none
 can be used for type and property values.

 	Frame matching also supports value object matching, where
 values for @value, @type, and @language
 can use wildcard and match none
 and may also use a set of specific strings to match (e.g., a set of specific
 languages).

 	Framing allows specific graphs to be matched, and the outer-most frame
 can either come from the merged graph or the default graph.

 	Framing supports @reverse.

 	Through the use of scoped contexts, parts of a frame can be
 compacted using a different context than is used for the outer-most
 object.

 	Frames can use one or more values for @id to allow for matching
 specific objects in a frame.

 	If processing mode is not json-ld-1.0,
 @id entries with blank node identifiers
 used only for that @id are removed.

 	The JSON syntax has been abstracted into an internal representation
 to allow for other serialization formats that are functionally equivalent
 to JSON.

 	Preserved values are compacted using the properties of the referencing term.

 	Removed support for @link and in-memory object linking.

 	Added the omit default flag, controlled via the
 omitDefault API option and/or
 the current processing mode.

 	The API now adds an ordered
 option, defaulting to false This is used in algorithms to
 control iteration of map entry keys. Previously, the
 algorithms always required such an order. The instructions for
 evaluating test results have been updated accordingly.

 	Frames may include reverse properties using @reverse, or a term
 defined with @reverse, which can cause nodes referencing a
 node targeted by a frame to have a reverse reference created.

 E. Changes since JSON-LD Community Group Final Report
This section is non-normative.

 	The API now adds an ordered
 option, defaulting to false This is used in algorithms to
 control iteration of map entry keys. Previously, the
 algorithms always required such an order. The instructions for
 evaluating test results have been updated accordingly.

 	The IANA registration is changed from application/ld-frame+json to
 application/ld+json with a required profile parameter.

 	The require all flag now needs all properties to be present, including
 @id and @type.

 	Removed @first and @last values for the
 object embed flag in favor of @once.

 	The processing mode is now implicitly json-ld-1.1, unless set
 explicitly to json-ld-1.0.

 	In a frame @type can have a default value, which is not used for
 frame matching purposes.

 F. Changes since Candidate Release of 12 December 2019
This section is non-normative.

 	Removed duplicate § 1.1 How to Read this Document.
 This is in response to Issue 92.

 	Improved algorithms in
 § 4.1 Framing Algorithm.

 	Moved non-recursive portions algorithms
 into the JsonLdProcessor processing steps.

 	Remove the graph stack from framing state
 as being unnecessary.

 G. Changes since Proposed Recommendation Release of 7 May 2020
This section is non-normative.

 	Changed [Exposed=(Window,Worker)] to [Exposed=JsonLd],
 which is declared as a global interface in order to expose the JsonLdProcessor interface
 for non-browser usage to address review suggestions.

 H. Acknowledgements
This section is non-normative.

 The editors would like to specially thank the following individuals for making significant
 contributions to the authoring and editing of this specification:

 	Timothy Cole (University of Illinois at Urbana-Champaign)

 	Gregory Todd Williams (J. Paul Getty Trust)

 	Ivan Herman (W3C Staff)

 	Jeff Mixter (OCLC (Online Computer Library Center, Inc.))

 	David Lehn (Digital Bazaar)

 	David Newbury (J. Paul Getty Trust)

 	Robert Sanderson (J. Paul Getty Trust, chair)

 	Harold Solbrig (Johns Hopkins Institute for Clinical and Translational Research)

 	Simon Steyskal (WU (Wirschaftsuniversität Wien) - Vienna University of Economics and Business)

 	A Soroka (Apache Software Foundation)

 	Ruben Taelman (Imec vzw)

 	Benjamin Young (Wiley, chair)

 Additionally, the following people were members of the Working Group at the time of publication:

 	Steve Blackmon (Apache Software Foundation)

 	Dan Brickley (Google, Inc.)

 	Newton Calegari (NIC.br - Brazilian Network Information Center)

 	Victor Charpenay (Siemens AG)

 	Sebastian Käbisch (Siemens AG)

 	Axel Polleres (WU (Wirschaftsuniversität Wien) - Vienna University of Economics and Business)

 	Leonard Rosenthol (Adobe)

 	Jean-Yves ROSSI (CANTON CONSULTING)

 	Antoine Roulin (CANTON CONSULTING)

 	Manu Sporny (Digital Bazaar)

 	Clément Warnier de Wailly (CANTON CONSULTING)

 A large amount of thanks goes out to the JSON-LD Community Group participants who worked through many of the technical issues on the mailing list and the weekly telecons: Chris Webber, David Wood, Drummond Reed, Eleanor Joslin, Fabien Gandon, Herm Fisher, Jamie Pitts, Kim Hamilton Duffy, Niklas Lindström, Paolo Ciccarese, Paul Frazze, Paul Warren, Reto Gmür, Rob Trainer, Ted Thibodeau Jr., and Victor Charpenay.

I. References

 I.1
 Normative references

 	[BCP47]
	Tags for Identifying Languages. A. Phillips; M. Davis. IETF. September 2009. IETF Best Current Practice. URL: https://tools.ietf.org/html/bcp47
	[ECMASCRIPT]
	ECMAScript Language Specification. Ecma International. URL: https://tc39.es/ecma262/
	[INFRA]
	Infra Standard. Anne van Kesteren; Domenic Denicola. WHATWG. Living Standard. URL: https://infra.spec.whatwg.org/
	[JSON-LD10]
	JSON-LD 1.0. Manu Sporny; Gregg Kellogg; Marcus Langhaler. W3C. 16 January 2014. W3C Recommendation. URL: https://www.w3.org/TR/2014/REC-json-ld-20140116/
	[JSON-LD11]
	JSON-LD 1.1. Gregg Kellogg; Pierre-Antoine Champin; Dave Longley. W3C. 7 May 2020. W3C Proposed Recommendation. URL: https://www.w3.org/TR/json-ld11/
	[JSON-LD11-API]
	JSON-LD 1.1 Processing Algorithms and API. Gregg Kellogg; Dave Longley; Pierre-Antoine Champin. W3C. 7 May 2020. W3C Proposed Recommendation. URL: https://www.w3.org/TR/json-ld11-api/
	[LINKED-DATA]
	Linked Data Design Issues. Tim Berners-Lee. W3C. 27 July 2006. W3C-Internal Document. URL: https://www.w3.org/DesignIssues/LinkedData.html
	[promises-guide]
	Writing Promise-Using Specifications. Domenic Denicola. W3C. 9 November 2018. TAG Finding. URL: https://www.w3.org/2001/tag/doc/promises-guide
	[RDF-SCHEMA]
	RDF Schema 1.1. Dan Brickley; Ramanathan Guha. W3C. 25 February 2014. W3C Recommendation. URL: https://www.w3.org/TR/rdf-schema/
	[RDF11-CONCEPTS]
	RDF 1.1 Concepts and Abstract Syntax. Richard Cyganiak; David Wood; Markus Lanthaler. W3C. 25 February 2014. W3C Recommendation. URL: https://www.w3.org/TR/rdf11-concepts/
	[RFC2119]
	Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997. Best Current Practice. URL: https://tools.ietf.org/html/rfc2119
	[RFC3987]
	Internationalized Resource Identifiers (IRIs). M. Duerst; M. Suignard. IETF. January 2005. Proposed Standard. URL: https://tools.ietf.org/html/rfc3987
	[RFC8174]
	Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. B. Leiba. IETF. May 2017. Best Current Practice. URL: https://tools.ietf.org/html/rfc8174
	[RFC8259]
	The JavaScript Object Notation (JSON) Data Interchange Format. T. Bray, Ed.. IETF. December 2017. Internet Standard. URL: https://tools.ietf.org/html/rfc8259
	[WEBIDL]
	Web IDL. Boris Zbarsky. W3C. 15 December 2016. W3C Editor's Draft. URL: https://heycam.github.io/webidl/

 I.2
 Informative references

 	[JSON-LD10-FRAMING]
	JSON-LD Framing 1.0. Manu Sporny; Gregg Kellogg; David Longley; Marcus Langhaler. W3C. 30 August 2012. Unofficial Draft. URL: https://json-ld.org/spec/ED/json-ld-framing/20120830/

 ↑

 [image: W3C] Streaming JSON-LD

 W3C Working Group Note
 07 May 2020

 	This version:
	
 https://www.w3.org/TR/2020/NOTE-json-ld11-streaming-20200507/

	Latest published version:
	
 https://www.w3.org/TR/json-ld11-streaming/

 	Latest editor's draft:
	https://w3c.github.io/json-ld-streaming/

 	Test suite:
	https://w3c.github.io/json-ld-streaming/tests/

 	Implementation report:
	
 https://w3c.github.io/json-ld-streaming/reports/

 	Editor:

 	Ruben Taelman
 (Ghent University – imec)

 	Participate:
	
 GitHub w3c/json-ld-streaming

	
 File a bug

	
 Commit history

	
 Pull requests

 Copyright
 ©
 2020

 W3C® (MIT,
 ERCIM, Keio,
 Beihang).
 W3C liability,
 trademark and permissive document license rules
 apply.

 Abstract

 JSON-LD [JSON-LD11] offers a JSON-based serialization for Linked Data.
 One of the primary uses of JSON-LD is its ability to exchange RDF [RDF11-CONCEPTS] data across the Web.
 This can be done by first serializing RDF to JSON-LD,
 after which data consumers can deserialize JSON-LD to RDF.

 Since RDF datasets may contain many triples,
 and JSON-LD documents don't have size limits,
 such documents could in some cases become very large.
 For these cases, the ability to serialize and deserialize JSON-LD in a streaming way offers many advantages.
 Streaming processing allows large documents to be parsed with only a limited amount of memory,
 and processed chunks can be emitted as soon as they are processed,
 as opposed to waiting until the whole dataset or document has been processed.

 The recommended processing algorithms [JSON-LD11-API]
 do not work in a streaming manner, as these first load all required data in memory,
 after which this data can be processed.
 This note discusses the processing of JSON-LD in a streaming manner.
 Concretely, a set of guidelines is introduced for efficiently serializing and deserializing JSON-LD in a streaming way.
 These guidelines are encapsulated in a JSON-LD streaming document form, and a streaming RDF form.
 These forms, when they are detected, allow implementations to apply streaming optimizations.

 Status of This Document
This section describes the status of this
 document at the time of its publication. Other documents may supersede
 this document. A list of current W3C publications and the latest revision
 of this technical report can be found in the
 W3C technical reports index at
 https://www.w3.org/TR/.

 This is an unofficial proposal.

 This document was published by the JSON-LD Working Group as a
 First Public Working Group Note.

 GitHub Issues are preferred for
 discussion of this specification.

 Alternatively, you can send comments to our mailing list.
 Please send them to
 public-json-ld-wg@w3.org
 (archives).

 Please see the Working Group's
 implementation report.

 Publication as a Working Group Note does not imply endorsement by the W3C
 Membership. This is a draft document and may be updated, replaced or
 obsoleted by other documents at any time. It is inappropriate to cite this
 document as other than work in progress.

 This document was produced by a group
 operating under the
 W3C Patent Policy.
 The group does not expect this document to become a W3C Recommendation.

 This document is governed by the
 1 March 2019 W3C Process Document.

 1. Introduction

 This document discusses the concerns on serializing and deserializing JSON-LD in a streaming manner.
 This document is primarily intended for the following audiences:

 	
 Software developers who want to implement streaming algorithms to serialize or deserialize JSON-LD documents.

 	
 Web authors and developers who want to publish JSON-LD in a streaming manner.

 	
 Web authors and developers who want to consume JSON-LD in a streaming manner.

 To understand the basics in this note you must first be familiar with
 JSON, which is detailed in [RFC8259]. You must also understand the
 JSON-LD syntax defined in JSON-LD 1.1 [JSON-LD11],
 which is the base syntax used for streaming processing.
 To understand how JSON-LD maps to RDF, it is helpful to be
 familiar with the basic RDF concepts [RDF11-CONCEPTS].

 2. Conformance

 As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification are non-normative. Everything else in this specification is normative.

 The key words MAY, MUST, MUST NOT, SHOULD, and SHOULD NOT in this document
 are to be interpreted as described in
 BCP 14
 [RFC2119] [RFC8174]
 when, and only when, they appear in all capitals, as shown here.

 Streaming RDF Deserializers and Streaming RDF Serializers can claim conformance to this specification.

 A conforming Streaming RDF Deserializer is a system that can
 deserialize JSON-LD to RDF
 for JSON-LD documents adhering to the Streaming Document Form
 as defined in this specification,
 and is a conforming RDF Deserializer
 according to the JSON-LD [JSON-LD11] specification minus the exceptions listed in this specification.

 A conforming Streaming RDF Serializer is a system that can
 serialize RDF to JSON-LD
 for RDF datasets adhering to the streaming RDF dataset form
 as defined in this specification,
 and is a conforming RDF Serializer
 according to the JSON-LD [JSON-LD11] specification minus the exceptions listed in this specification.

 The processing discussion in this specification merely contains implementation guidelines.
 Thus, Streaming RDF Deserializers and Streaming RDF Serializers may
 implement the algorithms given in this specification in any way desired,
 so long as the end result is indistinguishable from the result that would
 be obtained by the specification's algorithms.

 Note

 Implementers can partially check their level of conformance to
 this specification by successfully passing the test cases of the
 Streaming JSON-LD test suite.
 Note, however, that passing all the tests in the test
 suite does not imply complete conformance to this specification. It only implies
 that the implementation conforms to aspects tested by the test suite.

 3. Streaming Document Form

 There are multiple ways of describing data in JSON-LD,
 each having their own use cases.
 This section introduces a streaming JSON-LD document form,
 which enables JSON-LD documents to be deserialized in a streaming manner.

 3.1 Importance of Key Ordering

 The order in which key-value pairs occur in JSON-LD nodes conveys no meaning.
 For instance, the following two JSON-LD documents have the same meaning, even though they are syntactically different.

 Example 1: Name, homepage and image come after @id

 {
 "@context": "http://schema.org/",
 "@id": "https://www.rubensworks.net/#me",
 "name": "Ruben Taelman",
 "url": "https://www.rubensworks.net/",
 "image": "https://www.rubensworks.net/img/ruben.jpg"
}

 Example 2: Name, homepage and image come before @id

 {
 "@context": "http://schema.org/",
 "name": "Ruben Taelman",
 "url": "https://www.rubensworks.net/",
 "image": "https://www.rubensworks.net/img/ruben.jpg",
 "@id": "https://www.rubensworks.net/#me"
}

 In a streaming JSON-LD document, the order of certain keys is important.
 This is because streaming JSON-LD processors may require the presence of some keys before others can be processed,
 and ordering keys in certain ways may lead to better processing performance.

 In the two snippets before, the first example can be processed more efficiently by a streaming processor.
 Concretely, a streaming JSON-LD deserializer can emit an RDF triple each time a property ("name", "url", "image") has been read, because the "@id" has been defined before.
 This is because the "@id" defines the RDF subject,
 the property key defines the RDF predicate,
 and the property value defines RDF object.
 This ensures that all required information is needed for constructing and emitting an RDF triple each time a property is encountered.

 For the second example, where the "@id" is only defined at the end,
 a streaming deserializer would have to buffer the properties until the "@id" key is encountered.
 Since the RDF subject of our triples is defined via "@id",
 the RDF triples can only be emitted after this last key has been read.

 3.2 Required Key Ordering

 In order for a JSON-LD document to be a in a streaming document form,
 the keys in each JSON node MUST be ordered according to the following order:

 	@context

 	@type

 	Other properties

 Each of these keys is optional, and may be omitted.
 Only those that are present must occur in the following order.

 This order is important because @context
 can change the meaning of all following entries in the node and its children.
 Additionally, @type could indicate a type-scoped context,
 which may have the same implications of an @context.
 This means that these MUST always be processed before all other entries.

 Note

 Entries in nodes have a defined order when serialized as JSON.
 However, this this order is not always kept by JSON parsing libraries.
 This means that streaming processors MUST make use of JSON parsers that preserve this order to be effective.

 Note

 @type can be aliased to other keys,
 for which the order also applies.

 3.3 Recommended Key Ordering

 In addition to the required key ordering,
 an @id key SHOULD be present as the first entry of the other properties,
 right after @context and @type.

 By placing @id before other properties in a node,
 streaming deserializers can determine the subject of this node early on,
 and they can immediately emit following properties as RDF triples as soon as they are read.

 If a node does not define an explicit @id,
 the subject of this node usually becomes an implicit blank node.
 To improve potential processing performance,
 it is recommended to always add an explicit blank node identifier in these cases using @id.

 While not recommended, @id can also come after any other properties,
 which requires the streaming deserializer to buffer these properties
 until an @id is read, or the node closes.

 Note

 This recommended key ordering SHOULD be followed by streaming document authors.
 Streaming processors implementations MUST NOT assume that a given streaming document will adhere to this recommendation.

 If a processor sees that a document does not adhere to this recommendation, then it MAY produce a warning.

 3.4 Examples
This section is non-normative.

 Hereafter, a couple of JSON-LD document examples are listed that either adhere, adhere with non-recommended order, or do not adhere
 to the streaming document form.

 3.4.1 Valid Examples

 Example 3: Valid streaming document with @context, @id, and other properties

 {
 "@context": "http://schema.org/",
 "@id": "https://www.rubensworks.net/#me",
 "name": "Ruben Taelman",
 "url": "https://www.rubensworks.net/",
 "image": "https://www.rubensworks.net/img/ruben.jpg"
}

 Example 4: Valid streaming document with @context, blank @id, and other properties

 {
 "@context": "http://schema.org/",
 "@id": "_:blank_node",
 "name": "Ruben Taelman",
 "url": "https://www.rubensworks.net/",
 "image": "https://www.rubensworks.net/img/ruben.jpg"
}

 Example 5: Valid streaming document with nested nodes

 {
 "@context": "http://schema.org/",
 "@id": "https://www.rubensworks.net/#me",
 "name": "Ruben Taelman",
 "url": "https://www.rubensworks.net/",
 "image": "https://www.rubensworks.net/img/ruben.jpg",
 "knows": {
 "@id": "https://greggkellogg.net/foaf#me",
 "name": "Gregg Kellogg"
 }
}

 Example 6: Valid streaming document with nested nodes and embedded context

 {
 "@context": "http://schema.org/",
 "@id": "https://www.rubensworks.net/#me",
 "name": "Ruben Taelman",
 "url": "https://www.rubensworks.net/",
 "image": "https://www.rubensworks.net/img/ruben.jpg",
 "knows": {
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name"
 },
 "@id": "https://greggkellogg.net/foaf#me",
 "name": "Gregg Kellogg"
 }
}

 Example 7: Valid streaming document with @context, @type-scoped context, @id, and other properties

 {
 "@context": {
 "Person": {
 "@id": "http://schema.org/Person",
 "@context": "http://schema.org/"
 }
 },
 "@type": "Person",
 "@id": "https://www.rubensworks.net/#me",
 "name": "Ruben Taelman",
 "url": "https://www.rubensworks.net/",
 "image": "https://www.rubensworks.net/img/ruben.jpg"
}

 3.4.2 Valid, Non-recommended Examples

 Example 8: Non-recommended streaming document with @context and without @id

 {
 "@context": "http://schema.org/",
 // @id is missing, considered a blank node
 "name": "Ruben Taelman",
 "url": "https://www.rubensworks.net/",
 "image": "https://www.rubensworks.net/img/ruben.jpg"
}

 Example 9: Valid streaming document without @context and @id

 {
 // @context is not required, but @id is recommended here
 "http://schema.org/name": "Ruben Taelman",
 "http://schema.org/url": {"@id": "https://www.rubensworks.net/"},
 "http://schema.org/image": {"@id": "https://www.rubensworks.net/img/ruben.jpg"}
}

 3.4.3 Invalid Examples

 Example 10: Invalid streaming document where @context comes too late

 {
 "@id": "https://www.rubensworks.net/#me",
 // @context must come before @id
 "@context": "http://schema.org/",
 "name": "Ruben Taelman",
 "url": "https://www.rubensworks.net/",
 "image": "https://www.rubensworks.net/img/ruben.jpg"
}

 Example 11: Invalid streaming document where @type comes too late

 {
 "http://schema.org/name": "Ruben Taelman",
 "@type": "http://schema.org/Person", // @type must come before properties
 "http://schema.org/url": {"@id": "https://www.rubensworks.net/"},
 "http://schema.org/image": {"@id": "https://www.rubensworks.net/img/ruben.jpg"}
}

 3.5 Streaming Document Profile

 JSON-LD documents can be signaled or requested in streaming document form.
 The profile URI identifying the streaming document form
 is http://www.w3.org/ns/json-ld#streaming.

 The following example illustrates how this profile parameter can be used to request a streaming document over HTTP.

 GET /ordinary-json-document.json HTTP/1.1
Host: example.com
Accept: application/ld+json;profile=http://www.w3.org/ns/json-ld#streaming

 Requests the server to return the requested resource as JSON-LD
 in streaming document form.

 4. Streaming RDF Form

 This section introduces a streaming RDF dataset form,
 which enables RDF datasets to be processed in a streaming manner
 so that they can efficiently serialized into JSON-LD by a streaming JSON-LD processor.

 4.1 Importance of Triple Ordering

 The order in which RDF triples occur in an RDF dataset convey no meaning.
 For instance, the following two RDF datasets (serialized in RDF 1.1 Turtle [Turtle]) have the same meaning,
 even though they have a different order of triples.

 Example 12: A first order of triples

 @prefix schema: <http://schema.org/> .
<https://www.rubensworks.net/#me> schema:name "Ruben Taelman" .
<https://www.rubensworks.net/#me> schema:url <https://www.rubensworks.net/> .
<https://greggkellogg.net/foaf#me> schema:name "Gregg Kellogg" .
<https://greggkellogg.net/foaf#me> schema:url <https://greggkellogg.net/> .

 Example 13: A second order of triples

 @prefix schema: <http://schema.org/> .
<https://www.rubensworks.net/#me> schema:name "Ruben Taelman" .
<https://greggkellogg.net/foaf#me> schema:name "Gregg Kellogg" .
<https://www.rubensworks.net/#me> schema:url <https://www.rubensworks.net/> .
<https://greggkellogg.net/foaf#me> schema:url <https://greggkellogg.net/> .

 For streaming JSON-LD processors, the order of RDF triples may be important.
 Processors that read triples one by one, and convert them to a JSON-LD document in a streaming manner,
 can benefit from having triples in a certain order.

 For instance, the order from first snippet above can lead to more compact JSON-LD documents than the order from the second snippet
 when handled by a streaming JSON-LD processor.
 This is because the first order groups triples with the same subject,
 which can be exploited during streaming JSON-LD serialization by using the same "@id" key.
 The second order mixes subjects, which means that streaming JSON-LD serialization will have to assign separate "@id" keys
 for each triple, resulting in duplicate "@id" keys.

 Streaming JSON-LD serializations of both examples can be seen below.

 Example 14: More compact JSON-LD serialization of the first order

 [
 {
 "@id": "https://www.rubensworks.net/#me",
 "http://schema.org/name": "Ruben Taelman",
 "http://schema.org/url": { "@id": "https://www.rubensworks.net/" }
 },
 {
 "@id": "https://greggkellogg.net/foaf#me",
 "http://schema.org/name": "Gregg Kellogg",
 "http://schema.org/url": { "@id": "https://greggkellogg.net/" }
 }
]

 Example 15: Less compact JSON-LD serialization of the second order

 [
 {
 "@id": "https://www.rubensworks.net/#me",
 "http://schema.org/name": "Ruben Taelman"
 },
 {
 "@id": "https://www.rubensworks.net/#me",
 "http://schema.org/name": "Gregg Kellogg"
 },
 {
 "@id": "https://greggkellogg.net/foaf#me",
 "http://schema.org/url": { "@id": "https://www.rubensworks.net/" }
 },
 {
 "@id": "https://greggkellogg.net/foaf#me",
 "http://schema.org/url": { "@id": "https://greggkellogg.net/" }
 }
]

 4.2 Recommended Triple Ordering

 This section introduces recommendations for defining the order in an RDF dataset,
 such that it can be processed more efficiently by streaming JSON-LD processors.

 	
 Group triples with the same named graph.

 Allows grouping of @graph nodes.

 	
 Group triples with the same subject.

 Allows grouping of @id keys.

 	
 Group triples with the same predicate.

 Allows grouping of property keys.

 	
 Group triples with a given term as named graph together with triples having this term as subject.

 Allows the combination of @graph nodes with @id.

 	
 Group triples with a given term as object with triples having this term as subject.

 Allows nesting of nodes within other nodes.

 Note

 One straightforward way to follow the first three recommendations is by sorting all triples (or quads)
 in the order graph, subject, predicate, object.

 Existing triple stored may already perform this kind of grouping automatically.

 Note also that, depending on the triples,
 it might not be possible to strictly comply with all these recommendations.

 An RDF dataset that adheres to at least one of these recommendations is considered to have
 a streaming RDF dataset form.

 4.3 Examples
This section is non-normative.

 Hereafter, a couple of RDF datasets are listed, together with corresponding serialized JSON-LD in a streaming manner.
 Each example illustrates the importance of the recommended triple ordering within
 the streaming RDF dataset form.

 The examples using named graphs are serialized in the RDF 1.1 TriG format [TriG].

 4.3.1 @graph grouping

 Example 16: Triples with the same named graph are grouped

 @prefix schema: <http://schema.org/> .
<http://example.org/graph1> {
 <https://www.rubensworks.net/#me> schema:name "Ruben Taelman" .
}
<http://example.org/graph1> {
 <https://www.rubensworks.net/#me> schema:url <https://www.rubensworks.net/> .
}
<http://example.org/graph2> {
 <https://greggkellogg.net/foaf#me> schema:name "Gregg Kellogg" .
}
<http://example.org/graph2> {
 <https://greggkellogg.net/foaf#me> schema:url <https://greggkellogg.net/> .
}

 Example 17: Triples with the same named graph can be grouped within the same @graph block

 [
 {
 "@id": "http://example.org/graph1",
 "@graph": [
 {
 "@id": "https://www.rubensworks.net/#me",
 "http://schema.org/name": "Ruben Taelman",
 "http://schema.org/url": { "@id": "https://www.rubensworks.net/" }
 }
]
 },
 {
 "@id": "http://example.org/graph2",
 "@graph": [
 {
 "@id": "https://greggkellogg.net/foaf#me",
 "http://schema.org/name": "Gregg Kellogg",
 "http://schema.org/url": { "@id": "https://greggkellogg.net/" }
 }
]
 }
]

 4.3.2 @id grouping

 Example 18: Triples with the same subject are grouped

 @prefix schema: <http://schema.org/> .
<https://www.rubensworks.net/#me> schema:name "Ruben Taelman" .
<https://www.rubensworks.net/#me> schema:url <https://www.rubensworks.net/> .
<https://greggkellogg.net/foaf#me> schema:name "Gregg Kellogg" .
<https://greggkellogg.net/foaf#me> schema:url <https://greggkellogg.net/> .

 Example 19: Triples with the same subject can be grouped within the same @id block

 [
 {
 "@id": "https://www.rubensworks.net/#me",
 "http://schema.org/name": "Ruben Taelman",
 "http://schema.org/url": { "@id": "https://www.rubensworks.net/" }
 },
 {
 "@id": "https://greggkellogg.net/foaf#me",
 "http://schema.org/name": "Gregg Kellogg",
 "http://schema.org/url": { "@id": "https://greggkellogg.net/" }
 }
]

 4.3.3 Property grouping

 Example 20: Triples with the same predicate are grouped

 @prefix schema: <http://schema.org/> .
<https://www.rubensworks.net/#me> schema:name "Ruben" .
<https://www.rubensworks.net/#me> schema:name "Ruben Taelman" .
<https://www.rubensworks.net/#me> schema:url <https://www.rubensworks.net/> .
<https://www.rubensworks.net/#me> schema:url <https://github.com/rubensworks/> .

 Example 21: Triples with the same predicate can be grouped within the same property array

 [
 {
 "@id": "https://www.rubensworks.net/#me",
 "http://schema.org/name": [
 "Ruben",
 "Ruben Taelman"
],
 "http://schema.org/url": [
 { "@id": "https://www.rubensworks.net/" },
 { "@id": "https://github.com/rubensworks/" }
]
 }
]

 4.3.4 @graph and @id grouping

 Example 22: Statements about a named graph are group with triples within this named graph

 @prefix schema: <http://schema.org/> .
<http://example.org/graph1> {
 <https://www.rubensworks.net/#me> schema:name "Ruben Taelman" .
}
<http://example.org/graph1> {
 <https://www.rubensworks.net/#me> schema:url <https://www.rubensworks.net/> .
}
<http://example.org/graph1> schema:name "Graph 1" .
<http://example.org/graph2> {
 <https://greggkellogg.net/foaf#me> schema:name "Gregg Kellogg" .
}
<http://example.org/graph2> {
 <https://greggkellogg.net/foaf#me> schema:url <https://greggkellogg.net/> .
}
<http://example.org/graph2> schema:name "Graph 2" .

 Example 23: Statements about a named graph can be attached within the same @graph block

 [
 {
 "@id": "http://example.org/graph1",
 "@graph": [
 {
 "@id": "https://www.rubensworks.net/#me",
 "http://schema.org/name": "Ruben Taelman",
 "http://schema.org/url": { "@id": "https://www.rubensworks.net/" }
 }
],
 "name": "Graph 1"
 },
 {
 "@id": "http://example.org/graph2",
 "@graph": [
 {
 "@id": "https://greggkellogg.net/foaf#me",
 "http://schema.org/name": "Gregg Kellogg",
 "http://schema.org/url": { "@id": "https://greggkellogg.net/" }
 }
],
 "name": "Graph 2"
 }
]

 4.3.5 Subject and object grouping

 Example 24: Triples about a subject come right after triples having this as object

 @prefix schema: <http://schema.org/> .
<https://www.rubensworks.net/#me> schema:name "Ruben Taelman" .
<https://www.rubensworks.net/#me> schema:knows <https://greggkellogg.net/foaf#me> .
<https://greggkellogg.net/foaf#me> schema:knows "Gregg Kellogg" .

 Example 25: Triples can be chained in nested nodes

 [
 {
 "@id": "https://www.rubensworks.net/#me",
 "http://schema.org/name": "Ruben Taelman",
 "http://schema.org/knows": {
 "@id": "https://greggkellogg.net/foaf#me",
 "http://schema.org/name": "Gregg Kellogg"
 }
 }
]

 5. Streaming Processing

 Whenever a JSON-LD document is present in streaming document form,
 or if an RDF dataset is present in a streaming RDF dataset form,
 a processor MAY process these in a streaming manner.

 This section describes high-level guidelines for processing JSON-LD in a streaming manner.
 Concretely, guidelines are given for deserializing JSON-LD to RDF, and serializing RDF to JSON-LD.
 Further details on processing can be found in JSON-LD 1.1 Processing Algorithms and API [JSON-LD11-API].

 5.1 Deserialization

 A streaming deserializer MAY be implemented by considering a JSON-LD document as a stream of incoming characters.
 By reading character-by-character, a deserializer can detect the contained JSON nodes and its key-value pairs.

 A streaming deserializer MUST assume that the required key ordering of a streaming document is present. If a different order is detected, an error MUST be thrown with error code "invalid streaming key order".

 The first expected entry in a node is @context.
 If such an entry is present, all following entries in this node can make use of it, possibly inheriting parts of the context from parent nodes.
 If such an entry is not present, only contexts from parent nodes are considered for this node.

 If an @type entry (or any alias of @type) is detected,
 it is checked whether or not it defines a type-scoped context according to the current node's context.
 If this defines a type-scoped context, the context for the current node is overridden.

 Additionally, the @type must emit rdf:type triples based on the current node's subject and values.
 This subject will possibly only be determined later on, which will require buffering of these incomplete triples.

 Note

 In case multiple type-scoped contexts apply,
 they must not be processed by order of appearance,
 but using the lexicographical order.

 If an @id entry is detected, the RDF subject for the current node is defined for later usage.
 Any other entries that are detected before @id must be buffered until @id is found, or the node closes (which sets the subject to a fresh blank node).

 For every other property, the default JSON-LD algorithms are followed based on the current node's subject.

 As an example of a system architecture of a streaming JSON-LD deserializer can be found in this blog post.

 5.2 Serialization

 A streaming JSON-LD serializer reads triples one by one,
 and outputs a JSON-LD document character-by-character,
 which can be emitted in a streaming manner.

 This MAY be a JSON-LD document in the streaming document form.

 A streaming serializer can benefit from having triples ordered following a streaming RDF dataset form,
 but it SHOULD NOT assume that RDF datasets follow this form in full.

 As a basis, a streaming serializer can produce an array of
 node objects or
 graph objects,
 each one representing a single RDF triple/quad.

 On top of this base case, several optimizations can be applied to achieve a more compact representation in JSON-LD.
 These optimizations are dependent on the surrounding triples, which is determine by the overall triple order.

 When a JSON-LD context
 is passed to a streaming serializer, compaction techniques
 MAY be applied.
 For instance, instead of writing properties as full IRIs, they can be compacted based on the presence of terms and prefixes in the context.

 Due to the chained nature of RDF lists, serializing them to JSON-LD with the @list keyword in a streaming way may not always be possible,
 since you may not know beforehand if a triple is part of a valid RDF list.
 Optionally, a streaming RDF serializer MAY provide an alternative method to emit @list keywords.

 Since streaming RDF processors process triples one by one,
 so that they don't need to keep all triples in memory,
 they loose the ability to deduplicate triples.
 As such, a streaming JSON-LD serializer MAY produce JSON-LD that contains duplicate triples.

A. References

 A.1 Normative references

 	[JSON-LD11]
	JSON-LD 1.1. Gregg Kellogg; Pierre-Antoine Champin; Dave Longley. W3C. 18 October 2019. W3C Working Draft. URL: https://www.w3.org/TR/json-ld11/
	[JSON-LD11-API]
	JSON-LD 1.1 Processing Algorithms and API. Gregg Kellogg; Dave Longley; Pierre-Antoine Champin. W3C. 17 April 2020. W3C Candidate Recommendation. URL: https://www.w3.org/TR/json-ld11-api/
	[RDF11-CONCEPTS]
	RDF 1.1 Concepts and Abstract Syntax. Richard Cyganiak; David Wood; Markus Lanthaler. W3C. 25 February 2014. W3C Recommendation. URL: https://www.w3.org/TR/rdf11-concepts/
	[RFC2119]
	Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997. Best Current Practice. URL: https://tools.ietf.org/html/rfc2119
	[RFC8174]
	Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. B. Leiba. IETF. May 2017. Best Current Practice. URL: https://tools.ietf.org/html/rfc8174
	[RFC8259]
	The JavaScript Object Notation (JSON) Data Interchange Format. T. Bray, Ed.. IETF. December 2017. Internet Standard. URL: https://tools.ietf.org/html/rfc8259

 A.2 Informative references

 	[TriG]
	RDF 1.1 TriG. Gavin Carothers; Andy Seaborne. W3C. 25 February 2014. W3C Recommendation. URL: https://www.w3.org/TR/trig/
	[Turtle]
	RDF 1.1 Turtle. Eric Prud'hommeaux; Gavin Carothers. W3C. 25 February 2014. W3C Recommendation. URL: https://www.w3.org/TR/turtle/

 ↑

Icons/w3c_main.png

