
1

Skip Cave
Chief Scientist,
Intervoice Inc.

Multimodal
Framework
Proposal

2

Workshop Goals

Identify & prioritize requirements for
changes, extensions, and additions to the
MMI architecture to better support
Speech, GUI, Ink, and other Modality
Components

3

Agenda

Current Lifecycle Events
Rationale for New Functionality
Paradigm-Breaking Examples/Use Cases
Elucidating Questions on Framework Limitations
Proposed New Lifecycle Interaction Modes/Events
– Basic
– Modify
– Parallel

Example Diagrams
New Functionality Objectives
Proposals
Issues

4

Current Life Cycle Events

New Context
Request

• MC -> RF

Prepare
• RF -> MC

Start
• RF -> MC

Done
• MC -> RF

Cancel
• RF -> MC

Pause
• RF -> MC

Resume
• RF -> MC

Data
• RF -> MC or MC -> RF

Clear Context
• RF -> MC

Status Request
• RF -> MC

5

Rationale For New Functionality

What if the application developer wants to modify a
specific executing MC script without stopping the
execution of that current script?

What if the application developer wants to initiate a
concurrent operation to a specific Modality
Component? The concurrent operation in the MC
would share the same User, I/O devices, Media
streams etc., running in parallel with the initial MC
process.

6

Paradigm-Breaking Examples – Use Cases

Modify
– Volume Up (Touch Screen Button)
– Change Audio Playback Speed (Keyboard)
– Bold Text (Voice Command)
– Pause or change volume of video in one window of multi-window

screen (Voice Command - “Louder on video one”)

Parallel
– Oral Test

• Concurrent Audio Recordings (System & User) (Graphical PDA buttons)
– Digital Music Store

• Concurrent Audio Playback (Annotation) (Graphical PDA buttons)
– Multiple-concurrent-window displays
– Single Screen/Multi-user GUI Interactions (Multiplayer Games)

7

Questions

How can the Interaction Manager indicate a
modification to an ongoing Modality Component
interaction or script without stopping and re-starting
the MC?
How can the Interaction Manager initiate a parallel
process within a MC without stopping and re-starting
the current script process within the MC? A parallel
MC process would utilize the same MC, and user, as
well as the same media streams and I/O devices.
How does the IM identify the specific parallel process
it is addressing, when sending events to an MC?

8

Possible New Lifecycle Interaction Modes

Standard Event
– Invokes markup for MC execution, either via URL or

inline
Modify Event (Data Event?)
– Invokes markup for MC execution which will modify the

current script execution, either via URL or inline.
– Will not stop the execution of current MC user

interaction as modifications are made
Parallel Event (Concurrent Start?)
– Invokes markup for MC execution which will cause

parallel operations within the target MC, either via URL
or inline. Same user, same media streams, same I/O
devices

– Will not stop the execution of current MC user
interaction

9

Basic Interaction Mode – Output Example

Runtime Framework
Delivery
Context

Component
Interaction
Manager

Data
Component

Modality
Component

(Screen)

Modality
Component

(Audio)

Result:
Screen

Displays
Text

Result:
Speaker

Plays
Audio

Send
Play

Event

Send
Display
Event

Play Audio
Display

Text

10

Modify Interaction Mode – Output Example

Runtime Framework
Delivery
Context

Component
Interaction
Manager

Data
Component

Modality
Component

(Screen)

Modality
Component

(Audio)

Send
Modify
Play

Event

Send
Modify
Display
Event

Result:
Specific
Text on

Screen is
Made Bold

Result:
Audio

Volume is
Raised

Turn Up
VolumeBold Text

11

Parallel Interaction Mode – Output Example

Runtime Framework
Delivery
Context

Component
Interaction
Manager

Data
Component

Modality
Component

(Screen)

Modality
Component

(Audio)

Send
Additional
Play Event

(Audio is already
playing)

Send
Additional

Display Event
(Screen is already

displaying text)

Result:
Display Additional
Text on Screen in
Another Window

Result:
Second audio stream
is mixed with original,
and both streams are
heard from speaker

Play Audio
Display

Text

12

Objectives of Proposal

Make simple modifications and parallel invocations to
MCs easy for developers to implement

Allow embedded markup in events for immediate
execution

Avoid requiring developers to write Asynchronous
event handlers on Modality Components

Allow Granular Operations within MCs controlled from
IM

13

Proposal

Define a “Modify” LC command for initiating
modifications to existing running processes on an MC.
Allow multiple Start commands to be issued before the
first “Done” command is received from an MC.
– Start commands issued before a Done terminating the initial

“Start”, will cause the target MC to start a second parallel
instance sharing the same media streams and I/O devices.

– Additional Start commands will cause additional “done”
commands to be returned, one for each Start.

Pause-Resume-Modify and other LC commands must
be addressed to a specific Start-Done process, and will
operate within that specific start-done scope

14

Issues

How to identify specific start-done processes/command
pairs?
How to send suspend-resume-modify and other
lifecycle events to a specific start-done process?
How to handle the sharing of media streams with
concurrent operations. The intuitive approach is to
automatically replicate input, and sum output.
– Modern OS functionality

• Audio Output: DVD player and MP3 player
• Audio Input: Speech Reco App (Transcription) and Podcast

recording

15

Thank You!

Questions?

Skip Cave

Chief Scientist

Intervoice Inc.

skip.cave@intervoice.com

