
Web Services Description Language (WSDL) Version 2.0
Part 2: Adjuncts

W3C Working Draft 26 March 2007
This version:

http://www.w3.org/TR/2007/WD-wsdl20-adjuncts-20070326
Latest version:

http://www.w3.org/TR/wsdl20-adjuncts
Previous version:

http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060327
Editors:

Roberto Chinnici, Sun Microsystems
Hugo Haas, W3C
Amelia A. Lewis, TIBCO Software
Jean-Jacques Moreau, Canon
David Orchard, BEA Systems
Sanjiva Weerawarana, WSO2

This document is also available in these non-normative formats: PDF, PostScript, XML, and plain text.

Copyright © 2007 World Wide Web ConsortiumW3C® (Massachusetts Institute of TechnologyMIT,
European Research Consortium for Informatics and MathematicsERCIM, Keio), All Rights Reserved.
W3C liability, trademark and document use rules apply.

Abstract
WSDL 2.0 is the Web Services Description Language, an XML language for describing Web services.
This document, "Web Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts", specifies
predefined extensions for use in WSDL 2.0:

Message exchange patterns

Operation safety

Operation styles

Binding extensions for SOAP and HTTP

1

Table of Contents

http://www.w3.org/
http://www.w3.org/TR/2007/WD-wsdl20-adjuncts-20070326
http://www.w3.org/TR/wsdl20-adjuncts
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060327
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents

Status of this Document
This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current W3C publications and the latest revision of this technical report
can be found in the W3C technical reports index at http://www.w3.org/TR/.

This is a W3C Last Call Working of Web Services Description Language (WSDL) Version 2.0 Part 2:
Adjuncts for review by W3C Members and other interested parties. It has been produced by the Web
Services Description Working Group, which is part of the W3C Web Services Activity. This document is
published to give an opportunity to the community to review the new namespace for WSDL 2.0. The
Working Group plans to request to move to W3C Proposed Recommendation shortly after the end of the
Last Call period.

As a result of implementer and community feedback the Working Group made a number of changes since
the Candidate Recommendation publication. These changes include:

The namespace of the language specified in the document, and identifiers within it, have changed to a
shorter, undated form.

Numerous consistency and editorial improvements.

Improved the granularity and orthogonality of test assertions within the document, and between the
assertions and the normative schema, by variously adding, removing and factoring assertion markup.

Factored MEPs not supported by the SOAP or HTTP bindings to a separate specification.

Renamed the boolean-valued {safety} property to {safe}.

Added {http query parameter separator}, {http query parameter separator default}, and {http location
ignore uncited} properties to the SOAP binding.

Specified mapping of in-only and robust-in-only MEPs to the SOAP 1.2 request-response MEP as
clarified in the PER.

Clarified when properties from the HTTP binding appear, and have meaning, in the SOAP Binding.

Allowed #none as an input content model when using the SOAP Response MEP.

Added an explicit dependency from the HTTP Binding to the wsdlx:safe annotation.

The HTTP method defaults to POST if is is not set explicitly, or by the wsdlx:safe annotation.

Clarified the relationship of {http location} and {address} as a relative URI and a base URI.

Renamed whttp:authenticationType to whttp:authenticationScheme.

Added explicit rules about encoding data when populating an HTTP location template.

2

Status of this Document

http://www.w3.org/TR/
http://www.w3.org/2005/10/Process-20051014/tr.html#last-call
http://www.w3.org/2002/ws/desc/
http://www.w3.org/2002/ws/desc/
http://www.w3.org/2002/ws/Activity
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060327/

Added syntax for suppressing any encoding when populating an HTTP location template.

Added BNF to clarify parsing rules for HTTP location templates.

Replaced {http transfer coding} with {http content encoding} and described its effects more
precisely.

Constrained the values allowed in {http query parameter separator} and {http query parameter sepa-
rator default} properties.

Individuals are invited to send feedback on this document to the public
public-ws-desc-comments@w3.org mailing list (public archive) through 15 April 2007.

The Working Group releases a test suite along with an implementation report.

Issues about this document are recorded in the issues list maintained by the Working Group. A
diff-marked version against the previous version of this document is available.

Publication as a Working Draft does not imply endorsement by the W3C Membership. This is a draft
document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to
cite this document as other than work in progress.

This document is governed by the 24 January 2002 CPP as amended by the W3C Patent Policy Transition
Procedure. W3C maintains a public list of any patent disclosures made in connection with the deliverables
of the group; that page also includes instructions for disclosing a patent. An individual who has actual
knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the infor-
mation in accordance with section 6 of the W3C Patent Policy.

Table of Contents
1. Introduction [p.7]
 1.1 Notational Conventions [p.7]
 1.2 Assertions [p.9]
2. Predefined Message Exchange Patterns [p.9]
 2.1 Template for Message Exchange Patterns [p.10]
 2.1.1 Pattern Name [p.10]
 2.2 Fault Propagation Rules [p.10]
 2.2.1 Fault Replaces Message propagation rule [p.11]
 2.2.2 Message Triggers Fault propagation rule [p.11]
 2.2.3 No Faults propagation rule [p.11]
 2.3 Message Exchange Patterns [p.11]
 2.3.1 In-Only message exchange pattern [p.12]
 2.3.2 Robust In-Only message exchange pattern [p.12]
 2.3.3 In-Out message exchange pattern [p.12]
 2.4 Security Considerations [p.13]
3. Predefined Extensions [p.13]
 3.1 Operation safety [p.13]

3

Table of Contents

http://www.w3.org/2005/10/Process-20051014/tr.html#last-call
http://lists.w3.org/Archives/Public/public-ws-desc-comments/
http://www.w3.org/2002/ws/desc/5/impl-report/
http://www.w3.org/Bugs/Public/buglist.cgi?product=WSDL
http://www.w3.org/TR/2002/NOTE-patent-practice-20020124
http://www.w3.org/2004/02/05-pp-transition
http://www.w3.org/2004/02/05-pp-transition
http://www.w3.org/2002/ws/desc/2/04/24-IPR-statements.html
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure

 3.1.1 Relationship to WSDL Component Model [p.13]
 3.1.2 XML Representation [p.14]
 3.1.3 Mapping from XML Representation to Component Properties [p.14]
4. Predefined Operation Styles [p.14]
 4.1 RPC Style [p.14]
 4.1.1 wrpc:signature Extension [p.16]
 4.1.2 XML Representation of the wrpc:signature Extension [p.17]
 4.1.3 wrpc:signature Extension Mapping To Properties of an Interface Operation component [p.18]
 4.2 IRI Style [p.19]
 4.3 Multipart style [p.19]
5. WSDL SOAP Binding Extension [p.20]
 5.1 SOAP Syntax Summary (Non-Normative) [p.21]
 5.2 Identifying the use of the SOAP Binding [p.23]
 5.3 SOAP Binding Rules [p.23]
 5.4 Specifying the SOAP Version [p.24]
 5.4.1 Description [p.24]
 5.4.2 Relationship to WSDL Component Model [p.24]
 5.4.3 XML Representation [p.24]
 5.4.4 Mapping from XML Representation to Component properties [p.25]
 5.5 Specifying the SOAP Underlying Protocol [p.25]
 5.5.1 Description [p.25]
 5.5.2 Relationship to WSDL Component Model [p.25]
 5.5.3 XML Representation [p.25]
 5.5.4 Mapping from XML Representation to Component Properties [p.26]
 5.6 Binding Faults [p.26]
 5.6.1 Description [p.26]
 5.6.2 Relationship to WSDL Component Model [p.26]
 5.6.3 XML Representation [p.26]
 5.6.4 Mapping XML Representation to Component Properties [p.27]
 5.7 Binding Operations [p.27]
 5.7.1 Description [p.27]
 5.7.2 Relationship to WSDL Component Model [p.28]
 5.7.3 XML Representation [p.28]
 5.7.4 Mapping from XML Representation to Component Properties [p.29]
 5.8 Declaring SOAP Modules [p.29]
 5.8.1 Description [p.29]
 5.8.2 Relationship to WSDL Component Model [p.29]
 5.8.3 SOAP Module component [p.30]
 5.8.4 XML Representation [p.30]
 5.8.5 Mapping from XML Representation to Component Properties [p.32]
 5.8.6 IRI Identification Of A SOAP Module component [p.32]
 5.9 Declaring SOAP Header Blocks [p.32]
 5.9.1 Description [p.32]
 5.9.2 Relationship to WSDL Component Model [p.33]
 5.9.3 SOAP Header Block component [p.33]
 5.9.4 XML Representation [p.33]
 5.9.5 Mapping XML Representation to Component Properties [p.35]

4

Table of Contents

 5.9.6 IRI Identification Of A SOAP Header Block component [p.35]
 5.10 WSDL SOAP 1.2 Binding [p.36]
 5.10.1 Identifying a WSDL SOAP 1.2 Binding [p.36]
 5.10.2 Description [p.36]
 5.10.3 SOAP 1.2 Binding Rules [p.36]
 5.10.4 Binding WSDL 2.0 MEPs to SOAP 1.2 MEPs [p.37]
 5.10.4.1 WSDL In-Out to SOAP Request-Response [p.37]
 5.10.4.1.1 The Client [p.37]
 5.10.4.1.2 The Service [p.38]
 5.10.4.2 WSDL In-Out to SOAP SOAP-Response [p.38]
 5.10.4.2.1 The Client [p.38]
 5.10.4.2.2 The Service [p.38]
 5.10.4.3 WSDL In-Only to SOAP Request-Response [p.39]
 5.10.4.3.1 The Client [p.39]
 5.10.4.3.2 The Service [p.39]
 5.10.4.4 WSDL Robust-In-Only to SOAP Request-Response [p.39]
 5.10.4.4.1 The Client [p.39]
 5.10.4.4.2 The Service [p.40]
 5.11 Conformance [p.40]
6. WSDL HTTP Binding Extension [p.40]
 6.1 Identifying the use of the HTTP Binding [p.41]
 6.2 HTTP Syntax Summary (Non-Normative) [p.41]
 6.3 Supported Extensions [p.42]
 6.4 HTTP Binding Rules [p.42]
 6.4.1 HTTP Method Selection [p.42]
 6.4.2 HTTP Content Encoding Selection [p.43]
 6.4.3 Payload Construction And Serialization Format [p.43]
 6.4.3.1 Serialization rules for XML messages [p.44]
 6.4.4 Default input and output serialization format [p.44]
 6.4.5 HTTP Header Construction [p.45]
 6.4.6 HTTP Request IRI [p.46]
 6.5 Binding Operations [p.46]
 6.5.1 Description [p.46]
 6.5.2 Relationship to WSDL Component Model [p.47]
 6.5.3 Specification of serialization rules allowed [p.48]
 6.5.4 XML Representation [p.48]
 6.5.5 Mapping from XML Representation to Component Properties [p.50]
 6.6 Declaring HTTP Headers [p.51]
 6.6.1 Description [p.51]
 6.6.2 Relationship to WSDL Component Model [p.51]
 6.6.3 HTTP Header component [p.52]
 6.6.4 XML Representation [p.52]
 6.6.5 Mapping from XML Representation to Component Properties [p.54]
 6.6.6 IRI Identification Of An HTTP Header component [p.54]
 6.7 Specifying HTTP Error Code for Faults [p.54]
 6.7.1 Description [p.54]
 6.7.2 Relationship to WSDL Component Model [p.55]

5

Table of Contents

 6.7.3 XML Representation [p.55]
 6.7.4 Mapping from XML Representation to Component Properties [p.55]
 6.8 Serialization Format of Instance Data [p.55]
 6.8.1 Serialization of the instance data in parts of the HTTP request IRI [p.57]
 6.8.1.1 Construction of the request IRI using the {http location} property [p.57]
 6.8.2 Serialization as application/x-www-form-urlencoded [p.59]
 6.8.2.1 Case of elements cited in the {http location} property [p.59]
 6.8.2.2 Serialization of content of the instance data not cited in the {http location} property [p.59]
 6.8.2.2.1 Construction of the query string [p.60]
 6.8.2.2.2 Controlling the serialization of the query string in the request IRI [p.61]
 6.8.2.2.3 Serialization in the request IRI [p.61]
 6.8.2.2.4 Serialization in the message body [p.62]
 6.8.3 Serialization as application/xml [p.63]
 6.8.4 Serialization as multipart/form-data [p.63]
 6.9 Specifying the Content Encoding [p.65]
 6.9.1 Description [p.65]
 6.9.2 Relationship to WSDL Component Model [p.65]
 6.9.3 XML Representation [p.65]
 6.9.4 Mapping from XML Representation to Component Properties [p.66]
 6.10 Specifying the Use of HTTP Cookies [p.67]
 6.10.1 Description [p.67]
 6.10.2 Relationship to WSDL Component Model [p.67]
 6.10.3 XML Representation [p.67]
 6.10.4 Mapping from XML Representation to Component Properties [p.67]
 6.11 Specifying HTTP Access Authentication [p.67]
 6.11.1 Description [p.68]
 6.11.2 Relationship to WSDL Component Model [p.68]
 6.11.3 XML Representation [p.68]
 6.11.4 Mapping from XML Representation to Component Properties [p.69]
 6.12 Conformance [p.69]
7. References [p.69]
 7.1 Normative References [p.69]
 7.2 Informative References [p.72]

Appendices

A. Acknowledgements [p.72] (Non-Normative)
B. Component Summary [p.73] (Non-Normative)
C. Assertion Summary [p.76] (Non-Normative)
D. Part 2 Change Log [p.86] (Non-Normative)
 D.1 WSDL 2.0 Extensions Change Log [p.93]
 D.2 WSDL 2.0 Bindings Change Log [p.95]

6

Appendices

1. Introduction
The Web Services Description Language Version 2.0 (WSDL 2.0) [WSDL 2.0 Core Language [p.70]]
provides a model and an XML format for describing Web services. WSDL 2.0 enables one to separate the
description of the abstract functionality offered by a service from concrete details of a service description
such as "how" and "where" that functionality is offered.

This document, "Web Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts", specifies
predefined extensions for use in WSDL 2.0:

Message exchange patterns: 2. Predefined Message Exchange Patterns [p.9]

Operation safety declaration: 3. Predefined Extensions [p.13]

Operation styles: 4. Predefined Operation Styles [p.14]

Binding extensions:

A SOAP 1.2 [SOAP 1.2 Part 1: Messaging Framework (Second Edition) [p.71]] binding exten-
sion: 5. WSDL SOAP Binding Extension [p.20]

An HTTP/1.1 [IETF RFC 2616 [p.70]] binding extension: 6. WSDL HTTP Binding Exten-
sion [p.40]

This document depends on WSDL Version 2.0 [WSDL 2.0 Core Language [p.70]].

1.1 Notational Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be inter-
preted as described in RFC2119 [IETF RFC 2119 [p.69]].

This specification uses a number of namespace prefixes throughout; they are listed in Table 1-1 [p.7] .
Note that the choice of any namespace prefix is arbitrary and not semantically significant (see [XML Infor-
mation Set [p.71]]).

7

1. Introduction

Table 1-1. Prefixes and Namespaces used in this specification

Prefix Namespace Notes

wsdl "http://www.w3.org/ns/wsdl"

This namespace is defined in [WSDL 2.0 Core
Language [p.70]]. A normative XML Schema [XML
Schema Structures [p.71]], [XML Schema Datatypes
[p.71]] document for the
"http://www.w3.org/ns/wsdl" namespace can be
found at http://www.w3.org/ns/wsdl. This namespace
is used as the default namespace throughout this
specification.

wsdlx "http://www.w3.org/ns/wsdl-extensions"

This specification extends in section 3. Predefined
Extensions [p.13] the
"http://www.w3.org/ns/wsdl-extensions" namespace
defined in [WSDL 2.0 Core Language [p.70]]. A
normative XML Schema [XML Schema Structures
[p.71]], [XML Schema Datatypes [p.71]] document
for the "http://www.w3.org/ns/wsdl-extensions"
namespace can be found at
http://www.w3.org/ns/wsdl-extensions.

wsoap "http://www.w3.org/ns/wsdl/soap"

Defined by this specification. A normative XML
Schema [XML Schema Structures [p.71]], [XML
Schema Datatypes [p.71]] document for the
"http://www.w3.org/ns/wsdl/soap" namespace can be
found at http://www.w3.org/ns/wsdl/soap.

whttp "http://www.w3.org/ns/wsdl/http"

Defined by this specification. A normative XML
Schema [XML Schema Structures [p.71]], [XML
Schema Datatypes [p.71]] document for the
"http://www.w3.org/ns/wsdl/http" namespace can be
found at http://www.w3.org/ns/wsdl/http.

wrpc "http://www.w3.org/ns/wsdl/rpc"

Defined by this specification. A normative XML
Schema [XML Schema Structures [p.71]], [XML
Schema Datatypes [p.71]] document for the
"http://www.w3.org/ns/wsdl/rpc" namespace can be
found at http://www.w3.org/ns/wsdl/rpc.

xs "http://www.w3.org/2001/XMLSchema"
Defined in the W3C XML Schema specification
[XML Schema Structures [p.71]], [XML Schema
Datatypes [p.71]].

Namespace names of the general form "http://example.org/..." and "http://example.com/..." represent
application or context-dependent URIs [IETF RFC 3986 [p.70]].

8

1.1 Notational Conventions

http://www.w3.org/ns/wsdl
http://www.w3.org/ns/wsdl-extensions
http://www.w3.org/ns/wsdl/soap
http://www.w3.org/ns/wsdl/http
http://www.w3.org/ns/wsdl/rpc

All parts of this specification are normative, with the EXCEPTION of pseudo-schemas, examples, and
sections explicitly marked as "Non-Normative". Pseudo-schemas are provided for each component, before
the description of this component. They provide visual help for the XML [XML 1.0 [p.71]] serialization.
The syntax of BNF pseudo-schemas is the same as the one used in [WSDL 2.0 Core Language [p.70]].

1.2 Assertions

Assertions about WSDL 2.0 documents and components that are not enforced by the normative XML
schema for WSDL 2.0 are marked by a dagger symbol (†) at the end of a sentence. Each assertion has
been assigned a unique identifier that consists of a descriptive textual prefix and a unique numeric suffix.
The numeric suffixes are assigned sequentially and never reused so there may be gaps in the sequence.
The assertion identifiers MAY be used by implementations of this specification for any purpose, e.g. error
reporting.

The assertions and their identifiers are summarized in section C. Assertion Summary [p.76] .

2. Predefined Message Exchange Patterns
Web Services Description Language (WSDL) message exchange patterns (hereafter simply ’patterns’)
define the sequence and cardinality of abstract messages listed in an operation. Message exchange patterns
also define which other nodes send messages to, and receive messages from, the service implementing the
operation.

A node is an agent (section 2.3.2.2 Agent of the Web Services Architecture [Web Services Architecture
[p.70]]) that can transmit and/or receive message(s) described in WSDL description(s) and process them.

Note:

A node MAY be accessible via more than one physical address or transport.† [p.85]

WSDL message exchange patterns describe the interaction at the abstract (interface) level, which may be
distinct from the pattern used by the underlying protocol binding (e.g. SOAP Message Exchange Patterns;
section 5.10.3 SOAP 1.2 Binding Rules [p.36] contains the binding rules for the selection of a SOAP 1.2
message exchange pattern, based on the WSDL message exchange pattern in use for the SOAP binding
extension defined in section 5. WSDL SOAP Binding Extension [p.20]).

By design, WSDL message exchange patterns abstract out specific message types. Patterns identify place-
holders for messages, and placeholders are associated with specific message types by the operation using
the pattern.

Unless explicitly stated otherwise, WSDL message exchange patterns also abstract out binding-specific
information such as timing between messages, whether the pattern is synchronous or asynchronous, and
whether the messages are sent over a single or multiple channels.

Like interfaces and operations, WSDL message exchange patterns do not exhaustively describe the set of
messages exchanged between a service and other nodes; by some prior agreement, another node and/or the
service MAY send messages (to each other or to other nodes) that are not described by the pattern.† [p.85]

9

2. Predefined Message Exchange Patterns

http://www.w3.org/TR/2007/WD-wsdl20-20070326#bnfpseudoschemas
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#agent

For instance, even though a pattern can define a single message sent from a service to one other node, the
Web service can in practice multicast that message to other nodes.

To maximize reuse, WSDL message exchange patterns identify a minimal contract between other parties
and Web services, and contain only information that is relevant to both the Web service and another party.

This specification defines several message exchange patterns for use with WSDL Version 2.0 Part 1: Core
Language [WSDL 2.0 Core Language [p.70]]. Additional, non-normative patterns are available in [WSDL
2.0 Additional MEPs [p.72]].

2.1 Template for Message Exchange Patterns

New message exchange patterns may be defined by any organization able and willing to do so. It is recom-
mended that the patterns use the general template provided in 2.1.1 Pattern Name [p.10] , after examina-
tion of existing predefined patterns.

2.1.1 Pattern Name

This pattern consists of [number] message[s, in order] as follows:

[enumeration, specifying, for each message] A[n optional] message:

1. indicated by an Interface Message Reference component whose {message label} is "[label]" and
{direction} is "[direction]"

2. [received from|sent to] [’some’ if first mention] node [node identifier]

This pattern uses the rule [fault ruleset reference].

An Interface Operation using this message exchange pattern has a {message exchange pattern} property
with the value "[pattern IRI]".

Note: In the template, the bracketed items indicate a replacement operation. Substitute the correct terms
for each bracketed item.

Note: the "received from" and "sent to" are always from the point of view of the service, and participating
nodes other than the service are implicitly identified as the originators of or destinations for messages in
the exchange.

2.2 Fault Propagation Rules

WSDL patterns specify their fault propagation model using standard rulesets to indicate where faults can
occur. The most common patterns for fault propagation are defined in the following subsections, and refer-
enced by the patterns in 2.3 Message Exchange Patterns [p.11] . "Propagation" is defined as a best-effort
attempt to transmit the fault message to its designated recipient.

10

2.1 Template for Message Exchange Patterns

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.messagelabel
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.direction
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.messageexchangepattern

WSDL patterns specify propagation of faults, not their generation. Nodes that generate faults MUST
attempt to propagate the faults in accordance with the governing ruleset, but it is understood that any
delivery of a network message is best effort, not guaranteed.† [p.85] The rulesets establish the direction of
the fault message and the fault recipient; they do not provide reliability or other delivery guarantees. When
a fault is generated, the generating node MUST attempt to propagate the fault, and MUST do so in the
direction and to the recipient specified by the ruleset.† [p.85] However, extensions or binding extensions
MAY modify these rulesets.† [p.76] For example, WS-Addressing [WSA 1.0 Core [p.72]] defines a
"FaultTo" address for messages, which is used in lieu of the recipient nominated by the ruleset.

Generation of a fault, regardless of ruleset, terminates the exchange.† [p.85]

Binding extensions, features, or extension specifications can override the semantics of a fault propagation
ruleset, but this practice is strongly discouraged.

2.2.1 Fault Replaces Message propagation rule

When the Fault Replaces Message propagation rule is in effect, any message after the first in the pattern
MAY be replaced with a fault message, which MUST have identical direction. † [p.85] The fault message
MUST be delivered to the same target node as the message it replaces, unless otherwise specified by an
extension or binding extension. If there is no path to this node, the fault MUST be discarded.† [p.85]

The Fault Replaces Message propagation rule is identified by the following URI:
http://www.w3.org/ns/wsdl/fault-replaces-message

2.2.2 Message Triggers Fault propagation rule

When the Message Triggers Fault propagation rule is in effect, any message, including the first in the
pattern, MAY trigger a fault message, which MUST have opposite direction. † [p.85] The fault message
MUST be delivered to the originator of the triggering message, unless otherwise specified by an extension
or binding extension. Any node MAY propagate a fault message, and MUST NOT do so more than once
for each triggering message. If there is no path to the originator, the fault MUST be discarded.† [p.85]

The Message Triggers Fault propagation rule is identified by the following URI:
http://www.w3.org/ns/wsdl/message-triggers-fault

2.2.3 No Faults propagation rule

When the No Faults propagation rule is in effect, faults MUST NOT be propagated. † [p.85]

The No Faults propagation rule is identified by the following URI:
http://www.w3.org/ns/wsdl/no-faults

2.3 Message Exchange Patterns

WSDL patterns are described in terms of the WSDL component model, specifically the Interface Message
Reference and Interface Fault Reference components.

11

2.3 Message Exchange Patterns

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceFaultReference

2.3.1 In-Only message exchange pattern

The in-only message exchange pattern consists of exactly one message as follows:† [p.80]

1. A message:

indicated by a Interface Message Reference component whose {message label} is "In" and
{direction} is "in"

received from some node N

The in-only message exchange pattern uses the rule 2.2.3 No Faults propagation rule [p.11] .† [p.85]

An operation using this message exchange pattern has a {message exchange pattern} property with the
value "http://www.w3.org/ns/wsdl/in-only".

2.3.2 Robust In-Only message exchange pattern

The robust-in-only message exchange pattern consists of exactly one message as follows:† [p.81]

1. A message:

indicated by a Interface Message Reference component whose {message label} is "In" and
{direction} is "in"

received from some node N

The robust in-only message exchange pattern uses the rule 2.2.2 Message Triggers Fault propa-
gation rule [p.11] .† [p.85]

An operation using this message exchange pattern has a {message exchange pattern} property with the
value "http://www.w3.org/ns/wsdl/robust-in-only".

2.3.3 In-Out message exchange pattern

The in-out message exchange pattern consists of exactly two messages, in order, as follows:† [p.80]

1. A message:

indicated by a Interface Message Reference component whose {message label} is "In" and
{direction} is "in"

received from some node N

2. A message:

indicated by a Interface Message Reference component whose {message label} is "Out" and
{direction} is "out"

12

2.3 Message Exchange Patterns

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.messagelabel
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.direction
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.messageexchangepattern
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.messagelabel
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.direction
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.messageexchangepattern
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.messagelabel
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.direction
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.messagelabel
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.direction

sent to node N

The in-out message exchange pattern uses the rule 2.2.1 Fault Replaces Message propagation rule
[p.11] .† [p.85]

An operation using this message exchange pattern has a {message exchange pattern} property with the
value "http://www.w3.org/ns/wsdl/in-out".

2.4 Security Considerations

Note that many of the message exchange patterns defined above describe responses to an initial message
(either a normal response message or a fault.)

Such responses can be used in attempts to disrupt, attack, or map a network, host, or services. When such
responses are directed to an address other than that originating the initial message, the source of an attack
can be obscured, or blame laid on a third party, or denial-of-service attacks can be enabled or exacerbated.

Security mechanisms addressing such attacks can prevent the delivery of response messages to the receiv-
ing node. Conformance to the message exchange pattern is measured prior to the application of these secu-
rity mechanisms.

3. Predefined Extensions

3.1 Operation safety

This section defines an extension to WSDL 2.0 [WSDL 2.0 Core Language [p.70]] that allows marking
an operation as a safe interaction, as defined in section 3.4. Safe Interactions of [Web Architecture [p.70]
].

This extension MAY be used for setting defaults in bindings, such as in the HTTP binding (see 6.5.5
Mapping from XML Representation to Component Properties [p.50]).

3.1.1 Relationship to WSDL Component Model

The safety extension adds the following property to the Interface Operation component model (defined in
[WSDL 2.0 Core Language [p.70]]):

{safe} REQUIRED. An xs:boolean indicating whether the operation is asserted to be safe for users to
invoke. If this property is "false", then no assertion has been made about the safety of the operation,
thus the operation MAY or MAY NOT be safe. However, an operation SHOULD be marked safe if it
meets the criteria for a safe interaction defined in Section 3.4 of [Web Architecture [p.70]]. † [p.81]

13

3. Predefined Extensions

http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.messageexchangepattern
http://www.w3.org/TR/2004/REC-webarch-20041215/#safe-interaction
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation

3.1.2 XML Representation

<description>
 <interface>
 <operation name=" xs:NCName" pattern=" xs:anyURI "
 wsdlx:safe=" xs:boolean "? >
 </operation>
 </interface>
</description>

The XML representation for the safety extension is an attribute information item with the following
Infoset properties:

An OPTIONAL safe attribute information item with the following Infoset properties:† [p.76]

A [local name] of safe

A [namespace name] of "http://www.w3.org/ns/wsdl-extensions"

A type of xs:boolean

3.1.3 Mapping from XML Representation to Component Properties

See Table 3-1 [p.14] .

Table 3-1. Mapping from XML Representation to Interface Operation component Extension Properties

Property Value

{safe [p.13]
}

The actual value of the safe attribute information item, if present; otherwise the value
"false".

4. Predefined Operation Styles
This section defines operation styles that can be used to place constraints on Interface Operation compo-
nents, in particular with respect to the format of the messages they refer to. The serialization formats
defined in section 6.8 Serialization Format of Instance Data [p.55] require bound Interface Operation
components to have one or more of the styles defined in this section.

4.1 RPC Style

The RPC style is selected by including the value "http://www.w3.org/ns/wsdl/style/rpc" in the {style}
property of an Interface Operation component.

An Interface Operation component conforming to the RPC style MUST obey the constraints listed further
below. Furthermore, if the wrpc:signature extension is engaged simulatenously, the corresponding
attribute information item MUST be valid according to the schema for the extension and additionally
MUST obey the constraints listed in 4.1.1 wrpc:signature Extension [p.16] and 4.1.2 XML Representa-
tion of the wrpc:signature Extension [p.17] .

14

4. Predefined Operation Styles

http://www.w3.org/TR/2007/WD-wsdl20-20070326#InterfaceOperationStyle
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.style
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation

If the RPC style is used by an Interface Operation component then its {message exchange pattern} prop-
erty MUST have the value either "http://www.w3.org/ns/wsdl/in-only" or
"http://www.w3.org/ns/wsdl/in-out".† [p.81]

The RPC style places restrictions for Remote Procedure Call-types of interactions. When this value is
used, the associated messages MUST conform to the rules below, described using XML Schema [XML
Schema Structures [p.71]]. Note that operations containing messages described by other type systems
may also indicate use of the RPC style, as long as they are constructed in such a way as to follow these
rules.

If the Interface Operation component uses a {message exchange pattern} for which there is no output
element, i.e. "http://www.w3.org/ns/wsdl/in-only", then the conditions stated below that refer to output
elements MUST be considered to be implicitly satisfied.

The value of the {message content model} property for the Interface Message Reference components
of the {interface message references} property MUST be "#element".† [p.81]

The content model of input and output {element declaration} elements MUST be defined using a
complex type that contains a sequence from XML Schema.† [p.81]

The input sequence MUST only contain elements and element wildcards.† [p.81] It MUST NOT
contain other structures such as xs:choice . The input sequence MUST NOT contain more than
one element wildcard.† [p.81] The element wildcard, if present, MUST appear after any elements.†
[p.81]

The output sequence MUST only contain elements.† [p.81] It MUST NOT contain other structures
such as xs:choice .

Both the input and output sequences MUST contain only local element children.† [p.81] Note that
these child elements MAY contain the following attributes: nillable , minOccurs and maxOc-
curs .

The local name of input element’s QName MUST be the same as the Interface Operation compo-
nent’s name.† [p.81]

Input and output elements MUST both be in the same namespace.† [p.81]

The complex type that defines the body of an input or an output element MUST NOT contain any
local attributes.† [p.82] Extension attributes are allowed for purposes of managing the message infras-
tructure (e.g. adding identifiers to facilitate digitally signing the contents of the message). They must
not be considered as part of the application data that is conveyed by the message. Therefore, they are
never included in an RPC signature (see 4.1.1 wrpc:signature Extension [p.16]).

If elements with the same qualified name appear as children of both the input and output elements,
then they MUST both be declared using the same named type.† [p.82]

15

4.1 RPC Style

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.messageexchangepattern
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.messageexchangepattern
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.messagecontentmodel
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.interfacemessagereferences
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.elementdeclaration
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation

The input or output sequence MUST NOT contain multiple children elements declared with the same
name.† [p.82]

4.1.1 wrpc:signature Extension

The wrpc:signature extension attribute information item MAY be used in conjunction with the RPC
style to describe the exact signature of the function represented by an operation that uses the RPC style.

When present, the wrpc:signature extension contributes the following property to the Interface Oper-
ation component it is applied to:

{rpc signature} OPTIONAL, but MUST be present when the style is RPC† [p.83] . A list of pairs (q, t)
whose first component is of type xs:QName and whose second component is of type xs:token. Values
for the second component MUST be chosen among the following four: "#in", "#out", "#inout"
"#return".† [p.83]

The value of the {rpc signature [p.16] } property MUST satisfy the following conditions:

The value of the first component of each pair (q, t) MUST be unique within the list.† [p.83]

For each child element of the input and output messages of the operation, a pair (q, t), whose first
component q is equal to the qualified name of that element, MUST be present in the list, with the
caveat that elements that appear with cardinality greater than one MUST be treated as a single
element.† [p.83]

For each pair (q, #in), there MUST be a child element of the input element with a name of q. There
MUST NOT be a child element of the output element with the name of q.† [p.84]

For each pair (q, #out), there MUST be a child element of the output element with a name of q. There
MUST NOT be a child element of the input element with the name of q.† [p.84]

For each pair (q, #inout), there MUST be a child element of the input element with a name of q.
There MUST also be a child element of the output element with the name of q.† [p.84]

For each pair (q, #return), there MUST be a child element of the output element with a name of q.
There MUST NOT be a child element of the input element with the name of q.† [p.84]

The function signature defined by a wrpc:signature extension is determined as follows:

1. Start with the value of the {rpc signature [p.16] } property, a (possibly empty) list of pairs of this
form:

 [(q0, t0), (q1, t1), ...]

2. Filter the elements of this list into two lists, the first one (L1) comprising pairs whose t component is
one of {#in, #out, #inout}, the second (L2) pairs whose t component is #return. During the composi-
tion of L1 and L2, the relative order of members in the original list MUST be preserved.

16

4.1 RPC Style

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation

For ease of visualization, let’s denote the two lists as:

 (L1) [(a0, u0), (a1, u1), ...]

and

 (L2) [(r0, #return), (r1, #return), ...]

respectively.

3. Then, if the input sequence ends with an element wildcard, the formal signature of the function is:

 f([d0] a0, [d1] a1, ..., rest) => (r0, r1, ...)

where rest is a formal parameter representing the elements in the input message matched by the
element wildcard.

Otherwise the formal signature of the function is:

 f([d0] a0, [d1] a1, ...) => (r0, r1, ...)

i.e.:

the list of formal arguments to the function is [a0, a1, ...];

the direction d of each formal argument a is one of [in] , [out] , [inout] , determined according to
the value of its corresponding u token;

the list of formal return parameters of the function is [r0, r1, ...];

each formal argument and formal return parameter is typed according to the type of the child
element identified by it (unique per the conditions given above).

Note:

The wrpc:signature extension allows the specification of multiple return values for an operation.
Several popular programming languages support multiple return values for a function. Moreover, for
languages which do not, the burden on implementers should be small, as typically multiple return values
will be mapped to a single return value of a structure type (or its closest language-specific equivalent).

4.1.2 XML Representation of the wrpc:signature Extension

The XML representation for the RPC signature extension is an attribute information item with the follow-
ing Infoset properties:

A [local name] of signature

17

4.1 RPC Style

A [namespace name] of "http://www.w3.org/ns/wsdl/rpc"

The type of the name attribute information item is a list type whose item type is the union of the
xs:QName type and the subtype of the xs:token type restricted to the following four values: "#in", "#out",
"#inout", "#return". See Example 4-1 [p.18] for an excerpt from the normative schema definition of this
type.

Additionally, each even-numbered item (0, 2, 4, ...) in the list MUST be of type xs:QName and each
odd-numbered item (1, 3, 5, ...) in the list MUST be of the subtype of xs:token described in the previous
paragraph.† [p.76]

Example 4-1. Definition of the wrpc:signature extension

<xs:attribute name="signature" type="wrpc:signatureType"/>

<xs:simpleType name="signatureType">
 <xs:list itemType="wrpc:signatureItemType"/>
</xs:simpleType>

<xs:simpleType name="signatureItemType">
 <xs:union memberTypes="xs:QName wrpc:directionToken"/>
</xs:simpleType>

<xs:simpleType name="directionToken">
 <xs:restriction base="xs:token">
 <xs:enumeration value="#in"/>
 <xs:enumeration value="#out"/>
 <xs:enumeration value="#inout"/>
 <xs:enumeration value="#return"/>
 </xs:restriction>
</xs:simpleType>

4.1.3 wrpc:signature Extension Mapping To Properties of an Interface Opera-
tion component

A wrpc:signature extension attribute information item is mapped to the following property of the
Interface Operation component defined by its [owner].

Table 4-1. Mapping of a wrpc:signature Extension to Interface Operation component Properties

Property Value

{rpc signature
[p.16] }

A list of (xs:QName, xs:token) pairs formed by grouping the items present in the
actual value of the wrpc:signature attribute information item in the order in
which they appear there.

18

4.1 RPC Style

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation

4.2 IRI Style

The IRI style is selected by including the value "http://www.w3.org/ns/wsdl/style/iri" in the {style} prop-
erty of an Interface Operation component.

When using this style, the value of the {message content model} property of the Interface Message Refer-
ence component corresponding to the initial message of the message exchange pattern MUST be
"#element".† [p.80]

Use of this value indicates that XML Schema [XML Schema Structures [p.71]] was used to define the
schema of the {element declaration} property of the Interface Message Reference component of the Inter-
face Operation component corresponding to the initial message of the message exchange pattern. This
schema MUST adhere to the rules below:

The content model of this element is defined using a complex type that contains a sequence from
XML Schema.

The sequence MUST only contain elements.† [p.80] It MUST NOT contain other structures such as
xs:choice . There are no occurence constraints on the sequence.

The sequence MUST contain only local element children.† [p.80] Note these child elements can
contain the nillable attribute.

The localPart of the element’s QName MUST be the same as the Interface Operation component’s
{name}.† [p.80]

The complex type that defines the body of the element or its children elements MUST NOT contain
any attributes.† [p.80]

The children elements of the sequence MUST derive from xs:simpleType , and MUST NOT be
of the type or derive from xs:QName, xs:NOTATION , xs:hexBinary or
xs:base64Binary .† [p.80]

4.3 Multipart style

The Multipart style is selected by including the value "http://www.w3.org/ns/wsdl/style/multipart" in the
{style} property of an Interface Operation component.

When using this style, the value of the {message content model} property of the Interface Message Refer-
ence component corresponding to the initial message of the message exchange pattern MUST be
"#element".† [p.80]

Use of this value indicates that XML Schema [XML Schema Structures [p.71]] was used to define the
schema of the {element declaration} property of the Interface Message Reference component of the Inter-
face Operation component corresponding to the initial message of the message exchange pattern. This
schema MUST adhere to the rules below:

19

4.2 IRI Style

http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.style
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.messagecontentmodel
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.elementdeclaration
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.name
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.style
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.messagecontentmodel
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.elementdeclaration
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation

The content model of this element is defined using a complex type that contains a sequence from
XML Schema.

The sequence MUST only contain elements.† [p.80] It MUST NOT contain other structures such as
xs:choice .

The sequence MUST contain only local element children.† [p.81] The attributes minOccurs and
maxOccurs for these child elements MUST have a value 1.† [p.81] Note these child elements can
contain the nillable attribute.

The localPart of the element’s QName MUST be the same as the Interface Operation component’s
{name}.† [p.81]

The complex type that defines the body of the element or its children elements MUST NOT contain
any attributes.† [p.81]

The sequence MUST NOT contain multiple children element declared with the same local name.†
[p.81]

5. WSDL SOAP Binding Extension
The SOAP binding extension described in this section is an extension for [WSDL 2.0 Core Language
[p.70]] to enable Web services applications to use SOAP. This binding extension is SOAP version inde-
pendent ("1.2" as well as other versions) and extends WSDL 2.0 by adding properties to the Binding
component, and its related components, as defined in [WSDL 2.0 Core Language [p.70]]. In addition, an
XML Infoset representation for these additional properties is provided, along with a mapping from that
representation to the various component properties.

As allowed in [WSDL 2.0 Core Language [p.70]], a Binding component can exist without indicating a
specific Interface component that it applies to. In this case, no Binding Operation or Binding Fault compo-
nent can be present in the Binding component.

The SOAP binding extension is designed with the objective of minimizing what needs to be explicitly
declared for common cases. This is achieved by defining a set of default rules that affect all Interface
Operation components of an Interface component to which the SOAP binding extension is applied, unless
specifically overridden by a Binding Operation component. Thus, if a given Interface Operation compo-
nent is not referred to specifically by a Binding Operation component, then all the default rules apply to
that Interface Operation component. As a result, in accordance with the requirements of [WSDL 2.0 Core
Language [p.70]], all operations of an Interface component will be bound by this binding extension.

Note: As in other parts of this specification, one could have done away with "default" properties at the
component model level, and have set the value for the corresponding non-default properties in the XML
mapping section. However, default properties are required for interface-less binding. Indeed, an inter-
face-less binding has no means to set the non-default version of the property at the operation-level, since
there is precisely no operation (there is not even an interface). Hence the mapping needs to be done else-
where.

20

5. WSDL SOAP Binding Extension

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.name
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Interface
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Interface
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Interface

A subset of the HTTP properties specified in the HTTP binding extension defined in section 6. WSDL
HTTP Binding Extension [p.40] are present in a SOAP binding when the SOAP binding uses HTTP as
the underlying protocol, for example, when the value of the {soap underlying protocol [p.25] } property of
the Binding component is "http://www.w3.org/2003/05/soap/bindings/HTTP/". These properties MUST
NOT be used unless the underlying protocol is HTTP.† [p.83] The allowed properties are the ones that
describe the underlying protocol (HTTP):

{http location [p.47] } and {http location ignore uncited [p.61] } on Binding Operation components,
as defined in 6.5 Binding Operations [p.46] and 6.8.2.2.2 Controlling the serialization of the
query string in the request IRI [p.61] , respectively.

{http headers [p.51] } on Binding Message Reference and Binding Fault components, as defined in
6.6 Declaring HTTP Headers [p.51]

{http query parameter separator default [p.47] } on Binding components, {http query parameter sepa-
rator [p.47] } on Binding Operation components, as defined in 6.5.2 Relationship to WSDL Compo-
nent Model [p.47]

{http content encoding default [p.65] } on Binding and Binding Operation components, {http content
encoding [p.65] } on Binding Message Reference and Binding Fault components, as defined in 6.9
Specifying the Content Encoding [p.65]

{http cookies [p.67] } on Binding components, as defined in 6.10 Specifying the Use of HTTP
Cookies [p.67] .

{http authentication scheme [p.68] } and {http authentication realm [p.68] } on Endpoint compo-
nents, as defined in 6.11 Specifying HTTP Access Authentication [p.67]

5.1 SOAP Syntax Summary (Non-Normative)
<description>
 <binding name=" xs:NCName" interface=" xs:QName"?
 type=" http://www.w3.org/ns/wsdl/soap "
 whttp:queryParameterSeparatorDefault=" xs:string "??
 whttp:contentEncodingDefault=" xs:string "??
 whttp:cookies=" xs:boolean "?
 wsoap:version=" xs:string "?
 wsoap:protocol=" xs:anyURI "
 wsoap:mepDefault=" xs:anyURI "? >
 <documentation />*

 < wsoap:module ref=" xs:anyURI " required=" xs:boolean "? >
 <documentation />*
 </ wsoap:module>*

 <fault ref=" xs:QName"
 wsoap:code=" union of xs:QName, xs:token "?
 wsoap:subcodes=" union of (list of xs:QName), xs:token "?
 whttp:contentEncoding=" xs:string "?? >

 <documentation />*

21

5.1 SOAP Syntax Summary (Non-Normative)

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Endpoint

 < wsoap:module ... />*
 < wsoap:header element=" xs:QName" mustUnderstand="xs:boolean"?
 required=" xs:boolean "? >
 <documentation />*
 </ wsoap:header>*
 <whttp:header ... />*??

 </fault>*

 <operation ref=" xs:QName"
 whttp:location=" xs:anyURI "??
 whttp:contentEncodingDefault=" xs:string "??
 whttp:queryParameterSeparator=" xs:string "??
 whttp:ignoreUncited=" xs:boolean "??
 wsoap:mep=" xs:anyURI "?
 wsoap:action=" xs:anyURI "? >

 <documentation />*

 < wsoap:module ... />*

 <input messageLabel=" xs:NCName"?
 whttp:contentEncoding=" xs:string "?? >
 <documentation />*
 < wsoap:module ... />*
 < wsoap:header ... />*
 < whttp:header ... />*??
 </input>*

 <output messageLabel=" xs:NCName"?
 whttp:contentEncoding=" xs:string "?? >
 <documentation />*
 < wsoap:module ... />*
 < wsoap:header ... />*
 < whttp:header ... />*??
 </output>*

 <infault ref=" xs:QName"
 messageLabel=" xs:NCName"?>
 <documentation />*
 < wsoap:module ... />*
 </infault>*

 <outfault ref=" xs:QName"
 messageLabel=" xs:NCName"?>
 <documentation />*
 < wsoap:module ... />*
 </outfault>*

 </operation>*

 </binding>

 <service>
 <endpoint name=" xs:NCName" binding=" xs:QName" address=" xs:anyURI "?
 whttp:authenticationScheme=" xs:token "??
 whttp:authenticationRealm=" xs:string "?? >

22

5.1 SOAP Syntax Summary (Non-Normative)

 <documentation />*
 </endpoint>
 </service>
</description>

Note:

The double question marks ("??") after the attributes in the whttp namespace indicates that those
optional attributes only make sense when the SOAP binding uses HTTP as the underlying protocol, for
example, when the value of the wsoap:protocol attribute is "http://www.w3.org/2003/05/soap/bind-
ings/HTTP/".

5.2 Identifying the use of the SOAP Binding

A Binding component (defined in [WSDL 2.0 Core Language [p.70]]) is identified as a SOAP binding by
assigning the value "http://www.w3.org/ns/wsdl/soap" to the {type} property of the Binding component.

5.3 SOAP Binding Rules

Payload Construction. When formulating the SOAP envelope to be transmitted, the contents of the
payload (i.e., the contents of the SOAP Body element information item of the SOAP envelope)
MUST be what is defined by the corresponding Interface Message Reference component.† [p.82] This
is further subject to optimization by a feature in use which affects serialization, such as MTOM
[SOAP Message Transmission Optimization Mechanism [p.72]]. The following binding rules MUST
be adhered to:

If the value of the {message content model} property of the Interface Message Reference
component is "#any", then the payload MAY be any one XML element.

If the value is "#none", then the payload MUST be empty.† [p.84]

If the value is "#element", then the payload MUST be the element information item identified by
the {element declaration} property of the Interface Message Reference component.† [p.84]

If the Interface Message Reference component is declared using a non-XML type system (as
considered in the Types section of [WSDL 2.0 Core Language [p.70]]), then additional binding
rules MUST be defined to indicate how to map those components into the SOAP envelope.†
[p.82]

Note:

This SOAP binding extension only allows one single element in the SOAP body.

SOAP Header Construction. If the {soap headers [p.33] } property as defined in section 5.9 Declar-
ing SOAP Header Blocks [p.32] exists and is not empty in a Binding Message Reference or Binding
Fault component, then an element information item conforming to the element declaration of a SOAP
Header Block [p.33] component’s {element declaration [p.33] } property, in the {soap headers [p.33]
} property, MAY be turned into a SOAP header block for the corresponding message.

23

5.2 Identifying the use of the SOAP Binding

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-Binding.type
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.messagecontentmodel
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.elementdeclaration
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault

If the value of the SOAP Header Block [p.33] component’s {required [p.33] } property is "true", the
inclusion of this SOAP header block is REQUIRED, otherwise it is OPTIONAL.

And, if the SOAP Header Block [p.33] component’s {mustUnderstand [p.33] } property is present
and its value is "true", that particular SOAP header block MUST be marked with a mustUnder-
stand attribute information item with a value of "true" or "1" as per the SOAP specification.

SOAP header blocks other than the ones declared in the {soap headers [p.33] } property may be
present at run-time, such as the SOAP header blocks resulting from SOAP modules declared as
explained in section 5.8 Declaring SOAP Modules [p.29] .

5.4 Specifying the SOAP Version

5.4.1 Description

Every SOAP binding MUST indicate what version of SOAP is in use for the operations of the interface
that this binding applies to.† [p.82]

By default, SOAP 1.2 [SOAP 1.2 Part 1: Messaging Framework (Second Edition) [p.71]] is used.

5.4.2 Relationship to WSDL Component Model

The SOAP protocol specification adds the following property to the WSDL component model (as defined
in [WSDL 2.0 Core Language [p.70]]):

{soap version} REQUIRED. A xs:string, to the Binding component.

5.4.3 XML Representation

<description>
 <binding name=" xs:NCName" interface=" xs:QName"? type=" xs:anyURI "
 wsoap:version=" xs:string "? >
 ...
 </binding>
</description>

The XML representation for specifying the SOAP version is an optional attribute information item with
the following Infoset properties:

A [local name] of version

A [namespace name] of "http://www.w3.org/ns/wsdl/soap"

A type of xs:string

24

5.4 Specifying the SOAP Version

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding

5.4.4 Mapping from XML Representation to Component properties

See Table 5-1 [p.25] .

Table 5-1. Mapping from XML Representation to Binding component Extension Properties

Property Value

{soap version
[p.24] }

The actual value of the wsoap:version attribute information item, if present;
otherwise "1.2".

5.5 Specifying the SOAP Underlying Protocol

5.5.1 Description

Every SOAP binding MUST indicate what underlying protocol is in use.† [p.82]

5.5.2 Relationship to WSDL Component Model

The SOAP protocol specification adds the following property to the WSDL component model (as defined
in [WSDL 2.0 Core Language [p.70]]):

{soap underlying protocol} REQUIRED. A xs:anyURI, which is an absolute IRI as defined by [IETF
RFC 3987 [p.70]], to the Binding component. This IRI refers to an appropriate SOAP underlying
protocol binding (see SOAP Protocol Binding Framework in [SOAP 1.2 Part 1: Messaging Frame-
work (Second Edition) [p.71]]), which is to be used for any of the SOAP interactions described by
this binding.

5.5.3 XML Representation

<description>
 <binding name=" xs:NCName" interface=" xs:QName"? type=" xs:anyURI "
 wsoap:protocol=" xs:anyURI " >
 ...
 </binding>
</description>

The XML representation for specifying the SOAP protocol is a REQUIRED attribute information item
with the following Infoset properties:

A [local name] of protocol

A [namespace name] of "http://www.w3.org/ns/wsdl/soap"

A type of xs:anyURI

25

5.5 Specifying the SOAP Underlying Protocol

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding

5.5.4 Mapping from XML Representation to Component Properties

See Table 5-2 [p.26] .

Table 5-2. Mapping from XML Representation to Binding component Extension Properties

Property Value

{soap underlying protocol [p.25]
}

The actual value of the wsoap:protocol attribute information
item.

5.6 Binding Faults

5.6.1 Description

For every Interface Fault component contained in an Interface component, a mapping to a SOAP Fault
MUST be described.† [p.82] This binding extension specification allows the user to indicate the SOAP fault
code and subcodes that are transmitted for a given Interface Fault component.

5.6.2 Relationship to WSDL Component Model

The SOAP Fault binding extension adds the following properties to the WSDL component model (as
defined in [WSDL 2.0 Core Language [p.70]]):

{soap fault code} REQUIRED. A union of xs:QName and xs:token, to the Binding Fault component,
where:

when the value of the {soap version [p.24] } is "1.2", the allowed QNames MUST be the ones
defined by [SOAP 1.2 Part 1: Messaging Framework (Second Edition) [p.71]], section 5.4.6†

[p.82] ;

the allowed token value is "#any".

The value of this property identifies a possible SOAP fault for the operations in scope. If the value of
this property is "#any", no assertion is made about the possible value of the SOAP fault code.

{soap fault subcodes} REQUIRED. A union of list of xs:QName, and xs:token where the allowed
token value is "#any", to the Binding Fault component. The value of this property identifies one or
more subcodes for this SOAP fault. The list of subcodes is the nested sequence of subcodes. An
empty list represents a fault code without subcodes.

5.6.3 XML Representation

<description>
 <binding >
 <fault ref=" xs:QName"
 wsoap:code=" union of xs:QName, xs:token "?
 wsoap:subcodes=" union of (list of xs:QName), xs:token "? >

26

5.6 Binding Faults

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Interface
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault

 <documentation />*
 </fault>*
 </binding>
</description>

The XML representation for binding a SOAP Fault are two attribute information items with the following
Infoset properties:

wsoap:code OPTIONAL attribute information item

A [local name] of code

A [namespace name] of "http://www.w3.org/ns/wsdl/soap"

A type of union of xs:QName and xs:token where the allowed token value is "#any"

wsoap:subcodes OPTIONAL attribute information item

A [local name] of subcodes

A [namespace name] of "http://www.w3.org/ns/wsdl/soap"

A type of union of list of xs:QName, and xs:token where the allowed token value is "#any"

5.6.4 Mapping XML Representation to Component Properties

See Table 5-3 [p.27] .

Table 5-3. Mapping from XML Representation to SOAP Fault component Properties

Property Value

{soap fault code [p.26] }
The actual value of the code attribute information item, if present; other-
wise "#any".

{soap fault subcodes
[p.26] }

The actual value of the subcodes attribute information item, if present;
otherwise "#any".

5.7 Binding Operations

5.7.1 Description

For every Interface Operation component contained in an Interface component, in addition to the binding
rules (for SOAP 1.2, see 5.10.3 SOAP 1.2 Binding Rules [p.36]), there may be additional binding infor-
mation to be specified. This binding extension specification allows the user to indicate the SOAP Message
Exchange Pattern (MEP) and a value for the SOAP Action Feature on a per-operation basis.

27

5.7 Binding Operations

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Interface

5.7.2 Relationship to WSDL Component Model

The SOAP Operation binding extension specification adds the following property to the WSDL compo-
nent model (as defined in [WSDL 2.0 Core Language [p.70]]):

{soap mep default} OPTIONAL. A xs:anyURI, which is an absolute IRI as defined by [IETF RFC
3987 [p.70]], to the Binding component.† [p.83] The value of this property identifies the default
SOAP Message Exchange Pattern (MEP) for all the Interface Operation components of any Interface
component to which this Binding is applied.

{soap mep} OPTIONAL. A xs:anyURI, which is an absolute IRI as defined by [IETF RFC 3987
[p.70]], to the Binding Operation component.† [p.83] The value of this property identifies the SOAP
Message Exchange Pattern (MEP) for this specific operation (see 5.10.3 SOAP 1.2 Binding Rules
[p.36] , paragraph "SOAP MEP Selection", for constraints on bindings).

{soap action} OPTIONAL. A xs:anyURI, which is an absolute IRI as defined by [IETF RFC 3987
[p.70]], to the Binding Operation component.† [p.82] The value of this property identifies the value of
the SOAP Action Feature for the initial message of the message exchange pattern of the Interface
Operation bound, as specified in the binding rules of bindings to specific versions of SOAP (see
5.10.3 SOAP 1.2 Binding Rules [p.36] for the SOAP 1.2 binding when the value of the {soap
version [p.24] } property of the Binding component is "1.2").

5.7.3 XML Representation

<description>
 <binding wsoap:mepDefault=" xs:anyURI "? >
 <operation ref=" xs:QName"
 wsoap:mep=" xs:anyURI "?
 wsoap:action=" xs:anyURI "? >
 </operation>
 </binding>
</description>

The XML representation for binding a Binding Operation are two attribute information items with the
following Infoset properties:

wsoap:mep OPTIONAL attribute information item

A [local name] of mep

A [namespace name] of "http://www.w3.org/ns/wsdl/soap"

A type of xs:anyURI

wsoap:action OPTIONAL attribute information item

A [local name] of action

28

5.7 Binding Operations

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Interface
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation

A [namespace name] of "http://www.w3.org/ns/wsdl/soap"

A type of xs:anyURI

The following attribute information item for the binding element information item is defined:

wsoap:mepDefault OPTIONAL attribute information item

A [local name] of mepDefault

A [namespace name] of " http://www.w3.org/ns/wsdl/soap "

A type of xs:anyURI

5.7.4 Mapping from XML Representation to Component Properties

See Table 5-4 [p.29] .

Table 5-4. Mapping from XML Representation to SOAP Operation Component Properties

Property Value

{soap mep default
[p.28] }

The actual value of the wsoap:mepDefault attribute information item, if
present.

{soap mep [p.28] } The actual value of the wsoap:mep attribute information item, if present.

{soap action [p.28] } The actual value of the wsoap:action attribute information item, if any.

5.8 Declaring SOAP Modules

5.8.1 Description

The SOAP messaging framework allows a Web service to engage one or more additional features (typi-
cally implemented as one or more SOAP header blocks), as defined by SOAP Modules (see [SOAP 1.2
Part 1: Messaging Framework (Second Edition) [p.71]]). This binding extension specification allows
description of which SOAP Modules are in use across an entire binding, on a per operation basis or on a
per-message basis.

5.8.2 Relationship to WSDL Component Model

The SOAP Module [p.30] component adds the following property to the WSDL component model (as
defined in [WSDL 2.0 Core Language [p.70]]):

{soap modules} OPTIONAL. A set of SOAP Module [p.30] components as defined in 5.8.3 SOAP
Module component [p.30] to the Binding component

29

5.8 Declaring SOAP Modules

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding

Similarly, {soap modules} OPTIONAL, to the Binding Operation component

Similarly, {soap modules} OPTIONAL, to the Binding Message Reference component

Similarly, {soap modules} OPTIONAL, to the Binding Fault component

Similarly, {soap modules} OPTIONAL, to the Binding Fault Reference component

The SOAP modules applicable for a particular operation of any service, consists of all the modules speci-
fied in the input or output Binding Message Reference components, the infault or outfault Binding Fault
Reference components, those specified within the Binding Fault components, those specified within the
Binding Operation components and those specified within the Binding component. If any module is
declared in multiple components, then the requiredness of that module is defined by the closest declara-
tion, where closeness is defined by whether it is specified directly at the Binding Message Reference
component or Binding Fault Reference component level, the Binding Fault level or the Binding Operation
component level or the Binding component level, respectively.

5.8.3 SOAP Module component

The SOAP Module [p.30] component identifies a SOAP module that is in use.

The properties of the SOAP Module component are as follows:

{ref} REQUIRED. A xs:anyURI, which is an absolute IRI as defined by [IETF RFC 3987 [p.70]]. †

[p.83] The value of this property uniquely identifies the SOAP module that is in use (as per the SOAP
1.2 [SOAP 1.2 Part 1: Messaging Framework (Second Edition) [p.71]] processing model).

{required} REQUIRED. A xs:boolean indicating if the SOAP module is required.

{parent} REQUIRED. The Binding, Binding Operation, Binding Message Reference, Binding Fault
or Binding Fault Reference components that contains this component in its {soap modules [p.29] }
property.

5.8.4 XML Representation

<description>
 <binding >
 < wsoap:module ref=" xs:anyURI "
 required=" xs:boolean "? >
 <documentation ... />*
 </ wsoap:module>
 <fault>
 < wsoap:module ... />*
 </fault>
 <operation>
 < wsoap:module ... />*
 <input>
 < wsoap:module ... />*
 </input>
 <output>
 < wsoap:module ... />*

30

5.8 Declaring SOAP Modules

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFaultReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFaultReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFaultReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFaultReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFaultReference

 </output>
 <infault>
 < wsoap:module ... />*
 </infault>
 <outfault>
 < wsoap:module ... />*
 </outfault>
 </operation>
 </binding>
</description>

The XML representation for a SOAP Module [p.30] component is an element information item with the
following Infoset properties:

A [local name] of module

A [namespace name] of "http://www.w3.org/ns/wsdl/soap"

One or more attribute information items amongst its [attributes] as follows:

A REQUIRED ref attribute information item with the following Infoset properties:

A [local name] of ref

A [namespace name] which has no value

A type of xs:anyURI

An OPTIONAL required attribute information item with the following Infoset properties:

A [local name] of required

A [namespace name] which has no value

A type of xs:boolean

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/ns/wsdl" and MUST NOT be
"http://www.w3.org/ns/wsdl/soap".

Zero or more element information item amongst its [children], in order, as follows:

1. Zero or more documentation element information items as defined in [WSDL 2.0 Core
Language [p.70]].

2. Zero or more namespace-qualified element information items amongst its [children]. The
[namespace name] of such element information items MUST NOT be
"http://www.w3.org/ns/wsdl" and MUST NOT be "http://www.w3.org/ns/wsdl/soap".

31

5.8 Declaring SOAP Modules

5.8.5 Mapping from XML Representation to Component Properties

See Table 5-5 [p.32] .

Table 5-5. Mapping from XML Representation to SOAP Module component-related Properties

Property Value

{soap
modules
[p.29] }

The set of SOAP Module [p.30] components corresponding to all the module element
information item in the [children] of the binding , operation , fault , input ,
output , infault , outfault element information items, if any.

{ref [p.30] } The actual value of the ref attribute information item.

{required
[p.30] }

The actual value of the required attribute information item, if present; otherwise
"false".

{parent
[p.30] }

The Binding, Binding Operation, Binding Message Reference, Binding Fault or Binding
Fault Reference component corresponding to the binding , operation , fault ,
input , output , infault or outfault element information item in [parent].

5.8.6 IRI Identification Of A SOAP Module component

WSDL Version 2.0 Part 1: Core Language [WSDL 2.0 Core Language [p.70]] defines a fragment identi-
fier syntax for identifying components of a WSDL 2.0 document.

A SOAP Module [p.30] component can be identified using the wsdl.extension XPointer Framework
scheme:

wsdl.extension(http://www.w3.org/ns/wsdl/soap,
wsoap.module(parent / ref))

1. parent is the pointer part of the {parent [p.30] } component, as specified in WSDL Version 2.0
Part 1: Core Language.

2. ref is the value of the {ref [p.30] } property of the component.

5.9 Declaring SOAP Header Blocks

5.9.1 Description

SOAP allows the use of header blocks in the header part of the message. This binding extension allows
users to declare the SOAP header blocks in use on a per-message and on a per-fault basis.

32

5.9 Declaring SOAP Header Blocks

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFaultReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFaultReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#frag-ids
http://www.w3.org/TR/2007/WD-wsdl20-20070326#frag-ids
http://www.w3.org/TR/2007/WD-wsdl20-20070326#wsdl.extension
http://www.w3.org/TR/2007/WD-wsdl20-20070326#frag-ids
http://www.w3.org/TR/2007/WD-wsdl20-20070326#frag-ids

5.9.2 Relationship to WSDL Component Model

The SOAP Header Blocks binding extension specification adds the following property to the WSDL
component model (as defined in [WSDL 2.0 Core Language [p.70]]):

{soap headers} OPTIONAL. A set of SOAP Header Block [p.33] components as defined in 5.9.3
SOAP Header Block component [p.33] , to the Binding Message Reference component.

Similarly, {soap headers} OPTIONAL, to the Binding Fault component.

5.9.3 SOAP Header Block component

A SOAP Header Block [p.33] component describes an abstract piece of header data (SOAP header block)
that is associated with the exchange of messages between the communicating parties. The presence of a
SOAP Header Block [p.33] component in a WSDL description indicates that the service supports headers,
and MAY require a client interacting with the service to use the described header block. Zero or one such
header block may be used.

The properties of the SOAP Header Block component are as follows:

{element declaration} REQUIRED. An XML element declaration in the {element declarations} prop-
erty of the Description component. This XML element declaration uniquely represents a specific
SOAP header block.

{mustUnderstand} REQUIRED. A xs:boolean. When its value is "true", the SOAP header block
MUST be decorated with a SOAP mustUnderstand attribute information item with a value of
"true"; if so, the XML element declaration referenced by the {element declaration [p.33] } property
MUST allow this SOAP mustUnderstand attribute information item.† [p.82] Otherwise, no addi-
tional constraint is placed on the presence and value of a SOAP mustUnderstand attribute infor-
mation item.

{required} REQUIRED. A xs:boolean indicating if the SOAP header block is required. If the value is
"true", then the SOAP header block MUST be included in the message.† [p.82] If it is "false", then the
SOAP header block MAY be included.

{parent} REQUIRED. The Binding Fault or Binding Message Reference component that contains
this component in its {soap headers [p.33] } property.

5.9.4 XML Representation

<description>
 <binding name=" xs:NCName" type=" http://www.w3.org/ns/wsdl/soap " >
 <fault ref=" xs:QName" >
 < wsoap:header element=" xs:QName" mustUnderstand=" xs:boolean "?
 required=" xs:boolean "? >
 <documentation />*
 </ wsoap:header>*
 ...
 </fault>*
 <operation ref=" xs:QName" >

33

5.9 Declaring SOAP Header Blocks

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-Description.elementdeclarations
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Description
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference

 <input messageLabel=" xs:NCName"?>
 < wsoap:header ... />*
 ...
 </input>*
 <output messageLabel=" xs:NCName"?>
 < wsoap:header ... />*
 ...
 </output>*
 </operation>*
 </binding>
</description>

The XML representation for a SOAP Header Block [p.33] component is an element information item with
the following Infoset properties:

A [local name] of header

A [namespace name] of "http://www.w3.org/ns/wsdl/soap"

One or more attribute information items amongst its [attributes] as follows:

A REQUIRED element attribute information item with the following Infoset properties:

A [local name] of element

A [namespace name] which has no value

A type of xs:QName

An OPTIONAL mustUnderstand attribute information item with the following Infoset
properties:

A [local name] of mustUnderstand

A [namespace name] which has no value

A type of xs:boolean

An OPTIONAL required attribute information item with the following Infoset properties:

A [local name] of required

A [namespace name] which has no value

A type of xs:boolean

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/ns/wsdl" and MUST NOT be
"http://www.w3.org/ns/wsdl/soap".

34

5.9 Declaring SOAP Header Blocks

Zero or more element information item amongst its [children], in order, as follows:

1. Zero or more documentation element information items as defined in [WSDL 2.0 Core
Language [p.70]].

2. Zero or more namespace-qualified element information items amongst its [children]. The
[namespace name] of such element information items MUST NOT be
"http://www.w3.org/ns/wsdl" and MUST NOT be "http://www.w3.org/ns/wsdl/soap".

5.9.5 Mapping XML Representation to Component Properties

See Table 5-6 [p.35] .

Table 5-6. Mapping from XML Representation to SOAP Header Block component-related Properties

Property Value

{soap headers
[p.33] }

The set of SOAP Header Block [p.33] components corresponding to all the
header element information item in the [children] of the fault , input or
output element information item, if any.

{element declara-
tion [p.33] }

The element declaration from the {element declarations} resolved to by the value
of the element attribute information item. The value of the element attribute
information item MUST resolve to a global element declaration from the {element
declarations} property of the Description component.† [p.82]

{mustUnderstand
[p.33] }

The actual value of the mustUnderstand attribute information item, if present;
otherwise "false".

{required [p.33] }
The actual value of the required attribute information item, if present; other-
wise "false".

{parent [p.33] }
The Binding Fault or Binding Message Reference component corresponding to the
fault , input or output element information item in [parent].

5.9.6 IRI Identification Of A SOAP Header Block component

WSDL Version 2.0 Part 1: Core Language [WSDL 2.0 Core Language [p.70]] defines a fragment identi-
fier syntax for identifying components of a WSDL 2.0 document.

A SOAP Header Block [p.33] component can be identified using the wsdl.extension XPointer Framework
scheme:

wsdl.extension(http://www.w3.org/ns/wsdl/soap,
wsoap.header(parent / element declaration))

1. parent is the pointer part of the {parent [p.33] } component, as specified in WSDL Version 2.0
Part 1: Core Language.

35

5.9 Declaring SOAP Header Blocks

http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-Description.elementdeclarations
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-Description.elementdeclarations
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-Description.elementdeclarations
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Description
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#frag-ids
http://www.w3.org/TR/2007/WD-wsdl20-20070326#frag-ids
http://www.w3.org/TR/2007/WD-wsdl20-20070326#wsdl.extension
http://www.w3.org/TR/2007/WD-wsdl20-20070326#frag-ids
http://www.w3.org/TR/2007/WD-wsdl20-20070326#frag-ids

2. element declaration is the value of the {element declaration [p.33] } property.

5.10 WSDL SOAP 1.2 Binding

This section describes the SOAP 1.2 binding for WSDL 2.0. This binding does NOT natively support the
full range of capabilities from SOAP 1.2. Certain capabilities not widely used, or viewed as problematic in
practice, are not available -in many cases because supporting them was considered as adding considerable
complexity to the language. Here are examples of such unsupported capabilities:

multiple children of the SOAP Body;

multiple SOAP Fault Detail entries;

non-qualified elements as children of a SOAP Fault Detail.

5.10.1 Identifying a WSDL SOAP 1.2 Binding

A WSDL SOAP Binding is identified as a SOAP 1.2 binding by assigning the value "1.2" to the {soap
version [p.24] } property of the Binding component.

5.10.2 Description

The WSDL SOAP 1.2 binding extension defined in this section is an extension of the SOAP binding
defined in section 5. WSDL SOAP Binding Extension [p.20] to enable Web service applications to use
SOAP 1.2 [SOAP 1.2 Part 1: Messaging Framework (Second Edition) [p.71]].

The WSDL SOAP 1.2 binding extension supports the SOAP 1.2 HTTP binding defined by the [SOAP 1.2
Part 2: Adjuncts (Second Edition) [p.71]] specification. This is indicated by assigning the URI
"http://www.w3.org/2003/05/soap/bindings/HTTP/" (as defined by [SOAP 1.2 Part 2: Adjuncts (Second
Edition) [p.71]]) to the {soap underlying protocol [p.25] } property. Other values MAY be used for this
property in conjunction with the SOAP 1.2 binding extension defined by this specification provided that
the semantics of such protocols are consistent with this binding extension.

Default rules in section 5.10.3 SOAP 1.2 Binding Rules [p.36] define the relationship between SOAP
message exchange patterns defined in [SOAP 1.2 Part 2: Adjuncts (Second Edition) [p.71]] and WSDL
message exchange patterns defined in section 2. Predefined Message Exchange Patterns [p.9] .

5.10.3 SOAP 1.2 Binding Rules

These binding rules are applicable to SOAP 1.2 bindings.

SOAP Action Feature. The value of the SOAP Action Feature for the initial message of the message
exchange pattern of the Interface Operation bound is specified by the {soap action [p.28] } property
of this Binding Operation component. If the Binding Operation component does NOT have a {soap
action [p.28] } property defined, then the SOAP Action Feature (see [SOAP 1.2 Part 2: Adjuncts
(Second Edition) [p.71]]) has NO value. Otherwise, its value is the value of the SOAP Action
Feature for the initial message of the message exchange pattern. The {soap action [p.28] } property
has NO effect when binding to the SOAP-Response MEP.

36

5.10 WSDL SOAP 1.2 Binding

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation

SOAP MEP Selection. For a given Interface Operation component, if there is a Binding Operation
component whose {interface operation} property matches the component in question and its {soap
mep [p.28] } property has a value, then the SOAP MEP is the value of the {soap mep [p.28] } prop-
erty. Otherwise, the SOAP MEP is the value of the Binding component’s {soap mep default [p.28] },
if any. Otherwise, the Interface Operation component’s {message exchange pattern} property MUST
have the value "http://www.w3.org/ns/wsdl/in-out", and the SOAP MEP is the URI
"http://www.w3.org/2003/05/soap/mep/request-response/" identifying the SOAP Request-Response
Message Exchange Pattern as defined in [SOAP 1.2 Part 2: Adjuncts (Second Edition) [p.71]]. † [p.83]

SOAP Detail Element. If any, the value of the SOAP "Detail" element MUST be the element informa-
tion item identified by the {element declaration} property of the Interface Fault component.† [p.84]

HTTP Method Selection. This default binding rule is applicable when the value of the {soap underly-
ing protocol [p.25] } property of the Binding component is "http://www.w3.org/2003/05/soap/bind-
ings/HTTP/". If the SOAP MEP selected as specified above has the value
"http://www.w3.org/2003/05/soap/mep/request-response/" then the HTTP method used is "POST". If the
SOAP MEP selected has the value "http://www.w3.org/2003/05/soap/mep/soap-response/" then the HTTP
method used is "GET".† [p.83]

5.10.4 Binding WSDL 2.0 MEPs to SOAP 1.2 MEPs

This section describes the relationship between WSDL components and SOAP 1.2 MEP properties as
described in [SOAP 1.2 Part 2: Adjuncts (Second Edition) [p.71]].

5.10.4.1 WSDL In-Out to SOAP Request-Response

This section describes the mapping from the WSDL "http://www.w3.org/ns/wsdl/in-out" Message
Exchange Pattern (MEP) to the SOAP "http://www.w3.org/2003/05/soap/mep/request-response/" MEP (as
would be the case for a usual SOAP-over-HTTP In-Out operation). Extensions (such as [WSA 1.0 Core
[p.72]]) MAY alter these mappings.

5.10.4.1.1 The Client

As the client, the property "http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role"
takes the value "RequestingSOAPNode".

The SOAP "http://www.w3.org/2003/05/soap/mep/ImmediateDestination" property takes the value of the
HTTP Request IRI, as defined in 6.4.6 HTTP Request IRI [p.46] , and modified as described in section
6.8.1 Serialization of the instance data in parts of the HTTP request IRI [p.57] .

The WSDL "In" message is mapped to the SOAP "http://www.w3.org/2003/05/soap/mep/OutboundMes-
sage" property.

The WSDL "Out" message maps to the SOAP "http://www.w3.org/2003/05/soap/mep/InboundMessage"
property.

37

5.10 WSDL SOAP 1.2 Binding

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-BindingOperation.interfaceoperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.messageexchangepattern
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.elementdeclaration
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding

5.10.4.1.2 The Service

As the service, the property "http://www.w3.org/2003/05/soap/bindingFramework/ExchangeCon-
text/Role" takes the value "RespondingSOAPNode".

The WSDL "In" message is mapped to the SOAP "http://www.w3.org/2003/05/soap/mep/InboundMes-
sage" property.

The WSDL "Out" message maps to the SOAP "http://www.w3.org/2003/05/soap/mep/OutboundMessage"
property.

5.10.4.2 WSDL In-Out to SOAP SOAP-Response

This section describes the mapping from the WSDL "http://www.w3.org/ns/wsdl/in-out" MEP to the
"http://www.w3.org/2003/05/soap/mep/soap-response/" SOAP MEP. Extensions (such as [WSA 1.0 Core
[p.72]]) MAY alter these mappings.

5.10.4.2.1 The Client

As the client, the property "http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role"
takes the value "RequestingSOAPNode".

The SOAP "http://www.w3.org/2003/05/soap/mep/ImmediateDestination" property takes the value of the
HTTP Request IRI, as defined in 6.4.6 HTTP Request IRI [p.46] , and modified as described in section
6.8.1 Serialization of the instance data in parts of the HTTP request IRI [p.57] .

The value of the {message content model} property for the Interface Message Reference components of
the {interface message references} property MUST be either "#element" or "#none". When the value is:

"#element", the WSDL "In" message is mapped to the destination URI, as per the rules in section
6.8.2 Serialization as application/x-www-form-urlencoded [p.59] .

"#none", the WSDL "In" message is empty.

The SOAP "http://www.w3.org/2003/05/soap/mep/OutboundMessage" property has no value.

The WSDL "Out" message maps to the SOAP "http://www.w3.org/2003/05/soap/mep/InboundMessage"
property.

5.10.4.2.2 The Service

As the service, the property "http://www.w3.org/2003/05/soap/bindingFramework/ExchangeCon-
text/Role" takes the value "RespondingSOAPNode".

The WSDL "In" message is constructed from the destination URI as per the rules in section 6.8.2 Serial-
ization as application/x-www-form-urlencoded [p.59] , WHEN the value of the {message content
model} property for the Interface Message Reference components of the {interface message references}
property is "#element".

38

5.10 WSDL SOAP 1.2 Binding

http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.messagecontentmodel
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.interfacemessagereferences
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.messagecontentmodel
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.messagecontentmodel
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.interfacemessagereferences

The WSDL "Out" message maps to the SOAP "http://www.w3.org/2003/05/soap/mep/OutboundMessage"
property.

5.10.4.3 WSDL In-Only to SOAP Request-Response

This section describes the mapping from the WSDL "http://www.w3.org/ns/wsdl/in-only" MEP to the
SOAP "http://www.w3.org/2003/05/soap/mep/request-response/" MEP. Extensions (such as [WSA 1.0
Core [p.72]]) MAY alter these mappings.

5.10.4.3.1 The Client

As the client, the property "http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role"
takes the value "RequestingSOAPNode".

The SOAP "http://www.w3.org/2003/05/soap/mep/ImmediateDestination" property takes the value of the
HTTP Request IRI, as defined in 6.4.6 HTTP Request IRI [p.46] , and modified as described in section
6.8.1 Serialization of the instance data in parts of the HTTP request IRI [p.57] .

The WSDL "In" message is mapped to the SOAP "http://www.w3.org/2003/05/soap/mep/OutboundMes-
sage" property.

The SOAP "http://www.w3.org/2003/05/soap/mep/InboundMessage" property has no value.

5.10.4.3.2 The Service

As the service, the property "http://www.w3.org/2003/05/soap/bindingFramework/ExchangeCon-
text/Role" takes the value "RespondingSOAPNode".

The WSDL "In" message is mapped to the SOAP "http://www.w3.org/2003/05/soap/mep/InboundMes-
sage" property.

The SOAP "http://www.w3.org/2003/05/soap/mep/OutboundMessage" property has no value.

5.10.4.4 WSDL Robust-In-Only to SOAP Request-Response

This section describes the mapping from the WSDL "http://www.w3.org/ns/wsdl/robust-in-only" MEP to
the SOAP "http://www.w3.org/2003/05/soap/mep/request-response/" MEP. Extensions (such as [WSA 1.0
Core [p.72]]) MAY alter these mappings.

5.10.4.4.1 The Client

As the client, the property "http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role"
takes the value "RequestingSOAPNode".

The SOAP "http://www.w3.org/2003/05/soap/mep/ImmediateDestination" property takes the value of the
HTTP Request IRI, as defined in 6.4.6 HTTP Request IRI [p.46] , and modified as described in section
6.8.1 Serialization of the instance data in parts of the HTTP request IRI [p.57] .

39

5.10 WSDL SOAP 1.2 Binding

The WSDL "In" message is mapped to the SOAP "http://www.w3.org/2003/05/soap/mep/OutboundMes-
sage" property.

The SOAP "http://www.w3.org/2003/05/soap/mep/InboundMessage" can contain a SOAP fault.

5.10.4.4.2 The Service

As the service, the property "http://www.w3.org/2003/05/soap/bindingFramework/ExchangeCon-
text/Role" takes the value "RespondingSOAPNode".

The WSDL "In" message is mapped to the SOAP "http://www.w3.org/2003/05/soap/mep/InboundMes-
sage" property.

The SOAP "http://www.w3.org/2003/05/soap/mep/OutboundMessage" can contain a SOAP fault.

5.11 Conformance

An element information item whose namespace name is "http://www.w3.org/ns/wsdl" and whose local part
is description conforms to this binding extension specification if the element information items and
attribute information items whose namespace is http://www.w3.org/ns/wsdl/soap conform to the XML
Schema for that element or attribute as defined by this specification and additionally adheres to all the
constraints contained in this specification.

6. WSDL HTTP Binding Extension
The HTTP binding extension described in this section is an extension for [WSDL 2.0 Core Language
[p.70]] to enable Web services applications to use HTTP 1.1 [IETF RFC 2616 [p.70]] (as well as other
versions of HTTP) and HTTPS [IETF RFC 2818 [p.70]]. This binding extension extends WSDL 2.0 by
adding properties to the component model defined in [WSDL 2.0 Core Language [p.70]]. In addition an
XML Infoset representation for these additional properties is provided, along with a mapping from that
representation to the various component properties.

As allowed in [WSDL 2.0 Core Language [p.70]], a Binding component can exist without indicating a
specific Interface component that it applies to and, in this case, no Binding Operation or Binding Fault
components can be present in the Binding component.

The HTTP binding extension is designed with the objective of minimizing what needs to be explicitly
declared for common cases. This is achieved by defining a set of default rules that affect all Interface
Operation components of an Interface component to which the HTTP binding extension is applied, unless
specifically overridden by a Binding Operation component. Thus, if a given Interface Operation compo-
nent is not referred to specifically by a Binding Operation component, then all the default rules apply to
that Interface Operation component. As a result, in accordance with the requirements of [WSDL 2.0 Core
Language [p.70]], all operations of an Interface component will be bound by this binding extension.

Note: As in other parts of this specification, one could have done away with "default" properties at the
component model level, and have set the value for the corresponding non-default properties in the XML
mapping section. However, default properties are required for interface-less binding. Indeed, an inter-

40

6. WSDL HTTP Binding Extension

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Interface
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Interface
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Interface

face-less binding has no means to set the non-default version of the property at the operation-level, since
there is precisely no operation (there is not even an interface). Hence the mapping needs to be done else-
where.

[Definition: The internal tree representation of an input, output or fault message is called an instance
data, and is constrained by the schema definition associated with the message: the XML element refer-
enced in the {element declaration} property of the Interface Message Reference component for input and
output messages (unless the {message content model} is "#any"), and in the {element declaration} prop-
erty of an Interface Fault component for faults.]

6.1 Identifying the use of the HTTP Binding

A Binding component (defined in [WSDL 2.0 Core Language [p.70]]) is identified as an HTTP binding
by assigning the value "http://www.w3.org/ns/wsdl/http" to the {type} property of the Binding component.

6.2 HTTP Syntax Summary (Non-Normative)
<description>
 <binding name=" xs:NCName" interface=" xs:QName"?
 type=" http://www.w3.org/ns/wsdl/http "
 whttp:methodDefault=" xs:string "?
 whttp:queryParameterSeparatorDefault=" xs:string "?
 whttp:cookies=" xs:boolean "?
 whttp:contentEncodingDefault=" xs:string "? >
 <documentation />?

 <fault ref=" xs:QName"
 whttp:code=" union of xs:int, xs:token "?
 whttp:contentEncoding=" xs:string "? >
 <documentation />*
 < whttp:header name=" xs:string " type=" xs:QName"
 required=" xs:boolean "? >
 <documentation />*
 </ whttp:header>*
 </fault>*

 <operation ref=" xs:QName"
 whttp:location=" xs:anyURI "?
 whttp:method=" xs:string "?
 whttp:inputSerialization=" xs:string "?
 whttp:outputSerialization=" xs:string "?
 whttp:faultSerialization=" xs:string "?
 whttp:queryParameterSeparator=" xs:string "?
 whttp:contentEncodingDefault=" xs:string "?
 whttp:ignoreUncited=" xs:boolean "? >
 <documentation />*

 <input messageLabel=" xs:NCName"?
 whttp:contentEncoding=" xs:string "? >
 <documentation />*
 < whttp:header ... />*
 </input>*

41

6.1 Identifying the use of the HTTP Binding

http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.elementdeclaration
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.messagecontentmodel
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceFault.elementdeclaration
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-Binding.type
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding

 <output messageLabel=" xs:NCName"?
 whttp:contentEncoding=" xs:string "? >
 <documentation />*
 < whttp:header ... />*
 </output>*

 <infault ref=" xs:QName"
 messageLabel=" xs:NCName"? >
 <documentation />*
 </infault>*

 <outfault ref=" xs:QName"
 messageLabel=" xs:NCName"? >
 <documentation />*
 </outfault>*

 </operation>*

 </binding>

 <service>
 <endpoint name=" xs:NCName" binding=" xs:QName" address=" xs:anyURI "?
 whttp:authenticationScheme=" xs:token "?
 whttp:authenticationRealm=" xs:string "? >
 <documentation />*
 </endpoint>
 </service>
</description>

6.3 Supported Extensions

An implementation of the HTTP binding extension MUST support the following extensions:

"http://www.w3.org/ns/wsdl-extensions/safe" (see 3.1 Operation safety [p.13])

6.4 HTTP Binding Rules

6.4.1 HTTP Method Selection

When formulating the HTTP message to be transmitted, the HTTP request method used MUST be
selected using one of the following:† [p.76]

For a given Interface Operation component, if there is a Binding Operation component whose {inter-
face operation} property matches the component in question and its {http method [p.47] } property
has a value, then the value of the {http method [p.47] } property.

Otherwise, the value of the Binding component’s {http method default [p.47] }, if any.

Otherwise, if a {safe [p.13] } property as defined in 3.1 Operation safety [p.13] is present on the
bound Interface Operation component and has a value of "true", the value "GET".

42

6.3 Supported Extensions

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-BindingOperation.interfaceoperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-BindingOperation.interfaceoperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation

Otherwise, the value "POST".

6.4.2 HTTP Content Encoding Selection

When formulating the HTTP message to be transmitted, content encoding for a given Binding Message
Reference component is determined as follows:† [p.76]

If the {http content encoding [p.65] } property has a non-empty value, a Content-Encoding
header-field MUST be inserted with the value of this property.

Otherwise, if the value of the parent Binding Operation component’s {http content encoding default
[p.65] } property has a non-empty value, a Content-Encoding header-field MUST be inserted
with the value of this property.

Otherwise, if the value of the grandparent Binding component’s {http content encoding default [p.65]
} property has a non-empty value, a Content-Encoding header-field MUST be inserted with the
value of this property.

When formulating the HTTP fault message to be transmitted, content encoding for a given Binding Fault
component is determined as follows:† [p.76]

If the {http content encoding [p.65] } property has a non-empty value, then a Content-Encoding
header-field MUST be inserted with the value of this property.

If the {http content encoding default [p.65] } property has a non-empty value, then a
Content-Encoding header-field MUST be inserted with the value of this property.

The body of the response message is encoded using the specified content encoding.

6.4.3 Payload Construction And Serialization Format

When formulating the HTTP message to be transmitted, the contents of the payload (i.e. the contents of
the HTTP message body) MUST be what is defined by the corresponding Interface Message Reference or
Interface Fault components, serialized as specified by the serialization format [p.43] used.† [p.76]

[Definition: The serialization format is a media type token ("type/subtype"). It identifies rules to serialize
the payload in an HTTP message. Its value is defined by the following rules. The HTTP request serializa-
tion format MUST be in the media type range specified by the {http input serialization [p.47] } property.
The HTTP response serialization format MUST be in the media type range specified by the {http output
serialization [p.47] } property. The HTTP serialization format of a fault MUST be in the media type range
specified by the {http fault serialization [p.47] } property. The concept of media type range is defined in
Section 14.1 of [IETF RFC 2616 [p.70]]. The serialization format MAY have associated media type
parameters (specified with the parameter production of media-range in Section 14.1 of [IETF
RFC 2616 [p.70]].]

Section 6.8 Serialization Format of Instance Data [p.55] defines serialization formats supported by this
binding extension along with their constraints.

43

6.4 HTTP Binding Rules

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceFault

Interface Message Reference component:

If the value of the {message content model} property of the Interface Message Reference bound
is "#any" or "#element", the serialization of the instance data is specified as defined in section
6.4.3.1 Serialization rules for XML messages [p.44] .

If the value is "#none", then the payload MUST be empty and the value of the corresponding
serialization property ({http input serialization [p.47] } or {http output serialization [p.47] }) is
ignored.† [p.77]

If the value is "#other", then the serialization format [p.43] and its associated media type param-
eters, if any, specifies the value of the HTTP Content-Type entity-header field as defined in
section 14.17 of [IETF RFC 2616 [p.70]]. The serialization of the payload is undefined.

Interface Fault component: the serialization of the instance data is specified as defined in section
6.4.3.1 Serialization rules for XML messages [p.44] .

If the Interface Message Reference component or the Interface Fault component is declared using a
non-XML type system (as considered in the Types section of [WSDL 2.0 Core Language [p.70]]), then
additional binding rules MUST be defined in an extension specification to indicate how to map those
components into the HTTP envelope.† [p.77]

6.4.3.1 Serialization rules for XML messages

The serialization rules for messages whose {message content model} is either "#element" or "#any", AND
the serialization rules for fault messages, are as follows:† [p.77]

If the serialization format [p.43] is "application/x-www-form-urlencoded", then the serialization of
the instance data [p.41] is defined by section 6.8.2 Serialization as application/x-www-form-urlen-
coded [p.59] .

If the serialization format [p.43] is "multipart/form-data", then the serialization of the instance data
[p.41] is defined by section 6.8.4 Serialization as multipart/form-data [p.63] .

If the serialization format [p.43] is "application/xml", then the serialization of the instance data [p.41]
is defined by section 6.8.3 Serialization as application/xml [p.63] .

Otherwise, then the serialization of the instance data [p.41] is defined by section 6.8.3 Serialization
as application/xml [p.63] with the following additional rule: the value of the HTTP
Content-Type entity-header field is the value of the serialization format [p.43] and its associated
media type parameters, if any.

6.4.4 Default input and output serialization format

Section Table 6-1 [p.45] defines the default values for the GET, POST, PUT and DELETE values of the
HTTP method as selected in section 6.4.1 HTTP Method Selection [p.42] .

44

6.4 HTTP Binding Rules

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.messagecontentmodel
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.messagecontentmodel

Table 6-1. Default values for GET, POST, PUT and DELETE

HTTP Method Default Input Serialization
Default Output Serializa-

tion

Selected in 6.4.1 HTTP
Method Selection

[p.42]
{http input serialization [p.47] }

{http output serialization
[p.47] }

GET application/x-www-form-urlencoded application/xml

POST application/xml application/xml

PUT application/xml application/xml

DELETE application/x-www-form-urlencoded application/xml

Note:

The application/x-www-form-urlencoded serialization format places constraints on the XML
Schema definition of the {element declaration} property of the Interface Message Reference components
of the Interface Operation component bound (see 6.8.2 Serialization as application/x-www-form-urlen-
coded [p.59]).

The default value for the {http input serialization [p.47] } and {http output serialization [p.47] } properties
for any other HTTP method selected is application/xml .

Mechanisms other than setting the serialization properties MAY modify the serialization format of the
instance data [p.41] corresponding to the message. An example of such modification is the WSDL SOAP
Binding HTTP IRI Serialization rules specified in 5.3 SOAP Binding Rules [p.23] . This binding exten-
sion specifies that the SOAP-Response Message Exchange Pattern ([SOAP 1.2 Part 2: Adjuncts (Second
Edition) [p.71]], Section 6.3) supports input message serialization only as applica-
tion/x-www-form-urlencoded . Other examples are other message exchange patterns or binding
extensions.

6.4.5 HTTP Header Construction

If the {http headers [p.51] } property as defined in section 6.6 Declaring HTTP Headers [p.51] exists and
is not empty in a Binding Message Reference or Binding Fault component, HTTP headers conforming to
each HTTP Header [p.52] component contained in this {http headers [p.51] } property MAY be serialized
as follows:† [p.78]

The HTTP header field name used is the value of the {name [p.52] } property of the HTTP Header
[p.52] component. The HTTP binding MUST NOT set an HTTP header field corresponding to the
value of the {name [p.52] } property already set by another mechanism, such as the HTTP stack or
another feature.† [p.78]

45

6.4 HTTP Binding Rules

http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.elementdeclaration
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2003/REC-soap12-part2-20030624/#soapresmep
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault

The HTTP header field value, whose XML Schema type is declared by the {type definition [p.52] }
property of the HTTP Header [p.52] component, is serialized following the rules of the
field-value production of section 4.2 of [IETF RFC 2616 [p.70]].

If the value of an HTTP Header [p.52] component’s {required [p.52] } property is "true", the inclusion of
this HTTP header field is REQUIRED† [p.78] , otherwise it is OPTIONAL.

6.4.6 HTTP Request IRI

When formulating the HTTP Request, the HTTP Request IRI is an absolute IRI reference and is the value
of the {http location [p.47] } property of the Binding Operation component, resolved using the value of the
{address} property of the Endpoint component (see section 5 of [IETF RFC 3986 [p.70]]). † [p.77] If the
{http location [p.47] } property is set, the HTTP Request IRI is the value of the {address} property of the
Endpoint component. Input serializations may define additional processing rules to be applied to the value
of {http location [p.47] } before applying the process of reference resolution, i.e. before combining it with
the {address} property of the endpoint element to form the HTTP Request IRI. For example, the three seri-
alization formats defined in section 6.8 Serialization Format of Instance Data [p.55] define a syntax to
use the {http location [p.47] } as a template using elements of the instance data.

If the resulting IRI uses the https scheme, then HTTP over TLS [IETF RFC 2818 [p.70]] is used to
send the HTTP request.

The HTTP Request IRI identifies the resource upon which to apply the request and is transmitted using the
Request-URI, and optionally the Host header field, as defined in [IETF RFC 2616 [p.70]].

6.5 Binding Operations

6.5.1 Description

This binding extension specification provides a binding to HTTP of Interface Operation components
whose {message exchange pattern} property has a value amongst:

"http://www.w3.org/ns/wsdl/in-only"

"http://www.w3.org/ns/wsdl/robust-in-only"

"http://www.w3.org/ns/wsdl/in-out"

This HTTP binding extension MAY be used with other message exchange patterns, such as outbound
message exchange patterns, provided that additional semantics are defined, for example through an exten-
sion.

Each of the three supported message exchange patterns above involves one or two messages or faults
being exchanged. The first one is transmitted using an HTTP request, and the second one is transmitted
using the corresponding HTTP response.† [p.77] In cases where only one single message is being sent, the
message body of the HTTP response MUST be empty.† [p.77]

46

6.5 Binding Operations

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-Endpoint.address
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Endpoint
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-Endpoint.address
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Endpoint
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-Endpoint.address
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.messageexchangepattern

For successful responses, the HTTP response code MUST be:

202 when the MEP is "http://www.w3.org/ns/wsdl/in-only"† [p.80]

204 when the MEP is "http://www.w3.org/ns/wsdl/robust-in-only"† [p.80]

For every Binding Operation component corresponding to such Interface Operation components, this
binding extension specification allows the user to indicate the HTTP method to use, the input, output and
fault serialization, and the location of the bound operation.

6.5.2 Relationship to WSDL Component Model

The HTTP binding extension adds the following properties to the WSDL component model (as defined in
[WSDL 2.0 Core Language [p.70]]):

{http location} OPTIONAL. An xs:anyURI, to the Binding Operation component. It MUST contain
an IRI reference and MUST NOT include a fragment identifier component.† [p.77]

{http method default} OPTIONAL. A xs:string, to the Binding component, indicating the default
value for the HTTP Request Method for all the Interface Operation components of any Interface
component to which this Binding is applied.

{http method} OPTIONAL. A xs:string, to the Binding Operation component, indicating the value
for the HTTP Request Method for this specific Binding Operation.

{http input serialization} REQUIRED. A xs:string, to the Binding Operation component, indicating
allowed serialization rules of the HTTP Request message for this specific operation, as described in
section 6.5.3 Specification of serialization rules allowed [p.48] .

{http output serialization} REQUIRED. A xs:string, to the Binding Operation component, indicating
allowed serialization rules of the HTTP Response message for this specific operation, as described in
section 6.5.3 Specification of serialization rules allowed [p.48] .

{http fault serialization} REQUIRED. A xs:string, to the Binding Operation component, indicating
allowed serialization rules of the HTTP Response message for this specific operation in case a fault is
returned, as described in section 6.5.3 Specification of serialization rules allowed [p.48] .

{http query parameter separator default} REQUIRED. A xs:string, to the Binding component, indi-
cating the default query parameter separator character for all the Interface Operation components of
any Interface component to which this Binding is applied to.

{http query parameter separator} OPTIONAL. A xs:string, to the Binding Operation component,
indicating the query parameter separator character for this Binding Operation.

47

6.5 Binding Operations

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Interface
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Interface
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation

6.5.3 Specification of serialization rules allowed

The value of the {http input serialization [p.47] }, {http output serialization [p.47] } and {http fault serial-
ization [p.47] } properties is similar to the value allowed for the Accept HTTP header defined by the
HTTP 1.1 specification, Section 14.1 (see [IETF RFC 2616 [p.70]]) and MUST follow the production
rules defined in that section except for the following:† [p.78]

1. The prefix "Accept:" MUST NOT be used.

2. The rule qdtext is changed from:

qdtext = <any TEXT except<">>

to:

qdtext = <any CHAR except<">>

This change is made to disallow non-US-ASCII OCTETs.

These properties indicate the range of media types and associated parameters with which an instance
MAY be serialized. The value of the serialization format [p.43] used for a message is a media type which
MUST be covered by this range.† [p.77] Wild cards (for example, "application/*") SHOULD NOT be
used in this attribute information item since they may lead to interoperability problems.† [p.77]

The use of {http input serialization [p.47] }, {http output serialization [p.47] } and {http fault serialization
[p.47] } is specified in section 6.4.3 Payload Construction And Serialization Format [p.43] .

6.5.4 XML Representation

<description>
 <binding whttp:methodDefault=" xs:string "?
 whttp:queryParameterSeparatorDefault=" xs:string "? >
 <operation ref=" xs:QName"
 whttp:location=" xs:anyURI "?
 whttp:method=" xs:string "?
 whttp:inputSerialization=" xs:string "?
 whttp:outputSerialization=" xs:string "?
 whttp:faultSerialization=" xs:string "?
 whttp:queryParameterSeparator=" xs:string "? >
 </operation>
 </binding>
</description>

The XML representation for binding an Operation are six attribute information items with the following
Infoset properties:

An OPTIONAL location attribute information item with the following Infoset properties:

A [local name] of location

48

6.5 Binding Operations

A [namespace name] of "http://www.w3.org/ns/wsdl/http"

A type of xs:anyURI

An OPTIONAL method attribute information item with the following Infoset properties:

A [local name] of method

A [namespace name] of "http://www.w3.org/ns/wsdl/http"

A type of xs:string

An OPTIONAL inputSerialization attribute information item with the following Infoset
properties:

A [local name] of inputSerialization

A [namespace name] of "http://www.w3.org/ns/wsdl/http"

A type of xs:string

An OPTIONAL outputSerialization attribute information item with the following Infoset
properties:

A [local name] of outputSerialization

A [namespace name] of "http://www.w3.org/ns/wsdl/http"

A type of xs:string

An OPTIONAL faultSerialization attribute information item with the following Infoset
properties:

A [local name] of faultSerialization

A [namespace name] of "http://www.w3.org/ns/wsdl/http"

A type of xs:string

An OPTIONAL queryParameterSeparator attribute information item with the following
Infoset properties:

A [local name] of queryParameterSeparator

A [namespace name] of "http://www.w3.org/ns/wsdl/http"

A type of xs:string whose pattern facet is "[&;a-zA-Z0-9\-\._~!$’\(\):@/\?*\+,]{1,1}", "&" and
";" being the most frequently used characters in practice.

49

6.5 Binding Operations

The following attribute information items for the binding element information item are defined:

An OPTIONAL methodDefault attribute information item with the following Infoset properties:

A [local name] of methodDefault

A [namespace name] of "http://www.w3.org/ns/wsdl/http"

A type of xs:string

An OPTIONAL queryParameterSeparatorDefault attribute information item with the
following Infoset properties:

A [local name] of queryParameterSeparatorDefault

A [namespace name] of "http://www.w3.org/ns/wsdl/http"

A type of xs:string whose length facet value is "1". The allowed characters are the same as for
the {http query parameter separator [p.47] } property above.

6.5.5 Mapping from XML Representation to Component Properties

See Table 6-2 [p.50] .

50

6.5 Binding Operations

Table 6-2. Mapping from XML Representation to Binding Operation component Extension Properties

Property Value

{http location [p.47]
}

The actual value of the whttp:location attribute information item, if present.

{http method
default [p.47] }

The actual value of the whttp:methodDefault attribute information item, if
present.

{http method [p.47]
}

The actual value of the whttp:method attribute information item, if present.

{http input serializa-
tion [p.47] }

The actual value of the whttp:inputSerialization attribute information
item, if present; otherwise, the default value as defined in 6.4 HTTP Binding
Rules [p.42] .

{http output serial-
ization [p.47] }

The actual value of the whttp:outputSerialization attribute information
item, if present; otherwise, the default value as defined in 6.4 HTTP Binding
Rules [p.42] .

{http fault serializa-
tion [p.47] }

The actual value of the whttp:faultSerialization attribute information
item, if present; otherwise "application/xml".

{http query parame-
ter separator default
[p.47] }

The actual value of the whttp:queryParameterSeparatorDefault
attribute information item, if present; otherwise, "&".

{http query parame-
ter separator [p.47]
}

The actual value of the whttp:queryParameterSeparator attribute infor-
mation item, if present.

6.6 Declaring HTTP Headers

6.6.1 Description

HTTP allows the use of headers in messages. This binding extension allows users to declare the HTTP
headers in use on a per message and on a per-fault basis.

6.6.2 Relationship to WSDL Component Model

The HTTP Header binding extension specification adds the following property to the WSDL component
model (as defined in [WSDL 2.0 Core Language [p.70]]):

{http headers} OPTIONAL. A set of HTTP Header [p.52] components as defined in 6.6.3 HTTP
Header component [p.52] , to the Binding Message Reference component.

51

6.6 Declaring HTTP Headers

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference

Similarly, {http headers} OPTIONAL, to the Binding Fault component.

A Binding Message Reference or a Binding Fault component’s {http headers [p.51] } property MUST
NOT contain multiple HTTP Header [p.52] components with the same {name [p.52] } property.† [p.78]

6.6.3 HTTP Header component

An HTTP Header [p.52] component describes an abstract piece of header data (HTTP header field) that is
associated with the exchange of messages between the communicating parties. The presence of a HTTP
Header [p.52] component in a WSDL description indicates that the service support headers, and MAY
require a client interacting with the service to use the described header field. Zero or one such header field
may be used.

The properties of the HTTP Header component are as follows:

{name} REQUIRED. An xs:string whose pattern facet is "[!#-’*+\-.0-9A-Z^-z|~]+" , the name of the
HTTP header field. The value of this property follows the field-name production rules as speci-
fied in section 4.2 of [IETF RFC 2616 [p.70]].

{type definition} REQUIRED. A Type Definition component, in the {type definitions} property of
the Description component, constraining the value of the HTTP header field. This type MUST be a
simple type.† [p.78]

{required} REQUIRED. An xs:boolean indicating if the HTTP header field is required. If the value is
"true", then the HTTP header field MUST be included in the message.† [p.78] If it is "false", then the
HTTP header field MAY be included.

{parent} REQUIRED. The Binding Fault or Binding Message Reference component that contains
this component in its {http headers [p.51] } property.

6.6.4 XML Representation

<description>
 <binding name=" xs:NCName" type=" http://www.w3.org/ns/wsdl/http " >
 <fault ref=" xs:QName">
 < whttp:header name=" xs:string " type=" xs:QName"
 required=" xs:boolean "? >
 <documentation />*
 </ whttp:header>*
 ...
 </fault>*
 <operation ref=" xs:QName" >
 <input messageLabel=" xs:NCName"?>
 < whttp:header ... />*
 ...
 </input>*
 <output messageLabel=" xs:NCName"?>
 < whttp:header ... />*
 ...

52

6.6 Declaring HTTP Headers

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-TypeDefinition
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-Description.typedefinitions
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Description
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference

 </output>*
 </operation>*
 </binding>
</description>

The XML representation for a HTTP Header [p.52] component is an element information item with the
following Infoset properties:

A [local name] of header

A [namespace name] of "http://www.w3.org/ns/wsdl/http"

One or more attribute information items amongst its [attributes] as follows:

A REQUIRED name attribute information item with the following Infoset properties:

A [local name] of name

A [namespace name] which has no value

A type of xs:string whose pattern facet is "[!#-’*+\-.0-9A-Z^-z|~]+" .

A REQUIRED type attribute information item with the following Infoset properties:

A [local name] of type

A [namespace name] which has no value

A type of xs:QName

An OPTIONAL required attribute information item with the following Infoset properties:

A [local name] of required

A [namespace name] which has no value

A type of xs:boolean

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/ns/wsdl" and MUST NOT be
"http://www.w3.org/ns/wsdl/http".

Zero or more element information item amongst its [children], in order, as follows:

1. Zero or more documentation element information items as defined in [WSDL 2.0 Core
Language [p.70]].

2. Zero or more namespace-qualified element information items amongst its [children]. The
[namespace name] of such element information items MUST NOT be
"http://www.w3.org/ns/wsdl" and MUST NOT be "http://www.w3.org/ns/wsdl/http".

53

6.6 Declaring HTTP Headers

6.6.5 Mapping from XML Representation to Component Properties

See Table 6-3 [p.54] .

Table 6-3. Mapping from XML Representation to HTTP Header component-related Properties

Property Value

{http headers
[p.51] }

The set of HTTP Header [p.52] components corresponding to all the header element
information item in the [children] of the fault , input or output element informa-
tion item, if any.

{name [p.52] } The value of the name attribute information item.

{type definition
[p.52] }

The Type Definition component from the {type definitions} property of the Descrip-
tion component resolved to by the value of the type attribute information item.

{required
[p.52] }

The actual value of the required attribute information item, if present; otherwise
"false".

{parent [p.52]
}

The Binding Fault or Binding Message Reference component corresponding to the
fault , input or output element information item in [parent].

6.6.6 IRI Identification Of An HTTP Header component

WSDL Version 2.0 Part 1: Core Language [WSDL 2.0 Core Language [p.70]] defines a fragment identi-
fier syntax for identifying components of a WSDL 2.0 document.

An HTTP Header [p.52] component can be identified using the wsdl.extension XPointer Framework
scheme:

wsdl.extension(http://www.w3.org/ns/wsdl/http,
whttp.header(parent / name))

1. parent is the pointer part of the {parent [p.52] } component, as specified in WSDL Version 2.0
Part 1: Core Language.

2. name is the {name [p.52] } property value.

6.7 Specifying HTTP Error Code for Faults

6.7.1 Description

For every Interface Fault component contained in an Interface component, an HTTP error code MAY be
defined. It represents the error code that will be used by the service in case the fault needs to be returned.

The fault definition SHOULD agree with the definition of the HTTP error codes, as specified in section 8
of [IETF RFC 3205 [p.70]]. † [p.77]

54

6.7 Specifying HTTP Error Code for Faults

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-TypeDefinition
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-Description.typedefinitions
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Description
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Description
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#frag-ids
http://www.w3.org/TR/2007/WD-wsdl20-20070326#frag-ids
http://www.w3.org/TR/2007/WD-wsdl20-20070326#wsdl.extension
http://www.w3.org/TR/2007/WD-wsdl20-20070326#frag-ids
http://www.w3.org/TR/2007/WD-wsdl20-20070326#frag-ids
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Interface

6.7.2 Relationship to WSDL Component Model

The HTTP Fault binding extension adds the following property to the WSDL component model (as
defined in [WSDL 2.0 Core Language [p.70]]):

{http error status code} REQUIRED. A union of xs:int and xs:token where the allowed token value is
"#any", to the Binding Fault component. An integer value of this property identifies the error
Status-Code as defined by [IETF RFC 2616 [p.70]] that the service will use in case the fault is
returned.† [p.77] If the value of this property is "#any", no claim is made by the service.

6.7.3 XML Representation

<description>
 <binding >
 <fault ref=" xs:QName"
 whttp:code=" union of xs:int, xs:token "? >
 </fault>*
 </binding>
</description>

The XML representation for binding an HTTP Fault is an attribute information item with the following
Infoset properties:

a code OPTIONAL attribute information item

A [local name] of code

A [namespace name] of "http://www.w3.org/ns/wsdl/http"

A type of union of xs:int and xs:token where the allowed token value is "#any"

6.7.4 Mapping from XML Representation to Component Properties

See Table 6-4 [p.55] .

Table 6-4. Mapping from XML Representation to Binding Fault component Extension Properties

Property Value

{http error status code
[p.55] }

The actual value of the whttp:code attribute information item, if present;
otherwise "#any".

6.8 Serialization Format of Instance Data

This section specifies three serialization formats defining rules to encode the instance data [p.41] of an
input or output message as an HTTP message. Table 6-5 [p.56] and Table 6-6 [p.56] give an overview of
those serialization formats and their constraints. All of them allow serialization of parts of the instance
data [p.41] in the HTTP Request IRI, as defined in section 6.8.1 Serialization of the instance data in
parts of the HTTP request IRI [p.57] .

55

6.8 Serialization Format of Instance Data

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault

Other serialization formats may be defined. Those MAY place restrictions on the style of the Interface
Operation bound.

Table 6-5. Applicability of the serialization formats defined in this section for this HTTP binding

-

Serialization of the instance data in parts of an HTTP message

In the
request

URI

In the message body

application/x-www-form-urlencoded multipart/form-data application/xml

HTTP
request
(input

message)

Without
message
body:
GET,

DELETE,
…

All,
some

or none
- - -

With
message
body:
POST,

PUT, …

All,
some

or none
Remainder All All

HTTP response
(output message)

- - - All

Table 6-6. Operation styles required for using serialization formats defined below as input serialization

HTTP
Method

Request

Request
URI: query
parameters

or path
components

Input serialization

application/x-www-form-urlencoded multipart/form-data application/xml

Without
message
body:
GET,

DELETE,
…

IRI style IRI style - -

56

6.8 Serialization Format of Instance Data

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation

With
message
body:
POST,

PUT, …

IRI style, if
any data is

serialized as
path compo-

nents or
query

parameters

IRI style Multipart style None required

6.8.1 Serialization of the instance data in parts of the HTTP request IRI

This section defines templating rules for the {http location [p.47] } property of the Binding Operation
component. Templating is used by the serialization formats defined in section 6.8 Serialization Format of
Instance Data [p.55] , and MAY be reused by other serialization formats.

With this HTTP binding, part of the instance data for HTTP requests MAY be serialized in the HTTP
request IRI, and another part MAY be serialized in the HTTP message body.

If the {style} property of the Interface Operation bound has a value of
"http://www.w3.org/ns/wsdl/style/iri" as defined in 4.2 IRI Style [p.19] , and if the {http location [p.47] }
property of the Binding Operation component is present, the value of the {http location [p.47] } property
component is used as a template† [p.78] which is combined with the {address} property of the endpoint
element to form the full IRI to be used in an HTTP request, as specified in section 6.5.2 Relationship to
WSDL Component Model [p.47] .

The resulting IRI MUST be mapped to an URI for use in the HTTP Request as per section 3.1 "Mapping
of IRIs to URIs" of the IRI specification [IETF RFC 3987 [p.70]]. † [p.79] Additional rules for the serial-
ization of the HTTP request IRI MAY be defined by a serialization format.

6.8.1.1 Construction of the request IRI using the {http location} property

The {http location [p.47] } property MAY cite local names of elements from the instance data [p.41] of
the message to be serialized in request IRI. Citing is performed:

either by enclosing the element name within curly braces. For example, "temperature/{town}". See
Example 6-1 [p.60] for additional details;

or by enclosing the element name within exclamated-curly braces, to include the element without
percent-encoding. For example, "temperature/{!town}". Detailed rules follow.

The following EBNF [ISO/IEC 14977:1996 [p.69]] grammar represents the patterns for constructing the
request IRI:

httpLocation ::= charData? ((openBrace | closeBrace | template) charData?)*
charData ::= [^{}]*
openBrace ::= ’{{’
closeBrace ::= ’}}’
template ::= rawTemplate | encodedTemplate
rawTemplate ::= ’{!’ NCName ’}’
encodedTemplate ::= ’{’ NCName ’}’

57

6.8 Serialization Format of Instance Data

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.style
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-Endpoint.address

The request IRI is constructed as follows (ALPHA and DIGIT below are defined as per [IETF RFC 2234
[p.69]]):

The local name in a template SHOULD match at least one element from the instance data [p.41] of
the input message.† [p.79] When there is no match, the template is replaced by an empty string. Other-
wise, the template consumes the first non-consumed matching element from the instance data [p.41] .
The next occurrence of the template consumes the next non-consumed matching element, and so on
until all templates are processed. Matching elements are consumed in the order in which they appear
in the instance data [p.41] . Cited elements (i.e. elements referenced in templates) MUST NOT carry
an xs:nil attribute whose value is "true"† [p.84] .

Each raw template (rawTemplate production in the grammar above) is replaced by the possibly
empty single value of the corresponding element from the instance data [p.41] . No percent-encoding
is performed.

Each encoded template (encodedTemplate production in the grammar above) NOT preceded in
the {http location [p.47] } property by a "?" character is replaced by the possibly empty single value
of the corresponding element from the instance data [p.41] . Encoding is performed as follows:

The characters in the range: "&" | ";" | "!" | "$" | "’" | "(" | ")" | "*"
| "+" | "," | "=" | ":" | "@" SHOULD be percent-encoded.

The other characters, EXCEPT the ones in the range: ALPHA | DIGIT | "-" | "." |
"_" | "~" , MUST be percent-encoded.

Each encoded template (encodedTemplate production in the grammar above) preceded in the
{http location [p.47] } property by a "?" character is replaced by the possibly empty single value of
the corresponding element from the instance data [p.41] . Encoding is performed as follows:

The value of the {http query parameter separator [p.47] } property, if present; otherwise the
value of the {http query parameter separator default [p.47] } property, MUST be
percent-encoded.

The characters in the range: "&" | ";" | "!" | "$" | "’" | "(" | ")" | "*"
| "+" | "," | "=" | ":" | "@" | "?" | "/" SHOULD be percent-encoded.

The other characters, EXCEPT the ones in the range: ALPHA | DIGIT | "-" | "." |
"_" | "~" , MUST be percent-encoded.

Each uncited element (i.e. each element not referenced in a template) to be serialized, if any, is
encoded as for an encoded template.

Percent-encoding MUST be performed using the UTF-8 representation of the character as prescribed
by section 6.4 of [IETF RFC 3987 [p.70]].

Each double curly brace (openBrace or closeBrace production in the grammar above) is
replaced by a single literal curly brace ("{" or "}" respectively). This provides a simple escaping
mechanism.

58

6.8 Serialization Format of Instance Data

Note that the mechanism described in this section could be used to indicate the entire absolute IRI, includ-
ing the scheme, host, or port, for example:

{scheme}://{host}:{port}/temperature/{town}

or even:

{!myIRI}

6.8.2 Serialization as "application/x-www-form-urlencoded"

This serialization format is designed to allow a client or Web service to produce an IRI based on the
instance data [p.41] of a message and serialize a query string in the HTTP message body as applica-
tion/x-www-form-urlencoded .

If this format is used then the {style} property of Interface Operation component being bound MUST
contain a value of "http://www.w3.org/ns/wsdl/style/iri" as defined in 4.2 IRI Style [p.19] , i.e. this serial-
ization format may only be used to serialize the HTTP request corresponding to the initial message of an
interface operation.† [p.79]

For the HTTP binding defined in this section (6. WSDL HTTP Binding Extension [p.40]), "applica-
tion/x-www-form-urlencoded" MAY be used as a serialization format [p.43] for an input message (HTTP
Request), but MUST NOT be used as a serialization format [p.43] for an output or fault message (HTTP
Response).† [p.79]

6.8.2.1 Case of elements cited in the {http location} property

In this serialization, the rules for constructing the HTTP request IRI using elements cited in the {http loca-
tion [p.47] } property defined in 6.8.1 Serialization of the instance data in parts of the HTTP request
IRI [p.57] apply. Additional rules for constructing the HTTP request IRI follow.

6.8.2.2 Serialization of content of the instance data not cited in the {http location} property

If not all elements from the instance data [p.41] are cited in the {http location [p.47] } property, or if the
property is not present on the Binding Operation component, then additional serialization rules apply.†
[p.79]

The remainder of the instance data is formatted as a query string as defined in 6.8.2.2.1 Construction of
the query string [p.60] .

If the HTTP method used for the request does not allow a message body, then this query string is serial-
ized as parameters in the request IRI (see 6.8.2.2.3 Serialization in the request IRI [p.61]), otherwise it
is serialized in the message body (see 6.8.2.2.4 Serialization in the message body [p.62]).

59

6.8 Serialization Format of Instance Data

http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.style
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation

6.8.2.2.1 Construction of the query string

For elements of the instance data not cited in the {http location [p.47] } property, a query string is
constructed as follows.† [p.79]

Non-nil elements with a possibly empty single value of the instance data [p.41] not cited are serialized as
query parameters in the order they appear in the instance data.

The instance data [p.41] MUST NOT contain elements with an xs:nil attribute whose value is "true".†
[p.78]

Each parameter pair is separated by the value of the {http query parameter separator [p.47] } property, if
present, or the value of the {http query parameter separator default [p.47] } property.

Uncited elements with single values (non-list) are serialized as a single name-value parameter pair.
The name of the parameter is the local name of the uncited element, and the value of the parameter is
the value of the uncited element.

Uncited elements with list values are serialized as one name-value parameter pair per-list value. The
name of each parameter is the local name of the uncited element, and the value of each parameter is
the corresponding value in the list. The order of the list values is preserved.

Replacement values falling outside the range (ALPHA and DIGIT below are defined as per [IETF
RFC 2234 [p.69]]): ALPHA | DIGIT | "-" | "." | "_" | "~" | "!" | "$" |
"&" | "’" | "(" | ")" | "*" | "+" | "," | ";" | "=" | ":" | "@" ,
MUST be percent-encoded. Percent-encoding MUST be performed using the UTF-8 representation
of the character as prescribed by section 6.4 of [IETF RFC 3987 [p.70]].

Example 6-1. Query string generation

The following instance data of an input message:

<data>
 <town>Fréjus</town>
 <date>2007-03-26</date>
 <unit>C</unit>
</data>

with the following value of the {http location [p.47] } property:

’temperature/{town}’

and the following value of the {http query parameter separator default [p.47] } property:

’&’

will produce the following query string:

60

6.8 Serialization Format of Instance Data

date=2007-03-26&unit=C

6.8.2.2.2 Controlling the serialization of the query string in the request IRI

This serialization format adds the following property to the Binding Operation component:

{http location ignore uncited} REQUIRED. A xs:boolean. This boolean indicates whether elements
not cited in the {http location [p.47] } property MUST be appended to the request IRI or ignored. If
the value of this property is "false", the rules defined in section 6.8.2.2.3 Serialization in the request
IRI [p.61] dictate how to serialize elements not cited in {http location [p.47] } in the request IRI.
Otherwise, those are NOT serialized in the request IRI.

When serializing an HTTP request that does not allow an HTTP message body, and when {http location
ignore uncited [p.61] } is "true", any element NOT cited in the {http location [p.47] } property MUST be
defined in the schema as nillable , or have a default value, or appear no less frequently than speci-
fied by the minOccurs value. The element declaration SHOULD NOT combine a default value with
nillable .† [p.78]

The XML representation for this property is an attribute information item with the following Infoset prop-
erties:

An OPTIONAL ignoreUncited attribute information item with the following Infoset properties:

A [local name] of ignoreUncited

A [namespace name] of "http://www.w3.org/ns/wsdl/http"

A type of xs:boolean

The mapping from the XML representation to component properties is as follows:

Table 6-7. Mapping from XML Representation to Binding Operation component Extension Properties

Property Value

{http location ignore
uncited [p.61] }

The actual value of the whttp:ignoreUncited attribute information
item, if present; otherwise, "false".

6.8.2.2.3 Serialization in the request IRI

If the HTTP request method used does not allow HTTP message body (e.g. "GET" and "DELETE"), and if
the value of the {http location ignore uncited [p.61] } property is "false", then the following rules apply.†
[p.79]

If the {http location [p.47] } property is not present, or if it is present and its value does not contain a "?"
(question mark) character, a "?" is appended to the request IRI. If it does already contain a question mark
character, then the value of the {http query parameter separator [p.47] } property, if present, or the value
of the {http query parameter separator default [p.47] } property otherwise, is appended.

61

6.8 Serialization Format of Instance Data

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation

Finally, the query string computed in 6.8.2.2.1 Construction of the query string [p.60] is appended.

Example 6-2. Instance data serialized in an IRI

The instance data defined in Example 6-1 [p.60] with the following operation declaration:

<operation ref=’t:data’
 whttp:location=’temperature/{town}’
 whttp:method=’GET’ />

and the following endpoint declaration:

<endpoint name=’e’ binding=’t:b’
 address=’http://ws.example.com/service1/’ />

will serialize the message in the HTTP request as follows:

GET http://ws.example.com/service1/temperature/Fr%C3%A9jus?date=2007-03-26&unit=C HTTP/1.1
Host: ws.example.com

6.8.2.2.4 Serialization in the message body

If the HTTP request method used does allow an HTTP message body (e.g. "POST" and "PUT"), then the
following rules apply.† [p.79]

Finally, the query string computed in 6.8.2.2.1 Construction of the query string [p.60] is used as the
value of the HTTP message body.

The Content-Type HTTP header field must have the value application/x-www-form-urlen-
coded .† [p.79]

Example 6-3. Instance data serialized in the HTTP Request IRI and message body

The instance data defined in Example 6-1 [p.60] with the following operation declaration:

<operation ref=’t:data’
 whttp:inputSerialization=’application/x-www-form-urlencoded’
 whttp:location=’temperature/{town}’
 whttp:method=’POST’ />

and the following endpoint declaration:

<endpoint name=’e’ binding=’t:b’
 address=’http://ws.example.com/service1/’ />

will serialize the message in the HTTP request as follow:

POST http://ws.example.com/service1/temperature/Fr%C3%A9jus HTTP/1.1
Host: ws.example.com
Content-Type: application/x-www-form-urlencoded
Content-Length: …

date=2007-03-26&unit=C

62

6.8 Serialization Format of Instance Data

6.8.3 Serialization as "application/xml"

In this serialization, for HTTP requests, the rules for constructing the HTTP request IRI defined in 6.8.1
Serialization of the instance data in parts of the HTTP request IRI [p.57] apply if the {style} property
of the Interface Operation bound has a value of "http://www.w3.org/ns/wsdl/style/iri" as defined in 4.2
IRI Style [p.19] .

The instance data [p.41] of the input, output or fault message is serialized as an XML document in the
message body of the HTTP message, following the serialization defined in [Canonical XML [p.71]].
Therefore, it is only suitable for HTTP requests using methods allowing message bodies (i.e., for the
HTTP binding defined in this specification, input messages where the HTTP method selected has a body),
and for HTTP responses (i.e. output and fault messages for the HTTP binding defined in this specifica-
tion).

The Content-Type HTTP header MUST have the value application/xml , or a media type
compatible with application/xml as specified in section 6.4.3.1 Serialization rules for XML
messages [p.44] .† [p.79] Other HTTP headers MAY be used.

6.8.4 Serialization as "multipart/form-data"

In this serialization, for HTTP requests, the rules for constructing the HTTP request IRI defined in 6.8.1
Serialization of the instance data in parts of the HTTP request IRI [p.57] apply if the {style} property
of the Interface Operation bound has a value of "http://www.w3.org/ns/wsdl/style/iri" as defined in 4.2
IRI Style [p.19] .

This format is for legacy compatibility to permit the use of XForms clients with [IETF RFC 2388 [p.69]]
servers. This serialization format may only be used when binding Interface Operation components whose
{style} property has a value of "http://www.w3.org/ns/wsdl/style/multipart" as defined in 4.3 Multipart
style [p.19] , i.e. this serialization format may only be used to serialize the HTTP request corresponding to
the initial message of an interface operation.† [p.79]

Specifically, for the HTTP binding defined in this section (6. WSDL HTTP Binding Extension [p.40]),
"multipart/form-data" MAY be used as a serialization format [p.43] for an input message (HTTP Request),
but MUST NOT be used as a serialization format [p.43] for an output or fault message (HTTP
Response).† [p.80] This format serializes the instance data in the HTTP message body, making it only suit-
able for HTTP requests using methods allowing message bodies.

Each element in the sequence is serialized into a part as follow:

1. The Content-Disposition header MUST have the value form-data , and its name parame-
ter is the local name of the element.† [p.80]

2. The Content-Type header MUST have the value:† [p.80]

application/xml (or a media type compatible with application/xml) if the element
has a complex type;

63

6.8 Serialization Format of Instance Data

http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.style
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.style
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.style

application/octet-stream if the element is of type xs:base64Binary ,
xs:hexBinary , or a derived type;

text/plain if the element has a simple type; The charset MUST be set appropriately. UTF-8
or UTF-16 MUST be at least supported.

3. If the type is xs:base64Binary , xs:hexBinary , xs:anySimpleType or a derived type, the
content of the part is the content of the element. If the type is a complex type, the element is serial-
ized following the rules defined in the 6.8.3 Serialization as application/xml [p.63] .

The instance data [p.41] MUST NOT contain elements with an xs:nil attribute whose value is "true".†
[p.80]

Example 6-4. Example of multipart/form-data

The following instance data of an input message:

<data>
 <town>
 <name>Fréjus</name>
 <country>France</country>
 </town>
 <date>2007-03-26</date>
</data>

with the following operation element:

<operation ref=’t:data’
 whttp:location=’temperature’
 whttp:method=’POST’
 whttp:inputSerialization=’multipart/form-data’/>

will serialize the message as follow:

Content-Type: multipart/form-data; boundary=AaB03x
Content-Length: xxx

--AaB03x
Content-Disposition: form-data; name="town"
Content-Type: application/xml

<town>
 <name>Fréjus</name>
 <country>France</country>
</town>
--AaB03x
Content-Disposition: form-data; name="date"
Content-Type: text/plain; charset=utf-8

2007-03-26
--AaB03x--

64

6.8 Serialization Format of Instance Data

6.9 Specifying the Content Encoding

6.9.1 Description

Every Binding Message Reference and Binding Fault component MAY indicate which content encodings,
as defined in section 3.5 of [IETF RFC 2616 [p.70]], are available for this particular message.

The HTTP binding extension provides a mechanism for indicating a default value at the Binding compo-
nent and Binding Operation levels.

If no value is specified, no claim is being made.

6.9.2 Relationship to WSDL Component Model

The HTTP binding extension specification adds the following properties to the WSDL component model
(as defined in [WSDL 2.0 Core Language [p.70]]):

{http content encoding default} OPTIONAL. A xs:string to the Binding component. This property
indicates the default content encodings available for all Binding Message Reference and Binding
Fault components of this Binding.

{http content encoding default} OPTIONAL. A xs:string to the Binding Operation component. This
property indicates the default content encodings available for all Binding Message Reference of this
Binding Operation.

{http content encoding} OPTIONAL. A xs:string to the Binding Message Reference component.
This property indicates the content encodings available for this Binding Message Reference compo-
nent. If this property does not have a value, the value of the {http content encoding default [p.65] }
property of the parent Binding Operation component is used instead. If that itself has no value, the
value from the Binding Operation component’s parent Binding component is used instead.

Similarly, {http content encoding} OPTIONAL, to the Binding Fault component

These properties are not relevant when HTTP 1.0 is used.

6.9.3 XML Representation

<description>
 <binding name=" xs:NCName" interface=" xs:QName"? type=" xs:anyURI "
 whttp:contentEncodingDefault=" xs:string "? >

 <fault ref=" xs:QName"
 whttp:contentEncoding=" xs:string "? >
 </fault>*

 <operation location=" xs:anyURI "?
 whttp:contentEncodingDefault=" xs:string "? >
 <input messageLabel=" xs:NCName"?
 whttp:contentEncoding=" xs:string "? />

 <output messageLabel=" xs:NCName"?

65

6.9 Specifying the Content Encoding

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault

 whttp:contentEncoding=" xs:string "? />

 </operation>
 </binding>
</description>

The XML representation for specifying the content encoding is an OPTIONAL attribute information item
for the input , output , and fault element information items with the following Infoset properties:

A [local name] of contentEncoding

A [namespace name] of "http://www.w3.org/ns/wsdl/http"

A type of xs:string

The XML representation for specifying the default content encoding is an OPTIONAL attribute informa-
tion item for the binding element information item or binding ’s child operation element informa-
tion items with the following Infoset properties:

A [local name] of contentEncodingDefault

A [namespace name] of "http://www.w3.org/ns/wsdl/http"

A type of xs:string

6.9.4 Mapping from XML Representation to Component Properties

See Table 6-8 [p.66] .

Table 6-8. Mapping from XML Representation to Interface Message Reference component Extension
Properties

Property Value

{http content encoding default
[p.65] } of the Binding
component

The actual value of the whttp:contentEncodingDefault
attribute information item of the binding element information item, if
present.

{http content encoding default
[p.65] } of the Binding Oper-
ation component

The actual value of the whttp:contentEncodingDefault
attribute information item of the operation element information item,
if present.

{http content encoding [p.65]
} of the Binding Message
Reference component

The actual value of the whttp:contentEncoding attribute infor-
mation item of the input or output element information item, if
present.

{http content encoding [p.65]
} of the Binding Fault compo-
nent

The actual value of the whttp:contentEncoding attribute infor-
mation item of the fault element information item, if present.

66

6.9 Specifying the Content Encoding

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault

6.10 Specifying the Use of HTTP Cookies

6.10.1 Description

The {http cookies [p.67] } property allows Binding components to indicate that HTTP cookies (as defined
by [IETF RFC 2965 [p.70]]) are used by specific operations of the interface that this binding applies to.

6.10.2 Relationship to WSDL Component Model

The HTTP binding extension specification adds the following property to the WSDL component model
(as defined in [WSDL 2.0 Core Language [p.70]]):

{http cookies} REQUIRED. A xs:boolean to the Binding component.

6.10.3 XML Representation

<description>
 <binding name=" xs:NCName" interface=" xs:QName"? type=" xs:anyURI "
 whttp:cookies=" xs:boolean "? >
 </binding>
</description>

The XML representation for specifying the use of HTTP cookies is an OPTIONAL attribute information
item with the following Infoset properties:

A [local name] of cookies

A [namespace name] of "http://www.w3.org/ns/wsdl/http"

A type of xs:boolean

6.10.4 Mapping from XML Representation to Component Properties

See Table 6-9 [p.67] .

Table 6-9. Mapping from XML Representation to Binding component Extension Properties

Property Value

{http cookies
[p.67] }

The actual value of the whttp:cookies attribute information item; otherwise,
"false". A value of "true" means that the service relies on cookies and that the client
MUST understand them.† [p.77]

6.11 Specifying HTTP Access Authentication

67

6.10 Specifying the Use of HTTP Cookies

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding

6.11.1 Description

Every Endpoint component MAY indicate the use of an HTTP access authentication mechanism (as
defined by [IETF RFC 2616 [p.70]]) for the endpoint described.

This binding extension specification allows the authentication scheme and realm to be specified.

6.11.2 Relationship to WSDL Component Model

The HTTP binding extension specification adds the following property to the WSDL component model
(as defined in [WSDL 2.0 Core Language [p.70]]):

{http authentication scheme} OPTIONAL. A xs:token with one of the values "basic" or "digest", to
the Endpoint component, corresponding to the HTTP authentication scheme used. When present, this
property indicates the authentication scheme in use: "basic" indicates the Basic Access Authentica-
tion scheme defined in [IETF RFC 2617 [p.70]], and "digest" indicates the Digest Access Authenti-
cation scheme as defined in [IETF RFC 2617 [p.70]].

{http authentication realm} OPTIONAL. A xs:string to the Endpoint component. It corresponds to
the realm authentication parameter defined in [IETF RFC 2617 [p.70]]. If the {http authentication
scheme [p.68] } property is present, then this property MUST be present.† [p.76]

6.11.3 XML Representation

<description>
 <service>
 <endpoint name=" xs:NCName" binding=" xs:QName" address=" xs:anyURI "? >
 whttp:authenticationScheme=" xs:token "?
 whttp:authenticationRealm=" xs:string "? />
 </endpoint>
 </service>
</description>

The XML representation for specifying the use of HTTP access authentication is two OPTIONAL
attribute information items with the following Infoset properties:

An OPTIONAL authenticationScheme attribute information item with the following Infoset
properties:

A [local name] of authenticationScheme

A [namespace name] of "http://www.w3.org/ns/wsdl/http"

A type of xs:token where the allowed token values are "basic" and "digest".

An OPTIONAL authenticationRealm attribute information item with the following Infoset
properties:

68

6.11 Specifying HTTP Access Authentication

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Endpoint
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Endpoint
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Endpoint

A [local name] of authenticationRealm

A [namespace name] of "http://www.w3.org/ns/wsdl/http"

A type of xs:string

6.11.4 Mapping from XML Representation to Component Properties

See Table 6-10 [p.69] .

Table 6-10. Mapping from XML Representation to Endpoint component Extension Properties

Property Value

{http authentica-
tion scheme [p.68]
}

The actual value of the whttp:authenticationScheme attribute informa-
tion item, if present.

{http authentica-
tion realm [p.68] }

The actual value of the whttp:authenticationRealm attribute information
item, if present; otherwise, if the whttp:authenticationScheme attribute
information item is present, "" (the empty value).

6.12 Conformance

An element information item, whose namespace name is "http://www.w3.org/ns/wsdl" and whose local
part is description , conforms to this binding extension specification if: the element information items
and attribute information items, whose namespace is http://www.w3.org/ns/wsdl/http, conform to the
XML Schema for that element or attribute, as defined by this specification and, additionally, adheres to all
the constraints contained in this specification.

7. References

7.1 Normative References

[ISO/IEC 14977:1996]
Extended BNF, IS0 (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission), Dec 1996. Available at
http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm.

[IETF RFC 2119]
Key words for use in RFCs to Indicate Requirement Levels, S. Bradner, Author. Internet Engineering
Task Force, June 1999. Available at http://www.ietf.org/rfc/rfc2119.txt.

[IETF RFC 2234]
Augmented BNF for Syntax Specifications: ABNF, D. Crocker, P. Overell, Authors. Internet Engi-
neering Task Force, November 1997. Available at http://www.ietf.org/rfc/rfc2234.txt.

[IETF RFC 2388]
Returning Values from Forms: multipart/form-data, L. Masinter, Author. Internet Engineering Task
Force, August 1998. Available at http://www.ietf.org/rfc/rfc2388.txt.

69

7. References

http://isotc.iso.org/livelink/livelink/fetch/2000/2489/Ittf_Home/PubliclyAvailableStandards.htm
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2234.txt
http://www.ietf.org/rfc/rfc2388.txt

[IETF RFC 2616]
Hypertext Transfer Protocol -- HTTP/1.1, R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, T. Berners-Lee, Authors. Internet Engineering Task Force, June 1999. Available at
http://www.ietf.org/rfc/rfc2616.txt.

[IETF RFC 2617]
HTTP Authentication: Basic and Digest Access Authentication, J. Franks, P. Hallam-Baker, J.
Hostetler, S. Lawrence, P. Leach, A. Luotonen, L. Stewart, June 1999. Available at
http://www.ietf.org/rfc/rfc2616.txt.

[IETF RFC 2818]
HTTP Over TLS, E. Rescorla, Author. Internet Engineering Task Force, May 2000. Available at
http://www.ietf.org/rfc/rfc2818.txt.

[IETF RFC 2965]
HTTP State Management Mechanism, D. Kristol, L. Montulli Authors. Internet Engineering Task
Force, October 2000. Available at http://www.ietf.org/rfc/rfc2965.txt.

[IETF RFC 3023]
XML Media Types, M. Murata, S. St. Laurent, D. Kohn, Authors. Internet Engineering Task Force,
January 2001. Available at http://www.ietf.org/rfc/rfc3023.txt.

[IETF RFC 3205]
On the use of HTTP as a Substrate, K. Moore, Authors. Internet Engineering Task Force, February
2002. Available at http://www.ietf.org/rfc/rfc3205.txt.

[IETF RFC 3986]
Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter,
Authors. Internet Engineering Task Force, January 2005. Available at
http://www.ietf.org/rfc/rfc3986.txt.

[IETF RFC 3987]
Internationalized Resource Identifiers (IRIs), M. Duerst, M. Suignard, Authors. Internet Engineering
Task Force, January 2005. Available at http://www.ietf.org/rfc/rfc3987.txt.

[Web Architecture]
Architecture of the World Wide Web, Volume One, I. Jacobs, and N. Walsh, Editors. World Wide
Web Consortium, 15 December 2004. This version of the "Architecture of the World Wide Web,
Volume One" Recommendation is http://www.w3.org/TR/2004/REC-webarch-20041215/. The latest
version of "Architecture of the World Wide Web, Volume One" is available at
http://www.w3.org/TR/webarch/.

[Web Services Architecture]
Web Services Architecture, David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael
Champion, Chris Ferris, David Orchard, Editors. World Wide Web Consortium, 11 February 2004.
This version of the "Web Services Architecture" Working Group Note is
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/. The latest version of "Web Services Archi-
tecture" is available at http://www.w3.org/TR/ws-arch/.

[WSDL 2.0 Core Language]
Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language, R. Chinnici, M.
Gudgin, J-J. Moreau, S. Weerawarana, Editors. World Wide Web Consortium, 26 March 2007. This
version of the "Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language"
Specification is available is available at http://www.w3.org/TR/2007/WD-wsdl20-20070326. The
latest version of "Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language"
is available at http://www.w3.org/TR/wsdl20.

70

7.1 Normative References

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc2965.txt
http://www.ietf.org/rfc/rfc3023.txt
http://www.ietf.org/rfc/rfc3205.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3987.txt
http://www.w3.org/TR/2004/REC-webarch-20041215/
http://www.w3.org/TR/webarch/
http://www.w3.org/TR/webarch/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/2007/WD-wsdl20-20070326
http://www.w3.org/TR/wsdl20

[SOAP 1.2 Part 1: Messaging Framework (Second Edition)]
SOAP Version 1.2 Part 1: Messaging Framework (Second Edition), M. Gudgin, M. Hadley, N.
Mendelsohn, J-J. Moreau, H. Frystyk Nielsen, A. Karmarkar, Y. Lafon, Editors. World Wide Web
Consortium, 19 December 2006. This version of the "SOAP Version 1.2 Part 1: Messaging Frame-
work (Second Edition)" Proposed Edited Recommendation is
http://www.w3.org/TR/2006/PER-soap12-part1-20061219/. The latest version of "SOAP Version 1.2
Part 1: Messaging Framework" is available at http://www.w3.org/TR/soap12-part1/.

[SOAP 1.2 Part 2: Adjuncts (Second Edition)]
SOAP Version 1.2 Part 2: Adjuncts (Second Edition), M. Gudgin, M. Hadley, N. Mendelsohn, J-J.
Moreau, and H. Frystyk Nielsen, A. Karmarkar, Y. Lafon, Editors. World Wide Web Consortium, 7
May 2003. This version of the "SOAP Version 1.2 Part 2: Adjuncts (Second Edition)" Proposed
Edited Recommendation is http://www.w3.org/TR/2006/PER-soap12-part2-20061219/. The latest
version of "SOAP Version 1.2 Part 2: Adjuncts" is available at http://www.w3.org/TR/soap12-part2/.

[XML 1.0]
Extensible Markup Language (XML) 1.0 (Third Edition), T. Bray, J. Paoli, C. M. Sperberg-McQueen,
E. Maler, and F. Yergeau, Editors. World Wide Web Consortium, 4 February 2004. This version of
the XML 1.0 Recommendation is http://www.w3.org/TR/2004/REC-xml-20040204/. The latest
version of "Extensible Markup Language (XML) 1.0" is available at
http://www.w3.org/TR/REC-xml.

[Canonical XML]
Canonical XML, J. Boyer, Author. World Wide Web Consortium, 15 March 2001. This version of the
Canonical XML Recommendation is http://www.w3.org/TR/2001/REC-xml-c14n-20010315. The
latest version of Canonical XML is available at http://www.w3.org/TR/xml-c14n.

[XML Information Set]
XML Information Set (Second Edition), J. Cowan and R. Tobin, Editors. World Wide Web Consor-
tium, 4 February 2004. This version of the XML Information Set Recommendation is
http://www.w3.org/TR/2004/REC-xml-infoset-20040204. The latest version of XML Information Set
is available at http://www.w3.org/TR/xml-infoset.

[XML Schema Structures]
XML Schema Part 1: Structures Second Edition, H. Thompson, D. Beech, M. Maloney, and N.
Mendelsohn, Editors. World Wide Web Consortium, 28 October 2004. This version of the XML
Schema Part 1 Recommendation is http://www.w3.org/TR/2004/REC-xmlschema-1-20041028. The
latest version of XML Schema Part 1 is available at http://www.w3.org/TR/xmlschema-1.

[XML Schema Datatypes]
XML Schema Part 2: Datatypes Second Edition, P. Byron and A. Malhotra, Editors. World Wide
Web Consortium, 28 October 2004. This version of the XML Schema Part 2 Recommendation is
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028. The latest version of XML Schema Part
2 is available at http://www.w3.org/TR/xmlschema-2.

[XForms 1.0]
XForms 1.0, M. Dubinko, et al., Editors. World Wide Web Consortium, 14 October 2003. This
version of the XForms 1.0 Recommendation is http://www.w3.org/TR/2003/REC-xforms-20031014/.
The latest version of XForms 1.0 is available at http://www.w3.org/TR/xforms/.

71

7.1 Normative References

http://www.w3.org/TR/2006/PER-soap12-part1-20061219/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/2006/PER-soap12-part2-20061219/
http://www.w3.org/TR/soap12-part2/
http://www.w3.org/TR/soap12-part2/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/2004/REC-xml-infoset-20040204
http://www.w3.org/TR/xml-infoset
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/2003/REC-xforms-20031014/
http://www.w3.org/TR/xforms/

7.2 Informative References

[WSA 1.0 Core]
Web Services Addressing 1.0 - Core , M. Gudgin, M. Hadley, Editors. World Wide Web Consortium,
17 August 2005. This version of Web Services Addressing 1.0 - Core is
http://www.w3.org/TR/2005/CR-ws-addr-core-20050817/ The latest version of the "Web Services
Addressing 1.0 - Core" document is available from http://www.w3.org/TR/ws-addr-core.

[WSDL 2.0 Primer]
Web Services Description Language (WSDL) Version 2.0 Part 0: Primer , D.Booth, C.K. Liu ,
Editors. World Wide Web Consortium, 26 March 2007. This version of the "Web Services Descrip-
tion Language (WSDL) Version 2.0 Part 0: Primer" Specification is available at
http://www.w3.org/TR/2007/WD-wsdl20-primer-20070326. The latest version of "Web Services
Description Language (WSDL) Version 2.0 Part 0: Primer" is available at
http://www.w3.org/TR/wsdl20-primer.

[WSDL 2.0 Additional MEPs]
Web Services Description Language (WSDL) Version 2.0: Additional MEPs, A. Lewis, Editors.
World Wide Web Consortium, 26 March 2007. This version of the "Web Services Description
Language (WSDL) Version 2.0: Additional MEPs" Specification is available is available at
http://www.w3.org/TR/2007/WD-wsdl20-additional-meps-20070326. The latest version of "Web
Services Description Language (WSDL) Version 2.0: Additional MEPs" is available at
http://www.w3.org/TR/wsdl20-additional-meps.

[SOAP Message Transmission Optimization Mechanism]
SOAP Message Transmission Optimization Mechanism, N. Mendelsohn, M. Nottingham, and H.
Ruellan, Editors. World Wide Web Consortium, W3C Recommendation, 25 January 2005. This
version of SOAP Message Transmission Optimization Mechanism is
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/. The latest version of the "SOAP
Message Transmission Optimization Mechanism" document is available from
http://www.w3.org/TR/soap12-mtom/.

A. Acknowledgements (Non-Normative)
This document is the work of the W3C Web Service Description Working Group.

Members of the Working Group are (at the time of writing, and by alphabetical order): Allen Brookes
(Rogue Wave Softwave), Dave Chappell (Sonic Software), Helen Chen (Agfa-Gevaert N. V.), Roberto
Chinnici (Sun Microsystems), Kendall Clark (University of Maryland), Glen Daniels (Sonic Software),
Paul Downey (British Telecommunications), Youenn Fablet (Canon), Hugo Haas (W3C), Tom Jordahl
(Macromedia), Anish Karmarkar (Oracle Corporation), Jacek Kopecky (DERI Innsbruck at the
Leopold-Franzens-Universität Innsbruck, Austria), Amelia Lewis (TIBCO Software, Inc.), Michael Liddy
(Education.au Ltd.), Kevin Canyang Liu (SAP AG), Jonathan Marsh (Microsoft Corporation), Josephine
Micallef (SAIC - Telcordia Technologies), Jeff Mischkinsky (Oracle Corporation), Dale Moberg (Cyclone
Commerce), Jean-Jacques Moreau (Canon), Mark Nottingham (BEA Systems, Inc.), David Orchard (BEA
Systems, Inc.), Vivek Pandey (Sun Microsystems), Bijan Parsia (University of Maryland), Gilbert Pilz
(BEA Systems, Inc.), Tony Rogers (Computer Associates), Arthur Ryman (IBM), Adi Sakala (IONA
Technologies), Asir Vedamuthu (Microsoft Corporation), Sanjiva Weerawarana (WSO2), Ümit
Yalçınalp (SAP AG).

72

A. Acknowledgements (Non-Normative)

http://www.w3.org/TR/2005/CR-ws-addr-core-20050817/
http://www.w3.org/TR/2007/WD-wsdl20-primer-20070326
http://www.w3.org/TR/wsdl20-primer
http://www.w3.org/TR/wsdl20-primer
http://www.w3.org/TR/2007/WD-wsdl20-additional-meps-20070326
http://www.w3.org/TR/2007/WD-wsdl20-additional-meps-20070326
http://www.w3.org/TR/2007/WD-wsdl20-additional-meps-20070326
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/
http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/2002/ws/desc/

Previous members were: Lily Liu (webMethods, Inc.), Don Wright (Lexmark), Joyce Yang (Oracle
Corporation), Daniel Schutzer (Citigroup), Dave Solo (Citigroup), Stefano Pogliani (Sun Microsystems),
William Stumbo (Xerox), Stephen White (SeeBeyond), Barbara Zengler (DaimlerChrysler Research and
Technology), Tim Finin (University of Maryland), Laurent De Teneuille (L’Echangeur), Johan Pauhlsson
(L’Echangeur), Mark Jones (AT&T), Steve Lind (AT&T), Sandra Swearingen (U.S. Department of
Defense, U.S. Air Force), Philippe Le Hégaret (W3C), Jim Hendler (University of Maryland), Dietmar
Gaertner (Software AG), Michael Champion (Software AG), Don Mullen (TIBCO Software, Inc.), Steve
Graham (Global Grid Forum), Steve Tuecke (Global Grid Forum), Michael Mahan (Nokia), Bryan
Thompson (Hicks & Associates), Ingo Melzer (DaimlerChrysler Research and Technology), Sandeep
Kumar (Cisco Systems), Alan Davies (SeeBeyond), Jacek Kopecky (Systinet), Mike Ballantyne (Elec-
tronic Data Systems), Mike Davoren (W. W. Grainger), Dan Kulp (IONA Technologies), Mike McHugh
(W. W. Grainger), Michael Mealling (Verisign), Waqar Sadiq (Electronic Data Systems), Yaron Goland
(BEA Systems, Inc.), Ümit Yalçınalp (Oracle Corporation), Peter Madziak (Agfa-Gevaert N. V.),
Jeffrey Schlimmer (Microsoft Corporation), Hao He (The Thomson Corporation), Erik Ackerman
(Lexmark), Jerry Thrasher (Lexmark), Prasad Yendluri (webMethods, Inc.), William Vambenepe
(Hewlett-Packard Company), David Booth (W3C), Sanjiva Weerawarana (IBM), Charlton Barreto
(webMethods, Inc.), Asir Vedamuthu (webMethods, Inc.), Igor Sedukhin (Computer Associates), Martin
Gudgin (Microsoft Corporation), Rebecca Bergersen (IONA Technologies), Ugo Corda (SeeBeyond).

The people who have contributed to discussions on www-ws-desc@w3.org are also gratefully acknowl-
edged.

B. Component Summary (Non-Normative)
Table B-1 [p.73] lists all the components in the WSDL 2.0 Adjuncts abstract Component Model, and all
their properties.

Table B-1. Summary of WSDL 2.0 Adjuncts Components and their Properties

Component Defined Properties

Binding

{http content encoding default [p.65] }, {http cookies [p.67] }, {http method
default [p.47] }, {http query parameter separator default [p.47] }, {soap mep
default [p.28] }, {soap modules [p.29] }, {soap underlying protocol [p.25] }, {soap
version [p.24] }

Binding Fault
{http content encoding [p.65] }, {http error status code [p.55] }, {http headers
[p.52] }, {soap fault code [p.26] }, {soap fault subcodes [p.26] }, {soap headers
[p.33] }, {soap modules [p.30] }

Binding Fault
Reference

{soap modules [p.30] }

Binding Message
Reference

{http content encoding [p.65] }, {http headers [p.51] }, {soap headers [p.33] },
{soap modules [p.30] }

73

B. Component Summary (Non-Normative)

http://lists.w3.org/Archives/Public/www-ws-desc/
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFaultReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFaultReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference

Binding Operation

{http content encoding default [p.65] }, {http fault serialization [p.47] }, {http
input serialization [p.47] }, {http location [p.47] }, {http location ignore uncited
[p.61] }, {http method [p.47] }, {http output serialization [p.47] }, {http query
parameter separator [p.47] }, {soap action [p.28] }, {soap mep [p.28] }, {soap
modules [p.30] }

Endpoint {http authentication realm [p.68] }, {http authentication scheme [p.68] }

HTTP Header
[p.52]

{name [p.52] }, {parent [p.52] }, {required [p.52] }, {type definition [p.52] }

Interface Operation {rpc signature [p.16] }, {safe [p.13] }

SOAP Header
Block [p.33]

{element declaration [p.33] }, {mustUnderstand [p.33] }, {parent [p.33] },
{required [p.33] }

SOAP Module
[p.30]

{parent [p.30] }, {ref [p.30] }, {required [p.30] }

Property Where Defined

element declara-
tion

SOAP Header Block.{element declaration [p.33] }

http authentication
realm

Endpoint.{http authentication realm [p.68] }

http authentication
scheme

Endpoint.{http authentication scheme [p.68] }

http content encod-
ing

Binding Fault.{http content encoding [p.65] }, Binding Message Reference.{http
content encoding [p.65] }

http content encod-
ing default

Binding.{http content encoding default [p.65] }, Binding Operation.{http content
encoding default [p.65] }

http cookies Binding.{http cookies [p.67] }

http error status
code

Binding Fault.{http error status code [p.55] }

http fault serializa-
tion

Binding Operation.{http fault serialization [p.47] }

http headers
Binding Fault.{http headers [p.52] }, Binding Message Reference.{http headers
[p.51] }

http input serializa-
tion

Binding Operation.{http input serialization [p.47] }

http location Binding Operation.{http location [p.47] }

74

B. Component Summary (Non-Normative)

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Endpoint
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation

http location ignore
uncited

Binding Operation.{http location ignore uncited [p.61] }

http method Binding Operation.{http method [p.47] }

http method default Binding.{http method default [p.47] }

http output serial-
ization

Binding Operation.{http output serialization [p.47] }

http query parame-
ter separator

Binding Operation.{http query parameter separator [p.47] }

http query parame-
ter separator
default

Binding.{http query parameter separator default [p.47] }

mustUnderstand SOAP Header Block.{mustUnderstand [p.33] }

name HTTP Header.{name [p.52] }

parent
HTTP Header.{parent [p.52] }, SOAP Header Block.{parent [p.33] }, SOAP
Module.{parent [p.30] }

ref SOAP Module.{ref [p.30] }

required
HTTP Header.{required [p.52] }, SOAP Header Block.{required [p.33] }, SOAP
Module.{required [p.30] }

rpc signature Interface Operation.{rpc signature [p.16] }

safe Interface Operation.{safe [p.13] }

soap action Binding Operation.{soap action [p.28] }

soap fault code Binding Fault.{soap fault code [p.26] }

soap fault subcodes Binding Fault.{soap fault subcodes [p.26] }

soap headers
Binding Fault.{soap headers [p.33] }, Binding Message Reference.{soap headers
[p.33] }

soap mep Binding Operation.{soap mep [p.28] }

soap mep default Binding.{soap mep default [p.28] }

soap modules
Binding.{soap modules [p.29] }, Binding Fault.{soap modules [p.30] }, Binding
Fault Reference.{soap modules [p.30] }, Binding Message Reference.{soap
modules [p.30] }, Binding Operation.{soap modules [p.30] }

soap underlying
protocol

Binding.{soap underlying protocol [p.25] }

75

B. Component Summary (Non-Normative)

soap version Binding.{soap version [p.24] }

type definition HTTP Header.{type definition [p.52] }

C. Assertion Summary (Non-Normative)
This appendix summarizes assertions about WSDL 2.0 documents and components that are not enforced
by the WSDL 2.0 schema. Each assertion is assigned a unique identifier which WSDL 2.0 processors may
use to report errors.

Table C-1. Summary of Assertions about WSDL 2.0 Documents

Id Assertion

OperationSafety-2028
[p.14]

An OPTIONAL safe attribute information item with the following Infoset
properties:

WRPC-2050 [p.18]
Additionally, each even-numbered item (0, 2, 4, ...) in the list MUST be of
type xs:QName and each odd-numbered item (1, 3, 5, ...) in the list MUST be
of the subtype of xs:token described in the previous paragraph.

Table C-2. Summary of Assertions about WSDL 2.0 Components

Id Assertion

FaultPropagationModification-2005
[p.11]

However, extensions or binding extensions MAY modify these
rulesets.

HTTPAccessAuthentication-2127
[p.68]

If the {http authentication scheme [p.68] } property is present,
then this property MUST be present.

HTTPBinding-2083 [p.42]
When formulating the HTTP message to be transmitted, the HTTP
request method used MUST be selected using one of the follow-
ing:

HTTPBinding-2084 [p.43]
When formulating the HTTP message to be transmitted, content
encoding for a given Binding Message Reference component is
determined as follows:

HTTPBinding-2085 [p.43]
When formulating the HTTP fault message to be transmitted,
content encoding for a given Binding Fault component is deter-
mined as follows:

HTTPBinding-2086 [p.43]

When formulating the HTTP message to be transmitted, the
contents of the payload (i.e. the contents of the HTTP message
body) MUST be what is defined by the corresponding Interface
Message Reference or Interface Fault components, serialized as
specified by the serialization format [p.43] used.

76

C. Assertion Summary (Non-Normative)

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceFault

HTTPBinding-2087 [p.44]
If the value is "#none", then the payload MUST be empty and the
value of the corresponding serialization property ({http input seri-
alization [p.47] } or {http output serialization [p.47] }) is ignored.

HTTPBinding-2088 [p.44]

If the Interface Message Reference component or the Interface
Fault component is declared using a non-XML type system (as
considered in the Types section of [WSDL 2.0 Core Language
[p.70]]), then additional binding rules MUST be defined in an
extension specification to indicate how to map those components
into the HTTP envelope.

HTTPBinding-2089 [p.44]
The serialization rules for messages whose {message content
model} is either "#element" or "#any", AND the serialization rules
for fault messages, are as follows:

HTTPBindingFault-2105 [p.54]
The fault definition SHOULD agree with the definition of the
HTTP error codes, as specified in section 8 of [IETF RFC 3205
[p.70]].

HTTPBindingFault-2106 [p.55]
An integer value of this property identifies the error Status-Code
as defined by [IETF RFC 2616 [p.70]] that the service will use in
case the fault is returned.

HTTPBindingOperation-2093
[p.46]

When formulating the HTTP Request, the HTTP Request IRI is an
absolute IRI reference and is the value of the {http location [p.47]
} property of the Binding Operation component, resolved using the
value of the {address} property of the Endpoint component (see
section 5 of [IETF RFC 3986 [p.70]]).

HTTPBindingOperation-2094
[p.46]

The first one is transmitted using an HTTP request, and the second
one is transmitted using the corresponding HTTP response.

HTTPBindingOperation-2095
[p.46]

In cases where only one single message is being sent, the message
body of the HTTP response MUST be empty.

HTTPBindingOperation-2098
[p.47]

It MUST contain an IRI reference and MUST NOT include a frag-
ment identifier component.

HTTPBindingOperation-2100
[p.48]

The value of the serialization format [p.43] used for a message is a
media type which MUST be covered by this range.

HTTPBindingOperation-2101
[p.48]

Wild cards (for example, "application/*") SHOULD NOT be used
in this attribute information item since they may lead to interoper-
ability problems.

HTTPCookies-2126 [p.67]
A value of "true" means that the service relies on cookies and that
the client MUST understand them.

77

C. Assertion Summary (Non-Normative)

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.messagecontentmodel
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.messagecontentmodel
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-Endpoint.address
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Endpoint

HTTPHeader-2090 [p.45]

If the {http headers [p.51] } property as defined in section 6.6
Declaring HTTP Headers [p.51] exists and is not empty in a
Binding Message Reference or Binding Fault component, HTTP
headers conforming to each HTTP Header [p.52] component
contained in this {http headers [p.51] } property MAY be serial-
ized as follows:

HTTPHeader-2091 [p.45]
The HTTP binding MUST NOT set an HTTP header field corre-
sponding to the value of the {name [p.52] } property already set by
another mechanism, such as the HTTP stack or another feature.

HTTPHeader-2092 [p.46]
If the value of an HTTP Header [p.52] component’s {required
[p.52] } property is "true", the inclusion of this HTTP header field
is REQUIRED

HTTPHeader-2102 [p.52]

A Binding Message Reference or a Binding Fault component’s
{http headers [p.51] } property MUST NOT contain multiple
HTTP Header [p.52] components with the same {name [p.52] }
property.

HTTPHeader-2103 [p.52] This type MUST be a simple type.

HTTPHeader-2104 [p.52]
If the value is "true", then the HTTP header field MUST be
included in the message.

HTTPQueryString-2115 [p.60]
The instance data [p.41] MUST NOT contain elements with an
xs:nil attribute whose value is "true".

HTTPQueryString-2116 [p.61]

When serializing an HTTP request that does not allow an HTTP
message body, and when {http location ignore uncited [p.61] } is
"true", any element NOT cited in the {http location [p.47] } prop-
erty MUST be defined in the schema as nillable , or have a
default value, or appear no less frequently than specified by the
minOccurs value. The element declaration SHOULD NOT
combine a default value with nillable .

HTTPSerialization-2099 [p.48]

The value of the {http input serialization [p.47] }, {http output
serialization [p.47] } and {http fault serialization [p.47] } proper-
ties is similar to the value allowed for the Accept HTTP header
defined by the HTTP 1.1 specification, Section 14.1 (see [IETF
RFC 2616 [p.70]]) and MUST follow the production rules
defined in that section except for the following:

HTTPSerialization-2107 [p.57]

If the {style} property of the Interface Operation bound has a
value of "http://www.w3.org/ns/wsdl/style/iri" as defined in 4.2
IRI Style [p.19] , and if the {http location [p.47] } property of the
Binding Operation component is present, the value of the {http
location [p.47] } property component is used as a template

78

C. Assertion Summary (Non-Normative)

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.style
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation

HTTPSerialization-2108 [p.57]
The resulting IRI MUST be mapped to an URI for use in the
HTTP Request as per section 3.1 "Mapping of IRIs to URIs" of the
IRI specification [IETF RFC 3987 [p.70]].

HTTPSerialization-2109 [p.58]
The local name in a template SHOULD match at least one element
from the instance data [p.41] of the input message.

HTTPSerialization-2111 [p.59]

If this format is used then the {style} property of Interface Opera-
tion component being bound MUST contain a value of
"http://www.w3.org/ns/wsdl/style/iri" as defined in 4.2 IRI Style
[p.19] , i.e. this serialization format may only be used to serialize
the HTTP request corresponding to the initial message of an inter-
face operation.

HTTPSerialization-2112 [p.59]

For the HTTP binding defined in this section (6. WSDL HTTP
Binding Extension [p.40]), "application/x-www-form-urlen-
coded" MAY be used as a serialization format [p.43] for an input
message (HTTP Request), but MUST NOT be used as a serializa-
tion format [p.43] for an output or fault message (HTTP
Response).

HTTPSerialization-2113 [p.59]

If not all elements from the instance data [p.41] are cited in the
{http location [p.47] } property, or if the property is not present on
the Binding Operation component, then additional serialization
rules apply.

HTTPSerialization-2114 [p.60]
For elements of the instance data not cited in the {http location
[p.47] } property, a query string is constructed as follows.

HTTPSerialization-2117 [p.61]

If the HTTP request method used does not allow HTTP message
body (e.g. "GET" and "DELETE"), and if the value of the {http
location ignore uncited [p.61] } property is "false", then the
following rules apply.

HTTPSerialization-2118 [p.62]
If the HTTP request method used does allow an HTTP message
body (e.g. "POST" and "PUT"), then the following rules apply.

HTTPSerialization-2119 [p.62]
The Content-Type HTTP header field must have the value
application/x-www-form-urlencoded .

HTTPSerialization-2120 [p.63]

The Content-Type HTTP header MUST have the value
application/xml , or a media type compatible with appli-
cation/xml as specified in section 6.4.3.1 Serialization rules
for XML messages [p.44] .

HTTPSerialization-2121 [p.63]
this serialization format may only be used to serialize the HTTP
request corresponding to the initial message of an interface opera-
tion.

79

C. Assertion Summary (Non-Normative)

http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.style
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation

HTTPSerialization-2122 [p.63]

Specifically, for the HTTP binding defined in this section (6.
WSDL HTTP Binding Extension [p.40]), "multipart/form-data"
MAY be used as a serialization format [p.43] for an input message
(HTTP Request), but MUST NOT be used as a serialization format
[p.43] for an output or fault message (HTTP Response).

HTTPSerialization-2123 [p.63]
The Content-Disposition header MUST have the value
form-data , and its name parameter is the local name of the
element.

HTTPSerialization-2124 [p.63] The Content-Type header MUST have the value:

HTTPSerialization-2125 [p.64]
The instance data [p.41] MUST NOT contain elements with an
xs:nil attribute whose value is "true".

InOnlyComposition-2012 [p.12]
The in-only message exchange pattern consists of exactly one
message as follows:

InOutComposition-2015 [p.12]
The in-out message exchange pattern consists of exactly two
messages, in order, as follows:

InterfaceOperation-2096 [p.47] 202 when the MEP is "http://www.w3.org/ns/wsdl/in-only"

InterfaceOperation-2097 [p.47] 204 when the MEP is "http://www.w3.org/ns/wsdl/robust-in-only"

IRIStyle-2051 [p.19]

When using this style, the value of the {message content model}
property of the Interface Message Reference component corre-
sponding to the initial message of the message exchange pattern
MUST be "#element".

IRIStyle-2052 [p.19] The sequence MUST only contain elements.

IRIStyle-2053 [p.19] The sequence MUST contain only local element children.

IRIStyle-2054 [p.19]
The localPart of the element’s QName MUST be the same as the
Interface Operation component’s {name}.

IRIStyle-2055 [p.19]
The complex type that defines the body of the element or its chil-
dren elements MUST NOT contain any attributes.

IRIStyle-2056 [p.19]

The children elements of the sequence MUST derive from
xs:simpleType , and MUST NOT be of the type or derive from
xs:QName, xs:NOTATION , xs:hexBinary or
xs:base64Binary .

MultipartStyle-2057 [p.19]

When using this style, the value of the {message content model}
property of the Interface Message Reference component corre-
sponding to the initial message of the message exchange pattern
MUST be "#element".

MultipartStyle-2058 [p.20] The sequence MUST only contain elements.

80

C. Assertion Summary (Non-Normative)

http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.messagecontentmodel
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.name
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.messagecontentmodel
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference

MultipartStyle-2059 [p.20] The sequence MUST contain only local element children.

MultipartStyle-2060 [p.20]
The attributes minOccurs and maxOccurs for these child
elements MUST have a value 1.

MultipartStyle-2061 [p.20]
The localPart of the element’s QName MUST be the same as the
Interface Operation component’s {name}.

MultipartStyle-2062 [p.20]
The complex type that defines the body of the element or its chil-
dren elements MUST NOT contain any attributes.

MultipartStyle-2063 [p.20]
The sequence MUST NOT contain multiple children element
declared with the same local name.

OperationSafety-2027 [p.13]
However, an operation SHOULD be marked safe if it meets the
criteria for a safe interaction defined in Section 3.4 of [Web Archi-
tecture [p.70]].

RobustInOnlyComposition-2013
[p.12]

The robust-in-only message exchange pattern consists of
exactly one message as follows:

RPCStyle-2029 [p.15]

If the RPC style is used by an Interface Operation component then
its {message exchange pattern} property MUST have the value
either "http://www.w3.org/ns/wsdl/in-only" or
"http://www.w3.org/ns/wsdl/in-out".

RPCStyle-2030 [p.15]
The value of the {message content model} property for the Inter-
face Message Reference components of the {interface message
references} property MUST be "#element".

RPCStyle-2031 [p.15]
The content model of input and output {element declaration}
elements MUST be defined using a complex type that contains a
sequence from XML Schema.

RPCStyle-2032 [p.15]
The input sequence MUST only contain elements and element
wildcards.

RPCStyle-2033 [p.15]
The input sequence MUST NOT contain more than one element
wildcard.

RPCStyle-2034 [p.15]
The element wildcard, if present, MUST appear after any
elements.

RPCStyle-2035 [p.15] The output sequence MUST only contain elements.

RPCStyle-2036 [p.15]
Both the input and output sequences MUST contain only local
element children.

RPCStyle-2037 [p.15]
The local name of input element’s QName MUST be the same as
the Interface Operation component’s name.

RPCStyle-2038 [p.15] Input and output elements MUST both be in the same namespace.

81

C. Assertion Summary (Non-Normative)

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.name
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.messageexchangepattern
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.messagecontentmodel
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.interfacemessagereferences
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.interfacemessagereferences
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.elementdeclaration
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation

RPCStyle-2039 [p.15]
The complex type that defines the body of an input or an output
element MUST NOT contain any local attributes.

RPCStyle-2040 [p.15]
If elements with the same qualified name appear as children of
both the input and output elements, then they MUST both be
declared using the same named type.

RPCStyle-2041 [p.16]
The input or output sequence MUST NOT contain multiple chil-
dren elements declared with the same name.

SOAPAction-2075 [p.28]
A xs:anyURI, which is an absolute IRI as defined by [IETF RFC
3987 [p.70]], to the Binding Operation component.

SOAPBinding-2065 [p.23]

When formulating the SOAP envelope to be transmitted, the
contents of the payload (i.e., the contents of the SOAP Body
element information item of the SOAP envelope) MUST be what
is defined by the corresponding Interface Message Reference
component.

SOAPBinding-2068 [p.23]

If the Interface Message Reference component is declared using a
non-XML type system (as considered in the Types section of
[WSDL 2.0 Core Language [p.70]]), then additional binding rules
MUST be defined to indicate how to map those components into
the SOAP envelope.

SOAPBinding-2069 [p.24]
Every SOAP binding MUST indicate what version of SOAP is in
use for the operations of the interface that this binding applies to.

SOAPBinding-2070 [p.25]
Every SOAP binding MUST indicate what underlying protocol is
in use.

SOAPBindingFault-2071 [p.26]
For every Interface Fault component contained in an Interface
component, a mapping to a SOAP Fault MUST be described.

SOAPBindingFault-2072 [p.26]
when the value of the {soap version [p.24] } is "1.2", the allowed
QNames MUST be the ones defined by [SOAP 1.2 Part 1:
Messaging Framework (Second Edition) [p.71]], section 5.4.6

SOAPHeaderBlock-2077 [p.33]

When its value is "true", the SOAP header block MUST be deco-
rated with a SOAP mustUnderstand attribute information item
with a value of "true"; if so, the XML element declaration refer-
enced by the {element declaration [p.33] } property MUST allow
this SOAP mustUnderstand attribute information item.

SOAPHeaderBlock-2078 [p.33]
If the value is "true", then the SOAP header block MUST be
included in the message.

SOAPHeaderBlock-2079 [p.35]
The value of the element attribute information item MUST
resolve to a global element declaration from the {element declara-
tions} property of the Description component.

82

C. Assertion Summary (Non-Normative)

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Interface
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-Description.elementdeclarations
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-Description.elementdeclarations
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Description

SOAPHTTPProperties-2064 [p.21]
These properties MUST NOT be used unless the underlying proto-
col is HTTP.

SOAPHTTPSelection-2082 [p.37]

This default binding rule is applicable when the value of the {soap
underlying protocol [p.25] } property of the Binding component is
"http://www.w3.org/2003/05/soap/bindings/HTTP/". If the SOAP
MEP selected as specified above has the value
"http://www.w3.org/2003/05/soap/mep/request-response/" then the
HTTP method used is "POST". If the SOAP MEP selected has the
value "http://www.w3.org/2003/05/soap/mep/soap-response/" then
the HTTP method used is "GET".

SOAPMEP-2074 [p.28]
A xs:anyURI, which is an absolute IRI as defined by [IETF RFC
3987 [p.70]], to the Binding Operation component.

SOAPMEPDefault-2073 [p.28]
A xs:anyURI, which is an absolute IRI as defined by [IETF RFC
3987 [p.70]], to the Binding component.

SOAPMEPSelection-2080 [p.37]

For a given Interface Operation component, if there is a Binding
Operation component whose {interface operation} property
matches the component in question and its {soap mep [p.28] }
property has a value, then the SOAP MEP is the value of the {soap
mep [p.28] } property. Otherwise, the SOAP MEP is the value of
the Binding component’s {soap mep default [p.28] }, if any.
Otherwise, the Interface Operation component’s {message
exchange pattern} property MUST have the value
"http://www.w3.org/ns/wsdl/in-out", and the SOAP MEP is the
URI "http://www.w3.org/2003/05/soap/mep/request-response/"
identifying the SOAP Request-Response Message Exchange
Pattern as defined in [SOAP 1.2 Part 2: Adjuncts (Second Edition)
[p.71]].

SOAPModule-2076 [p.30]
A xs:anyURI, which is an absolute IRI as defined by [IETF RFC
3987 [p.70]].

WRPC-2042 [p.16] OPTIONAL, but MUST be present when the style is RPC

WRPC-2043 [p.16]
Values for the second component MUST be chosen among the
following four: "#in", "#out", "#inout" "#return".

WRPC-2044 [p.16]
The value of the first component of each pair (q, t) MUST be
unique within the list.

WRPC-2045 [p.16]

For each child element of the input and output messages of the
operation, a pair (q, t), whose first component q is equal to the
qualified name of that element, MUST be present in the list, with
the caveat that elements that appear with cardinality greater than
one MUST be treated as a single element.

83

C. Assertion Summary (Non-Normative)

http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-BindingOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-BindingOperation.interfaceoperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-Binding
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceOperation
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.messageexchangepattern
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceOperation.messageexchangepattern

WRPC-2046 [p.16]
For each pair (q, #in), there MUST be a child element of the input
element with a name of q. There MUST NOT be a child element
of the output element with the name of q.

WRPC-2047 [p.16]
For each pair (q, #out), there MUST be a child element of the
output element with a name of q. There MUST NOT be a child
element of the input element with the name of q.

WRPC-2048 [p.16]
For each pair (q, #inout), there MUST be a child element of the
input element with a name of q. There MUST also be a child
element of the output element with the name of q.

WRPC-2049 [p.16]
For each pair (q, #return), there MUST be a child element of the
output element with a name of q. There MUST NOT be a child
element of the input element with the name of q.

Table C-3. Summary of Assertions about Messages

Id Assertion

HTTPSerialization-2110 [p.58]
Cited elements (i.e. elements referenced in templates) MUST
NOT carry an xs:nil attribute whose value is "true"

SOAP12Binding-SOAPDetail-2081
[p.37]

If any, the value of the SOAP "Detail" element MUST be the
element information item identified by the {element declaration}
property of the Interface Fault component.

SOAPBinding-2066 [p.23] If the value is "#none", then the payload MUST be empty.

SOAPBinding-2067 [p.23]
If the value is "#element", then the payload MUST be the
element information item identified by the {element declaration}
property of the Interface Message Reference component.

84

C. Assertion Summary (Non-Normative)

http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.elementdeclaration
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceFault
http://www.w3.org/TR/2007/WD-wsdl20-20070326#property-InterfaceMessageReference.elementdeclaration
http://www.w3.org/TR/2007/WD-wsdl20-20070326#component-InterfaceMessageReference

Table C-4. Summary of Assertions about Message Exchanges

Id Assertion

FaultDelivery-2008 [p.11]

The fault message MUST be delivered to the same target node as the
message it replaces, unless otherwise specified by an extension or
binding extension. If there is no path to this node, the fault MUST be
discarded.

FaultDelivery-2010 [p.11]

The fault message MUST be delivered to the originator of the triggering
message, unless otherwise specified by an extension or binding exten-
sion. Any node MAY propagate a fault message, and MUST NOT do so
more than once for each triggering message. If there is no path to the
originator, the fault MUST be discarded.

FaultPropagation-2003 [p.11]
Nodes that generate faults MUST attempt to propagate the faults in
accordance with the governing ruleset, but it is understood that any
delivery of a network message is best effort, not guaranteed.

FaultPropagation-2004 [p.11]
When a fault is generated, the generating node MUST attempt to propa-
gate the fault, and MUST do so in the direction and to the recipient spec-
ified by the ruleset.

FaultReplacesMessage-2007
[p.11]

When the Fault Replaces Message propagation rule is in effect, any
message after the first in the pattern MAY be replaced with a fault
message, which MUST have identical direction.

InOnlyFaults-2013 [p.12]
The in-only message exchange pattern uses the rule 2.2.3 No Faults
propagation rule [p.11] .

InOutFaults-2016 [p.13]
The in-out message exchange pattern uses the rule 2.2.1 Fault
Replaces Message propagation rule [p.11] .

MEPDescriptiveness-2002
[p.9]

by some prior agreement, another node and/or the service MAY send
messages (to each other or to other nodes) that are not described by the
pattern.

MEPTermination-2006 [p.11] Generation of a fault, regardless of ruleset, terminates the exchange.

MessageTriggersFault-2009
[p.11]

When the Message Triggers Fault propagation rule is in effect, any
message, including the first in the pattern, MAY trigger a fault message,
which MUST have opposite direction.

NodeIdentity-2001 [p.9]
A node MAY be accessible via more than one physical address or trans-
port.

NoFaults-2011 [p.11]
When the No Faults propagation rule is in effect, faults MUST NOT be
propagated.

RobustInOnlyFaults-2014
[p.12]

The robust in-only message exchange pattern uses the rule 2.2.2
Message Triggers Fault propagation rule [p.11] .

85

C. Assertion Summary (Non-Normative)

D. Part 2 Change Log (Non-Normative)

Date Author Description

20070314 JJM Final fix for minor typos.

20070316 JMarsh
Removed two instances of "or a #" from 6.8.1.1 ("#" can’t appear in whttp:loca-
tion).

20070314 JJM
Further adjust the implementation of CR156 to miror that of section 6.6.3 (i.e.
using pattern facets).

20070314 JJM Implement the resolution for CR156 at the proper location (i.e. 6.5.4).

20070313 JJM CR157 add reference to RFC2234 for ALPHA and DIGIT

20070313 JJM CR157 further resolution

20070313 JJM CR157 QUESTION 3 (RE: Http location text for 6.8.1.1) editorial suggestions

20070313 JJM CR157: RE: LocationTemplate-1G test.

20070313 JJM CR156: Query parameter separator value.

20070228 JJM Add missing whttp:ignoreUncited to SOAP & HTTP syntax summaries.

20070227 JJM Reorder bibentries for increased readability.

20070227 JJM

Added <el> markup around pattern names. Added a non-normative reference to the
Additional MEPs document and corresponding bibentry. Reordered normative and
non-normative bibentries for better readability. Removed commented markup for
Additional MEPs (now in a separate document). Removed commented markup for
unused bibentries.

20070225 AGR Renumbered assertions for PR.

20070222 JJM Fixed logic in template encoding.

20070220 Jmarsh removed <el> formatting from RPC signature description per CR149.

20070220 JJM Spell-checked.

20070220 JJM Fixed remaining occurences of contentCoding.

20070220 JJM
Updated the mapping to SOAP-Response to only allow #element or #none, as per
CR120.

20070220 JJM
Renamed "content coding" to "content encoding" for disambiguation with "transfer
coding".

20070216 JMarsh CR142 - fixed {town/}.

20070216 JJM Fixed issue when Content-Encoding could be empty (follow-up of CR089).

86

D. Part 2 Change Log (Non-Normative)

20070216 JJM Fixed issues noticed by Jonathan

20070215 JJM CR148: SOAP Action has no effect with SOAP-Response.

20070215 JJM CR142: Remove trailing slash.

20070215 PLH CR112: HTTP Location property definition.

20070215 JJM
CR112: Rename Request-Optional-Response to Request-Response and point to
SOAP 1.2 Second Edition.

20070215 JJM CR143: Remove example headers since we cover them all already.

20070215 JJM Fix missing "In" for SOAP-Reponse.

20070215 JJM Fix logic in template encoding.

20070215 JJM
CR112: Fix typo in section title "WSDL Robust-In-Only to SOAP
Request-Optional-Response"

20070214 JJM CR044: Additional editorial work, item 3

20070214 JJM CR044: Additional editorial work, item 2 part 2

20070214 JJM CR120: SOAP Response and IRI style

20070214 JJM CR109: SOAP Fault code issue

20070214 JJM CR144: Set ImmediateDestination according to Section 6.7.1 (not 6.7.2)

20070214 JJM CR116: 6.7.1.1 Construction of the request IRI using the http location

20070214 JJM CR114: Separation of the in-only and robust-in-only cases.

20070214 JJM CR114: Mapping WSDL MEPs to SOAP MEPs

20070214 JJM
CR117: Re: 6.7.1.1 Construction of the request IRI using the http location
[completed]

20070213 JJM
CR117: Re: 6.7.1.1 Construction of the request IRI using the http location
[half-way through]

20070213 JJM
CR143: Renamed "transfer coding" to "content coding", and made it explicit we set
HTTP Content-Encoding.

20070213 JJM CR146: Ignoring uncited and nillable

20070212 JJM CR144: RE: LocationTemplate-1G totally hosed ;-)

20070212 JJM CR139: Suggestion on Part - 2 : Adjuncts

20070212 JJM CR137: Spelling mistake in Part 2

20070212 JJM CR133: {http location} ignored on SOAP request-response MEP?

87

D. Part 2 Change Log (Non-Normative)

http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR148
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR142
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR112
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR112
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR143
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR112
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR044
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR044
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR120
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR109
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR144
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR116
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR114
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR114
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR117
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR117
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR143
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR146
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR144
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR139
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR137
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR130

20070212 JJM CR130: Question on double curly braces with HTTP Location

20070212 JJM CR123: HTTP Method selection

20070208 JJM CR113: SOAP Response query string issue. Updated pseudo-syntax accordingly.

20070208 JJM CR111: Mapping WSDL meps to the HTTP binding

20070208 JJM CR110: Semantics of {http cookies} Property.

20070208 JJM CR092: WSDL 2.0 Fault Binding [Plus two Questions]

20070208 JJM CR087: Turning off http transfer coding

20070208 JJM CR067: {http cookies} REQUIRED?

20070208 JJM CR053: Allow absolute URI in {location}.

20061221 AGR
CR086: HTTP properties prohibited in SOAP binding unless the protocol is HTTP.
(see 5. WSDL SOAP Binding Extension [p.20]).

20061206 AGR CR094: Added message assertion table.

20061128 JJM Removed all references to features and properties.

20061101 JJM Added missing whttp:cookies attribute on SOAP binding

20061025 JJM Removed MEPs which are now located in wsdl20-additional-meps.xml.

20061023 JJM CR043: fixed second occurrence of wrong pseudo-syntax for wsoap:subcodes

20061011 AGR Corrected errors in <prop> markup - added @comp.

20060914 JJM
CR026: change SHOULD to MUST for using mU in SOAP when mU is set in
WSDL

20060908 JJM CR068: indicate the patterns and faults which were being described

20060908 JJM CR055: Clarification on HTTP Transfer Coding

20060908 JJM
CR059: {http location ignore uncited} belongs to the Binding Operation compo-
nent

20060907 JJM CR044: note about interface-less bindings which require default properties

20060907 JJM CR073: improved readibility of assertions in 4.1.1

20060906 JJM CR076: RPC signature now optional, but must be present when style is RPC

20060906 JJM CR075: separated assertions from suggestions in 4.2 and 4.3

20060906 JJM CR070: hardened assertion for RPCStyle-5014

20060906 JJM CR067: {http cookies} restricted to SOAP HTTP underlying protocol only

88

D. Part 2 Change Log (Non-Normative)

http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR130
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR123
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR113
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR111
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR110
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR092
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR087
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR067
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR053
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR086
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR094
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR043
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR026
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR068
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR055
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR059
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR044
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR073
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR076
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR075
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR070
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR067

20060906 JJM CR060: renamed authenticationType to authenticationScheme

20060906 JJM CR058: renamed {safety} to {safe}

20060906 JJM CR043: fixed the pseudo-syntax for wsoap:subcodes

20060906 JJM
CR040: 5.9.3, changed the type of the {element declaration} property to a Element
Declaration

20060906 JJM
CR036: 6.5.3, changed the type of the {type definition} property to a Type Defini-
tion

20060906 JJM CR035: HTTP method selection defaults to POST

20060906 JJM
CR034: reworded duplicate assertions in section 5 and 6, paragraph starting with
"As allowed in"

20060906 JJM CR033: change "namespace#name" to "qname" for wsoap.header

20060906 JJM CR032: {element declaration} is unique for a given soap header block

20060906 JJM CR031: for a soap module on a given binding, {ref} is unique

20060906 JJM CR029: CR030: relationship between WSDL and SOAP MEPs, and MEP defaults

20060906 JJM CR027: clarify soap fault subcodes

20060906 JJM CR025: IRI style children elements always derive from XML simple type

20060906 JJM CR024: clarification that there are no occurence constraints for IRI style sequence

20060508 AGR
Removed line breaks from within propdef tags to workaround stylesheet error.
Component table is now generated correctly.

20060506 AGR Made more editorial improvements. Done now.

20060503 AGR Made editorial improvements.

20060405 HH Removed mentions of "error" and "fatal error"

20060309 HH CR014: clarification about SOAP underlying protocol

20060309 HH CR013: relaxed IRI style element cardinality

20060309 HH CR011: removed {http version}

20060227 HH CR010: removed slash notation left-over

20060209 HH Added test assertions to HTTP binding.

20060110 AGR
Applied patch, Re: WSDL 2.0 adjuncts assertions , posted by Lawrence Mandel,
2006-01-09.

89

D. Part 2 Change Log (Non-Normative)

http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR060
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR058
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR043
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR040
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR036
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR035
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR034
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR033
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR032
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR031
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR029
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR030
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR027
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR025
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR024
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR014
http://lists.w3.org/Archives/Public/www-ws-desc/2006Feb/0059
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR013
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR011
http://www.w3.org/2002/ws/desc/5/cr-issues/issues.html#CR010
http://lists.w3.org/Archives/Public/www-ws-desc/2006Jan/0018.html

20051122 HH
LC359: moved transfer coding from binding fault ref to binding fault in XML
representations

20051117 JJM LC358: fixed formatting in some examples.

20051113 HH LC359: moved transfer coding from binding fault ref to binding fault

20051111 HH Added SOAP MEP / WSDL MEP mapping as per resolution

20051111 HH LC333: implemented resolution to accommodate interfaceless bindings

20051111 HH LC362: added URI to fault propagation rules

20051111 HH LC337: added media type range

20051111 HH LC305: added reference to BNF pseudo-schemas in Part 1

20051111 AGR Added assertion tables. Added Fault Propagation Rule assertions.

20051110 HH LC304: implemented proposal

20051110 HH
LC345: allowed POST as application/x-www-form-urlencoded and reorganized
HTTP binding serializations

20051109 HH LC301: specified that {soap action} is for the initial message of an operation

20051027 HH LC339: added required attribute to wsoap:header and whttp:header

20051027 HH LC340: clarified cardinality of headers

20051027 HH
LC331: if the {message content model} property is "#any" in the HTTP binding,
then the payload MUST be any one XML element.

20051027 HH
LC330: operation styles mandate that the {message content model} of the opera-
tion’s messages is "#element"

20051027 HH LC329: we do now have default rules for binding faults

20051027 HH LC327: made both HTTP authentication properties optional

20051027 HH LC326: changed type of {http authentication scheme}

20051027 HH LC315: fixed HTTP header serialization and IRI identification.

20051020 HH LC319: implemented detailed resolution.

20051020 HH LC342: fixed typos

20051020 HH LC349: improved section 2’s introduction

20051013 HH LC334: removed HTTP error reason phrase

20051013 HH Fixed mark-up for declaring {soap modules}, {soap headers} and {http headers}

20051013 HH LC323: removed text on HTTP Accept headers.

90

D. Part 2 Change Log (Non-Normative)

http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC359
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC358
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC359
http://lists.w3.org/Archives/Public/www-ws-desc/2005Nov/0022.html
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC333
http://lists.w3.org/Archives/Public/www-ws-desc/2005Oct/0051.html
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC362
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC337
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC305
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC304
http://lists.w3.org/Archives/Public/www-ws-desc/2005Oct/0063.html
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC345
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC301
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC339
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC340
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC331
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC330
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC329
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC327
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC326
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC315
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC319
http://lists.w3.org/Archives/Public/www-ws-desc/2005Sep/0012.html
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC342
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC349
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC334
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC321

20051013 HH LC321: clarified {soap mep} error.

20051012 RRC
LC344(5): changed order of union member types in the schema for the wrpc:signa-
ture extension

20050923 HH LC341: renamed {element} into {element declaration} and fixed typo

20050923 HH LC318: reorganized default declarations in bindings

20050923 HH LC320: added {parent} property to nested components

20050923 HH
LC317: clarified applicability of application/x-www-url-encoded and multi-
part/form-data

20050923 HH LC314: completed introduction

20050923 HH LC306: wsdlx declaration clarification.

20050923 HH LC322: section 6.3 Default Binding Rules clarification.

20050923 HH
LC324: fixed queryParameterSeparatorDefault and queryParameterSeparator defi-
nitions.

20050923 HH LC325: fixed typo in transferCodingDefault definition.

20050923 HH
LC313: made {soap action}, {http location}, {http error reason phrase}, {http
transfer coding} properties optional; did not do {soap fault subcodes} because of
LC319.

20050923 HH LC312: fixed typo in Section 2. Predefined Message Exchange Patterns.

20050902 RRC
LC316: Added definition of wrpc namespace in section 1.1 and changed wording
of reference to example 4-1 in section 4.1.

20050728 HH
LC76d: spelled out conflict between mustUnderstand use and schema definition;
clarified mustUnderstand definition.

20050728 HH Clarified {soap action} scope for SOAP 1.2 binding.

20050728 HH LC76c: added security consideration section.

20050725 RRC LC75f: allowed extension attributes on RPC-style input/output elements.

20050707 aal Modified 2.2.2 per text supplied by Jean-Jacques.

20050616 AGR Fixed component table.

20050616 JJM
Added markup to list all the components and properties used in Part 2 (although
this currently [wrongly] shows those of Part 1).

20050616 JJM
Fixed wrong component names for properties. Renamed HTTP Header Block to
HTTP Header.

20050614 RRC LC76a: Added comment requested by reviewer.

91

D. Part 2 Change Log (Non-Normative)

http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC321
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC344
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC341
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC318
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC320
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC317
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC314
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC306
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC322
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC324
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC325
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC313
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC312
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC316
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC76d
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC76c
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC75f
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC76a

20050615 JJM
Further pass at adding markup for properties. Fixed issues with entities preventing
validation.

20050615 JJM Added <propdef> and <prop> markup around properties.

20050614 JJM Finished adding <comp> markup around components.

20050613 JJM Started adding <comp> markup around components.

20050613 JJM LC122: replaced "binding" by "binding extension" where appropriate.

20050613 JJM LC98: {soap mep} only applies to SOAP 1.2.

20050613 RRC LC74c: changed documentation element cardinality to zero or more.

20050606 HH LC79 & LC102: added editors note about one-way MEP defaulting for SOAP 1.2

20050606 HH LC130: wsoap:code is now optional, and aligned whttp:code

20050602 HH LC75c: introduced wsdlx namespace, moved safety to Part 2.

20050527 HH LC74a: switched to IRIs

20050527 HH LC80: defined fragment identifiers for defined components as proposed

20050520 JJM
LC97: Fixed specifying default values throughout the spec. Resolved incoherencies
along the way.

20050519 aal added template to guide readers when defining new message exchange patterns.

20050512 HH LC110: referenced RFC2616 for whttp:version

20050512 HH
LC77a: clarified namespace and local name serialization in applica-
tion/x-www-url-encoded serialization

20050509 RRC
LC118: Added clarification to step 2 of the algorithm to compute the function
signature for an operation that uses the wrpc:signature extension.

20050509 RRC LC89a: Added conformance requirement for RPC style.

20050505 aal LC52c: state that soap faults have no reasonable default.

20050505 aal
LC76a: allow extensions to override faults in rulesets; LC76b: define "propagate"
in rulesets.

20050429 RRC LC97: Made the setting of default values for properties more consistent.

20050429 RRC LC75g: RPC should allows element wildcards

20050422 HH LC75d: RPC style; same input and output elements need named type

20050420 JJM Fixed typos in RPC section (part of LC78).

92

D. Part 2 Change Log (Non-Normative)

http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC122
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC98
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC74c
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC79
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC102
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC130
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC75c
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC74a
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC80
http://lists.w3.org/Archives/Public/www-ws-desc/2005May/0035.html
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC97
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC110
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC77a
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC118
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC89a
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC97
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC75g
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC75d

20050413 AV
LC76d: made changes to wsoap:header and whttp:header (removed
required and changed default binding rules)

20050412 RRC LC75h: added note on multiple return values in rpc style

20050415 HH LC28: ignoring transfer coding for HTTP/1.0

20050408 HH
LC17: added order preservation in application/x-www-url-encoded seri-
alization

20050408 HH LC69a: added whttp:queryParameterSeparator

20050408 HH LC47: added whttp:reasonPhrase

20050408 HH LC76d: added whttp:header

20050408 HH
Added wsoap:module at the Binding Fault component model as per 2005-04-07
telcon

20050407 HH LC7: fixed RPC style glitches

20050406 HH LC76d: added wsoap:header

20050331 HH
LC106: URI and Multipart styles are placing restrictions on the initial message of
the MEP

20050331 HH LC111: added reference to section 8 of RFC3205 for use of HTTP error codes

20050321 HH
LC48b: added link between WSDL and SOAP 1.2 MEPs in predefined MEPs
section

20050321 HH LC74d: removed constraint on LocalPart of the output element in RPC style

20050321 HH LC108: fixed typo and added missing {soap modules} XML mapping

20050321 HH LC88: fixed typo

20050317 HH LC61a: Incorporated RPC style

20050316 HH LC61a: Merged the old part 2 and part 3 documents

D.1 WSDL 2.0 Extensions Change Log

Date Author Description

20050613 JJM LC122: Replaced "binding" by "binding extension" where appropriate.

20050222 aal Implement editorial changes for LC39, LC40, LC48c.

20050220 AGR
LC50: Adopt proposal for definition of "node", adding "Note:" before second
sentence.

93

D.1 WSDL 2.0 Extensions Change Log

http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC76d
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC28
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC17
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC69a
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC47
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC76d
http://lists.w3.org/Archives/Public/www-ws-desc/2005Apr/0037.html
http://lists.w3.org/Archives/Public/www-ws-desc/2005Apr/0037.html
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC7
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC76d
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC106
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC111
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC48b
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC74d
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC108
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC88
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC61a
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC61a
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC122
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC50
http://lists.w3.org/Archives/Public/www-ws-desc/2004Nov/0070.html

20041209 aal add clarifying language for fault propagation, per LC54/76.

20040713 aal
implement editorial changes requested after review by GlenD, in application data
feature and module.

20040713 aal
address issues 233 & 112 all at once, by increasing level of all divs, adding new
intro div, adding new div to contain features, renaming spec. Lotsa changes, what
fun.

20040713 aal s/Label/Message Label/g and s/{label}/{message label}/g. issue 230.

20040713 aal
replace "fault generation" with "fault propagation" (in almost all cases; one case of
"generate" remains to indicate that it ends an exchange). issue 234.

20040713 aal
add language to introduction describing relationship between these MEPs and the
MEPs defined by SOAP 1.2 (issue 232). This replaces the language found two
items down (issue 191).

20040713 aal add (hereafter, simply ’patterns’) to intro (issue 231).

20040610 aal
add language to introduction describing relationship between these MEPs and the
MEPs defined by SOAP 1.2 (issue 191).

20040225 aal add in-optional-out per minutes of 20 feb 2004 telecon

20040212 aal
change {messageReference} to {label} and "Message Reference component" to
"Label component" per 20040212 teleconference

20040205 aal change all ’A’ and ’B’ message labels into ’Out’ or ’In’, depending upon direction.

20040205 aal s/message pattern/message exchange pattern/gi

20031204 jcs
Removed change marks; note that some were on div2 tag and did not show when
transformed into HTML.

20031204 jcs
Per 4 Dec 2003 telecon, decided to rename ’Asynchronous Out-In’ pattern to
’Output-Optional-Input’.

20031105 aal Fix titles of added patterns. Move them to be in conjunction with similar patterns.

20031022 aal
Per action item from October 16 teleconference, added the three patterns using
message-triggers-fault as published on the mailing list (robust-in-only,
robust-out-only, asynch-out-in).

20031022 aal
Added internal linkage (using specref) from patterns to the fault rulesets which
they use.

20031022 aal
Per 9 and 16 Oct 2003 teleconferences, marked in-multi-out and out-multi-in
patterns deleted.

20031022 aal
Per 16 Oct 2003 teleconference, added a paragraph/sentence stating that generation
of a fault terminates an exchange.

94

D.1 WSDL 2.0 Extensions Change Log

20031007 JCS
Per 2 Oct 2003 teleconference, changed "broadcast" to "multicast" in the introduc-
tion.

20030922 JCS
Per 22 Sep 2003 meeting in Palo Alto, CA, removed "Pattern Review" editorial
note; added specific editorial notes for In-Multi-Out and Out-Multi-In.

20030911 RRC
Changed the "name" property of the message reference component to
"messageReference".

20030904 JCS Incorporated clarifications suggested by W3C\David Booth.

20030801 JCS Per 30 July meeting, added recommendations from patterns task force.

20030612 AAL Added fault generation rulesets and references to them from patterns.

20030313 MJG Changed to Part 2 (from Part 3)

20030306 JCS Proposed name for MEP7.

20030305 JCS
Per 4 Mar 03 meeting, renamed ’message exchange pattern’ to ’message pattern’ or
’pattern’, added pattern for request-response, added ednote about review of
patterns.

20030217 MJG Fixed some issues with entities and validity errors WRT ulists

20030212 JCS Initial draft

D.2 WSDL 2.0 Bindings Change Log

Date Author Description

20050310 JJM Replaced <definitions> with <description>.

20050310 JJM Fixed missing fault pseudo-schema.

20050301 RRC
LC55: enabled use of whttp:transferCoding on Binding Fault Reference compo-
nents.

20050301 RRC LC55: enabled use of wsoap:module on Binding Fault Reference components.

20050221 HH LC48b: highlighted relationship between SOAP and WSDL MEPs

20050211 HH LC49: added conformance section to each of the bindings

20050120 HH LC75q: removed wsdls namespace and XML 1.1 reference; limiting to XML 1.0

20050120 HH LC21: implemented resolution from 16 Dec 2004 WS Description WG telcon

20041209 HH LC86: completed pseudo-schemas with missing F&P occurrences

20041209 HH LC85: clarified mapping of messages in an operation to HTTP request/response

95

D.2 WSDL 2.0 Bindings Change Log

http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC55
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC55
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC48b
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC49
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC75q
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC21
http://lists.w3.org/Archives/Public/www-ws-desc/2004Dec/0026.html
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC86
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC85

20041209 HH
LC30: removed instances of provider/requester agents and replaced them by HTTP
server/client

20041209 HH LC29d: clarified modification of default of SOAP serialization rules

20041208 AV
Introduced SOAP version independent WSDL SOAP Binding. Added two new
sections, "Specifying the SOAP Version" and "SOAP 1.2 Binding". Plus, lots of
shuffling.

20041027 HH LC57 &LC58: fixed typos

20041027 HH LC51

20041027 HH LC45: {http location} may or may not be a template

20041027 HH LC44: URL serialization expressed in terms of the component model

20041027 HH
LC29e: URL serialization: disallowing nil elements in certain cases; clarifying that
empty elements are OK

20041001 HH LC29g: switched 3.8 (serializations) and 3.9 (styles)

20041001 HH LC29f: it is an error to have nil elements in an instance data for multipart/form-data

20041001 HH LC29a & LC29c: indicated that there is no suitable default fault code

20041001 HH LC15: moved {http location} under bulleted list in section 2

20040920 HH LC36 & LC2: added wsdls:* and xs:* in SOAP binding

20040920 HH LC32: fixed errors due to operation name restriction in serialization examples

20040920 HH LC36: added wsdls:* and xs:* in HTTP binding

20040920 HH LC37: corrected rules to set operation properties values in HTTP binding

20040920 HH LC33: removed "default" in SOAP binding’s HTTP method selection

20040920 HH LC13: removed remaining mentions of HTTP Operation Component

20040920 HH LC12: added whttp:location in SOAP XML summary

20040909 HH LC10: fixed typo in example 3.3

20040909 HH
LC11: made default attributes consistent with the following form: wbind-
ing:fooDefault

20040730 HH Removed property on wsoap:module in pseudo-schema.

20040730 HH Removed AD Feature HTTP serialization.

20040729 HH Added AD Feature support in HTTP binding.

20040727 HH Clarified interaction between SOAP binding and HTTP binding properties

96

D.2 WSDL 2.0 Bindings Change Log

http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC30
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC29d
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC57
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC58
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC51
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC45
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC44
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC29e
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC29g
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC29f
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC29a
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC29c
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC15
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC36
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC2
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC32
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC36
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC37
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC33
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC13
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC12
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC10
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC11

20040727 HH Renamed http prefix whttp

20040727 SW Implemented Umit’s proposal to mark MTOM as one optimization mechanism.

20040726 HH
Restricted URI style with regards to QNames and added trailing / in URL-encoded
syntax

20040723 HH Addressed issue 246: limited MEP to In-Out, In-Only and Robust In-Only

20040723 HH Addressed issue 226.

20040723 HH
Addressed 249: major reorganization of the HTTP binding to be presented in a
functional way like the SOAP binding rather than in a syntactical way.

20040722 SW
Moved SOAP binding syntax summary to the top per request. Also fixed the value
of the binding/@type property in the pseudo-schema to show that its a SOAP
binding.

20040722 HH
Added HTTP error code attribute on fault binding. Added relationship between
instance data and properties in the component model. Addresses issue 166.

20040722 HH Renamed SOAP protocol into underlying protocol.

20040721 HH Set the {type} property of binding for HTTP binding.

20040721 HH Fixes for issue 177.

20040720 HH Cross-referenced Part 1 properties.

20040720 HH
Specified default serialization format for HTTP binding, as well as made clear how
the defined serialization formats apply constraints on interface operation styles

20040705 JJM Added note to indicate only one element per SOAP body.

20040702 SW
Corrected how the SOAP binding is indicated .. I had forgotten about
binding/@type!

20040625 SW Made pseudo-syntax consistent with part1

20040624 SW Update the rest of the SOAP binding stuff and consistified everything.

20040624 SW Cleaned up how SOAP modules were described. Added default SOAP MEP stuff.

20040623 SW Added default binding rules about HTTP URI generation.

20040623 SW
Added default binding rules about SOAP MEP selection and HTTP Method selec-
tion.

20040623 SW Fixed up soapaction default rules

20040623 SW Allowed use of MTOM for payload serialization

20040623 SW Fixed up the wsoap:protocol section

97

D.2 WSDL 2.0 Bindings Change Log

20040618 SW Re-introduced AII and EII entity refs.

20040618 SW Made soap:module compose with nearest-wins rule.

20040606 DO
Cleanup on http binding section - had missed some properties. completed removal
of @separator

20040604 DO
Major rewrite of http binding. Moved to component model, added http properties,
added input/output serialization, removed @separator, added self as editor

20040526 SW Removed wsoap:address

20040526 SW Editorial/small corrections per F2F decisions

20040526 SW Made soap binding be mostly attribute based per F2F decision

20040519 SW
removed spurious fault element inside binding/operation/{in,out}put from syntax
summary

20040519 SW Put in wsoap:module at operation level in the syntax summary (was missing)

20040519 SW Removed old SOAP binding text

20040519 SW Removed wsoap:header

20040519 JJM Added SOAP Address section

20040519 JJM Added SOAP Operation section

20040519 JJM Replace reference to "XML" by "XML1.0"

20040519 JJM Added SOAP Fault section

20040519 JJM Added SOAP Header section

20040519 JJM Added SOAP Module section

20040516 SW Finished writing up soap:binding

20040516 SW Added myself as an editor.

20040514 SW Added default binding rules.

20040514 SW Commented out old totally out of date SOAP binding.

20040514 JJM
Rework the binding and module sections. Reindent to match the structure of the
HTTP binding.

20040511 JJM Updated SOAP binding pseudo-schema, according to telcon 20040506.

20040511 JJM Updated SOAP binding introduction.

20040401 JJM Fixed one remaining occurrence of "verb" (instead of "method").

98

D.2 WSDL 2.0 Bindings Change Log

20040326 JJM
Sanitized ednotes. Added new ednotes indicating the SOAP binding needs work
and the HTTP binding is (mostly) OK.

20040326 JJM Added Philippe’s note on URIPath, as per telcon 20040325.

20040305 JJM
Removed the archaic MIME binding, now superseded by the HTTP binding
anyway.

20040305 JJM Included Philippe’s changes to the HTTP binding.

20031103 JJM Fix new non-normative SOAP binding pseudo-schema.

20031102 SW Updated SOAP binding.

20031102 SW Change 1.2 to 2.0 per WG decision to rename.

20030606 JJM Replaced <kw/> by . Indicated that pseudo-schemas are not normative

20030604 JJM Reformated pseudo-syntax elements to match Part 1 layout

20030529 JCS Incorporated text to resolve Issue 6e

20030523 JJM Commented out MIME binding example; this is primer stuff.

20030523 JJM Added pseudo-syntax to all sections.

20030523 JJM Started converting the fault and headerfault sections to component model.

20030523 JJM Complete the Multipart and x-www-form-urlencoded sections.

20030523 JJM Fixed typos in HTTP binding (in particular added NOT in some section headers).

20030522 JCS Added rules for serializing HTTP response

20030522 JCS Added cardinality to pseudo schema for HTTP binding

20030522 JCS Changes @transport to @protocol for SOAP binding

20030522 JJM Incorporated remaining text from Philippe into the HTTP binding.

20030522 JJM
Polished the HTTP binding, split into subsections, added double curly brace escape
mechanism, removed pseudo-schema.

20030521 JCS Added rules for @verbDefault/@verb and @location.

20030514 JJM
Start converting the HTTP binding to the component model. The next thing to do
will be to remove http:urlReplacement, etc. and incorporate instead Philippe’s text.

20030313 MJG Changed to Part 3 (from Part 2)

20030117 JCS
Incorporated resolution for Issue 5 (@encodingStyle). Referenced (rather than
in-lined XML Schema).

20030117 JJM Various editorial fixes.

99

D.2 WSDL 2.0 Bindings Change Log

20030116 JCS Updated pseudo and XML Schema.

20030116 JJM Added propertyConstraint section.

20030116 JJM Added soap:module section.

20030115 JCS

Incorporated resolutions for Issue 25 (drop @use and @encoding), Issue 51
(headers reference element/type), and attribute roll up into text and schema. Began
reworking SOAP HTTP binding to use Infoset model. Removed informative
appendices ’Notes on URIs’ and example WSDL documents; expect them to
appear in the primer. Updated SOAP 1.2 references to CR.

20030114 JJM Removed ednote saying Part 2 is out of synch with Part 1.

20030111 JJM Incorporated resolution for issue 17 (role AII).

20030109 JJM Incorporated resolution for issue 4 (Namespaces).

20020702 JJM Added summary to prefix table.

20020628 JJM Added out-of-synch-with-Part2 and not-soap12-yet ednote.

20020621 JJM
Commented out the link to the previous version. There is no previous version for
1.2 right now.

20020621 JJM Rewrote the Notation Conventions section.

20020621 JJM Added reference to part 0 in introduction. Renumbered references.

20020621 JJM Simplified abstract and introduction.

20020621 JJM Obtain the list of WG members from a separate file.

20020621 JJM Updated stylesheet and DTDs to latest XMLP stylesheet and DTDs.

20020621 JJM
Deleted placeholder for appendix C "Location of Extensibility Elements", since
this is part 1 stuff and extensibility has been reworked anyway.

20020621 JJM Corrected link to issues lists

20020621 JJM
Updated title from "WSDL" to "Web Services Description Language". Now refer
to part 1 as "Web Services... Part 1: Framework

20020621 JJM Added Jeffrey as an editor :-). Removed Gudge (now on Part 2) :-(

20020411 JJM Fixed typos noticed by Kevin Liu

20020301 JJM Converted the "Schemas" sections

20020301 JJM Converted the "Wire WSDL examples" sections

20020301 JJM Converted the "Notes on URIs" sections

20020301 JJM Converted the "Notational Conventions" sections

100

D.2 WSDL 2.0 Bindings Change Log

20020301 JJM Converted the "References" sections

20020301 JJM Converted the "MIME Binding" section to XML

20020221 JJM Converted the "HTTP Binding" section to XML

20020221 JJM Added placeholders for the "Wire examples" and "Schema" sections

20020221 JJM Converted the "SOAP Binding" section to XML

20020221 JJM Added the Change Log

20020221 JJM Added the Status section

20020221 JJM Simplified the introduction; referred to Part1 for a longer introduction

20020221 JJM Renamed to "Part 2: Bindings"

20020221 JJM Created from http://www.w3.org/TR/2001/NOTE-wsdl-20010315

101

D.2 WSDL 2.0 Bindings Change Log

	Web Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts
	W3C Working Draft 26 March 2007
	Abstract
	Status of this Document
	Table of Contents
	Appendices

	1. Introduction
	1.1 Notational Conventions
	1.2 Assertions

	2. Predefined Message Exchange Patterns
	2.1 Template for Message Exchange Patterns
	2.1.1 Pattern Name

	2.2 Fault Propagation Rules
	2.2.1 Fault Replaces Message propagation rule
	2.2.2 Message Triggers Fault propagation rule
	2.2.3 No Faults propagation rule

	2.3 Message Exchange Patterns
	2.3.1 In-Only message exchange pattern
	2.3.2 Robust In-Only message exchange pattern
	2.3.3 In-Out message exchange pattern

	2.4 Security Considerations

	3. Predefined Extensions
	3.1 Operation safety
	3.1.1 Relationship to WSDL Component Model
	3.1.2 XML Representation
	3.1.3 Mapping from XML Representation to Component Properties

	4. Predefined Operation Styles
	4.1 RPC Style
	4.1.1 wrpc:signature Extension
	4.1.2 XML Representation of the wrpc:signature Extension
	4.1.3 wrpc:signature Extension Mapping To Properties of an Interface Operation component

	4.2 IRI Style
	4.3 Multipart style

	5. WSDL SOAP Binding Extension
	5.1 SOAP Syntax Summary (Non-Normative)
	5.2 Identifying the use of the SOAP Binding
	5.3 SOAP Binding Rules
	5.4 Specifying the SOAP Version
	5.4.1 Description
	5.4.2 Relationship to WSDL Component Model
	5.4.3 XML Representation
	5.4.4 Mapping from XML Representation to Component properties

	5.5 Specifying the SOAP Underlying Protocol
	5.5.1 Description
	5.5.2 Relationship to WSDL Component Model
	5.5.3 XML Representation
	5.5.4 Mapping from XML Representation to Component Properties

	5.6 Binding Faults
	5.6.1 Description
	5.6.2 Relationship to WSDL Component Model
	5.6.3 XML Representation
	5.6.4 Mapping XML Representation to Component Properties

	5.7 Binding Operations
	5.7.1 Description
	5.7.2 Relationship to WSDL Component Model
	5.7.3 XML Representation
	5.7.4 Mapping from XML Representation to Component Properties

	5.8 Declaring SOAP Modules
	5.8.1 Description
	5.8.2 Relationship to WSDL Component Model
	5.8.3 SOAP Module component
	5.8.4 XML Representation
	5.8.5 Mapping from XML Representation to Component Properties
	5.8.6 IRI Identification Of A SOAP Module component

	5.9 Declaring SOAP Header Blocks
	5.9.1 Description
	5.9.2 Relationship to WSDL Component Model
	5.9.3 SOAP Header Block component
	5.9.4 XML Representation
	5.9.5 Mapping XML Representation to Component Properties
	5.9.6 IRI Identification Of A SOAP Header Block component

	5.10 WSDL SOAP 1.2 Binding
	5.10.1 Identifying a WSDL SOAP 1.2 Binding
	5.10.2 Description
	5.10.3 SOAP 1.2 Binding Rules
	5.10.4 Binding WSDL 2.0 MEPs to SOAP 1.2 MEPs
	5.10.4.1 WSDL In-Out to SOAP Request-Response
	5.10.4.1.1 The Client
	5.10.4.1.2 The Service

	5.10.4.2 WSDL In-Out to SOAP SOAP-Response
	5.10.4.2.1 The Client
	5.10.4.2.2 The Service

	5.10.4.3 WSDL In-Only to SOAP Request-Response
	5.10.4.3.1 The Client
	5.10.4.3.2 The Service

	5.10.4.4 WSDL Robust-In-Only to SOAP Request-Response
	5.10.4.4.1 The Client
	5.10.4.4.2 The Service

	5.11 Conformance

	6. WSDL HTTP Binding Extension
	6.1 Identifying the use of the HTTP Binding
	6.2 HTTP Syntax Summary (Non-Normative)
	6.3 Supported Extensions
	6.4 HTTP Binding Rules
	6.4.1 HTTP Method Selection
	6.4.2 HTTP Content Encoding Selection
	6.4.3 Payload Construction And Serialization Format
	6.4.3.1 Serialization rules for XML messages

	6.4.4 Default input and output serialization format
	6.4.5 HTTP Header Construction
	6.4.6 HTTP Request IRI

	6.5 Binding Operations
	6.5.1 Description
	6.5.2 Relationship to WSDL Component Model
	6.5.3 Specification of serialization rules allowed
	6.5.4 XML Representation
	6.5.5 Mapping from XML Representation to Component Properties

	6.6 Declaring HTTP Headers
	6.6.1 Description
	6.6.2 Relationship to WSDL Component Model
	6.6.3 HTTP Header component
	6.6.4 XML Representation
	6.6.5 Mapping from XML Representation to Component Properties
	6.6.6 IRI Identification Of An HTTP Header component

	6.7 Specifying HTTP Error Code for Faults
	6.7.1 Description
	6.7.2 Relationship to WSDL Component Model
	6.7.3 XML Representation
	6.7.4 Mapping from XML Representation to Component Properties

	6.8 Serialization Format of Instance Data
	6.8.1 Serialization of the instance data in parts of the HTTP request IRI
	6.8.1.1 Construction of the request IRI using the {http location} property

	6.8.2 Serialization as "application/x-www-form-urlencoded"
	6.8.2.1 Case of elements cited in the {http location} property
	6.8.2.2 Serialization of content of the instance data not cited in the {http location} property
	6.8.2.2.1 Construction of the query string
	6.8.2.2.2 Controlling the serialization of the query string in the request IRI
	6.8.2.2.3 Serialization in the request IRI
	6.8.2.2.4 Serialization in the message body

	6.8.3 Serialization as "application/xml"
	6.8.4 Serialization as "multipart/form-data"

	6.9 Specifying the Content Encoding
	6.9.1 Description
	6.9.2 Relationship to WSDL Component Model
	6.9.3 XML Representation
	6.9.4 Mapping from XML Representation to Component Properties

	6.10 Specifying the Use of HTTP Cookies
	6.10.1 Description
	6.10.2 Relationship to WSDL Component Model
	6.10.3 XML Representation
	6.10.4 Mapping from XML Representation to Component Properties

	6.11 Specifying HTTP Access Authentication
	6.11.1 Description
	6.11.2 Relationship to WSDL Component Model
	6.11.3 XML Representation
	6.11.4 Mapping from XML Representation to Component Properties

	6.12 Conformance

	7. References
	7.1 Normative References
	7.2 Informative References

	A. Acknowledgements (Non-Normative)
	B. Component Summary (Non-Normative)
	C. Assertion Summary (Non-Normative)
	D. Part 2 Change Log (Non-Normative)
	D.1 WSDL 2.0 Extensions Change Log
	D.2 WSDL 2.0 Bindings Change Log

